Sample records for potential coupling coefficient

  1. Traveling wave and soliton solutions of coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients.

    PubMed

    Zhong, Wei-Ping; Belić, Milivoj

    2010-10-01

    Exact traveling wave and soliton solutions, including the bright-bright and dark-dark soliton pairs, are found for the system of two coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients, by employing the homogeneous balance principle and the F-expansion technique. A kind of shape-changing soliton collision is identified in the system. The collision is essentially elastic between the two solitons with opposite velocities. Our results demonstrate that the dynamics of solitons can be controlled by selecting the diffraction, nonlinearity, and gain coefficients.

  2. Quantum close coupling calculation of transport and relaxation properties for Hg-H2 system

    NASA Astrophysics Data System (ADS)

    Nemati-Kande, Ebrahim; Maghari, Ali

    2016-11-01

    Quantum mechanical close coupling calculation of the state-to-state transport and relaxation cross sections have been done for Hg-H2 molecular system using a high-level ab initio potential energy surface. Rotationally averaged cross sections were also calculated to obtain the energy dependent Senftleben-Beenakker cross sections at the energy range of 0.005-25,000 cm-1. Boltzmann averaging of the energy dependent Senftleben-Beenakker cross sections showed the temperature dependency over a wide temperature range of 50-2500 K. Interaction viscosity and diffusion coefficients were also calculated using close coupling cross sections and full classical Mason-Monchick approximation. The results were compared with each other and with the available experimental data. It was found that Mason-Monchick approximation for viscosity is more reliable than diffusion coefficient. Furthermore, from the comparison of the experimental diffusion coefficients with the result of the close coupling and Mason-Monchick approximation, it was found that the Hg-H2 potential energy surface used in this work can reliably predict diffusion coefficient data.

  3. Electrokinetic coupling in unsaturated porous media.

    PubMed

    Revil, A; Linde, N; Cerepi, A; Jougnot, D; Matthäi, S; Finsterle, S

    2007-09-01

    We consider a charged porous material that is saturated by two fluid phases that are immiscible and continuous on the scale of a representative elementary volume. The wetting phase for the grains is water and the nonwetting phase is assumed to be an electrically insulating viscous fluid. We use a volume-averaging approach to derive the linear constitutive equations for the electrical current density as well as the seepage velocities of the wetting and nonwetting phases on the scale of a representative elementary volume. These macroscopic constitutive equations are obtained by volume-averaging Ampère's law together with the Nernst-Planck equation and the Stokes equations. The material properties entering the macroscopic constitutive equations are explicitly described as functions of the saturation of the water phase, the electrical formation factor, and parameters that describe the capillary pressure function, the relative permeability functions, and the variation of electrical conductivity with saturation. New equations are derived for the streaming potential and electro-osmosis coupling coefficients. A primary drainage and imbibition experiment is simulated numerically to demonstrate that the relative streaming potential coupling coefficient depends not only on the water saturation, but also on the material properties of the sample, as well as the saturation history. We also compare the predicted streaming potential coupling coefficients with experimental data from four dolomite core samples. Measurements on these samples include electrical conductivity, capillary pressure, the streaming potential coupling coefficient at various levels of saturation, and the permeability at saturation of the rock samples. We found very good agreement between these experimental data and the model predictions.

  4. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-07

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  5. Stationary and Dynamic Permeability and Coupling Coefficient Measurements in Sintered Glass Bead Systems

    NASA Astrophysics Data System (ADS)

    Gueven, I.; Steeb, H.; Luding, S.

    2014-12-01

    Electrokinetic waves describe the coupling between seismic and electromagnetic waves that exist in porous media. The coupling between them arise from an electrochemical boundary layer between grain and fluid interface of saturated porous media. Acoustical waves cause a disturbance of the electrical fluid charge within the double layer, which therefore creates an electric streaming current (seismoelectric effect). Inversely, electromagnetic waves can generate mechanical signals (electroseismic effect). Electrokinetic conversion potentially combines high seismic resolution with good electromagnetic hydrocarbon sensitivity. The (stationary and frequency-dependent) streaming potential coefficient is a key property, which gives rise to the coupling between electromagnetic and acoustical waves. It depends strongly on the fluid conductivity, porosity, tortuosity, permeability, pore throat and zeta potential of porous media. We examine experimentally both, the stationary and dynamic permeabilities and coupling coefficients of sintered glass bead systems. For this purpose a multi-purpose measuring cell was developed which allows us to carry out - besides common ultrasound experiments - also to perform stationary and frequency-dependent permeability and coupling coefficient measurements. For the experiments sintered mono- and slightly polydisperse glass bead samples with different glass bead diameters between 0.4 and 8mm and porosities ranging between 21 and 39% were used. The stationary and dynamic permeability and streaming potential measurements are supported by μCT scans which enable us a deeper insight into the porous medium. Based on the μCT scans of the produced sintered glass bead samples essential influence parameters, like tortuosity, porosity, effective particle diameters and pore throats in different regions of the entire scanned region have been analyzed in detail to understand the laboratory experiments, cf. Illustration 1. In addition lattice Boltzmann simulations on voxel-based data were performed to determine the numerical permeabilities of different-sized subsets and finally compared with laboratory experiments. A clearly defined permeability-, and porosity-gradient in dependence on the sample height due to gravitational influences could be determined.

  6. Cooperation and competition between two symmetry breakings in a coupled ratchet

    NASA Astrophysics Data System (ADS)

    Li, Chen-Pu; Chen, Hong-Bin; Fan, Hong; Xie, Ge-Ying; Zheng, Zhi-Gang

    2018-03-01

    We investigate the collective mechanism of coupled Brownian motors in a flashing ratchet in the presence of coupling symmetry breaking and space symmetry breaking. The dependences of directed current on various parameters are extensively studied in terms of numerical simulations and theoretical analysis. Reversed motion can be achieved by modulating multiple parameters including the spatial asymmetry coefficient, the coupling asymmetry coefficient, the coupling free length and the coupling strength. The dynamical mechanism of these transport properties can be reasonably explained by the effective potential theory and the cooperation or competition between two symmetry breakings. Moreover, adjusting the Gaussian white noise intensity, which can induce weak reversed motion under certain condition, can optimize and manipulate the directed transport of the ratchet system.

  7. Analytical Solution of Coupled Perturbation of Tesseral Harmonic Terms of Mars's Non-Spherical Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Zhou, Chui-hong; Yu, Sheng-xian; Liu, Lin

    2012-10-01

    The non-spherical gravitational potential of the planet Mars is sig- nificantly different from that of the Earth. The magnitudes of Mars' tesseral harmonic coefficients are basically ten times larger than the corresponding val- ues of the Earth. Especially, the magnitude of its second degree and order tesseral harmonic coefficient J2,2 is nearly 40 times that of the Earth, and approaches to the one tenth of its second zonal harmonic coefficient J2. For a low-orbit Mars probe, if the required accuracy of orbit prediction of 1-day arc length is within 500 m (equivalent to the order of magnitude of 10-4 standard unit), then the coupled terms of J2 with the tesseral harmonics, and even those of the tesseral harmonics themselves, which are negligible for the Earth satellites, should be considered when the analytical perturbation solution of its orbit is built. In this paper, the analytical solutions of the coupled terms are presented. The anal- ysis and numerical verification indicate that the effect of the above-mentioned coupled perturbation on the orbit may exceed 10-4 in the along-track direc- tion. The conclusion is that the solutions of Earth satellites cannot be simply used without any modification when dealing with the analytical perturbation solutions of Mars-orbiting satellites, and that the effect of the coupled terms of Mars's non-spherical gravitational potential discussed in this paper should be taken into consideration.

  8. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  9. Analysis of redox additive-based overcharge protection for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Surampudi, S.; Attia, A. I.; Bankston, C. P.

    1991-01-01

    The overcharge condition in secondary lithium batteries employing redox additives for overcharge protection, has been theoretically analyzed in terms of a finite linear diffusion model. The analysis leads to expressions relating the steady-state overcharge current density and cell voltage to the concentration, diffusion coefficient, standard reduction potential of the redox couple, and interelectrode distance. The model permits the estimation of the maximum permissible overcharge rate for any chosen set of system conditions. Digital simulation of the overcharge experiment leads to numerical representation of the potential transients, and estimate of the influence of diffusion coefficient and interelectrode distance on the transient attainment of the steady state during overcharge. The model has been experimentally verified using 1,1-prime-dimethyl ferrocene as a redox additive. The analysis of the experimental results in terms of the theory allows the calculation of the diffusion coefficient and the formal potential of the redox couple. The model and the theoretical results may be exploited in the design and optimization of overcharge protection by the redox additive approach.

  10. Enhancing thermoelectrochemical properties by tethering ferrocene to the anion or cation of ionic liquids: altered thermodynamics and solubility.

    PubMed

    Aldous, Leigh; Black, Jeffrey J; Elias, Maximo C; Gélinas, Bruno; Rochefort, Dominic

    2017-09-13

    Entropic changes inherent within a redox process typically result in significant temperature sensitivity. This can be utilised positively or can be a detrimental process. This study has investigated the thermoelectrochemical properties (temperature-dependant electrochemistry) of the ferrocenium|ferrocene redox couple in an ionic liquid, and in particular the effect of covalently tethering this redox couple to fixed positive or negative charges. As such, the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was employed to dissolve ferrocene, as well as cationic-tethered ferrocene (the 1-ethyl-3-(methylferrocenyl)imidazolium cation) and anionic-tethered ferrocene (the ferrocenylsulfonyl(trifluoromethylsulfonyl)imide anion). These systems were characterised in terms of their voltammetry (apparent formal potentials, diffusion coefficients and electron transfer rate constants) and thermoelectrochemistry (temperature coefficients of the cell potential or 'Seebeck coefficients', short circuit current densities and power density outputs). The oxidised cationic species behaved like a dicationic species and was thus 6-fold more effective at converting waste thermal energy to electrical power within a thermoelectrochemical cell than unmodified ferrocene. This was almost exclusively due to a significant boost in the Seebeck coefficient of this redox couple. Conversely, the oxidised anionic species was formally a zwitterion, but this zwitterionic species behaved thermodynamically like a neutral species. The inverted entropic change upon going from ferrocene to anion-tethered ferrocene allowed development of a largely temperature-insensitive reference potential based upon a mixture of acetylferrocene and ferricenyl(iii)sulfonyl(trifluoromethylsulfonyl)imide.

  11. Atmosphere-ocean feedbacks in a coastal upwelling system

    NASA Astrophysics Data System (ADS)

    Alves, J. M. R.; Peliz, A.; Caldeira, R. M. A.; Miranda, P. M. A.

    2018-03-01

    The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system is used in different configurations to simulate the Iberian upwelling during the 2012 summer, aiming to assess the atmosphere-ocean feedbacks in the upwelling dynamics. When model results are compared with satellite measurements and in-situ data, two-way coupling is found to have a moderate impact in data-model statistics. A significant reinforcement of atmosphere-ocean coupling coefficients is, however, observed in the two-way coupled run, and in the WRF and ROMS runs forced by previously simulated SST and wind fields, respectively. The increasing in the coupling coefficient is associated with slight, but potentially important changes in the low-level coastal jet in the atmospheric marine boundary layer. While these results do not imply the need for fully coupled simulations in many applications, they show that in seasonal numerical studies such simulations do not degrade the overall model performance, and contribute to produce better dynamical fields.

  12. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : a new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.

    2009-12-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.

  13. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : A new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John

    2010-05-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.

  14. Higgs boson self-coupling from two-loop analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.

    2010-09-01

    The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less

  15. New potential energy surface for the HCS{sup +}–He system and inelastic rate coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip

    2015-07-28

    A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS{sup +}–He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS{sup +} by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO{sup +}–He system.more » The HCS{sup +}–He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.« less

  16. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2016-08-01

    We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.

  17. Standard electrode potential, Tafel equation, and the solvation thermodynamics.

    PubMed

    Matyushov, Dmitry V

    2009-06-21

    Equilibrium in the electronic subsystem across the solution-metal interface is considered to connect the standard electrode potential to the statistics of localized electronic states in solution. We argue that a correct derivation of the Nernst equation for the electrode potential requires a careful separation of the relevant time scales. An equation for the standard metal potential is derived linking it to the thermodynamics of solvation. The Anderson-Newns model for electronic delocalization between the solution and the electrode is combined with a bilinear model of solute-solvent coupling introducing nonlinear solvation into the theory of heterogeneous electron transfer. We therefore are capable of addressing the question of how nonlinear solvation affects electrochemical observables. The transfer coefficient of electrode kinetics is shown to be equal to the derivative of the free energy, or generalized force, required to shift the unoccupied electronic level in the bulk. The transfer coefficient thus directly quantifies the extent of nonlinear solvation of the redox couple. The current model allows the transfer coefficient to deviate from the value of 0.5 of the linear solvation models at zero electrode overpotential. The electrode current curves become asymmetric in respect to the change in the sign of the electrode overpotential.

  18. Experimental Measurement of the Static Coefficient of Friction at the Ti-Ti Taper Connection in Total Hip Arthroplasty.

    PubMed

    Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D

    2016-03-01

    The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.

  19. Charge Redistribution from Anomalous Magnetovorticity Coupling

    DOE PAGES

    Hattori, Koichi; Yin, Yi

    2016-10-05

    Here, we investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from both methods, we also observe that the transport coefficients are proportional to the anomaly coefficient and are independent ofmore » temperature and chemical potential. Finally, we speculate that these transport phenomena are connected to quantum anomaly.« less

  20. Saturation of the lower-hybrid-drift instability by mode coupling

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Guzdar, P. N.; Huba, J. D.

    1983-01-01

    A nonlinear mode-coupling theory of the lower-hybrid-drift instability is presented. It is found that the instability saturates by transferring energy from the growing, long wavelength modes to the damped, short wavelength modes. The saturation energy, mean square of the potential fluctuations, and diffusion coefficient are calculated self-consistently.

  1. Charge Transfer in Collisions of S^4+ with He.

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic helium were investigated for energies between 0.1 meV/u and 10 MeV/u. Total and state-selective cross sections and rate coefficients were obtained utilizing the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were also explored. Previous data are limited to an earlier Landau-Zener calculation of the total rate coefficient for which our results are two orders of magnitude larger. An observed multichannel interference effect in the MOCC results will also be discussed.

  2. NUMERICAL INTEGRAL OF RESISTANCE COEFFICIENTS IN DIFFUSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q. S., E-mail: zqs@ynao.ac.cn

    2017-01-10

    The resistance coefficients in the screened Coulomb potential of stellar plasma are evaluated to high accuracy. I have analyzed the possible singularities in the integral of scattering angle. There are possible singularities in the case of an attractive potential. This may result in a problem for the numerical integral. In order to avoid the problem, I have used a proper scheme, e.g., splitting into many subintervals where the width of each subinterval is determined by the variation of the integrand, to calculate the scattering angle. The collision integrals are calculated by using Romberg’s method, therefore the accuracy is high (i.e.,more » ∼10{sup −12}). The results of collision integrals and their derivatives for −7 ≤ ψ ≤ 5 are listed. By using Hermite polynomial interpolation from those data, the collision integrals can be obtained with an accuracy of 10{sup −10}. For very weakly coupled plasma ( ψ ≥ 4.5), analytical fittings for collision integrals are available with an accuracy of 10{sup −11}. I have compared the final results of resistance coefficients with other works and found that, for a repulsive potential, the results are basically the same as others’; for an attractive potential, the results in cases of intermediate and strong coupling show significant differences. The resulting resistance coefficients are tested in the solar model. Comparing with the widely used models of Cox et al. and Thoul et al., the resistance coefficients in the screened Coulomb potential lead to a slightly weaker effect in the solar model, which is contrary to the expectation of attempts to solve the solar abundance problem.« less

  3. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.

    PubMed

    Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha

    2004-09-22

    Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.

  4. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  5. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE PAGES

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-05

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  6. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  7. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  8. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are muchmore » higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.« less

  9. Potential energy surface and rate coefficients of protonated cyanogen (HNCCN+) induced by collision with helium (He) at low temperature

    NASA Astrophysics Data System (ADS)

    Bop, Cheikh T.; Faye, N. AB; Hammami, K.

    2018-05-01

    Nitriles have been identified in space. Accurately modeling their abundance requires calculations of collisional rate coefficients. These data are obtained by first computing potential energy surfaces (PES) and cross-sections using high accurate quantum methods. In this paper, we report the first interaction potential of the HNCCN+-He collisional system along with downward rate coefficients among the 11 lowest rotational levels of HNCCN+. The PES was calculated using the explicitly correlated coupled cluster approach with simple, second and non-iterative triple excitation (CCSD(T)-F12) in conjunction with the augmented-correlation consistent-polarized valence triple zeta (aug-cc-pVTZ) Gaussian basis set. It presents two local minima of ˜283 and ˜136 cm-1, the deeper one is located at R = 9 a0 towards the H end (HeṡṡṡHNCCN+). Using the so-computed PES, we calculated rotational cross-sections of HNCCN+ induced by collision with He for energies ranging up to 500 cm-1 with the exact quantum mechanical close coupling (CC) method. Downward rate coefficients were then worked out by thermally averaging the cross-sections at low temperature (T ≤ 100 K). The discussion on propensity rules showed that the odd Δj transitions were favored. The results obtained in this work may be crucially needed to accurately model the abundance of cyanogen and its protonated form in space.

  10. Double-temperature ratchet model and current reversal of coupled Brownian motors

    NASA Astrophysics Data System (ADS)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang

    2017-12-01

    On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.

  11. Exploring the potential energy landscape over a large parameter-space

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Mehta, Dhagash; Niemerg, Matthew; Rummel, Markus; Valeanu, Alexandru

    2013-07-01

    Solving large polynomial systems with coefficient parameters are ubiquitous and constitute an important class of problems. We demonstrate the computational power of two methods — a symbolic one called the Comprehensive Gröbner basis and a numerical one called coefficient-parameter polynomial continuation — applied to studying both potential energy landscapes and a variety of questions arising from geometry and phenomenology. Particular attention is paid to an example in flux compactification where important physical quantities such as the gravitino and moduli masses and the string coupling can be efficiently extracted.

  12. Determination of activity coefficient of lanthanum chloride in molten LiCl-KCl eutectic salt as a function of cesium chloride and lanthanum chloride concentrations using electromotive force measurements

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Simpson, Michael F.

    2016-12-01

    The thermodynamic behavior of lanthanides in molten salt systems is of significant scientific interest for the spent fuel reprocessing of Generation IV reactors. In this study, the apparent standard reduction potential (apparent potential) and activity coefficient of LaCl3 were determined in a molten salt solution of eutectic LiCl-KCl as a function of concentration of LaCl3. The effect of adding up to 1.40 mol % CsCl was also investigated. These properties were determined by measuring the open circuit potential of the La-La(III) redox couple in a high temperature molten salt electrochemical cell. Both the apparent potential and activity coefficient exhibited a strong dependence on concentration. A low concentration (0.69 mol %) of CsCl had no significant effect on the measured properties, while a higher concentration (1.40 mol %) of CsCl caused an increase (become more positive) in the apparent potential and activity coefficient at the higher range of LaCl3 concentrations.

  13. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    PubMed Central

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID:22125513

  14. Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations.

    PubMed

    Cardoso, W B; Avelar, A T; Bazeia, D

    2012-08-01

    In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations, with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then used to verify the stability of the localized solutions.

  15. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    NASA Astrophysics Data System (ADS)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru

    We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as wellmore » as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T{sub c}, is also controlled only by disorder widening of the conduction band (density of states).« less

  17. Geometric and thermal controls on normal fault seismicity from rate-and-state friction models

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Behn, M. D.; Olive, J. A. L.; Liu, Y.

    2017-12-01

    Seismic and geodetic observations from the last two decades have led to a growing realization that a significant amount of fault slip at plate boundaries occurs aseismically, and that the amount of aseismic displacement varies across settings. Here we investigate controls on the seismogenic behavior of crustal-scale normal faults that accommodate extensional strain at mid-ocean ridges and continental rifts. Seismic moment release rates measured along the fast-spreading East Pacific Rise suggest that the majority of fault growth occurs aseismically with almost no seismic slip. In contrast, at the slow-spreading Mid-Atlantic Ridge seismic slip may represent up to 60% of the total fault displacement. Potential explanations for these variations include heterogeneous distributions of frictional properties on fault surfaces, effects of variable magma supply associated with seafloor spreading, and/or differences in fault geometry and thermal structure. In this study, we use rate-and-state friction models to study the seismic coupling coefficient (the fraction of total fault slip that occurs seismically) for normal faults at divergent plate boundaries, and investigate controls on fault behavior that might produce the variations in the coupling coefficient observed in natural systems. We find that the seismic coupling coefficient scales with W/h*, where W is the downdip width of the seismogenic area of the fault and h* is the critical earthquake nucleation size. At mid-ocean ridges, W is expected to increase with decreasing spreading rate. Thus, the observed relationship between seismic coupling and W/h* explains to first order variations in seismic coupling coefficient as a function of spreading rate. Finally, we use catalog data from the Gulf of Corinth to show that this scaling relationship can be extended into the thicker lithosphere of continental rift systems.

  18. Rotationally inelastic scattering of PN by para-H2(j = 0) at low/moderate temperature

    NASA Astrophysics Data System (ADS)

    Najar, F.; Naouai, M.; Hanini, H. El; Jaidane, N.

    2017-12-01

    Calculation of the collisional rate coefficients with the most abundant species has been motivated by the desire to interpret observations of molecules in the interstellar medium. This paper will be concerned with rotational excitation of the phosphorus nitride (PN) molecule in its ground vibrational state by collisions with para-H2(j = 0). Ab intio potential energy surface for the PN-H2 van der Waals system, considering both molecules as rigid rotors, was computed via CCSD(T) method using the aug-cc-pVTZ basis sets, augmented by a bond functions placed at midway between the PN and H2 centres of mass. Cross-sections among the 40 first rotational levels of PN in collisions with para-H2(j = 0) were obtained using close coupling and coupled states calculations, for total energies up to 3000 cm- 1. Rate coefficients are presented for temperatures ranging from 5 to 300 K. A strong propensity favouring even Δj transitions is found. The comparison of the new PN-H2 rate coefficients with previously calculated PN-He rate coefficients shows that significant differences exist.

  19. A note on the electrochemical nature of the thermoelectric power

    NASA Astrophysics Data System (ADS)

    Apertet, Y.; Ouerdane, H.; Goupil, C.; Lecoeur, Ph.

    2016-04-01

    While thermoelectric transport theory is well established and widely applied, it is not always clear in the literature whether the Seebeck coefficient, which is a measure of the strength of the mutual interaction between electric charge transport and heat transport, is to be related to the gradient of the system's chemical potential or to the gradient of its electrochemical potential. The present article aims to clarify the thermodynamic definition of the thermoelectric coupling. First, we recall how the Seebeck coefficient is experimentally determined. We then turn to the analysis of the relationship between the thermoelectric power and the relevant potentials in the thermoelectric system: As the definitions of the chemical and electrochemical potentials are clarified, we show that, with a proper consideration of each potential, one may derive the Seebeck coefficient of a non-degenerate semiconductor without the need to introduce a contact potential as seen sometimes in the literature. Furthermore, we demonstrate that the phenomenological expression of the electrical current resulting from thermoelectric effects may be directly obtained from the drift-diffusion equation.

  20. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    PubMed Central

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  1. Role of orbital filling on nonlinear ionic Raman scattering in perovskite titanates

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    2017-01-01

    The linear and nonlinear phononic interactions between an optically excited infrared (IR) or hyper-Raman mode and a driven Raman mode are computed for the d0 (CaTiO3) and d1 (LaTiO3) titanates within a first-principles density functional framework. We calculate the potential energy surface expanded in terms of the Ag or B1 g mode amplitudes coupled to the Au or the B3 u mode and determine the coupling coefficients for these multimode interactions. We find that the linear-quadratic coupling dominates the anharmonicities over the quadratic-quadratic interaction in the perovskite titanates. The IR and Raman modes both modify the electronic structure with the former being more significant but occurring on a different time scale; furthermore, the coupled-mode interactions lead to sizable perturbations to the valence bandwidth (˜100 meV ) and band gap (˜50 meV). By comparing the coupling coefficients of undoped CaTiO3 and LaTiO3 to those for electron-doped (CaTiO3) and hole-doped (LaTiO3) titanates, we isolate the role of orbital filling in the nonlinear coupling process. We find that with increasing occupancy of the d manifold, the linear-quadratic interaction decreases by approximately 30% with minor changes induced by the cation chemistry (that mainly affect the phonon mode frequencies) or by electron correlation. We identify the importance of the Ti-O bond stiffness, which depends on the orbital filling, in governing the lattice anharmonicitiy. This microscopic understanding can be used to increase the nonlinear coupling coefficient to facilitate more facile access of nonequilibrium structures and properties through ionic Raman scattering processes.

  2. Bright-dark and dark-dark solitons in coupled nonlinear Schrödinger equation with P T -symmetric potentials

    NASA Astrophysics Data System (ADS)

    Nath, Debraj; Gao, Yali; Babu Mareeswaran, R.; Kanna, T.; Roy, Barnana

    2017-12-01

    We explore different nonlinear coherent structures, namely, bright-dark (BD) and dark-dark (DD) solitons in a coupled nonlinear Schrödinger/Gross-Pitaevskii equation with defocusing/repulsive nonlinearity coefficients featuring parity-time ( P T )-symmetric potentials. Especially, for two choices of P T -symmetric potentials, we obtain the exact solutions for BD and DD solitons. We perform the linear stability analysis of the obtained coherent structures. The results of this linear stability analysis are well corroborated by direct numerical simulation incorporating small random noise. It has been found that there exists a parameter regime which can support stable BD and DD solitons.

  3. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance because it enables approximate analysis of real composite wings with complex geometry in the existing commercial software packages.

  4. Ginzburg-Landau expansion in strongly disordered attractive Anderson-Hubbard model

    NASA Astrophysics Data System (ADS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-07-01

    We have studied disordering effects on the coefficients of Ginzburg-Landau expansion in powers of superconducting order parameter in the attractive Anderson-Hubbard model within the generalized DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling region, where superconductivity is described by BCS model, to the strong coupling region, where the superconducting transition is related with Bose-Einstein condensation (BEC) of compact Cooper pairs formed at temperatures essentially larger than the temperature of superconducting transition, and a wide range of disorder—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semielliptic bare density of states, disorder's influence upon the coefficients A and B of the square and the fourth power of the order parameter is universal for any value of electron correlation and is related only to the general disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gradient term expansion coefficient C. In the usual theory of "dirty" superconductors, the C coefficient drops with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient C is very sensitive to the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of the Anderson insulator. In the region of BCS-BEC crossover and in BEC limit, the coefficient C and all related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disorder dependence of both penetration depth and coherence lengths, as well as of related slope of the upper critical magnetic field at superconducting transition, in the region of very strong coupling.

  5. Rotational relaxation of AlO+(1Σ+) in collision with He

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, O.; Trabelsi, T.; Hochlaf, M.; Stoecklin, T.

    2018-03-01

    The rate coefficients for the rotational de-excitation of AlO+ by collisions with He are determined. The possible production mechanisms of the AlO+ ion in both diffuse and dense molecular clouds are first discussed. A set of ab initio interaction energies is computed at the CCSD(T)-F12 level of theory, and a three-dimensional analytical model of the potential energy surface is obtained using a linear combination of reproducing kernel Hilbert space polynomials together with an analytical long range potential. The nuclear spin free close-coupling equations are solved and the de-excitation rotational rate coefficients for the lower 15 rotational states of AlO+ are reported. A propensity rule to favour Δj = -1 transitions is obtained while the hyperfine resolved state-to-state rate coefficients are also discussed.

  6. A Well-Posed, Objective and Dynamic Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Chetty, Krishna; Vaidheeswaran, Avinash; Sharma, Subash; Clausse, Alejandro; Lopez de Bertodano, Martin

    The transition from dispersed to clustered bubbly flows due to wake entrainment is analyzed with a well-posed and objective one-dimensional (1-D) Two-Fluid Model, derived from variational principles. Modeling the wake entrainment force using the variational technique requires formulation of the inertial coupling coefficient, which defines the kinetic coupling between the phases. The kinetic coupling between a pair of bubbles and the liquid is obtained from potential flow over two-spheres and the results are validated by comparing the virtual mass coefficients with existing literature. The two-body interaction kinetic coupling is then extended to a lumped parameter model for viscous flow over two cylindrical bubbles, to get the Two-Fluid Model for wake entrainment. Linear stability analyses comprising the characteristics and the dispersion relation and non-linear numerical simulations are performed with the 1-D variational Two-Fluid Model to demonstrate the wake entrainment instability leading to clustering of bubbles. Finally, the wavelengths, amplitudes and propagation velocities of the void waves from non-linear simulations are compared with the experimental data.

  7. Transfer having a coupling coefficient higher than its active material

    NASA Technical Reports Server (NTRS)

    Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)

    2001-01-01

    A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.

  8. Brownian motion of arbitrarily shaped particles in two dimensions.

    PubMed

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V; Sun, Kai; Wei, Qi-Huo

    2014-11-25

    We implement microfabricated boomerang particles with unequal arm lengths as a model for nonsymmetric particles and study their Brownian motion in a quasi-two-dimensional geometry by using high-precision single-particle motion tracking. We show that because of the coupling between translation and rotation, the mean squared displacements of a single asymmetric boomerang particle exhibit a nonlinear crossover from short-time faster to long-time slower diffusion, and the mean displacements for fixed initial orientation are nonzero and saturate out at long times. The measured anisotropic diffusion coefficients versus the tracking point position indicate that there exists one unique point, i.e., the center of hydrodynamic stress (CoH), at which all coupled diffusion coefficients vanish. This implies that in contrast to motion in three dimensions where the CoH exists only for high-symmetry particles, the CoH always exists for Brownian motion in two dimensions. We develop an analytical model based on Langevin theory to explain the experimental results and show that among the six anisotropic diffusion coefficients only five are independent because the translation-translation coupling originates from the translation-rotation coupling. Finally, we classify the behavior of two-dimensional Brownian motion of arbitrarily shaped particles into four groups based on the particle shape symmetry group and discussed potential applications of the CoH in simplifying understanding of the circular motions of microswimmers.

  9. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    NASA Astrophysics Data System (ADS)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  10. Coupling intensity between discharge and magnetic circuit in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai

    2017-03-01

    Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  11. Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2018-04-01

    Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.

  12. Solid Micro Horn Array (SMIHA) for Acoustic Matching

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Bar-Cohen, Y.

    2008-01-01

    Transduction of electrical signals to mechanical signals and vice-versa in piezoelectric materials is controlled by the material coupling coefficient. In general in a loss-less material the ratio of energy conversion per cycle is proportional to the square of the coupling coefficient. In practical transduction however the impedance mismatch between the piezoelectric material and the electrical drive circuitry or the mechanical structure can have a significant impact on the power transfer. This paper looks at novel methods of matching the acoustic impedance of structures to the piezoelectric material in an effort to increase power transmission and efficiency. In typical methods the density and acoustic velocity of the matching layer is adjusted to give good matching between the transducer and the load. The approach discussed in this paper utilizes solid micro horn arrays in the matching layer which channel the stress and increase the strain in the layer. This approach is found to have potential applications in energy harvesting, medical ultrasound and in liquid and gas coupled transducers.

  13. Symbolic joint entropy reveals the coupling of various brain regions

    NASA Astrophysics Data System (ADS)

    Ma, Xiaofei; Huang, Xiaolin; Du, Sidan; Liu, Hongxing; Ning, Xinbao

    2018-01-01

    The convergence and divergence of oscillatory behavior of different brain regions are very important for the procedure of information processing. Measurements of coupling or correlation are very useful to study the difference of brain activities. In this study, EEG signals were collected from ten subjects under two conditions, i.e. eyes closed state and idle with eyes open. We propose a nonlinear algorithm, symbolic joint entropy, to compare the coupling strength among the frontal, temporal, parietal and occipital lobes and between two different states. Instead of decomposing the EEG into different frequency bands (theta, alpha, beta, gamma etc.), the novel algorithm is to investigate the coupling from the entire spectrum of brain wave activities above 4Hz. The coupling coefficients in two states with different time delay steps are compared and the group statistics are presented as well. We find that the coupling coefficient of eyes open state with delay consistently lower than that of eyes close state across the group except for one subject, whereas the results without delay are not consistent. The differences between two brain states with non-zero delay can reveal the intrinsic inter-region coupling better. We also use the well-known Hénon map data to validate the algorithm proposed in this paper. The result shows that the method is robust and has a great potential for other physiologic time series.

  14. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  15. Rotational relaxation of CF+(X1Σ) in collision with He(1S)

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, O.; Inostroza, N.; Castro Palacio, J. C.

    2018-01-01

    The carbon monofluoride cation (CF+) has been detected recently in Galactic and extragalactic regions. Therefore, excitation rate coefficients of this molecule in collision with He and H2 are necessary for a correct interpretation of the astronomical observations. The main goal of this work is to study the collision of CF+ with He in full dimensionality at the close-coupling level and to report a large set of rotational rate coefficients. New ab initio interaction energies at the CCSD(T)/aug-cc-pv5z level of theory were computed, and a three-dimensional potential energy surface was represented using a reproducing kernel Hilbert space. Close-coupling scattering calculations were performed at collisional energies up to 1600 cm-1 in the ground vibrational state. The vibrational quenching cross-sections were found to be at least three orders of magnitude lower than the pure rotational cross-sections. Also, the collisional rate coefficients were reported for the lowest 20 rotational states of CF+ and an even propensity rule was found to be in action only for j > 4. Finally, the hyperfine rate coefficients were explored. These data can be useful for the determination of the interstellar conditions where this molecule has been detected.

  16. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    PubMed Central

    Xu, Jie; Lin, Shuyu; Ma, Yan; Tang, Yifan

    2017-01-01

    Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer. PMID:29292785

  17. Self-potential monitoring of a thermal pulse advecting through a preferential flow path

    NASA Astrophysics Data System (ADS)

    Ikard, S. J.; Revil, A.

    2014-11-01

    There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes experience temperature changes.

  18. Thermoelectric and electrochemical self-potential anomalies induced by water injection into hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Gulamali, Murtaza; Leinov, Eli; Jackson, Matthew; Pain, Christopher

    2010-05-01

    Downhole measurements of electrokinetic (EK) streaming potential, using electrodes mounted on the outside of insulated casing, has been shown to be useful for informing production strategies in oil and gas reservoirs. However, spontaneous potentials due to thermoelectric (TE) and/or electrochemical (EC) effects may also be present during production and may contribute to the signal measured at the production well. We present a study of the contribution of these effects based on numerical models of subsurface potentials during production. We find that the injection of seawater, which typically has a different temperature and salinity to the formation brine, leads to the generation of both TE and EC potential signals in an oil reservoir, which may be measured at the production well along with EK potential signals. In particular, there is a peak in the TE potential before and after the temperature front, with a change in sign occurring close to the midpoint of the front, and the signal decaying with distance from the front. The EC potential has a similar profile, with a change in sign occurring close to the location of the salinity front. In both cases, the absolute magnitude of the signal is related to the overall temperature and/or salinity contrast between the injected fluids and the formation brine, and the magnitude of the TE and EC coupling coefficient. When we use the maximum theoretical magnitude for the TE and EC coupling coefficients, in the case of a perfect membrane, the lag in the temperature front relative to the saturation front leads to a negligible TE potential signal at the production well until long after water breakthrough occurs. In contrast, the EC potential contributes significantly to the spontaneous potential measured at the production well before the waterfront arrives, as the salinity front and the saturation front approximately coincide. The dependence of the TE and EC coupling coefficients upon temperature, salinity and/or partial water saturation is still uncertain. We explore the contribution of the EK and EC potential signals to the overall signal measured at the well as a function of salinity and water saturation. Our results imply that measurements of the spontaneous potential at a production well will combine contributions from both streaming and electrochemical effects, and may be used to detect an advancing waterfront some time before water breakthrough occurs at the well. Moreover, inversion of the measured signals could be used to determine the water saturation in the vicinity of the well, and to regulate flow into the well using control valves in order to maintain or increase oil production.

  19. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  20. Vicinal fluorine-fluorine coupling constants: Fourier analysis.

    PubMed

    San Fabián, J; Westra Hoekzema, A J A

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn> or =3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation. (c) 2004 American Institute of Physics

  1. Vicinal fluorine-fluorine coupling constants: Fourier analysis

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Westra Hoekzema, A. J. A.

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.

  2. Electron capture in collisions of S4+ with helium

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Stancil, P. C.; Zygelman, B.

    2002-07-01

    Charge transfer due to collisions of ground-state S4+(3s2 1S) ions with helium is investigated for energies between 0.1 meV u-1 and 10 MeV u-1. Total and state-selective single electron capture (SEC) cross sections and rate coefficients are obtained utilizing the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling (AOCC), classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Previous data are limited to a calculation of the total SEC rate coefficient using the Landau-Zener model that is, in comparison to the results presented here, three orders of magnitude smaller. The MOCC SEC cross sections at low energy reveal a multichannel interference effect. True double capture is also investigated with the AOCC and CTMC approaches while autoionizing double capture and transfer ionization (TI) is explored with CTMC. SEC is found to be the dominant process except for E>200 keV u-1 when TI becomes the primary capture channel. Astrophysical implications are briefly discussed.

  3. Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential.

    PubMed

    Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li

    2017-04-17

    We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.

  4. Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system

    NASA Astrophysics Data System (ADS)

    Novoselova, A.; Smolenski, V.; Volkovich, V. A.; Ivanov, A. B.; Osipenko, A.; Griffiths, T. R.

    2015-11-01

    The electrochemical behaviour of lanthanum and uranium was studied in fused 3LiCl-2KCl eutectic and Ga-Al eutectic liquid metal alloy between 723 and 823 K. Electrode potentials were recorded vs. Cl-/Cl2 reference electrode and the temperature dependencies of the apparent standard potentials of La-(Ga-Al) and U-(Ga-Al) alloys were determined. Lanthanum and uranium activity coefficients and U/La couple separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of La-(Ga-Al) and U-(Ga-Al) alloys were estimated.

  5. Mixed-effects varying-coefficient model with skewed distribution coupled with cause-specific varying-coefficient hazard model with random-effects for longitudinal-competing risks data analysis.

    PubMed

    Lu, Tao; Wang, Min; Liu, Guangying; Dong, Guang-Hui; Qian, Feng

    2016-01-01

    It is well known that there is strong relationship between HIV viral load and CD4 cell counts in AIDS studies. However, the relationship between them changes during the course of treatment and may vary among individuals. During treatments, some individuals may experience terminal events such as death. Because the terminal event may be related to the individual's viral load measurements, the terminal mechanism is non-ignorable. Furthermore, there exists competing risks from multiple types of events, such as AIDS-related death and other death. Most joint models for the analysis of longitudinal-survival data developed in literatures have focused on constant coefficients and assume symmetric distribution for the endpoints, which does not meet the needs for investigating the nature of varying relationship between HIV viral load and CD4 cell counts in practice. We develop a mixed-effects varying-coefficient model with skewed distribution coupled with cause-specific varying-coefficient hazard model with random-effects to deal with varying relationship between the two endpoints for longitudinal-competing risks survival data. A fully Bayesian inference procedure is established to estimate parameters in the joint model. The proposed method is applied to a multicenter AIDS cohort study. Various scenarios-based potential models that account for partial data features are compared. Some interesting findings are presented.

  6. Inelastic rate coefficients for collisions of C6H- with H2 and He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard

    2017-04-01

    The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.

  7. Study on the electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices.

    PubMed

    Chen, Shi; Zhang, Yinhong; Lin, Shuyu; Fu, Zhiqiang

    2014-02-01

    The electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices is investigated by the transfer matrix method. Research results show the high electromechanical coupling coefficient can be obtained in these systems. The optimization design of it is also discussed fully. It is significantly influenced by electrical boundary conditions on interfaces, thickness ratios of piezoelectric and non-piezoelectric layers, and material parameters (such as velocities of pure longitudinal and transversal bulk waves in non-piezoelectric layers). In order to obtain higher electromechanical coupling coefficient, shorted interfaces, non-piezoelectric materials with large velocities of longitudinal and transversal bulk waves, and proper thickness ratios should be chosen. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Excited State Atom-Ion Charge-Exchange

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  9. Determination of coupling coefficients at various zenith angles of the basis of the cosmic ray azimuth effect

    NASA Technical Reports Server (NTRS)

    Belskiy, S. A.; Dmitriev, B. A.; Romanov, A. M.

    1975-01-01

    The value of EW asymmetry and coupling coefficients at different zenith angles were measured by means of a double coincidence crossed telescope which gives an opportunity to measure simultaneously the intensity of the cosmic ray hard component at zenith angles from 0 to 84 deg in opposite azimuths. The advantages of determining the coupling coefficients by the cosmic ray azimuth effect as compared to their measurement by the latitudinal effect are discussed.

  10. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    PubMed

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  11. Laser and Fourier transform spectroscopy of 7Li88Sr

    NASA Astrophysics Data System (ADS)

    Schwanke, Erik; Knöckel, Horst; Stein, Alexander; Pashov, Asen; Ospelkaus, Silke; Tiemann, Eberhard

    2017-12-01

    LiSr was produced in a heat-pipe oven and its thermal emission spectrum around 9300 cm-1 was recorded by a high resolution Fourier transform spectrometer. In addition, selected lines of the spectrum of deeply bound vibrational levels of the {1}2{{{Σ }}}+ and {2}2{{{Σ }}}+ states were studied using laser excitation to facilitate the assignment of the lines. The ground state could be described for {v}{\\prime\\prime }=0 to 2, {N}{\\prime\\prime } up to 105 and the {2}2{{{Σ }}}+ state for {v}{\\prime }=0 up to {N}{\\prime }=68. For both states, Dunham coefficients, spin-rotation parameters and potential energy curves were evaluated. A coupling of the {2}2{{{Σ }}}+ state to the {1}2{{\\Pi }} state was observed, allowing a local description with Dunham coefficients of the {1}2{{\\Pi }} state and an approximate evaluation of the coupling strength.

  12. Magneto-exciton transitions in laterally coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  13. Effects of the coupling strength of a voltage probe on the conductance coefficients in a three-lead microstructure

    NASA Astrophysics Data System (ADS)

    Iida, S.

    1991-03-01

    Using statistical scattering theory, we calculate the average and the variance of the conductance coefficients at zero temperature for a small disordered metallic wire composed of three arms. Each arm is coupled at the end to a perfectly conducting lead. The disorder is modeled by a microscopic random Hamiltonian belonging to the Gaussian orthogonal ensemble. As the coupling strength of the third arm (voltage probe) is increased, the variance of the conductance coefficient of the main track changes from the universal value of the two-lead geometry to that of the three-lead geometry. The variance of the resistance coefficient is strongly affected by the coupling strength of the arm whose resistance is being measured and has a relatively weak dependence on those of the other two arms.

  14. Extraction of the gate capacitance coupling coefficient in floating gate non-volatile memories: Statistical study of the effect of mismatching between floating gate memory and reference transistor in dummy cell extraction methods

    NASA Astrophysics Data System (ADS)

    Rafhay, Quentin; Beug, M. Florian; Duane, Russell

    2007-04-01

    This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.

  15. A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes.

    PubMed

    Ojovan, Silviya M; Rabieh, Noha; Shmoel, Nava; Erez, Hadas; Maydan, Eilon; Cohen, Ariel; Spira, Micha E

    2015-09-14

    The development of multi-electrode array platforms for large scale recording of neurons is at the forefront of neuro-engineering research efforts. Recently we demonstrated, at the proof-of-concept level, a breakthrough neuron-microelectrode interface in which cultured Aplysia neurons tightly engulf gold mushroom-shaped microelectrodes (gMμEs). While maintaining their extracellular position, the gMμEs record synaptic- and action-potentials with characteristic features of intracellular recordings. Here we examined the feasibility of using gMμEs for intracellular recordings from mammalian neurons. To that end we experimentally examined the innate size limits of cultured rat hippocampal neurons to engulf gMμEs and measured the width of the "extracellular" cleft formed between the neurons and the gold surface. Using the experimental results we next analyzed the expected range of gMμEs-neuron electrical coupling coefficients. We estimated that sufficient electrical coupling levels to record attenuated synaptic- and action-potentials can be reached using the gMμE-neuron configuration. The definition of the engulfment limits of the gMμEs caps diameter at ≤2-2.5 μm and the estimated electrical coupling coefficients from the simulations pave the way for rational development and application of the gMμE based concept for in-cell recordings from mammalian neurons.

  16. Transfer coefficients in ultracold strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  17. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  18. An investigation of angular stiffness and damping coefficients of an axial spline coupling in high-speed rotating machinery

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.

    1994-01-01

    This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.

  19. GENERAL: The Analytic Solution of Schrödinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    NASA Astrophysics Data System (ADS)

    Hu, Xian-Quan; Luo, Guang; Cui, Li-Peng; Li, Fang-Yu; Niu, Lian-Bin

    2009-03-01

    The analytic solution of the radial Schrödinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schrödinger equation is V(r) = α1r8 + α2r3 + α3r2 + β3r-1 + β2r-3 + β1r-4. Generally speaking, there is only an approximate solution, but not analytic solution for Schrödinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schrödinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schrödinger equation; and lastly, they discuss the solutions and make conclusions.

  20. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    NASA Astrophysics Data System (ADS)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  1. Image superresolution of cytology images using wavelet based patch search

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  2. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  3. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  4. A New Metric for Land-Atmosphere Coupling Strength: Applications on Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Xie, S.; Zhang, Y.; Phillips, T. J.; Santanello, J. A., Jr.; Cook, D. R.; Riihimaki, L.; Gaustad, K.

    2017-12-01

    A new metric is proposed to quantify the land-atmosphere (LA) coupling strength and is elaborated by correlating the surface evaporative fraction and impacting land and atmosphere variables (e.g., soil moisture, vegetation, and radiation). Based upon multiple linear regression, this approach simultaneously considers multiple factors and thus represents complex LA coupling mechanisms better than existing single variable metrics. The standardized regression coefficients quantify the relative contributions from individual drivers in a consistent manner, avoiding the potential inconsistency in relative influence of conventional metrics. Moreover, the unique expendable feature of the new method allows us to verify and explore potentially important coupling mechanisms. Our observation-based application of the new metric shows moderate coupling with large spatial variations at the U.S. Southern Great Plains. The relative importance of soil moisture vs. vegetation varies by location. We also show that LA coupling strength is generally underestimated by single variable methods due to their incompleteness. We also apply this new metric to evaluate the representation of LA coupling in the Accelerated Climate Modeling for Energy (ACME) V1 Contiguous United States (CONUS) regionally refined model (RRM). This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734201

  5. Collisional excitation of HC3N by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Lique, François; Wiesenfeld, Laurent

    2016-08-01

    New calculations for rotational excitation of cyanoacetylene by collisions with hydrogen molecules are performed to include the lowest 38 rotational levels of HC3N and kinetic temperatures to 300 K. Calculations are based on the interaction potential of Wernli et al. whose accuracy is checked against spectroscopic measurements of the HC3N-H2 complex. The quantum coupled-channel approach is employed and complemented by quasi-classical trajectory calculations. Rate coefficients for ortho-H2 are provided for the first time. Hyperfine resolved rate coefficients are also deduced. Collisional propensity rules are discussed and comparisons between quantum and classical rate coefficients are presented. This collisional data should prove useful in interpreting HC3N observations in the cold and warm ISM, as well as in protoplanetary discs.

  6. A new ab initio potential energy surface for the NH-He complex

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Kłos, J.; Lique, F.

    2018-02-01

    We present a new three-dimensional potential energy surface (PES) for the NH(X3Σ-)-He van der Waals system, which explicitly takes into account the NH vibrational motion. The NH-He PES was obtained using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = Q, 5, 6) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. Using this new PES, we have studied the spectroscopy of the NH-He complex and we have determined a new rotational constant that agrees well with the available experimental data. Collisional excitation of NH(X3Σ-) by He was also studied at the close-coupling level. Calculations of the collisional excitation cross sections of the fine-structure levels of NH by He were performed for energies up to 3500 cm-1, which yield, after thermal average, rate coefficients up to 350 K. The calculated rate coefficients are compared with available experimental measurements at room temperature, and a reasonably good agreement is found between experimental and theoretical data.

  7. What Explains the Gender Gap in Financial Literacy? The Role of Household Decision Making.

    PubMed

    Fonseca, Raquel; Mullen, Kathleen J; Zamarro, Gema; Zissimopoulos, Julie

    2012-01-01

    Using newly collected data from the RAND American Life Panel, we examine potential explanations for the gender gap in financial literacy, including the role of marriage and who within a couple makes the financial decisions. Blinder-Oaxaca decomposition reveals the majority of the gender gap in financial literacy is not explained by differences in the characteristics of men and women-but rather differences in coefficients, or how literacy is produced. We find that financial decision making of couples is not centralized in one spouse although it is sensitive to the relative education level of spouses.

  8. What Explains the Gender Gap in Financial Literacy? The Role of Household Decision Making

    PubMed Central

    FONSECA, RAQUEL; MULLEN, KATHLEEN J.; ZAMARRO, GEMA; ZISSIMOPOULOS, JULIE

    2012-01-01

    Using newly collected data from the RAND American Life Panel, we examine potential explanations for the gender gap in financial literacy, including the role of marriage and who within a couple makes the financial decisions. Blinder–Oaxaca decomposition reveals the majority of the gender gap in financial literacy is not explained by differences in the characteristics of men and women—but rather differences in coefficients, or how literacy is produced. We find that financial decision making of couples is not centralized in one spouse although it is sensitive to the relative education level of spouses. PMID:23049140

  9. Modal sound transmission loss of a single leaf panel: Effects of inter-modal coupling.

    PubMed

    Wang, Chong

    2015-06-01

    Sound transmission through a single leaf panel has mostly been discussed and explained by using the approaching wave concept, from which the well-known mass law can be derived. In this paper, the modal behavior in sound transmission coefficients is explored, and it is shown that the mutual modal radiation impedances in modal sound transmission coefficients may not be ignored even for a panel immersed in a light fluid. By introducing the equivalent modal impedance which incorporates the inter-modal coupling effect, an analytical expression for the modal sound transmission coefficient is derived, and the overall sound transmission coefficient is simply a modal superposition of modal sound transmission coefficients. A good correlation is obtained between analytical calculation and boundary element method. In addition, it is found that inter-modal coupling has noticeable effects in modal sound transmission coefficients in the subsonic region but may be ignored as modes become supersonic. It is also shown that the well-known mass law performance is attributed to all the supersonic modes.

  10. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    USGS Publications Warehouse

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  11. Charge Transfer in Collisions of S^4+ with H.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented

  12. Trace elements in seminal plasma of men from infertile couples.

    PubMed

    Guzikowski, Wojciech; Szynkowska, Małgorzata I; Motak-Pochrzęst, Hanna; Pawlaczyk, Aleksandra; Sypniewski, Stanisław

    2015-06-19

    An analysis of lead, zinc, cadmium and other trace elements in semen of men from infertile couples was performed to determine the association between abnormal semen parameters and enviromental or occupational exposure to some trace metals. Presence of manganese, cobalt, nickel, copper, zinc, molybdenum, cadmium, tin and lead was measured in seminal plasma of 34 men from infertile couples using spectrometry with time-of-flight analysis. Correlations among sperm parameters and trace metals were determined using cluster analysis and Pearson's correlation coefficient. Abnormally high concentrations of lead, cadmium, zinc and cobalt were found in 23 seminal plasma of men from infertile couples. The most consistent evidence was determined for an association between high cadmium concentration in seminal plasma and sperm count, motility and morphology below reference limits (p < 0.01). A correlation of significantly increased tin level and reduced sperm count in semen of men with limited fertility potential was observed (p = 0.04). In our study we observed a correlation of tin level with sperm count in semen of men with limited fertility potential.

  13. Electrical coupling: novel mechanism for sleep-wake control.

    PubMed

    Garcia-Rill, Edgar; Heister, David S; Ye, Meijun; Charlesworth, Amanda; Hayar, Abdallah

    2007-11-01

    Recent evidence suggests that certain anesthetic agents decrease electrical coupling, whereas the stimulant modafinil appears to increase electrical coupling. We investigated the potential role of electrical coupling in 2 reticular activating system sites, the subcoeruleus nucleus and in the pedunculopontine nucleus, which has been implicated in the modulation of arousal via ascending cholinergic activation of intralaminar thalamus and descending activation of the subcoeruleus nucleus to generate some of the signs of rapid eye movement sleep. We used 6- to 30-day-old rat pups to obtain brainstem slices to perform whole-cell patch-clamp recordings. Recordings from single cells revealed the presence of spikelets, manifestations of action potentials in coupled cells, and of dye coupling of neurons in the pedunculopontine nucleus. Recordings in pairs of pedunculopontine nucleus and subcoeruleus nucleus neurons revealed that some of these were electrically coupled with coupling coefficients of approximately 2%. After blockade of fast synaptic transmission, the cholinergic agonist carbachol was found to induce rhythmic activity in pedunculopontine nucleus and subcoeruleus nucleus neurons, an effect eliminated by the gap junction blockers carbenoxolone or mefloquine. The stimulant modafinil was found to decrease resistance in neurons in the pedunculopontine nucleus and subcoeruleus nucleus after fast synaptic blockade, indicating that the effect may be due to increased coupling. The finding of electrical coupling in specific reticular activating system cell groups supports the concept that this underlying process behind specific neurotransmitter interactions modulates ensemble activity across cell populations to promote changes in sleep-wake state.

  14. The excitation of OH by H2 revisited - I: fine-structure resolved rate coefficients

    NASA Astrophysics Data System (ADS)

    Kłos, J.; Ma, Q.; Dagdigian, P. J.; Alexander, M. H.; Faure, A.; Lique, F.

    2017-11-01

    Observations of OH in molecular clouds provide crucial constraints on both the physical conditions and the oxygen and water chemistry in these clouds. Accurate modelling of the OH emission spectra requires the calculation of rate coefficients for excitation of OH by collisions with the most abundant collisional partner in the molecular clouds, namely the H2 molecule. We report here theoretical calculations for the fine-structure excitation of OH by H2 (both para- and ortho-H2) using a recently developed highly accurate potential energy surface. Full quantum close coupling rate coefficients are provided for temperatures ranging from 10 to 150 K. Propensity rules are discussed and the new OH-H2 rate coefficients are compared to the earlier values that are currently used in astrophysical modelling. Significant differences were found: the new rate coefficients are significantly larger. As a first application, we simulate the excitation of OH in typical cold molecular clouds and star-forming regions. The new rate coefficients predict substantially larger line intensities. As a consequence, OH abundances derived from observations will be reduced from the values predicted by the earlier rate coefficients.

  15. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    PubMed

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  16. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    NASA Astrophysics Data System (ADS)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  17. Effective potential kinetic theory for strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  18. Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study

    NASA Astrophysics Data System (ADS)

    Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.

    2017-08-01

    The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.

  19. Evaluation of Computational Fluid Dynamics and Coupled Fluid-Solid Modeling for a Direct Transfer Preswirl System.

    PubMed

    Javiya, Umesh; Chew, John; Hills, Nick; Dullenkopf, Klaus; Scanlon, Timothy

    2013-05-01

    The prediction of the preswirl cooling air delivery and disk metal temperature are important for the cooling system performance and the rotor disk thermal stresses and life assessment. In this paper, standalone 3D steady and unsteady computation fluid dynamics (CFD), and coupled FE-CFD calculations are presented for prediction of these temperatures. CFD results are compared with previous measurements from a direct transfer preswirl test rig. The predicted cooling air temperatures agree well with the measurement, but the nozzle discharge coefficients are under predicted. Results from the coupled FE-CFD analyses are compared directly with thermocouple temperature measurements and with heat transfer coefficients on the rotor disk previously obtained from a rotor disk heat conduction solution. Considering the modeling limitations, the coupled approach predicted the solid metal temperatures well. Heat transfer coefficients on the rotor disk from CFD show some effect of the temperature variations on the heat transfer coefficients. Reasonable agreement is obtained with values deduced from the previous heat conduction solution.

  20. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

    DOE PAGES

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; ...

    2017-05-22

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less

  1. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less

  2. Role of oxygen functional groups in reduced graphene oxide for lubrication

    PubMed Central

    Gupta, Bhavana; Kumar, Niranjan; Panda, Kalpataru; Kanan, Vigneshwaran; Joshi, Shailesh; Visoly-Fisher, Iris

    2017-01-01

    Functionalized and fully characterized graphene-based lubricant additives are potential 2D materials for energy-efficient tribological applications in machine elements, especially at macroscopic contacts. Two different reduced graphene oxide (rGO) derivatives, terminated by hydroxyl and epoxy-hydroxyl groups, were prepared and blended with two different molecular weights of polyethylene glycol (PEG) for tribological investigation. Epoxy-hydroxyl-terminated rGO dispersed in PEG showed significantly smaller values of the friction coefficient. In this condition, PEG chains intercalate between the functionalized graphene sheets, and shear can take place between the PEG and rGO sheets. However, the friction coefficient was unaffected when hydroxyl-terminated rGO was coupled with PEG. This can be explained by the strong coupling between graphene sheets through hydroxyl units, causing the interaction of PEG with the rGO to be non- effective for lubrication. On the other hand, antiwear properties of hydroxyl-terminated rGO were significantly enhanced compared to epoxy-hydroxyl functionalized rGO due to the integrity of graphene sheet clusters. PMID:28344337

  3. Charge transfer and ionization in collisions of Si3+ with H from low to high energy

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.

    2006-11-01

    Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.

  4. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    PubMed Central

    2017-01-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411

  5. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Bich, Eckard

    2017-06-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  6. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.

    PubMed

    Kraemer, D; Chen, G

    2014-04-01

    Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30 °C-150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials' self-compatibility.

  7. Synchronization of distributed power grids with the external loading system

    NASA Astrophysics Data System (ADS)

    Wei, Duqu; Mei, Chuncao

    2018-06-01

    In this paper, the synchronization between spatially distributed power plants and their supported consumers is studied, where the case of Kuramoto-like model power grids connected to an external permanent magnet synchronous motor (PMSM) is taken as an example. We focus on the dependence of the synchronization on the coupling coefficient. To quantitatively study the synchronization degree, we introduce the order parameter and the frequency deviation to measure the synchronization of the coupled system. It is found that as the external coupling coefficient is increased, the distributed power grids and the loading system become more and more synchronized in space, and the complete synchronization appears at a particular value of external coupling coefficient. Our results may provide a useful tip for analyzing the synchronous ability of distributed power grids.

  8. Electromechanical coupling coefficient k15 of polycrystalline ZnO films with the c-axes lie in the substrate plane.

    PubMed

    Yanagitani, Takahiko; Mishima, Natsuki; Matsukawa, Mami; Watanabe, Yoshiaki

    2007-04-01

    The (1120) textured polycrystalline ZnO films with a high shear mode electromechanical coupling coefficient k15 are obtained by sputter deposition. An over-moded resonator, a layered structure of metal electrode film/(1120) textured ZnO piezoelectric film/metal electrode film/silica glass substrate was used to characterize k15 by a resonant spectrum method. The (1120) textured ZnO piezoelectric films with excellent crystallite c-axis alignment showed an electromechanical coupling coefficient k15 of 0.24. This value was 92% of k15 value in single-crystal (k15 = 0.26).

  9. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-04-01

    We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.

  10. Thermoelectric transport in two-dimensional giant Rashba systems

    NASA Astrophysics Data System (ADS)

    Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian

    Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.

  11. Friction and wear behaviour of ion beam modified ceramics

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  12. Correlation characteristics of phase and amplitude chimeras in an ensemble of nonlocally coupled maps

    NASA Astrophysics Data System (ADS)

    Vadivasova, T. E.; Strelkova, G. I.; Bogomolov, S. A.; Anishchenko, V. S.

    2017-01-01

    Correlation characteristics of chimera states have been calculated using the coefficient of mutual correlation of elements in a closed-ring ensemble of nonlocally coupled chaotic maps. Quantitative differences between the coefficients of mutual correlation for phase and amplitude chimeras are established for the first time.

  13. Ab-initio modeling of electromechanical coupling at Si surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Sandra; Müller, Stefan, E-mail: stefan.mueller@tuhh.de; Michl, Anja

    The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain responsemore » of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.« less

  14. Charge transfer of O3+ ions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O3+(2s22p 2P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment.

  15. Electron capture in collisions of S4+ with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-06-01

    Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.

  16. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  17. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1988-01-01

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  18. Method of making a piezoelectric shear wave resonator

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1987-02-03

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  19. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.

    2003-07-01

    Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E<80 eV/u, the differences between the current total MOCC cross sections with and without rotational coupling are small (<3%). Rotational coupling becomes more important with increasing energy: for collision energies E>400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.

  20. Three-phase inductive-coupled structures for contactless PHEV charging system

    NASA Astrophysics Data System (ADS)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  1. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  2. Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow

    NASA Technical Reports Server (NTRS)

    Rodriquez, Alvaro Che

    2002-01-01

    An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.

  3. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  4. Fluid-Structure interaction analysis and performance evaluation of a membrane blade

    NASA Astrophysics Data System (ADS)

    Saeedi, M.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    Examining the potential of a membrane blade concept is the goal of the current work. In the sailwing concept the surface of the wing, or the blade in this case, is made from pre-tensioned membranes which meet at the pre-tensioned edge cable at the trailing edge. Because of the dependency between membrane deformation and applied aerodynamic load, two-way coupled fluid-structure interaction analysis is necessary for evaluation of the aerodynamic performance of such a configuration. The in-house finite element based structural solver, CARAT++, is coupled with OpenFOAM in order to tackle the multi-physics problem. The main aerodynamic characteristics of the membrane blade including lift coefficient, drag coefficient and lift to drag ratio are compared with its rigid counterpart. A single non-rotating NREL phase VI blade is studied here as a first step towards analyzing the concept for the rotating case. Compared with the rigid blade, the membrane blade has a higher slope of the lift curve. For higher angles of attack, lift and drag coefficients as well as the lift to drag ratio is higher for the membrane blade. A single non-rotating blade is studied here as a first step towards analyzing the concept for the rotating case.

  5. Fluid-gravity model for the chiral magnetic effect.

    PubMed

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2011-05-27

    We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma. © 2011 American Physical Society

  6. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    NASA Astrophysics Data System (ADS)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  7. O (6 ) algebraic theory of three nonrelativistic quarks bound by spin-independent interactions

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Salom, Igor

    2018-05-01

    We apply the newly developed theory of permutation-symmetric O (6 ) hyperspherical harmonics to the quantum-mechanical problem of three nonrelativistic quarks confined by a spin-independent three-quark potential. We use our previously derived results to reduce the three-body Schrödinger equation to a set of coupled ordinary differential equations in the hyper-radius R with coupling coefficients expressed entirely in terms of (i) a few interaction-dependent O (6 ) expansion coefficients and (ii) O (6 ) hyperspherical harmonics matrix elements that have been evaluated in our previous paper. This system of equations allows a solution to the eigenvalue problem with homogeneous three-quark potentials, the class of which includes a number of standard Ansätze for the confining potentials, such as the Y- and Δ -string ones. We present analytic formulas for the K =2 , 3, 4, 5 shell states' eigenenergies in homogeneous three-body potentials, which we then apply to the Y and Δ strings as well as the logarithmic confining potentials. We also present numerical results for power-law pairwise potentials with the exponent ranging between -1 and +2 . In the process, we resolve the 25-year-old Taxil and Richard vs Bowler et al. controversy regarding the ordering of states in the K =3 shell, in favor of the former. Finally, we show the first clear difference between the spectra of Δ - and Y-string potentials, which appears in K ≥3 shells. Our results are generally valid, not just for confining potentials but also for many momentum-independent permutation-symmetric homogenous potentials that need not be pairwise sums of two-body terms. The potentials that can be treated in this way must be square integrable under the O (6 ) hyperangular integral, the class of which, however, does not include the Dirac δ function.

  8. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  9. Efficient electroluminescent cooling with a light-emitting diode coupled to a photovoltaic cell (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Tianyao P.; Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui; Yablonovitch, Eli

    2017-02-01

    The new breakthrough in photovoltaics, exemplified by the slogan "A great solar cell has to be a great light-emitting diode (LED)", has led to all the major new solar cell records, while also leading to extraordinary LED efficiency. As an LED becomes very efficient in converting its electrical input into light, the device cools as it operates because the photons carry away entropy as well as energy. If these photons are absorbed in a photovoltaic (PV) cell, the generated electricity can be used to provide part of the electrical input that drives the LED. Indeed, the LED/PV cell combination forms a new type of heat engine with light as the working fluid. The electroluminescent refrigerator requires only a small amount of external electricity to provide cooling, leading to a high coefficient of performance. We present the theoretical performance of such a refrigerator, in which the cool side (LED) is radiatively coupled to the hot side (PV) across a vacuum gap. The coefficient of performance is maximized by using a highly luminescent material, such as GaAs, together with device structures that optimize extraction of the luminescence. We consider both a macroscopic vacuum gap and a sub-wavelength gap; the latter allows for evanescent coupling of photons between the devices, potentially providing a further enhancement to the efficiency of light extraction. Using device assumptions based on the current record-efficiency solar cells, we show that electroluminescent cooling can, in certain regimes of cooling power, achieve a higher coefficient of performance than thermoelectric cooling.

  10. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.

    2016-08-15

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less

  11. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  12. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.

    PubMed

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew

    2015-11-12

    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.

  13. High-fidelity plasma codes for burn physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooley, James; Graziani, Frank; Marinak, Marty

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less

  14. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

    PubMed

    Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji

    2012-02-01

    Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.

  15. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1985-05-20

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  16. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1983-10-25

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  17. Hippocampal effective synchronization values are not pre-seizure indicator without considering the state of the onset channels

    PubMed Central

    Shayegh, Farzaneh; Sadri, Saeed; Amirfattahi, Rassoul; Ansari-Asl, Karim; Bellanger, Jean-Jacques; Senhadji, Lotfi

    2014-01-01

    In this paper, a model-based approach is presented to quantify the effective synchrony between hippocampal areas from depth-EEG signals. This approach is based on the parameter identification procedure of a realistic Multi-Source/Multi-Channel (MSMC) hippocampal model that simulates the function of different areas of hippocampus. In the model it is supposed that the observed signals recorded using intracranial electrodes are generated by some hidden neuronal sources, according to some parameters. An algorithm is proposed to extract the intrinsic (solely relative to one hippocampal area) and extrinsic (coupling coefficients between two areas) model parameters, simultaneously, by a Maximum Likelihood (ML) method. Coupling coefficients are considered as the measure of effective synchronization. This work can be considered as an application of Dynamic Causal Modeling (DCM) that enables us to understand effective synchronization changes during transition from inter-ictal to pre -ictal state. The algorithm is first validated by using some synthetic datasets. Then by extracting the coupling coefficients of real depth-EEG signals by the proposed approach, it is observed that the coupling values show no significant difference between ictal, pre-ictal and inter-ictal states, i.e., either the increase or decrease of coupling coefficients has been observed in all states. However, taking the value of intrinsic parameters into account, pre-seizure state can be distinguished from inter-ictal state. It is claimed that seizures start to appear when there are seizure-related physiological parameters on the onset channel, and its coupling coefficient toward other channels increases simultaneously. As a result of considering both intrinsic and extrinsic parameters as the feature vector, inter-ictal, pre-ictal and ictal activities are discriminated from each other with an accuracy of 91.33% accuracy. PMID:25061815

  18. Nonlinear coupling of flow harmonics: Hexagonal flow and beyond

    NASA Astrophysics Data System (ADS)

    Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves

    2018-05-01

    Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at s =2.76 TeV, we perform an application of our formalism to hexagonal flow, v6, a coefficient affected by several nonlinear contributions which are of the same order of magnitude. We obtain the first experimental measure of the coefficient χ624, which couples v6 to v2 and v4. This is achieved by putting together the information from several analyses: event-plane correlations, symmetric cumulants, and higher order moments recently analyzed by the ALICE Collaboration. The value of χ624 extracted from data is in fair agreement with hydrodynamic calculations, although with large error bars, which would be dramatically reduced by a dedicated analysis. We argue that within our formalism the nonlinear structure of a given higher order harmonic can be determined more accurately than the harmonic itself, and we emphasize potential applications to future measurements of v7 and v8.

  19. Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography

    PubMed Central

    Bruno, Andrew E.; Ruby, Amanda M.; Luft, Joseph R.; Grant, Thomas D.; Seetharaman, Jayaraman; Montelione, Gaetano T.; Hunt, John F.; Snell, Edward H.

    2014-01-01

    Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail high-throughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from Bacteroides fragilis, (BfR192) overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CDcoeff, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the potential applications related to crystallography appear promising and the distance coefficient, clustering, and hierarchal visualization of results undoubtedly have applications in wider fields. PMID:24971458

  20. Damage indication in smart structures using modal effective electromechanical coupling coefficients

    NASA Astrophysics Data System (ADS)

    Al-Ajmi, M. A.; Benjeddou, A.

    2008-06-01

    This work explores the use, in structural health monitoring, of the so-called modal effective electromechanical coupling coefficient (EMCC) as a damage indicator for structures with failures such as cracks. For this purpose, a discrete layered finite element (FE) model for smart beams is proposed and applied to short-circuit (SC) and open-circuit (OC) modal analyses of healthy and damaged (cracked) cantilever beams with symmetrically surface-bonded piezoelectric patches. Focus is made here on enhancing the electrical behavior modeling by introducing a quadratic bubble function in the electric potential through-the-thickness approximation. Therefore, the corresponding higher-order potential (HOP) degree of freedom is condensed at the ply level, leading to a passive stiffening effect (SE) similar to the so-called higher-order induced potential (HIP); then the physical equipotential (EP) electrode effect, often neglected in the piezoelectric FE literature, is here implemented after the electrodes' FE assembly. After its validation against available analytical and experimental results, the proposed piezoelectric FE is used for parametric analyses of SC-based and OC-based EMCC change factors (ECFs) and frequency change factors (FCFs) in terms of the crack depth and position ratios. It was found that the EP effect was more influential on the ECF than the SE. However, for the FCFs, the EP effect was influential only when it is defined from the OC frequencies. Finally, the ECFs were found to be higher than the FCFs, in particular for higher modes.

  1. Electrical Coupling: Novel Mechanism for Sleep-Wake Control

    PubMed Central

    Garcia-Rill, Edgar; Heister, David S.; Ye, Meijun; Charlesworth, Amanda; Hayar, Abdallah

    2007-01-01

    Study Objectives: Recent evidence suggests that certain anesthetic agents decrease electrical coupling, whereas the stimulant modafinil appears to increase electrical coupling. We investigated the potential role of electrical coupling in 2 reticular activating system sites, the subcoeruleus nucleus and in the pedunculopontine nucleus, which has been implicated in the modulation of arousal via ascending cholinergic activation of intralaminar thalamus and descending activation of the subcoeruleus nucleus to generate some of the signs of rapid eye movement sleep. Design: We used 6- to 30-day-old rat pups to obtain brainstem slices to perform whole-cell patch-clamp recordings. Measurements and Results: Recordings from single cells revealed the presence of spikelets, manifestations of action potentials in coupled cells, and of dye coupling of neurons in the pedunculopontine nucleus. Recordings in pairs of pedunculopontine nucleus and subcoeruleus nucleus neurons revealed that some of these were electrically coupled with coupling coefficients of approximately 2%. After blockade of fast synaptic transmission, the cholinergic agonist carbachol was found to induce rhythmic activity in pedunculopontine nucleus and subcoeruleus nucleus neurons, an effect eliminated by the gap junction blockers carbenoxolone or mefloquine. The stimulant modafinil was found to decrease resistance in neurons in the pedunculopontine nucleus and subcoeruleus nucleus after fast synaptic blockade, indicating that the effect may be due to increased coupling. Conclusions: The finding of electrical coupling in specific reticular activating system cell groups supports the concept that this underlying process behind specific neurotransmitter interactions modulates ensemble activity across cell populations to promote changes in sleep-wake state. Citation: Garcia-Rill E; Heister DS; Ye M; Charlesworth A; Hayar A. Electrical coupling: novel mechanism for sleep-wake control. SLEEP 2007;30(11):1405-1414. PMID:18041475

  2. Coupling functions for lead and lead-free neutron monitors from the latitudinal measurements performed in 1982 in the research station Academician Kurchatov

    NASA Technical Reports Server (NTRS)

    Alekanyan, T. M.; Dorman, L. I.; Yanke, V. G.; Korotkov, V. K.

    1985-01-01

    The latitudinal behavior of intensities and multiplicities was registered by the neutron monitor 2 NM and the lead-free neutron monitor 3 SND (slow-neuron detector) in the equator-Kaliningrad line in the Atlantic Ocean. Coupling coefficients for 3 SND show the sensitivity of this detector to primary particles of cosmic rays of energies on the average lower than for 2 NM. As multiplicities increase, the coupling coefficients shift towards higher energies.

  3. Derivative expansion of wave function equivalent potentials

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto

    2017-04-01

    Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.

  4. Family Reintegration Experiences of Soldiers with Mild Traumatic Brain Injury

    DTIC Science & Technology

    2014-02-26

    depression scores in the spouse. Weak within-couple correlation were indicated on the other measures. Table 3 presents the Spearman correlation matrix...separately. Table 2: Spearman Correlation Coefficients for Couples Spouse MAT Spouse Depression Spouse...Anxiety Soldier MAT -0.06 Soldier Depression -0.61 Soldier Anxiety -0.12 Table 3: Spearman Correlation Coefficients for Soldiers and

  5. Influence of the UV-induced fiber loss on the distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi

    2003-06-01

    It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.

  6. New method for calculating the coupling coefficient in graded index optical fibers

    NASA Astrophysics Data System (ADS)

    Savović, Svetislav; Djordjevich, Alexandar

    2018-05-01

    A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.

  7. Fluctuation-induced transport of two coupled particles: effect of the interparticle interaction.

    PubMed

    Makhnovskii, Yurii A; Rozenbaum, Viktor M; Sheu, Sheh-Yi; Yang, Dah-Yen; Trakhtenberg, Leonid I; Lin, Sheng Hsien

    2014-06-07

    We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as x(α), depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.

  8. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  9. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  10. Quenching of Excited Na due to He Collisions

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Stancil, P. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2006-01-01

    The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs.

  11. Composite material bend-twist coupling for wind turbine blade applications

    NASA Astrophysics Data System (ADS)

    Walsh, Justin M.

    Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.

  12. Thermodynamic properties of diamond and wurtzite model fluids from computer simulation and thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Solana, J. R.

    2018-03-01

    Monte Carlo NVT simulations have been performed to obtain the thermodynamic and structural properties and perturbation coefficients up to third order in the inverse temperature expansion of the Helmholtz free energy of fluids with potential models proposed in the literature for diamond and wurtzite lattices. These data are used to analyze performance of a coupling parameter series expansion (CPSE). The main findings are summarized as follows, (1) The CPSE provides accurate predictions of the first three coefficient in the inverse temperature expansion of Helmholtz free energy for the potential models considered and the thermodynamic properties of these fluids are predicted more accurately when the CPSE is truncated at second or third order. (2) The Barker-Henderson (BH) recipe is appropriate for determining the effective hard sphere diameter for strongly repulsive potential cores, but its performance worsens with increasing the softness of the potential core. (3) For some thermodynamic properties the first-order CPSE works better for the diamond potential, whose tail is dominated by repulsive interactions, than for the potential, whose tail is dominated by attractive interactions. However, the first-order CPSE provides unsatisfactory results for the excess internal energy and constant-volume excess heat capacity for the two potential models.

  13. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  14. New rate coefficients of CS in collision with para- and ortho-H2 and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Guilloteau, Stéphane; Dutrey, Anne

    2018-05-01

    Astronomers use the CS molecule as a gas mass tracer in dense regions of the interstellar medium, either to measure the gas density through multi-line observations or the level of turbulence. This necessarily requires the knowledge of the rates coefficients with the most common colliders in the interstellar medium, He and H2. In the present work, the close coupling collisional rates are computed for the first thirty rotational states of CS in collision with para- and ortho-H2 using a recent rigid rotor potential energy surface. Some radiative transfer calculations, using typical astrophysical conditions, are also performed to test this new set of data and to compare with the existing ones.

  15. Giant mesoscopic fluctuations of the elastic cotunneling thermopower of a single-electron transistor

    NASA Astrophysics Data System (ADS)

    Vasenko, A. S.; Basko, D. M.; Hekking, F. W. J.

    2015-02-01

    We study the thermoelectric transport of a small metallic island weakly coupled to two electrodes by tunnel junctions. In the Coulomb blockade regime, in the case when the ground state of the system corresponds to an even number of electrons on the island, the main mechanism of electron transport at the lowest temperatures is elastic cotunneling. In this regime, the transport coefficients strongly depend on the realization of the random impurity potential or the shape of the island. Using random-matrix theory, we calculate the thermopower and the thermoelectric kinetic coefficient and study the statistics of their mesoscopic fluctuations in the elastic cotunneling regime. The fluctuations of the thermopower turn out to be much larger than the average value.

  16. Establishment and analysis of coupled dynamic model for dual-mass silicon micro-gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Zhanghui; Qiu, Anping; Shi, Qin; Zhang, Taoyuan

    2017-12-01

    This paper presents a coupled dynamic model for a dual-mass silicon micro-gyroscope (DMSG). It can quantitatively analyze the influence of left-right stiffness difference on the natural frequencies, modal matrix and modal coupling coefficient of the DMSG. The analytic results are verified by using the finite element method (FEM) simulation. The model shows that with the left-right stiffness difference of 1%, the modal coupling coefficient is 12% in the driving direction and 31% in the sensing direction. It also shows that in order to achieve good separation, the stiffness of base beam should be small enough in both the driving and sensing direction.

  17. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE PAGES

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    2016-09-29

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  18. Unified model for the electromechanical coupling factor of orthorhombic piezoelectric rectangular bar with arbitrary aspect ratio

    NASA Astrophysics Data System (ADS)

    Rouffaud, R.; Levassort, F.; Hladky-Hennion, A.-C.

    2017-02-01

    Piezoelectric Single Crystals (PSC) are increasingly used in the manufacture of ultrasonic transducers and in particular for linear arrays or single element transducers. Among these PSCs, according to their microstructure and poled direction, some exhibit a mm2 symmetry. The analytical expression of the electromechanical coupling coefficient for a vibration mode along the poling direction for piezoelectric rectangular bar resonator is established. It is based on the mode coupling theory and fundamental energy ratio definition of electromechanical coupling coefficients. This unified formula for mm2 symmetry class material is obtained as a function of an aspect ratio (G) where the two extreme cases correspond to a thin plate (with a vibration mode characterized by the thickness coupling factor, kt) and a thin bar (characterized by k33'). To optimize the k33' value related to the thin bar design, a rotation of the crystallogaphic axis in the plane orthogonal to the poling direction is done to choose the highest value for PIN-PMN-PT single crystal. Finally, finite element calculations are performed to deduce resonance frequencies and coupling coefficients in a large range of G value to confirm developed analytical relations.

  19. Towards the Application of Structure-Property Relationship Modeling in Materials Science: Predicting the Seebeck Coefficient for Ionic Liquid/Redox Couple Systems.

    PubMed

    Sosnowska, Anita; Barycki, Maciej; Gajewicz, Agnieszka; Bobrowski, Maciej; Freza, Sylwia; Skurski, Piotr; Uhl, Stefanie; Laux, Edith; Journot, Tony; Jeandupeux, Laure; Keppner, Herbert; Puzyn, Tomasz

    2016-06-03

    This work focuses on determining the influence of both ionic-liquid (IL) type and redox couple concentration on Seebeck coefficient values of such a system. The quantitative structure-property relationship (QSPR) and read-across techniques are proposed as methods to identify structural features of ILs (mixed with LiI/I2 redox couple), which have the most influence on the Seebeck coefficient (Se ) values of the system. ILs consisting of small, symmetric cations and anions with high values of vertical electron binding energy are recognized as those with the highest values of Se . In addition, the QSPR model enables the values of Se to be predicted for each IL that belongs to the applicability domain of the model. The influence of the redox-couple concentration on values of Se is also quantitatively described. Thus, it is possible to calculate how the value of Se will change with changing redox-couple concentration. The presence of the LiI/I2 redox couple in lower concentrations increases the values of Se , as expected. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  1. Cold collisions of SH- with He: Potential energy surface and rate coefficients

    NASA Astrophysics Data System (ADS)

    Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.

    2017-09-01

    Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.

  2. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.

    PubMed

    Satyanarayan, L; Haberman, Michael R; Berthelot, Yves H

    2010-10-01

    Cellular polypropylene polymer foams, also known as ferroelectrets, are compelling candidates for air-coupled ultrasonic transducer materials because of their excellent acoustic impedance match to air and because they have a piezoelectric d(33) coefficient superior to that of PVDF. This study investigates the performance of ferroelectret transducers in the generation and reception of ultrasonic waves in air. As previous studies have noted, the piezoelectric coupling coefficients of these foams depend on the number, size, and distribution of charged voids in the microstructure. The present work studies the influence of these parameters both theoretically and experimentally. First, a three-dimensional model is employed to explain the variation of piezoelectric coupling coefficients, elastic stiffness, and dielectric permittivity as a function of void fraction based on void-scale physics and void geometry. Laser Doppler vibrometer (LDV) measurements of the effective d(33) coefficient of a specially fabricated prototype transmitting transducer are then shown which clearly indicate that the charged voids in the ferroelectret material are randomly distributed in the plane of the foam. The frequency-dependent dynamic d(33) coefficient is then reported from 50 to 500 kHz for different excitation voltages and shown to be largely insensitive to drive voltage. Lastly, two ferroelectret transducers are operated in transmit-receive mode and the received signal is shown to accurately represent the corresponding signal generated by the transmitting transducer as measured using LDV.

  3. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  4. Parameters optimization for magnetic resonance coupling wireless power transmission.

    PubMed

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  5. Coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu

    2007-08-01

    In this paper, the coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions is studied by using an approximate analytic method. According to this method, when the equivalent mechanical coupling coefficient that is defined as the stress ratio is introduced, the coupled vibration of a metal hollow cylinder is reduced to two equivalent one-dimensional vibrations, one is an equivalent longitudinal extensional vibration in the height direction of the cylinder, and the other is an equivalent plane radial vibration in the radius direction. These two equivalent vibrations are coupled to each other by the equivalent mechanical coupling coefficient. The resonance frequency equation of metal hollow cylinders in coupled vibration is derived and longitudinal and radial resonance frequencies are computed. For comparison, the resonance frequencies of the hollow cylinders are also computed by using numerical method. The analysis shows that the results from these two methods are in a good agreement with each other.

  6. Theoretical approach to obtaining dynamic characteristics of noncontacting spiral-grooved seals

    NASA Technical Reports Server (NTRS)

    Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji

    1987-01-01

    The dynamic characteristics of spiral-grooved seals are theoretically obtained by using the Navier-Stokes equation. First, with the inertia term of the fluid considered, the flow and pressure in the steady state are obtained for the directions parallel to and perpendicular to the groove. Next, the dynamic character is obtained by analyzing the steady state and by analyzing the labyrinth seal. As a result, the following conclusions were drawn: (1) As the land width becomes shorter or the helix angle decreases, the cross-coupling stiffness, direct and cross-coupling damping, and add mass coefficients decrease; (2) As the axial Reynolds number increases, the stiffness and damping coefficients increase. But the add mass coefficient is not influenced by the axial Reynolds number; (3) The rotational Reynolds number influences greatly the direct and cross-coupling stiffness and direct damping coefficients; and (4) As the journal rotating frequency increases, the leakage flow decreases. Therefore zero net leakage flow is possible at a particular rotating frequency.

  7. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  8. Photonic ring resonator filters for astronomical OH suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  9. Photonic ring resonator filters for astronomical OH suppression

    DOE PAGES

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; ...

    2017-01-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  10. Coupled modelling of groundwater flow-heat transport for assessing river-aquifer interactions

    NASA Astrophysics Data System (ADS)

    Engeler, I.; Hendricks Franssen, H. J.; Müller, R.; Stauffer, F.

    2010-05-01

    A three-dimensional finite element model for coupled variably saturated groundwater flow and heat transport was developed for the aquifer below the city of Zurich. The piezometric heads in the aquifer are strongly influenced by the river Limmat. In the model region, the river Limmat looses water to the aquifer. The river-aquifer interaction was modelled with the standard linear leakage concept. Coupling was implemented by considering temperature dependence of the hydraulic conductivity and of the leakage coefficient (via water viscosity) and density dependent transport. Calibration was performed for isothermal conditions by inverse modelling using the pilot point method. Independent model testing was carried out with help of the available dense monitoring network for piezometric heads and groundwater temperature. The model was tested by residuals analysis with the help of measurements for both groundwater temperature and head. The comparison of model results and measurements showed high accuracy for temperature except for the Southern part of the model area, where important geological heterogeneity is expected, which could not be reproduced by the model. The comparison of simulated and measured head showed that especially in the vicinity of river Limmat model results were improved by a temperature dependent leakage coefficient. Residuals were reduced up to 30% compared to isothermal leakage coefficients. This holds particularly for regions, where the river stage is considerably above the groundwater level. Furthermore additional analysis confirmed prior findings, that seepage rates during flood events cannot be reproduced with the implemented linear leakage-concept. Infiltration during flood events is larger than expected, which can be potentially attributed to additional infiltration areas. It is concluded that the temperature dependent leakage concept improves the model results for this study area significantly, and that we expect that this is also for other areas the case.

  11. Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties

    NASA Astrophysics Data System (ADS)

    Crusius, Johann-Philipp; Hellmann, Robert; Castro-Palacio, Juan Carlos; Vesovic, Velisa

    2018-06-01

    A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site-site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.

  12. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  13. Evaluation of Ground Vibrations Induced by Military Noise Sources

    DTIC Science & Technology

    2006-08-01

    1 Task 2—Determine the acoustic -to-seismic coupling coefficients C1 and C2 ...................... 1 Task 3—Computational modeling ...Determine the acoustic -to-seismic coupling coefficients C1 and C2 ....................45 Task 3—Computational modeling of acoustically induced ground...ground conditions. Task 3—Computational modeling of acoustically induced ground motion The simple model of blast sound interaction with the

  14. [Determination of a Friction Coefficient for THA Bearing Couples].

    PubMed

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is supposed to increase with a decreasing femoral head diameter. However, in the bearing couples with polyethylene liners manufactured by one company, paradoxically, the friction coefficient slightly increased with an increase in femoral head size from 28 mm to 36 mm. 4) The lowest friction moment (< 3.5 Nm) was found for ceramic-on-ceramic implants 28 mm in diameter; the highest values were recorded in metal-on-polyethylene bearing couples 36 mm in diameter (> 7 Nm). Although our study confirmed that the bearing couples produced by different manufacturers varied to some extent in the parameters studied, in our opinion, this variability was not significant because it was not within an order of magnitude in any of the tests. The study showed that both the friction coefficient and the friction moment are affected more by the combination of materials than by the diameter of a femoral head. The best results were achieved in ceramic-on-ceramic implants.

  15. Theoretical analysis of polarization-coupled mode splitting in a single microfiber knot-ring resonator

    NASA Astrophysics Data System (ADS)

    Qiu, Weiqia; Zhou, Junjie; Yu, Jianhui; Xiao, Yi; Lu, Huihui; Guan, Heyuan; Zhong, Yongchun; Zhang, Jun; Chen, Zhe

    2016-06-01

    We established a theoretical model for a single knot-ring resonator and investigated the transmission spectrum by Jones matrix. The numerical results show that two orthogonal polarization modes of knot-ring, which are originally resonated at the same wavelength, will split into two resonant modes with different wavelengths. The mode splitting is due to the coupling between the two orthogonal polarization modes in the knot-ring when the twisted angle of the twist coupler is not exactly equal to 2mπ (m is an integer). It is also found that the separation of the mode splitting is linearly proportional to the deviation angle δθ with a high correlation coefficient of 99.6% and a slope of 3.17 nm/rad. Furthermore, a transparency phenomenon analogous to coupled-resonator-induced transparency was also predicted by the model. These findings may have potential applications in lasers and sensors.

  16. Electrostatic coupling between DNA and its counterions modulates the observed translational diffusion coefficients.

    PubMed

    Stellwagen, Earle; Stellwagen, Nancy C

    2015-09-01

    Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.

  17. Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient

    NASA Astrophysics Data System (ADS)

    Gilev, S. D.; Prokopiev, V. S.

    2017-07-01

    A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.

  18. Collisional excitation of NH(X{sup 3}Σ{sup −}) by Ne: Potential energy surface, scattering calculations, and comparison with experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhafs, Nezha; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    2015-11-14

    We present a new three-dimensional potential energy surface (PES) for the NH(X{sup 3}Σ{sup −})–Ne van der Waals system, which explicitly takes into account the NH vibrational motion. Ab initio calculations of the NH–Ne PES were carried out using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations [RCCSD(T)]. The augmented correlation-consistent quadruple zeta (aug-cc-pVQZ) basis set was employed. Mid-bond functions were also included in order to improve the accuracy in the van der Waals well. Using this new PES, we have studied the collisional excitation of NH(X{sup 3}Σ{sup −}) by Ne. Close-coupling calculations ofmore » the collisional excitation cross sections of the fine-structure levels of NH by Ne are performed for energies up to 3000 cm{sup −1}, which yield, after thermal average, rate coefficients up to 350 K. The propensity rules between fine-structure levels are reported, and it is found that F-conserving cross sections are larger than F-changing cross sections even if the propensity rules are not as strong as for the NH–He system. The calculated rate coefficients are compared with available experimental measurements at room temperature and a fairly good agreement is found between experimental and theoretical data, confirming the good quality of the scattering calculations and also the accuracy of the potential energy surface used in this work.« less

  19. Dual-Electrode CMUT With Non-Uniform Membranes for High Electromechanical Coupling Coefficient and High Bandwidth Operation

    PubMed Central

    Guldiken, Rasim O.; Zahorian, Jaime; Yamaner, F. Y.; Degertekin, F. L.

    2010-01-01

    In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k2) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane. PMID:19574135

  20. Invariants of electromechanical coupling coefficients in piezoceramics.

    PubMed

    Mezheritsky, Alex V

    2003-12-01

    The relationships between coefficients of electromechanical coupling (CEMC) of various types of piezoceramic resonator (PR) vibrations are considered. Being constant for a given piezoceramic state, the range of variation of piezoceramics dielectric permittivity from a mechanically "free" condition at relatively low frequencies up to an "overall clamped" condition at high frequencies is determined by a consecutive "clamping", caused by a complex of CEMCs of various particular vibrational modes peculiar to the resonator. As the difference between "free" and "overall clamped" permittivities is always determined by the maximal piezomaterial ki3 coupling coefficient, the difference does not depend on the path that was gone through the low-high frequency range, which includes all the vibrational modes possible for a particular PR. The influence of the piezoelectric and elastic anisotropy of lead-zirconate-titanate (PZT) piezoceramic materials on relative CEMC variations was experimentally investigated.

  1. Fluid-structure coupling for an oscillating hydrofoil

    NASA Astrophysics Data System (ADS)

    Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.

    2010-08-01

    Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.

  2. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    PubMed

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  3. A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.

    NASA Technical Reports Server (NTRS)

    Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.

    1972-01-01

    The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.

  4. A Mathematical Model for Storage and Recall of Images using Targeted Synchronization of Coupled Maps.

    PubMed

    Palaniyandi, P; Rangarajan, Govindan

    2017-08-21

    We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.

  5. Effect of camber on the trimmed lift capability of a close-coupled canard-wing configuration. [test in the Langley high speed 7- by 10-foot tunnel

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1978-01-01

    A close-coupled canard-wing configuration was tested in the Langely high-speed 7 by 10 foot tunnel at a Mach number of 0.30 to determine the effect of changing wing camber on the trimmed lift capability. Trimmed lift coefficients of near 2.0 were attained; however, the data indicated that the highest buffet-free trimmed lift coefficient attainable was approximately 1.30. The buffet used in this investigation were qualitative in nature and gave no indication of buffet intensity. Thus, the trimmed lift coefficient of near 2.0 might be attainable if the buffet intensity was not too high. The data showed that there was approximately a 10 percent variation in drag coefficient, for different model configurations, at a given trimmed lift coefficient. Large increases in wing lift had only small effects on canard lift.

  6. Blistering of Graphite/Polymer Composites Galvanically Coupled with Metals in Sea Water

    DTIC Science & Technology

    1993-01-01

    pressure Vi = molar volume of species T Yi = activity coefficient for species T (p = electrical potential Using the flux definition, the conservation...at = aJi/ax ...(11) (b) determine the rate of volume increase of water Vw’ cm3 1s in the blister cavity by the following expression: Vw’ = iVw/at = 1a...induced in the polymer and the fiber/matrix interface region due to the above volume change: The volume increase of the fluid in blister given by

  7. Effect of crystal size distribution on thermoelectric performance for Lanthanum-doped strontium titanate bulk material

    NASA Astrophysics Data System (ADS)

    Zhang, Boyu; Wang, Jun; Yaer, Xinba; Huo, Zhenzhen; Wu, Yin; Li, Yan; Miao, Lei; Liu, Chengyan; Zou, Tao; Ma, Wen

    2015-07-01

    Effect of crystal size distribution on thermoelectric performance of Lanthanum-doped strontium titanate (La-SrTiO3) ceramics are investigated in this study. Thermoelectric performance measurement, coupled with microstructure studies, shows that the electrical conductivity strongly depends on the crystal size, potential barrier on the grain boundary and porosity. Meantime, because the average potential barriers height are increased along with the reduction of crystal size, the Seebeck coefficients are increased by energy filtering effect at the large number of grain boundaries. As a result, by controlling of crystal size distribution, ZT value of La-SrTiO3 is improved.

  8. A Coupling Function Linking Solar Wind /IMF Variations and Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Lyatsky, W.; Lyatskaya, S.; Tan, A.

    2006-12-01

    From a theoretical consideration we have obtained expressions for the coupling function linking solar wind and IMF parameters to geomagnetic activity. While deriving these expressions, we took into account (1) a scaling factor due to polar cap expansion while increasing a reconnected magnetic flux in the dayside magnetosphere, and (2) a modified Akasofu function for the reconnected flux for combined IMF Bz and By components. The resulting coupling function may be written as Fa = aVsw B^1/2 sina (q/2), where Vsw is the solar wind speed, B^ is the magnitude of the IMF vector in the Y-Z plane, q is the clock angle between the Z axis and IMF vector in the Y-Z plane, a is a coefficient, and the exponent, a, is derived from the experimental data and equals approximately to 2. The Fa function differs primary by the power of B^ from coupling functions proposed earlier. For testing the obtained coupling function, we used solar wind and interplanetary magnetic field data for four years for maximum and minimum solar activity. We computed 2-D contour plots for correlation coefficients for the dependence of geomagnetic activity indices on solar wind parameters for different coupling functions. The obtained diagrams showed a good correspondence to the theoretic coupling function Fa for a »2. The maximum correlation coefficient for the dependence of the polar cap PC index on the Fa coupling function is significantly higher than that computed for other coupling functions used researchers, for the same time intervals.

  9. Approximate solution of coupled cluster equations: application to the coupled cluster doubles method and non-covalent interacting systems.

    PubMed

    Smiga, Szymon; Fabiano, Eduardo

    2017-11-15

    We have developed a simplified coupled cluster (SCC) methodology, using the basic idea of scaled MP2 methods. The scheme has been applied to the coupled cluster double equations and implemented in three different non-iterative variants. This new method (especially the SCCD[3] variant, which utilizes a spin-resolved formalism) has been found to be very efficient and to yield an accurate approximation of the reference CCD results for both total and interaction energies of different atoms and molecules. Furthermore, we demonstrate that the equations determining the scaling coefficients for the SCCD[3] approach can generate non-empirical SCS-MP2 scaling coefficients which are in good agreement with previous theoretical investigations.

  10. Collisional excitation of sulfur dioxide by molecular hydrogen in warm molecular clouds

    NASA Astrophysics Data System (ADS)

    Balança, Christian; Spielfiedel, Annie; Feautrier, Nicole

    2016-08-01

    Interpretation of SO2 line emission in warm environments requires a detailed knowledge of collisional rate coefficients for a wide range of levels and temperatures. Using an accurate theoretical interaction potential for SO2-H2, rate coefficients for collisions of SO2 with para and ortho-H2 for the 31 first SO2, rotational levels are calculated for temperatures up to 500 K using the coupled states (CS) approximation. From a comparison with previously published close-coupling (CC) results, it was shown that the two sets of data agree within 20-30 per cent for both para- and ortho-H2 collisions. As previously found within the CC approach, the CS rate coefficients with ortho and para-H2 differ by a factor of 2 in average, the largest being mainly the rates for collisions with ortho-H2. For higher levels and temperatures, rate constants were computed within the infinite order sudden (IOS) approximation. Rate coefficients were obtained for the lowest 410 rotational levels of SO2 in the 100-1000 K temperature range. A comparison at 30, 100 and 300 K of the IOS data with the corresponding para-H2 CS results indicates that the IOS approximation systematically underestimates the CS results by a factor up to 2 at the lowest temperatures. As expected, IOS and CS rates are in a better agreement at higher temperatures. Considering that the IOS theory was developed for collisions with para-H2, this approach cannot describe with the same accuracy collisions with ortho-H2. So, our IOS data may be considered as quite reliable for collisions with para-H2 and less accurate for collisions with ortho-H2.

  11. Full-dimensional Quantum Calculations of Rovibrational Transitions in CS induced by H2

    NASA Astrophysics Data System (ADS)

    Yang, Benhui; Zhang, Peng; Stancil, Phillip; Bowman, J.; Balakrishnan, N.; Forrey, R.

    2017-04-01

    Carbon monosulfide (CS), the sulfur analogue of carbon monoxide, has been widely observed in a variety interstellar regions. An accurate prediction of its abundance requires collisional rate coefficients with ambient gases. However, the collisional rate coefficients are largely unknown and primarily rely on theoretical scattering calculations. In interstellar clouds, the dominant collision partner is H2. Rate coefficient data on CS-H2 collisions are limited to pure rotational transitions and no data exist for rovibrational transitions. In this work we evaluate the first full-dimensional potential energy surface for the CS-H2 system using high-level electronic structure theory and perform explicit quantum close-coupling calculations of rovibrational transitions in CS induced by H2 collisions. Cross sections and rate coefficients for rotational transitions are compared with previous theoretical results obtained within a rigid-rotor model. For rovibrational transitions, state-to-state rate coefficients are evaluated for several low-lying rotational levels in the first excited vibrational level of CS. Results are presented for both para-H2 and ortho-H2 collision partners. Work at UGA and Emory are supported by NASA Grant No. NNX16AF09G, at UNLV by NSF Grant No. PHY-1505557, and at Penn State by NSF Grant No. PHY-1503615.

  12. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.

    PubMed

    Tao, Chao; Liu, Xiaojun

    2011-02-01

    The vocal-fold tissue is treated as a transversally isotropic fluid-saturated porous material. Effects of poroelastic coefficients on eigenfrequencies and eigenmodes of the vocal-fold vibration are investigated using the Ritz method. The study demonstrates that the often-used elastic model is only a particular case of the poroelastic model with an infinite fluid-solid mass coupling parameter. The elastic model may be considered appropriate for the vocal-fold tissue when the absolute value of the fluid-solid mass coupling parameter is larger than 10(5) kg/m(3). Otherwise, the poroelastic model may be more accurate. The degree of compressibility of the vocal tissue can also been described by the poroelastic coefficients. Finally, it is revealed that the liquid and solid components in a poroelastic model could have different modal shapes when the coupling between them is weak. The mode decoupling could cause desynchronization and irregular vibration of the folds.

  13. Collisional rates based on the first potential energy surface of the NeH+ -He system

    NASA Astrophysics Data System (ADS)

    Bop, Cheikh T.; Hammami, K.; Faye, N. A. B.

    2017-09-01

    The potential energy surface is computed at the explicitly correlated coupled cluster with simple, second and perturbative triple excitation method (CCSD(T)-F12) in connection with the augmented-correlation consistent-polarized valence triple zeta (aug-cc-pVTZ) Gaussian basis set for the NeH+ -He system. The calculations were performed by first taking into account the vibration of the molecule and then averaging the so-obtained three-dimensional potential. From this average interaction potential, cross-sections among the 11 first rotational levels of NeH+ induced by collision with He are calculated for energies up to 4000 cm-1 using the quantum mechanical close coupling (CC) approach. Collisional rate coefficients are obtained by thermally averaging these cross-sections at low temperature (T ≤ 300 K). The propensity rules of the rotational transitions obtained in this paper are discussed and compared with those of HeH+ and ArH+ in collision with electron. This work may be helpful for the eventual investigations, both theoretical and experimental, focused to detect the key cationic noble gas hydride NeH+ in the interstellar and circumstellar media as well as in laboratory experiments.

  14. Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Lei; Avoird, Ad van der; Karman, Tijs

    2015-05-28

    We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 − 30 to v′ = 0, j′ are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm{sup −1} based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v′ = 0, j′ are reported for the first time at this level of theory. Alsomore » calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H–CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H–CO collisions in astrophysical models.« less

  15. Collisional excitation of ArH+ by hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    The rotational excitation of the 36ArH+ ion in collisions with hydrogen atoms is investigated in this work. The potential energy surface (PES) describing the 36ArH+-H interaction, with the ion bond length r fixed at the average of r over the radial v = 0 vibrational state distribution, was obtained with a coupled cluster method that included single, double, and (perturbatively) triple excitations [RCCSD(T)]. A deep minimum (De = 3135 cm-1) in the PES was found in linear H-ArH+ geometry at an ion-atom separation Re = 4.80a0. Energy-dependent cross-sections and rate coefficients as a function of temperature for this collision pair were computed in close-coupling (CC) calculations. Since the PES possesses a deep well, this is a good system to test the performance of the quantum statistical (QS) method developed by Manolopoulos and co-workers as a more efficient method to compute the cross-sections. Good agreement was found between rate coefficients obtained by the CC and QS methods at several temperatures. In a simple application, the excitation of ArH+ is simulated for conditions under which this ion is observed in absorption.

  16. Full-dimensional quantum dynamics of rovibrationally inelastic scattering between CN and H2

    NASA Astrophysics Data System (ADS)

    Yang, Benhui; Wang, X. H.; Stancil, P. C.; Bowman, J. M.; Balakrishnan, N.; Forrey, R. C.

    2016-12-01

    We report six-dimensional (6D) potential energy surface (PES) and rovibrational scattering calculations for the CN-H2 collision system. The PES was computed using the high-level ab initio spin-restricted coupled-cluster with single, double, and perturbative triple excitations-F12B method and fitted to an analytic function using an invariant polynomial method in 6D. Quantum close-coupling calculations are reported for rotational transitions in CN by H2 and D2 collisions in 6D as well as four-dimensional (4D) within a rigid rotor model for collision energies of 1.0-1500 cm-1. Comparisons with experimental data and previous 4D calculations are presented for CN rotational levels j1 = 4 and 11. For the first time, rovibrational quenching cross sections and rate coefficients of CN (v1 = 1,j1 = 0) in collisions with para- and ortho-H2 are also reported in full-dimension. Agreement for pure rotational transitions is found to be good, but no experimental data on rovibrational collisional quenching for CN-H2 are available. Applications of the current rotational and rovibrational rate coefficients in astrophysical modeling are briefly discussed.

  17. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  18. Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn

    2015-11-01

    Five dimensional black hole solutions that describe the QCD crossover transition seen in (2 +1 ) -flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV ≤T ≤300 MeV and baryon chemical potentials 0 ≤μB≤400 MeV . Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.

  19. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  20. An Efficient Statistical Method to Compute Molecular Collisional Rate Coefficients

    NASA Astrophysics Data System (ADS)

    Loreau, Jérôme; Lique, François; Faure, Alexandre

    2018-01-01

    Our knowledge about the “cold” universe often relies on molecular spectra. A general property of such spectra is that the energy level populations are rarely at local thermodynamic equilibrium. Solving the radiative transfer thus requires the availability of collisional rate coefficients with the main colliding partners over the temperature range ∼10–1000 K. These rate coefficients are notoriously difficult to measure and expensive to compute. In particular, very few reliable collisional data exist for inelastic collisions involving reactive radicals or ions. In this Letter, we explore the use of a fast quantum statistical method to determine molecular collisional excitation rate coefficients. The method is benchmarked against accurate (but costly) rigid-rotor close-coupling calculations. For collisions proceeding through the formation of a strongly bound complex, the method is found to be highly satisfactory up to room temperature. Its accuracy decreases with decreasing potential well depth and with increasing temperature, as expected. This new method opens the way to the determination of accurate inelastic collisional data involving key reactive species such as {{{H}}}3+, H2O+, and H3O+ for which exact quantum calculations are currently not feasible.

  1. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    PubMed

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  2. Acceptance of sexual minorities, discrimination, social capital and health and well-being: a cross-European study among members of same-sex and opposite-sex couples.

    PubMed

    van der Star, Arjan; Bränström, Richard

    2015-08-21

    Awareness of health disparities based on sexual orientation has increased in the past decades, and many official public health agencies throughout Europe call for programs addressing the specific needs of lesbian, gay and bisexual (LGB) individuals. However, the acceptance of LGB individuals varies significantly in different countries, which potentially influences health and well-being in this population. We explored differences in self-rated health and subjective well-being between individuals living in same-sex and opposite-sex couples. We also examined the effects of discrimination and country-level variations in LGB acceptance on health and well-being and the potential mediating role of social capital in these associations. Using the 2010 European Social Survey (n = 50,781), 315 individuals living with a same-sex partner were matched and compared with an equal number of individuals living in opposite-sex couples. We performed structural equation modeling analyses to estimate path coefficients, mediations and interactions. LGB acceptance was significantly related to better self-rated health and subjective well-being among all individuals, and these associations were partially mediated by individual social capital. No differences in these associations were found between individuals living in same-sex and opposite-sex couples. Sexuality-based discrimination had an additional significantly negative effect on self-related health and subjective well-being. The findings of this study suggest a negative association between exposure to discrimination based on sexual orientation and both health and well-being of individuals living in same-sex couples. Members of same-sex couples and opposite-sex couples alike may benefit from living in societies with a high level of LGB acceptance to promote better health and well-being.

  3. Giant magnetoelectric effect in negative magnetostrictive/piezoelectric/positive magnetostrictive semiring structure

    NASA Astrophysics Data System (ADS)

    Zeng, Lingyu; Zhou, Minhong; Bi, Ke; Lei, Ming

    2016-01-01

    Magnetoelectric (ME) Ni/PZT/TbFe2 and TbFe2/PZT composites with two semiring structures are prepared. The dependence between ME coupling and magnetostrictive property of the composite is discussed. Because Ni possesses negative magnetostrictive property and TbFe2 shows positive magnetostrictive property, the ME voltage coefficient of Ni/PZT/TbFe2 semiring structure is much larger than that of TbFe2/PZT. In these composites, the ME voltage coefficient increases and the resonance frequency gradually decreases with the increase of the semiring radius, showing that structural parameters are key factors to the composite properties. Due to the strong ME coupling effect, a giant ME voltage coefficient αE = 44.8 V cm-1 Oe-1 is obtained. This approach opens a way for the design of ME composites with giant ME voltage coefficient.

  4. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  5. A fluid-solid coupling simulation method for convection heat transfer coefficient considering the under-vehicle condition

    NASA Astrophysics Data System (ADS)

    Tian, C.; Weng, J.; Liu, Y.

    2017-11-01

    The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.

  6. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  7. Mediation Analysis of the Efficacy of the Eban HIV/STD Risk-Reduction Intervention for African American HIV Serodiscordant Couples.

    PubMed

    El-Bassel, Nabila; Jemmott, John B; Bellamy, Scarlett L; Pequegnat, Willo; Wingood, Gina M; Wyatt, Gail E; Landis, J Richard; Remien, Robert H

    2016-06-01

    Targeting couples is a promising behavioral HIV risk-reduction strategy, but the mechanisms underlying the effects of such interventions are unknown. We report secondary analyses testing whether Social-Cognitive-Theory variables mediated the Eban HIV-risk-reduction intervention's effects on condom-use outcomes. In a multisite randomized controlled trial conducted in four US cities, 535 African American HIV-serodiscordant couples were randomized to the Eban HIV risk-reduction intervention or attention-matched control intervention. Outcomes were proportion condom-protected sex, consistent condom use, and frequency of unprotected sex measured pre-, immediately post-, and 6 and 12 months post-intervention. Potential mediators included Social-Cognitive-Theory variables: outcome expectancies and self-efficacy. Mediation analyses using the product-of-coefficients approach in a generalized-estimating-equations framework revealed that condom-use outcome expectancy, partner-reaction outcome expectancy, intention, self-efficacy, and safer-sex communication improved post-intervention and mediated intervention-induced improvements in condom-use outcomes. These findings underscore the importance of targeting outcome expectancies, self-efficacy, and safer-sex communication in couples-level HIV risk-reduction interventions.

  8. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  9. Investigation of electrochemical phenomena related to corrosion in high temperature aqueous systems

    NASA Astrophysics Data System (ADS)

    Biswas, Ritwik

    1999-11-01

    Three separate phenomena, each related to the problem of corrosion of metals, in high temperature aqueous solutions, have been studied. These are: (1) Kinetics of the Hydrogen Oxidation Reaction (HOR), (2) Effect of solutions containing sulfur oxyanions on Stainless Steel 347 and Inconel 600, and (3) Characterization of electrochemical behavior of intermetallic compounds Ni3Nb and Ni3(TiAl). The anodic transfer coefficient and the Tafel constant, for the HOR, on platinized nickel, in 0.1 m NaOH solution, was experimentally measured over the temperature range of 25°C to 300°C. Potentiodynamic polarization experiments, under controlled hydrodynamic flow conditions, in a cell with annular flow geometry, were used for these measurements. The anodic transfer coefficient and the Tafel constant were found to increase with increase in solution temperature. At high anodic potentials (>1V vs. rest potential), passivation of the platinum electrode was observed. Electron tunneling theory was used to determine that this was the result of formation of platinum oxide (PtO) on the surface of the platinum electrode. The relative corrosion properties of Stainless Steel 347 and Inconel 600, exposed to an aqueous electrolyte containing sulfur oxyanions, at temperatures up to 285°C, was studied using electrochemical tests, mathematical modeling and surface analysis. The presence of sulfur oxyanions was found to cause the breakdown of the protective passive film on both the alloy surfaces, and increase their corrosion rates. As a result of exposure to the electrolyte, a porous layer of corrosion product was formed on both alloys. This porous layer was composed principally of Ni3S2 in the case of Inconel 600 and Fe3O4 in the case of Stainless Steel 347. The corrosive effect of sulfur oxyanions was found to be greater on Inconel 600 than Stainless Steel 347. Galvanic coupling experiments were conducted on the intermetallics Ni 3Nb and Ni3(TiAl) and a nickel rich alloy. It was determined that the intermetallics acted as the anodes when coupled with the nickel rich alloy material. At room temperature, both galvanic current and galvanic potential displayed oscillatory behavior as a function of time. These were analyzed using dynamic systems theory. It was determined from such analysis that the galvanic coupling process can be theoretically described by two coupled ordinary differential equations.

  10. Cortisol covariation within parents of young children: Moderation by relationship aggression.

    PubMed

    Saxbe, Darby E; Adam, Emma K; Schetter, Christine Dunkel; Guardino, Christine M; Simon, Clarissa; McKinney, Chelsea O; Shalowitz, Madeleine U

    2015-12-01

    Covariation in diurnal cortisol has been observed in several studies of cohabiting couples. In two such studies (Liu et al., 2013; Saxbe and Repetti, 2010), relationship distress was associated with stronger within-couple correlations, suggesting that couples' physiological linkage with each other may indicate problematic dyadic functioning. Although intimate partner aggression has been associated with dysregulation in women's diurnal cortisol, it has not yet been tested as a moderator of within-couple covariation. This study reports on a diverse sample of 122 parents who sampled salivary cortisol on matched days for two years following the birth of an infant. Partners showed strong positive cortisol covariation. In couples with higher levels of partner-perpetrated aggression reported by women at one year postpartum, both women and men had a flatter diurnal decrease in cortisol and stronger correlations with partners' cortisol sampled at the same timepoints. In other words, relationship aggression was linked both with indices of suboptimal cortisol rhythms in both members of the couples and with stronger within-couple covariation coefficients. These results persisted when relationship satisfaction and demographic covariates were included in the model. During some of the sampling days, some women were pregnant with a subsequent child, but pregnancy did not significantly moderate cortisol levels or within-couple covariation. The findings suggest that couples experiencing relationship aggression have both suboptimal neuroendocrine profiles and stronger covariation. Cortisol covariation is an understudied phenomenon with potential implications for couples' relationship functioning and physical health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Long-range interactions between metastable rare gases atoms

    NASA Astrophysics Data System (ADS)

    Vrinceanu, D.; Marinescu, M.; Flannery, M. R.

    1998-10-01

    Knowledge of the long-range interaction between atoms and molecules is of fundamental importance for low-energy and low-temperature collisions. The electronic interaction between the charge distributions of two metastable rare gases atoms can be expanded in inverse powers of R, the internuclear distance. The coefficients C_6, C_8, and C_10 of, respectively, the R-6, R-8, and R-10 terms are calculated by integrating the products of the dynamic electric polarizabilities of the individual atoms at imaginary frequencies, which are in turn obtained by solving a system of coupled inhomogeneous differential equations. The triplet state spectrum of the rare gases atoms is described by precise l-dependent one-electron model potentials. Numerical results for the C_6, C_8, and C_10 dispersion coefficients for homonuclear and heteronuclear metastable rare gases diatoms are presented.

  12. Long-range interactions between metastable rare gases atoms

    NASA Astrophysics Data System (ADS)

    Vrinceanu, D.; Marinescu, M.; Flannery, M. R.

    1998-05-01

    Knowledge of the long-range interaction between atoms and molecules is of fundamental importance for low-energy and low-temperature collisions. The electronic interaction between the charge distributions of two metastable rare gases atoms can be expanded in inverse powers of R, the internuclear distance. The coefficients C_6, C_8, and C_10 of, respectively, the R-6, R-8, and R-10 terms are calculated by integrating the products of the dynamic electric polarizabilities of the individual atoms at imaginary frequencies, which are in turn obtained by solving a system of coupled inhomogeneous differential equations. The triplet state spectrum of the rare gases atoms is described by precise l-dependent one-electron model potentials. Numerical results for the C_6, C_8, and C_10 dispersion coefficients for homonuclear and heteronuclear metastable rare gases diatoms are presented.

  13. Rotational Quenching Study in Isovalent H+ + CO and H+ + CS Systems

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-06-01

    Cooling and trapping of polar molecules has attracted attention at cold and ultracold temperatures. Extended study of molecular inelastic collision processes of polar interstellar species with proton finds an important astrophysical application to model interstellar medium. Present study includes computation of rate coefficient for molecular rotational quenching process in proton collision with isovalent CO and CS molecules using quantum dynamical close-coupling calculations. Full dimensional ab initio potential energy surfaces have been computed for the ground state for both the systems using internally contracted multireference configuration interaction method and basis sets. Quantum scattering calculations for rotational quenching of isovalent species are studied in the rigid-rotor approximation with CX (X=O, S) bond length fixed at an experimental equilibrium value of 2.138 and 2.900 a.u., respectively. Asymptotic potentials are computed using the dipole and quadrupole moments, and the dipole polarizability components. The resulting long-range potentials with the short-range ab initio interaction potentials have been fitted to study the anisotropy of the rigid-rotor surface using the multipolar expansion coefficients. Rotational quenching cross-section and corresponding rates from j=4 level of CX to lower j' levels have been obtained and found to obey Wigner's threshold law at ultra cold temperatures.

  14. Analytical scheme calculations of angular momentum coupling and recoupling coefficients

    NASA Astrophysics Data System (ADS)

    Deveikis, A.; Kuznecovas, A.

    2007-03-01

    We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages.

  15. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, T., E-mail: t.j.stevenson@leeds.ac.uk; Bennett, J.; Brown, A. P.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce amore » reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 μ{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.« less

  16. Weakening gravity on redshift-survey scales with kinetic matter mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amico, Guido; Huang, Zhiqi; Mancarella, Michele

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field asmore » well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.« less

  17. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics that occur upon application of chemical, thermal, or electrical driving potentials. Image processing algorithms have been developed to analyze the refractometer images on a pixel by pixel basis, calibrating and scaling the measured Index of Refraction profile to correlated solution properties of interest such as density, concentration, and temperature. Additional software has been developed to compile the processed images into a three dimensional matrix that contains fluid composition data as a function of experiment time and position in the fluid cell. These data are combined with data from the other sensor systems, and analyzed in the context of transport coefficients associated with the various transport phenomena. Analysis protocols have been developed to measure the transient kinetics, and steady state distribution of fluid components that occur in response to the applied driving potentials. The results are expressed in terms of effective transport coefficients. Experiments have been performed using a variety of solutes, and results generated are that are in agreement with published transport coefficient values.

  18. Quantum scattering studies of spin-orbit effects in the Cl({sup 2}P) + HCl {yields} ClH + Cl({sup 2}P) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, G.C.; McCabe, P.; Connor, J.N.L.

    1998-07-01

    The authors present quantum scattering calculations for the Cl + HCl {yields} ClH + Cl reaction in which they include the three electronic states that correlate asymptotically to the ground state of Cl({sup 2}P) + HCl(X{sup 1}{Sigma}{sup +}). The potential surfaces and couplings are taken from the recent work of C.S. Maierle, G.C. Schatz, M.S. Gordon, P. McCabe and J.N.L. Connor, J. Chem. Soc. Farad. Trans. (1997). They are based on extensive ab initio calculations for geometries in the vicinity of the lowest energy saddle point, and on an electrostatic expansion (plus empirical dispersion and repulsion) for long range geometriesmore » including the van der Waals wells. Spin-orbit coupling has been included using a spin-orbit coupling parameter {lambda} that is assumed to be independent of nuclear geometry, and Coriolis interactions are incorporated accurately. The scattering calculations use a hyperspherical coordinate coupled channel method in full dimensionality. AJ-shifting approximation is employed to convert cumulative reaction probabilities for total angular momentum quantum number J = 1/2 into state selected and thermal rate coefficients. Two issues have been studied: (a) the influence of the magnitude of {lambda} on the fine-structure resolved cumulative probabilities and rate coefficients (the authors consider {lambda}`s that vary from 0 to {+-}100% of the true Cl value), and (b) the transition state resonance spectrum, and its variation with {lambda} and with other parameters in the calculations. Cl + HCl is a simple hydrogen transfer reaction which serves as a canonical model both for heavy-light-heavy atom reactions, and for the reactions of halogen atoms with closed shell molecules.« less

  19. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.

    PubMed

    Cheng, Rui; Chrostowski, Lukas

    2018-03-01

    Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625  GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.

  20. Electrostatic and magnetic fields in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Jellal, Ahmed; Redouani, Ilham; Bahlouli, Hocine

    2015-08-01

    We compute the transmission probability through rectangular potential barriers and p-n junctions in the presence of a magnetic and electric fields in bilayer graphene taking into account contributions from the full four bands of the energy spectrum. For energy E higher than the interlayer coupling γ1 (E >γ1) two propagation modes are available for transport giving rise to four possible ways for transmission and reflection coefficients. However, when the energy is less than the height of the barrier the Dirac fermions exhibit transmission resonances and only one mode of propagation is available for transport. We study the effect of the interlayer electrostatic potential denoted by δ and variations of different barrier geometry parameters on the transmission probability.

  1. Multiferroic magnetoelectric coupling effect of bilayer La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3 complex thin film

    NASA Astrophysics Data System (ADS)

    Liang, K.; Zhou, P.; Ma, Z. J.; Qi, Y. J.; Mei, Z. H.; Zhang, T. J.

    2017-05-01

    Magnetoelectric (ME) coupling effect of 2-2-type ferromagnetic/ferroelectric bi-layer multiferroic epitaxial thin film (La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3, LSMO/PZT) on SrRuO3 (SRO) substrate is investigated systematically by using Landau-Ginzburg-Devonshire (LGD) thermodynamic theory and modified constitutive equations. The calculating results clarify the detail relationships between ME coupling response and the residual strain, the volume fraction of constituent phases, the interface coupling coefficients, the magnetic field and the temperature. It also shows that improved ME coupling response can be modulated by these parameters. External magnetic fields (H1) induced ME coupling effect could be enhanced around Curie Temperature (Tc) of ferromagnetic phase and ME voltage coefficient (αE31) approaches a maximum at H1 ∼ 4.5 kOe near Tc. The remarkable variations of ME coupling response can be used to provide useful guidelines on the design of multifunctional devices.

  2. Hierarchical and coupling model of factors influencing vessel traffic flow.

    PubMed

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  3. Hierarchical and coupling model of factors influencing vessel traffic flow

    PubMed Central

    Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system. PMID:28414747

  4. Non-analytic terms from nested divergences in maximal supergravity

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-07-01

    The {D}4{{ R }}4 and {D}6{{ R }}4 coefficient functions in the effective action of type II string theory compactified on T d contain terms of the form {{ E }}1{{ln}}{g}d and {{ E }}2{({{ln}}{g}d)}2 in specific dimensions, where g d is the T-duality invariant string coupling, and {{ E }}1 and {{ E }}2 are U-duality invariant coefficient functions. We derive these non-analytic terms from nested ultraviolet divergences in two and three loop maximal supergravity. For the {D}4{{ R }}4 coupling, the contribution involves {{ E }}{{ R }4}{{ln}}{g}d, while for the {D}6{{ R }}4 coupling, it involves {{ E }}{{ R }4}{{ln}}{g}d, {{ E }}{D2{{ R }}4}{({{ln}}{g}d)}2 and {{ E }}{D4{{ R }}4}{{ln}}{g}d; where {{ E }}{{ R }4}, {{ E }}{D2{{ R }}4} and {{ E }}{D4{{ R }}4} are the {{ R }}4, {D}2{{ R }}4 and {D}4{{ R }}4 coefficient functions respectively. The contribution from {{ E }}{D2{{ R }}4}, the coefficient function of an amplitude that vanishes onshell, arises from a two loop nested subdivergence of the three loop amplitude.

  5. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    NASA Astrophysics Data System (ADS)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  6. Quantum treatment of field propagation in a fiber near the zero dispersion wavelength

    NASA Astrophysics Data System (ADS)

    Safaei, A.; Bassi, A.; Bolorizadeh, M. A.

    2018-05-01

    In this report, we present a quantum theory describing the propagation of the electromagnetic radiation in a fiber in the presence of the third order dispersion coefficient. We obtained the quantum photon-polariton field, hence, we provide herein a coupled set of operator forms for the corresponding nonlinear Schrödinger equations when the third order dispersion coefficient is included. Coupled stochastic nonlinear Schrödinger equations were obtained by applying a positive P-representation that governs the propagation and interaction of quantum solitons in the presence of the third-order dispersion term. Finally, to reduce the fluctuations near solitons in the first approximation, we developed coupled stochastic linear equations.

  7. Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2015-01-01

    We study a two-component nonlinear Schrödinger system with equal, repulsive cubic interactions and different dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component. Treating it as a frozen one, we explore the possibility of the formation of bright-solitonic structures in the other component. We identify bifurcation points at which such states emerge in the bright component in the linear limit and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be that of vanishing dispersion of the bright component. We numerically identify regimes of potential stability, not only of the single-peak ground state (the dark-bright soliton), but also of excited states with one or more zero crossings in the bright component. When the states are identified as unstable, direct numerical simulations are used to investigate the outcome of the instability development. Although our principal focus is on the homogeneous setting, we also briefly touch upon the counterintuitive impact of the potential presence of a parabolic trap on the states of interest.

  8. Rotational excitation of HCN by para- and ortho-H₂.

    PubMed

    Vera, Mario Hernández; Kalugina, Yulia; Denis-Alpizar, Otoniel; Stoecklin, Thierry; Lique, François

    2014-06-14

    Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H2(j = 0, 2) and ortho-H2(j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm(-1). The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K. The HCN rate coefficients are strongly dependent on the rotational level of the H2 molecule. In particular, the rate coefficients for collisions with para-H2(j = 0) are significantly lower than those for collisions with ortho-H2(j = 1) and para-H2(j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H2(j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H2(j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H2(j = 0) rate coefficients. Significant differences were found due the inclusion of the H2 rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.

  9. Contribution of thermoelectric and electrochemical effects to spontaneous potential signals induced by water injection into hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M.; Pain, C. C.

    2009-12-01

    Recent work has demonstrated that downhole measurements of streaming potential, using electrodes mounted on the outside of insulated casing, may be used to inform production strategies in oil and gas reservoirs. However, spontaneous potentials due to thermoelectric and/or electrochemical effects may also be present during production and may contribute to the signal measured at the production well. We present a workflow to numerically model spontaneous potentials in the subsurface and ascertain their magnitude in oil reservoirs during production. Our results suggest that the injection of seawater, which typically has a different temperature and salinity to the formation brine, leads to the generation of both thermoelectric and electrochemical potential signals which may be measured at the production well. We observe a peak in the thermoelectric potential before and after the temperature front, with a change in sign occurring close to the midpoint of the front, and the signal decaying with distance from the front. The electrochemical potential has a similar profile, with a change in sign occurring close to the location of the salinity front. In both cases, the absolute magnitude of the signal is related to the overall temperature and/or salinity contrast between the injected fluids and the formation brine, and the magnitude of the thermoelectric or electrochemical coupling coefficient. The lag in the temperature front relative to the saturation front leads to a negligible thermoelectric potential signal at the production well until long after water breakthrough occurs. In contrast, the electrochemical potential contributes significantly to the spontaneous potential measured at the production well before the waterfront arrives, as the salinity front and the saturation front coincide. However, the dependency of the thermoelectric and electrochemical coupling coefficients upon temperature and/or salinity is still uncertain, especially at partial water saturation. We have used the maximum theoretical limit, in the case of the perfect membrane, to estimate these parameters. These results imply that measurements of the spontaneous potential at a production well will combine contributions from both streaming and electrochemical effects, and may be used to detect an advancing waterfront some time before water breakthrough occurs at the well. Moreover, inversion of the measured signals could be used to determine the water saturation in the vicinity of the well, and to regulate flow into the well using control valves in order to maintain or increase oil production.

  10. SAW properties in quartz-like α-GeO2 single crystal

    NASA Astrophysics Data System (ADS)

    Taziev, R. M.

    2018-05-01

    The paper investigates numerically the properties of surface acoustic waves (SAW) in a new α-GeO2 single crystal of trigonal crystal symmetry (32). It is shown that the SAW has a maximum value of electromechanical coupling coefficient ≈0.14% on Z+120°, X –cut of a crystal with a zero power flow deflection angle. For the case of Z+140°X+25°-cut, the SAW electromechanical coupling coefficient equals 0.17 %, but the power flow deflection angle is not zero. Calculations are made of the frequency dependence of the conductance of SAW interdigital transducers (IDT), which electrode number equals 100 and wavelength is 20 microns on Z+120°,X –cut crystal. The excitations of bulk acoustic waves are absent in this cut case. Leaky acoustic wave, generated by IDT on Z+120°,X –cut of crystal, has a small electromechanical coupling coefficient, which is 4 times less than that for SAW.

  11. Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Summers, D.; Siscoe, G. L.

    1985-01-01

    The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.

  12. Silicon photonics thermal phase shifter with reduced temperature range

    DOEpatents

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  13. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.

    PubMed

    Zhang, Qiang; Shi, Shengjun; Chen, Weishan

    2016-03-01

    An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer is proposed. The transducer is a Langevin type transducer which is composed of an exponential horn, four groups of PZT ceramics and a back beam. The exponential horn can focus the vibration energy, and can enlarge vibration amplitude and velocity efficiently. A bending vibration model of the transducer is first constructed, and subsequently an electromechanical coupling model is constructed based on the vibration model. In order to obtain the most suitable excitation position of the PZT ceramics, the effective electromechanical coupling coefficient is optimized by means of the quadratic interpolation method. When the effective electromechanical coupling coefficient reaches the peak value of 42.59%, the optimal excitation position (L1=22.52 mm) is found. The FEM method and the experimental method are used to validate the developed analytical model. Two groups of the FEM model (the Group A center bolt is not considered, and but the Group B center bolt is considered) are constructed and separately compared with the analytical model and the experimental model. Four prototype transducers around the peak value are fabricated and tested to validate the analytical model. A scanning laser Doppler vibrometer is employed to test the bending vibration shape and resonance frequency. Finally, the electromechanical coupling coefficient is tested indirectly through an impedance analyzer. Comparisons of the analytical results, FEM results and experiment results are presented, and the results show good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  15. Analysis, design, and control of a transcutaneous power regulator for artificial hearts.

    PubMed

    Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan

    2009-02-01

    Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.

  16. Rotational cross sections and rate coefficients of aluminium monoxide AlO(X2Σ+) induced by its collision with He(1 S) at low temperature

    NASA Astrophysics Data System (ADS)

    Tchakoua, Théophile; Nkot Nkot, Pierre René; Fifen, Jean Jules; Nsangou, Mama; Motapon, Ousmanou

    2018-06-01

    We present the first potential energy surface (PES) for the AlO(X2Σ+)-He(1 S) van der Waals complex. This PES has been calculated at the RCCSD(T) level of theory. The mixed Gaussian/Exponential Extrapolation Scheme of complete basis set [CBS(D,T,Q)] was employed. The PES was fitted using global analytical method. This fitted PES was used subsequently in the close-coupling approach for the computation of the state-to-state collisional excitation cross sections of the fine-structure levels of the AlO-He complex. Collision energies were taken up to 2500 cm-1 and they yield after thermal averaging, state-to-state rate coefficients up to 300 K. The propensity rules between the lowest fine-structure levels were studied. These rules show, on one hand, a strong propensity in favour of odd ΔN transitions, and on the other hand, that cross sections and collisional rate coefficients for Δj = ΔN transitions are larger than those for Δj ≠ ΔN transitions.

  17. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-08-14

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less

  18. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.

    PubMed

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J

    2017-08-01

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.

  19. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less

  20. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, Brian K.

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.« less

  1. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Kendrick, Brian K.

    2018-01-01

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v , j) ↔ AB(v ', j') + B and A + AB(v , j) → A + AB(v ', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v ', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.

  2. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE PAGES

    Kendrick, Brian K.

    2018-01-28

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.« less

  3. Unconventional Superconductivity in Luttinger Semimetals: Theory of Complex Tensor Order and the Emergence of the Uniaxial Nematic State

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate unconventional superconductivity in three-dimensional electronic systems with the chemical potential close to a quadratic band touching point in the band dispersion. Short-range interactions can lead to d -wave superconductivity, described by a complex tensor order parameter. We elucidate the general structure of the corresponding Ginzburg-Landau free energy and apply these concepts to the case of an isotropic band touching point. For a vanishing chemical potential, the ground state of the system is given by the superconductor analogue of the uniaxial nematic state, which features line nodes in the excitation spectrum of quasiparticles. In contrast to the theory of real tensor order in liquid crystals, however, the ground state is selected here by the sextic terms in the free energy. At a finite chemical potential, the nematic state has an additional instability at weak coupling and low temperatures. In particular, the one-loop coefficients in the free energy indicate that at weak coupling genuinely complex orders, which break time-reversal symmetry, are energetically favored. We relate our analysis to recent measurements in the half-Heusler compound YPtBi and discuss the role of cubic crystal symmetry.

  4. Sodium-coupled electrogenic transport of pyroglutamate (5-oxoproline) via SLC5A8, a monocarboxylate transporter.

    PubMed

    Miyauchi, Seiji; Gopal, Elangovan; Babu, Ellappan; Srinivas, Sonne R; Kubo, Yoshiyuki; Umapathy, Nagavedi S; Thakkar, Santoshanand V; Ganapathy, Vadivel; Prasad, Puttur D

    2010-06-01

    Pyroglutamate, also known as 5-oxoproline, is a structural analog of proline. This amino acid derivative is a byproduct of glutathione metabolism, and is reabsorbed efficiently in kidney by Na(+)-coupled transport mechanisms. Previous studies have focused on potential participation of amino acid transport systems in renal reabsorption of this compound. Here we show that it is not the amino acid transport systems but instead the Na(+)-coupled monocarboxylate transporter SLC5A8 that plays a predominant role in this reabsorptive process. Expression of cloned human and mouse SLC5A8 in mammalian cells induces Na(+)-dependent transport of pyroglutamate that is inhibitable by various SLC5A8 substrates. SLC5A8-mediated transport of pyroglutamate is saturable with a Michaelis constant of 0.36+/-0.04mM. Na(+)-activation of the transport process exhibits sigmoidal kinetics with a Hill coefficient of 1.8+/-0.4, indicating involvement of more than one Na(+) in the activation process. Expression of SLC5A8 in Xenopuslaevis oocytes induces Na(+)-dependent inward currents in the presence of pyroglutamate under voltage-clamp conditions. The concentration of pyroglutamate necessary for induction of half-maximal current is 0.19+/-0.01mM. The Na(+)-activation kinetics is sigmoidal with a Hill coefficient of 2.3+/-0.2. Ibuprofen, a blocker of SLC5A8, suppressed pyroglutamate-induced currents in SLC5A8-expressing oocytes; the concentration of the blocker necessary for causing half-maximal inhibition is 14+/-1microM. The involvement of SLC5A8 can be demonstrated in rabbit renal brush border membrane vesicles by showing that the Na(+)-dependent uptake of pyroglutamate in these vesicles is inhibitable by known substrates of SLC5A8. The Na(+) gradient-driven pyroglutamate uptake was stimulated by an inside-negative K(+) diffusion potential induced by valinomycin, showing that the uptake process is electrogenic.

  5. Electron capture in collisions of N+ with H and H+ with N

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.

    2005-06-01

    Charge-transfer processes due to collisions of N+ with atomic hydrogen and H+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1meV/u-1keV/u are presented and compared with existing experimental and theoretical data. A large number of low-energy resonances are obtained for exoergic channels and near thresholds of endoergic channels. Rate coefficients are also obtained and comparison to previous calculations suggests nonadiabatic effects dominate for temperatures greater than 20 000 K, but that the spin-orbit interaction plays a major role for lower temperatures.

  6. Bleustein-Gulyaev wave propagation characteristics in KNbO3 and PKN crystals

    NASA Astrophysics Data System (ADS)

    Dvoesherstov, M. Y.; Cherednick, V. I.; Chirimanov, A. P.; Petrov, S. G.

    1999-09-01

    In this paper, theoretical investigation is shown for cuts and propagation directions on KNbO3, PKN substrates where the Bleustein-Gulyaev waves exist. The KNbO3 and PKN crystals Y-cut X-propagating relate to the condition in which the stiffened shear horizontal wave and pure mechanical Rayleigh wave are present. In this symmetry orientation the sagittal and transverse particle displacements also uncouple. In this situation, the potential is coupled to the shear horizontal displacements only. Electromechanical coupling coefficients K2 has a sufficiently large value of above 53 percent with a phase velocity of V equals 3.918 km/s for KNbO3 crystals and factor K2 has a large value of above 23.6 percent and phase velocity V equals 3.054 km/s for PKN crystals.

  7. Prevalence of consanguineous marriages among Iranian Georgians.

    PubMed

    Rafiee, Laleh; Saadat, Mostafa

    2011-01-01

    Consanguineous marriage--marriage between relatives--has received a great deal of attention as a potential risk factor for many adverse health outcomes. The present cross-sectional study was done in order to illustrate the prevalence and types of consanguineous marriages among Iranian Georgians living in Frydoonshahr (Isfahan province, central Iran). Data on consanguineous marriages were collected using a simple questionnaire. The total number of couples in this study was 646. Consanguineous marriage was classified by the degree of relationship between couples. First cousin marriages (14.2%) were the most common type of consanguineous marriages, followed by second cousin (7.0%), beyond second cousin (1.5%) and first cousin once removed (0.6%). The mean inbreeding coefficient (α) was calculated as 0.0104 for the population. The present study shows that the study population, as other Iranian populations, has a high level of consanguinity.

  8. Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields

    NASA Astrophysics Data System (ADS)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2018-05-01

    If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.

  9. Resonant indirect optical absorption in germanium

    NASA Astrophysics Data System (ADS)

    Menéndez, José; Noël, Mario; Zwinkels, Joanne C.; Lockwood, David J.

    2017-09-01

    The optical absorption coefficient of pure Ge has been determined from high-accuracy, high-precision optical measurements at photon energies covering the spectral range between the indirect and direct gaps. The results are compared with a theoretical model that fully accounts for the resonant nature of the energy denominators that appear in perturbation-theory expansions of the absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, and leads to a predicted optical absorption that is in excellent agreement with the experimental values using just a single adjustable parameter: the average deformation potential DΓ L coupling electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the fitted value, DΓ L=4.3 ×108eV /cm , is in nearly perfect agreement with independent measurements and ab initio predictions of this parameter, confirming the validity of the proposed theory, which has general applicability.

  10. Cortisol Covariation Within Parents of Young Children: Moderation by Relationship Aggression

    PubMed Central

    Saxbe, Darby E.; Adam, Emma K.; Dunkel Schetter, Christine; Guardino, Christine M.; Simon, Clarissa; McKinney, Chelsea O.; Shalowitz, Madeleine U.; Shriver, Eunice Kennedy

    2015-01-01

    Covariation in diurnal cortisol has been observed in several studies of cohabiting couples. In two such studies (Liu et al, 2013, Saxbe & Repetti, 2010), relationship distress was associated with stronger within-couple correlations, suggesting that couples’ physiological linkage with each other may indicate problematic dyadic functioning. Although intimate partner aggression has been associated with dysregulation in women’s diurnal cortisol, it has not yet been tested as a moderator of within-couple covariation. This study reports on a diverse sample of 122 parents who sampled salivary cortisol on matched days for two years following the birth of an infant. Partners showed strong positive cortisol covariation. In couples with higher levels of partner-perpetrated aggression reported by women at one year postpartum, both women and men had a flatter diurnal decrease in cortisol and stronger correlations with partners’ cortisol sampled at the same timepoints. In other words, relationship aggression was linked both with indices of suboptimal cortisol rhythms in both members of the couples and with stronger within-couple covariation coefficients. These results persisted when relationship satisfaction and demographic covariates were included in the model. During some of the sampling days, some women were pregnant with a subsequent child, but pregnancy did not significantly moderate cortisol levels or within-couple covariation. The findings suggest that couples experiencing relationship aggression have both suboptimal neuroendocrine profiles and stronger covariation. Cortisol covariation is an understudied phenomenon with potential implications for couples’ relationship functioning and physical health. PMID:26298691

  11. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  12. Collisional excitation of CH2 rotational/fine-structure levels by helium

    NASA Astrophysics Data System (ADS)

    Dagdigian, P. J.; Lique, F.

    2018-02-01

    Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.

  13. A Theoretical and Experimental Comparison of 3-3 and 3-1 Mode Piezoelectric Microelectromechanical Systems (MEMS)

    PubMed Central

    Kim, Donghwan; Hewa-Kasakarage, Nishshanka; Hall, Neal A.

    2014-01-01

    Two piezoelectric transducer modes applied in microelectromechanical systems are (i) the 3-1 mode with parallel electrodes perpendicular to a vertical polarization vector, and (ii) the 3-3 mode which uses interdigitated (IDT) electrodes to realize an in-plane polarization vector. This study compares the two configurations by deriving a Norton equivalent representation of each approach – including expressions for output charge and device capacitance. The model is verified using a microfabricated device comprised of multiple epitaxial silicon beams with sol-gel deposited lead zirconate titanate at the surface. The beams have identical dimensions and are attached to a common moving element at their tip. The only difference between beams is electrode configuration – enabling a direct comparison. Capacitance and charge measurements verify the presented theory with high accuracy. The Norton equivalent representation is general and enables comparison of any figure of merit, including electromechanical coupling coefficient and signal to noise ratio. With respect to coupling coefficient, the experimentally validated theory in this work suggests that 3-3 mode IDT-electrode configurations offer the potential for modest improvements compared against 3-1 mode devices (less than 2×), and the only geometrical parameter affecting this ratio is the fill factor of the IDT electrode. PMID:25309041

  14. Gate tunable spin transport in graphene with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Tan, Xiao-Dong; Liao, Xiao-Ping; Sun, Litao

    2016-10-01

    Recently, it attracts much attention to study spin-resolved transport properties in graphene with Rashba spin-orbit coupling (RSOC). One remarkable finding is that Klein tunneling in single layer graphene (SLG) with RSOC (SLG + R for short below) behaves as in bi-layer graphene (BLG). Based on the effective Dirac theory, we reconsider this tunneling problem and derive the analytical solution for the transmission coefficients. Our result shows that Klein tunneling in SLG + R and BLG exhibits completely different behaviors. More importantly, we find two new transmission selection rules in SLG + R, i.e., the single band to single band (S → S) and the single band to multiple bands (S → M) transmission regimes, which strongly depend on the relative height among Fermi level, RSOC, and potential barrier. Interestingly, in the S → S transmission regime, only normally incident electrons have capacity to pass through the barrier, while in the S → M transmission regime the angle-dependent tunneling becomes very prominent. Using the transmission coefficients, we also derive spin-resolved conductance analytically, and conductance oscillation with the increasing barrier height and zero conductance gap are found in SLG + R. The present study offers new insights and opportunities for developing graphene-based spin devices.

  15. Transport coefficients of a hot QCD medium and their relative significance in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mitra, Sukanya; Chandra, Vinod

    2017-11-01

    The main focus of this article is to obtain various transport coefficients for a hot QCD medium that is likely to be produced while colliding two heavy nuclei ultra-relativistically. The technical approach adopted here is the semiclassical transport theory. The away-from-equilibrium linearized transport equation has been set up by employing the Chapman-Enskog technique from the kinetic theory of a many-particle system with a collision term that includes the binary collisions of quarks/antiquarks and gluons. In order to include the effects of a strongly interacting, thermal medium, a quasi-particle description of a realistic hot QCD equation of state has been employed through the equilibrium modeling of the momentum distributions of gluons and quarks with nontrivial dispersion relations while extending the model for finite but small quark chemical potential. The effective coupling for strong interaction has been redefined following the charge renormalization under the scheme of the quasi-particle model. The consolidated effects on transport coefficients are seen to have a significant impact on their temperature dependence. Finally, the relative significances of momentum and heat transfer, as well as the charge diffusion processes in hot QCD, have been investigated by studying the ratios of the respective transport coefficients indicating different physical laws.

  16. Study of effect of magnetohydrodynamics and couple stress on steady and dynamic characteristics of porous exponential slider bearings

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Gonchigara, Thippeswamy; Santhosh Kumar, J.; MShiva Kumar, H.

    2018-04-01

    Exponential slider bearings with porous facing is analysed in this article. The modified Reynolds equation is derived for the Exponential porous slider bearing with MHD and couple stress fluid. Computed values of Steady film pressure, Steady load capacity, Dynamic stiffness and Damping coefficient are presented in graphical form. The Steady film pressure, Steady load capacity, Dynamic stiffness and Damping coefficient decreases with increasing values of permeability parameter and increases with increasing values of couplestress parameter and Hartmann number.

  17. Composite fastener for use in high temperature environments

    NASA Technical Reports Server (NTRS)

    Miller, Robert J. (Inventor); Palusis, Mark E. (Inventor); Jarmon, David C. (Inventor)

    2000-01-01

    A fastener includes a composite body and a metal coupling attached to the body. The metal coupling includes an attachment structure to connect the fastener to an external structure. An assembly of components includes a first metallic component having a first coefficient of thermal expansion, a second non-metallic component having a second coefficient of thermal expansion different from the first thermal expansion and having a groove that receives a fastener that extends between the groove and the second component, the fastener slidably engaging the groove to accommodate relative expansion between the components.

  18. Coupled Kardar-Parisi-Zhang Equations in One Dimension

    NASA Astrophysics Data System (ADS)

    Ferrari, Patrik L.; Sasamoto, Tomohiro; Spohn, Herbert

    2013-11-01

    Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.

  19. A nonlinear Fokker-Planck equation approach for interacting systems: Anomalous diffusion and Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.

    2018-07-01

    We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.

  20. Sparse Bayesian learning for DOA estimation with mutual coupling.

    PubMed

    Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi

    2015-10-16

    Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.

  1. Grasp-Based Functional Coupling Between Reach- and Grasp-Related Components of Forelimb Muscle Activity

    PubMed Central

    Geed, Shashwati; van Kan, Peter L. E.

    2017-01-01

    How are appropriate combinations of forelimb muscles selected during reach-to-grasp movements in the presence of neuromotor redundancy and important task-related constraints? The authors tested whether grasp type or target location preferentially influence the selection and synergistic coupling between forelimb muscles during reach-to-grasp movements. Factor analysis applied to 14–20 forelimb electromyograms recorded from monkeys performing reach-to-grasp tasks revealed 4–6 muscle components that showed transport/preshape- or grasp-related features. Weighting coefficients of transport/preshape-related components demonstrated strongest similarities for reaches that shared the same grasp type rather than the same target location. Scaling coefficients of transport/preshape- and grasp-related components showed invariant temporal coupling. Thus, grasp type influenced strongly both transport/preshape- and grasp-related muscle components, giving rise to grasp-based functional coupling between forelimb muscles. PMID:27589010

  2. Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration.

    PubMed

    Cai, M; Vahala, K

    2000-02-15

    We report that greater than 99.8% optical power transfer to whispering-gallery modes was achieved in fused-silica microspheres by use of a dual-tapered-fiber coupling method. The intrinsic cavity loss and the taper-to-sphere coupling coefficient are inferred from the experimental data. It is shown that the low intrinsic cavity loss and the symmetrical dual-coupling structure are crucial for obtaining the high coupling efficiency.

  3. Parameter and Structure Inference for Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  4. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    PubMed

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  5. A Numerical Study of Coupled Non-Linear Equations of Thermo-Viscous Fluid Flow in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Pothanna, N.; Aparna, P.; Gorla, R. S. R.

    2017-12-01

    In this paper we present numerical solutions to coupled non-linear governing equations of thermo-viscous fluid flow in cylindrical geometry using MATHEMATICA software solver. The numerical results are presented in terms of velocity, temperature and pressure distribution for various values of the material parameters such as the thermo-mechanical stress coefficient, thermal conductivity coefficient, Reiner Rivlin cross viscosity coefficient and the Prandtl number in the form of tables and graphs. Also, the solutions to governing equations for slow steady motion of a fluid have been obtained numerically and compared with the existing analytical results and are found to be in excellent agreement. The results of the present study will hopefully enable a better understanding applications of the flow under consideration.

  6. Confined active Brownian particles: theoretical description of propulsion-induced accumulation

    NASA Astrophysics Data System (ADS)

    Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.

    2018-01-01

    The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.

  7. New Crystalline Materials for Nonlinear Frequency Conversion, Electro-Optic Modulation, and Mid-Infrared Gain Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J

    New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){supmore » -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make LaCOB, GdCOB, and YCOB attractive for frequency conversion of high-average power near-infrared lasers. Absorption and emission cross-sections of {approx}10{sup -18} cm{sup 2} were measured for Fe{sup 2+}:ZnSe in the 4 {micro}m region at temperatures below 220 K. Luminescence lifetimes were found that ranged from 5-110 {micro}s below 220 K. Tunable lasing action was demonstrated for the first time in Fe{sup 2+}:ZnSe with a tuning range from 3.98 {micro}m (20 K) to 4.54 {micro}m (180 K). The Fe{sup 2+}:ZnSe laser had thresholds {le}50 {micro}J and slope efficiencies {le}10% with 0.6% output coupling.« less

  8. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  9. Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions.

    PubMed

    Chakraborty, Sushmita; Nandy, Sudipta; Barthakur, Abhijit

    2015-02-01

    We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing.

  10. Determination of the magnetoelectric coupling coefficient from temperature dependences of the dielectric permittivity for multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkowska, J. A., E-mail: joanna.bartkowska@us.edu.pl; Dercz, J.

    2013-11-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the magnetoelectric coupling coefficient from the temperature dependences of the dielectric permittivity for multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15}. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} belong to materials of the Aurivillius-type structure. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} was synthesized via sintering the Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} mixture and TiO{sub 2} oxides. The precursor material was ground in a high-energy attritorial mill for 5 hours. This material was obtained by a solid-statemore » reaction process at T = 1313 K. We investigated the temperature dependences of the dielectric permittivity for the different frequencies. From the dielectric measurements, we determined the temperature of phase transition of the ferroelectric-to-paraelectric type at about 1013 K. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.« less

  11. Fine and hyperfine collisional excitation of C6H by He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dawes, Richard

    2018-01-01

    Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.

  12. Bright-dark soliton solutions for the (2+1)-dimensional variable-coefficient coupled nonlinear Schrödinger system in a graded-index waveguide

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Qiang; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Liu, Lei

    2017-04-01

    Under investigation in this paper is the (2+1)-dimensional coupled nonlinear Schrödinger (NLS) system with variable coefficients, which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifier with the polarization effects. Through a similarity transformation, we convert that system into a set of the integrable defocusing (1+1)-dimensional coupled NLS equations, and subsequently construct the bright-dark soliton solutions for the original system which are converted from the ones of the latter set. With the graphic analysis, we discuss the soliton propagation and collision with r(t), which is related to the nonlinear, profile and gain/loss coefficients. When r(t) is a constant, one soliton propagates with the amplitude, width and velocity unvaried, while velocity and width of the one soliton can be affected, and two solitons possess the elastic collision; When r(t) is a linear function, velocity and width of the one soliton varies with t increasing, and collision of the two solitons is altered. Besides, bound-state solitons are seen.

  13. Long-time tails of the green-kubo integrands for a binary mixture

    NASA Astrophysics Data System (ADS)

    Wood, W. W.

    1989-11-01

    The long-time tails for the mutual diffusion coefficient, the thermal diffusivity, the thermal conductivity, and the shear and longitudinal viscosities (from which the tail of the bulk viscosity can be calculated) of a nonreactive binary mixture are calculated from mode-coupling theory, and compared with a prior calculation by Pomeau. Three different choices of the thermal forces and currents are considered, with the results found to take their simplest form in the case of the de Groot "double-primed set". The decompositions into the kinetic, potential, and cross terms are given.

  14. An investigation of the optical constants and band gap of chromium disilicide

    NASA Technical Reports Server (NTRS)

    Bost, M. C.; Mahan, John E.

    1988-01-01

    Optical properties of polycrystalline thin films of CrSi2 grown by the diffusion couple method on silicon substrates were investigated. An analysis of the energy dependence of the absorption coefficient indicates that the material is an indirect forbidden gap semiconductor with a band-gap value of slightly less than 0.35 eV. This result was confirmed by measurements of the temperature dependence of the intrinsic conductivity. The value of the bandgap corresponds well to an important window of transparency in the earth's atmosphere (3-5 microns), which makes the material of potential interest for IR detector applications.

  15. Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.

    NASA Astrophysics Data System (ADS)

    Han, Wei

    1995-11-01

    This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of spheroids, is developed and applied to estimate the viscous attenuation coefficients. With incorporation of particle size and shape distributions (PSSD), predictions agree quantitatively with observed attenuation coefficients. The effects of particle aspect ratio and orientation become more evident as particle concentrations and frequencies are increased. The UCPC model combined with the ultrasonic spectroscopy techniques can provide for theoretical and experimental frameworks in characterization of concentrated colloidal dispersions.

  16. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.

  17. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi

    The experimental evaluation of the separated and coupled rotating desiccant wheel and heat wheel is reported. The study aims to investigate the performance of the desiccant wheel and of the heat wheel both when operated separately and jointly. The performance evaluation of the desiccant wheel is based on its moisture removal capacity (MRC), moisture removal regeneration (MRR), and moisture mass balance (MMB). In addition, the study used the total energy balance (TEB), sensible coefficient of performance (COP{sub Sensible}), latent coefficient of performance (COP{sub Latent}) and, total coefficient of performance (COP{sub Total}). The performance of the heat wheel is based onmore » its effectiveness. The COP{sub Sensible}, COP{sub Latent} and, COP{sub Total} are used in the performance evaluation of the coupled desiccant wheel and heat wheel. The general results of the study show that the MRC, MRR and MMB coupled with the TEB, COP{sub Latent}, COP{sub Sensible} and COP{sub Total} predict adequately the performance of the desiccant wheel. In addition, the coupled operation of the desiccant wheel and heat wheel, contributed to the reduction of the external thermal energy requirement for the regeneration of the desiccant wheel. This study can be applied in other researches seeking evaluation of the desiccant wheel, heat wheel, and their combined operation. Moreover, the data presented here are significant for the desiccant wheel benchmarking and for evaluation of the desiccant wheel models. (author)« less

  18. Engineering Nano-Structured Multiferroic Thin Films

    NASA Astrophysics Data System (ADS)

    Cheung, Pui Lam

    Multiferroics exhibit remarkable tunabilities in their ferromagnetic, ferroelectric and magnetoelectric properties that provide the potential in enabling the control of magnetizations by electric field for the next generation non-volatile memories, antennas and motors. In recent research and developments in integrating single-phase ferroelectric and ferromagnetic materials, multiferroic composite demonstrated a promising magnetoelectric (ME) coupling for future applications. Atomic layer deposition (ALD) technique, on the other hand, allows fabrications of complex multiferroic nanostructures to investigate interfacial coupling between the two materials. In this work, radical-enhanced ALD of cobalt ferrite (CFO) and thermal ALD of lead zirconate titanate (PZT) were combined in fabricating complex multiferroic architectures in investigating the effect of nanostructuring and magnetic shape anisotropy on improving ME coupling. In particular, 1D CFO nanotubes and nanowires; 0D-3D CFO/PZT mesoporous composite; and 1D-1D CFO/PZT core-shell nanowire composite were studied. The potential implementation of nanostructured multiferroic composites into functioning devices was assessed by quantifying the converse ME coupling coefficient. The synthesis of 1D CFO nanostructures was realized by ALD of CFO in anodic aluminum oxide (AAO) membranes. This work provided a simple and inexpensive route to create parallel and high aspect ratio ( 55) magnetic nanostructures. The change in magnetic easy axis of (partially filled) CFO nanotubes from perpendicular to parallel in (fully-filled) nanowires indicated the significance of the geometric factor in controlling magnetizations and ME coupling. The 0D-3D CFO/PZT mesoporous composite demonstrated the optimizations of the strain transfer could be achieved by precise thickness control. 100 nm of mesoporous PZT was synthesized on Pt/TiOx/SiO2/Si using amphiphilic diblock copolymers as a porous ferroelectric template (10 nm pore diameter) for ALD CFO growth. The increased filling of CFO decreased the mechanical flexibility of the composite for electric field induced strain, hence the converse ME coupling was mitigated. The highest converse ME coefficient of 1.2 10-5 Oe-cm/mV was achieved with a 33% pore filling of CFO, in compare to 1 x 10-5 Oe-cm/mV from mesoporous CFO filled with 3 nm of PZT in literature (Chien 2016). Highly directional 1D-1D PZT-core CFO-shell composite in AAO demonstrated the magnetic shape anisotropy could be modulated. The CFO shell thickness allowed the tuning of magnetic easy axis and saturation magnetizations; whereas the PZT volume allowed the optimization of electric field induced strain of the composite. Enhanced converse ME coupling of 1.3 x 10-4 Oe-cm/mV was realized by 5 nm CFO shell on 30 nm of PZT core. In summary, the work has demonstrated nanostructuring of multiferroic composite is an effective pathway to engineer converse ME coupling through optimizations of magnetic shape anisotropy and interfacial strain transfer.

  19. Warm Forming of Aluminum Alloys using a Coupled Thermo-Mechanical Anisotropic Material Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedrabbo, Nader; Pourboghrat, Farhang; Carsley, John E.

    Temperature-dependant anisotropic material models for two types of automotive aluminum alloys (5754-O and 5182-O) were developed and implemented in LS-Dyna as a user material subroutine (UMAT) for coupled thermo-mechanical finite element analysis (FEA) of warm forming of aluminum alloys. The anisotropy coefficients of the Barlat YLD2000 plane stress yield function for both materials were calculated for the range of temperatures 25 deg. C-260 deg. C. Curve fitting was used to calculate the anisotropy coefficients of YLD2000 and the flow stress as a function of temperature. This temperature-dependent material model was successfully applied to the coupled thermo-mechanical analysis of stretching ofmore » aluminum sheets and results were compared with experiments.« less

  20. Synchronization of hyperexcitable systems with phase-repulsive coupling

    NASA Astrophysics Data System (ADS)

    Balázsi, Gábor; Cornell-Bell, Ann; Neiman, Alexander B.; Moss, Frank

    2001-10-01

    We study two-dimensional arrays of FitzHugh-Nagumo elements with nearest-neighbor coupling from the viewpoint of synchronization. The elements are diffusively coupled. By varying the diffusion coefficient from positive to negative values, interesting synchronization patterns are observed. The results of the simulations resemble the intracellular oscillation patterns observed in cultured human epileptic astrocytes. Three measures are proposed to determine the degree of synchronization (or coupling) in both the simulated and the experimental system.

  1. Coupled rotor and fuselage equations of motion

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.

    1979-01-01

    The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which are used to study coupled rotor/fuselage dynamics in forward flight. Rotor/fuselage coupling is documented and the importance of an ordering scheme in deriving nonlinear equations of motion is reviewed. The nature of the final equations and the use of multiblade coordinates are discussed.

  2. Surface and pseudo surface acoustic waves in langatate: predictions and measurements.

    PubMed

    Pereira da Cunha, Maurício; Malocha, Donald C; Adler, Eric L; Casey, Kevin J

    2002-09-01

    Langatate (LGT, La3Ga(5.5)Ta(0.5)O14) is a recent addition to materials of the trigonal crystal class 32, which is the same crystal class as quartz, langasite, langanite, and gallium phosphate. Langatate has several attractive acoustical properties, in particular: a measured bulk acoustic wave (BAW) resonator quality factor frequency product (Qf) of 16 million, comparable to that of AT cut quartz; high-piezoelectric coupling orientations, up to 0.5% for surface acoustic waves (SAWs), about five times larger than that of ST-X quartz; low power flow angle orientations in the vicinity of high coupling orientations; phase velocities about 20% smaller than those of ST-X quartz, facilitating the production of smaller, lower frequency devices; the existence of pseudo SAW modes for higher frequency applications. In this paper SAW contour plots of the phase velocity (vp), the electromechanical coupling coefficient (K2), the temperature coefficient of delay (TCD), and the power flow angle (PFA), are given showing the orientations in space in which high coupling is obtained, with the corresponding TCD, PFA, and vp characteristics for these orientations. This work reports experimental results on the SAW temperature fractional frequency variation (delta f/fo) and the TCD for several LGT orientations on the plane with Euler angles: (0 degrees, 132 degrees, psi). The temperature behavior has been measured directly on SAW wafers from 10 to 200 degrees C, and the results are compared with numerical predictions using our recently measured temperature coefficients for LGT material constants. This research also has uncovered temperature compensated orientations, which we have experimentally verified with parabolic behavior, turnover temperatures in the 130 to 160 degrees C range, and delta f/fo within 1000 ppm variation from 10 to 260 degrees C, appropriate for higher temperature device applications. Regarding the pseudo surface acoustic waves (PSAWs), results of calculations are presented for both the PSAW and the high velocity PSAW (HVPSAW) for some selected, rotated cuts. This study shows that propagation losses for the PSAWs of about 0.01 dB/wavelength, and phase velocities approximately 20% higher than that of the SAW, exist along specific orientations for the PSAW, thus showing the potential for somewhat higher frequency SAW device applications on this material, if required.

  3. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  4. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property

    NASA Astrophysics Data System (ADS)

    Broche, Rita de Cássia D. S.; de Oliveira, Luiz Augusto F.

    We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem.

  5. Effects of shear coupling on shear properties of wood

    Treesearch

    Jen Y. Liu

    2000-01-01

    Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...

  6. Exact Thermal Transport Properties of Gray-Arsenic using Electon-Phonon Coupling

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Hun; Kwon, Young-Kyun

    Using various theoretical methods, we investigate the thermoelectric property of gray arsenic. Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy. The conversion efficiency of such a device is determined by its figure of merit or ZT value, which is related to various transport coefficients, such as Seebeck coefficient and the ratio of its electrical conductivity to its thermal counterpart for given temperature. To calculate various transport coefficients and thus the ZT values of gray arsenic, we apply the Boltzmann transport theory to its electronic and phononic structures obtained by density functional theory and density functional perturbation theory together with maximally locallized Wannier functions. During this procedure, we evaluate its relaxation time accurately by explicitly considering electron-phonon coupling. Our result reveals that gray arsenic may be used for a good p-type thermoelectric devices.

  7. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application

    NASA Astrophysics Data System (ADS)

    Gupta, Reema; Tomar, Monika; Kumar, Ashok; Gupta, Vinay

    2017-03-01

    Magnetoelectric (ME) coefficient of Lead Zirconium Titanate (PZT) thin films has been probed for possible energy harvesting applications. Single phase PZT thin films have been deposited on nickel substrate (PZT/Ni) using pulsed laser deposition (PLD) technique. The effect of PLD process parameters on the ME coupling coefficient in the prepared systems has been investigated. The as grown PZT films on Ni substrate were found to be polycrystalline with improved ferroelectric and ferromagnetic properties. The electrical switching behavior of the PZT thin films were verified using capacitance voltage measurements, where well defined butterfly loops were obtained. The ME coupling coefficient was estimated to be in the range of 94.5 V cm-1 Oe-1-130.5 V cm-1 Oe-1 for PZT/Ni system, which is large enough for harnessing electromagnetic energy for subsequent applications.

  8. Preliminary study of a gas burner-driven and ground-coupled heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.F.

    1995-12-31

    To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less

  9. Quantification of the first-order high-pass filter's influence on the automatic measurements of the electrocardiogram.

    PubMed

    Isaksen, Jonas; Leber, Remo; Schmid, Ramun; Schmid, Hans-Jakob; Generali, Gianluca; Abächerli, Roger

    2017-02-01

    The first-order high-pass filter (AC coupling) has previously been shown to affect the ECG for higher cut-off frequencies. We seek to find a systematic deviation in computer measurements of the electrocardiogram when the AC coupling with a 0.05 Hz first-order high-pass filter is used. The standard 12-lead electrocardiogram from 1248 patients and the automated measurements of their DC and AC coupled version were used. We expect a large unipolar QRS-complex to produce a deviation in the opposite direction in the ST-segment. We found a strong correlation between the QRS integral and the offset throughout the ST-segment. The coefficient for J amplitude deviation was found to be -0.277 µV/(µV⋅s). Potential dangerous alterations to the diagnostically important ST-segment were found. Medical professionals and software developers for electrocardiogram interpretation programs should be aware of such high-pass filter effects since they could be misinterpreted as pathophysiology or some pathophysiology could be masked by these effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Performance optimization for rotors in hover and axial flight

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.

    1989-01-01

    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiqiang; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706; Geng, Dalong

    A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectricmore » effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.« less

  12. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  13. CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    NASA Technical Reports Server (NTRS)

    Brock, Joseph; Stern, Eric; Wilder, Michael

    2017-01-01

    A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.

  14. Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 lead-free piezoceramic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berik, Pelin; Maurya, Deepam; Kumar, Prashant

    This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m –2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m –1 V –1 under quasi-staticmore » 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.« less

  15. Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 lead-free piezoceramic system

    PubMed Central

    Berik, Pelin; Maurya, Deepam; Kumar, Prashant; Kang, Min Gyu; Priya, Shashank

    2017-01-01

    Abstract This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of lead-based shear-mode piezoceramics. The Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 (NBT-BT-Mn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m–2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m–1 V–1 under quasi-static 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. These results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts. PMID:28179958

  16. Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 lead-free piezoceramic system

    DOE PAGES

    Berik, Pelin; Maurya, Deepam; Kumar, Prashant; ...

    2017-01-09

    This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m –2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m –1 V –1 under quasi-staticmore » 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.« less

  17. Quantum implications of a scale invariant regularization

    NASA Astrophysics Data System (ADS)

    Ghilencea, D. M.

    2018-04-01

    We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).

  18. Determination of diclofenac using electromembrane extraction coupled with stripping FFT continuous cyclic voltammetry.

    PubMed

    Mofidi, Zahra; Norouzi, Parviz; Seidi, Shahram; Ganjali, Mohammad Reza

    2017-06-15

    For the first time, on-line and ultra-sensitive determination of trace amount of diclofenac in whole blood sample was performed by coupling of electromembrane extraction (EME) and stripping fast Fourier transform continuous cyclic voltammetry (SFFTCCV). In SFFTCCV, the potential waveform was continuously applied on a carbon paste electrode and the electrode response was obtained by subtracting the background current and integrating the current in potential range of the analyte oxidation. A central composite design was used for the optimization of the parameters influencing the extraction efficiency. By applying a DC potential of 20 V during 28 min of extraction, diclofenac was migrated from the sample solution (pH 5), into a thin layer of 1-octanol immobilized in the pores of a porous flat sheet membrane and then into the acceptor solution (pH 7). The method presented a good linearity within the range of 5-1000 ng mL -1 with a determination coefficient of 0.993 in whole blood samples. Limits of detection (LOD) and quantification (LOQ) were found to be 1.0 ng mL -1 and 5.0 ng mL -1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    NASA Astrophysics Data System (ADS)

    Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.

    2002-05-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.

  20. The cluster [Re6Se8I6]3- penetrates biological membranes: drug-like properties for CNS tumor treatment and diagnosis.

    PubMed

    Estrada, Lisbell D; Duran, Elizabeth; Cisterna, Matias; Echeverria, Cesar; Zheng, Zhiping; Borgna, Vincenzo; Arancibia-Miranda, Nicolas; Ramírez-Tagle, Rodrigo

    2018-03-24

    Tumorigenic cell lines are more susceptible to [Re 6 Se 8 I 6 ] 3- cluster-induced death than normal cells, becoming a novel candidate for cancer treatment. Still, the feasibility of using this type of molecules in human patients remains unclear and further pharmacokinetics analysis is needed. Using coupled plasma optical emission spectroscopy, we determined the Re-cluster tissue content in injected mice, as a biodistribution measurement. Our results show that the Re-cluster successfully reaches different tissues, accumulating mainly in heart and liver. In order to dissect the mechanism underlying cluster biodistribution, we used three different experimental approaches. First, we evaluate the degree of lipophilicity by determining the octanol/water partition coefficient. The cluster mostly remained in the octanol fraction, with a coefficient of 1.86 ± 0.02, which indicates it could potentially cross cell membranes. Then, we measured the biological membrane penetration through a parallel artificial membrane permeability assays (PAMPA) assay. The Re-cluster crosses the artificial membrane, with a coefficient of 122 nm/s that is considered highly permeable. To evaluate a potential application of the Re-cluster in central nervous system (CNS) tumors, we analyzed the cluster's brain penetration by exposing cultured blood-brain-barrier (BBB) cells to increasing concentrations of the cluster. The Re-cluster effectively penetrates the BBB, reaching nearly 30% of the brain side after 24 h. Thus, our results indicate that the Re-cluster penetrates biological membranes reaching different target organs-most probably due to its lipophilic properties-becoming a promising anti-cancer drug with high potential for CNS cancer's diagnosis and treatment.

  1. Fluid-structure finite-element vibrational analysis

    NASA Technical Reports Server (NTRS)

    Feng, G. C.; Kiefling, L.

    1974-01-01

    A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.

  2. Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface

    NASA Astrophysics Data System (ADS)

    Thibault, Franck; Patkowski, Konrad; Żuchowski, Piotr S.; Jóźwiak, Hubert; Ciuryło, Roman; Wcisło, Piotr

    2017-11-01

    We report a new H2-He potential energy surface that, with respect to the previous one [Bakr et al.(2013)], covers much larger range of H2 stretching and exhibits more accurate asymptotic behavior for large separations between H2 and He. Close-coupling calculations performed on this improved potential energy surface allow us to provide line shape parameters for H2 between 5 and 2000 K for Raman isotropic Q lines and anisotropic Q lines (or electric quadrupole lines) and for vibrational bands from the ground up to v = 5 and rotational quantum numbers up to j = 5 . The parameters provided include the usual pressure -broadening and -shifting coefficients as well as the real and imaginary part of Dicke contribution to the Hess profile. The latter parameters can be readily implemented in other line-shape profiles like the most recent one of Hartmann and Tran.

  3. Development and evaluation of a reinforced polymeric biomaterial for use as an orthodontic wire

    NASA Astrophysics Data System (ADS)

    Zufall, Scott William

    Composite archwires have the potential to provide esthetic and functional improvements over conventional wires. As part of an ongoing effort to bring these materials into general use, composite wires were fabricated using a photo-pultrusion manufacturing technique, and subsequently coated with a 10 mum layer of poly(chloro-p-xylylene). Coated and uncoated composites were subjected to several different evaluations to assess their ability to perform the functions of an orthodontic archwire. An investigation of the viscoelastic behavior of uncoated composite wires was conducted at a physiological temperature of 37°C using a bend stress relaxation test. Over 90 day testing periods, energy losses increased with decreasing reinforcement levels from to 8% of the initial wire stress. Final viscous losses were 1% for all reinforcement levels. Relaxed elastic moduli for the composite wires were comparable to the reported elastic moduli of conventional orthodontic wires that are typically used for initial and intermediate alignment procedures. Frictional characteristics were evaluated in passive and active configurations for uncoated composite wires against three contemporary orthodontic brackets. Kinetic coefficients of friction were the same for all wire-bracket combinations tested and were slightly lower than the reported coefficients of other initial and intermediate alignment wires. Wear patterns on the wires, which were largely caused by sharp leading edges of the bracket slots, were characteristic of plowing and cutting wear behaviors. This wear caused glass fibers to be released from the surface of the wires, presenting a potential irritant. Coated composite wires were subjected to the same frictional analysis as the uncoated wires. A mathematical model of the archwire-bracket system was derived using engineering mechanics, and used to define a coefficient of binding. The coating increased the frictional coefficients of the wires by 72%, yet the binding coefficient was unchanged. When frictional data for initial and intermediate alignment wires were compared, the coated composites had higher friction than all but one couple. However, binding coefficients were comparable. Glass fibers were contained for all testing conditions, although the coating was often damaged by plowing or cutting wear. Overall, the coating improved the clinical acceptability of the composite wires.

  4. runDM: Running couplings of Dark Matter to the Standard Model

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2018-02-01

    runDM calculates the running of the couplings of Dark Matter (DM) to the Standard Model (SM) in simplified models with vector mediators. By specifying the mass of the mediator and the couplings of the mediator to SM fields at high energy, the code can calculate the couplings at low energy, taking into account the mixing of all dimension-6 operators. runDM can also extract the operator coefficients relevant for direct detection, namely low energy couplings to up, down and strange quarks and to protons and neutrons.

  5. Polarization preserving single mode fiber optic coupler

    NASA Technical Reports Server (NTRS)

    Nelson, M. D.; Goss, W. C.

    1982-01-01

    A technique is described for fabrication of etched single mode fiber optical waveguide couplers which preserve the polarization state to within 0.0001. The coupling ratio is tunable over a broad range (0-9 percent) during fabrication. Back-coupling is less than 0.001, insertion loss is less than 1.5 dB, and coupling ratio thermal coefficient is about 1 percent per degree C.

  6. A novel method for real-time edge-enhancement and its application to pattern recognition

    NASA Astrophysics Data System (ADS)

    Ge, Huayong; Bai, Enjian; Fan, Hong

    2010-11-01

    The coupling gain coefficient g is redefined and deduced based on coupling theory, the variant of coupling gain coefficient g for different ΓL and r is analyzed. A new optical system is proposed for image edge-enhancement. It recycles the back signal to amplify the edge signal, which has the advantages of high throughput efficiency and brightness. The optical system is designed and built, and the edge-enhanced image of hand bone is captured electronically by CCD camera. The principle of optical correlation is demonstrated, 3-D correlation distribution of letter H with and without edge-enhancement is simulated, the discrimination capability Iac and the full-width at half maximum intensity (FWHM) are compared for two kinds of correlators. The analysis shows that edge-enhancement preprocessing can improve the performance of correlator effectively.

  7. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    PubMed

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  8. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  9. Couplings in renormalizable supersymmetric SO(10) models

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yong; Zhang, Da-Xin; Bai, Xian-Zheng

    2017-12-01

    We study the most general renormalizable couplings containing Higgs H(10), D(120), Δ¯(126¯) + Δ(126), A(45), E(54) and Φ(210) in the supersymmetric SO(10) models. The Clebsch-Gordan coefficients are calculated using the maximal subgroup SU(5) ×U(1)X.

  10. Highly accurate potential energy surface for the He-H2 dimer

    NASA Astrophysics Data System (ADS)

    Bakr, Brandon W.; Smith, Daniel G. A.; Patkowski, Konrad

    2013-10-01

    A new highly accurate interaction potential is constructed for the He-H2 van der Waals complex. This potential is fitted to 1900 ab initio energies computed at the very large-basis coupled-cluster level and augmented by corrections for higher-order excitations (up to full configuration interaction level) and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H-H bond length of 1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the most accurate previous studies have indicated. In addition to constructing our own three-dimensional potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 119, 3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly developed potentials to compute the properties of the lone bound states of 4He-H2 and 3He-H2 and the interaction second virial coefficient of the hydrogen-helium mixture.

  11. Environmental and internal controls of tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Desflots, Melicie

    Tropical cyclone (TC) intensity change is governed by internal dynamics and environmental conditions. This study aims to gain a better understanding of the physical mechanisms responsible for TC intensity changes with a particular focus to those related to the vertical wind shear and the impact of sea spray on the hurricane boundary layer, by using high resolution, full physics numerical simulations. The coupled model consists of three components: the non-hydrostatic, 5th generation Pennsylvania State University-NCAR mesoscale model (MM5), the NOAA/NCEP WAVEWATCH III (WW3) ocean surface wave model, and the WHOI three-dimensional upper ocean circulation model (3DPWP). Sea spray parameterizations (SSP) were developed at NOAA/ESRL, modified by the author and introduced in uncoupled and coupled simulations. The 0.5 km grid resolution MM5 simulation of Hurricane Lili showed a rapid intensification associated with a contracting eyewall. Hurricane Lili weakened in a 5-10 m s-1 vertical wind shear environment. The simulated storm experienced wind shear direction normal to the storm motion, which produced a strong wavenumber one rainfall asymmetry in the downshear-left quadrant of the storm. The increasing vertical wind shear induced a vertical tilt of the vortex with a time lag of 5-6 hours after the wavenumber one rainfall asymmetry was first observed in the model simulation. Other factors controlling intensity and intensity change in tropical cyclones are the air-sea fluxes. Recent studies have shown that the momentum exchange coefficient levels off at high wind speed. However, the behavior of the exchange coefficient for enthalpy flux in high wind and the potential impact of sea spray on it is still uncertain. The current SSP are closely tied to wind speed and overestimate the mediated heat fluxes by sea spray in the hurricane boundary layer. As the sea spray generation depends on wind speed and the variable wave state, a new SSP based on the surface wave energy dissipation (WED) is introduced in the coupled model. In the coupled simulations, the WED is used to quantify the amount of wave breaking related to the generation of spray. The SSP coupled to the waves offers an improvement compared to the wind dependent SSP.

  12. The Chinese-Western Intercultural Couple Standards Scale.

    PubMed

    Hiew, Danika N; Halford, W Kim; van de Vijver, Fons J R; Liu, Shuang

    2015-09-01

    We developed the Chinese-Western Intercultural Couple Standards Scale (CWICSS) to assess relationship standards that may differ between Chinese and Western partners and may challenge intercultural couples. The scale assesses 4 Western-derived relationship standards (demonstrations of love, demonstrations of caring, intimacy expression, and intimacy responsiveness) and 4 Chinese-derived relationship standards (relations with the extended family, relational harmony, face, and gender roles). We administered the CWICSS to 983 Chinese and Western participants living in Australia to assess the psychometric properties of the scores as measures of respondents' relationship standards. The CWICSS has a 2-level factor structure with the items reflecting the 8 predicted standards. The 4 Western derived standards loaded onto a higher order factor of couple bond, and the 4 Chinese derived standards loaded onto a higher order factor of family responsibility. The scale scores were structurally equivalent across cultures, genders, and 2 independent samples, and good convergent and discriminant validity was found for the interpretation of scale scores as respondents' endorsement of the predicted standards. Scores on the 8 scales and 2 superordinate scales showed high internal consistency and test-retest coefficients. Chinese endorsed all 4 family responsibility standards more strongly than did Westerners, but Chinese and Western participants were similar in endorsement of couple bond standards. Across both cultures, couple bond standards were endorsed more highly than were family responsibility standards. The CWICSS assesses potential areas of conflict in Chinese-Western relationships. (c) 2015 APA, all rights reserved.

  13. Development of Multi-physics (Multiphase CFD + MCNP) simulation for generic solution vessel power calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung Jun; Buechler, Cynthia Eileen

    The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operatingmore » scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi-physics methodology and preliminary results from various coupled calculations (power prediction and heat transfer coefficient) can be further utilized for the system code validation and generic solution vessel design improvement.« less

  14. Accelerating activity coefficient calculations using multicore platforms, and profiling the energy use resulting from such calculations.

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Bane, Michael

    2017-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method. Activity coefficients are often neglected with the largely untested hypothesis that they are simply too computationally expensive to include in dynamic frameworks. We present results demonstrating increased computational efficiency for a range of typical scenarios, including a profiling of the energy use resulting from reliance on such computations. As the landscape of HPC changes, the latter aspect is important to consider in future applications.

  15. Rotational excitation of HCN by para- and ortho-H{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, Mario Hernández, E-mail: marhvera@gmail.com; InSTEC, Quinta de Los Molinos, Plaza, La Habana 10600; Kalugina, Yulia

    Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H{sub 2}( j = 0, 2) and ortho-H{sub 2}( j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm{sup −1}. The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K.more » The HCN rate coefficients are strongly dependent on the rotational level of the H{sub 2} molecule. In particular, the rate coefficients for collisions with para-H{sub 2}( j = 0) are significantly lower than those for collisions with ortho-H{sub 2}( j = 1) and para-H{sub 2}( j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H{sub 2}( j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H{sub 2}( j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H{sub 2}( j = 0) rate coefficients. Significant differences were found due the inclusion of the H{sub 2} rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.« less

  16. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    DOE PAGES

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit

    2018-04-20

    Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  17. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    NASA Astrophysics Data System (ADS)

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations

    2018-04-01

    We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  18. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit

    Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  19. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems.

    PubMed

    Xiao, Cong; Li, Dingping

    2016-06-15

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  20. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Xiao, Cong; Li, Dingping

    2016-06-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  1. Theoretical studies on a TeO2/ZnO/diamond-layered structure for zero TCD SAW devices

    NASA Astrophysics Data System (ADS)

    Dewan, Namrata; Sreenivas, K.; Gupta, Vinay

    2008-08-01

    High-frequency surface acoustic wave (SAW) devices based on diamond substrate are useful because of their very high SAW velocity. In the present work, SAW propagation characteristics, such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of a TeO2/ZnO/diamond-layered structure, are examined using theoretical calculations. The ZnO/diamond bi-layer structure is found to exhibit a high positive TCD value. A zero TCD device structure is obtained after integration with a TeO2 over layer having a negative TCD value. Introduction of a non-piezoelectric TeO2 over layer on the bi-layer structure (ZnO/diamond) increases the coupling coefficient. A relatively low thickness of TeO2 thin film (~(1.6-3.1) × 10-3λ) is required to achieve temperature-stable SAW devices based on diamond.

  2. A direct method to transform between expansions in the configuration state function and Slater determinant bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Jeppe, E-mail: jeppe@chem.au.dk

    2014-07-21

    A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10{sup 6} coefficients in the CSF basismore » is obtained from the 150 × 10{sup 6} coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.« less

  3. Flap-Lag-Torsion Stability in Forward Flight

    NASA Technical Reports Server (NTRS)

    Panda, B.; Chopra, I.

    1985-01-01

    An aeroelastic stability of three-degree flap-lag-torsion blade in forward flight is examined. Quasisteady aerodynamics with a dynamic inflow model is used. The nonlinear time dependent periodic blade response is calculated using an iterative procedure based on Floquet theory. The periodic perturbation equations are solved for stability using Floquet transition matrix theory as well as constant coefficient approximation in the fixed reference frame. Results are presented for both stiff-inplane and soft-inplane blade configurations. The effects of several parameters on blade stability are examined, including structural coupling, pitch-flap and pitch-lag coupling, torsion stiffness, steady inflow distribution, dynamic inflow, blade response solution and constant coefficient approximation.

  4. Self-diffusion and conductivity in an ultracold strongly coupled plasma: Calculation by the method of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Ya; Bobrov, A. A.; Khikhlukha, D. R.

    2018-01-01

    We present results of calculations by the method of molecular dynamics of self-diffusion and conductivity of electron and ion components of ultracold plasma in a comparison with available theoretical and experimental data. For the ion self-diffusion coefficient, good agreement was obtained with experiments on ultracold plasma. The results of the calculation of self-diffusion also agree well with other calculations performed for the same values of the coupling parameter, but at high temperatures. The difference in the results of the conductivity calculations on the basis of the current autocorrelation function and on the basis of the diffusion coefficient is discussed.

  5. Validity and Reliability of the Golombok Rust Inventory of Sexual Satisfaction in Couples with Incontinent Partners.

    PubMed

    Lim, Renly; Liong, Men Long; Khan, Nurzalina Abdul Karim; Yuen, Kah Hay

    2017-02-17

    There is currently no published information on the validity and reliability of the Golombok Rust Inventory of Sexual Satisfaction in the Asian population, specifically in patients with stress urinary incontinence, which limits its use in this region. Our study aimed to evaluate the psychometric properties of this questionnaire in the Malaysian population. Ten couples were recruited for the pilot testing. The agreement between the English and Chinese or Malay versions were tested using the intraclass correlation coefficients, with results of more than 0.80 for all subscales and overall scores indicating good agreement. Sixty-six couples were included in the subsequent phase. The following data are presented in the order of English, Chinese, and Malay. Cronbach's alphas for the male total score were 0.82, 0.88, and 0.95. For the female total score, Cronbach's alphas were 0.76, 0.78, and 0.88. Intraclass correlation coefficients for the male total score were 0.93, 0.94, and 0.99, while intraclass correlation coefficients for the female total score were 0.89, 0.86, and 0.88. In conclusion, the English, Chinese, and Malay versions each proved to be valid and reliable in our Malaysian population.

  6. Design and experiment of a directional coupler for X-band long pulse high power microwaves.

    PubMed

    Bai, Zhen; Li, Guolin; Zhang, Jun; Jin, Zhenxing

    2013-03-01

    Higher power and longer pulse are the trend of the development of high power microwave (HPM), and then some problems emerge in measuring the power of HPM because rf breakdown is easier to occur under the circumstance of high power (the level of gigawatt) and long pulse (about 100 ns). In order to measure the power of the dominant TM₀₁ mode of an X-band long pulse overmoded HPM source, a directional coupler with stable coupling coefficient, high directivity, and high power handling capacity in wide band is investigated numerically and experimentally. At the central frequency 9.4 GHz, the simulation results show that the coupling coefficient is -59.6 dB with the directivity of 35 dB and the power handling capacity of 2 GW. The coupling coefficient is calibrated to be accordant with the simulation results. The high power tests are performed on an X-band long pulse HPM source, whose output mode is mainly TM₀₁ mode, and the results show that the measured power and waveform of the directional coupler have a good consistency with the far-field measuring results.

  7. SSME Long-life Bearings

    NASA Technical Reports Server (NTRS)

    Butner, M. F.; Murphy, B. T.

    1986-01-01

    Hybrid hydrostatic/ball bearings for LH2 and LO2 service in turbopumps were studied as a means of improving speed and life capabilities. Four hybrid bearing configurations were designed with emphasis on achieving maximum stiffness and damping. Parallel load bearings were tested at steady-state and transient conditions with LH2 (externally fed) and LN2 (internally fed). The hydrostatic elements were tested with Freon 113 for empirical determination of dynamic characteristics. Tests using an eccentric journal for loading showed the externally and internally fed hydrostatic bearings to have significant separated coefficients of direct stiffness and damping. For the internally fed bearing, the strongly speed-dependent cross-coupling stiffness arising from fluid swirl, along with significant cross-coupling damping, resulted in low net effective stiffness and damping. The test method used can produce separated coefficients with a sufficiently elliptic journal orbit; otherwise, only net effective coefficients combining direct and cross-coupling terms can be determined. Testing with nonsynchronous excitation is recommended to avoid this restriction. Investigation of hard materials, including ceramics, is recommended as a means of eliminating the need for the rolling bearing for startup and shutdown support. The testing was performed in 1984 (LH2), 1985 (LN2) and 1985-86 (Freon).

  8. Numerical simulation of aerodynamic performance of a couple multiple units high-speed train

    NASA Astrophysics Data System (ADS)

    Niu, Ji-qiang; Zhou, Dan; Liu, Tang-hong; Liang, Xi-feng

    2017-05-01

    In order to determine the effect of the coupling region on train aerodynamic performance, and how the coupling region affects aerodynamic performance of the couple multiple units trains when they both run and pass each other in open air, the entrance of two such trains into a tunnel and their passing each other in the tunnel was simulated in Fluent 14.0. The numerical algorithm employed in this study was verified by the data of scaled and full-scale train tests, and the difference lies within an acceptable range. The results demonstrate that the distribution of aerodynamic forces on the train cars is altered by the coupling region; however, the coupling region has marginal effect on the drag and lateral force on the whole train under crosswind, and the lateral force on the train cars is more sensitive to couple multiple units compared to the other two force coefficients. It is also determined that the component of the coupling region increases the fluctuation of aerodynamic coefficients for each train car under crosswind. Affected by the coupling region, a positive pressure pulse was introduced in the alternating pressure produced by trains passing by each other in the open air, and the amplitude of the alternating pressure was decreased by the coupling region. The amplitude of the alternating pressure on the train or on the tunnel was significantly decreased by the coupling region of the train. This phenomenon did not alter the distribution law of pressure on the train and tunnel; moreover, the effect of the coupling region on trains passing by each other in the tunnel is stronger than that on a single train passing through the tunnel.

  9. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  10. Interdiffusion and reaction between U and Zr

    NASA Astrophysics Data System (ADS)

    Park, Y.; Newell, R.; Mehta, A.; Keiser, D. D.; Sohn, Y. H.

    2018-04-01

    The microstructural development and diffusion kinetics were examined for the binary U vs. Zr system using solid-to-solid diffusion couples, U vs. Zr, annealed at 580 °C for 960 h, 650 °C for 480 h, 680 °C for 240 h, and 710 °C for 96 h. Scanning and transmission electron microscopies with X-ray energy dispersive spectroscopy were employed for detailed microstructural and compositional analyses. Interdiffusion and reaction in U vs. Zr diffusion couples primarily produced: δ-UZr2 solid solution (hP3) and α‧-U at 580 °C; and (γU,βZr) solid solution (cI2) and α‧-U at 650°, 680° and 710 °C. The α‧-phase was confirmed as a reduced variant of the α-U orthorhombic structure with lattice parameters, a × b × c = 2.65 × 5.40 × 4.75 (Å) with a negligible solubility for Zr at room temperature. Concentration profiles were examined to determine interdiffusion coefficients, integrated interdiffusion coefficients, and intrinsic diffusion coefficients using Boltzmann-Matano, Wagner, and Heumann analyses, respectively. Composition-dependence of interdiffusion coefficients were documented for α-U, δ-UZr2 (at 580 °C) and (γU,βZr) solid solution (at 650°, 680° and 710 °C). U was determined to intrinsically diffuse faster than Zr, approximately by an order of magnitude, in the δ-UZr2 at 580 °C, and (γU,βZr) phases at 650°, 680° and 710 °C. Based on Darken's approach, thermodynamic data available in literature were coupled to estimate the tracer diffusion coefficients and atomic mobilities of U and Zr.

  11. Photo-induced spin and valley-dependent Seebeck effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar

    2018-04-01

    Employing the Landauer-Buttiker formula we investigate the spin and valley dependence of Seebeck effect in low-buckled Dirac materials (LBDMs), whose band structure are modulated by local application of a gate voltage and off-resonant circularly polarized light. We calculate the charge, spin and valley Seebeck coefficients of an irradiated LBDM as functions of electronic doping, light intensity and the amount of the electric field in the linear regime. Our calculation reveal that all Seebeck coefficients always shows an odd features with respect to the chemical potential. Moreover, we show that, due to the strong spin-orbit coupling in the LBDMs, the induced thermovoltage in the irradiated LBDMs is spin polarized, and can also become valley polarized if the gate voltage is applied too. It is also found that the valley (spin) polarization of the induced thermovoltage could be inverted by reversing the circular polarization of light or reversing the direction the electric field (only by reversing the circular polarization of light).

  12. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE PAGES

    Zhai, Kun; Wu, Yan; Shen, Shipeng; ...

    2017-09-12

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  13. Simulation of the effects of sub-breakdown electric fields on the chemical kinetics in nonpremixed counterflow methane/air flames

    NASA Astrophysics Data System (ADS)

    Belhi, Memdouh; Im, Hong; Computational Reacting Flows Laboratory, Clean Combustion Research Center Team

    2017-11-01

    The effects of an electric field on the combustion kinetics in nonpremixed counterflow methane/air flames were investigated via one-dimensional numerical simulations. A classical fluid model coupling Poison's equation with transport equations for combustion species and electric field-induced particles was used. A methane-air reaction mechanism accounting for the natural ionization in flames was combined with a set of reactions that describe the formation of active particles induced by the electric field. Kinetic parameters for electron-impact reactions and transport coefficients of electrons were modeled as functions of reduced electric field via solutions to the Boltzmann kinetic equation using the BOLSIG code. Mobility of ions was computed based on the (n,6,4) and coulomb interaction potentials, while the diffusion coefficient was approximated from the mobility using Einstein relation. Contributions of electron dissociation, excitation and ionization processes were characterized quantitatively. An analysis to identify the plasma regime where the electric field can alter the combustion kinetic was proposed.

  14. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Kun; Wu, Yan; Shen, Shipeng

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  15. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    NASA Astrophysics Data System (ADS)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  16. Identifying the principal coefficient of parabolic equations with non-divergent form

    NASA Astrophysics Data System (ADS)

    Jiang, L. S.; Bian, B. J.

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.

  17. An Introduction to the Onsager Reciprocal Relations

    ERIC Educational Resources Information Center

    Monroe, Charles W.; Newman, John

    2007-01-01

    The Onsager reciprocal relations are essential to multicomponent transport theory. A discussion of the principles that should be used to derive flux laws for coupled diffusion is presented here. Fluctuation theory is employed to determine the reciprocal relation for transport coefficients that characterize coupled mass and heat transfer in binary…

  18. Variational transition state theory for multidimensional activated rate processes in the presence of anisotropic friction

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Frishman, Anatoli M.; Pollak, Eli

    1994-09-01

    Variational transition state theory (VTST) is applied to the study of the activated escape of a particle trapped in a multidimensional potential well and coupled to a heat bath. Special attention is given to the dependence of the rate constant on the friction coefficients in the case of anisotropic friction. It is demonstrated explicitly that both the traditional as well as the nontraditional scenarios for the particle escape are recovered uniformly within the framework of VTST. Effects such as saddle point avoidance and friction dependence of the activation energy are derived from VTST using optimized planar dividing surfaces.

  19. Long-range dispersion interactions between Li and rare-gas atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Deng-Hong; Xu, Ya-Bin; Jiang, Jun; Jiang, Li; Xie, Lu-You; Dong, Chen-Zhong

    2017-06-01

    The energy levels, oscillator strength and dipole scalar polarizabilities of Li atoms are calculated by using the relativistic semiempirical-core-potential method (RCICP). The dispersion coefficients C6 between ground 2s1/2 2p1/2,2p3/2 states of Li atom and the ground state of rare gas atoms (Ne, Ar, Kr, Xe) are calculated in JJ coupled states, in which the spin-orbital interactions are included. Present results are in good agreement with other available results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  20. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    NASA Astrophysics Data System (ADS)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  1. Significant role of antiferromagnetic GdFeO3 on multiferroism of bilayer thin films

    NASA Astrophysics Data System (ADS)

    Shah, Jyoti; Bhatt, Priyanka; Dayas, K. Diana Diana; Kotnala, R. K.

    2018-02-01

    Inversion of BaTiO3 and GdFeO3 thin films in bilayer configuration has been deposited by pulsed laser deposition technique. A significant effect of strain on thin film has been observed by X-ray diffraction analysis. Tensile strain of 1.04% and 0.23% has been calculated by X-ray diffraction results. Higher polarization value 70.4 μC cm-2 has been observed by strained BaTiO3 film in GdFeO3/BaTiO3 bilayer film. Strained GdFeO3 film in BaTiO3/GdFeO3 bilayer configuration exhibited ferromagnetic behaviour showed maximum magnetization value of 50 emu gm-1. Magnetoelectric coupling coefficient of bilayer films have been carried out by dynamic method. Room temperature magnetoelectric coupling 2500 mV cm-1-Oe has been obtained for BaTiO3/GdFeO3 bilayer film. The high ME coupling of the BaTiO3/GdFeO3 bilayer film reveals strong interfacial coupling between ferroelectric and ferromagnetic dipoles. On magnetoelectric coupling coefficient effect of ferromagnetic GdFeO3 layer has a significant role. Such high value of ME coupling may be useful in realization of magnetoelectric RAM (MeRAM) application.

  2. Zero-lag synchronization in coupled time-delayed piecewise linear electronic circuits

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Srinivasan, K.; Senthilkumar, D. V.; Raja Mohamed, I.; Murali, K.; Lakshmanan, M.; Kurths, J.

    2013-07-01

    We investigate and report an experimental confirmation of zero-lag synchronization (ZLS) in a system of three coupled time-delayed piecewise linear electronic circuits via dynamical relaying with different coupling configurations, namely mutual and subsystem coupling configurations. We have observed that when there is a feedback between the central unit (relay unit) and at least one of the outer units, ZLS occurs in the two outer units whereas the central and outer units exhibit inverse phase synchronization (IPS). We find that in the case of mutual coupling configuration ZLS occurs both in periodic and hyperchaotic regimes, while in the subsystem coupling configuration it occurs only in the hyperchaotic regime. Snapshots of the time evolution of outer circuits as observed from the oscilloscope confirm the occurrence of ZLS experimentally. The quality of ZLS is numerically verified by correlation coefficient and similarity function measures. Further, the transition to ZLS is verified from the changes in the largest Lyapunov exponents and the correlation coefficient as a function of the coupling strength. IPS is experimentally confirmed using time series plots and also can be visualized using the concept of localized sets which are also corroborated by numerical simulations. In addition, we have calculated the correlation of probability of recurrence to quantify the phase coherence. We have also analytically derived a sufficient condition for the stability of ZLS using the Krasovskii-Lyapunov theory.

  3. Interactive coupling of electronic and optical man-made devices to biological systems

    NASA Astrophysics Data System (ADS)

    Ozden, Ilker

    Fireflies blink synchronously, lasers are "mode-locked" for amplification, cardiac pacemaker cells maintain a steady heartbeat, and crickets chirps get in step. These are examples of coupled oscillators. Coupled non-linear limit-cycle oscillator models are used extensively to provide information about the collective behavior of many physical and biological systems. Depending on the system parameters, namely, the coupling coefficient and the time delay in the coupling, these coupled limit-cycle oscillator exhibit several interesting phenomena; they either synchronize to a common frequency, or oscillate completely independent of each other, or drag each other to a standstill i.e., show "amplitude death". Many neuronal systems exhibit synchronized limit-cycle oscillations in network of electrically coupled cells. The inferior olivary (IO) neuron is an example of such a system. The inferior olive has been widely studied by neuroscientists as it exhibits spontaneous oscillations in its membrane potential, typically in the range of 1--10 Hz. Located in the medulla, the inferior olive is believed to form the neural basis for precise timing and learning in motor circuits by making strong synaptic connections onto Purkinjee cells in the cerebellum. In this thesis work, we report on work, which focuses on the implementation and study of coupling of a biological circuit, which is the inferior olivary system, with a man-made electronic oscillator, the so-called Chua's circuit. We were able to study the interaction between the two oscillators over a wide range coupling conditions. With increasing coupling strength, the oscillators become phase-locked, or synchronized, but with a phase relationship which is either in- or out-of-phase depending on the detailed adjustment in the coupling. Finally, the coupled system reaches the conditions for amplitude death, a rather fundamental result given that the interaction has taken place between purely biological and man-made circuit elements.

  4. SAW propagation characteristics of TeO3/3C-SiC/LiNbO3 layered structure

    NASA Astrophysics Data System (ADS)

    Soni, Namrata D.

    2018-04-01

    Surface acoustic wave (SAW) devices based on Lithium Niobate (LiNbO3) single crystal are advantageous because of its high SAW phase velocity, electromechanical coupling coefficient and cost effectiveness. In the present work a new multi-layered TeO3/3C-SiC/128° Y-X LiNbO3 SAW device has been proposed. SAW propagation properties such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of the TeO3/SiC/128° Y-X LiNbO3 multi layered structure is examined using theoretical calculations. It is found that the integration of 0.09λ thick 3C-SiC over layer on 128° Y-X LiNbO3 increases its electromechanical coupling coefficient from 5.3% to 9.77% and SAW velocity from 3800 ms‑1 to 4394 ms‑1. The SiC/128° Y-X LiNbO3 bilayer SAW structure exhibits a high positive TCD value. A temperature stable layered SAW device could be obtained with introduction of 0.007λ TeO3 over layer on SiC/128° Y-X LiNbO3 bilayer structure without sacrificing the efficiency of the device. The proposed TeO3/3C-SiC/128° Y-X LiNbO3 multi-layered SAW structure is found to be cost effective, efficient, temperature stable and suitable for high frequency application in harsh environment.

  5. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    PubMed

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  6. How ocean lateral mixing changes Southern Ocean variability in coupled climate models

    NASA Astrophysics Data System (ADS)

    Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.

    2016-02-01

    The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.

  7. Quantitative Mapping of Pore Fraction Variations in Silicon Nitride Using an Ultrasonic Contact Scan Technique

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.

    1993-01-01

    An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.

  8. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    NASA Astrophysics Data System (ADS)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  9. Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng

    2017-05-01

    The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.

  10. Air-Liquid Partition Coefficient for a Diverse Set of Organic Compounds: Henry’s Law Constant in Water and Hexadecane

    EPA Science Inventory

    The SPARC vapor pressure and activity coefficient models were coupled to estimate Henry’s Law Constant (HLC) in water and in hexadecane for a wide range of non-polar and polar solute organic compounds without modification to/or additional parameterization of the vapor pressure or...

  11. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems

    NASA Astrophysics Data System (ADS)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.

    2017-02-01

    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  12. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klain, Kimberly L.

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set ofmore » multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the individual coupling coefficients from measurement: unlike the symmetrical cases, only the product of the values can be obtained. A method is proposed utilizing MCNP6 tally ratios to separate the coupling coefficients for such systems. This work provides insight into the behavior of asymmetrically-coupled systems as the separation distance between the two cores is changed and also as the asymmetry is increased. As the asymmetry increases, both the slower and the faster observable prompt neutron decay constants increase in magnitude. The coupling time constants are determined from the measured decay constants. As the separation distance increases, both coupling coefficients decrease as expected. Based on these findings, an effective computational method utilizing MCNP6 and the Rossialpha technique can be applied to the prediction of asymmetrical coupled system measurements.« less

  13. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  14. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.

  15. Coupled calculation of the radiological release and the thermal-hydraulic behavior of a 3-loop PWR after a SGTR by means of the code RELAP5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hove, W.; Van Laeken, K.; Bartsoen, L.

    1995-09-01

    To enable a more realistic and accurate calculation of the radiological consequences of a SGTR, a fission product transport model was developed. As the radiological releases strongly depend on the thermal-hydraulic transient, the model was included in the RELAP5 input decks of the Belgian NPPs. This enables the coupled calculation of the thermal-hydraulic transient and the radiological release. The fission product transport model tracks the concentration of the fission products in the primary circuit, in each of the SGs as well as in the condenser. This leads to a system of 6 coupled, first order ordinary differential equations with timemore » dependent coefficients. Flashing, scrubbing, atomisation and dry out of the break flow are accounted for. Coupling with the thermal-hydraulic calculation and correct modelling of the break position enables an accurate calculation of the mixture level above the break. Pre- and post-accident spiking in the primary circuit are introduced. The transport times in the FW-system and the SG blowdown system are also taken into account, as is the decontaminating effect of the primary make-up system and of the SG blowdown system. Physical input parameters such as the partition coefficients, half life times and spiking coefficients are explicitly introduced so that the same model can be used for iodine, caesium and noble gases.« less

  16. A theoretical study of the dissociative recombination of SH+ with electrons through the 2Π states of SH.

    PubMed

    Kashinski, D O; Talbi, D; Hickman, A P; Di Nallo, O E; Colboc, F; Chakrabarti, K; Schneider, I F; Mezei, J Zs

    2017-05-28

    A quantitative theoretical study of the dissociative recombination of SH + with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH + and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.

  17. Quasiperiodic Quantum Ising Transitions in 1D

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Chandran, A.; Laumann, C. R.

    2018-04-01

    Unlike random potentials, quasiperiodic modulation can induce localization-delocalization transitions in one dimension. In this Letter, we analyze the implications of this for symmetry breaking in the quasiperiodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localized and gapless. The quasiperiodic potential and localized excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of ν =1+ (exact) and z ≈1.9 , Δσ≈0.16 , and Δγ≈0.63 (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient w controls the universality class of the quasiperiodic transition and show its stability to smooth perturbations that preserve the quasiperiodic structure of the model.

  18. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  19. Diffraction-induced instability of coupled dark solitary waves.

    PubMed

    Assanto, Gaetano; MacNeil, J Michael L; Smyth, Noel F

    2015-04-15

    We report on a novel instability arising from the propagation of coupled dark solitary beams governed by coupled defocusing nonlinear Schrödinger equations. Considering dark notches on backgrounds with different wavelengths, hence different diffraction coefficients, we find that the vector dark soliton solution is unstable to radiation modes. Using perturbation theory and numerical integration, we demonstrate that the component undergoing stronger diffraction radiates away, leaving a single dark soliton in the other mode/wavelength.

  20. Feedforward Equalizers for MDM-WDM in Multimode Fiber Interconnects

    NASA Astrophysics Data System (ADS)

    Masunda, Tendai; Amphawan, Angela

    2018-04-01

    In this paper, we present new tap configurations of a feedforward equalizer to mitigate mode coupling in a 60-Gbps 18-channel mode-wavelength division multiplexing system in a 2.5-km-long multimode fiber. The performance of the equalization is measured through analyses on eye diagrams, power coupling coefficients and bit-error rates.

  1. [Coordination patterns assessed by a continuous measure of joints coupling during upper limb repetitive movements].

    PubMed

    Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S

    2008-01-01

    We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements.

  2. Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight

    NASA Technical Reports Server (NTRS)

    Friedmann, P.; Tong, P.

    1972-01-01

    Equations for large coupled flap-lag motion of hingeless elastic helicopter blades are consistently derived. Only torsionally-rigid blades excited by quasi-steady aerodynamic loads are considered. The nonlinear equations of motion in the time and space variables are reduced to a system of coupled nonlinear ordinary differential equations with periodic coefficients, using Galerkin's method for the space variables. The nonlinearities present in the equations are those arising from the inclusion of moderately large deflections in the inertia and aerodynamic loading terms. The resulting system of nonlinear equations has been solved, using an asymptotic expansion procedure in multiple time scales. The stability boundaries, amplitudes of nonlinear response, and conditions for existence of limit cycles are obtained analytically. Thus, the different roles played by the forcing function, parametric excitation, and nonlinear coupling in affecting the solution can be easily identified, and the basic physical mechanism of coupled flap-lag response becomes clear. The effect of forward flight is obtained with the requirement of trimmed flight at fixed values of the thrust coefficient.

  3. MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system

    NASA Astrophysics Data System (ADS)

    Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya

    2018-01-01

    In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.

  4. Second-order hydrodynamics and universality in non-conformal holographic fluids

    NASA Astrophysics Data System (ADS)

    Kleinert, Philipp; Probst, Jonas

    2016-12-01

    We study second-order hydrodynamic transport in strongly coupled non-conformal field theories with holographic gravity duals in asymptotically anti-de Sitter space. We first derive new Kubo formulae for five second-order transport coefficients in non-conformal fluids in (3 + 1) dimensions. We then apply them to holographic RG flows induced by scalar operators of dimension Δ = 3. For general background solutions of the dual bulk geometry, we find explicit expressions for the five transport coefficients at infinite coupling and show that a specific combination, tilde{H}=2η {τ}_{π }-2(κ -{κ}^{ast})-{λ}_2 , always vanishes. We prove analytically that the Haack-Yarom identity H = 2 ητ π - 4λ1 - λ2 = 0, which is known to be true for conformal holographic fluids at infinite coupling, also holds when taking into account leading non-conformal corrections. The numerical results we obtain for two specific families of RG flows suggest that H vanishes regardless of conformal symmetry. Our work provides further evidence that the Haack-Yarom identity H = 0 may be universally satisfied by strongly coupled fluids.

  5. Dark-dark solitons for a coupled variable-coefficient higher-order nonlinear Schrödinger system in an inhomogeneous optical fiber

    NASA Astrophysics Data System (ADS)

    Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong

    2017-12-01

    In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.

  6. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  7. On degenerate coupled transport processes in porous media with memory phenomena

    NASA Astrophysics Data System (ADS)

    Beneš, Michal; Pažanin, Igor

    2018-06-01

    In this paper we prove the existence of weak solutions to degenerate parabolic systems arising from the fully coupled moisture movement, solute transport of dissolved species and heat transfer through porous materials. Physically relevant mixed Dirichlet-Neumann boundary conditions and initial conditions are considered. Existence of a global weak solution of the problem is proved by means of semidiscretization in time, proving necessary uniform estimates and by passing to the limit from discrete approximations. Degeneration occurs in the nonlinear transport coefficients which are not assumed to be bounded below and above by positive constants. Degeneracies in transport coefficients are overcome by proving suitable a-priori $L^{\\infty}$-estimates based on De Giorgi and Moser iteration technique.

  8. Finite coupling corrections to holographic predictions for hot QCD

    DOE PAGES

    Waeber, Sebastian; Schafer, Andreas; Vuorinen, Aleksi; ...

    2015-11-13

    Finite ’t Hooft coupling corrections to multiple physical observables in strongly coupled N=4 supersymmetric Yang-Mills plasma are examined, in an attempt to assess the stability of the expansion in inverse powers of the ’t Hooft coupling λ. Observables considered include thermodynamic quantities, transport coefficients, and quasinormal mode frequencies. Furthermore large λ expansions for quasinormal mode frequencies are notably less well behaved than the expansions of other quantities, we find that a partial resummation of higher order corrections can significantly reduce the sensitivity of the results to the value of λ.

  9. Conductor disc used to suppress spurious mode and enhance electric coupling in a dielectric loaded combline resonator

    NASA Astrophysics Data System (ADS)

    Pholele, T. M.; Chuma, J. M.

    2016-03-01

    The effects of conductor disc in a dielectric loaded combline resonator on its spurious performance, unloaded quality factor (Qu), and coupling coefficients are analysed using a commercial electromagnetic software package CST Microwave Studio (CST MWS). The disc improves the spurious free band but simultaneously deteriorates the Qu. The presence of the disc substantially improves the electric coupling by a factor of 1.891 for an aperture opening of 12 mm, while it has insignificant effect on the magnetic coupling.

  10. Mass attenuation coefficient of chromium and manganese compounds around absorption edge.

    PubMed

    Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B

    2009-01-01

    The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.

  11. Tracking the coupling of two electroencephalogram series in the isoflurane and remifentanil anesthesia.

    PubMed

    Liang, Zhenhu; Liang, Shujuan; Wang, Yinghua; Ouyang, Gaoxiang; Li, Xiaoli

    2015-02-01

    Coupling in multiple electroencephalogram (EEG) signals provides a perspective tool to understand the mechanism of brain communication. In this study, we propose a method based on permutation cross-mutual information (PCMI) to investigate whether or not the coupling between EEG series can be used to quantify the effect of specific anesthetic drugs (isoflurane and remifentanil) on brain activities. A Rössler-Lorenz system and surrogate analysis was first employed to compare histogram-based mutual information (HMI) and PCMI for estimating the coupling of two nonlinear systems. Then, the HMI and the PCMI indices of EEG recordings from two sides of the forehead of 12 patients undergoing combined remifentanil and isoflurane anesthesia were demonstrated for tracking the effect of drug on the coupling of brain activities. Performance of all indices was assessed by the correlation coefficients (Rij) and relative coefficient of variation (CV). The PCMI can track the coupling strength of two nonlinear systems, and it is sensitive to the phase change of the coupling systems. Compared to the HMI, the PCMI has a better correlation with the coupling strength in nonlinear systems. The PCMI could track the effect of anesthesia and distinguish the consciousness state from the unconsciousness state. Moreover, at the embedding dimension m=4 and lag τ=1, the PCMI had a better performance than HMI in tracking the effect of anesthesia drugs on brain activities. As a measure of coupling, the PCMI was able to reflect the state of consciousness from two EEG recordings. The PCMI is a promising new coupling measure for estimating the effect of isoflurane and remifentanil anesthetic drugs on the brain activity. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  12. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Physicochemical Characterization

    PubMed Central

    Sun, Dajun; Rouse, Rodney; Patel, Vikram; Wu, Yong; Zheng, Jiwen; Karmakar, Alokita; Patri, Anil K.; Keire, David; Ma, Jia; Jiang, Wenlei

    2018-01-01

    The objective of this study was to evaluate physicochemical equivalence between brand (i.e., Ferrlecit) and generic sodium ferric gluconate (SFG) in sucrose injection by conducting a series of comparative in vitro characterizations using advanced analytical techniques. The elemental iron and carbon content, thermal properties, viscosity, particle size, zeta potential, sedimentation coefficient, and molecular weight were determined. There was no noticeable difference between brand and generic SFG in sucrose injection for the above physical parameters evaluated, except for the sedimentation coefficient determined by sedimentation velocity analytical ultracentrifugation (SV-AUC) and molecular weight by asymmetric field flow fractionation-multi-angle light scattering (AFFF-MALS). In addition, brand and generic SFG complex products showed comparable molecular weight distributions when determined by gel permeation chromatography (GPC). The observed minor differences between brand and generic SFG, such as sedimentation coefficient, do not impact their biological activities in separate studies of in vitro cellular uptake and rat biodistribution. Coupled with the ongoing clinical study comparing the labile iron level in healthy volunteers, the FDA-funded post-market studies intended to illustrate comprehensive surveillance efforts ensuring safety and efficacy profiles of generic SFG complex in sucrose injection, and also to shed new light on the approval standards on generic parenteral iron colloidal products. PMID:29303999

  13. Room temperature magnetoelectric coupling and electrical properties of Ni doped Co - ferrite - PZT nanocomposites

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sarit; Mandal, S. K.; Dey, P.; Saha, B.

    2018-04-01

    Multiferroic magnetoelectric materials are very interesting for the researcher for the potential application in device preparation. We have prepared 0.3Ni0.5Co0.5Fe2O4 - 0.7PbZr0.58Ti0.42O3 magnetoelectric nanocomposites through chemical pyrophoric reaction process followed by solid state reaction and represented magnetoelectric coupling coefficient, thermally and magnetically tunable AC electrical properties. For the structural characterization XRD pattern and SEM micrograph have been analyzed. AC electrical properties reveal that the grain boundaries resistances are played dominating role in the conduction process in the system. Dielectric studies are represents that the dielectric polarization is decreased with frequency as well as magnetic field where it increases with increasing temperature. The dielectric profiles also represents the electromechanical resonance at a frequency of ˜183 kHz. High dielectric constant and low dielectric loss at room temperature makes the material very promising for the application of magnetic field sensor devices.

  14. Comprehensive two-dimensional chromatography with coupling of reversed phase high performance liquid chromatography and supercritical fluid chromatography.

    PubMed

    Stevenson, Paul G; Tarafder, Abhijit; Guiochon, Georges

    2012-01-13

    A 2D comprehensive chromatographic separation of blackberry sage fragrant oil was performed by using HPLC in the first dimension and SFC in the second. A C(18)-bonded silica column eluted with an ACN gradient was used in the HPLC dimension and an amino-bonded silica column eluted with ACN as a modifier in the SFC dimension. This 2D separation was completed in the off-line mode, the fractions from the HPLC column being collected and injected in the SFC column. The retention factors on the two columns have a -0.757 correlation coefficient. The method provides a practical peak capacity of 2400 in 280 min. The first eluted peaks in HPLC are the last ones eluted in SFC and vice versa. The results demonstrate that the coupling of an HPLC and an SFC separation have a great potential for 2D chromatographic separations. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  16. Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys

    NASA Astrophysics Data System (ADS)

    Balakrishna, Ananya Renuka; Carter, W. Craig

    2018-04-01

    Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.

  17. Determination of Scaled Wind Turbine Rotor Characteristics from Three Dimensional RANS Calculations

    NASA Astrophysics Data System (ADS)

    Burmester, S.; Gueydon, S.; Make, M.

    2016-09-01

    Previous studies have shown the importance of 3D effects when calculating the performance characteristics of a scaled down turbine rotor [1-4]. In this paper the results of 3D RANS (Reynolds-Averaged Navier-Stokes) computations by Make and Vaz [1] are taken to calculate 2D lift and drag coefficients. These coefficients are assigned to FAST (Blade Element Momentum Theory (BEMT) tool from NREL) as input parameters. Then, the rotor characteristics (power and thrust coefficients) are calculated using BEMT. This coupling of RANS and BEMT was previously applied by other parties and is termed here the RANS-BEMT coupled approach. Here the approach is compared to measurements carried out in a wave basin at MARIN applying Froude scaled wind, and the direct 3D RANS computation. The data of both a model and full scale wind turbine are used for the validation and verification. The flow around a turbine blade at full scale has a more 2D character than the flow properties around a turbine blade at model scale (Make and Vaz [1]). Since BEMT assumes 2D flow behaviour, the results of the RANS-BEMT coupled approach agree better with the results of the CFD (Computational Fluid Dynamics) simulation at full- than at model-scale.

  18. Theoretical investigation of the SAW properties of ferroelectric film composite structures.

    PubMed

    Shih, W C; Wu, M S

    1998-01-01

    The characteristics of surface acoustic waves (SAW) propagating on a three-layered structure consisting of a perovskite-type ferroelectric film, a buffer layer and a semiconductor substrate have been studied theoretically. Large coupling coefficients (K(2)) can be obtained when the interdigital transducer (IDT) is on top of the perovskite-type ferroelectric film, with (type 4) and without (type 3) the floating-plane electrode at the perovskite-type ferroelectric film-buffer layer interface. In the above cases, the peak values of K (2) Of the Pb(Zr,Ti)O(3) (PZT) films (3.2%-3.8%) are higher than those of the BaTiO(3) (BT) and PbTiO(3) (PT) films. In the IDT configuration of type 4, there exists a minor peak of the coupling coefficients for the PZT and BT films, but not for the PT films when the normalized thickness (hK) of the perovskite-type ferroelectric film is about 0.3. The minor peak values of the coupling coefficients (0.62%-0.93%) for different layered structures (PZT/STO/Si, PZT/MgO/Si, and PZT/MgO/GaAs) all decrease when we increase hK value from 0 to 0.25. The results could be useful in the integration of ferroelectric devices, semiconductor devices, and SAW devices on the same substrate.

  19. An Efficient Image Compressor for Charge Coupled Devices Camera

    PubMed Central

    Li, Jin; Xing, Fei; You, Zheng

    2014-01-01

    Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977

  20. New type of a generalized variable-coefficient Kadomtsev-Petviashvili equation with self-consistent sources and its Grammian-type solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Xu, Yue; Ma, Kun

    2016-08-01

    In this paper, the variable-coefficient Kadomtsev-Petviashvili (vcKP) equation with self-consistent sources is presented by two different methods, one is the source generation procedure, the other is the Pfaffianization procedure, and the solutions for the two new coupled systems are given through Grammian-type Pfaffian determinants.

  1. Angled injection: Hybrid fluid film bearings for cryogenic applications

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1995-01-01

    A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.

  2. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.

    PubMed

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

  3. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces

    NASA Astrophysics Data System (ADS)

    Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini

    We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.

  4. Preparation and thermo-optic switch properties based on chiral azobenzene-containing polyurethane

    NASA Astrophysics Data System (ADS)

    Ye, Feiyan; Qiu, Fengxian; Yang, Dongya; Cao, Guorong; Guan, Yijun; Zhuang, Lin

    2013-07-01

    A chiral azo chromophore compound 4-(4'-nitro-phenyl-diazenyl)-phenyl-1,2-propanediol ether (NPDPPE) was prepared with p-nitroaniline, phenol and R(-)-3-chloro-1,2-propanediol by the diazo-coupling reaction. Then, the chromophore molecule NPDPPE was polymerized with isophorone diisocyanate (IPDI) to obtain novel chiral azobenzene-containing polyurethane (CACPU). The chemical structures of chromophore molecule and CACPU were characterized by the FT-IR and UV-visible spectroscopy. The physical properties (thermal conductivity, thermal diffusion coefficient, and specific heat capacity) and mechanical properties (tensile strength, elongation at break and hardness) of CACPU thin films were measured. The refractive index and thermo-optic (TO) coefficient (dn/dT) of CACPU thin film was investigated for TE (transversal electric) polarizations by using an attenuated total reflection (ATR) configuration at the wavelengths of 532, 650 and 850 nm. The transmission loss of film was measured using the charge coupled device (CCD) digital imaging devices. A Y-branch switch and Mach-Zehnder interferometer (MZI) thermo-optic switches based on thermo-optic effect were proposed and the performances of switches were simulated. The results showed that the power consumption of the Y-branch thermo-optic switch was only 3.28 mW. The rising and falling times of Y-branch and MZI switches were 12.0 ms and 2.0 ms, respectively. The conclusion has potential significance to improve and develop new Y-branch digital optical switch (DOS), MZI thermo-optic switch, directional coupler (DC) switch and optical modulators.

  5. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    PubMed

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  6. Consanguineous marriages in Afghanistan.

    PubMed

    Saify, Khyber; Saadat, Mostafa

    2012-01-01

    The present cross-sectional study was done in order to illustrate the prevalence and types of consanguineous marriages among Afghanistan populations. Data on types of marriages were collected using a simple questionnaire. The total number of couples in the study was 7140 from the following provinces: Badakhshan, Baghlan, Balkh, Bamyan, Kabul, Kunduz, Samangan and Takhar. Consanguineous marriages were classified by the degree of relationship between couples: double first cousins, first cousins, first cousins once removed, second cousins and beyond second cousins. The coefficient of inbreeding (F) was calculated for each couple and the mean coefficient of inbreeding (α) estimated for each population. The proportion of consanguineous marriages in the country was 46.2%, ranging from 38.2% in Kabul province to 51.2% in Bamyan province. The equivalent mean inbreeding coefficient (α) was 0.0277, and ranged from 0.0221 to 0.0293 in these two regions. There were significant differences between provinces for frequencies of different types of marriages (p<0.001). First cousin marriages (27.8%) were the most common type of consanguineous marriages, followed by double first cousin (6.9%), second cousin (5.8%), beyond second cousin (3.9%) and first cousin once removed (1.8%). There were significant differences between ethnic groups for the types of marriages (χ2=177.6, df=25, p<0.001). Tajiks (Soni) and Turkmens (also Pashtuns) showed the lowest (α=0.0250) and highest (α=0.0297) mean inbreeding coefficients, respectively, among the ethnic groups in Afghanistan. The study shows that Afghanistan's populations, like other Islamic populations, have a high level of consanguinity.

  7. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungpyo; Wright, John; Bertelli, Nicola

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  8. Research on soundproof properties of cylindrical shells of generalized phononic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Ru; Shu, Haisheng; Wang, Xingguo

    2017-04-01

    Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.

  9. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE PAGES

    Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...

    2017-04-24

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  10. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    PubMed Central

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-01-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling. PMID:27929103

  11. Anomalous diffusion and scaling in coupled stochastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bel, Golan; Nemenman, Ilya

    2009-01-01

    Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. Themore » diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.« less

  12. Air-Coupled Ultrasonic Measurements in Composites

    NASA Astrophysics Data System (ADS)

    Kommareddy, V.; Peters, J. J.; Dayal, V.; Hsu, D. K.

    2004-02-01

    Air-coupled ultrasound is a non-contact technique and has clear advantages over water-coupled testing. Research of air-coupled ultrasonics, especially using capacitance and micromachined transducers, has been extensively reported in the literature. This paper reports our experience of applying piezoceramic air-coupled transducers for nondestructive evaluation of composites. The beam profiles of air-coupled piezoceramic transducers, with and without apodization, were mapped out. The transmission of air-coupled ultrasonic energy through composite plates of different thickness was measured experimentally; model calculation of the transmission coefficient, taking into account the frequency bandwidth of the transducer, agreed with the measurement results. The occurrence of diffraction phenomenon ("Poisson bright spot") while imaging flaws in composite laminates was investigated. The resolution of scanned images obtained with air-coupled transducers was investigated for different frequency, focusing, and apodization conditions.

  13. A study of the piezoelectric resonance in metal organic NLO single crystals: Sodium D-isoascorbate monohydrate and Lithium L-ascorbate dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saripalli, Ravi Kiran, E-mail: rksaripalli@physics.iisc.ernet.in; Sanath Kumar, R.; Elizabeth, Suja

    2016-05-06

    Large single crystals of Sodium D-isoacsorbate monohydrate and Lithium L-ascorbate dehydrate were grown using solution growth technique. Dielectric constant and dielectric loss were monitored as a function of frequency at different temperatures. These are typically characterized by strong resonance peaks. The piezoelectric coefficients d{sub 31}, elastic coefficient (S{sub 11}) and electromechanical coupling coefficient (k{sub 31}) were estimated by resonance-antiresonance method. The temperature dependence of the resonance-peaks frequencies was studied.

  14. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  15. Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Keiser, Dennis D.; Sohn, Yongho

    2013-02-01

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.

  16. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters.

    PubMed

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation.

  17. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters

    PubMed Central

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation. PMID:27092179

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less

  19. Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media.

    PubMed

    Crespy, A; Bolève, A; Revil, A

    2007-01-01

    The Helmholtz-Smoluchowski (HS) equation is widely used to determine the apparent zeta potential of porous materials using the streaming potential method. We present a model able to correct this apparent zeta potential of granular media of the influence of the Dukhin and Reynolds numbers. The Dukhin number represents the ratio between the surface conductivity (mainly occurring in the Stern layer) and the pore water conductivity. The Reynolds number represents the ratio between inertial and viscous forces in the Navier-Stokes equation. We show here that the HS equation can lead to serious errors if it is used to predict the dependence of zeta potential on flow in the inertial laminar flow regime without taking into account these corrections. For indifferent 1:1 electrolytes (such as sodium chloride), we derived two simple scaling laws for the dependence of the streaming potential coupling coefficient (or the apparent zeta potential) on the Dukhin and Reynolds numbers. Our model is compared with a new set of experimental data obtained on glass bead packs saturated with NaCl solutions at different salinities and pH. We find fairly good agreement between the model and these experimental data.

  20. Theoretical study of the electric dipole moment function of the ClO molecule

    NASA Technical Reports Server (NTRS)

    Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.

    1986-01-01

    The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.

  1. Second-order shaped pulsed for solid-state quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Pinaki

    2008-01-01

    We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site andmore » nearest-neighbor couplings.« less

  2. Vector matter waves in two-component Bose-Einstein condensates with spatially modulated nonlinearities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.

    2018-02-01

    We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.

  3. New piezocrystal material in the development of a 96-element array transducer for MR-guided focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Qiu, Zhen; Habeshaw, Roderick; Fortine, Julien; Huang, Zhihong; Démoré, Christine; Cochran, Sandy

    2012-11-01

    Piezocrystal materials have been recognized as having better performance than piezoelectric ceramics, and have thus been widely adopted in ultrasound imaging arrays. Although their behaviour is susceptible to temperature and pressure, their large electromechanical coupling coefficients and other excellent piezoelectric properties also offer the potential for further improvements in the efficiency of therapeutic ultrasound transducers. Furthermore, new piezocrystals with modified compositions have been developed recently to increase their tolerance to temperature and pressure. In this work, a prototype of faceted bowl transducer was designed and manufactured as a proof of concept to explore practical issues associated with adoption of piezocrystals for magnetic resonance imaging guided focused ultrasound surgery.

  4. Finite linear diffusion model for design of overcharge protection for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Surampudi, S.; Attia, A. I.

    1991-01-01

    The overcharge condition in secondary lithium batteries employing redox additives for overcharge protection has been theoretically analyzed in terms of a finite linear diffusion model. The analysis leads to expressions relating the steady-state overcharge current density and cell voltage to the concentration, diffusion coefficient, standard reduction potential of the redox couple, and interelectrode distance. The model permits the estimation of the maximum permissible overcharge rate for any chosen set of system conditions. The model has been experimentally verified using 1,1-prime-dimethylferrocene as a redox additive. The theoretical results may be exploited in the design and optimization of overcharge protection by the redox additive approach.

  5. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mahardika, H.

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods.

  6. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    PubMed Central

    Revil, A; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods. PMID:23741078

  7. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution.

    PubMed

    Hyland, Katherine C; Blaine, Andrea C; Higgins, Christopher P

    2015-10-01

    Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion. © 2015 SETAC.

  8. Evaluation of tribological properties of selected engine oils during operation of the friction pairs of steel-on-steel

    NASA Astrophysics Data System (ADS)

    Barszcz, Marcin; Józwik, Jerzy; Dziedzic, Krzysztof; Stec, Kamil

    2017-10-01

    The paper includes an assessment of the tribological properties of mineral and synthetic Lotos oil marked SAE 15W/40 and SAE 5W/40 at ambient temperature and 100 °C. The evaluation was based on the analysis of the tribological properties of friction couple consumables. Tribological tests were performed using the Anton Paar THT 1000 high temperature tribotester according to ASTM G133. Tribological properties were investigated using the "ball on disc" method. The change of friction coefficient, friction couple temperature, volume wear of samples and counter-samples and Hertz stresses were evaluated. In addition, hardness tests of the friction couple materials as well as surface roughness before and after friction were performed. On the basis of tribological studies, it was noted that Lotos Synthetic 5W/40 oil has better cooling properties compared. For both oils the coefficient of friction was lower at ambient temperature than at 100 °C. The highest value of volume wear of the sample was noted for the combination lubricated with Mineral Oil 15W/40 at 100 °C (0.0143 mm3) while for counter-sample lubricated with synthetic oil at ambient temperature (0.0039 mm3). The highest sample wear coefficient was recorded for the mineral oil lubricated at temperature of 100 °C (3.585*10-7 mm3/N/m) while for counter-sample lubricated with synthetic oil at ambient temperature (9.8768*10-8 mm3/N/m). The Hertz stress for each test couple had a value of 1.787 GPa.

  9. Nonlinear analysis and characteristics of inductive galloping energy harvesters

    NASA Astrophysics Data System (ADS)

    Dai, H. L.; Yang, Y. W.; Abdelkefi, A.; Wang, L.

    2018-06-01

    This paper presents an investigation on analysis and characteristics of aerodynamic electromagnetic energy harvesters. The source of aeroelastic oscillations results from galloping of a prismatic structure. A nonlinear distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the electric current induced in the coil. Firstly, we perform a linear analysis to study the impacts of the external electrical resistance, magnet placement, electromagnetic coupling coefficient, and internal resistance in the coil on the cut-in speed of instability of the coupled electroaeroelastic system. It is demonstrated that these parameters have significant impacts on cut-in speed of instability of the harvester system. Subsequently, a nonlinear analysis is implemented to explore the influences of these parameters on the output property of the energy harvester. The results show that there exists an optimal external electrical resistance which maximizes the output power of the harvester, and this optimal value varies with the magnet's placement, wind speed, electromagnetic coupling coefficient and internal resistance of the coil. It is also demonstrated that an increase in the distance between the clamped end and the magnet, an increase in the electromagnetic coupling coefficient, and/or a decrease in the internal resistance of the coil are accompanied by an increase in the level of the harvested power and a decrease in the tip displacement of the bluff body which is associated with a resistive-shunt damping effect in the harvester. The implemented studies give a constructive guidance to design and enhance the output performance of aerodynamic electromagnetic energy harvesters.

  10. Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burger equation

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Zhang, Tian-Tian

    2017-01-01

    Under investigation in this paper is a generalized (2 + 1)-dimensional coupled Burger equation with variable coefficients, which describes lots of nonlinear physical phenomena in geophysical fluid dynamics, condense matter physics and lattice dynamics. By employing the Lie group method, the symmetry reductions and exact explicit solutions are obtained, respectively. Based on a direct method, the conservations laws of the equation are also derived. Furthermore, by virtue of the Painlevé analysis, we successfully obtain the integrable condition on the variable coefficients, which plays an important role in further studying the integrability of the equation. Finally, its auto-Bäcklund transformation as well as some new analytic solutions including solitary and periodic waves are also presented via algebraic and differential manipulation.

  11. Biot theory and acoustical properties of high porosity fibrous materials and plastic foams

    NASA Technical Reports Server (NTRS)

    Allard, J.; Aknine, A.

    1987-01-01

    Experimental values of acoustic wave propagation constant and characteristic impedance in fibrous materials, and normal absorption for two plastic foams, were compared to theoretical predictions obtained with Biot's theory. The best agreement was observed for fibrous materials between Biot's theory and Delany and Bazley experiments for a nearly zero mass coupling parameter. For foams, the lambda/4 structure resonance effect on absorption was calculated by using four-pole modelling of the medium. A significant mass coupling parameter is then necessary for obtaining agreement between the behavior of the measured absorption coefficients and the theoretical predictions. It is shown how the formalism used for predicting foams absorption coefficients may be used for studying the acoustic behavior of multi-layered media.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Madhu Sudhan; Wang, Zhiqiang

    This paper presents a detailed parametric sensitivity analysis for a wireless power transfer (WPT) system in electric vehicle application. Specifically, several key parameters for sensitivity analysis of a series-parallel (SP) WPT system are derived first based on analytical modeling approach, which includes the equivalent input impedance, active / reactive power, and DC voltage gain. Based on the derivation, the impact of primary side compensation capacitance, coupling coefficient, transformer leakage inductance, and different load conditions on the DC voltage gain curve and power curve are studied and analyzed. It is shown that the desired power can be achieved by just changingmore » frequency or voltage depending on the design value of coupling coefficient. However, in some cases both have to be modified in order to achieve the required power transfer.« less

  13. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    NASA Astrophysics Data System (ADS)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  14. Changes in solar wind-magnetosphere coupling with solar cycle, season, and time relative to stream interfaces

    NASA Astrophysics Data System (ADS)

    McPherron, Robert L.; Baker, Daniel N.; Pulkkinen, T. I.; Hsu, T.-S.; Kissinger, J.; Chu, X.

    2013-07-01

    Geomagnetic activity depends on a variety of factors including solar zenith angle, solar UV, strength of the interplanetary magnetic field, speed and density of the solar wind, orientation of the Earth’s dipole, distance of the Earth from Sun, occurrence of CMEs and CIRs, and possibly other parameters. We have investigated some of these using state-dependant linear prediction filters. For a given state a prediction filter transforms a coupling function such as rectified solar wind electric field (VBs) to an output like the auroral electrojet index (AL). The area of this filter calculated from the sum of the filter coefficients measures the strength of the coupling. When the input and output are steady for a time longer than the duration of the filter the ratio of output to input is equal to this area. We find coupling strength defined in this way for Es=VBs to AL (and AU) is weakest at solar maximum and strongest at solar minimum. AL coupling displays a semiannual variation being weakest at the solstices and strongest at the equinoxes. AU coupling has only an annual variation being strongest at summer solstice. AL and AU coupling also vary with time relative to a stream interface. Es coupling is weaker after the interface, but ULF coupling is stronger. Total prediction efficiency remains about constant at the interface. The change in coupling strength with the solar cycle can be explained as an effect of more frequent saturation of the polar cap potential causing a smaller ratio of AL to Es. Stronger AL coupling at the equinoxes possibly indicates some process that makes magnetic reconnection less efficient when the dipole axis is tilted along the Earth-Sun line. Strong AU coupling at summer solstice is likely due to high conductivity in northern summer. Coupling changes at a stream interface are correlated with the presence of strong wave activity in ground and satellite measurements and may be an artifact of the method by which solar wind data are propagated.

  15. Apodized coupled resonator waveguides.

    PubMed

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  16. Optical bistability in a single-sided cavity coupled to a quantum channel

    NASA Astrophysics Data System (ADS)

    Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.

    2018-06-01

    In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.

  17. Optimization design of energy deposition on single expansion ramp nozzle

    NASA Astrophysics Data System (ADS)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  18. Bounds for OPE coefficients on the Regge trajectory

    NASA Astrophysics Data System (ADS)

    Costa, Miguel S.; Hansen, Tobias; Penedones, João

    2017-10-01

    We consider the Regge limit of the CFT correlation functions < JJOO> and < TTOO>, where J is a vector current, T is the stress tensor and O is some scalar operator. These correlation functions are related by a type of Fourier transform to the AdS phase shift of the dual 2-to-2 scattering process. AdS unitarity was conjectured some time ago to be positivity of the imaginary part of this bulk phase shift. This condition was recently proved using purely CFT arguments. For large N CFTs we further expand on these ideas, by considering the phase shift in the Regge limit, which is dominated by the leading Regge pole with spin j( ν), where ν is a spectral parameter. We compute the phase shift as a function of the bulk impact parameter, and then use AdS unitarity to impose bounds on the analytically continued OPE coefficients {C}_JJ}j(ν )} and C TTj(ν) that describe the coupling to the leading Regge trajectory of the current J and stress tensor T. AdS unitarity implies that the OPE coefficients associated to non-minimal couplings of the bulk theory vanish at the intercept value ν = 0, for any CFT. Focusing on the case of large gap theories, this result can be used to show that the physical OPE coefficients {C}_{JJT and C TTT , associated to non-minimal bulk couplings, scale with the gap Δ g as Δ g - 2 or Δ g - 4 . Also, looking directly at the unitarity condition imposed at the OPE coefficients {C_JJT and C TTT results precisely in the known conformal collider bounds, giving a new CFT derivation of these bounds. We finish with remarks on finite N theories and show directly in the CFT that the spin function j( ν) is convex, extending this property to the continuation to complex spin.

  19. Using cloud and climate data to understand warm season hydrometeorology from diurnal to monthly timescales

    NASA Astrophysics Data System (ADS)

    Betts, A. K.; Tawfik, A. B.; Desjardins, R. L.

    2016-12-01

    We use 600 station years of hourly data from 14 stations on the Canadian Prairies to map the warm season hydrometeorology. The months from April (after snowmelt) to September, have a very similar coupling between surface thermodynamics and opaque cloud cover, which has been calibrated to give cloud radiative forcing. We can derive both the mean diurnal ranges and the diurnal imbalances as a function of opaque cloud cover. For the monthly diurnal climate, we compute the coupling coefficients with opaque cloud cover and lagged precipitation. In April the diurnal cycle climate has memory of precipitation back to freeze-up in November. During the growing season months of June, July and August, there is memory of precipitation back to March. Monthly mean temperature depends strongly on cloud but little on precipitation, while monthly mean mixing ratio depends on precipitation, but rather little on cloud. The coupling coefficients to cloud and precipitation change with increasing monthly precipitation anomaly. This observational climate analysis provides a firm basis for model evaluation.

  20. Electronic transport properties of intermediately coupled superconductors: PdTe2 and Cu0.04PdTe2

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2018-01-01

    We have investigated the electrical resistivity (1.8-480 K), Seebeck coefficient (2.5-300 K) and thermal conductivity (2.5-300 K) of PdTe2 and 4% Cu intercalated PdTe2 compounds. The electrical resistivity for the compounds shows a Bloch-Gruneisen-type linear temperature (T) dependence for 100 \\text{K}, and Fermi liquid behavior (ρ (T) \\propto T2) for T<50 \\text{K} . Seebeck coefficient data exhibit a strong competition between Normal (N) and Umklapp (U) scattering processes at low T. The low-T, thermal conductivity (κ) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T-dependence below 10 K. However, high-T, κ (T) shows the usual 1/T -dependence, dominated by the U-scattering process. The electron-phonon coupling parameters, estimated from the low-T, specific-heat data and first-principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.

  1. Explosive death of conjugate coupled Van der Pol oscillators on networks

    NASA Astrophysics Data System (ADS)

    Zhao, Nannan; Sun, Zhongkui; Yang, Xiaoli; Xu, Wei

    2018-06-01

    Explosive death phenomenon has been gradually gaining attention of researchers due to the research boom of explosive synchronization, and it has been observed recently for the identical or nonidentical coupled systems in all-to-all network. In this work, we investigate the emergence of explosive death in networked Van der Pol (VdP) oscillators with conjugate variables coupling. It is demonstrated that the network structures play a crucial role in identifying the types of explosive death behaviors. We also observe that the damping coefficient of the VdP system not only can determine whether the explosive death state is generated but also can adjust the forward transition point. We further show that the backward transition point is independent of the network topologies and the damping coefficient, which is well confirmed by theoretical analysis. Our results reveal the generality of explosive death phenomenon in different network topologies and are propitious to promote a better comprehension for the oscillation quenching behaviors.

  2. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  3. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE PAGES

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-16

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  4. Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten

    2018-06-01

    We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.

  5. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  6. Regional water coefficients for U.S. industrial sectors

    DOE PAGES

    Boero, Riccardo; Pasqualini, Donatella

    2017-09-14

    Designing policies for water systems management requires the capability to assess the economic impacts of water availability and to effectively couple water withdrawals by human activities with natural hydrologic dynamics. At the core of any scientific approach to these issues there is the estimation of water withdrawals by industrial sectors in the form of water coefficients, which are measurements of the quantity of water withdrawn per dollar of GDP or output. Here, we focus on the contiguous United States and on the estimation of water coefficients for regional scale analyses. We first compare an established methodology for the estimation ofmore » national water coefficients with a parametric one we propose. Second, we introduce a method to estimate water coefficients at the level of ecological regions and we discuss how they reduce possible biases in regional analyses of water systems. Finally, we discuss advantages and limits of regional water coefficients.« less

  7. Regional water coefficients for U.S. industrial sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo; Pasqualini, Donatella

    Designing policies for water systems management requires the capability to assess the economic impacts of water availability and to effectively couple water withdrawals by human activities with natural hydrologic dynamics. At the core of any scientific approach to these issues there is the estimation of water withdrawals by industrial sectors in the form of water coefficients, which are measurements of the quantity of water withdrawn per dollar of GDP or output. Here, we focus on the contiguous United States and on the estimation of water coefficients for regional scale analyses. We first compare an established methodology for the estimation ofmore » national water coefficients with a parametric one we propose. Second, we introduce a method to estimate water coefficients at the level of ecological regions and we discuss how they reduce possible biases in regional analyses of water systems. Finally, we discuss advantages and limits of regional water coefficients.« less

  8. CCSD(T) potential energy and induced dipole surfaces for N2–H2(D2): retrieval of the collision-induced absorption integrated intensities in the regions of the fundamental and first overtone vibrational transitions.

    PubMed

    Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey

    2012-09-21

    The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.

  9. Identification and properties of molecular systems of potential use in solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Micha, D. A.; Oehrn, N. Y.

    1985-01-01

    The concepts and computational tools of theortical chemistry are used to investigate molecular properties needed in direct solar-pumped lasers. Compounds of the type RR'CXY, with R and R' organic groups, and X and Y halide atoms were identified as likely candidates because of their highly enhanced absorption coefficients over compounds with a single halide atom. The use of a combination of vibrational excitation followed by electronic excitation to enhance quantum yields at certain wavelengths is indicated. A self-consistent eikonal approximation to state-to-state transitions was tested for CH3I and is useful for other problems involving electronic energy and charge transfer. An approach to calculate potential energy surfaces and transition dipoles was developed which is based on the generation of eigenstates of the nonrelativisitc Hamiltonian followed by incorporation of the spin-orbit coupling by configuration interaction.

  10. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    PubMed

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  11. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology lubrication task because of their potential for superior friction and wearf properties in air and in an ultrahigh vacuum, spacelike environment. At the NASA Glenn Research Center, two-phase oxide ceramic eutectics, Al2O3/ZrO2(Y2O3), were directionally solidified using the laser-float-zone process, and carbon nanotubes were synthesized within a high-temperature tube furnace at 800 C. Physical vapor deposition was used to coat all quartz substrates with 5-nm-thick iron as catalyst and bondcoat, which formed iron islands resembling droplets and serving as catalyst particles on the quartz. A series of scanning electron micrographs showing multiwalled carbon nanotubes directionally grown as aligned "nanograss" on quartz is presented. Unidirectional sliding friction eperiments were conducted at Glenn with the two-layered CNT coatings in contact with the two-phase Al2O3/ZrO2(Y2O3) eutectics in air and in ultrachigh vacuum. The main criteria for judging the performance of the materials couple for solid lubrication and antistick applications in a space environment were the coefficient of friction and the wear resistance (reciprocal of wear rate), which had to be less than 0.2 and greater than 10(exp 5) N(raised dot)/cubic millimetes, respectively, in ultrahigh vacuum. In air, the coefficient of friction for the CNT coatings in contact with Al2O3/ZrO2 (Y2O3) eutectics was 0.04, one-fourth of that for quartz. In an ultrahigh vacuum, the coefficient of friction for CNT coatings in contact with Al2O3/ZrO2 (Y2O3) was one-third of that for quartz. The two-phase Al2O3/ZrO2 (Y2O3) eutectic coupled with the two-layered CNT coating met the coefficient of friction and wear resistance criteria both in air and in an ultrahigh vacuum, spacelike environment. This material's couple can dramatically improve the stiction (or adhesion), friction, and wear resistance of the contacting surfaces, which are major issues for microdevices and micromachines.

  12. Education-based health inequalities in 18,000 Norwegian couples: the Nord-Trøndelag Health Study (HUNT).

    PubMed

    Nilsen, Sara Marie; Bjørngaard, Johan Håkon; Ernstsen, Linda; Krokstad, Steinar; Westin, Steinar

    2012-11-19

    Education-based inequalities in health are well established, but they are usually studied from an individual perspective. However, many individuals are part of a couple. We studied education-based health inequalities from the perspective of couples where indicators of health were measured by subjective health, anxiety and depression. A sample of 35,980 women and men (17,990 couples) was derived from the Norwegian Nord-Trøndelag Health Study 1995-97 (HUNT 2). Educational data and family identification numbers were obtained from Statistics Norway. The dependent variables were subjective health (four-integer scale), anxiety (21-integer scale) and depression (21-integer scale), which were captured using the Hospital Anxiety and Depression Scale. The dependent variables were rescaled from 0 to 100 where 100 was the worst score. Cross-sectional analyses were performed using two-level linear random effect regression models. The variance attributable to the couple level was 42% for education, 16% for subjective health, 19% for anxiety and 25% for depression. A one-year increase in education relative to that of one's partner was associated with an improvement of 0.6 scale points (95% confidence interval = 0.5-0.8) in the subjective health score (within-couple coefficient). A one-year increase in a couple's average education was associated with an improvement of 1.7 scale points (95% confidence interval = 1.6-1.8) in the subjective health score (between-couple coefficient). There were no education-based differences in the anxiety or depression scores when partners were compared, whereas there were substantial education-based differences between couples in all three outcome measures. We found considerable clustering of education and health within couples, which highlighted the importance of the family environment. Our results support previous studies that report the mutual effects of spouses on education-based inequalities in health, suggesting that couples develop their socioeconomic position together.

  13. Temperature dependence of the helium induced broadening and shift of the Rb D1 and D2 lines

    NASA Astrophysics Data System (ADS)

    Miller, Wooddy S.; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The rates for collisional broadening and shifting of the Rb D1 (52S1/2 - 52P1/2) and D2 (52S1/2 - 52P3/2) transition induced by 4He have been measured at elevated temperatures of 373-723 K. The shift coefficients exhibit an increase of 20% from 4.36 MHz/Torr to 5.35 MHz/Torr for the D1 line and an 80% increase from 0.42 MHz/Torr to 0.99 MHz/Torr for the D2 line over the observed temperature range. Broadening coefficients exhibit a 6% increase from 17.8 MHz/Torr to 18.9 MHz/Torr and 10% from 18.5 MHz/Torr to 20.5 MHz/Torr for the D1 and D2 lines, respectively. The experimental values agree well with prior reported values within the temperature overlap regions of T < 394 K. Comparison to prior predictions from the Anderson-Talman theory using spin orbit multi reference (SOCI) ab initio potentials are superior to quantum treatments involving Allard and Baranger coupling.

  14. Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz

    NASA Astrophysics Data System (ADS)

    Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul

    2018-03-01

    This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).

  15. Excellence of numerical differentiation method in calculating the coefficients of high temperature series expansion of the free energy and convergence problem of the expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S., E-mail: chixiayzsq@yahoo.com; Solana, J. R.

    2014-12-28

    In this paper, it is shown that the numerical differentiation method in performing the coupling parameter series expansion [S. Zhou, J. Chem. Phys. 125, 144518 (2006); AIP Adv. 1, 040703 (2011)] excels at calculating the coefficients a{sub i} of hard sphere high temperature series expansion (HS-HTSE) of the free energy. Both canonical ensemble and isothermal-isobaric ensemble Monte Carlo simulations for fluid interacting through a hard sphere attractive Yukawa (HSAY) potential with extremely short ranges and at very low temperatures are performed, and the resulting two sets of data of thermodynamic properties are in excellent agreement with each other, and wellmore » qualified to be used for assessing convergence of the HS-HTSE for the HSAY fluid. Results of valuation are that (i) by referring to the results of a hard sphere square well fluid [S. Zhou, J. Chem. Phys. 139, 124111 (2013)], it is found that existence of partial sum limit of the high temperature series expansion series and consistency between the limit value and the true solution depend on both the potential shapes and temperatures considered. (ii) For the extremely short range HSAY potential, the HS-HTSE coefficients a{sub i} falls rapidly with the order i, and the HS-HTSE converges from fourth order; however, it does not converge exactly to the true solution at reduced temperatures lower than 0.5, wherein difference between the partial sum limit of the HS-HTSE series and the simulation result tends to become more evident. Something worth mentioning is that before the convergence order is reached, the preceding truncation is always improved by the succeeding one, and the fourth- and higher-order truncations give the most dependable and qualitatively always correct thermodynamic results for the HSAY fluid even at low reduced temperatures to 0.25.« less

  16. Measuring monotony in two-dimensional samples

    NASA Astrophysics Data System (ADS)

    Kachapova, Farida; Kachapov, Ilias

    2010-04-01

    This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between |r| and 1, where r is the Pearson's correlation coefficient for the sample; that the monotony coefficient equals 1 for any monotone increasing sample and equals -1 for any monotone decreasing sample. This article contains a few examples demonstrating that the monotony coefficient is a more accurate measure of the degree of monotone dependence for a non-linear relationship than the Pearson's, Spearman's and Kendall's correlation coefficients. The monotony coefficient is a tool that can be applied to samples in order to find dependencies between random variables; it is especially useful in finding couples of dependent variables in a big dataset of many variables. Undergraduate students in mathematics and science would benefit from learning and applying this measure of monotone dependence.

  17. Coupled reactors analysis: New needs and advances using Monte Carlo methodology

    DOE PAGES

    Aufiero, M.; Palmiotti, G.; Salvatores, M.; ...

    2016-08-20

    Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery theory that allows a physics understanding of the main features of these systems. However, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. This implies a MC calculation of the coupling parameters defined by Avery and of the sensitivity coefficients that allow further detailed physics analysis. The results presented in this paper show that the MC code SERPENT has been successfully modifed tomore » meet the required capabilities.« less

  18. Intramolecular electrocatalysis of 8-oxo-guanine oxidation: secondary structure control of electron transfer in osmium-labeled oligonucleotides.

    PubMed

    Holmberg, Rebecca C; Tierney, Mark T; Ropp, Patricia A; Berg, Eric E; Grinstaff, Mark W; Thorp, H Holden

    2003-10-06

    A phosphoramidite containing Os(bpy)(3)(2+) (Os; bpy, 2,2'-bipyridine) with a three-carbon linker was synthesized and used to prepare oligonucleotides with the Os redox catalyst appended to the 5'-end. The electrogenerated Os(III) is capable of oxidizing 7,8-dihydro-8-oxo-guanine (8G), but 8G is not electrochemically reactive at indium tin oxide electrodes because of poor electrode kinetics for the direct reaction. The hairpin-forming oligonucleotide Os-5'-ATG TCA GAT TAG CAG GCC TGA CAT 8G was synthesized and characterized by thermal denaturation and native gel electrophoresis both in the hairpin form and when hybridized to its Watson-Crick complement. The redox potential in both forms of the appended Os(III/II) couple was 0.63 V (all potentials vs Ag/AgCl), which is identical to that for the free complex. The diffusion coefficients of the hairpin form (10.2 x 10(-)(7) cm(2)/s) and the duplex form (8.7 x 10(-)(7) cm(2)/s) were consistent with values expected from studies of noncovalently bound redox labels, which suggest that the measured diffusion coefficient should be that of the appended DNA molecule. The oligonucleotide was designed such that in the duplex form, the 8G is far from the Os(III/II) couple, but in the hairpin form, the 8G is situated close to the redox center. For the duplex form, cyclic voltammetry studies showed that mediated oxidation of the 8G nucleobase occurred only through bimolecular reaction of the electrogenerated Os(III) of one duplex with the 8G of another duplex. However, in the hairpin form, intramolecular electron transfer from 8G to Os(III) in the same molecule was apparent in both chronoamperometry and cyclic voltammetry.

  19. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.

    PubMed

    Smith, R W; Yang, B J; Huang, W D

    2004-11-01

    Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.

  20. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-07-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k- ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  1. Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Blas, Jorge; Eberhardt, Otto; Krause, Claudius

    We perform a Bayesian statistical analysis of the constraints on the nonlinear Effective Theory given by the Higgs electroweak chiral Lagrangian. We obtain bounds on the effective coefficients entering in Higgs observables at the leading order, using all available Higgs-boson signal strengths from the LHC runs 1 and 2. Using a prior dependence study of the solutions, we discuss the results within the context of natural-sized Wilson coefficients. We further study the expected sensitivities to the different Wilson coefficients at various possible future colliders. Finally, we interpret our results in terms of some minimal composite Higgs models.

  2. Isotopic effects in the collision of CH+ with He

    NASA Astrophysics Data System (ADS)

    Werfelli, Ghofran; Balança, Christian; Stoecklin, Thierry; Kerkeni, Boutheïna; Feautrier, Nicole

    2017-07-01

    Deuterated species are proved to be helpful in understanding the physical and chemical properties in various astrophysical environments. The present study is dedicated to the rotational excitation of CD+ by collision with 4He and to the comparison between CD+-He and CH+-He rate coefficients. Close coupling CD+-He rotational cross-sections are calculated within the rigid-body approach for collision energies up to 3000 cm-1 and the corresponding rate coefficients are evaluated for the transitions of levels up to j = 10 and temperatures up to 300 K. Significant differences are found between the rate coefficients of the two isotopologues.

  3. Local Probing of Magnetoelectric Coupling and Magnetoelastic Control of Switching in BiFeO3-CoFe2O4 Thin-Film Nanocomposite

    DTIC Science & Technology

    2013-07-25

    at remanent state (Fig. 4(d)). The obtained ME coefficient (the highest value we measure is 102 mV/ cm/Oe) and is comparable to that of bulk PZT -CFO...For a large field (H > Hc), a mag- netostrictive strain (k) must be already saturated and the ME coefficient estimated (Fig. 4) should be nearly...zero at high field (as a function of piezomagnetic coefficient (dk=dH), leading to a maximum in the ME response near Hc. That this is not observed can be

  4. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  5. Coupled Protein Diffusion and Folding in the Cell

    PubMed Central

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. PMID:25436502

  6. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Zhou, Z. R.; Ouyang, H.; Jin, X. S.; Zhu, M. H.; Liu, Q. Y.

    2010-10-01

    The present work proposes friction coupling at the wheel-rail interface as the mechanism for formation of rail corrugation. Stability of a wheelset-track system is studied using the finite element complex eigenvalue method. Two models for a wheelset-track system on a tight curved track and on a straight track are established. In these two models, motion of the wheelset is coupled with that of the rail by friction. Creep force at the interface is assumed to become saturated and approximately equal to friction force, which is equal to the normal contact force multiplied by dynamic coefficient of friction. The rail is supported by vertical and lateral springs and dampers at the positions of sleepers. Numerical results show that there is a strong propensity of self-excited vibration of the wheelset-track system when the friction coefficient is larger than 0.21. Some unstable frequencies fall in the range 60-1200 Hz, which correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports all have important influences on the rail corrugation formation. Bringing the friction coefficient below a certain level can suppress or eliminate rail corrugation.

  7. Differentiating the Bishop ash bed and related tephra layers by elemental-based similarity coefficients of volcanic glass shards using solution inductively coupled plasma-mass spectrometry (S-ICP-MS)

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.

    2007-01-01

    Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.

  8. Coupled protein diffusion and folding in the cell.

    PubMed

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.

  9. DIFFRACTION SYNCHRONIZATION OF LASERS,

    DTIC Science & Technology

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  10. Influence of motion coupling and nonlinear effects on parametric roll for a floating production storage and offloading platform.

    PubMed

    Greco, M; Lugni, C; Faltinsen, O M

    2015-01-28

    Occurrence and features of parametric roll (PR) on a weather-vaning floating production storage and offloading (FPSO) platform with a turret single-point mooring-line system are examined. The main focus is on the relevance of motions coupling and nonlinear effects on this phenomenon and on more general unstable conditions as well as on the occurrence and severity of water on deck. This work was motivated by recent experiments on an FPSO model without mooring systems highlighting the occurrence of parametric resonance owing to roll-yaw coupling. A three-dimensional numerical hybrid potential-flow seakeeping solver was able to capture this behaviour. The same method, extended to include the mooring lines, is adopted here to investigate the platform behaviour for different incident wavelengths, steepnesses, headings, locations of the turret and pretensions. From the results, sway and yaw tend to destabilize the system, also bringing chaotic features. The sway-roll-yaw coupling widens the existence region of PR resonance and increases PR severity; it also results in a larger amount of shipped water, especially at smaller wavelength-to-ship length ratio and larger steepness. The chaotic features are excited when a sufficiently large yaw amplitude is reached. Consistently, a simplified stability analysis showed the relevance of nonlinear-restoring coefficients, first those connected with the sway-yaw coupling then those associated with the roll-yaw coupling, both destabilizing. From the stability analysis, the system is unstable for all longitudinal locations of the turret and pre-tensions examined, but the instability weakens as the turret is moved forward, and the pre-tension is increased. The use of a suitable dynamic-positioning system can control the horizontal motions, avoiding the instability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Influence of motion coupling and nonlinear effects on parametric roll for a floating production storage and offloading platform

    PubMed Central

    Greco, M.; Lugni, C.; Faltinsen, O. M.

    2015-01-01

    Occurrence and features of parametric roll (PR) on a weather-vaning floating production storage and offloading (FPSO) platform with a turret single-point mooring-line system are examined. The main focus is on the relevance of motions coupling and nonlinear effects on this phenomenon and on more general unstable conditions as well as on the occurrence and severity of water on deck. This work was motivated by recent experiments on an FPSO model without mooring systems highlighting the occurrence of parametric resonance owing to roll–yaw coupling. A three-dimensional numerical hybrid potential-flow seakeeping solver was able to capture this behaviour. The same method, extended to include the mooring lines, is adopted here to investigate the platform behaviour for different incident wavelengths, steepnesses, headings, locations of the turret and pretensions. From the results, sway and yaw tend to destabilize the system, also bringing chaotic features. The sway–roll–yaw coupling widens the existence region of PR resonance and increases PR severity; it also results in a larger amount of shipped water, especially at smaller wavelength-to-ship length ratio and larger steepness. The chaotic features are excited when a sufficiently large yaw amplitude is reached. Consistently, a simplified stability analysis showed the relevance of nonlinear-restoring coefficients, first those connected with the sway–yaw coupling then those associated with the roll–yaw coupling, both destabilizing. From the stability analysis, the system is unstable for all longitudinal locations of the turret and pre-tensions examined, but the instability weakens as the turret is moved forward, and the pre-tension is increased. The use of a suitable dynamic-positioning system can control the horizontal motions, avoiding the instability. PMID:25512590

  12. Computational Modeling of Piezoelectric Foams

    NASA Astrophysics Data System (ADS)

    Challagulla, K. S.; Venkatesh, T. A.

    2013-02-01

    Piezoelectric materials, by virtue of their unique electromechanical characteristics, have been recognized for their potential utility in many applications as sensors and actuators. However, the sensing or actuating functionality of monolithic piezoelectric materials is generally limited. The composite approach to piezoelectric materials provides a unique opportunity to access a new design space with optimal mechanical and coupled characteristics. The properties of monolithic piezoelectric materials can be enhanced via the additive approach by adding two or more constituents to create several types of piezoelectric composites or via the subtractive approach by introducing controlled porosity in the matrix materials to create porous piezoelectric materials. Such porous piezoelectrics can be tailored to demonstrate improved signal-to-noise ratio, impedance matching, and sensitivity, and thus, they can be optimized for applications such as hydrophone devices. This article captures key results from the recent developments in the field of computational modeling of novel piezoelectric foam structures. It is demonstrated that the fundamental elastic, dielectric, and piezoelectric properties of piezoelectric foam are strongly dependent on the internal structure of the foams and the material volume fraction. The highest piezoelectric coupling constants and the highest acoustic impedance are obtained in the [3-3] interconnect-free piezoelectric foam structures, while the corresponding figures of merit for the [3-1] type long-porous structure are marginally higher. Among the [3-3] type foam structures, the sparsely-packed foam structures (with longer and thicker interconnects) display higher coupling constants and acoustic impedance as compared to closepacked foam structures (with shorter and thinner interconnects). The piezoelectric charge coefficients ( d h), the hydrostatic voltage coefficients ( g h), and the hydrostatic figures of merit ( d hgh) are observed to be significantly higher for the [3-3] type piezoelectric foam structures as compared to the [3-1] type long-porous materials, and these can be enhanced significantly by modifying the aspect ratio of the porosity in the foam structures as well.

  13. General aspects of Gauss-Bonnet models without potential in dimension four

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com

    In the present work, the isotropic and homogenous solutions with spatial curvature k =0 of four dimensional Gauss-Bonnet models are characterized. The main assumption is that the scalar field φ which is coupled to the Gauss-Bonnet term has no potential [1]–[2]. Some singular and some eternal solutions are described. The evolution of the universe is given in terms of a curve γ=( H (φ), φ) which is the solution of a polynomial equation P ( H {sup 2}, φ)=0 with φ dependent coefficients. In addition, it is shown that the initial conditions in these models put several restrictions on themore » evolution. For instance, an universe initially contracting will be contracting always for future times and an universe that is expanding was always expanding at past times. Thus, there are no cyclic cosmological solutions for this model. These results are universal, that is, independent on the form of the coupling f (φ) between the scalar field and the Gauss-Bonnet term. In addition, a proof that at a turning point φ-dot →0 a singularity necessarily emerges is presented, except for some specific choices of the coupling. This is valid unless the Hubble constant H → 0 at this point. This proof is based on the Raychaudhuri equation for the model. The description presented here is in part inspired in the works [3]–[4]. However, the mathematical methods that are implemented are complementary of those in these references, and they may be helpful for study more complicated situations in a future.« less

  14. Prevalence of consanguineous marriages in Syria.

    PubMed

    Othman, Hasan; Saadat, Mostafa

    2009-09-01

    Consanguineous marriage is the union of individuals having at least one common ancestor. The present cross-sectional study was done in order to illustrate the prevalence and types of consanguineous marriages in the Syrian Arab Republic. Data on consanguineous marriages were collected using a simple questionnaire. The total number of couples in this study was 67,958 (urban areas: 36,574 couples; rural areas: 31,384 couples) from the following provinces: Damascus, Hamah, Tartous, Latakia, Al Raqa, Homs, Edlep and Aleppo. In each province urban and rural areas were surveyed. Consanguineous marriage was classified by the degree of relationship between couples: double first cousins (F=1/8), first cousins (F=1/16), second cousins (F=1/64) and beyond second cousins (F<1/64). The coefficient of inbreeding (F) was calculated for each couple and the mean coefficient of inbreeding (alpha) estimated for the population of each province, stratified by rural and urban areas. The results showed that the overall frequency of consanguinity was 30.3% in urban and 39.8% in rural areas. Total rate of consanguinity was found to be 35.4%. The equivalent mean inbreeding coefficient (alpha) was 0.0203 and 0.0265 in urban and rural areas, respectively. The mean proportion of consanguineous marriages ranged from 67.5% in Al Raqa province to 22.1% in Latakia province. The alpha-value ranged from 0.0358 to 0.0127 in these two provinces, respectively. The western and north-western provinces (including Tartous, Lattakia and Edlep) recorded lower levels of inbreeding than the central, northern and southern provinces. The overall alpha-value was estimated to be about 0.0236 for the studied populations. First cousin marriages (with 20.9%) were the most common type of consanguineous marriages, followed by double first cousin (with 7.8%) and second cousin marriages (with 3.3%), and beyond second cousin was the least common type.

  15. Proposal for an optical multicarrier generator based on single silicon micro-ring modulator

    NASA Astrophysics Data System (ADS)

    Bhowmik, Bishanka Brata; Gupta, Sumanta

    2015-08-01

    We propose an optical multicarrier generation technique using silicon micro-ring modulator (MRM) and analyze the scheme. Numerical studies have been done for three types MRMs having different power coupling coefficients. The proposed scheme is found to generate four optical carriers having 12.5 GHz spacing. According to simulation, the maximum side-mode-suppression ratio (SMSR) of ~16.3 dB with flatness of ~0.2 dB is achieved by using this scheme. The minimum extinction ratio (ER) of the generated carriers is found to be more than 35 dB. We also propose modulator driver circuit to generate RF signal, which is needed to generate multicarrier using MRM. The effect of coupling coefficient on the SMSR of the generated carriers is also investigated.

  16. A modified thickness extensional disk transducer.

    PubMed

    Trolier, S E; Xu, Q C; Newnham, R E

    1988-01-01

    Photolithography and chemical etching were investigated as a means of patterning miniature piezoelectric devices. Using a processing procedure analogous to that utilized in the production of integrated circuitry, concentrated hydrochloric acid and a commercially available photoresist were used to fabricate a number of complex structures from soft lead zirconate titanate (PZT) substrates. Among the devices produced in this manner was a modified thickness-mode resonator etched to destroy the simple geometry responsible for radial vibrations. The resultant transducer demonstrated significantly smaller amplitudes for lateral resonances and a marked reduction in the effective planar coupling coefficient over the unaltered disk. The results indicate that photolithographic patterning is useful both for eliminating spurious resonances from transducers for medical imaging or nondestructive evaluation and for engineering low planar coupling coefficients into a variety of substrate materials.

  17. Experimental observation of electron bounce resonance through electron energy distribution measurement in a finite size inductively coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Seuli; Kang, Hyun-Ju; Kim, Yu-Sin

    2016-06-15

    The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As amore » result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.« less

  18. Effect of damage on elastically tailored composite laminates

    NASA Technical Reports Server (NTRS)

    Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor

    1991-01-01

    A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.

  19. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    NASA Astrophysics Data System (ADS)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  20. Education-based health inequalities in 18,000 Norwegian couples: the Nord-Trøndelag Health Study (HUNT)

    PubMed Central

    2012-01-01

    Background Education-based inequalities in health are well established, but they are usually studied from an individual perspective. However, many individuals are part of a couple. We studied education-based health inequalities from the perspective of couples where indicators of health were measured by subjective health, anxiety and depression. Methods A sample of 35,980 women and men (17,990 couples) was derived from the Norwegian Nord-Trøndelag Health Study 1995–97 (HUNT 2). Educational data and family identification numbers were obtained from Statistics Norway. The dependent variables were subjective health (four-integer scale), anxiety (21-integer scale) and depression (21-integer scale), which were captured using the Hospital Anxiety and Depression Scale. The dependent variables were rescaled from 0 to 100 where 100 was the worst score. Cross-sectional analyses were performed using two-level linear random effect regression models. Results The variance attributable to the couple level was 42% for education, 16% for subjective health, 19% for anxiety and 25% for depression. A one-year increase in education relative to that of one’s partner was associated with an improvement of 0.6 scale points (95% confidence interval = 0.5–0.8) in the subjective health score (within-couple coefficient). A one-year increase in a couple’s average education was associated with an improvement of 1.7 scale points (95% confidence interval = 1.6–1.8) in the subjective health score (between-couple coefficient). There were no education-based differences in the anxiety or depression scores when partners were compared, whereas there were substantial education-based differences between couples in all three outcome measures. Conclusions We found considerable clustering of education and health within couples, which highlighted the importance of the family environment. Our results support previous studies that report the mutual effects of spouses on education-based inequalities in health, suggesting that couples develop their socioeconomic position together. PMID:23157803

  1. Impact of Coupled Radiation and Ablation on the Aerothermodynamics of Meteor Entries

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Stern, Eric C.

    2017-01-01

    A high-fidelity approach for simulating the aerothermodynamic environments of meteor entries is developed. Two primary components of this model are coupled radiation and coupled ablation. Coupled radiation accounts for the impact of radiation on the flow field energy equations, while coupled ablation explicitly models the injection of ablation products within the flow field and radiation simulations. For a meteoroid with a velocity of 20 km/s, coupled radiation reduces the stagnation point radiative heating by over 60%. For altitudes below 40 km, the impact of coupled radiation on the flow field structure is shown to be fundamentally different, as a result of the large optical thicknesses, than that seen for reentry vehicles, which do not reach such altitudes at velocities greater than 10 km/s. The impact of coupled ablation (with coupled radiation) is shown to provide at least a 70% reduction in the radiative heating relative to the coupled-radiation-only cases. This large reduction is partially the result of the low ionization energies, relative to air species, of ablation products. The low ionization energies of ablation products, such as Mg and Ca, provide strong photoionization and atomic line absorption in regions of the spectrum that air species do not. MgO and CaO are also shown to provide significant absorption. Turbulence is shown to impact the distribution of ablation products through the shock- layer, which results in up to a 100% increase in the radiative heating downstream of the stagnation point. To create a database of heat transfer coefficients the developed model was applied to a range of cases. This database considered velocities ranging from 14 to 20 km/s, altitudes ranging from 20 to 50 km, and nose radii ranging from 1 to 100 m. The heat transfer coefficients from these simulations are below 0.045 for the range of cases (with turbulence), which is significantly lower than the canonical value of 0.1.

  2. Thermoelectric properties of an interacting quantum dot based heat engine

    NASA Astrophysics Data System (ADS)

    Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio

    2017-06-01

    We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

  3. Coupled Responses of Sewol, Twin Barges and Slings During Salvage

    NASA Astrophysics Data System (ADS)

    Yao, Zong; Wang, Wei-ping; Jiang, Yan; Chen, Shi-hai

    2018-04-01

    Korean Sewol is successfully lifted up with the strand jack system based on twin barges. During the salvage operation, two barges and Sewol encounter offshore environmental conditions of wave, current and wind. It is inevitable that the relative motions among the three bodies are coupled with the sling tensions, which may cause big dynamic loads for the lifting system. During the project engineering phase and the site operation, it is necessary to build up a simulation model that can precisely generate the coupled responses in order to define a suitable weather window and monitor risks for the salvage operation. A special method for calculating multibody coupled responses is introduced into Sewol salvage project. Each body's hydrodynamic force and moment in multibody configuration is calculated in the way that one body is treated as freely moving in space, while other bodies are set as fixed globally. The hydrodynamic force and moment are then applied into a numerical simulation model with some calibration coefficients being inserted. These coefficients are calibrated with the model test results. The simulation model built up this way can predict coupled responses with the similar accuracy as the model test and full scale measurement, and particularly generate multibody shielding effects. Site measured responses and the responses only resulted from from the simulation keep project management simultaneously to judge risks of each salvage stage, which are important for success of Sewol salvage.

  4. Couple stress theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-01-01

    New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

  5. CONSANGUINEOUS MARRIAGES AMONG IRANIAN MANDAEANS LIVING IN SOUTH-WEST IRAN.

    PubMed

    Saadat, Mostafa; Zarghami, Mahdis

    2018-07-01

    SummarySeveral studies have indicated that consanguineous marriages (unions between biologically related persons) are associated with increased risk of autosomal recessive diseases and several multifactorial traits. Mandaeans are a closed ethno-religious community living in areas of southern Iraq and Iran (Khuzestan Province). There are currently no data on the prevalence of consanguineous marriages among Mandaeans. The present study was carried out in 2016 to determine the prevalence of consanguinity among Iranian Mandaeans living in Khuzestan Province, south-west Iran. A total of 137 couples (urban areas: 79 couples; rural areas: 58 couples) were included in the study. Information on the consanguineous marriages of the subjects was collected through direct interviews. Marriages were classified by the degree of relationship between couples as double first cousins, first cousins, first cousin once removed, second cousins and unrelated marriages. The coefficient of inbreeding (F) was calculated for each couple and the mean coefficient of inbreeding (α) estimated for the population, stratified by rural and urban areas. The overall frequency of consanguinity was found to be 50.7% in urban and 86.2% in rural areas. There was a significant difference between rural and urban areas in types of marriages (χ 2=24.8, df=4, p<0.001) and first cousin marriages (51.8%) were the most common type. The overall α-value was estimated to be 0.0363 for the Iranian Mandaean population.

  6. Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective

    NASA Astrophysics Data System (ADS)

    Corbett, Tyler; Joglekar, Aniket; Li, Hao-Lin; Yu, Jiang-Hao

    2018-05-01

    We consider extended scalar sectors of the Standard Model as ultraviolet complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models which generate the dimension-six effective operator, | H|6, at tree level and proceed to identify the full set of tree-level dimension-six operators by integrating out the heavy scalars. Of seven models which generate | H|6 at tree level only two, quadruplets of hypercharge Y = 3 Y H and Y = Y H , generate only this operator. Next we perform global fits to constrain relevant Wilson coefficients from the LHC single Higgs measurements as well as the electroweak oblique parameters S and T. We find that the T parameter puts very strong constraints on the Wilson coefficient of the | H|6 operator in the triplet and quadruplet models, while the singlet and doublet models could still have Higgs self-couplings which deviate significantly from the standard model prediction. To determine the extent to which the | H|6 operator could be constrained, we study the di-Higgs signatures at the future 100 TeV collider and explore future sensitivity of this operator. Projected onto the Higgs potential parameters of the extended scalar sectors, with 30 ab-1 luminosity data we will be able to explore the Higgs potential parameters in all seven models.

  7. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.

    PubMed

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-12-12

    The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.

  8. Ion energy distributions and the density of CH3 radicals in a low pressure inductively coupled CH4/H2 plasma used for nanocrystalline diamond deposition

    NASA Astrophysics Data System (ADS)

    Okada, Katsuyuki; Komatsu, Shojiro; Matsumoto, Seiichiro

    2003-11-01

    Ion energy distributions (IEDs) and the density of CH3 radicals (n) in a 13.56 MHz radio frequency (rf) low pressure inductively coupled CH4/H2 plasma used for nanocrystalline diamond deposition have been investigated with a quadrupole mass spectrometer. The energy distributions of positive ions were measured in a CH4/H2 plasma with 50 mTorr of the gas pressure at 500 W of the plasma input power, and were compared with those of an Ar plasma. We have found that the IEDs of Ar+, CH4+, and C2H5+ have a nearly monoenergetic peak, and a hump due to a small degree of capacitive coupling. The plasma potentials obtained from the peaks are consistent with the previously reported values measured with a Langmuir probe. On the other hand, the IEDs of H+, H2+, and H3+ have a clear asymmetric double peak due to the modulation of rf driven glow discharge. The n monotonously increases with increasing pressure. The n indicates that CH3 radicals are main precursors for the growth of nanocrystalline diamond. The estimated sticking coefficient of the CH3 radical is comparable with the reported value.

  9. Measurement Techniques of the Magneto-Electric Coupling in Multiferroics

    PubMed Central

    Fetisov, Y. K.; Caruntu, G.; Srinivasan, G.

    2017-01-01

    The current surge of interest in multiferroic materials demands specialized measurement techniques to support multiferroics research. In this review article we detail well-established measurement techniques of the magneto-electric coupling coefficient in multiferroic materials, together with newly proposed ones. This work is intended to serve as a reference document for anyone willing to develop experimental measurement techniques of multiferroic materials. PMID:28817089

  10. Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    2000-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.

  11. Equivalent Circuit Model of Low-Frequency Magnetoelectric Effect in Disk-Type Terfenol-D/PZT Laminate Composites Considering a New Interface Coupling Factor.

    PubMed

    Lou, Guofeng; Yu, Xinjie; Lu, Shihua

    2017-06-15

    This paper describes the modeling of magnetoelectric (ME) effects for disk-type Terfenol-D (Tb 0.3 Dy 0.7 Fe 1.92 )/PZT (Pb(Zr,Ti)O₃) laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operating due to the epoxy resin adhesive bonding condition, the magnetostrictive and piezoelectric layers were first modeled through the equation of motion separately, and then coupled together with a new interface coupling factor k c , which physically reflects the strain transfer between the phases. Furthermore, a theoretical expression containing k c for the transverse ME voltage coefficient α v and the optimum thickness ratio n optim to which the maximum ME voltage coefficient corresponds were derived from the modified equivalent circuit of ME laminate, where the interface coupling factor acted as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor k c , two sets of weights, i.e., 100 g and 500 g, were placed on the top of the ME laminates with the same thickness ratio n in the sample fabrication. A total of 22 T-T mode disk-type ME laminate samples with different configurations were fabricated. The interface coupling factors determined from the measured α v and the DC bias magnetic field H bias were 0.11 for 500 g pre-mechanical load and 0.08 for 100 g pre-mechanical load. Furthermore, the measured optimum thickness ratios were 0.61 for k c = 0.11 and 0.56 for k c = 0.08. Both the theoretical ME voltage coefficient α v and optimum thickness ratio n optim containing k c agreed well with the measured data, verifying the reasonability and correctness for the introduction of k c in the modified equivalent circuit model.

  12. Equivalent Circuit Model of Low-Frequency Magnetoelectric Effect in Disk-Type Terfenol-D/PZT Laminate Composites Considering a New Interface Coupling Factor

    PubMed Central

    Lou, Guofeng; Yu, Xinjie; Lu, Shihua

    2017-01-01

    This paper describes the modeling of magnetoelectric (ME) effects for disk-type Terfenol-D (Tb0.3Dy0.7Fe1.92)/PZT (Pb(Zr,Ti)O3) laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operating due to the epoxy resin adhesive bonding condition, the magnetostrictive and piezoelectric layers were first modeled through the equation of motion separately, and then coupled together with a new interface coupling factor kc, which physically reflects the strain transfer between the phases. Furthermore, a theoretical expression containing kc for the transverse ME voltage coefficient αv and the optimum thickness ratio noptim to which the maximum ME voltage coefficient corresponds were derived from the modified equivalent circuit of ME laminate, where the interface coupling factor acted as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor kc, two sets of weights, i.e., 100 g and 500 g, were placed on the top of the ME laminates with the same thickness ratio n in the sample fabrication. A total of 22 T-T mode disk-type ME laminate samples with different configurations were fabricated. The interface coupling factors determined from the measured αv and the DC bias magnetic field Hbias were 0.11 for 500 g pre-mechanical load and 0.08 for 100 g pre-mechanical load. Furthermore, the measured optimum thickness ratios were 0.61 for kc = 0.11 and 0.56 for kc = 0.08. Both the theoretical ME voltage coefficient αv and optimum thickness ratio noptim containing kc agreed well with the measured data, verifying the reasonability and correctness for the introduction of kc in the modified equivalent circuit model. PMID:28617352

  13. A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2001-01-01

    Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.

  14. Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array

    NASA Astrophysics Data System (ADS)

    Ni, Shuang; Wu, Baojian; Liu, Yawen

    2018-01-01

    The miniaturization and integration of optical switches are necessary for photonic switching networks and the utilization of magneto optical effects is a promising candidate. We propose a Sagnac optical switch chip based on the principle of nonreciprocal phase shift (NPS) of the magneto-optical (MO) micro-ring (MOMR) array, composed of SiO2/Si/Ce:YIG/SGGG. The MO switching function is realized by controlling the drive current in the snake-like metal microstrip circuit layered on the MOMRs. The transmission characteristics of the Sagnac MO switch chip dependent on magnetization intensity, waveguide coupling coefficient and waveguide loss are simulated. By optimizing the coupling coefficients, we design an MO switch using two serial MOMRs with a circumference of 38.37 μm, and the 3dB bandwidth and the extinction ratio are respectively up to 1.6 nm and 50dB for the waveguide loss coefficient of ?. And the switching magnetization can be further reduced by increasing the number of parallel MOMRs. The frequency response of the MO Sagnac switch is analyzed as well.

  15. Weighted augmented Jacobian matrix with a variable coefficient method for kinematics mapping of space teleoperation based on human-robot motion similarity

    NASA Astrophysics Data System (ADS)

    Shi, Zhong; Huang, Xuexiang; Hu, Tianjian; Tan, Qian; Hou, Yuzhuo

    2016-10-01

    Space teleoperation is an important space technology, and human-robot motion similarity can improve the flexibility and intuition of space teleoperation. This paper aims to obtain an appropriate kinematics mapping method of coupled Cartesian-joint space for space teleoperation. First, the coupled Cartesian-joint similarity principles concerning kinematics differences are defined. Then, a novel weighted augmented Jacobian matrix with a variable coefficient (WAJM-VC) method for kinematics mapping is proposed. The Jacobian matrix is augmented to achieve a global similarity of human-robot motion. A clamping weighted least norm scheme is introduced to achieve local optimizations, and the operating ratio coefficient is variable to pursue similarity in the elbow joint. Similarity in Cartesian space and the property of joint constraint satisfaction is analysed to determine the damping factor and clamping velocity. Finally, a teleoperation system based on human motion capture is established, and the experimental results indicate that the proposed WAJM-VC method can improve the flexibility and intuition of space teleoperation to complete complex space tasks.

  16. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient

    NASA Astrophysics Data System (ADS)

    Hande, Vinayak; Shojaei Baghini, Maryam

    2015-08-01

    A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2

  17. Application of the strongly coupled-mode theory to integrated optical devices

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A theory for strongly coupled waveguides is discussed and applied to two- and three-waveguide couplers and optical wavelength filters. This theory makes use of an exact analytical relation governing the coupling coefficients and the overlap integrals. It removes almost all of the constraints imposed by a simpler and approximate coupled-mode theory by Marcatili (1986). It also satisfies the energy conservation and the reciprocity theorem self-consistently. Very good numerical results with the overlap integral as large as 49 percent are shown. The applications to electrooptical modulators, power dividers, power transfer devices, and optical filters are all presented with numerical results.

  18. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  19. Greybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Yong; Li, Peng-Cheng; Chen, Bin

    2018-02-01

    We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on various parameters including the angular momentum number, the nonminimally coupling constant, the spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance it, but they both suppress the energy emission rate of Hawking radiation.

  20. Shear Viscosity Coefficient of 5d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-07-01

    In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.

  1. Characterization and global modelling of low-pressure hydrogen-based RF plasmas suitable for surface cleaning processes

    NASA Astrophysics Data System (ADS)

    Škoro, Nikola; Puač, Nevena; Lazović, Saša; Cvelbar, Uroš; Kokkoris, George; Gogolides, Evangelos

    2013-11-01

    In this paper we present results of measurements and global modelling of low-pressure inductively coupled H2 plasma which is suitable for surface cleaning applications. The plasma is ignited at 1 Pa in a helicon-type reactor and is characterized using optical emission measurements (optical actinometry) and electrical measurements, namely Langmuir and catalytic probe. By comparing catalytic probe data obtained at the centre of the chamber with optical actinometry results, an approximate calibration of the actinometry method as a semi-quantititative measure of H density was achieved. Coefficients for conversion of actinometric ratios to H densities are tabulated and provided. The approximate validity region of the simple actinometry formula for low-pressure H2 plasma is discussed in the online supplementary data (stacks.iop.org/JPhysD/46/475206/mmedia). Best agreement with catalytic probe results was obtained for (Hβ, Ar750) and (Hβ, Ar811) actinometric line pairs. Additionally, concentrations of electrons and ions as well as plasma potential, electron temperature and ion fluxes were measured in the chamber centre at different plasma powers using a Langmuir probe. Moreover, a global model of an inductively coupled plasma was formulated using a compiled reaction set for H2/Ar gas mixture. The model results compared reasonably well with the results on H atom and charge particle densities and a sensitivity analysis of important input parameters was conducted. The influence of the surface recombination, ionization, and dissociation coefficients, and the ion-neutral collision cross-section on model results was demonstrated.

  2. Assessment of langatate material constants and temperature coefficients using SAW delay line measurements.

    PubMed

    Sturtevant, Blake T; Pereira da Cunha, Mauricio

    2010-03-01

    This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.

  3. Optical characteristics of the nanoparticle coupled to a quantum molecular aggregate

    NASA Astrophysics Data System (ADS)

    Ropakova, I. Yu.; Zvyagin, A. A.

    2017-11-01

    Optical characteristics of a single nanoparticle, coupled to the one-dimensional quantum molecular aggregate is studied. Depending on the values of the coupling of the particle and its own frequency, with respect to the own frequency of the aggregated molecules, and the strength of the aggregation, the dynamical relative permittivity of the nanoparticle manifests the contribution from the exciton band, or/and the ones from the local level(s) caused by the particle. The refractive index and the extinction coefficient of the nanoparticle is also calculated.

  4. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boev, M. V.; Kovalev, V. M., E-mail: vadimkovalev@isp.nsc.ru

    We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocitymore » renormalization are strongly different below and above the critical temperature.« less

  5. Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.

    PubMed

    Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel

    2015-01-26

    In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.

  6. Electron-ion coupling in semiconductors beyond Fermi's Golden Rule [On the electron-ion coupling in semiconductors beyond Fermi's Golden Rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Nikita; Li, Zheng; Tkachenko, Victor

    2017-01-31

    In the present study, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement ofmore » simulation results with available experimental data.« less

  7. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-01-01

    The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.

  8. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics.

    PubMed

    Danel, J-F; Kazandjian, L; Zérah, G

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  9. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.; Zérah, G.

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  10. Rapid evaluation for dielectronic recombination rate coefficients of the H-like isoelectronic sequence.

    NASA Astrophysics Data System (ADS)

    Teng, H.; Xu, Z.

    1996-09-01

    The authors present a set of accurate formulae for the rapid calculation of dielectronic recombination rate coefficients of H-like ions from Ne (Z = 10) to Ni (Z = 29) with an electron temperature range from 0.6 to 10 keV. This set of formulae are obtained by fitting directly the dielectronic recombination rate coefficients calculated on the basis of the intermediate - coupling multi - configuration Hartree-Fock model made by Karim and Bhalla (1988). The dielectronic recombination rate coefficients from these formulae are in close agreement with the original results of Karim et al. The errors are generally less than 0.1%. The results are also compared with the ones obtained by a set of new rate formulae developed by Hahn. These formulae can be used for generating dielectronic recombination rate coefficients of some H-like ions where the explicit calculations are unavailable. The detailed results are tabulated and discussed.

  11. TFaNS-Tone Fan Noise Design/Prediction System: Users' Manual TFaNS Version 1.5

    NASA Technical Reports Server (NTRS)

    Topol, David A.; Huff, Dennis L. (Technical Monitor)

    2003-01-01

    TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Glenn. The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. The first version of this design system was developed under a previous NASA contract. Several improvements have been made to TFaNS. This users' manual shows how to run this new system. TFaNS consists of the codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and writes them to files, CUP3D Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions, and AWAKEN CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so they can be used by the system. This report provides information on code input and file structure essential for potential users of TFaNS.

  12. Electronic excitation of Na due to low-energy He collisions

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Liebermann, H. P.

    2005-05-01

    In warm astrophysical environments electron collisions are the primary mechanism for thermalizing the internal energy of ambient atoms and molecules. However, in cool stellar and planetary atmospheres, the electron abundance is extremely low so that thermalization is only possible through collisions of the dominant neutral species, H2, He, and H. Typically, the neutral cross sections are much smaller than those due to electrons, so that the level populations of the atmospheric constituents may display departures from equilibrium. Unfortunately, these cross sections are generally not available for collision energies typical of stellar/planetary environments. In this work, we investigate the electronic excitation of Na due to collisions with He for energies near and just above threshold. The calculations are performed with the quantum-mechanical molecular-orbital close-coupling method utilizing ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained from multireference single- and double- excitation configuration interaction approach. State-to-state cross sections and rate coefficients will be presented and compared with other theoretical and experimental data where available.

  13. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  14. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  15. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-10-25

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions [Formula: see text] with [Formula: see text]. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  16. Coupled THM Modeling of Hydroshearing Stimulation in Tight Fractured Volcanic Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, A. P.; Rutqvist, J.; Sonnenthal, E. L.

    Here, we use the TOUGH-FLAC simulator for coupled thermo–hydro-mechanical modeling of well stimulation for an Enhanced Geothermal System (EGS) project. We also analyze the potential for injection-induced fracturing and reactivation of natural fractures in a porous medium with associated permeability enhancement. Our analysis aims to understand how far the EGS reservoir may grow and how the hydroshearing process relates to system conditions. We analyze the enhanced reservoir, or hydrosheared zone, by studying the extent of the failure zone using an elasto-plastic model, and accounting for permeability changes as a function of the induced stresses. For both fully saturated and unsaturatedmore » medium cases, the results demonstrate how EGS reservoir growth depends on the initial fluid phase, and how the reservoir extent changes as a function of two critical parameters: (1) the coefficient of friction, and (2) the permeability-enhancement factor. Furthermore, while well stimulation is driven by pressure exceeding the hydroshearing threshold, the modeling also demonstrates how injection-induced cooling further extends the effects of stimulation.« less

  17. A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS.

    PubMed

    Tu, Anqi; Ma, Qiang; Bai, Hua; Du, Zhenxia

    2017-04-15

    Triacylglycerols (TAGs) as the major component of milk fat are significant factors to ensure the healthy growth of infants. An efficient method for identifying TAGs in human milk (HM) and infant formula (IF) was established using supercritical fluid chromatograph (SFC) coupled with quadruple time-of-flight mass spectrometry (Q-TOF-MS). The results indicated the feasibility of this method with satisfactory recoveries (>80%) and correlation coefficients (r 2 ⩾0.993). More than 60 TAGs in HM and 50 TAGs in IF were identified. The profiling results demonstrated that TAGs in HM were greatly affected by lactation stage. Significant differences were found between HM and IF, such as much higher medium chain TAGs and saturated TAGs in IF, indicating that the formulas developed by foreign manufacturers were not suitable for Chinese babies. This high-throughput method exhibits a huge potential for analysis of milk samples and the result may serve as an important guide for Chinese infants diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  19. Coupled THM Modeling of Hydroshearing Stimulation in Tight Fractured Volcanic Rock

    DOE PAGES

    Rinaldi, A. P.; Rutqvist, J.; Sonnenthal, E. L.; ...

    2014-03-18

    Here, we use the TOUGH-FLAC simulator for coupled thermo–hydro-mechanical modeling of well stimulation for an Enhanced Geothermal System (EGS) project. We also analyze the potential for injection-induced fracturing and reactivation of natural fractures in a porous medium with associated permeability enhancement. Our analysis aims to understand how far the EGS reservoir may grow and how the hydroshearing process relates to system conditions. We analyze the enhanced reservoir, or hydrosheared zone, by studying the extent of the failure zone using an elasto-plastic model, and accounting for permeability changes as a function of the induced stresses. For both fully saturated and unsaturatedmore » medium cases, the results demonstrate how EGS reservoir growth depends on the initial fluid phase, and how the reservoir extent changes as a function of two critical parameters: (1) the coefficient of friction, and (2) the permeability-enhancement factor. Furthermore, while well stimulation is driven by pressure exceeding the hydroshearing threshold, the modeling also demonstrates how injection-induced cooling further extends the effects of stimulation.« less

  20. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

Top