Sample records for potential difference approximately

  1. Approximations to the exact exchange potential: KLI versus semilocal

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Blaha, Peter; Betzinger, Markus; Blügel, Stefan

    2016-10-01

    In the search for an accurate and computationally efficient approximation to the exact exchange potential of Kohn-Sham density functional theory, we recently compared various semilocal exchange potentials to the exact one [F. Tran et al., Phys. Rev. B 91, 165121 (2015), 10.1103/PhysRevB.91.165121]. It was concluded that the Becke-Johnson (BJ) potential is a very good starting point, but requires the use of empirical parameters to obtain good agreement with the exact exchange potential. In this work, we extend the comparison by considering the Krieger-Li-Iafrate (KLI) approximation, which is a beyond-semilocal approximation. It is shown that overall the KLI- and BJ-based potentials are the most reliable approximations to the exact exchange potential, however, sizable differences, especially for the antiferromagnetic transition-metal oxides, can be obtained.

  2. Alternative derivation of an exchange-only density-functional optimized effective potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, D. P.

    2007-10-15

    An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock-common energy denominator Green's function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Goerling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term canmore » be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r{sup 4} for large r.« less

  3. Alternative derivation of an exchange-only density-functional optimized effective potential

    NASA Astrophysics Data System (ADS)

    Joubert, D. P.

    2007-10-01

    An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock common energy denominator Green’s function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Görling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term can be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r4 for large r .

  4. Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.

    PubMed

    Wagner, K; Keyes, E; Kephart, T W; Edwards, G

    1997-07-01

    We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation.

  5. On the best mean-square approximations to a planet's gravitational potential

    NASA Astrophysics Data System (ADS)

    Lobkova, N. I.

    1985-02-01

    The continuous problem of approximating the gravitational potential of a planet in the form of polynomials of solid spherical functions is considered. The best mean-square polynomials, referred to different parts of space, are compared with each other. The harmonic coefficients corresponding to the surface of a planet are shown to be unstable with respect to the degree of the polynomial and to differ from the Stokes constants.

  6. Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.

    PubMed Central

    Wagner, K; Keyes, E; Kephart, T W; Edwards, G

    1997-01-01

    We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:9199767

  7. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  8. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-08

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less

  9. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  10. Breakdown of the conservative potential equation

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Gumbert, C. R.

    1986-01-01

    The conservative full-potential equation is used to study transonic flow over five airfoil sections. The results of the study indicate that once shock are present in the flow, the qualitative approximation is different from that observed with the Euler equations. The difference in behavior of the potential eventually leads to multiple solutions.

  11. The relation between degree-2160 spectral models of Earth's gravitational and topographic potential: a guide on global correlation measures and their dependency on approximation effects

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Rexer, Moritz; Claessens, Sten; Rummel, Reiner

    2017-10-01

    Comparisons between high-degree models of the Earth's topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide feedback on the modelling techniques and help to better understand the gravity field composition. Degree correlations (cross-correlation coefficients) or reduction rates (quantifying the amount of topographic signal contained in the gravitational potential) are indicators used in a number of contemporary studies. However, depending on the modelling techniques and underlying levels of approximation, the correlation at high degrees may vary significantly, as do the conclusions drawn. The present paper addresses this problem by attempting to provide a guide on global correlation measures with particular emphasis on approximation effects and variants of topographic potential modelling. We investigate and discuss the impact of different effects (e.g., truncation of series expansions of the topographic potential, mass compression, ellipsoidal versus spherical approximation, ellipsoidal harmonic coefficient versus spherical harmonic coefficient (SHC) representation) on correlation measures. Our study demonstrates that the correlation coefficients are realistic only when the model's harmonic coefficients of a given degree are largely independent of the coefficients of other degrees, permitting degree-wise evaluations. This is the case, e.g., when both models are represented in terms of SHCs and spherical approximation (i.e. spherical arrangement of field-generating masses). Alternatively, a representation in ellipsoidal harmonics can be combined with ellipsoidal approximation. The usual ellipsoidal approximation level (i.e. ellipsoidal mass arrangement) is shown to bias correlation coefficients when SHCs are used. Importantly, gravity models from the International Centre for Global Earth Models (ICGEM) are inherently based on this approximation level. A transformation is presented that enables a transformation of ICGEM geopotential models from ellipsoidal to spherical approximation. The transformation is applied to generate a spherical transform of EGM2008 (sphEGM2008) that can meaningfully be correlated degree-wise with the topographic potential. We exploit this new technique and compare a number of models of topographic potential constituents (e.g., potential implied by land topography, ocean water masses) based on the Earth2014 global relief model and a mass-layer forward modelling technique with sphEGM2008. Different to previous findings, our results show very significant short-scale correlation between Earth's gravitational potential and the potential generated by Earth's land topography (correlation +0.92, and 60% of EGM2008 signals are delivered through the forward modelling). Our tests reveal that the potential generated by Earth's oceans water masses is largely unrelated to the geopotential at short scales, suggesting that altimetry-derived gravity and/or bathymetric data sets are significantly underpowered at 5 arc-min scales. We further decompose the topographic potential into the Bouguer shell and terrain correction and show that they are responsible for about 20 and 25% of EGM2008 short-scale signals, respectively. As a general conclusion, the paper shows the importance of using compatible models in topographic/gravitational potential comparisons and recommends the use of SHCs together with spherical approximation or EHCs with ellipsoidal approximation in order to avoid biases in the correlation measures.

  12. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.

    PubMed

    Tausz-Posch, Sabine; Norton, Robert M; Seneweera, Saman; Fitzgerald, Glenn J; Tausz, Michael

    2013-06-01

    This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi-arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (A(net)), stomatal conductance (g(s)) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol⁻¹ or ambient CO₂ concentrations (approximately 390 µmol mol⁻¹). Mean A(net) (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO₂] than previously found in FACE-grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry-land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO₂] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO₂], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO₂] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates. Copyright © Physiologia Plantarum 2012.

  13. Analytical approximation schemes for solving exact renormalization group equations in the local potential approximation

    NASA Astrophysics Data System (ADS)

    Bervillier, C.; Boisseau, B.; Giacomini, H.

    2008-02-01

    The relation between the Wilson-Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson-Polchinski case in the study of which they fail).

  14. Some remarks concerning the centrifugal term approximation

    NASA Astrophysics Data System (ADS)

    Ferreira, F. J. S.; Bezerra, V. B.

    2017-10-01

    We generalize the Pekeris approximation for the centrifugal term potential, l/(l +1 ) r2 , and use this to obtain the solutions of the radial Schrödinger equation for the arbitrary angular quantum number, l, of the Hulthén potential. We also obtain the expressions for the bound state energies corresponding to this potential and calculate their values for different states and compare with other results presented in the literature. We also consider some models of physical potentials, namely, the Eckart potential, the Poschl-Teller potentials, the Rosen-Morse potential, the Woods-Saxon potential, and the Manning-Rosen potential. Thus, following straightforward the example corresponding to the Hulthén potential, we show what the radial solutions and the energy spectra for these potentials are.

  15. Modelling in vivo action potential propagation along a giant axon.

    PubMed

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  16. On the Definition of Surface Potentials for Finite-Difference Operators

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.

  17. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Tianhe C.; Grill, Warren M.

    2010-12-01

    Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation of populations of neurons in response to DBS.

  18. Three dimensional α-tunneling in intense laser fields

    NASA Astrophysics Data System (ADS)

    Kis, Daniel P.; Szilvasi, Reka

    2018-04-01

    The width and life-time of the quasibound state of the α cluster in intense monochromatic electromagnetic (laser) field are discussed in details. The laser modified three dimensional potential barrier felt by the α particle is investigated analytically in long wave approximation and zero-order approximations with some different nuclear models: Coulomb potential with rectangular well, and with Woods-Saxon type potential. We show that the circularly polarized electromagnetic field and the special parameters of the nuclear potentials determine an enhancement of the decay probability, so the life-time of the quasibound state decreases in few times compared to the case of free field.

  19. The Racial Wage Gap: The Importance of Labor Force Attachment Differences across Black, Mexican, and White Men

    ERIC Educational Resources Information Center

    Antecol, Heather; Bedard, Kelly

    2004-01-01

    Labor market attachment differs significantly across young black, Mexican, and white men. Although it has long been agreed that potential experience is a poor proxy for actual experience for women, many view it as an acceptable approximation for men. Using the NLSY, this paper documents the substantial difference between potential and actual…

  20. Pion properties at finite isospin chemical potential with isospin symmetry breaking

    NASA Astrophysics Data System (ADS)

    Wu, Zuqing; Ping, Jialun; Zong, Hongshi

    2017-12-01

    Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

  1. Optimized effective potential in real time: Problems and prospects in time-dependent density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundt, Michael; Kuemmel, Stephan

    2006-08-15

    The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less

  2. The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques

    NASA Astrophysics Data System (ADS)

    Izmaylov, Artur F.; Staroverov, Viktor N.; Scuseria, Gustavo E.; Davidson, Ernest R.; Stoltz, Gabriel; Cancès, Eric

    2007-02-01

    We have recently formulated a new approach, named the effective local potential (ELP) method, for calculating local exchange-correlation potentials for orbital-dependent functionals based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart [V. N. Staroverov et al., J. Chem. Phys. 125, 081104 (2006)]. Here we show that under a mildly simplifying assumption of frozen molecular orbitals, the equation defining the ELP has a unique analytic solution which is identical with the expression arising in the localized Hartree-Fock (LHF) and common energy denominator approximations (CEDA) to the optimized effective potential. The ELP procedure differs from the CEDA and LHF in that it yields the target potential as an expansion in auxiliary basis functions. We report extensive calculations of atomic and molecular properties using the frozen-orbital ELP method and its iterative generalization to prove that ELP results agree with the corresponding LHF and CEDA values, as they should. Finally, we make the case for extending the iterative frozen-orbital ELP method to full orbital relaxation.

  3. Potential of mean force for electrical conductivity of dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrett, C. E.

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  4. Potential of mean force for electrical conductivity of dense plasmas

    DOE PAGES

    Starrett, C. E.

    2017-09-28

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  5. Potential of mean force for electrical conductivity of dense plasmas

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2017-12-01

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. Current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. We present a new way to define this potential, drawing on ideas from classical fluid theory to define a potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.

  6. Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage.

    PubMed

    Buchanan, Sandhya S; Pyatt, David W; Carpenter, John F

    2010-09-01

    Progenitor cell therapies show great promise, but their potential for clinical applications requires improved storage and transportation. Desiccated cells stored at ambient temperature would provide economic and practical advantages over approaches employing cell freezing and subzero temperature storage. The objectives of this study were to assess a method for loading the stabilizing sugar, trehalose, into hematopoietic stem and progenitor cells (HPC) and to evaluate the effects of subsequent freeze-drying and storage at ambient temperature on differentiation and clonogenic potential. HPC were isolated from human umbilical cord blood and loaded with trehalose using an endogenous cell surface receptor, termed P2Z. Solution containing trehalose-loaded HPC was placed into vials, which were transferred to a tray freeze-dryer and removed during each step of the freeze-drying process to assess differentiation and clonogenic potential. Control groups for these experiments were freshly isolated HPC. Control cells formed 1450+/-230 CFU-GM, 430+/-140 BFU-E, and 50+/-40 CFU-GEMM per 50 microL. Compared to the values for the control cells, there was no statistical difference observed for cells removed at the end of the freezing step or at the end of primary drying. There was a gradual decrease in the number of CFU-GM and BFU-E for cells removed at different temperatures during secondary drying; however, there were no significant differences in the number of CFU-GEMM. To determine storage stability of lyophilized HPC, cells were stored for 4 weeks at 25 degrees C in the dark. Cells reconstituted immediately after lyophilization produced 580+/-90 CFU-GM ( approximately 40%, relative to unprocessed controls p<0.0001), 170+/-70 BFU-E (approximately 40%, p<0.0001), and 41+/-22 CFU-GEMM (approximately 82%, p = 0.4171), and cells reconstituted after 28 days at room temperature produced 513+/-170 CFU-GM (approximately 35%, relative to unprocessed controls, p<0.0001), 112+/-68 BFU-E (approximately 26%, p<0.0001), and 36+/-17 CFU-GEMM ( approximately 82%, p = 0.2164) These studies are the first to document high level retention of CFU-GEMM following lyophilization and storage for 4 weeks at 25 degrees C. This type of flexible storage stability would potentially permit the ability to ship and store HPC without the need for refrigeration.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalvit, Diego; Messina, Riccardo; Maia Neto, Paulo

    We develop the scattering approach for the dispersive force on a ground state atom on top of a corrugated surface. We present explicit results to first order in the corrugation amplitude. A variety of analytical results are derived in different limiting cases, including the van der Waals and Casimir-Polder regimes. We compute numerically the exact first-order dispersive potential for arbitrary separation distances and corrugation wavelengths, for a Rubidium atom on top of a silicon or gold corrugated surface. We consider in detail the correction to the proximity force approximation, and present a very simple approximation algorithm for computing the potential.

  8. Localized corrosion behaviour in simulated human body fluids of commercial Ni-Ti orthodontic wires.

    PubMed

    Rondelli, G; Vicentini, B

    1999-04-01

    The corrosion performances in simulated human body fluids of commercial equiatomic Ni-Ti orthodontic wires having various shape and size and produced by different manufacturers were evaluated; for comparison purposes wires made of stainless steel and of cobalt-based alloy were also examined. Potentiodynamic tests in artificial saliva at 40 degrees C indicated a sufficient pitting resistance for the Ni-Ti wires, similar to that of cobalt-based alloy wire; the stainless steel wire, instead, exhibited low pitting potential. Potentiodynamic tests at 40 degrees C in isotonic saline solution (0.9% NaCl) showed, for Ni-Ti and stainless steel wires, pitting potential values in the range approximately 200-400 mV and approximately 350 mV versus SCE, respectively: consequently, according to literature data (Hoar TP, Mears DC. Proc Roy Soc A 1996;294:486-510), these materials should be considered potentially susceptible to pitting; only the cobalt-based alloy should be immune from pitting. The localized corrosion potentials determined in the same environment by the ASTM F746 test (approximately 0-200 mV and 130 mV versus SCE for Ni-Ti and stainless steel, respectively) pointed out that for these materials an even higher risk of localized corrosion. Slight differences in localized corrosion behaviour among the various Ni-Ti wires were detected.

  9. Electronic properties of excess Cr at Fe site in FeCr{sub 0.02}Se alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeepk.iitb@gmail.com; Singh, Prabhakar P.

    2015-06-24

    We have studied the effect of substitution of transition-metal chromium (Cr) in excess on Fe sub-lattice in the electronic structure of iron-selenide alloys, FeCr{sub 0.02}Se. In our calculations, we used Korringa-Kohn-Rostoker coherent potential approximation method in the atomic sphere approximation (KKR-ASA-CPA). We obtained different band structure of this alloy with respect to the parent FeSe and this may be reason of changing their superconducting properties. We did unpolarized calculations for FeCr{sub 0.02}Se alloy in terms of density of states (DOS) and Fermi surfaces. The local density approximation (LDA) is used in terms of exchange correlation potential.

  10. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  11. Harmonic-phase path-integral approximation of thermal quantum correlation functions

    NASA Astrophysics Data System (ADS)

    Robertson, Christopher; Habershon, Scott

    2018-03-01

    We present an approximation to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that approximately recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this approximation method may be extended to many-dimensional systems.

  12. Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-07-15

    Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  14. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions.

    PubMed

    Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E

    2018-03-14

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  15. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions

    NASA Astrophysics Data System (ADS)

    Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.

    2018-03-01

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  16. Comparison of local exchange potentials of electron-N2 scattering

    NASA Astrophysics Data System (ADS)

    Rumble, J. R., Jr.; Truhlar, D. G.

    1980-05-01

    Vibrationally and electronically elastic electron scattering by N2 at 2-30 eV impact energy is considered. Static, static-exchange, and static-exchange-plus-polarization potentials, Cade-Sales-Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron-gas exchange potentials are examined. It is shown that the semiclassical exchange approximation is too attractive at low energy for N2. It is also shown quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until the differences are about 8% for the total integral cross section at 30 eV.

  17. Density-to-Potential Inversions to Guide Development of Exchange-Correlation Approximations at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew

    The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.

  18. Structure and thermodynamics of a simple fluid

    NASA Astrophysics Data System (ADS)

    Stell, G.; Weis, J. J.

    1980-02-01

    Monte Carlo results are found for a simple fluid with a pair potential consisting of a hard-sphere core and a Lennard-Jones attractive tail. They are compared with several of the most promising recent theoretical treatments of simple fluids, all of which involve the decomposition of the pair potential into a hard-sphere-core term and an attractive-tail term. This direct comparison avoids the use of a second perturbation scheme associated with softening the core, which would introduce an ambiguity in the significance of the differences found between the theoretical and Monte Carlo results. The study includes the optimized random-phase approximation (ORPA) and exponential (EXP) approximations of Andersen and Chandler, an extension of the latter approximation to nodal order three (the N3 approximation), the linear-plus-square (LIN + SQ) approximation of Høye and Stell, the renormalized hypernetted chain (RHNC) approximation of Lado, and the quadratic (QUAD) approximation suggested by second-order self-consistent Γ ordering, the lowest order of which is identical to the ORPA. As anticipated on the basis of earlier studies, it is found that the EXP approximation yields radial distribution functions and structure factors of excellent overall accuracy in the liquid state, where the RHNC results are also excellent and the EXP, QUAD, and LIN + SQ results prove to be virtually indistinguishable from one another. For all the approximations, however, the thermodynamics from the compressibility relation are poor and the virial-theorem results are not uniformly reliable. Somewhat more surprisingly, it is found that the EXP results yield a negative structure factor S(k) for very small k in the liquid state and poor radial distribution functions at low densities. The RHNC results are nowhere worse than the EXP results and in some states (e.g., at low densities) much better. In contrast, the N3 results are better in some respects than the EXP results but worse in others. The authors briefly comment on the RHNC and EXP approximations applied to the full Lennard-Jones potential, for which the EXP approximation appears somewhat improved in the liquid state as a result of the softening of the potential core.

  19. Exact exchange-correlation potentials of singlet two-electron systems

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.

    2017-10-01

    We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.

  20. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  1. Density-functional energy gaps of solids demystified

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn

    2018-06-01

    The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?

  2. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  3. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less

  4. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Fujikake, So; Deringer, Volker L.; Lee, Tae Hoon; Krynski, Marcin; Elliott, Stephen R.; Csányi, Gábor

    2018-06-01

    We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite, and disordered carbon nanostructures, based on reference density functional theory data. Rather than treating the full Li-C system, we demonstrate how the energy and force differences arising from Li intercalation can be modeled and then added to a (prexisting and unmodified) GAP model of pure elemental carbon. Furthermore, we show the benefit of using an explicit pair potential fit to capture "effective" Li-Li interactions and to improve the performance of the GAP model. This provides proof-of-concept for modeling guest atoms in host frameworks with machine-learning based potentials and in the longer run is promising for carrying out detailed atomistic studies of battery materials.

  5. The Dipole Segment Model for Axisymmetrical Elongated Asteroids

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangyuan; Zhang, Yonglong; Yu, Yang; Liu, Xiangdong

    2018-02-01

    Various simplified models have been investigated as a way to understand the complex dynamical environment near irregular asteroids. A dipole segment model is explored in this paper, one that is composed of a massive straight segment and two point masses at the extremities of the segment. Given an explicitly simple form of the potential function that is associated with the dipole segment model, five topological cases are identified with different sets of system parameters. Locations, stabilities, and variation trends of the system equilibrium points are investigated in a parametric way. The exterior potential distribution of nearly axisymmetrical elongated asteroids is approximated by minimizing the acceleration error in a test zone. The acceleration error minimization process determines the parameters of the dipole segment. The near-Earth asteroid (8567) 1996 HW1 is chosen as an example to evaluate the effectiveness of the approximation method for the exterior potential distribution. The advantages of the dipole segment model over the classical dipole and the traditional segment are also discussed. Percent error of acceleration and the degree of approximation are illustrated by using the dipole segment model to approximate four more asteroids. The high efficiency of the simplified model over the polyhedron is clearly demonstrated by comparing the CPU time.

  6. Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations.

    PubMed

    Giese, Timothy J; York, Darrin M

    2010-12-28

    We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.

  7. A density difference based analysis of orbital-dependent exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Grabowski, Ireneusz; Teale, Andrew M.; Fabiano, Eduardo; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio

    2014-03-01

    We present a density difference based analysis for a range of orbital-dependent Kohn-Sham functionals. Results for atoms, some members of the neon isoelectronic series and small molecules are reported and compared with ab initio wave function calculations. Particular attention is paid to the quality of approximations to the exchange-only optimised effective potential (OEP) approach: we consider both the localised Hartree-Fock as well as the Krieger-Li-Iafrate methods. Analysis of density differences at the exchange-only level reveals the impact of the approximations on the resulting electronic densities. These differences are further quantified in terms of the ground state energies, frontier orbital energy differences and highest occupied orbital energies obtained. At the correlated level, an OEP approach based on a perturbative second-order correlation energy expression is shown to deliver results comparable with those from traditional wave function approaches, making it suitable for use as a benchmark against which to compare standard density functional approximations.

  8. Self-consistent field calculations of conductance through conjugated molecules at finite bias

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    2001-03-01

    Conductance through conjugated molecules have previously been calculated for a large number of systems using the Landauer formula but only a few calculations have included charging effects. In this study we present calculations in the mean field approximation of the conductance of metal-molecule-metal systems using two different kinds of molecules for a large number of configurations and applied biases. The molecules are described in the Pariser-Parr Pople model. Current-voltage (I-V) characteristics and charge distribution of the molecule connected by one dimensional leads to reservoirs is solved within the Hartree-Fock approximation. Charging of the molecule occurs when the chemical potential of the reservoirs approach the resonant tunneling levels. The ensuing potential difference, due to the charging, shifts the tunneling peaks which affects the I-V curves considerably. Asymmetrical interaction with the metal leads, e.g. molecule on a metal surface contacted with an STM-tip, also give asymmetrical I-V curves where the potential of the molecule is shown to more closely follow the potential of the surface. Negative differential conductance is discussed in systems consisting of two weakly coupled molecules.

  9. On the "Optimal" Choice of Trial Functions for Modelling Potential Fields

    NASA Astrophysics Data System (ADS)

    Michel, Volker

    2015-04-01

    There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.

  10. Comparative Study of Exchange-Correlation Functional and Potential for Evaluating Thermoelectric Transport Properties in d0 Perovskite Oxides

    NASA Astrophysics Data System (ADS)

    Ohkubo, Isao; Mori, Takao

    2017-07-01

    The influence of two different types of exchange-correlation functional/potential, namely, the generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) functional and the modified Becke-Johnson (mBJ) potential, on the thermoelectric transport properties of d0 perovskite oxides (SrTiO3 and KTaO3) was investigated. The reduction of band dispersion induced by the mBJ scheme allows the improved prediction of band gap values by thelocal density approximation (LDA) and GGA, which increases the resolution of the increases in the density of states (DOS), carrier concentration, and effective mass near the conduction band edge. A comparison of the experimental effective mass values of d0 perovskite oxides shows that the effective mass values provided by the mBJ potential are similar to those provided by the GGA-PBE functional. Comparative analysis of the data obtained from Boltzmann theory calculations using the electronic structures determined with the GGA-PBE functional and the mBJ potential shows a difference in the transport coefficients owing to the increases in the DOS, carrier concentration, and effective mass induced by the mBJ scheme.

  11. An analysis of the market potential of water hyacinth-based systems for municipal wastewater treatment

    NASA Technical Reports Server (NTRS)

    Robinson, A. C.; Gorman, H. J.; Hillman, M.; Lawhon, W. T.; Maase, D. L.; Mcclure, T. A.

    1976-01-01

    The potential U.S. market for tertiary municipal wastewater treatment facilities which make use of water hyacinths was investigated. A baseline design was developed which approximates the "typical" or "average" situation under which hyacinth-based systems can be used. The total market size for tertiary treatment was then estimated for those geographical regions in which hyacinths appear to be applicable. Market penetration of the baseline hyacinth system when competing with conventional chemical and physical processing systems was approximated, based primarily on cost differences. A limited analysis was made of the sensitivity of market penetration to individual changes in these assumptions.

  12. Rainbows in rotationally inelastic scattering: a comparative study of different model potential surfaces and dynamical approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinke, R.; Korsch, H.J.; Poppe, D.

    1982-12-15

    Rainbow structures in rotationally elastic and inelastic differential cross sections in atom--diatom collisions are investigated by comparison of three model potential energy surfaces labeled I, II, and III which are represented by V(R,..gamma..) = V/sub 0/(R)+V/sub 2/(R)P/sub 2/(cos ..gamma..). The cross sections are calculated within the quantal infinite-order-sudden (IOS) approximation. The anisotropic part V/sub 2/ is the same for all potentials and purely repulsive. The isotropic part V/sub 0/ for potential I is also repulsive and the differential cross sections show the well-studied rotational rainbow structures. Structural changes occur for collisions in potential II and III which have V/sub 0/more » terms being attractive at intermediate and large atom--molecule separations and having well depths of 10% and 25% of the collision energy, respectively. For example, the elastic cross section has no classical rainbow in the case of potential I but three in the case of potential III. The rainbow structures are analyzed within the classical and semiclassical versions of the IOS approximation and interpreted in terms of catastrophe theory. The quantitative comparison of the classical with the quantal IOS cross sections manifests possible quantum effects, i.e., tunneling into nonclassical regions and interference effects due to the superposition of several contributions (up to six in the present study). They can be very prominent and thus we conclude that much caution is needed if experimental data are compared with classical calculations. The accuracy of the IOS approximation is tested by comparison of classical IOS cross sections with cross sections obtained from exact classical trajectory calculations. The agreement is generally good with the exemption of the rainbow region and small angle, rotationally elastic scattering.« less

  13. Localization-delocalization transition in a system of quantum kicked rotors.

    PubMed

    Creffield, C E; Hur, G; Monteiro, T S

    2006-01-20

    The quantum dynamics of atoms subjected to pairs of closely spaced delta kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the single delta-kick system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L approximately h(-0.75) and obtain a regime of near-linear spectral variances which approximate the "critical statistics" relation summation2(L) approximately or equal to chi(L) approximately 1/2 (1-nu)L, where nu approximately 0.75 is related to the fractal classical phase-space structure. The origin of the nu approximately 0.75 exponent is analyzed.

  14. High-Voltage Isolation Transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-01-01

    Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.

  15. Simulation of variation of apparent resistivity in resistivity surveys using finite difference modelling with Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Aguirre, E. E.; Karchewski, B.

    2017-12-01

    DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gledhill, Jonathan D.; Tozer, David J., E-mail: d.j.tozer@durham.ac.uk

    Density scaling considerations are used to derive an exchange–correlation explicit density functional that is appropriate for the electron deficient side of the integer and which recovers the exact r → ∞ asymptotic behaviour of the exchange–correlation potential. The functional has an unconventional mathematical form with parameters that are system-dependent; the parameters for an N-electron system are determined in advance from generalised gradient approximation (GGA) calculations on the N- and (N − 1)-electron systems. Compared to GGA results, the functional yields similar exchange–correlation energies, but HOMO energies that are an order of magnitude closer to the negative of the vertical ionisationmore » potential; for anions, the HOMO energies are negative, as required. Rydberg excitation energies are also notably improved and the exchange–correlation potential is visibly lowered towards the near-exact potential. Further development is required to improve valence excitations, static isotropic polarisabilities, and the shape of the potential in non-asymptotic regions. The functional is fundamentally different to conventional approximations.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo, E-mail: bovy@ias.edu

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetricmore » potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.« less

  18. [A study of complexity and power spectrum of cortical EEG and hippocampal potential in rats under different behavioral states].

    PubMed

    Feng, Zhou-yan; Zheng, Xiao-xiang

    2002-08-01

    Objective. To study the complexity and the power spectrum of cortical EEG and hippocampal potential in rats under waking and sleep states. Method. Cortical EEG and hippocampal potential were collected by implanted electrodes in freely moving rats. Algorithmic complexity (Kc), approximate entropy (ApEn), power spectral density (PSD) and gravity frequency of PSD of the potential waves were calculated. Result. The complexity of hippocampal potential was higher than that of cortical EEG under every state. The complexity of cortical EEG was lowest under the state of non rapid eye movement (NREM) sleep. The complexity of hippocampal potential was highest under waking state. The total power of both potentials in 0.5- 30 Hz frequency band showed their highest values under NREM state. Conclusion. The values of Kc and ApEn are closely related to the distributions of PSD. When there are evident peaks in PSD, the complexities of signals will decrease. The complexities may be used to distinguish the difference between cortical EEG and hippocampal potential, or large differences between the same kind of potentials under different behavioral states.

  19. Effects of the Temporal Variability of Evapotranspiration on Hydrologic Simulation in Central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2007-01-01

    The transient response of a hydrologic system can be of concern to water-resource managers, because it is often extreme relatively short-lived events, such as floods or droughts, that profoundly influence the management of the resource. The water available to a hydrologic system for stream flow and aquifer recharge is determined by the difference of precipitation and evapotranspiration (ET). As such, temporal variations in precipitation and ET determine the degree of influence each has on the transient response of the hydrologic system. Meteorological, ET, and hydrologic data collected from 1993 to 2003 and spanning 1- to 3 2/3 -year periods were used to develop a hydrologic model for each of five sites in central Florida. The sensitivities of simulated water levels and flows to simple approximations of ET were quantified and the adequacy of each ET approximation was assessed. ET was approximated by computing potential ET, using the Hargreaves and Priestley-Taylor equations, and applying vegetation coefficients to adjust the potential ET values to actual ET. The Hargreaves and Priestley-Taylor ET approximations were used in the calibrated hydrologic models while leaving all other model characteristics and parameter values unchanged. Two primary factors that influence how the temporal variability of ET affects hydrologic simulation in central Florida were identified: (1) stochastic character of precipitation and ET and (2) the ability of the local hydrologic system to attenuate variability in input stresses. Differences in the stochastic character of precipitation and ET, both the central location and spread of the data, result in substantial influence of precipitation on the quantity and timing of water available to the hydrologic system and a relatively small influence of ET. The temporal variability of ET was considerably less than that of precipitation at each site over a wide range of time scales (from daily to annual). However, when precipitation and ET are of similar magnitude, small errors in ET can produce relatively large errors in available water, and accurate estimates of actual ET are more important. Local hydrologic conditions can also be an important factor influencing the hydrologic response to ET variability. Various points along a flow path in a hydrologic system respond differently to temporal variations in ET. For example, soil moisture contents in the root zone are sensitive to daily variations in ET, whereas spring flow responds to only longer term variations in ET. Both the Hargreaves and Priestley-Taylor equations for potential ET, when applied with an annually invariant monthly vegetation coefficient derived from comparison of measured ET with computed potential ET values, can be used with a hydrologic model to produce reasonable predictions of water levels and flows. Baseline-adjusted modified coefficients of efficiency for simulated water levels ranged from 0.0, indicating that water levels were simulated equally as well with approximated ET as with actual ET values, to -0.6, indicating that water levels were simulated better with actual ET values. Simulations using the Hargreaves approximation consistently yielded larger absolute and relative errors than the Priestley-Taylor approximation. However, the differences between the Hargreaves and Priestley-Taylor simulations generally were much smaller than differences between these simulations and the simulations using actual ET. This suggests that the simpler Hargreaves equation may be an adequate substitute for the more complex Priestley-Taylor equation, depending on the level of accuracy required to satisfy the particular modeling objectives.

  20. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  1. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  2. Finite-temperature Gutzwiller approximation from the time-dependent variational principle

    NASA Astrophysics Data System (ADS)

    Lanatà, Nicola; Deng, Xiaoyu; Kotliar, Gabriel

    2015-08-01

    We develop an extension of the Gutzwiller approximation to finite temperatures based on the Dirac-Frenkel variational principle. Our method does not rely on any entropy inequality, and is substantially more accurate than the approaches proposed in previous works. We apply our theory to the single-band Hubbard model at different fillings, and show that our results compare quantitatively well with dynamical mean field theory in the metallic phase. We discuss potential applications of our technique within the framework of first-principle calculations.

  3. Phenomenology of Heavy Quarkonia and Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Schmitz, Stefan Josef Anton

    Heavy quarkonia, the cc, b(')b, and soon to be discovered t(')t families of states, are studied in the framework of potential theory. The earlier proposed, flavor independent "Riverside"-potential is fit to masses of cc and b(')b states and their electronic widths are calculated. An unusual feature of the potential is the use of a parameter b which controls the small r or "asymptotic freedom" behavior and which can be related to the QCD scale parameter (LAMDA)(,MS). This param- eter b is virtually undetermined by the cc and b(')b spectra, merely excluding the range b < 4 or (LAMDA)(,MS) < 120MeV and slightly favoring (LAMDA)(,MS) (DBLTURN) 250MeV. It is shown how even minimal information on the t(')t states will restrict the (LAMDA)(,MS) value to a range of the order of 50MeV. A recent Lattice Gauge potential shows a remarkable closeness to the phenomenological approach. In view of the approximations involved, the difference between the two potentials is small. This difference is investigated in terms of the strong coupling constant (alpha) which can be extracted from both potentials. In the main r regime the Lattice Gauge (alpha) is markedly smaller than the phenomenological one. It is shown that the absence of intermediate, virtual quark loops in the Lattice Gauge calculation, i.e. the so-called quenched approximation, accounts for at least some and possibly most of that difference. Overall, the phenomenology of heavy quarkonia as studied in this work is in no conflict with QCD.

  4. Exact exchange potential evaluated from occupied Kohn-Sham and Hartree-Fock solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinal, M.; Holas, A.

    2011-06-15

    The reported algorithm determines the exact exchange potential v{sub x} in an iterative way using energy shifts (ESs) and orbital shifts (OSs) obtained with finite-difference formulas from the solutions (occupied orbitals and their energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation, the former used for the initial approximation to v{sub x} and the latter for increments of ES and OS due to subsequent changes of v{sub x}. Thus, the need for solution of the differential equations for OSs, used by Kuemmel and Perdew [Phys. Rev. Lett. 90, 043004 (2003)], is bypassed. The iterated exchange potential, expressed in terms ofmore » ESs and OSs, is improved by modifying ESs at odd iteration steps and OSs at even steps. The modification formulas are related to the optimized-effective-potential equation (satisfied at convergence) written as the condition of vanishing density shift (DS). They are obtained, respectively, by enforcing its satisfaction through corrections to approximate OSs and by determining the optimal ESs that minimize the DS norm. The proposed method, successfully tested for several closed-(sub)shell atoms, from Be to Kr, within the density functional theory exchange-only approximation, proves highly efficient. The calculations using the pseudospectral method for representing orbitals give iterative sequences of approximate exchange potentials (starting with the Krieger-Li-Iafrate approximation) that rapidly approach the exact v{sub x} so that, for Ne, Ar, and Zn, the corresponding DS norm becomes less than 10{sup -6} after 13, 13, and 9 iteration steps for a given electron density. In self-consistent density calculations, orbital energies of 10{sup -4} hartree accuracy are obtained for these atoms after, respectively, 9, 12, and 12 density iteration steps, each involving just two steps of v{sub x} iteration, while the accuracy limit of 10{sup -6} to 10{sup -7} hartree is reached after 20 density iterations.« less

  5. Exact exchange potential evaluated from occupied Kohn-Sham and Hartree-Fock solutions

    NASA Astrophysics Data System (ADS)

    Cinal, M.; Holas, A.

    2011-06-01

    The reported algorithm determines the exact exchange potential vx in an iterative way using energy shifts (ESs) and orbital shifts (OSs) obtained with finite-difference formulas from the solutions (occupied orbitals and their energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation, the former used for the initial approximation to vx and the latter for increments of ES and OS due to subsequent changes of vx. Thus, the need for solution of the differential equations for OSs, used by Kümmel and Perdew [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.90.043004 90, 043004 (2003)], is bypassed. The iterated exchange potential, expressed in terms of ESs and OSs, is improved by modifying ESs at odd iteration steps and OSs at even steps. The modification formulas are related to the optimized-effective-potential equation (satisfied at convergence) written as the condition of vanishing density shift (DS). They are obtained, respectively, by enforcing its satisfaction through corrections to approximate OSs and by determining the optimal ESs that minimize the DS norm. The proposed method, successfully tested for several closed-(sub)shell atoms, from Be to Kr, within the density functional theory exchange-only approximation, proves highly efficient. The calculations using the pseudospectral method for representing orbitals give iterative sequences of approximate exchange potentials (starting with the Krieger-Li-Iafrate approximation) that rapidly approach the exact vx so that, for Ne, Ar, and Zn, the corresponding DS norm becomes less than 10-6 after 13, 13, and 9 iteration steps for a given electron density. In self-consistent density calculations, orbital energies of 10-4 hartree accuracy are obtained for these atoms after, respectively, 9, 12, and 12 density iteration steps, each involving just two steps of vx iteration, while the accuracy limit of 10-6 to 10-7 hartree is reached after 20 density iterations.

  6. Approximate Bayesian evaluations of measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  7. Orbital nodal surfaces: Topological challenges for density functionals

    NASA Astrophysics Data System (ADS)

    Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan

    2017-06-01

    Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.

  8. Analytical approximation of the InGaZnO thin-film transistors surface potential

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi

    2016-10-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.

  9. Small deformations of kinks and walls

    NASA Astrophysics Data System (ADS)

    Morris, J. R.

    2018-06-01

    A Rayleigh-Schrödinger type of perturbation scheme is employed to study weak self-interacting scalar potential perturbations occurring in scalar field models describing 1D domain kinks and 3D domain walls. The solutions for the unperturbed defects are modified by the perturbing potentials. An illustration is provided by adding a cubic potential to the familiar quartic kink potential and solving for the first order correction to the kink solution, using a "slab approximation". A result is the appearance of an asymmetric scalar potential with different, nondegenerate, vacuum values and the subsequent formation of vacuum bubbles.

  10. TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model

    NASA Astrophysics Data System (ADS)

    Meurice, Y.

    2007-06-01

    We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).

  11. Normalization and Implementation of Three Gravitational Acceleration Models

    NASA Technical Reports Server (NTRS)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.; Gottlieb, Robert G.

    2016-01-01

    Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the real universe is that gravitational fields are sensitive to the asphericity of their generating central bodies. The gravitational potential of an aspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities that must be removed to generalize the method and solve for any possible orbit, including polar orbits. Samuel Pines, Bill Lear, and Robert Gottlieb developed three unique algorithms to eliminate these singularities. This paper documents the methodical normalization of two of the three known formulations for singularity-free gravitational acceleration (namely, the Lear and Gottlieb algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre polynomials and Associated Legendre Functions (ALFs) for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  12. The search for the hydrophobic force law.

    PubMed

    Hammer, Malte U; Anderson, Travers H; Chaimovich, Aviel; Shell, M Scott; Israelachvili, Jacob

    2010-01-01

    After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force-distance relationships are either a combination of different 'fundamental' interactions, or that the hydrophobic force-law, if there is one, is complex--depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D approximately 100-200 angstroms, increasing roughly exponentially down to approximately 10-20 angstroms and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D approximately 2 angstroms. The measured forces in this regime (100-200 angstroms) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100-200 angstroms to thousands of angstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a 'pure' but still not well-understood 'long-range hydrophobic force' dominates the second regime from approximately 150 to approximately 15 angstroms, possibly due to an enhanced Hamaker constant associated with the 'proton-hopping' polarizability of water; while below approximately 10-15 anstroms to contact there is another 'pure short-range hydrophobic force' related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water-hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for water based on a spherically-symmetric potential that is able to capture some basic features of hydrophobic association. Such a model may be useful for theoretical studies of the HI over the broad range of scales observed in SFA experiments.

  13. Latent Fairness in Adults’ Relationship-Based Moral Judgments

    PubMed Central

    Hao, Jian; Liu, Yanchun; Li, Jiafeng

    2015-01-01

    Can adults make fair moral judgments when individuals with whom they have different relationships are involved? The present study explored the fairness of adults’ relationship-based moral judgments in two respects by performing three experiments involving 999 participants. In Experiment 1, 65 adults were asked to decide whether to harm a specific person to save five strangers in the footbridge and trolley dilemmas in a within-subject design. The lone potential victim was a relative, a best friend, a person they disliked, a criminal or a stranger. Adults’ genetic relatedness to, familiarity with and affective relatedness to the lone potential victims varied. The results indicated that adults made different moral judgments involving the lone potential victims with whom they had different relationships. In Experiment 2, 306 adults responded to the footbridge and trolley dilemmas involving five types of lone potential victims in a within-subject design, and the extent to which they were familiar with and affectively related to the lone potential victim was measured. The results generally replicated those of Experiment 1. In addition, for close individuals, adults’ moral judgments were less deontological relative to their familiarity with or positive affect toward these individuals. For individuals they were not close to, adults made deontological choices to a larger extent relative to their unfamiliarity with or negative affect toward these individuals. Moreover, for familiar individuals, the extent to which adults made deontological moral judgments more closely approximated the extent to which they were familiar with the individual. The adults’ deontological moral judgments involving unfamiliar individuals more closely approximated their affective relatedness to the individuals. In Experiment 3, 628 adults were asked to make moral judgments with the type of lone potential victim as the between-subject variable. The results generally replicated those of the previous two experiments. Therefore, the present study shows that, in addition to apparent unfairness, latent fairness exists in adults’ relationship-based moral judgments. Moral judgments involving individuals with whom adults have different relationships have different cognitive and affective bases. PMID:26696935

  14. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Kluitenberg, Gerard J.; Jones, Scott B.; Daidzic, Nihad E.; Reddi, Lakshmi N.; Xiao, Ming; Tuller, Markus; Newman, Rebecca M.; Or, Dani; Alexander, J. Iwan. D.

    2005-01-01

    Baked ceramic aggregates (fritted clay, arcillite) have been used for plant research both on the ground and in microgravity. Optimal control of water and air within the root zone in any gravity environment depends on physical and hydraulic properties of the aggregate, which were evaluated for 0.25-1-mm and 1-2-mm particle size distributions. The maximum bulk densities obtained by any packing technique were 0.68 and 0.64 g cm-3 for 0.25-1-mm and 1-2-mm particles, respectively. Wettable porosity obtained by infiltration with water was approximately 65%, substantially lower than total porosity of approximately 74%. Aggregate of both particle sizes exhibited a bimodal pore size distribution consisting of inter-aggregate macropores and intra-aggregate micropores, with the transition from macro- to microporosity beginning at volumetric water content of approximately 36% to 39%. For inter-aggregate water contents that support optimal plant growth there is 45% change in water content that occurs over a relatively small matric suction range of 0-20 cm H2O for 0.25-1-mm and 0 to -10 cm H2O for 1-2-mm aggregate. Hysteresis is substantial between draining and wetting aggregate, which results in as much as a approximately 10% to 20% difference in volumetric water content for a given matric potential. Hydraulic conductivity was approximately an order of magnitude higher for 1-2-mm than for 0.25-1-mm aggregate until significant drainage of the inter-aggregate pore space occurred. The large change in water content for a relatively small change in matric potential suggests that significant differences in water retention may be observed in microgravity as compared to earth.

  15. Controlling the size of alginate gel beads by use of a high electrostatic potential.

    PubMed

    Klokk, T I; Melvik, J E

    2002-01-01

    The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of approximately 300 microm. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F(GG) approximately 0.20) resulted in approximately 30% smaller beads than alginates with a high G block content (F(GG) approximately 0.60). This is explained as a result of differences in the shrinking properties of the beads.

  16. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    PubMed

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    We study ordinary solitons and gap solitons (GS's) in the framework of the one-dimensional Gross-Pitaevskii equation (GPE) with a combination of both linear and nonlinear lattice potentials. The main points of the analysis are the effects of (in)commensurability between the lattices, the development of analytical methods, viz., the variational approximation (VA) for narrow ordinary solitons and various forms of the averaging method for broad solitons of both types, and also the study of the mobility of the solitons. Under the direct commensurability (equal periods of the lattices, L{sub lin}=L{sub nonlin}), the family of ordinary solitons is similar to its counterpartmore » in the GPE without external potentials. In the case of the subharmonic commensurability with L{sub lin}=(1/2)L{sub nonlin}, or incommensurability, there is an existence threshold for the ordinary solitons and the scaling relation between their amplitude and width is different from that in the absence of the potentials. GS families demonstrate a bistability unless the direct commensurability takes place. Specific scaling relations are found for them as well. Ordinary solitons can be readily set in motion by kicking. GS's are also mobile and feature inelastic collisions. The analytical approximations are shown to be quite accurate, predicting correct scaling relations for the soliton families in different cases. The stability of the ordinary solitons is fully determined by the Vakhitov-Kolokolov (VK) criterion (i.e., a negative slope in the dependence between the solitons's chemical potential mu and norm N). The stability of GS families obeys an inverted ('anti-VK') criterion dmu/dN>0, which is explained by the approximation based on the averaging method. The present system provides for the unique possibility to check the anti-VK criterion, as mu(N) dependencies for GS's feature turning points except in the case of direct commensurability.« less

  18. Comparison of Methylmercury Production and Accumulation in Sediments of the Congaree and Edisto River Basins, South Carolina, 2004-06

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Francis H.; Journey, Celeste A.

    2009-01-01

    Fish-tissue mercury concentrations (approximately 2 micrograms per gram) in the Edisto River basin of South Carolina are among the highest recorded in the United States. Substantially lower mercury concentrations (approximately 0.2 microgram per gram) are reported in fish from the adjacent (about 30 kilometer) Congaree River basin and the Congaree National Park. In contrast, concentrations of total mercury were statistically higher in sediments from the Congaree River compared with those in sediments from the Edisto River. Furthermore, no statistically significant difference was observed in concentrations of methylmercury or net methylation potential in sediments collected from various Edisto and Congaree hydrologic settings. In both systems, the net methylation potential was low (0-0.17 nanogram per gram per day) for in-stream sediments exposed to continuously flowing water but substantially higher (about 1.8 nanograms per gram per day) in wetland sediments exposed to standing water. These results are not consistent with the hypothesis that differences in fish-tissue mercury between the Edisto and Congaree basins reflect fundamental differences in the potential for each system to methylate mercury. Rather, the significantly higher ratios of methylmercury to total mercury observed in the Edisto system suggest that the net accumulation and(or) preservation of methylmercury are greater in the Edisto system. The marked differences in net methylation potential observed between the wetland and in-stream settings suggest the hypothesis that methylmercury transport from zones of production (wetlands) to points of entry into the food chain (channels) may contribute to the observed differences in fish-tissue mercury concentrations between the two river systems.

  19. Convergence of the strong-potential-Born approximation in Z/sub less-than//Z/sub greater-than/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Sil, N.C.

    1986-01-01

    Convergence of the strong-potential Born (SPB) approximation as a function of the charges of the projectile and target is studied numerically. Time-reversal invariance (or detailed balance) is satisfied at sufficiently high velocities even when the charges are asymmetric. This demonstarates that the SPB approximation converges to the correct result even when the charge of the ''weak'' potential, which is kept to first order, is larger than the charge of the ''strong'' potential, which is retained to all orders. Consequently, the SPB approximation is valid for systems of arbitrary charge symmetry (including symmetric systems) at sufficiently high velocities.

  20. Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Aloy, M. A.; Dimmelmeier, H.; Müller, E.

    2006-10-01

    We continue our investigations of the magnetorotational collapse of stellar cores by discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV gravitational potential used in our simulations captures several basic features of fully relativistic simulations quite well. In particular, it is able to correctly reproduce the behavior of models that show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. For models where the dynamics and gravitational wave signals are already captured qualitatively correctly by a Newtonian potential, the results of the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TOV potential, allowing for a more efficient amplification of the magnetic field by differential rotation. The strength of the saturation fields (˜ 1015 ~ G at the surface of the inner core) is a factor of two to three higher than in Newtonian gravity. Due to the more efficient field amplification, the influence of magnetic fields is considerably more pronounced than in the Newtonian case for some of the models. As in the Newtonian case, sufficiently strong magnetic fields slow down the core's rotation and trigger a secular contraction phase to higher densities. More clearly than in Newtonian models, the collapsed cores of these models exhibit two different kinds of shock generation. Due to magnetic braking, a first shock wave created during the initial centrifugal bounce at subnuclear densities does not suffice for ejecting any mass, and the temporarily stabilized core continues to collapse to supranuclear densities. Another stronger shock wave is generated during the second bounce as the core exceeds nuclear matter density. The gravitational wave signal of these models does not fit into the standard classification. Therefore, in the first paper of this series we introduced a new type of gravitational wave signal, which we call type IV or “magnetic type”. This signal type is more frequent for the approximate relativistic potential than for the Newtonian one. Most of our weak-field models are marginally detectable with the current LIGO interferometer for a source located at a distance of 10 kpc. Strongly magnetized models emit a substantial fraction of their GW power at very low frequencies. A flat spectrum between 10 Hz and ⪉ 100 kHz denotes the generation of a jet-like hydromagnetic outflow.

  1. Simple Analytic Formula for the Period of the Nonlinear Pendulum via the Struve Function: Connection to Acoustical Impedance Matching

    ERIC Educational Resources Information Center

    Douvropoulos, Theodosios G.

    2012-01-01

    An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic…

  2. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs.

    PubMed

    Berke, J D

    2009-09-01

    Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The approximately 50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas approximately 80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in approximately 50 Hz power and increase in approximately 80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for < 1 s following reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.

  3. Heparins from porcine and bovine intestinal mucosa: Are they similar drugs?

    PubMed

    Aquino, Rafael S; Pereira, Mariana S; Vairo, Bruno C; Cinelli, Leonardo P; Santos, Gustavo R C; Fonseca, Roberto J C; Mourão, Paulo A S

    2010-05-01

    Increasing reports of bleeding and peri- or post-operative blood dyscrasias in Brazil were possibly associated with the use of heparin from bovine instead of porcine intestine. These two pharmaceutical grade heparins were analysed for potential differences. NMR analyses confirmed that porcine heparin is composed of mainly trisulfated disaccharides -->4-alpha-IdoA2S-1-->4-alpha-GlcNS6S-1-->. Heparin from bovine intestine is also composed of highly 2-sulfated alpha-iduronic acid residues, but the sulfation of the alpha-glucosamine units vary significantly: approximately 50% are 6- and N -disulfated, as in porcine heparin, while approximately 36% are 6-desulfated and approximately 14% N -acetylated. These heparins differ significantly in their effects on coagulation, thrombosis and bleeding. Bovine heparin acts mostly through factor Xa. Compared to porcine heparin on a weight basis, bovine heparin exhibited approximately half of the anticoagulant and antithrombotic effects, but similar effect on bleeding. These two heparins also differ in their protamine neutralisation curves. The doses of heparin from bovine intestine required for effective antithrombotic protection and the production of adverse bleeding effects are closer than those for porcine heparin. This observation may explain the increasing bleeding observed among Brazilian patients. Our results suggest that these two types of heparin are not equivalent drugs.

  4. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    PubMed

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

  5. The electrostatics of a dusty plasma

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Mendis, D. A.; Northrop, T. G.

    1986-01-01

    The potential distribution in a plasma containing dust grains were derived where the Debye length can be larger or smaller than the average intergrain spacing. Three models were treated for the grain-plasma system, with the assumption that the system of dust and plasma is charge-neutral: a permeable grain model, an impermeable grain model, and a capacitor model that does not require the nearest neighbor approximation of the other two models. A gauge-invariant form of Poisson's equation was used which is linearized about the average potential in the system. The charging currents to a grain are functions of the difference between the grain potential and this average potential. Expressions were obtained for the equilibrium potential of the grain and for the gauge-invariant capacitance between the grain and the plasma. The charge on a grain is determined by the product of this capacitance and the grain-plasma potential difference.

  6. Experimental test of the mechanism of reaction for (e,e'p) coincidence experiment. [/sup 12/C(e,e'p): DWIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M.; Bussiere, A.; Frullani, S.

    1977-06-27

    In order to test the validity of the distorted wave impulse approximation to describe (e,e'p) reactions and/or the suitability of the available optical potential parameters to calculate the distortion, the spectral function was measured for /sub 12/C(e,e'p)/sub 11/B in different kinematical configurations. Experimental results are shown together with the distributions computed with several values of the optical potential parameters. Data seem to indicate the necessity of using different parameters for p hole states and s hole states.

  7. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    NASA Astrophysics Data System (ADS)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1-103) obtained from multiconfiguration Dirac-Fock self-consistent calculations. For comparison purposes, three simple analytical approximations to the electron density of neutral atoms (corresponding to the Thomas-Fermi, the Thomas-Fermi-Dirac and the Dirac-Hartree-Fock-Slater models) are also included. For calculations of elastic scattering by ions, the electron density should be provided by the user. The exchange potential for electron scattering can be selected among three different analytical approximations (Thomas-Fermi, Furness-McCarthy, Riley-Truhlar). The offered options for the correlation-polarization potential are based on the empirical Buckingham potential. The imaginary absorption potential is calculated from the local-density approximation proposed by Salvat [Phys. Rev. A 68 (2003) 012708]. Program summaryTitle of program:ELSEPA Catalogue identifier: ADUS Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADUS Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland License provisions: none Computer for which the program is designed and others in which it is operable: Any computer with a FORTRAN 77 compiler Operating systems under which the program has been tested: Windows XP, Windows 2000, Debian GNU/Linux 3.0r0 (sarge) Compilers:Compaq Visual Fortran v6.5 (Windows); GNU FORTRAN, g77 (Windows and Linux) Programming language used: FORTRAN 77 No. of bits in a word: 32 Memory required to execute with typical data: 0.6 Mb No. of lines in distributed program, including test data, etc.:135 489 No. of bytes in distributed program, including test data, etc.: 1 280 006 Distribution format: tar.gz Keywords: Dirac partial-wave analysis, electron elastic scattering, positron elastic scattering, differential cross sections, momentum transfer cross sections, transport cross sections, scattering amplitudes, spin polarization, scattering by complex potentials, high-energy atomic screening functions Nature of the physical problem: The code calculates differential cross sections, total cross sections and transport cross sections for single elastic scattering of electrons and positrons by neutral atoms, positive ions and randomly oriented molecules. For projectiles with kinetic energies less than about 5 MeV, the programs can also compute scattering amplitudes and spin polarization functions. Method of solution: The effective interaction between the projectile and a target atom is represented by a local central potential that can optionally include an imaginary (absorptive) part to account approximately for the coupling with inelastic channels. For projectiles with kinetic energy less that about 5 MeV, the code performs a conventional relativistic Dirac partial-wave analysis. For higher kinetic energies, where the convergence of the partial-wave series is too slow, approximate factorization methods are used. Restrictions on the complexity of the program: The calculations are based on the static-field approximation. The optional correlation-polarization and inelastic absorption corrections are obtained from approximate, semiempirical models. Calculations for molecules are based on a single-scattering independent-atom approximation. To ensure accuracy of the results for scattering by ions, the electron density of the ion must be supplied by the user. Typical running time: on a 2.8 GHz Pentium 4, the calculation of elastic scattering by atoms and ions takes between a few seconds and about two minutes, depending on the atomic number of the target, the adopted potential model and the kinetic energy of the projectile. Unusual features of the program: The program calculates elastic cross sections for electrons and positrons with kinetic energies in a wide range, from a few tens of eV up to about 1 GeV. Calculations can be performed for neutral atoms of all elements, from hydrogen to lawrencium ( Z=1-103), ions and simple molecules. Commercial products are identified to specify the calculational procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, the University of Barcelona or the Polish Academy of Sciences, nor does it imply that the products are necessarily the best available for the purpose.

  8. Local environment effects in the magnetic properties and electronic structure of disordered FePt

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Ayaz; Minár, Ján; Ebert, Hubert; Blaha, Peter; Šipr, Ondřej

    2017-01-01

    Local aspects of magnetism of disordered FePt are investigated by ab initio fully relativistic full-potential calculations, employing the supercell approach and the coherent potential approximation (CPA). The focus is on trends of the spin and orbital magnetic moments with chemical composition and with bond lengths around the Fe and Pt atoms. A small but distinct difference between average magnetic moments obtained when using the supercells and when relying on the CPA is identified and linked to the neglect of the Madelung potential in the CPA.

  9. Self-gravity and dissipation in polar rings

    NASA Technical Reports Server (NTRS)

    Dubinski, John; Christodoulou, Dimitris M.

    1994-01-01

    Studies of inclined rings inside galaxy potentials have mostly considered the influence of self-gravity and viscous dissipation separately. In this study, we construct models of highly inclined ('polar') rings in an external potential including both self-gravity and dissipation due to a drag force. We do not include pressure forces and thus ignore shock heating that dominates the evolution of gaseous rings inside strongly nonspherical potentials. We adopt an oblate spheroidal scale-free logarithmic potential with axis ratio q = 0.85 and an initial inclination of 80 deg for the self-gravitating rings. We find that stellar (dissipationless) rings suffer from mass loss during their evolution. Mass loss also drives a secular change of the mean inclination toward the poles of the potential. As much as half of the ring mass escapes in the process and forms an inner and an outer shell of precessing orbits. If the remaining mass is more than approximately 0.02 of the enclosed galaxy mass, rings remain bound and do not fall apart from differential precession. The rings precess at a constant rate for more than a precession period tau(sub p) finding the configuration predicted by Sparke in 1986 which warps at larger radii toward the poles of the potential. We model shear viscosity with a velocity-dependent drag force and find that nuclear inflow dominates over self-gravity if the characteristic viscous inflow time scale tau(sub vi) is shorter than approximately 25(tau(sub p)). Rings with (tau(sub vi))/(tau(sub p)) less than or approximately equal to 25 collapse toward the nucleus of the potential within one precession period independent of the amount of self-gravity. Our results imply that stars and gas in real polar rings exhibit markedly different dynamical evolutions.

  10. Ab initio calculations of the magnetic properties of TM (Ti, V)-doped zinc-blende ZnO

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2018-01-01

    In order to promote suitable material to be used in spintronics devices, this study purposes to evaluate the magnetic properties of the titanium and vanadium-doped zinc-blende ZnO from first-principles. The calculations of these properties are based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA), using the local density approximation (LDA). We have calculated and discussed the density of states (DOSs) in the energy phase diagrams for different concentration values, of the dopants. We have also investigated the magnetic and half-metallic properties of this doped compound. Additionally, we showed the mechanism of the exchange coupling interaction. Finally, we estimated and studied the Curie temperature for different concentrations.

  11. Magnetic properties of vanadium doped CdTe: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2017-04-01

    In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature Tc for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.

  12. Assimilation and subcellular partitioning of elements by grass shrimp collected along an impact gradient.

    PubMed

    Seebaugh, David R; Wallace, William G

    2009-06-28

    Chronic exposure to polluted field conditions can impact metal bioavailability in prey and may influence metal transfer to predators. The present study investigated the assimilation of Cd, Hg and organic carbon by grass shrimp Palaemonetes pugio, collected along an impact gradient within the New York/New Jersey Harbor Estuary. Adult shrimp were collected from five Staten Island, New York study sites, fed (109)Cd- or (203)Hg-labeled amphipods or (14)C-labeled meals and analyzed for assimilation efficiencies (AE). Subsamples of amphipods and shrimp were subjected to subcellular fractionation to isolate metal associated with a compartment presumed to contain trophically available metal (TAM) (metal associated with heat-stable proteins [HSP - e.g., metallothionein-like proteins], heat-denatured proteins [HDP - e.g., enzymes] and organelles [ORG]). TAM-(109)Cd% and TAM-(203)Hg% in radiolabeled amphipods were approximately 64% and approximately 73%, respectively. Gradients in AE-(109)Cd% ( approximately 54% to approximately 75%) and AE-(203)Hg% ( approximately 61% to approximately 78%) were observed for grass shrimp, with the highest values exhibited by shrimp collected from sites within the heavily polluted Arthur Kill complex. Population differences in AE-(14)C% were not observed. Assimilated (109)Cd% partitioned to the TAM compartment in grass shrimp varied between approximately 67% and approximately 75%. (109)Cd bound to HSP in shrimp varied between approximately 15% and approximately 47%, while (109)Cd associated with metal-sensitive HDP was approximately 17% to approximately 44%. Percentages of assimilated (109)Cd bound to ORG were constant at approximately 10%. Assimilated (203)Hg% associated with TAM in grass shrimp did not exhibit significant variation. Percentages of assimilated (203)Hg bound to HDP ( approximately 47%) and ORG ( approximately 11%) did not vary among populations and partitioning of (203)Hg to HSP was not observed. Using a simplified biokinetic model of metal accumulation from the diet, it is estimated that site-specific variability in Cd AE by shrimp and tissue Cd burdens in field-collected prey (polychaetes Nereis spp.) could potentially result in up to approximately 3.2-fold differences in the dose of Cd assimilated by shrimp from a meal in the field. The results of this study also suggest that chronic field exposure can impact mechanisms of metal transport across the gut epithelium that do not influence carbon assimilation. Differences in the assimilation and subcellular partitioning of metal may have important implications for metal toxicity in impacted shrimp populations.

  13. Enhancement of tritium concentrations on uptake by marine biota: experience from UK coastal waters.

    PubMed

    Hunt, G J; Bailey, T A; Jenkinson, S B; Leonard, K S

    2010-03-01

    Concentrations of tritium in sea water and marine biota as reported over the last approximately 10 years from monitoring programmes carried out by this laboratory under contract to the UK Food Standards Agency are reviewed from three areas: near Cardiff; Sellafield; and Hartlepool. Near Cardiff, enhancement of concentration factors (CFs) above an a priori value of approximately 1 have already been studied, and attributed to compounds containing organically bound tritium in local radioactive waste discharges. Further data for Cardiff up to 2006 are reported in this note. Up to 2001, CFs increased to values of more than approximately 7000 in flounders and approximately 4000 in mussels, but have subsequently reduced; this variability could be due to changes in the organic constitution of compounds discharged. Near Sellafield and Hartlepool, enhancements to the tritium concentration factor are observed but they are relatively small compared with those near Cardiff. Near Sellafield, plaice and mussels appear to have a CF for tritium of approximately 10; in some cases concentrations of tritium in winkles are below detection limits and positively measured values indicate a CF of approximately 3. The variation could be due to mechanisms of uptake by the different organisms. Near Hartlepool there were only a few cases where tritium was positively measured. These data give a value of approximately 5 for the CF in plaice (on the basis of two samples); approximately 15 in winkles (eight samples); and > 45 in mussels (two samples). Any differences between the behaviours at Sellafield and Hartlepool would need to be confirmed by improved measurements. Possible causes are the organic composition of the effluent and differences in environmental behaviour and uptake by organisms near the two sites. These potential causes need further investigation. It is emphasised that results from tritium analyses are heavily method dependent; thus comparison with results from other programmes needs to take this into account. Further, the results for enhancement of CF will also depend on the definition of CF itself.

  14. Electron-ion collision rates in noble gas clusters irradiated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2012-05-01

    We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-ion collision frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of ion is most dominant for the lowest charge state of xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict collision frequencies which are nearly close to each other.

  15. Biometric correspondence between reface computerized facial approximations and CT-derived ground truth skin surface models objectively examined using an automated facial recognition system.

    PubMed

    Parks, Connie L; Monson, Keith L

    2018-05-01

    This study employed an automated facial recognition system as a means of objectively evaluating biometric correspondence between a ReFace facial approximation and the computed tomography (CT) derived ground truth skin surface of the same individual. High rates of biometric correspondence were observed, irrespective of rank class (R k ) or demographic cohort examined. Overall, 48% of the test subjects' ReFace approximation probes (n=96) were matched to his or her corresponding ground truth skin surface image at R 1 , a rank indicating a high degree of biometric correspondence and a potential positive identification. Identification rates improved with each successively broader rank class (R 10 =85%, R 25 =96%, and R 50 =99%), with 100% identification by R 57 . A sharp increase (39% mean increase) in identification rates was observed between R 1 and R 10 across most rank classes and demographic cohorts. In contrast, significantly lower (p<0.01) increases in identification rates were observed between R 10 and R 25 (8% mean increase) and R 25 and R 50 (3% mean increase). No significant (p>0.05) performance differences were observed across demographic cohorts or CT scan protocols. Performance measures observed in this research suggest that ReFace approximations are biometrically similar to the actual faces of the approximated individuals and, therefore, may have potential operational utility in contexts in which computerized approximations are utilized as probes in automated facial recognition systems. Copyright © 2018. Published by Elsevier B.V.

  16. Fast-match on particle swarm optimization with variant system mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yuehuang; Fang, Xin; Chen, Jie

    2018-03-01

    Fast-Match is a fast and effective algorithm for approximate template matching under 2D affine transformations, which can match the target with maximum similarity without knowing the target gesture. It depends on the minimum Sum-of-Absolute-Differences (SAD) error to obtain the best affine transformation. The algorithm is widely used in the field of matching images because of its fastness and robustness. In this paper, our approach is to search an approximate affine transformation over Particle Swarm Optimization (PSO) algorithm. We treat each potential transformation as a particle that possesses memory function. Each particle is given a random speed and flows throughout the 2D affine transformation space. To accelerate the algorithm and improve the abilities of seeking the global excellent result, we have introduced the variant system mechanism on this basis. The benefit is that we can avoid matching with huge amount of potential transformations and falling into local optimal condition, so that we can use a few transformations to approximate the optimal solution. The experimental results prove that our method has a faster speed and a higher accuracy performance with smaller affine transformation space.

  17. Normalization of Gravitational Acceleration Models

    NASA Technical Reports Server (NTRS)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  18. Computational applications of the many-interacting-worlds interpretation of quantum mechanics.

    PubMed

    Sturniolo, Simone

    2018-05-01

    While historically many quantum-mechanical simulations of molecular dynamics have relied on the Born-Oppenheimer approximation to separate electronic and nuclear behavior, recently a great deal of interest has arisen in quantum effects in nuclear dynamics as well. Due to the computational difficulty of solving the Schrödinger equation in full, these effects are often treated with approximate methods. In this paper, we present an algorithm to tackle these problems using an extension to the many-interacting-worlds approach to quantum mechanics. This technique uses a kernel function to rebuild the probability density, and therefore, in contrast with the approximation presented in the original paper, it can be naturally extended to n-dimensional systems. This opens up the possibility of performing quantum ground-state searches with steepest-descent methods, and it could potentially lead to real-time quantum molecular-dynamics simulations. The behavior of the algorithm is studied in different potentials and numbers of dimensions and compared both to the original approach and to exact Schrödinger equation solutions whenever possible.

  19. Achieving accuracy in first-principles calculations at extreme temperature and pressure

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann; Wills, John

    2013-06-01

    First-principles calculations are increasingly used to provide EOS data at pressures and temperatures where experimental data is difficult or impossible to obtain. The lack of experimental data, however, also precludes validation of the calculations in those regimes. Factors influencing the accuracy of first-principles data include theoretical approximations, and computational approximations used in implementing and solving the underlying equations. The first category includes approximate exchange-correlation functionals and wave equations simplifying the Dirac equation. In the second category are, e.g., basis completeness and pseudo-potentials. While the first category is extremely hard to assess without experimental data, inaccuracies of the second type should be well controlled. We are using two rather different electronic structure methods (VASP and RSPt) to make explicit the requirements for accuracy of the second type. We will discuss the VASP Projector Augmented Wave potentials, with examples for Li and Mo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids

    NASA Astrophysics Data System (ADS)

    Cheng, Bingqing; Ceriotti, Michele

    2018-02-01

    The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures.

  1. Effective intermolecular potential and critical point for C60 molecule

    NASA Astrophysics Data System (ADS)

    Ramos, J. Eloy

    2017-07-01

    The approximate nonconformal (ANC) theory is applied to the C60 molecule. A new binary potential function is developed for C60, which has three parameters only and is obtained by averaging the site-site carbon interactions on the surface of two C60 molecules. It is shown that the C60 molecule follows, to a good approximation, the corresponding states principle with n-C8H18, n-C4F10 and n-C5F12. The critical point of C60 is estimated in two ways: first by applying the corresponding states principle under the framework of the ANC theory, and then by using previous computer simulations. The critical parameters obtained by applying the corresponding states principle, although very different from those reported in the literature, are consistent with the previous results of the ANC theory. It is shown that the Girifalco potential does not correspond to an average of the site-site carbon-carbon interaction.

  2. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.

    PubMed

    Helftewes, Markus; Flamme, Sabine; Nelles, Michael

    2012-04-01

    This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.

  3. Strong-potential Born calculations for 1s-1s electron capture from atoms by protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Kletke, R.E.; Sil, N.C.

    1985-08-01

    The strong-potential Born (SPB) approximation is examined by comparing various SPB calculations of high-velocity 1s-1s electron capture cross sections with one another and with experimental data. Above about 1 MeV, calculations using the SPB method of McGuire and Sil (SPMS) (Phys. Rev. A 28, 3679 (1983)) are in good agreement with total-cross-section observations for protons on H, He, C, Ne, and Ar as expected. For p+H and p+He, the SPB full-peaking (SPB-FP) approximation of Macek and Alston (Phys. Rev. A 26, 250 (1982)) and the SPB transverse-peaking (SPB-TP) approximation of Alston (Phys. Rev. A 27, 2342 (1982)) differ from ourmore » SPMS total cross sections by typically a factor of 2, as expected from general validity criteria. However, the differential cross sections at very forward angles (well within the Thomas angle) are the same in SPMS, SPB-FP, and SPB-TP methods in all cases. Below 1 MeV, cross sections obtained with use of various SPB methods differ considerably from one another, placing a limit of validity for these SPB calculations. We also suggest that in the gap between those energies where continuum intermediate states simply dominate, and above those energies where bound intermediate states simply dominate, detailed conceptual understanding of electron capture is incomplete.« less

  4. Excitation energies of dissociating H2: A problematic case for the adiabatic approximation of time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Gritsenko, O. V.; van Gisbergen, S. J. A.; Görling, A.; Baerends, E. J.

    2000-11-01

    Time-dependent density functional theory (TDDFT) is applied for calculation of the excitation energies of the dissociating H2 molecule. The standard TDDFT method of adiabatic local density approximation (ALDA) totally fails to reproduce the potential curve for the lowest excited singlet 1Σu+ state of H2. Analysis of the eigenvalue problem for the excitation energies as well as direct derivation of the exchange-correlation (xc) kernel fxc(r,r',ω) shows that ALDA fails due to breakdown of its simple spatially local approximation for the kernel. The analysis indicates a complex structure of the function fxc(r,r',ω), which is revealed in a different behavior of the various matrix elements K1c,1cxc (between the highest occupied Kohn-Sham molecular orbital ψ1 and virtual MOs ψc) as a function of the bond distance R(H-H). The effect of nonlocality of fxc(r,r') is modeled by using different expressions for the corresponding matrix elements of different orbitals. Asymptotically corrected ALDA (ALDA-AC) expressions for the matrix elements K12,12xc(στ) are proposed, while for other matrix elements the standard ALDA expressions are retained. This approach provides substantial improvement over the standard ALDA. In particular, the ALDA-AC curve for the lowest singlet excitation qualitatively reproduces the shape of the exact curve. It displays a minimum and approaches a relatively large positive energy at large R(H-H). ALDA-AC also produces a substantial improvement for the calculated lowest triplet excitation, which is known to suffer from the triplet instability problem of the restricted KS ground state. Failure of the ALDA for the excitation energies is related to the failure of the local density as well as generalized gradient approximations to reproduce correctly the polarizability of dissociating H2. The expression for the response function χ is derived to show the origin of the field-counteracting term in the xc potential, which is lacking in the local density and generalized gradient approximations and which is required to obtain a correct polarizability.

  5. Course 4: Density Functional Theory, Methods, Techniques, and Applications

    NASA Astrophysics Data System (ADS)

    Chrétien, S.; Salahub, D. R.

    Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions

  6. Generalization of the optimized-effective-potential model to include electron correlation: A variational derivation of the Sham-Schlueter equation for the exact exchange-correlation potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casida, M.E.

    1995-03-01

    The now classic optimized-effective-potential (OEP) approach of Sharp and Horton [Phys Rev. 90, 317 (1953)] and Talman and Shadwick [Phys. Rev. A 14, 36 (1976)] seeks the local potential that is variationally optimized to best approximate the Hartree-Fock exchange operator. The resulting OEP can be identified as the exchange potential of Kohn-Sham density-functional theory. The present work generalizes this OEP approach to treat the correlated case, and shows that the Kohn-Sham exchange-correlation potential is the variationally best local approximation to the exchange-correlation self-energy. This provides a variational derivation of the equation for the exact exchange-correlation potential that was derived bymore » Sham and Schlueter using a density condition. Implications for an approximate physical interpretation of the Kohn-Sham orbitals are discussesd. A correlated generalization of the Sharp-Horton--Krieger-Li-Iafrate [Phys Lett. A 146, 256 (1990)] approximation of the exchange potential is introduced in the quasiparticle limit.« less

  7. Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential

    NASA Astrophysics Data System (ADS)

    Modarres, M.; Moeini, H.; Moshfegh, H. R.

    The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.

  8. An approximate theoretical treatment of ion transfer processes at asymmetric microscopic and nanoscopic liquid-liquid interfaces: Single and double potential pulse techniques

    NASA Astrophysics Data System (ADS)

    Molina, A.; Laborda, E.; Compton, R. G.

    2014-03-01

    Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.

  9. One-Dimensional Oscillator in a Box

    ERIC Educational Resources Information Center

    Amore, Paolo; Fernandez, Francisco M.

    2010-01-01

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…

  10. Calculation of Compressible Flows past Aerodynamic Shapes by Use of the Streamline Curvature

    NASA Technical Reports Server (NTRS)

    Perl, W

    1947-01-01

    A simple approximate method is given for the calculation of isentropic irrotational flows past symmetrical airfoils, including mixed subsonic-supersonic flows. The method is based on the choice of suitable values for the streamline curvature in the flow field and the subsequent integration of the equations of motion. The method yields limiting solutions for potential flow. The effect of circulation is considered. A comparison of derived velocity distributions with existing results that are based on calculation to the third order in the thickness ratio indicated satisfactory agreement. The results are also presented in the form of a set of compressibility correction rules that lie between the Prandtl-Glauert rule and the von Karman-Tsien rule (approximately). The different rules correspond to different values of the local shape parameter square root sign YC sub a, in which Y is the ordinate and C sub a is the curvature at a point on an airfoil. Bodies of revolution, completely supersonic flows, and the significance of the limiting solutions for potential flow are also briefly discussed.

  11. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  12. Optical-model potential for electron and positron elastic scattering by atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvat, Francesc

    2003-07-01

    An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less

  13. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    NASA Astrophysics Data System (ADS)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  14. Atomic force microscope studies of the fusion of floating lipid bilayers.

    PubMed

    Abdulreda, Midhat H; Moy, Vincent T

    2007-06-15

    This study investigated the fusion of apposing floating bilayers of egg L-alpha-phosphatidylcholine (egg PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Atomic force microscope measurements of fusion forces under different compression rates were acquired to reveal the energy landscape of the fusion process under varied lipid composition and temperature. Between compression rates of approximately 1000 and approximately 100,000 pN/s, applied forces in the range from approximately 100 to approximately 500 pN resulted in fusion of floating bilayers. Our atomic force microscope measurements indicated that one main energy barrier dominated the fusion process. The acquired dynamic force spectra were fit with a simple model based on the transition state theory with the assumption that the fusion activation potential is linear. A significant shift in the energy landscape was observed when bilayer fluidity and composition were modified, respectively, by temperature and different cholesterol concentrations (15% < or = chol < or = 25%). Such modifications resulted in a more than twofold increase in the width of the fusion energy barrier for egg PC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine floating bilayers. The addition of 25% cholesterol to egg PC bilayers increased the activation energy by approximately 1.0 k(B)T compared with that of bilayers with egg PC alone. These results reveal that widening of the energy barrier and consequently reduction in its slope facilitated membrane fusion.

  15. A three-ions model of electrodiffusion kinetics in a nanochannel

    NASA Astrophysics Data System (ADS)

    Sebechlebská, Táňa; Neogrády, Pavel; Valent, Ivan

    2016-10-01

    Nanoscale electrodiffusion transport is involved in many electrochemical, technological and biological processes. Developments in computer power and numerical algorithms allow for solving full time-dependent Nernst-Planck and Poisson equations without simplifying approximations. We simulate spatio-temporal profiles of concentration and electric potential changes after a potential jump in a 10 nm channel with two cations (with opposite concentration gradients and different mobilities) and one anion (of uniform concentration). The temporal dynamics shows three exponential phases and damped oscillations of the electric potential. Despite the absence of surface charges in the studied model, an asymmetric current-voltage characteristic was observed.

  16. Definition of Systematic, Approximately Separable, and Modular Internal Coordinates (SASMIC) for macromolecular simulation.

    PubMed

    Echenique, Pablo; Alonso, J L

    2006-07-30

    A set of rules is defined to systematically number the groups and the atoms of polypeptides in a modular manner. Supported by this numeration, a set of internal coordinates is defined. These coordinates (termed Systematic, Approximately Separable, and Modular Internal Coordinates--SASMIC) are straightforwardly written in Z-matrix form and may be directly implemented in typical Quantum Chemistry packages. A number of Perl scripts that automatically generate the Z-matrix files are provided as supplementary material. The main difference with most Z-matrix-like coordinates normally used in the literature is that normal dihedral angles ("principal dihedrals" in this work) are only used to fix the orientation of whole groups and a different type of dihedrals, termed "phase dihedrals," are used to describe the covalent structure inside the groups. This physical approach allows to approximately separate soft and hard movements of the molecule using only topological information and to directly implement constraints. As an application, we use the coordinates defined and ab initio quantum mechanical calculations to assess the commonly assumed approximation of the free energy, obtained from "integrating out" the side chain degree of freedom chi, by the Potential Energy Surface (PES) in the protected dipeptide HCO-L-Ala-NH2. We also present a subbox of the Hessian matrix in two different sets of coordinates to illustrate the approximate separation of soft and hard movements when the coordinates defined in this work are used. (PACS: 87.14.Ee, 87.15.-v, 87.15.Aa, 87.15.Cc) 2006 Wiley Periodicals, Inc.

  17. Extending the Fellegi-Sunter probabilistic record linkage method for approximate field comparators.

    PubMed

    DuVall, Scott L; Kerber, Richard A; Thomas, Alun

    2010-02-01

    Probabilistic record linkage is a method commonly used to determine whether demographic records refer to the same person. The Fellegi-Sunter method is a probabilistic approach that uses field weights based on log likelihood ratios to determine record similarity. This paper introduces an extension of the Fellegi-Sunter method that incorporates approximate field comparators in the calculation of field weights. The data warehouse of a large academic medical center was used as a case study. The approximate comparator extension was compared with the Fellegi-Sunter method in its ability to find duplicate records previously identified in the data warehouse using different demographic fields and matching cutoffs. The approximate comparator extension misclassified 25% fewer pairs and had a larger Welch's T statistic than the Fellegi-Sunter method for all field sets and matching cutoffs. The accuracy gain provided by the approximate comparator extension grew as less information was provided and as the matching cutoff increased. Given the ubiquity of linkage in both clinical and research settings, the incremental improvement of the extension has the potential to make a considerable impact.

  18. Effects of laser radiation field on energies of hydrogen atom in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less

  19. Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes

    PubMed Central

    1991-01-01

    Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time- dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. PMID:1865177

  20. Young's moduli of carbon materials investigated by various classical molecular dynamics schemes

    NASA Astrophysics Data System (ADS)

    Gayk, Florian; Ehrens, Julian; Heitmann, Tjark; Vorndamme, Patrick; Mrugalla, Andreas; Schnack, Jürgen

    2018-05-01

    For many applications classical carbon potentials together with classical molecular dynamics are employed to calculate structures and physical properties of such carbon-based materials where quantum mechanical methods fail either due to the excessive size, irregular structure or long-time dynamics. Although such potentials, as for instance implemented in LAMMPS, yield reasonably accurate bond lengths and angles for several carbon materials such as graphene, it is not clear how accurate they are in terms of mechanical properties such as for instance Young's moduli. We performed large-scale classical molecular dynamics investigations of three carbon-based materials using the various potentials implemented in LAMMPS as well as the EDIP potential of Marks. We show how the Young's moduli vary with classical potentials and compare to experimental results. Since classical descriptions of carbon are bound to be approximations it is not astonishing that different realizations yield differing results. One should therefore carefully check for which observables a certain potential is suited. Our aim is to contribute to such a clarification.

  1. Effect of Base Sequence "Defects" on the Electrostatic Potential of Dissolved DNA

    NASA Astrophysics Data System (ADS)

    Adams, Scott V.; Wagner, Katrina; Kephart, Thomas S.; Edwards, Glenn

    1997-11-01

    An analytical model of the electrostatic potential surrounding dissolved DNA has been developed. The model consists of an all-atom, mathematically helical structure for DNA, in which the atoms are arranged in infinite lines of discrete point charges on concentric cylindrical surfaces. The surrounding solvent and counterions are treated with the Debye-Huckel approximation (Wagner et al., Biophysical Journal 73, 21-30, 1997). Variation in the electrostatic potential due to structural differences between A, B, and Z conformations and homopolymer base sequence is apparent. The most recent modification to the model exploits the principle of superposition to calculate the potential of DNA with a base sequence containing `defects.' That is, the base sequence is no longer uniform along the polymer. Differences between the potential of homopolymer DNA and the potential of DNA containing base `defects' are immediately obvious. These results may aid in understanding the role of electrostatics in base-sequence specificity exhibited by DNA-binding proteins.

  2. Electrostatic twisted modes in multi-component dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less

  3. u d b \\xAF b \\xAF tetraquark resonances with lattice QCD potentials and the Born-Oppenheimer approximation

    NASA Astrophysics Data System (ADS)

    Bicudo, Pedro; Cardoso, Marco; Peters, Antje; Pflaumer, Martin; Wagner, Marc

    2017-09-01

    We study tetraquark resonances with lattice QCD potentials computed for a static b ¯b ¯ pair in the presence of two lighter quarks u d , the Born-Oppenheimer approximation and the emergent wave method. As a proof of concept we focus on the system with isospin I =0 , but consider different relative angular momenta l of the heavy quarks b ¯b ¯. For l =0 a bound state has already been predicted with quantum numbers I (JP)=0 (1+). Exploring various angular momenta we now compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a tetraquark resonance for l =1 , decaying into two B mesons, with quantum numbers I (JP)=0 (1-) , mass m =10 57 6-4+4 MeV and decay width Γ =11 2-103+90 MeV .

  4. Approximate entropy analysis of event-related potentials in patients with early vascular dementia.

    PubMed

    Xu, Jin; Sheng, Hengsong; Lou, Wutao; Zhao, Songzhen

    2012-06-01

    This study investigated differences in event-related potential (ERP) parameters among early vascular dementia (VD) patients, healthy elder controls (ECs), and young controls (YCs). A visual "oddball" color identification task was performed while individuals' electroencephalograms (EEGs) were recorded. Approximate entropy (ApEn), a nonlinear measure, along with P300 latencies and amplitudes were used to analyze ERP data and compare these three groups. The patients with VD showed more complex ERP waveforms and higher ApEn values than did ECs while performing the visual task. It was further found that patients with VD showed reduced P300 amplitudes and increased latencies. The results indicate that patients with VD have fewer attention resources to devote to processing stimuli, lower speed of stimulus classification, and lower synchrony in their cortical activity during the response period. We suggest that ApEn, as a measure of ERP complexity, is a promising marker for early diagnosis of VD.

  5. Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Ta'asan, Shlomo

    1996-01-01

    In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.

  6. Integral equation calculations for the photodisintegration process {sup 4}He({gamma},{ital n}){sup 3}He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellerkmann, G.; Sandhas, W.; Sofianos, S.A.

    1996-06-01

    Results obtained by solving Alt-Grassberger-Sandhas (AGS)-type integral equations for the photodisintegration of {sup 4}He, employing the Malfliet-Tjon potential, are compared with the latest experimental data. Good agreement between theory and experiment is found in electric dipole approximation for the total cross section, but the differential cross sections differ at higher energies. This discrepancy is reduced, but not fully removed by taking into account the electric quadrupole contributions. In order to get some feeling for the sensitivity to the underlying potential, we also show calculations based on the Yamaguchi potential. They differ from the Malfliet-Tjon results in a way which resemblesmore » the trends known from triton photodisintegration. {copyright} {ital 1996 The American Physical Society.}« less

  7. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions

    PubMed Central

    2016-01-01

    Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought “universal model” capable of describing the behavior of water under different conditions and in different environments. PMID:27186804

  8. Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions

    PubMed Central

    Onufriev, Alexey V.

    2013-01-01

    We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790

  9. X-ray photoelectron spectrum and electronic properties of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4): LDA, GGA, and EV-GGA.

    PubMed

    Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S

    2009-04-30

    An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.

  10. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the...structure theoretical methods, a quantitative study with accurate density functional theory (DFT) calculations is still missing. Here, we perform a...functional theory . The projector augmented wave (PAW) potentials29,30 were used for electron- ion interactions and the generalized gradient approximation

  11. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    PubMed Central

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  12. Electroencephalography in ellipsoidal geometry with fourth-order harmonics.

    PubMed

    Alcocer-Sosa, M; Gutierrez, D

    2016-08-01

    We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.

  13. Local-spin-density calculations for iron: Effect of spin interpolation on ground-state properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLaren, J.M.; Clougherty, D.P.; Albers, R.C.

    1990-08-15

    Scalar-relativistic self-consistent linear muffin-tin orbital (LMTO) calculations for bcc and fcc Fe have been performed with several different local approximations to the exchange and correlation energy density and potential. Overall, in contrast to the conclusions of previous studies, we find that the local-spin-density approximation to exchange and correlation can provide an adequate description of bulk Fe {ital provided} that a proper parametrization of the correlation energy density and potential of the homogeneous electron gas over both spin and density is used. Lattice constants, found from the position of the minimum of the total energy as a function of Wigner-Seitz radius,more » agree to within 1% (for {ital s},{ital p},{ital d} LMTO's only) and within 1--2% (for {ital s},{ital p},{ital d},{ital f} LMTO's) of the experimental lattice constants for all forms used for the local correlation. The best agreement, however, was obtained using a local correlation potential derived from the Vosko-Wilk-Nusair form for the spin dependence of the correlation energy density. The calculation performed with this correlation potential was also the only calculation to correctly predict a bcc ferromagnetic ground state.« less

  14. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    NASA Astrophysics Data System (ADS)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  15. Wave turbulence in shallow water models.

    PubMed

    Clark di Leoni, P; Cobelli, P J; Mininni, P D

    2014-06-01

    We study wave turbulence in shallow water flows in numerical simulations using two different approximations: the shallow water model and the Boussinesq model with weak dispersion. The equations for both models were solved using periodic grids with up to 2048{2} points. In all simulations, the Froude number varies between 0.015 and 0.05, while the Reynolds number and level of dispersion are varied in a broader range to span different regimes. In all cases, most of the energy in the system remains in the waves, even after integrating the system for very long times. For shallow flows, nonlinear waves are nondispersive and the spectrum of potential energy is compatible with ∼k{-2} scaling. For deeper (Boussinesq) flows, the nonlinear dispersion relation as directly measured from the wave and frequency spectrum (calculated independently) shows signatures of dispersion, and the spectrum of potential energy is compatible with predictions of weak turbulence theory, ∼k{-4/3}. In this latter case, the nonlinear dispersion relation differs from the linear one and has two branches, which we explain with a simple qualitative argument. Finally, we study probability density functions of the surface height and find that in all cases the distributions are asymmetric. The probability density function can be approximated by a skewed normal distribution as well as by a Tayfun distribution.

  16. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.

    PubMed Central

    Tripathi, S; Hladky, S B

    1998-01-01

    Streaming potentials have been measured for gramicidin channels with a new method employing ion-selective microelectrodes. It is shown that ideally ion-selective electrodes placed at the membrane surface record the true streaming potential. Using this method for ion concentrations below 100 mM, approximately seven water molecules are transported whenever a sodium, potassium, or cesium ion, passes through the channel. This new method confirms earlier measurements (Rosenberg, P.A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels. J. Gen. Physiol. 72:327-340) in which the streaming potentials were calculated as the difference between electrical potentials measured in the presence of gramicidin and in the presence of the ion carriers valinomycin and nonactin. PMID:9635745

  17. A Gaussian Approximation Potential for Silicon

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  18. The Australian bush fly (Musca vetustissima) as a potential vector in the transmission of foodborne pathogens at outdoor eateries.

    PubMed

    Vriesekoop, Frank; Shaw, Rachel

    2010-03-01

    Abstract Australian outdoor activities are often accompanied by a barbeque (BBQ) with family, friends, and guests, which are often interrupted by uninvited guests in the form of the Australian bush fly, Musca vetustissima. We investigated the bacterial loading associated with the Australian bush in three different environments: on a cattle farm, in a typical urban area (shopping center car park), and at a BBQ. The highest bacterial populations per fly were found to occur in a farm environment ( approximately 9.1 x 10(4) CFU per fly), whereas the bacterial population was lowest on flies caught in an urban environment ( approximately 1.9 x 10(4) CFU per fly). The median CFU per fly caught near a BBQ was approximately 5.0 x 10(4). Escherichia coli was the most commonly isolated potential pathogen, whereas Shigella sp. was the least common bacterial isolate that was screened. All isolated foodborne pathogens or indicator bacteria were screened for antibiotic resistance against commonly prescribed antibiotics. This revealed a very high prevalence of multidrug resistance, especially among the Salmonella and Shigella isolates of 94% and 87% resistance, respectively, against amoxicillin, roxythromycin and cefaclor.

  19. Single field double inflation and primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannike, K.; Marzola, L.; Raidal, M.

    Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by amore » polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.« less

  20. The Epoch of Disk Formation: z is Approximately l to Today

    NASA Technical Reports Server (NTRS)

    Kassin, Susan; Gardner, Jonathan; Weiner, Ben; Faber, Sandra

    2012-01-01

    We present data on galaxy kinematics, morphologies, and star-formation rates over 0.1 less than z less than 1.2 for approximately 500 blue galaxies. These data show how systems like our own Milky-Way have come into being. At redshifts around 1, about half the age of the Universe ago, Milky-Way mass galaxies were different beasts than today. They had a significant amount of disturbed motions, disturbed morphologies, shallower potential wells, higher specific star-formation rates, and likely higher gas fractions. Since redshift approximately 1, galaxies have decreased in disturbed motions, increased in rotation velocity and potential well depth, become more well-ordered morphologically, and decreased in specific star-formation rate. We find interrelationships between these measurements. Galaxy kinematics are correlated with morphology and specific star-formation rate such that galaxies with the fastest rotation velocities and the least amounts of disturbed motions have the most well-ordered morphologies and the lowest specific star-formation rates. The converse is true. Moreover, we find that the rate at which galaxies become more well-ordered kinematically (i.e., increased rotation velocity, decreased disturbed motions) and morphologically is directly proportional to their stellar mass.

  1. Electronic properties of 3R-CuAlO2 under pressure: Three theoretical approaches

    NASA Astrophysics Data System (ADS)

    Christensen, N. E.; Svane, A.; Laskowski, R.; Palanivel, B.; Modak, P.; Chantis, A. N.; van Schilfgaarde, M.; Kotani, T.

    2010-01-01

    The pressure variation in the structural parameters, u and c/a , of the delafossite CuAlO2 is calculated within the local-density approximation (LDA). Further, the electronic structures as obtained by different approximations are compared: LDA, LDA+U , and a recently developed “quasiparticle self-consistent GW ” (QSGW) approximation. The structural parameters obtained by the LDA agree very well with experiments but, as expected, gaps in the formal band structure are underestimated as compared to optical experiments. The (in LDA too high lying) Cu3d states can be down shifted by LDA+U . The magnitude of the electric field gradient (EFG) as obtained within the LDA is far too small. It can be “fitted” to experiments in LDA+U but a simultaneous adjustment of the EFG and the gap cannot be obtained with a single U value. QSGW yields reasonable values for both quantities. LDA and QSGW yield significantly different values for some of the band-gap deformation potentials but calculations within both approximations predict that 3R-CuAlO2 remains an indirect-gap semiconductor at all pressures in its stability range 0-36 GPa, although the smallest direct gap has a negative pressure coefficient.

  2. Statistical properties of kinetic and total energy densities in reverberant spaces.

    PubMed

    Jacobsen, Finn; Molares, Alfonso Rodríguez

    2010-04-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high modal overlap, and this analysis has never been published. Moreover, until fairly recently, measurement of the total sound energy density required an elaborate experimental arrangement based on finite-difference approximations using at least four amplitude and phase matched pressure microphones. With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically, experimentally, and numerically.

  3. Novel molecular device based on electrostatic interactions in organic polymers.

    PubMed

    Kwok, H L; Xu, J B

    2004-04-01

    A number of researchers have reported attempts to design molecular level devices. One approach is to make use of electrostatic interactions in different parts of a polymeric molecule. This paper reports a means to achieve this by adding space charge to a molecule consisting of symmetric and asymmetric subgroups. Physically, space charge residing in a subgroup produces a dipolar charge layer thereby creating a potential trough in the polymer backbone. By lifting or lowering this potential minimum, it is possible to modify the terminal current. The effect of space charge on the potential profile in the polymer backbone was examined and the change correlated to data on carrier mobilities for OC1C10-PPV reported in the literature. Modulation of space charge in the subgroup allows the manipulation of current flow along the polymer backbone, forming the basis for the development of a molecular device. A first-order analysis suggested that such a device could have current-voltage (I-V) characteristics similar to those of a MOSFET at subthreshold, with an estimated transconductance approximately 1-2 pAV and a cutoff frequency approximately 10(15) Hz.

  4. Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition.

    PubMed

    Tao, Shasha; Yang, Florent; Schuch, Jona; Jaegermann, Wolfram; Kaiser, Bernhard

    2018-03-09

    Ni nanoparticles (NPs) consisting of Ni, NiO, and Ni(OH) 2 were formed on Ti substrates by electrodeposition as electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. Additionally, the deposition parameters including the potential range and the scan rate were varied, and the resulting NPs were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. The chemical composition of the NPs changed upon using different conditions, and it was found that the catalytic activity increased with an increase in the amount of NiO. From these data, optimized NPs were synthesized; the best sample showed an onset potential of approximately 0 V and an overpotential of 197 mV at a cathodic current density of 10 mA cm -2 as well as a small Tafel slope of 88 mV dec -1 in 1 m KOH, values that are comparable to those of Pt foil. These NPs consist of approximately 25 % Ni and Ni(OH) 2 each, as well as approximately 50 % NiO. This implies that to obtain a successful HER electrocatalyst, active sites with differing compositions have to be close to each other to promote the different reaction steps. Long-time measurements (30 h) showed almost complete transformation of the highly active catalyst compound consisting of Ni 0 , NiO, and Ni(OH) 2 into the less active Ni(OH) 2 phase. Nevertheless, the here-employed electrodeposition of nonprecious metal/metal-oxide combination compounds represents a promising alternative to Pt-based electrocatalysts for water reduction to hydrogen. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  6. A Local Approximation of Fundamental Measure Theory Incorporated into Three Dimensional Poisson-Nernst-Planck Equations to Account for Hard Sphere Repulsion Among Ions

    NASA Astrophysics Data System (ADS)

    Qiao, Yu; Liu, Xuejiao; Chen, Minxin; Lu, Benzhuo

    2016-04-01

    The hard sphere repulsion among ions can be considered in the Poisson-Nernst-Planck (PNP) equations by combining the fundamental measure theory (FMT). To reduce the nonlocal computational complexity in 3D simulation of biological systems, a local approximation of FMT is derived, which forms a local hard sphere PNP (LHSPNP) model. In the derivation, the excess chemical potential from hard sphere repulsion is obtained with the FMT and has six integration components. For the integrands and weighted densities in each component, Taylor expansions are performed and the lowest order approximations are taken, which result in the final local hard sphere (LHS) excess chemical potential with four components. By plugging the LHS excess chemical potential into the ionic flux expression in the Nernst-Planck equation, the three dimensional LHSPNP is obtained. It is interestingly found that the essential part of free energy term of the previous size modified model (Borukhov et al. in Phys Rev Lett 79:435-438, 1997; Kilic et al. in Phys Rev E 75:021502, 2007; Lu and Zhou in Biophys J 100:2475-2485, 2011; Liu and Eisenberg in J Chem Phys 141:22D532, 2014) has a very similar form to one term of the LHS model, but LHSPNP has more additional terms accounting for size effects. Equation of state for one component homogeneous fluid is studied for the local hard sphere approximation of FMT and is proved to be exact for the first two virial coefficients, while the previous size modified model only presents the first virial coefficient accurately. To investigate the effects of LHS model and the competitions among different counterion species, numerical experiments are performed for the traditional PNP model, the LHSPNP model, the previous size modified PNP (SMPNP) model and the Monte Carlo simulation. It's observed that in steady state the LHSPNP results are quite different from the PNP results, but are close to the SMPNP results under a wide range of boundary conditions. Besides, in both LHSPNP and SMPNP models the stratification of one counterion species can be observed under certain bulk concentrations.

  7. Quinone 1 e – and 2 e – /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e – and 2 e –/2 H + reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e – reduction potentials, pKa values, and 2 e –/2 H + reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident formore » quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e – versus 2 e – /2 H + reduction potentials, have important implications for designing quinones with tailored redox properties.« less

  8. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current.

    PubMed

    Ferrero, J M; Sáiz, J; Ferrero, J M; Thakor, N V

    1996-08-01

    The role of the ATP-sensitive K+ current (IK-ATP) and its contribution to electrophysiological changes that occur during metabolic impairment in cardiac ventricular myocytes is still being discussed. The aim of this work was to quantitatively study this issue by using computer modeling. A model of IK-ATP is formulated and incorporated into the Luo-Rudy ionic model of the ventricular action potential. Action potentials under different degrees of activation of IK-ATP are simulated. Our results show that in normal ionic concentrations, only approximately 0.6% of the KATP channels, when open, should account for a 50% reduction in action potential duration. However, increased levels of intracellular Mg2+ counteract this shortening. Under conditions of high [K+]0, such as those found in early ischemia, the activation of only approximately 0.4% of the KATP channels could account for a 50% reduction in action potential duration. Thus, our results suggest that opening of IK-ATP channels should play a significant role in action potential shortening during hypoxic/ischemic episodes, with the fraction of open channels involved being very low ( < 1%). However, the results of the model suggest that activation of IK-ATP alone does not quantitatively account for the observed K+ efflux in metabolically impaired cardiac myocytes. Mechanisms other than KATP channel activation should be responsible for a significant part of the K+ efflux measured in hypoxic/ischemic situations.

  9. Relativistic corrections for screening effects on the energies of hydrogen-like atoms embedded in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poszwa, A., E-mail: poszwa@matman.uwm.edu.p; Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-01-15

    The influence of relativistic and plasma screening effects on energies of hydrogen-like atoms embedded in plasmas has been studied. The Dirac equation with a more general exponential cosine screened potential has been solved numerically and perturbatively, by employing the direct perturbation theory. Properties of spectra corresponding to bound states and to different sets of the potential parameters have been studied both in nonrelativistic and relativistic approximations. Binding energies, fine-structure splittings, and relativistic energy shifts have been determined as functions of parameters of the potential. The results have been compared with the ones known from the literature.

  10. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  11. The Hartree product and the description of local and global quantities in atomic systems: A study within Kohn-Sham theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-01-15

    The Hartree product is analyzed in the context of Kohn-Sham theory. The differential equations that emerge from this theory are solved with the optimized effective potential using the Krieger, Li, and Iafrate approximation, in order to get a local potential as required by the ordinary Kohn-Sham procedure. Because the diagonal terms of the exact exchange energy are included in Hartree theory, it is self-interaction free and the exchange potential has the proper asymptotic behavior. We have examined the impact of this correct asymptotic behavior on local and global properties using this simple model to approximate the exchange energy. Local quantities,more » such as the exchange potential and the average local electrostatic potential are used to examine whether the shell structure in an atom is revealed by this theory. Global quantities, such as the highest occupied orbital energy (related to the ionization potential) and the exchange energy are also calculated. These quantities are contrasted with those obtained from calculations with the local density approximation, the generalized gradient approximation, and the self-interaction correction approach proposed by Perdew and Zunger. We conclude that the main characteristics in an atomic system are preserved with the Hartree theory. In particular, the behavior of the exchange potential obtained in this theory is similar to those obtained within other Kohn-Sham approximations. (c) 2000 American Institute of Physics.« less

  12. Theory of the fundamental vibration-rotation-translation spectrum of H2 in a C60 lattice

    NASA Astrophysics Data System (ADS)

    Herman, Roger M.; Lewis, John Courtenay

    2006-04-01

    Calculations are presented for the fundamental vibration-rotation spectrum of H2 in fcc C60 (fullerite) lattices. The principal features are identified as lattice-shifted “vibration-rotation-translation” state absorption transitions. The level spacings of the H2 modes are calculated numerically for the potential function resulting from the summation of the individual C-H2 potentials for all C atoms in the six nearest neighbor C60 molecules. The potential is approximately separable in Cartesian coordinates, giving a very good approximation to exactly calculated translational energies for the lower levels. The positions and relative strengths of the individual transitions are calculated from the eigenfunctions for this separable potential. The line shapes are assumed to be Lorentzian, and the widths are chosen so as to give good fits to the DRIFT spectrum of FitzGerald [Phys. Rev. B 65, 140302(R) (2002)]. A theory of the C-H2 induced dipole moment is developed with which to calculate intensities. In order to fit the observed DRIFTS transition frequencies it is found necessary to take the overlap part of the C-H2 potential to be about 13% longer in range than the C-H2 potential in graphene. Furthermore, differences in the theoretical spectra obtained with a near-optimal exp-6 potential and near-optimal Lennard-Jones 12-6 potential are clearly evident, with the exp-6 potential giving a better fit to observation than the Lennard-Jones potential. Similarly, Lorentzian line shapes assumed for the individual transitions yield better agreement with observation than Gaussian line shapes.

  13. Effects of biases in domain wall network evolution. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  14. Directly comparing gravitational wave data to numerical relativity simulations: systematics

    NASA Astrophysics Data System (ADS)

    Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Zlochower, Yosef; Shoemaker, Deirdre; Lovelace, Geoffrey; Pankow, Christopher; Brady, Patrick; Scheel, Mark; Pfeiffer, Harald; Ossokine, Serguei

    2017-01-01

    We compare synthetic data directly to complete numerical relativity simulations of binary black holes. In doing so, we circumvent ad-hoc approximations introduced in semi-analytical models previously used in gravitational wave parameter estimation and compare the data against the most accurate waveforms including higher modes. In this talk, we focus on the synthetic studies that test potential sources of systematic errors. We also run ``end-to-end'' studies of intrinsically different synthetic sources to show we can recover parameters for different systems.

  15. Configurational entropy: an improvement of the quasiharmonic approximation using configurational temperature.

    PubMed

    Nguyen, Phuong H; Derreumaux, Philippe

    2012-01-14

    One challenge in computational biophysics and biology is to develop methodologies able to estimate accurately the configurational entropy of macromolecules. Among many methods, the quasiharmonic approximation (QH) is most widely used as it is simple in both theory and implementation. However, it has been shown that this method becomes inaccurate by overestimating entropy for systems with rugged free energy landscapes. Here, we propose a simple method to improve the QH approximation, i.e., to reduce QH entropy. We approximate the potential energy landscape of the system by an effective harmonic potential, and request that this potential must produce exactly the configurational temperature of the system. Due to this constraint, the force constants associated with the effective harmonic potential are increased, or equivalently, entropy of motion governed by this effective harmonic potential is reduced. We also introduce the effective configurational temperature concept which can be used as an indicator to check the anharmonicity of the free energy landscape. To validate the new method we compare it with the recently developed expansion approximate method by calculating entropy of one simple model system and two peptides with 3 and 16 amino acids either in gas phase or in explicit solvent. We show that the new method appears to be a good choice in practice as it is a compromise between accuracy and computational speed. A modification of the expansion approximate method is also introduced and advantages are discussed in some detail.

  16. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    PubMed

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Revised Thomas-Fermi approximation for singular potentials

    NASA Astrophysics Data System (ADS)

    Dufty, James W.; Trickey, S. B.

    2016-08-01

    Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.

  18. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    PubMed

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and estuary of Pearl River.

  19. An efficient method for quantum transport simulations in the time domain

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yam, C.-Y.; Frauenheim, Th.; Chen, G. H.; Niehaus, T. A.

    2011-11-01

    An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. The density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissipative terms in the equation of motion which are calculated from first principles in the wide band limit. In contrast to earlier ab initio implementations of this formalism, the Hamiltonian is here approximated in the spirit of the density functional based tight-binding (DFTB) method. Results are presented for two prototypical molecular devices and compared to full TDDFT calculations. The temporal profile of the current traces is qualitatively well captured by the DFTB scheme. Steady state currents show considerable variations, both in comparison of approximate and full TDDFT, but also among TDDFT calculations with different basis sets.

  20. Deorbitalization strategies for meta-generalized-gradient-approximation exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Mejia-Rodriguez, Daniel; Trickey, S. B.

    2017-11-01

    We explore the simplification of widely used meta-generalized-gradient approximation (mGGA) exchange-correlation functionals to the Laplacian level of refinement by use of approximate kinetic-energy density functionals (KEDFs). Such deorbitalization is motivated by the prospect of reducing computational cost while recovering a strictly Kohn-Sham local potential framework (rather than the usual generalized Kohn-Sham treatment of mGGAs). A KEDF that has been rather successful in solid simulations proves to be inadequate for deorbitalization, but we produce other forms which, with parametrization to Kohn-Sham results (not experimental data) on a small training set, yield rather good results on standard molecular test sets when used to deorbitalize the meta-GGA made very simple, Tao-Perdew-Staroverov-Scuseria, and strongly constrained and appropriately normed functionals. We also study the difference between high-fidelity and best-performing deorbitalizations and discuss possible implications for use in ab initio molecular dynamics simulations of complicated condensed phase systems.

  1. Electronic and optical properties of Praseodymium trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in

    2014-10-24

    We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity formore » PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.« less

  2. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS

    PubMed Central

    Wang, Wansheng; Chen, Long; Zhou, Jie

    2015-01-01

    A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures. PMID:27110063

  3. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.

    PubMed

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-09-07

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.

  4. Methods for converging correlation energies within the dielectric matrix formalism

    NASA Astrophysics Data System (ADS)

    Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario

    2018-03-01

    Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.

  5. Evaluation of the Space Shuttle Transatlantic Abort Landing Atmospheric Sounding System

    NASA Technical Reports Server (NTRS)

    Leahy, Frank B.

    2004-01-01

    This paper describes a study that was conducted to determine the quality of thermodynamic and wind data measured by the Space Shuttle Transatlantic Abort Landing (TAL) Atmospheric Sounding System (TASS). The system has Global Positioning System (GPS) tracking capability and provides profiles of atmospheric parameters such as temperature, relative humidity, and wind in support of potential emergency Space Shuttle landings at TAL sites. Ten comparison flights between the Low-Resolution Flight Element (LRFE) of the Automated Meteorological Profiling System (AMPS) and TASS were conducted at the Eastern Test Range (ETR) in early 2002. Initial results indicated that wind, temperature, and relative humidity compared well. However, incorrect GPS settings in the TASS software were resulting in altitude differences of about 60 to 70 m (approximately 200 to 230 ft) and air pressure differences of approximately 4 hectoPascals (hPa). TASS software updates to correct altitude data were completed in early 2003. Subsequent testing showed that altitude and air pressure differences were generally less than 5 m and 1 hPa, respectively.

  6. Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim

    2017-11-01

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.

  7. Equilibrium configurations of the conducting liquid surface in a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Zubareva, O. V.

    2011-01-01

    Possible equilibrium configurations of the free surface of a conducting liquid deformed by a nonuniform external electric field are investigated. The liquid rests on an electrode that has the shape of a dihedral angle formed by two intersecting equipotential half-planes (conducting wedge). It is assumed that the problem has plane symmetry: the surface is invariant under shift along the edge of the dihedral angle. A one-parametric family of exact solutions for the shape of the surface is found in which the opening angle of the region above the wedge serves as a parameter. The solutions are valid when the pressure difference between the inside and outside of the liquid is zero. For an arbitrary pressure difference, approximate solutions to the problem are constructed and it is demonstrated the approximation error is small. It is found that, when the potential difference exceeds a certain threshold value, equilibrium solutions are absent. In this case, the region occupied by the liquid disintegrates, the disintegration scenario depending on the opening angle.

  8. Technique for evaluation of the strong potential Born approximation for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sil, N.C.; McGuire, J.H.

    1985-04-01

    A technique is presented for evaluating differential cross sections in the strong potential Born (SPB) approximation. Our final expression is expressed as a finite sum of one-dimensional integrals, expressible as a finite sum of derivatives of hypergeometric functions.

  9. Development and application of accurate analytical models for single active electron potentials

    NASA Astrophysics Data System (ADS)

    Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas

    2015-05-01

    The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).

  10. A harmonic adiabatic approximation to calculate highly excited vibrational levels of ``floppy molecules''

    NASA Astrophysics Data System (ADS)

    Lauvergnat, David; Nauts, André; Justum, Yves; Chapuisat, Xavier

    2001-04-01

    The harmonic adiabatic approximation (HADA), an efficient and accurate quantum method to calculate highly excited vibrational levels of molecular systems, is presented. It is well-suited to applications to "floppy molecules" with a rather large number of atoms (N>3). A clever choice of internal coordinates naturally suggests their separation into active, slow, or large amplitude coordinates q', and inactive, fast, or small amplitude coordinates q″, which leads to an adiabatic (or Born-Oppenheimer-type) approximation (ADA), i.e., the total wave function is expressed as a product of active and inactive total wave functions. However, within the framework of the ADA, potential energy data concerning the inactive coordinates q″ are required. To reduce this need, a minimum energy domain (MED) is defined by minimizing the potential energy surface (PES) for each value of the active variables q', and a quadratic or harmonic expansion of the PES, based on the MED, is used (MED harmonic potential). In other words, the overall picture is that of a harmonic valley about the MED. In the case of only one active variable, we have a minimum energy path (MEP) and a MEP harmonic potential. The combination of the MED harmonic potential and the adiabatic approximation (harmonic adiabatic approximation: HADA) greatly reduces the size of the numerical computations, so that rather large molecules can be studied. In the present article however, the HADA is applied to our benchmark molecule HCN/CNH, to test the validity of the method. Thus, the HADA vibrational energy levels are compared and are in excellent agreement with the ADA calculations (adiabatic approximation with the full PES) of Light and Bačić [J. Chem. Phys. 87, 4008 (1987)]. Furthermore, the exact harmonic results (exact calculations without the adiabatic approximation but with the MEP harmonic potential) are compared to the exact calculations (without any sort of approximation). In addition, we compare the densities of the bending motion during the HCN/CNH isomerization, computed with the HADA and the exact wave function.

  11. Eigen solutions and entropic system for Hellmann potential in the presence of the Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Onate, C. A.; Onyeaju, M. C.; Ikot, A. N.; Ebomwonyi, O.

    2017-11-01

    By using the supersymmetric approach, we studied the approximate analytic solutions of the three-dimensional Schrödinger equation with the Hellmann potential by applying a suitable approximation scheme to the centrifugal term. The solutions of other useful potentials, such as Coulomb potential and Yukawa potential, are obtained by transformation of variables from the Hellmann potential. Finally, we calculated the Tsallis entropy and Rényi entropy both in position and momentum spaces under the Hellmann potential using integral method. The effects of these entropies on the angular momentum quantum number are investigated in detail.

  12. Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.

    PubMed

    Zahariev, Federico; Levy, Mel

    2017-01-12

    A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.

  13. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  14. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    NASA Astrophysics Data System (ADS)

    Zanáška, M.; Adámek, J.; Peterka, M.; Kudrna, P.; Tichý, M.

    2015-03-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents Isat-/Isat+ to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  15. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shunsuke A.; Taniguchi, Yasutaka; Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functionalmore » which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.« less

  16. Photothermoelastic contrast in nanoscale infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Eliseev, Eugene A.; Borodinov, Nikolay; Ovchinnikova, Olga S.; Morozovsky, Nicholas V.; Kalinin, Sergei V.

    2018-01-01

    The contrast formation mechanism in nanoscale Infrared (IR) Spectroscopy is analyzed. The temperature distribution and elastic displacement across the illuminated T-shape boundary between two materials with different IR-radiation absorption coefficients and thermo-physical and elastic properties located on a rigid substrate are calculated self-consistently for different frequencies f ˜ (1 kHz-1 MHz) of IR-radiation modulation (fully coupled problem). Analytical expressions for the temperature and displacement profiles across the "thermo-elastic step" are derived in the decoupling approximation for f = 0 ("static limit"), and conditions for approximation validity at low frequencies of IR-modulation are established. The step height was found to be thickness-independent for thick layers and proportional to the square of the thickness for very thin films. The theoretical results will be of potential interest for applications in the scanning thermo-ionic and thermal infrared microscopies for relatively long sample thermalization times and possibly for photothermal induced resonance microscopy using optomechanical probes.

  17. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    PubMed

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.

  18. Self-interaction effects on charge-transfer collisions

    DOE PAGES

    Quashie, Edwin E.; Saha, Bidhan C.; Andrade, Xavier; ...

    2017-04-27

    In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. In addition, we compare many different approximations of the exchange and correlation potential, using as a test system the collision of H + + CH 4 at 30 eV. We find that semilocal approximations, like the Perdew-Burke- Ernzerhof (PBE), and even hybrid functionals, such as the Becke, 3-parameter, Lee-Yang-Parr (B3LYP), produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily tomore » the proton, leading to radically different forces with respect to the non-self-interacting case. Lastly, from our results, we conclude that using a functional that is self-interaction free is essential to properly describing charge-transfer collisions between ions and molecules in TDDFT.« less

  19. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.

    PubMed

    Sharpe, Daniel J; Levy, Mel; Tozer, David J

    2018-02-13

    Levy and Zahariev [Phys. Rev. Lett. 113 113002 (2014)] have proposed a new approach for performing density functional theory calculations, termed direct energy Kohn-Sham (DEKS) theory. In this approach, the electronic energy equals the sum of orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree-exchange-correlation potential, which must be approximated. In the present study, density scaling homogeneity considerations are used to facilitate DEKS calculations on a series of atoms and molecules, leading to three nonlocal approximations to the shifted potential. The first two rely on preliminary Kohn-Sham calculations using a standard generalized gradient approximation (GGA) exchange-correlation functional and the results illustrate the benefit of describing the dominant Hartree component of the shift exactly. A uniform electron gas analysis is used to eliminate the need for these preliminary Kohn-Sham calculations, leading to a potential with an unconventional form that yields encouraging results, providing strong motivation for further research in DEKS theory.

  20. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha.

    PubMed

    Nguyen, Vu Tuan; Flanagan, Bernadine; Gidley, Michael J; Dykes, Gary A

    2008-11-01

    The aims of this work were to characterize and improve cellulose production by a Gluconoacetobacter xylinus strain isolated from Kombucha and determine the purity and some structural features of the cellulose from this strain. Cellulose yield in tea medium with both black tea and green tea and in Hestrin and Schramm (HS) medium under both static and agitated cultures was compared. In the tea medium, the highest cellulose yield was obtained with green tea (approximately 0.20 g/L) rather than black tea (approximately 0.14 g/L). Yield in HS was higher (approximately 0.28 g/L) but did not differ between static and agitated incubation. (1)H-NMR and (13)C-NMR spectroscopy indicated that the cellulose is pure (free of acetan) and has high crystallinity, respectively. Cellulose yield was improved by changing the type and level of carbon and nitrogen source in the HS medium. A high yield of approximately 2.64 g/L was obtained with mannitol at 20 g/L and corn steep liquor at 40 g/L in combination. In the tea medium, tea at a level of 3 g/L gave the highest cellulose yield and the addition of 3 g/L of tea to the HS medium increased cellulose yield to 3.34 g/L. In conclusion, the G. xylinus strain from Kombucha had different cellulose-producing characteristics than previous strains isolated from fruit. Cellulose was produced in a pure form and showed high potential applicability. Our studies extensively characterized cellulose production from a G. xylinus strain from Kombucha for the first time, indicating both similarities and differences to strains from different sources.

  1. Distribution of different surface modified carbon dots in pumpkin seedlings.

    PubMed

    Qian, Kun; Guo, Huiyuan; Chen, Guangcai; Ma, Chuanxin; Xing, Baoshan

    2018-05-22

    The distribution of surface modified carbon dots (CDs) in the pumpkin seedlings was studied by visualization techniques and their potential phytotoxicity was investigated at both the physiological and biochemical levels. The average size of carbon dots was approximately 4 nm. The fluorescent peaks of bared CDs, CD-PEI and CD-PAA were between 420 nm and 500 nm, indicating CDs could emit blue and green fluorescence. Fluorescent images showed that all three types of CDs could accumulate in the pumpkin roots and translocate to the shoots, although the distribution pattern of each CDs was obviously different. At the biochemical level, the elevated antioxidant enzymes in pumpkin roots suggest that all the CDs could potentially trigger the antioxidant defense systems in pumpkin seedlings. Additionally, such alteration was greater in the roots than in the shoots. Our study represents a new perspective on CD visualization in plant tissues and provide useful information for the potential toxicity of different types of CDs to terrestrial plants, which is of importance to agricultural application.

  2. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    PubMed

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.

  3. A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height.

    PubMed

    McCulloh, Katherine A; Johnson, Daniel M; Petitmermet, Joshua; McNellis, Brandon; Meinzer, Frederick C; Lachenbruch, Barbara

    2015-07-01

    The physiological mechanisms underlying the short maximum height of shrubs are not understood. One possible explanation is that differences in the hydraulic architecture of shrubs compared with co-occurring taller trees prevent the shrubs from growing taller. To explore this hypothesis, we examined various hydraulic parameters, including vessel lumen diameter, hydraulic conductivity and vulnerability to drought-induced embolism, of three co-occurring species that differed in their maximum potential height. We examined one species of shrub, one short-statured tree and one taller tree. We worked with individuals that were approximately the same age and height, which was near the maximum for the shrub species. A number of variables correlated with the maximum potential height of the species. For example, vessel diameter and vulnerability to embolism both increased while wood density declined with maximum potential height. The difference between the pressure causing 50% reduction in hydraulic conductance in the leaves and the midday leaf water potential (the leaf's hydraulic safety margin) was much larger in the shrub than the other two species. In general, trends were consistent with understory shrubs having a more conservative life history strategy than co-occurring taller species. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Strong potential wave functions with elastic channel distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macek, J.; Taulbjerg, K.

    1989-06-01

    The strong-potential Born approximation is analyzed in a channel-distorted-wave approach. Channel-distorted SPB wave functions are reduced to a conventional form in which the standard off-energy-shell factor /ital g/ has been replaced by a modified factor ..gamma.., which represents a suitable average of /ital g/ over the momentum distribution of the distorted-channel function. The modified factor is evaluated in a physically realistic model for the distortion potential, and it is found that ..gamma.. is well represented by a slowly varying phase factor. The channel-distorted SPB approximation is accordingly identical to the impulse approximation if the phase variation of ..gamma.. can bemore » ignored. This is generally the case in applications to radiative electron capture and to a good approximation for ordinary capture at not too small velocities.« less

  5. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  6. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  7. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  8. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    DTIC Science & Technology

    2014-11-01

    networks were trained to predict an individual’s electrocardiogram (ECG) and arterial blood pressure ( ABP ) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...arterial blood pressure ( ABP ) waveforms immediately prior to the machine generated alarms. When tested, the algorithm suppressed approximately 59.7

  9. Differences between brain mass and body weight scaling to height: potential mechanism of reduced mass-specific resting energy expenditure of taller adults.

    PubMed

    Heymsfield, Steven B; Chirachariyavej, Thamrong; Rhyu, Im Joo; Roongpisuthipong, Chulaporn; Heo, Moonseong; Pietrobelli, Angelo

    2009-01-01

    Adult resting energy expenditure (REE) scales as height( approximately 1.5), whereas body weight (BW) scales as height( approximately 2). Mass-specific REE (i.e., REE/BW) is thus lower in tall subjects compared with their shorter counterparts, the mechanism of which is unknown. We evaluated the hypothesis that high-metabolic-rate brain mass scales to height with a power significantly less than that of BW, a theory that if valid would provide a potential mechanism for height-related REE effects. The hypothesis was tested by measuring brain mass on a large (n = 372) postmortem sample of Thai men. Since brain mass-body size relations may be influenced by age, the hypothesis was secondarily explored in Thai men age < or =45 yr (n = 299) and with brain magnetic resonance imaging (MRI) studies in Korean men (n = 30) age > or =20<30 yr. The scaling of large body compartments was examined in a third group of Asian men living in New York (NY, n = 28) with MRI and dual-energy X-ray absorptiometry. Brain mass scaled to height with a power (mean +/- SEE; 0.46 +/- 0.13) significantly smaller (P < 0.001) than that of BW scaled to height (2.36 +/- 0.19) in the whole group of Thai men; brain mass/BW scaled negatively to height (-1.94 +/- 0.20, P < 0.001). Similar results were observed in younger Thai men, and results for brain mass/BW vs. height were directionally the same (P = 0.09) in Korean men. Skeletal muscle and bone scaled to height with powers similar to that of BW (i.e., approximately 2-3) in the NY Asian men. Models developed using REE estimates in Thai men suggest that brain accounts for most of the REE/BW height dependency. Tall and short men thus differ in relative brain mass, but the proportions of BW as large compartments appear independent of height, observations that provide a potential mechanistic basis for related differences in REE and that have implications for the study of adult energy requirements.

  10. Ultrafast studies of the excited-state dynamics of copper and nickel phthalocyanine tetrasulfonates: potential sensitizers for the two-photon photodynamic therapy of tumors.

    PubMed

    Fournier, Michel; Pépin, Claude; Houde, Daniel; Ouellet, René; van Lier, Johan E

    2004-01-01

    In order to evaluate the potential of copper and nickel phthalocyanine tetrasulfonates as sensitizers for two-photon photodynamic therapy, we conducted kinetic femtosecond measurements of transient absorption and bleaching of their excited state dynamics in aqueous solution. Samples were pumped with 620 nm and 310 nm laser light, which allowed us to study relaxation processes from both the first and second singlet (or doublet for the copper phthalocyanine) excited states. A second excitation from the first excited triplet state, approximately 685 and 105 ps after the first excitation for copper and nickel phthalocyanine tetrasulfonate respectively, was the most efficient way to bring the molecules to an upper triplet state. Presumably this highest triplet state can inflict molecular damage on adjacent biomolecules int eh absence of oxygen, resulting in the desired cytotoxic cellular response. Transient absorption spectra at different fixed delays indicate that optimum efficiency would require that the second photon has a wavelength of approximately 750 nm.

  11. Exchange potential from the common energy denominator approximation for the Kohn-Sham Green's function: Application to (hyper)polarizabilities of molecular chains

    NASA Astrophysics Data System (ADS)

    Grüning, M.; Gritsenko, O. V.; Baerends, E. J.

    2002-04-01

    An approximate Kohn-Sham (KS) exchange potential vxσCEDA is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. vxσCEDA is an explicit functional of the occupied KS orbitals, which has the Slater vSσ and response vrespσCEDA potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities |ψiσ|2, as well as "off-diagonal" ones from the occupied-occupied orbital products ψiσψj(≠1)σ*. Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies ɛiσ are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-ɛiσ values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of vxσCEDA appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains Hn over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential.

  12. Development of a steady potential solver for use with linearized, unsteady aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Verdon, Joseph M.

    1991-01-01

    A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid unsteady aerodynamic analysis (LINFLO) is described. The steady solver uses the nonconservative form of the nonlinear potential flow equations together with an implicit, least squares, finite difference approximation to solve for the steady flow field. The difference equations were developed on a composite mesh which consists of a C grid embedded in a rectilinear (H grid) cascade mesh. The composite mesh is capable of resolving blade to blade and far field phenomena on the H grid, while accurately resolving local phenomena on the C grid. The resulting system of algebraic equations is arranged in matrix form using a sparse matrix package and solved by Newton's method. Steady and unsteady results are presented for two cascade configurations: a high speed compressor and a turbine with high exit Mach number.

  13. Simple model for molecular scattering

    NASA Astrophysics Data System (ADS)

    Mehta, Nirav; Ticknor, Christopher; Hazzard, Kaden

    2017-04-01

    The collisions of ultracold molecules are qualitatively different from the collisions of ultracold atoms due to the high density of bimolecular resonances near the collision energy. We present results from a simple N-channel scattering model with square-well channel potentials and constant channel couplings (inside the well) designed to reproduce essential features of chaotic molecular scattering. The potential depths and channel splittings are tuned to reproduce the appropriate density of states for the short-range bimolecular collision complex (BCC), which affords a direct comparison of the resulting level-spacing distribution to that expected from random matrix theory (RMT), namely the so-called Wigner surmise. The density of states also sets the scale for the rate of dissociation from the BCC to free molecules, as approximated by transition state theory (TST). Our model affords a semi-analytic solution for the scattering amplitude in the open channel, and a determinantal equation for the eigenenergies of the short-ranged BCC. It is likely the simplest finite-ranged scattering model that can be compared to expectations from the approximations of RMT, and TST. The validity of these approximations has implications for the many-channel Hubbard model recently developed. This research was funded in part by the National Science Foundation under Grant No. NSF PHY-1125915.

  14. Approximation solution of Schrodinger equation for Q-deformed Rosen-Morse using supersymmetry quantum mechanics (SUSY QM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari

    2015-09-30

    The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.

  15. Contributions of the US state park system to nature recreation.

    PubMed

    Siikamäki, Juha

    2011-08-23

    Nature recreation in the United States concentrates in publicly provided natural areas. They are costly to establish and maintain, but their societal contributions are difficult to measure. Here, a unique approach is developed to quantifying nature recreation services generated by the US state park system. The assessment first uses data from five national surveys conducted between 1975 and 2007 to consistently measure the amount of time used for nature recreation. The surveys comprise two official federal surveys and their predecessors. Each survey was designed to elicit nationally representative, detailed data on how people divide their time into different activities. State-level data on time use for nature recreation were then matched with information on the availability of state parks and other potentially important drivers of recreation, so that statistical estimation methods for nonexperimental panel data (difference-in-differences) could be used to examine the net contribution of state parks to nature recreation. The results show that state parks have a robust positive effect on nature recreation. For example, the approximately 2 million acres of state parks established between 1975 and 2007 are estimated to contribute annually 600 million hours of nature recreation (2.7 h per capita, approximately 9% of all nature recreation). All state parks generate annually an estimated 2.2 billion hours of nature recreation (9.7 h per capita; approximately 33% of all nature recreation). Using conventional approaches to valuing time, the estimated time value of nature recreation services generated by the US state park system is approximately $14 billion annually.

  16. Contributions of the US state park system to nature recreation

    PubMed Central

    Siikamäki, Juha

    2011-01-01

    Nature recreation in the United States concentrates in publicly provided natural areas. They are costly to establish and maintain, but their societal contributions are difficult to measure. Here, a unique approach is developed to quantifying nature recreation services generated by the US state park system. The assessment first uses data from five national surveys conducted between 1975 and 2007 to consistently measure the amount of time used for nature recreation. The surveys comprise two official federal surveys and their predecessors. Each survey was designed to elicit nationally representative, detailed data on how people divide their time into different activities. State-level data on time use for nature recreation were then matched with information on the availability of state parks and other potentially important drivers of recreation, so that statistical estimation methods for nonexperimental panel data (difference-in-differences) could be used to examine the net contribution of state parks to nature recreation. The results show that state parks have a robust positive effect on nature recreation. For example, the approximately 2 million acres of state parks established between 1975 and 2007 are estimated to contribute annually 600 million hours of nature recreation (2.7 h per capita, approximately 9% of all nature recreation). All state parks generate annually an estimated 2.2 billion hours of nature recreation (9.7 h per capita; approximately 33% of all nature recreation). Using conventional approaches to valuing time, the estimated time value of nature recreation services generated by the US state park system is approximately $14 billion annually. PMID:21831838

  17. Combining a reactive potential with a harmonic approximation for molecular dynamics simulation of failure: construction of a reduced potential

    NASA Astrophysics Data System (ADS)

    Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.

    2015-01-01

    Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.

  18. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less

  19. Temporal resolution improvement using PICCS in MDCT cardiac imaging.

    PubMed

    Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang

    2009-06-01

    The current paradigm for temporal resolution improvement is to add more source-detector units and/or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120 degrees, which is roughly 50% of the standard short-scan angular range (approximately 240 degrees for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications.

  20. Elimination of Spurious Fractional Charges in Dissociating Molecules by Correcting the Shape of Approximate Kohn-Sham Potentials.

    PubMed

    Komsa, Darya N; Staroverov, Viktor N

    2016-11-08

    Standard density-functional approximations often incorrectly predict that heteronuclear diatomic molecules dissociate into fractionally charged atoms. We demonstrate that these spurious charges can be eliminated by adapting the shape-correction method for Kohn-Sham potentials that was originally introduced to improve Rydberg excitation energies [ Phys. Rev. Lett. 2012 , 108 , 253005 ]. Specifically, we show that if a suitably determined fraction of electron charge is added to or removed from a frontier Kohn-Sham orbital level, the approximate Kohn-Sham potential of a stretched molecule self-corrects by developing a semblance of step structure; if this potential is used to obtain the electron density of the neutral molecule, charge delocalization is blocked and spurious fractional charges disappear beyond a certain internuclear distance.

  1. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  2. An Extension of the Krieger-Li-Iafrate Approximation to the Optimized-Effective-Potential Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.G.

    1999-11-11

    The Krieger-Li-Iafrate approximation can be expressed as the zeroth order result of an unstable iterative method for solving the integral equation form of the optimized-effective-potential method. By pre-conditioning the iterate a first order correction can be obtained which recovers the bulk of quantal oscillations missing in the zeroth order approximation. A comparison of calculated total energies are given with Krieger-Li-Iafrate, Local Density Functional, and Hyper-Hartree-Fock results for non-relativistic atoms and ions.

  3. Brain Games as a Potential Nonpharmaceutical Alternative for the Treatment of ADHD

    ERIC Educational Resources Information Center

    Wegrzyn, Stacy C.; Hearrington, Doug; Martin, Tim; Randolph, Adriane B.

    2013-01-01

    Attention deficit hyperactivity disorder (ADHD) is the most commonly diagnosed childhood neurobehavioral disorder, affecting approximately 5.5 million children, of which approximately 66% take ADHD medication daily. This study investigated a potential nonpharmaceutical alternative to address the academic engagement of 5th through 11th grade…

  4. Systematics of α-decay fine structure in odd-mass nuclei based on a finite-range nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Adel, A.; Alharbi, T.

    2018-07-01

    A systematic study on α-decay fine structure is presented for odd-mass nuclei in the range 83 ≤ Z ≤ 92. The α-decay partial half-lives and branching ratios to the ground and excited states of daughter nuclei are calculated in the framework of the Wentzel-Kramers-Brillouin (WKB) approximation with the implementation of the Bohr-Sommerfeld quantization condition. The microscopic α-daughter potential is obtained using the double-folding model with a realistic M3Y-Paris nucleon-nucleon (NN) interaction. The exchange potential, which accounts for the knock-on exchange of nucleons between the interacting nuclei, is calculated using the finite-range exchange NN interaction which is essentially a much better approximation as compared to the zero-range pseudo-potential adopted in the usual double-folding calculations. Our calculations of α-decay fine structure have been improved by considering the preformation factor extracted from the recently proposed cluster formation model on basis of the binding energy difference. The computed partial half-lives and branching ratios are compared with the recent experimental data and they are in good agreement.

  5. Synaptic excitation mediated by AMPA receptors in rat cerebellar slices is selectively enhanced by aniracetam and cyclothiazide.

    PubMed

    Boxall, A R; Garthwaite, J

    1995-05-01

    AMPA receptors mediate fast, glutamatergic synaptic transmission in the central nervous system. The time-course of the associated postsynaptic current has been suggested to be determined principally by the kinetics of glutamate binding and receptor desensitization. Aniracetam and cyclothiazide are drugs capable of selectively preventing desensitization of the AMPA receptor. To investigate the relevance of desensitization to fast synaptic transmission in the cerebellum we have tested these compounds against AMPA-induced depolarizations and postsynaptic potentials using the grease-gap recording technique. Aniracetam (1 microM-5 mM) and cyclothiazide (1 microM-500 microM) both enhanced the depolarising action of AMPA (1 microM) on Purkinje cells in a concentration-dependent manner. At the highest concentrations tested, the increases over controls were approximately 600% and 800% respectively. Aniracetam also increased, in a concentration-dependent manner, the amplitude of the evoked synaptic potentials of both parallel fibre-Purkinje cell and mossy fibre-granule cell pathways, with the highest concentrations tested enhancing the potentials by approximately 60% and 75% respectively. These data suggest that, at two different synapses in the cerebellum, AMPA receptor desensitization occurs physiologically and is likely to contribute to the shape of fast synaptic currents.

  6. Water dissociating on rigid Ni(100): A quantum dynamics study on a full-dimensional potential energy surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Chen, Jun; Zhang, Zhaojun; Shen, Xiangjian; Fu, Bina; Zhang, Dong H.

    2018-04-01

    We constructed a nine-dimensional (9D) potential energy surface (PES) for the dissociative chemisorption of H2O on a rigid Ni(100) surface using the neural network method based on roughly 110 000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and the good agreement between the fitted PES and the direct DFT calculations. Time dependent wave packet calculations also showed that the PES is very well converged with respect to the fitting procedure. The dissociation probabilities of H2O initially in the ground rovibrational state from 9D quantum dynamics calculations are quite different from the site-specific results from the seven-dimensional (7D) calculations, indicating the importance of full-dimensional quantum dynamics to quantitatively characterize this gas-surface reaction. It is found that the validity of the site-averaging approximation with exact potential holds well, where the site-averaging dissociation probability over 15 fixed impact sites obtained from 7D quantum dynamics calculations can accurately approximate the 9D dissociation probability for H2O in the ground rovibrational state.

  7. Statically screened ion potential and Bohm potential in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldabekov, Zhandos; Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Str., 050040 Almaty; Schoof, Tim

    2015-10-15

    The effective potential Φ of a classical ion in a weakly correlated quantum plasma in thermodynamic equilibrium at finite temperature is well described by the random phase approximation screened Coulomb potential. Additionally, collision effects can be included via a relaxation time ansatz (Mermin dielectric function). These potentials are used to study the quality of various statically screened potentials that were recently proposed by Shukla and Eliasson (SE) [Phys. Rev. Lett. 108, 165007 (2012)], Akbari-Moghanjoughi (AM) [Phys. Plasmas 22, 022103 (2015)], and Stanton and Murillo (SM) [Phys. Rev. E 91, 033104 (2015)] starting from quantum hydrodynamic (QHD) theory. Our analysis revealsmore » that the SE potential is qualitatively different from the full potential, whereas the SM potential (at any temperature) and the AM potential (at zero temperature) are significantly more accurate. This confirms the correctness of the recently derived [Michta et al., Contrib. Plasma Phys. 55, 437 (2015)] pre-factor 1/9 in front of the Bohm term of QHD for fermions.« less

  8. Quantifying the roles of random motility and directed motility using advection-diffusion theory for a 3T3 fibroblast cell migration assay stimulated with an electric field.

    PubMed

    Simpson, Matthew J; Lo, Kai-Yin; Sun, Yung-Shin

    2017-03-17

    Directed cell migration can be driven by a range of external stimuli, such as spatial gradients of: chemical signals (chemotaxis); adhesion sites (haptotaxis); or temperature (thermotaxis). Continuum models of cell migration typically include a diffusion term to capture the undirected component of cell motility and an advection term to capture the directed component of cell motility. However, there is no consensus in the literature about the form that the advection term takes. Some theoretical studies suggest that the advection term ought to include receptor saturation effects. However, others adopt a much simpler constant coefficient. One of the limitations of including receptor saturation effects is that it introduces several additional unknown parameters into the model. Therefore, a relevant research question is to investigate whether directed cell migration is best described by a simple constant tactic coefficient or a more complicated model incorporating saturation effects. We study directed cell migration using an experimental device in which the directed component of the cell motility is driven by a spatial gradient of electric potential, which is known as electrotaxis. The electric field (EF) is proportional to the spatial gradient of the electric potential. The spatial variation of electric potential across the experimental device varies in such a way that there are several subregions on the device in which the EF takes on different values that are approximately constant within those subregions. We use cell trajectory data to quantify the motion of 3T3 fibroblast cells at different locations on the device to examine how different values of the EF influences cell motility. The undirected (random) motility of the cells is quantified in terms of the cell diffusivity, D, and the directed motility is quantified in terms of a cell drift velocity, v. Estimates D and v are obtained under a range of four different EF conditions, which correspond to normal physiological conditions. Our results suggest that there is no anisotropy in D, and that D appears to be approximately independent of the EF and the electric potential. The drift velocity increases approximately linearly with the EF, suggesting that the simplest linear advection term, with no additional saturation parameters, provides a good explanation of these physiologically relevant data. We find that the simplest linear advection term in a continuum model of directed cell motility is sufficient to describe a range of different electrotaxis experiments for 3T3 fibroblast cells subject to normal physiological values of the electric field. This is useful information because alternative models that include saturation effects involve additional parameters that need to be estimated before a partial differential equation model can be applied to interpret or predict a cell migration experiment.

  9. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  10. Potentials of mean force for biomolecular simulations: Theory and test on alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Pellegrini, Matteo; Grønbech-Jensen, Niels; Doniach, Sebastian

    1996-06-01

    We describe a technique for generating potentials of mean force (PMF) between solutes in an aqueous solution. We first generate solute-solvent correlation functions (CF) using Monte Carlo (MC) simulations in which we place a single atom solute in a periodic boundary box containing a few hundred water molecules. We then make use of the Kirkwood superposition approximation, where the 3-body correlation function is approximated as the product of 2-body CFs, to describe the mean water density around two solutes. Computing the force generated on the solutes by this average water density allows us to compute potentials of mean force between the two solutes. For charged solutes an additional approximation involving dielectric screening is made, by setting the dielectric constant of water to ɛ=80. These potentials account, in an approximate manner, for the average effect of water on the atoms. Following the work of Pettitt and Karplus [Chem. Phys. Lett. 121, 194 (1985)], we approximate the n-body potential of mean force as a sum of the pairwise potentials of mean force. This allows us to run simulations of biomolecules without introducing explicit water, hence gaining several orders of magnitude in efficiency with respect to standard molecular dynamics techniques. We demonstrate the validity of this technique by first comparing the PMFs for methane-methane and sodium-chloride generated with this procedure, with those calculated with a standard Monte Carlo simulation with explicit water. We then compare the results of the free energy profiles between the equilibria of alanine dipeptide generated by the two methods.

  11. Water potential gradient in a tall sequoiadendron.

    PubMed

    Tobiessen, P

    1971-09-01

    With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about -0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees.

  12. Water Potential Gradient in a Tall Sequoiadendron

    PubMed Central

    Tobiessen, Peter; Rundel, Philip W.; Stecker, R. E.

    1971-01-01

    With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about −0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees. PMID:16657786

  13. Data-Driven Learning of Total and Local Energies in Elemental Boron

    NASA Astrophysics Data System (ADS)

    Deringer, Volker L.; Pickard, Chris J.; Csányi, Gábor

    2018-04-01

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β -rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  14. Data-Driven Learning of Total and Local Energies in Elemental Boron.

    PubMed

    Deringer, Volker L; Pickard, Chris J; Csányi, Gábor

    2018-04-13

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  15. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice

    NASA Astrophysics Data System (ADS)

    Willatt, Michael J.; Ceriotti, Michele; Althorpe, Stuart C.

    2018-03-01

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  16. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice.

    PubMed

    Willatt, Michael J; Ceriotti, Michele; Althorpe, Stuart C

    2018-03-14

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  17. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.

    PubMed

    Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D

    2008-12-01

    The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of approximately 5 m s(-1) and approximately 0.7 m s(-1), respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na(+)] ACSF or the selective Na(v) channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Na(v) channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABA(A) receptors regulates the axonal initiation of action potentials.

  18. A density functional theory study of the influence of exchange-correlation functionals on the properties of FeAs.

    PubMed

    Griffin, Sinéad M; Spaldin, Nicola A

    2017-06-01

    We use density functional theory within the local density approximation (LDA), LDA  +  U, generalised gradient approximation (GGA), GGA  +  U, and hybrid-functional methods to calculate the properties of iron monoarsenide. FeAs, which forms in the MnP structure, is of current interest for potential spintronic applications as well as being the parent compound for the pnictide superconductors. We compare the calculated structural, magnetic and electronic properties obtained using the different functionals to each other and to experiment, and investigate the origin of a recently reported magnetic spiral. Our results indicate the appropriateness or otherwise of the various functionals for describing FeAs and the related Fe-pnictide superconductors.

  19. Method for estimating the morphological significance of simple forms of crystals from X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treivus, E. B., E-mail: sbobr1@bk.ru

    2010-09-15

    When developing V.I. Mikheev and I.I. Shafranovskii's method for estimating the morphological significance of faces of different simple forms from X-ray reflection intensities, a way to approximately evaluate the morphological significance of simple forms on crystals from the structure amplitudes of the corresponding atomic planes is proposed. The potential for this approach is demonstrated by the examples of marcasite and zircon.

  20. Excitation energy spectrum in helium II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, P.; Chan, C.K.

    1979-11-01

    We obtain the roton part of the excitation energy spectrum in He II qualitatively. We point out that the distinct difference between this calculation and that of Parry and Ter Haar is that we do not use the Born approximation in the evaluation of t-matrix elements. We found that in addition to the contribution due to the hard-core part, the attractive potential helps to form the roton dip.

  1. Measuring the Fractal Dimensions of Empirical Cartographic Curves,

    DTIC Science & Technology

    1982-01-01

    SECURITY CLASSIFICATION OF THIS PAGE (URifu Detso".4 _________________ of REPRi CaM§ rtorp Cu S. GOTACSINN. RPIEMN’ CAOG HUPORu R 7. AUTNORrq...AgencyI.NMEROPAS St. Louis APS, MO 63118 ______________ 14. MONITORING AGENCY NAME & ADDRESS(It different bom Cmntrolling Office) Is. SECURITY CLASS. (of Oio~I...approximated. Potential applications for this todNtlqu Include a new means for curvilinear data compresion description of plankmetric feature boundary

  2. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    PubMed

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  3. Influence of long-range Coulomb interaction in velocity map imaging.

    PubMed

    Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C

    2017-07-07

    The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.

  4. From neurons to circuits: linear estimation of local field potentials.

    PubMed

    Rasch, Malte; Logothetis, Nikos K; Kreiman, Gabriel

    2009-11-04

    Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs) (a circuit property) and spiking multiunit activity (MUA). Recently, there has been increased interest in LFPs because of their correlation with functional magnetic resonance imaging blood oxygenation level-dependent measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same electrode or nearby electrodes. We used "signal estimation theory" to show that a linear filter operation on the activity of one or a few neurons can explain a significant fraction of the LFP time course in the macaque monkey primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positive time lags. The filter was similar across different neocortical regions and behavioral conditions, including spontaneous activity and visual stimulation. The estimations had a spatial resolution of approximately 1 mm and a temporal resolution of approximately 200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than the negative time lags. Additionally, we showed that spikes occurring within approximately 10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In summary, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons.

  5. Path integrals with higher order actions: Application to realistic chemical systems

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Huang, Gavin S.; Jordan, Meredith J. T.

    2018-02-01

    Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for H2O and HCN-HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both H2O and HCN-HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN-HNC but has similar efficiency to the TIA for H2O at low temperature. In H2O and HCN-HNC systems, the optimal value of the a1 CA parameter is approximately 1/3 , corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ˜0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a1 = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum H2O system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.

  6. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: evidence for hydraulic lift.

    PubMed

    Ishikawa, C Millikin; Bledsoe, C S

    2000-12-01

    In a 3-year study, seasonal and daily soil water fluctuations in a California blue oak woodland were investigated by measuring soil water potential (Ψ s ) at hourly intervals. Soil water potential remained relatively high well into the annual summer drought, with values above -0.5 MPa until June even in a dry year. As drought progressed, Ψ s (at 25, 50, 75, and 100 cm depth) decreased to less than -3 MPa, providing evidence for continued blue oak root activity throughout the summer. We observed diurnal Ψ s fluctuations (gradual increase at night and rapid decrease during daytime) characteristic of hydraulic lift, a process by which plant roots redistribute water from wet to dry soil layers. These diurnal fluctuations were observed at all four soil depths and began to appear when Ψ s reached approximately -0.3 MPa. When Ψ s reached approximately -3 MPa, fluctuations became "offset" from those typical of hydraulic lift. These offset fluctuations (apparent at low water potentials when temperature fluctuations were large) closely followed diurnal fluctuations in soil temperature. We propose that these offset patterns resulted from a combination of hydraulic lift cessation and an over-correction for temperature in the model used to calculate Ψ s from raw sensor data. The appearance and disappearance of hydraulic lift fluctuations seemed to depend on Ψ s . While soil temperatures and dates at which hydraulic lift appeared (and disappeared) were significantly different between wet and dry years, Ψ s values associated with hydraulic lift appearance were not significantly different. Hydraulic lift occurred too late in summer to benefit annual forage grasses. However, water released by blue oak trees at night could slow the rate of soil water depletion and extend blue oaks' growing season.

  7. Heterogeneity in the Relationship of Substance Use to Risky Sexual Behavior Among Justice-Involved Youth: A Regression Mixture Modeling Approach.

    PubMed

    Schmiege, Sarah J; Bryan, Angela D

    2016-04-01

    Justice-involved adolescents engage in high levels of risky sexual behavior and substance use, and understanding potential relationships among these constructs is important for effective HIV/STI prevention. A regression mixture modeling approach was used to determine whether subgroups could be identified based on the regression of two indicators of sexual risk (condom use and frequency of intercourse) on three measures of substance use (alcohol, marijuana and hard drugs). Three classes were observed among n = 596 adolescents on probation: none of the substances predicted outcomes for approximately 18 % of the sample; alcohol and marijuana use were predictive for approximately 59 % of the sample, and marijuana use and hard drug use were predictive in approximately 23 % of the sample. Demographic, individual difference, and additional sexual and substance use risk variables were examined in relation to class membership. Findings are discussed in terms of understanding profiles of risk behavior among at-risk youth.

  8. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanáška, M.; Kudrna, P.; Tichý, M.

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma ofmore » a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.« less

  9. Effect of Specimen Thickness on Mechanical Behavior of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Freedman, Marc

    2004-01-01

    Potential composite applications in aerospace and transportation application systems have different thickness requirements. For example, space applications such as nozzle ramps or heat exchangers use very thin (less than 1 mm) structures whereas turbine blades need very thick parts greater than or equal to cm). There has been little investigation into the effect of thickness on stress-strain behavior or elevated temperature tensile properties controlled by oxidation. In this study, composites consisting of woven Hi-NicalonTM fibers, a carbon interphase, and CVI Sic matrix were fabricated with different numbers of plies to provide variable thickness. The composites ranged from a single ply (approximately 0.4 mm) to thirty-six plies (approximately 1 cm). Tensile tests were performed at room temperature with acoustic emission used to monitor matrix crack behavior. Elevated temperature tensile stress-rupture tests were performed in air. Considerably different room and elevated temperature tensile behavior was observed that will be discussed with respect to the effect of thickness on matrix crack formation, matrix crack growth and oxidation diffusion kinetics.

  10. orbit-estimation: Fast orbital parameters estimator

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Bovy, Jo

    2018-04-01

    orbit-estimation tests and evaluates the Stäckel approximation method for estimating orbit parameters in galactic potentials. It relies on the approximation of the Galactic potential as a Stäckel potential, in a prolate confocal coordinate system, under which the vertical and horizontal motions decouple. By solving the Hamilton Jacobi equations at the turning points of the horizontal and vertical motions, it is possible to determine the spatial boundary of the orbit, and hence calculate the desired orbit parameters.

  11. Sulfonamido tripods: tuning redox potentials via ligand modifications

    PubMed Central

    Lau, Nathanael; Ziller, Joseph W.

    2014-01-01

    A series of FeII–OH2 complexes were synthesized with ligands based on the tetradentate sulfonamido tripod N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]-tris-({R-Ph}-sulfonamido). These complexes differ by the substituent on the aryl rings and were fully characterized, including their molecular structures via X-ray diffraction methods. All the complexes were five-coordinate with trigonal bipyramidal geometry. A linear correlation was observed between the electronic effects of each ligand, given by the Hammett constants of the para-substituents, and the potential of the FeII/FeIII redox couple, which were determined using cyclic voltammetry. It was found that the range of redox potentials for the complexes spanned approximately 160 mV. PMID:25419035

  12. Sulfonamido tripods: tuning redox potentials via ligand modifications.

    PubMed

    Lau, Nathanael; Ziller, Joseph W; Borovik, A S

    2015-01-08

    A series of Fe II -OH 2 complexes were synthesized with ligands based on the tetradentate sulfonamido tripod N , N ', N "-[2,2',2"-nitrilotris(ethane-2,1-diyl)]-tris-({R-Ph}-sulfonamido). These complexes differ by the substituent on the aryl rings and were fully characterized, including their molecular structures via X-ray diffraction methods. All the complexes were five-coordinate with trigonal bipyramidal geometry. A linear correlation was observed between the electronic effects of each ligand, given by the Hammett constants of the para -substituents, and the potential of the Fe II /Fe III redox couple, which were determined using cyclic voltammetry. It was found that the range of redox potentials for the complexes spanned approximately 160 mV.

  13. Two-parametric {\\delta'} -interactions: approximation by Schrödinger operators with localized rank-two perturbations

    NASA Astrophysics Data System (ADS)

    Golovaty, Yuriy

    2018-06-01

    We construct a norm resolvent approximation to the family of point interactions , by Schrödinger operators with localized rank-two perturbations coupled with short range potentials. In particular, a new approximation to the -interactions is obtained.

  14. Progress in the chemistry of shortleaf and loblolly pine bark flavonoids

    Treesearch

    R.W. Hemingway

    1976-01-01

    The forest products industries of the southern United States harvest approximately 7 million dry tons of pine bark each year. This resource receives little utilization other than recovery of fuel values. approximately 2 million dry tons (30-40% of bark dry weight) of potentially valuable polyflavonoids are burned annually. Conifer bark flavonoids have potential...

  15. Lectures on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2015-09-01

    Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.

  16. Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel

    NASA Astrophysics Data System (ADS)

    Ni, Yun; Liu, Nanchun; Yin, Jianping

    2003-06-01

    The diffracted near field distribution from an LP01 mode in a hollow optical fibre was recently calculated using a scalar model based on the weakly waveguiding approximation (Yoo et al 1999 J. Opt. B: Quantum Semiclass. Opt. 1 364). It showed a dominant Gaussian-like distribution with an increased axial intensity in the central region (not a doughnut-like distribution), so the diffracted output beam from the hollow fibre cannot be used to form an atomic funnel. Using exact solutions of the Maxwell equations based on a vector model, however, we calculate the electric field and intensity distributions of the HE11 mode in the same hollow fibre and study the diffracted near- and far-field distributions of the HE11-mode output beam under the Fresnel approximation. We analyse and compare the differences between the output beams from the HE11 and LP01 modes. Our study shows that both the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like and can be used to form a simple atomic funnel. However, it is not suitable to use the weakly waveguiding approximation to calculate the diffracted near-field distribution of the hollow fibre due to the greater refractive-index difference between the hollow region (n0 = 1) and the core (n1 = 1.45 or 1.5). Finally, the 3D intensity distribution of the HE11-mode output beam is modelled and the corresponding optical potentials for cold atoms are calculated. Some potential applications of the HE11-mode output beam in an atomic guide and funnel are briefly discussed.

  17. Clinical implications and economic impact of accuracy differences among commercially available blood glucose monitoring systems.

    PubMed

    Budiman, Erwin S; Samant, Navendu; Resch, Ansgar

    2013-03-01

    Despite accuracy standards, there are performance differences among commercially available blood glucose monitoring (BGM) systems. The objective of this analysis was to assess the potential clinical and economic impact of accuracy differences of various BGM systems using a modeling approach. We simulated additional risk of hypoglycemia due to blood glucose (BG) measurement errors of five different BGM systems based on results of a real-world accuracy study, while retaining other sources of glycemic variability. Using data from published literature, we estimated an annual additional number of required medical interventions as a result of hypoglycemia. We based our calculations on patients with type 1 diabetes mellitus (T1DM) and T2DM requiring multiple daily injections (MDIs) of insulin in a U.S. health care system. We estimated additional costs attributable to treatment of severe hypoglycemic episodes resulting from BG measurement errors. Results from our model predict an annual difference of approximately 296,000 severe hypoglycemic episodes from BG measurement errors for T1DM (105,000 for T2DM MDI) patients for the estimated U.S. population of 958,800 T1DM and 1,353,600 T2DM MDI patients, using the least accurate BGM system versus patients using the most accurate system in a U.S. health care system. This resulted in additional direct costs of approximately $339 million for T1DM and approximately $121 million for T2DM MDI patients per year. Our analysis shows that error patterns over the operating range of BGM meter may lead to relevant clinical and economic outcome differences that may not be reflected in a common accuracy metric or standard. Further research is necessary to validate the findings of this model-based approach. © 2013 Diabetes Technology Society.

  18. Clinical Implications and Economic Impact of Accuracy Differences among Commercially Available Blood Glucose Monitoring Systems

    PubMed Central

    Budiman, Erwin S.; Samant, Navendu; Resch, Ansgar

    2013-01-01

    Background Despite accuracy standards, there are performance differences among commercially available blood glucose monitoring (BGM) systems. The objective of this analysis was to assess the potential clinical and economic impact of accuracy differences of various BGM systems using a modeling approach. Methods We simulated additional risk of hypoglycemia due to blood glucose (BG) measurement errors of five different BGM systems based on results of a real-world accuracy study, while retaining other sources of glycemic variability. Using data from published literature, we estimated an annual additional number of required medical interventions as a result of hypoglycemia. We based our calculations on patients with type 1 diabetes mellitus (T1DM) and T2DM requiring multiple daily injections (MDIs) of insulin in a U.S. health care system. We estimated additional costs attributable to treatment of severe hypoglycemic episodes resulting from BG measurement errors.. Results Results from our model predict an annual difference of approximately 296,000 severe hypoglycemic episodes from BG measurement errors for T1DM (105,000 for T2DM MDI) patients for the estimated U.S. population of 958,800 T1DM and 1,353,600 T2DM MDI patients, using the least accurate BGM system versus patients using the most accurate system in a U.S. health care system. This resulted in additional direct costs of approximately $339 million for T1DM and approximately $121 million for T2DM MDI patients per year. Conclusions Our analysis shows that error patterns over the operating range of BGM meter may lead to relevant clinical and economic outcome differences that may not be reflected in a common accuracy metric or standard. PMID:23566995

  19. Time delay of critical images in the vicinity of cusp point of gravitational-lens systems

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-12-01

    We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.

  20. On the accuracy of the 'decoupled l-dominant' approximation for atom-molecule scattering

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    Cross sections for rotational excitation and spectral pressure broadening of HD, HCl, CO, and HCN due to collisions with low energy He atoms have been computed within the 'decoupled l-dominant' (DLD) approximation and are compared with accurate close coupling results and also with two similar approximations, the effective potential of Rabitz and the coupled states of McGuire and Kouri. DLD predictions of state-to-state cross sections are rather good, being only slightly less accurate than coupled states results. DLD is far superior to either the coupled states or effective potential methods for pressure broadening calculations, although it may not be uniformly of the quantitative accuracy desirable for obtaining intermolecular potentials from experimental data.

  1. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

    NASA Technical Reports Server (NTRS)

    Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

    1987-01-01

    A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

  2. Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.

    2018-05-01

    We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He, O 16 ,22 ,24 , and Ca,4840. These resonance modes have been widely observed in experiment. In addition, we use a renormalized chiral potential Vlow-k, based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev. C 68, 041001 (2011), 10.1103/PhysRevC.68.041001]. This introduces a dependency on the cutoff parameter used in the normalization procedure as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced three-body forces in the calculations. Our results for neutron-rich O,2422 show a mixing nature of isoscalar and isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar quadrupole resonances at energies lower than 5 MeV.

  3. Binary collision approximations for the memory function for density fluctuations in equilibrium atomic liquids

    NASA Astrophysics Data System (ADS)

    Noah, Joyce E.

    Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.

  4. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    NASA Astrophysics Data System (ADS)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  5. Electric fields and vector potentials of thin cylindrical antennas

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1990-09-01

    The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.

  6. Spatio-temporal dynamics of brain mechanisms in aversive classical conditioning: high-density event-related potential and brain electrical tomography analyses.

    PubMed

    Pizzagalli, Diego A; Greischar, Lawrence L; Davidson, Richard J

    2003-01-01

    Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.

  7. Automated facial recognition of manually generated clay facial approximations: Potential application in unidentified persons data repositories.

    PubMed

    Parks, Connie L; Monson, Keith L

    2018-01-01

    This research examined how accurately 2D images (i.e., photographs) of 3D clay facial approximations were matched to corresponding photographs of the approximated individuals using an objective automated facial recognition system. Irrespective of search filter (i.e., blind, sex, or ancestry) or rank class (R 1 , R 10 , R 25 , and R 50 ) employed, few operationally informative results were observed. In only a single instance of 48 potential match opportunities was a clay approximation matched to a corresponding life photograph within the top 50 images (R 50 ) of a candidate list, even with relatively small gallery sizes created from the application of search filters (e.g., sex or ancestry search restrictions). Increasing the candidate lists to include the top 100 images (R 100 ) resulted in only two additional instances of correct match. Although other untested variables (e.g., approximation method, 2D photographic process, and practitioner skill level) may have impacted the observed results, this study suggests that 2D images of manually generated clay approximations are not readily matched to life photos by automated facial recognition systems. Further investigation is necessary in order to identify the underlying cause(s), if any, of the poor recognition results observed in this study (e.g., potential inferior facial feature detection and extraction). Additional inquiry exploring prospective remedial measures (e.g., stronger feature differentiation) is also warranted, particularly given the prominent use of clay approximations in unidentified persons casework. Copyright © 2017. Published by Elsevier B.V.

  8. Bounds on stochastic chemical kinetic systems at steady state

    NASA Astrophysics Data System (ADS)

    Dowdy, Garrett R.; Barton, Paul I.

    2018-02-01

    The method of moments has been proposed as a potential means to reduce the dimensionality of the chemical master equation (CME) appearing in stochastic chemical kinetics. However, attempts to apply the method of moments to the CME usually result in the so-called closure problem. Several authors have proposed moment closure schemes, which allow them to obtain approximations of quantities of interest, such as the mean molecular count for each species. However, these approximations have the dissatisfying feature that they come with no error bounds. This paper presents a fundamentally different approach to the closure problem in stochastic chemical kinetics. Instead of making an approximation to compute a single number for the quantity of interest, we calculate mathematically rigorous bounds on this quantity by solving semidefinite programs. These bounds provide a check on the validity of the moment closure approximations and are in some cases so tight that they effectively provide the desired quantity. In this paper, the bounded quantities of interest are the mean molecular count for each species, the variance in this count, and the probability that the count lies in an arbitrary interval. At present, we consider only steady-state probability distributions, intending to discuss the dynamic problem in a future publication.

  9. Accurate and Efficient Approximation to the Optimized Effective Potential for Exchange

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Kananenka, Alexei A.; Staroverov, Viktor N.

    2013-07-01

    We devise an efficient practical method for computing the Kohn-Sham exchange-correlation potential corresponding to a Hartree-Fock electron density. This potential is almost indistinguishable from the exact-exchange optimized effective potential (OEP) and, when used as an approximation to the OEP, is vastly better than all existing models. Using our method one can obtain unambiguous, nearly exact OEPs for any reasonable finite one-electron basis set at the same low cost as the Krieger-Li-Iafrate and Becke-Johnson potentials. For all practical purposes, this solves the long-standing problem of black-box construction of OEPs in exact-exchange calculations.

  10. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less

  11. Spin and pseudospin symmetric Dirac particles in the field of Tietz—Hua potential including Coulomb tensor interaction

    NASA Astrophysics Data System (ADS)

    Sameer, M. Ikhdair; Majid, Hamzavi

    2013-09-01

    Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.

  12. Phonons in random alloys: The itinerant coherent-potential approximation

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhradip; Leath, P. L.; Cohen, Morrel H.

    2002-12-01

    We present the itinerant coherent-potential approximation (ICPA), an analytic, translationally invariant, and tractable form of augmented-space-based multiple-scattering theory18 in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni55Pd45 and Ni50Pt50 alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation (CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.

  13. Diversity "down under": monogeneans in the Antipodes (Australia) with a prediction of monogenean biodiversity worldwide.

    PubMed

    Whittington, I D

    1998-10-01

    There are approximately 25,000 species of fishes known in the world. The Monogenea are believed to be among the most host-specific of parasites and if each species of fish is host to a different species of monogenean, there could be almost 25,000 monogenean species on Earth. Currently, I estimate that between 3000 and 4000 of these are described. Australia has a rich marine fish fauna with approximately 3500 species of teleosts. If the same formula of one monogenean species per host fish species is applied, Australia marine fishes could host potentially 3500 species of monogeneans. The first monogenean species described from Australia was Encotyllabe pagrosomi MacCallum, 1917 and approximately 300 more species have since been described from the continent. Even in a region of Australia such as Heron Island on the Great Barrier Reef that has been a focus of sustained research on these parasites, only about 85 species are described from 40 of the most common, easily-caught species of fish. Reasons are discussed for the relatively small numbers of monogenean species described so far from Australia. Endemicity is difficult to judge, but only one is certain: Concinnocotyla australensis (Polystomatidae) from Neoceratodus forsteri (Dipnoi). Despite reductions in research funding, the value of parasite taxonomy must not be underestimated, particularly in regions of the world that have a rich diversity of potential hosts.

  14. Validity of the site-averaging approximation for modeling the dissociative chemisorption of H{sub 2} on Cu(111) surface: A quantum dynamics study on two potential energy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn

    A new finding of the site-averaging approximation was recently reported on the dissociative chemisorption of the HCl/DCl+Au(111) surface reaction [T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 139, 184705 (2013); T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 140, 144701 (2014)]. Here, in order to investigate the dependence of new site-averaging approximation on the initial vibrational state of H{sub 2} as well as the PES for the dissociative chemisorption of H{sub 2} on Cu(111) surface at normal incidence, we carried out six-dimensional quantum dynamics calculations using the initial state-selected time-dependent wave packet approach, withmore » H{sub 2} initially in its ground vibrational state and the first vibrational excited state. The corresponding four-dimensional site-specific dissociation probabilities are also calculated with H{sub 2} fixed at bridge, center, and top sites. These calculations are all performed based on two different potential energy surfaces (PESs). It is found that the site-averaging dissociation probability over 15 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability for H{sub 2} (v = 0) and (v = 1) on the two PESs.« less

  15. Influence of the interfacial peptide organization on the catalysis of hydrogen evolution.

    PubMed

    Doneux, Th; Dorcák, V; Palecek, E

    2010-01-19

    The hydrogen evolution reaction is catalyzed by peptides and proteins adsorbed on electrode materials with high overpotentials for this reaction, such as mercury. The catalytic response characteristics are known to be very sensitive to the composition and structure of the investigated biomolecule, opening the way to the implementation of a label-free, reagentless electroanalytical method in protein analysis. Herein, it is shown using the model peptide Cys-Ala-Ala-Ala-Ala-Ala that the interfacial organization significantly influences the catalytic behavior. This peptide forms at the electrode two distinct films, depending on the concentration and accumulation time. The low-coverage film, composed of flat-lying molecules (area per molecule of approximately 250-290 A(2)), yields a well-defined catalytic peak at potentials around -1.75 V. The high-coverage film, made of upright-oriented peptides (area per molecule of approximately 43 A(2)), is catalytically more active and the peak is observed at potentials less negative by approximately 0.4 V. The higher activity, evidenced by constant-current chronopotentiometry and cyclic voltammetry, is attributed to an increase in the acid dissociation constant of the amino acid residues as a result of the low permittivity of the interfacial region, as inferred from impedance measurements. An analogy is made to the known differences in acidic-basic behaviors of solvent-exposed and hydrophobic domains of proteins.

  16. The complex variable boundary element method: Applications in determining approximative boundaries

    USGS Publications Warehouse

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  17. Analytic quantum-interference conditions in Coulomb corrected photoelectron holography

    NASA Astrophysics Data System (ADS)

    Maxwell, A. S.; Al-Jawahiry, A.; Lai, X. Y.; Figueira de Morisson Faria, C.

    2018-02-01

    We provide approximate analytic expressions for above-threshold ionization (ATI) transition probabilities and photoelectron angular distributions. These analytic expressions are more general than those existing in the literature and include the residual binding potential in the electron continuum propagation. They successfully reproduce the ATI side lobes and specific holographic structures such as the near-threshold fan-shaped pattern and the spider-like structure that extends up to relatively high photoelectron energies. We compare such expressions with the Coulomb quantum orbit strong-field approximation (CQSFA) and the full solution of the time-dependent Schrödinger equation for different driving-field frequencies and intensities, and provide an in-depth analysis of the physical mechanisms behind specific holographic structures. Our results shed additional light on what aspects of the CQSFA must be prioritized in order to obtain the key holographic features, and highlight the importance of forward scattered trajectories. Furthermore, we find that the holographic patterns change considerably for different field parameters, even if the Keldysh parameter is kept roughly the same.

  18. Investigation of matter-antimatter interaction for possible propulsion applications

    NASA Technical Reports Server (NTRS)

    Morgan, D. L., Jr.

    1974-01-01

    Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.

  19. Path integral solution for a Klein-Gordon particle in vector and scalar deformed radial Rosen-Morse-type potentials

    NASA Astrophysics Data System (ADS)

    Khodja, A.; Kadja, A.; Benamira, F.; Guechi, L.

    2017-12-01

    The problem of a Klein-Gordon particle moving in equal vector and scalar Rosen-Morse-type potentials is solved in the framework of Feynman's path integral approach. Explicit path integration leads to a closed form for the radial Green's function associated with different shapes of the potentials. For q≤-1, and 1/2α ln | q|0, it is shown that the quantization conditions for the bound state energy levels E_{nr} are transcendental equations which can be solved numerically. Three special cases such as the standard radial Manning-Rosen potential (| q| =1), the standard radial Rosen-Morse potential (V2→ -V2,q=1) and the radial Eckart potential (V1→ -V1,q=1) are also briefly discussed.

  20. The Debye-Huckel Approximation in Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. Terrence

    2002-11-01

    In this work we consider the electroosmotic flow in a rectangular channel. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride and other buffers for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or slightly greater than the width of the EDL(nanochannel). At small cation, anion concentration differences the Debye-Huckel approximation is appropriate; at larger concentration differences, the Gouy-Chapman picture of the electric double emerges naturally. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. We specifically focus in this paper on the limits of the Debye-Huckel approximation for a simplified version of a phosphate buffered saline(PBS) mixture. The fluid is assumed to behave as a continuum and the volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.

  1. Analytical solutions of the Klein-Gordon equation for Manning-Rosen potential with centrifugal term through Nikiforov-Uvarov method

    NASA Astrophysics Data System (ADS)

    Hatami, N.; Setare, M. R.

    2017-10-01

    We present approximate analytical solutions of the Klein-Gordon equation with arbitrary l state for the Manning-Rosen potential using the Nikiforov-Uvarov method and adopting the approximation scheme for the centrifugal term. We provide the bound state energy spectrum and the wave function in terms of the hypergeometric functions.

  2. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    ERIC Educational Resources Information Center

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  3. Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons

    PubMed Central

    Caudle, Stephanie L.; Jenkins, Alan C.; Ahn, Andrew H.; Neubert, John K.

    2017-01-01

    The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons’ voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity. PMID:28472061

  4. The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    1999-01-01

    The MOLA topography of Mars is based on a new mean radius of the planet and new equipotential surface for the areoid. The mean atmospheric pressure surface of 6.1mbars that has been used in the past as a reference level for topography does not apply to the zero level of MOLA elevations. The MOLA mean radius of the planet is 3389508 meters and the mean equatorial radius is 339600 meters. The areoid of the zero level of the MOLA altimetry is defined to be the potential surface with the same potential as the mean equatorial radius. The MOLA topography differs from the USGS digital elevation data by approximately 1.6 km, with MOLA higher. The average pressure on the MOLA reference surface for Ls =0 is approximately 5.1 mbars and has been derived from occultation data obtained from the tracking of Viking, Mariner, and MGS spacecraft and interpolated with the aid of the Ames Mars GCM. The new topography and the new occultation data are providing a more reliable relationship between elevation and surface pressure.

  5. Optimized effective potential method and application to static RPA correlation

    NASA Astrophysics Data System (ADS)

    Fukazawa, Taro; Akai, Hisazumi

    2015-03-01

    The optimized effective potential (OEP) method is a promising technique for calculating the ground state properties of a system within the density functional theory. However, it is not widely used as its computational cost is rather high and, also, some ambiguity remains in the theoretical framework. In order to overcome these problems, we first introduced a method that accelerates the OEP scheme in a static RPA-level correlation functional. Second, the Krieger-Li-Iafrate (KLI) approximation is exploited to solve the OEP equation. Although seemingly too crude, this approximation did not reduce the accuracy of the description of the magnetic transition metals (Fe, Co, and Ni) examined here, the magnetic properties of which are rather sensitive to correlation effects. Finally, we reformulated the OEP method to render it applicable to the direct RPA correlation functional and other, more precise, functionals. Emphasis is placed on the following three points of the discussion: (i) level-crossing at the Fermi surface is taken into account; (ii) eigenvalue variations in a Kohn-Sham functional are correctly treated; and (iii) the resultant OEP equation is different from those reported to date.

  6. Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system

    NASA Astrophysics Data System (ADS)

    Boström, E.; Hopjan, M.; Kartsev, A.; Verdozzi, C.; Almbladh, C.-O.

    2016-03-01

    We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange- correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.

  7. Bohm-criterion approximation versus optimal matched solution for a cylindrical probe in radial-motion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Din, Alif

    2016-08-15

    The theory of positive-ion collection by a probe immersed in a low-pressure plasma was reviewed and extended by Allen et al. [Proc. Phys. Soc. 70, 297 (1957)]. The numerical computations for cylindrical and spherical probes in a sheath region were presented by F. F. Chen [J. Nucl. Energy C 7, 41 (1965)]. Here, in this paper, the sheath and presheath solutions for a cylindrical probe are matched through a numerical matching procedure to yield “matched” potential profile or “M solution.” The solution based on the Bohm criterion approach “B solution” is discussed for this particular problem. The comparison of cylindricalmore » probe characteristics obtained from the correct potential profile (M solution) and the approximated Bohm-criterion approach are different. This raises questions about the correctness of cylindrical probe theories relying only on the Bohm-criterion approach. Also the comparison between theoretical and experimental ion current characteristics shows that in an argon plasma the ions motion towards the probe is almost radial.« less

  8. General theory for calculating disorder-averaged Green's function correlators within the coherent potential approximation

    NASA Astrophysics Data System (ADS)

    Zhou, Chenyi; Guo, Hong

    2017-01-01

    We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.

  9. Who do you love, your mother or your horse? An event-related brain potential analysis of tone processing in Mandarin Chinese.

    PubMed

    Brown-Schmidt, Sarah; Canseco-Gonzalez, Enriqueta

    2004-03-01

    In Mandarin Chinese, word meaning is partially determined by lexical tone (Wang, 1973). Previous studies suggest that lexical tone is processed as linguistic information and not as pure tonal information (Gandour, 1998; Van Lanker & Fromkin, 1973). The current study explored the online processing of lexical tones. Event-related potentials were obtained from 25 Mandarin speakers while they listened to normal and anomalous sentences containing one of three types of semantic anomalies created by manipulating the tone, the syllable, or both tone and syllable (double-anomaly) of sentence-final words. We hypothesized N400 effects elicited by all three types of anomalies and the largest by the double-anomaly. As expected, all three elicited N400 effects starting approximately 150 ms poststimulus and continuing until 1000 ms in some areas. Surprisingly, onset of the double-anomaly effect was approximately 50 ms later than the rest. Delayed detection of errors in this condition may be responsible for the apparent delay. Slight differences between syllable and tone conditions may be due to the relative timing of these acoustic cues.

  10. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer.

    PubMed

    Li, Xiaoduan; Wang, Xipeng

    2017-05-15

    Ovarian cancer (OC) is one of the three types of malignant tumors in the female reproductive system, and epithelial ovarian cancer (EOC) is its most typical form. Due to the asymptomatic nature of the early stages and resistance to chemotherapy, EOC has both a poor prognosis and a high fatality rate. Current treatments for OC are very limited, and the 5-years survival rate is approximately 30%. Exosomes, which are microvesicles ranging from approximately 30-100 nm in size that are secreted by living cells, can be produced from different cell types and detected in various body fluids. Cancer cells can secrete more exosomes than healthy cells, and more importantly, the content of cancer cell-derived exosomes is distinct. The exosomes shedding from tumor cells are considered to be involved in tumor progression and metastasis. As such, exosomes are expected to be potential tools for tumor diagnosis and treatment. In this review, we briefly present the emerging roles of exosomes in OC and summarize related articles about their roles as diagnostic or prognostic biomarkers and in the treatment and drug resistance of OC.

  11. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  12. Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.P. Gonis, A.; de Fontaine, D.

    1991-12-03

    We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.

  13. Ionization potential depression and optical spectra in a Debye plasma model

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  14. Elastic scattering of spin-polarized electrons and positrons from 23Na nuclei

    NASA Astrophysics Data System (ADS)

    Jakubassa-Amundsen, D. H.

    2018-07-01

    Differential cross sections and polarization correlations for the scattering of relativistic spin-polarized leptons from unpolarized ground-state sodium nuclei are calculated within the distorted-wave Born approximation (DWBA). Various nuclear ground-state charge distributions are probed. Besides potential scattering, also electric C2 and magnetic M1 and M3 transitions are taken into account. It is shown that even for a light nucleus such as 23Na there are considerable electron-positron differences at high collision energies and large scattering angles. In particular, the symmetry of the Sherman function with respect to a global sign change, as predicted by the second-order Born approximation when replacing electrons by positrons, is broken whenever the diffraction structures come into play beyond 100 MeV.

  15. Gusev Crater

    NASA Image and Video Library

    2003-03-13

    This mosaic of daytime infrared images of Gusev Crater, taken by NASA Mars Odyssey spacecraft, has been draped over topography data obtained by NASA Mars Global Surveyor. The daytime temperatures range from approximately minus 45 degrees C (black) to minus 5 degrees C (white). The temperature differences in these daytime images are due primarily to lighting effects, where sunlit slopes are warm (bright) and shadowed slopes are cool (dark). Gusev crater is a potential landing site for the Mars Exploration Rovers. The large ancient river channel of Ma'Adim that once flowed into Gusev can be seen at the top of the mosaic. This image mosaic covers an area approximately 180 kilometers (110 miles) on each side centered near 14 degrees S, 175 degrees E, looking toward the south in this simulated view. http://photojournal.jpl.nasa.gov/catalog/PIA04260

  16. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment.

    PubMed

    Song, Younho; Wi, Seung Gon; Kim, Ho Myeong; Bae, Hyeun-Jong

    2016-08-01

    Jerusalem artichoke (JA) is recognized as a suitable candidate biomass crop for bioethanol production because it has a rapid growth rate and high biomass productivity. In this study, hydrogen peroxide-acetic acid (HPAC) pretreatment was used to enhance the enzymatic hydrolysis and to effectively remove the lignin of JA. With optimized enzyme doses, synergy was observed from the combination of three different enzymes (RUT-C30, pectinase, and xylanase) which provided a conversion rate was approximately 30% higher than the rate with from treatment with RUT-C30 alone. Fermentation of the JA hydrolyzates by Saccharomyces cerevisiae produced a fermentation yield of approximately 84%. Therefore, Jerusalem artichoke has potential as a bioenergy crop for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Discovery of localized regions of excess 10-TeV cosmic rays.

    PubMed

    Abdo, A A; Allen, B; Aune, T; Berley, D; Blaufuss, E; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; Gonzalez, M M; Goodman, J A; Hoffman, C M; Hüntemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Nemethy, P; Noyes, D; Pretz, J; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

    2008-11-28

    The 7 year data set of the Milagro TeV observatory contains 2.2 x 10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of approximately 10 degrees has been found in two localized regions of unknown origin with greater than 12sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at approximately 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.

  18. Magneto-exciton transitions in laterally coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  19. Theoretical investigation of the He4Br2 conformers.

    PubMed

    Valdés, Álvaro; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo

    2012-07-05

    Full dimensional quantum dynamics calculations of the three lowest isomers of the He(4)Br(2) van der Waals molecule in its ground electronic state are reported. The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method and a realistic potential form that includes the sum of three body ab initio coupled-cluster single double triple [CCSD(T)] He-Br(2) interactions plus the He-He and Br-Br interactions. This potential exhibits several multiple minima, with the three lowest ones lying very close in energy, just within 2 cm(-1). Such small differences are also found in the calculated binding energies of the three most stable conformers, indicating the floppiness of the system and, thus, the need of accurate potential forms and quantum full dynamics methods to treat this kind of complexes. The 12 dimensional results reported in this work present benchmark data and, thus, can serve to evaluate approximate methods aiming to describe higher order rare gas-dihalogen (N > 4) complexes. A comparison with previous studies using different potential forms and approaches to the energetics for the He(4)Br(2) cluster is also presented.

  20. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Electronic and magnetic properties of TiO2 (co)-doped with (V, Mn)

    NASA Astrophysics Data System (ADS)

    Rami, R.; Rkhioui, N.; Ahl Laamara, R.; Drissi, L. B.

    2017-12-01

    The effect of dopage and co-dopage with vanadium and manganese on the structural, the electronic and the magnetic properties of TiO2 is studied using ab initio calculations. The calculations are based on the Korringa-Kohn-Rostoker method combined with the coherent potential approach, employing the local density approximation (LDA). The density of states are plotted in the energy diagram for different concentrations of dopants. The magnetic moments and half-metallic character of the doped compounds are investigated and the mechanism of exchange interaction is determined. In addition, the Curie temperature is given for different concentrations.

  2. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  3. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, Travis; Beck, Thomas L.; Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters ofmore » size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.« less

  4. Semiclassical theory of the self-consistent vibration-rotation fields and its application to the bending-rotation interaction in the H{sub 2}O molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalozub, A.S.; Tsaune, A.Ya.

    1994-12-01

    A new approach for analyzing the highly excited vibration-rotation (VR) states of nonrigid molecules is suggested. It is based on the separation of the vibrational and rotational terms in the molecular VR Hamiltonian by introducing periodic auxiliary fields. These fields transfer different interactions within a molecule and are treated in terms of the mean-field approximation. As a result, the solution of the stationary Schroedinger equation with the VR Hamiltonian amounts to a quantization of the Berry phase in a problem of the molecular angular-momentum motion in a certain periodic VR field (rotational problem). The quantization procedure takes into account themore » motion of the collective vibrational variables in the appropriate VR potentials (vibrational problem). The quantization rules, the mean-field configurations of auxiliary interactions, and the solutions to the Schrodinger equations for the vibrational and rotational problems are self-consistently connected with one another. The potentialities of the theory are demonstrated by the bending-rotation interaction modeled by the Bunker-Landsberg potential function in the H{sub 2} molecule. The calculations are compared with both the results of the exact computations and those of other approximate methods. 32 refs., 4 tabs.« less

  5. Sweat Chloride as A Biomarker of CFTR Activity: Proof of Concept and Ivacaftor Clinical Trial Data

    PubMed Central

    Accurso, Frank J.; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J.; Dong, Qunming; Ordonez, Claudia L.; Rowe, Steven M.; Clancy, John Paul; Konstan, Michael W.; Hoch, Heather E.; Heltshe, Sonya L.; Ramsey, Bonnie W.; Campbell, Preston W.; Ashlock, Melissa A.

    2014-01-01

    Background We examined data from a Phase 2 trial {NCT00457821 } of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with a G551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. Methods Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing, and analysis was employed for the first time.. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. Results Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. Conclusions Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators. PMID:24660233

  6. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data.

    PubMed

    Accurso, Frank J; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J; Dong, Qunming; Ordonez, Claudia L; Rowe, Steven M; Clancy, John Paul; Konstan, Michael W; Hoch, Heather E; Heltshe, Sonya L; Ramsey, Bonnie W; Campbell, Preston W; Ashlock, Melissa A

    2014-03-01

    We examined data from a Phase 2 trial {NCT00457821} of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with aG551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing,and analysis was employed for the first time. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators.

  7. Current status of urban wastewater treatment plants in China.

    PubMed

    Zhang, Q H; Yang, W N; Ngo, H H; Guo, W S; Jin, P K; Dzakpasu, Mawuli; Yang, S J; Wang, Q; Wang, X C; Ao, D

    2016-01-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of hydrostatic pressure on the donor impurity in a cylindrical quantum dot with Morse confining potential

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.

    2016-12-01

    The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.

  9. Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree

    2018-04-01

    The structural, electronic, elasto-mechanical and thermodynamic properties of cubic ABO3 perovskites BaCmO3 has been successfully calculated within density functional theory via full potential linearized augmented plane wave. The structural study divulges ferromagnetic stability for the compound. For the precise calculation of electronic and magnetic properties a generalized gradient approximation (GGA), and a Hubbard approximation (GGA + U), (modified Becke Johnson approximation) mBJ have been incorporated. The electronic study portrays the half-metallic nature for the compound in all the approximations. The calculated magnetic moment with different approximations was found to be large and with an integer value of 6 μ b, this integer value of magnetic moment also proves the half-metallic nature for BaCmO3. The calculated elastic constants have been used to predict mechanical properties like the Young modulus (Y), the Shear modulus (G) and the Poisson ratio (ν). The calculated B/G and Cauchy pressure (C12-C44) present the brittle nature for BaCmO3. The thermodynamic parameters like heat capacity, thermal expansion, and Debye temperature have been calculated and examined in the temperature range of 0 K to 700 K and pressure between 0 GPa and 40 GPa. The melting temperature was also calculated and was found to be 1847 ± 300 K.

  10. Protoplast Volume:Water Potential Relationship and Bound Water Fraction in Spinach Leaves 1

    PubMed Central

    Santakumari, Mane; Berkowitz, Gerald A.

    1989-01-01

    Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential. PMID:16666983

  11. Reexamination of the interaction of atoms with a LiF(001) surface

    NASA Astrophysics Data System (ADS)

    Miraglia, J. E.; Gravielle, M. S.

    2017-02-01

    Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.

  12. Reducing US cardiovascular disease burden and disparities through national and targeted dietary policies: A modelling study

    PubMed Central

    Rehm, Colin D.; Gaziano, Tom; Wilde, Parke; Micha, Renata; Lloyd-Williams, Ffion; Capewell, Simon

    2017-01-01

    Background Large socio-economic disparities exist in US dietary habits and cardiovascular disease (CVD) mortality. While economic incentives have demonstrated success in improving dietary choices, the quantitative impact of different dietary policies on CVD disparities is not well established. We aimed to quantify and compare the potential effects on total CVD mortality and disparities of specific dietary policies to increase fruit and vegetable (F&V) consumption and reduce sugar-sweetened beverage (SSB) consumption in the US. Methods and findings Using the US IMPACT Food Policy Model and probabilistic sensitivity analyses, we estimated and compared the reductions in CVD mortality and socio-economic disparities in the US population potentially achievable from 2015 to 2030 with specific dietary policy scenarios: (a) a national mass media campaign (MMC) aimed to increase consumption of F&Vs and reduce consumption of SSBs, (b) a national fiscal policy to tax SSBs to increase prices by 10%, (c) a national fiscal policy to subsidise F&Vs to reduce prices by 10%, and (d) a targeted policy to subsidise F&Vs to reduce prices by 30% among Supplemental Nutrition Assistance Program (SNAP) participants only. We also evaluated a combined policy approach, combining all of the above policies. Data sources included the Surveillance, Epidemiology, and End Results Program, National Vital Statistics System, National Health and Nutrition Examination Survey, and published meta-analyses. Among the individual policy scenarios, a national 10% F&V subsidy was projected to be most beneficial, potentially resulting in approximately 150,500 (95% uncertainty interval [UI] 141,400–158,500) CVD deaths prevented or postponed (DPPs) by 2030 in the US. This far exceeds the approximately 35,100 (95% UI 31,700–37,500) DPPs potentially attributable to a 30% F&V subsidy targeting SNAP participants, the approximately 25,800 (95% UI 24,300–28,500) DPPs for a 1-y MMC, or the approximately 31,000 (95% UI 26,800–35,300) DPPs for a 10% SSB tax. Neither the MMC nor the individual national economic policies would significantly reduce CVD socio-economic disparities. However, the SNAP-targeted intervention might potentially reduce CVD disparities between SNAP participants and SNAP-ineligible individuals, by approximately 8% (10 DPPs per 100,000 population). The combined policy approach might save more lives than any single policy studied (approximately 230,000 DPPs by 2030) while also significantly reducing disparities, by approximately 6% (7 DPPs per 100,000 population). Limitations include our effect estimates in the model; these estimates use interventional and prospective observational studies (not exclusively randomised controlled trials). They are thus imperfect and should be interpreted as the best available evidence. Another key limitation is that we considered only CVD outcomes; the policies we explored would undoubtedly have additional beneficial effects upon other diseases. Further, we did not model or compare the cost-effectiveness of each proposed policy. Conclusions Fiscal strategies targeting diet might substantially reduce CVD burdens. A national 10% F&V subsidy would save by far the most lives, while a 30% F&V subsidy targeting SNAP participants would most reduce socio-economic disparities. A combined policy would have the greatest overall impact on both mortality and socio-economic disparities. PMID:28586351

  13. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip

    NASA Astrophysics Data System (ADS)

    Ranjit, N. K.; Shit, G. C.

    2017-09-01

    This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).

  14. Analysis of corrections to the eikonal approximation

    NASA Astrophysics Data System (ADS)

    Hebborn, C.; Capel, P.

    2017-11-01

    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.

  15. Are electrostatic potentials between regions of different chemical composition measurable? The Gibbs-Guggenheim Principle reconsidered, extended and its consequences revisited.

    PubMed

    Pethica, Brian A

    2007-12-21

    As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.

  16. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  17. Wakes and differential charging of large bodies in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1985-01-01

    Highlights of earlier results using the Inside-Out WAKE code on wake structures of LEO spacecraft are reviewed. For conducting bodies of radius large compared with the Debye length, a high Mach number wake develops a negative potential well. Quasineutrality is violated in the very near wake region, and the wake is relatively empty for a distance downstream of about one half of a Mach number of radii. There is also a suggestion of a core of high density along the axis. A comparison of rigorous numerical solutions with in situ wake data from the AE-C satellite suggests that the so called neutral approximation for ions (straight line trajectories, independent of fields) may be a reasonable approximation except near the center of the near wake. This approximation is adopted for very large bodies. Work concerned with the wake point potential of very large nonconducting bodies such as the shuttle orbiter is described. Using a cylindrical model for bodies of this size or larger in LEO (body radius up to 10 to the 5th power Debye lengths), approximate solutions are presented based on the neutral approximation (but with rigorous trajectory calculations for surface current balance). There is a negative potential well if the body is conducting, and no well if the body is nonconducting. In the latter case the wake surface itself becomes highly negative. The wake point potential is governed by the ion drift energy.

  18. On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites.

    PubMed

    Corma, Avelino; Boronat, Mercedes; González, Silvia; Illas, Francesc

    2007-08-28

    The study of adsorption and dissociation of molecular hydrogen on single crystal Au(111) and Au(001) surfaces, monoatomic rows in an extended line defect and different Au nanoparticles by means of DF calculations allows us to firmly conclude that the necessary and sufficient condition for H2 dissociation is the existence of low coordinated Au atoms, regardless if they are in nanoparticles or at extended line defects.

  19. Cerenkov Maser and Cerenkov Laser Devices.

    DTIC Science & Technology

    1982-12-01

    The principle goal of the work was the development of high power Cerenkov sources in the lower mm wavelength range. It was demonstrated that a...it is • Subject catecory name: approximately one kw. At the present-time the-beam i-s High Power icr ave collected on a mirror set at a 450 angle to...differences in the boundary-scat- This process shows potential as a tunable source of fared phonon conductivity are predicted along the prim- highs power

  20. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.

    PubMed

    Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor

    2010-08-01

    Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.

  1. H2+, HeH and H2: Approximating potential curves, calculating rovibrational states

    NASA Astrophysics Data System (ADS)

    Olivares-Pilón, Horacio; Turbiner, Alexander V.

    2018-06-01

    Analytic consideration of the Bohr-Oppenheimer (BO) potential curves for diatomic molecules is proposed: accurate analytic interpolation for a potential curve consistent with its rovibrational spectra is found. It is shown that in the BO approximation for four lowest electronic states 1 sσg and 2 pσu, 2 pπu and 3 dπg of H2+, the ground state X2Σ+ of HeH and the two lowest states 1 Σg+ and 3 Σu+ of H2, the potential curves can be analytically interpolated in full range of internuclear distances R with not less than 4-5-6 s.d. Approximation based on matching the Laurant-type expansion at small R and a combination of the multipole expansion with one-instanton type contribution at large distances R is given by two-point Padé approximant. The position of minimum, when exists, is predicted within 1% or better. For the molecular ion H2+ in the Lagrange mesh method, the spectra of vibrational, rotational and rovibrational states (ν , L) associated with 1 sσg and 2 pσu, 2 pπu and 3 dπg potential curves are calculated. In general, it coincides with spectra found via numerical solution of the Schrödinger equation (when available) within six s.d. It is shown that 1 sσg curve contains 19 vibrational states (ν , 0) , while 2 pσu curve contains a single one (0 , 0) and 2 pπu state contains 12 vibrational states (ν , 0) . In general, 1 sσg electronic curve contains 420 rovibrational states, which increases up to 423 when we are beyond BO approximation. For the state 2 pσu the total number of rovibrational states (all with ν = 0) is equal to 3, within or beyond Bohr-Oppenheimer approximation. As for the state 2 pπu within the Bohr-Oppenheimer approximation the total number of the rovibrational bound states is equal to 284. The state 3 dπg is repulsive, no rovibrational state is found. It is confirmed in Lagrange mesh formalism the statement that the ground state potential curve of the heteronuclear molecule HeH does not support rovibrational states. Accurate analytical expression for the potential curves of the hydrogen molecule H2 for the states 1Σg+ and 3 Σu+ is presented. The ground state 1 Σg+ contains 15 vibrational states (ν , 0) , ν = 0- 14. In general, this state supports 301 rovibrational states. The potential curve of the state 3Σu+ has a shallow minimum: it does not support any rovibrational state, it is repulsive.

  2. "Adiabatic-hindered-rotor" treatment of the parahydrogen-water complex.

    PubMed

    Zeng, Tao; Li, Hui; Le Roy, Robert J; Roy, Pierre-Nicholas

    2011-09-07

    Inspired by a recent successful adiabatic-hindered-rotor treatment for parahydrogen pH(2) in CO(2)-H(2) complexes [H. Li, P.-N. Roy, and R. J. Le Roy, J. Chem. Phys. 133, 104305 (2010); H. Li, R. J. Le Roy, P.-N. Roy, and A. R. W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)], we apply the same approximation to the more challenging H(2)O-H(2) system. This approximation reduces the dimension of the H(2)O-H(2) potential from 5D to 3D and greatly enhances the computational efficiency. The global minimum of the original 5D potential is missing from the adiabatic 3D potential for reasons based on solution of the hindered-rotor Schrödinger equation of the pH(2). Energies and wave functions of the discrete rovibrational levels of H(2)O-pH(2) complexes obtained from the adiabatic 3D potential are in good agreement with the results from calculations with the full 5D potential. This comparison validates our approximation, although it is a relatively cruder treatment for pH(2)-H(2)O than it is for pH(2)-CO(2). This adiabatic approximation makes large-scale simulations of H(2)O-pH(2) systems possible via a pairwise additive interaction model in which pH(2) is treated as a point-like particle. The poor performance of the diabatically spherical treatment of pH(2) rotation excludes the possibility of approximating pH(2) as a simple sphere in its interaction with H(2)O. © 2011 American Institute of Physics

  3. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    PubMed

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0

  4. Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia.

    PubMed

    Kumar, G K; Kou, Y R; Overholt, J L; Prabhakar, N R

    2000-01-01

    Previously, we showed that carotid bodies express neutral endopeptidase (NEP)-like enzyme activity and that phosphoramidon, a potent inhibitor of NEP, potentiates the chemosensory response of the carotid body to hypoxia in vivo. NEP has been shown to hydrolyze methionine enkephalin (Met-Enk) and substance P (SP) in neuronal tissues. The purpose of the present study is to determine whether NEP hydrolyzes Met-Enk and SP in the carotid body and if so whether these peptides contribute to phosphoramidon-induced potentiation of the sensory response to hypoxia. Experiments were performed on carotid bodies excised from anesthetized adult cats (n = 72 carotid bodies). The hydrolysis of Met-Enk and SP was analyzed by HPLC. The results showed that both SP and Met-Enk were hydrolyzed by the carotid body, but the rate of Met-Enk hydrolysis was approximately fourfold higher than that of SP. Phosphoramidon (400 microM) markedly inhibited SP hydrolysis ( approximately 90%) but had only a marginal effect on Met-Enk hydrolysis ( approximately 15% inhibition). Hypoxia (PO(2), 68 +/- 6 Torr) as well as exogenous administration of SP (10 and 20 nmol) increased the sensory discharge of the carotid body in vitro. Sensory responses to hypoxia and SP (10 nmol) were potentiated by approximately 80 and approximately 275%, respectively (P < 0.01), in the presence of phosphoramidon. SP-receptor antagonists Spantide (peptidyl) and CP-96345 (nonpeptidyl) either abolished or markedly attenuated the phosphoramidon-induced potentiation of the sensory response of the carotid body to hypoxia as well as to SP. These results demonstrate that SP is a preferred substrate for NEP in the carotid body and that SP is involved in the potentiation of the hypoxic response of the carotid body by phosphoramidon.

  5. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1982-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.

  6. Pseudospin symmetry for modified Rosen-Morse potential including a Pekeris-type approximation to the pseudo-centrifugal term

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng; Dong, Shi-Hai

    2010-11-01

    By applying a Pekeris-type approximation to the pseudo-centrifugal term, we study the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse (MRM) potentials. A complicated quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The pseudospin degeneracy is checked numerically. Pseudospin symmetry is discussed theoretically and numerically in the limit case α rightarrow 0 . It is found that the relativistic MRM potential cannot trap a Dirac nucleon in this limit.

  7. Tunneling-assisted transport of carriers through heterojunctions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Myers, Samuel M.; Modine, Normand A.

    The formulation of carrier transport through heterojunctions by tunneling and thermionic emission is derived from first principles. The treatment of tunneling is discussed at three levels of approximation: numerical solution of the one-band envelope equation for an arbitrarily specified potential profile; the WKB approximation for an arbitrary potential; and, an analytic formulation assuming constant internal field. The effects of spatially varying carrier chemical potentials over tunneling distances are included. Illustrative computational results are presented. The described approach is used in exploratory physics models of irradiated heterojunction bipolar transistors within Sandia's QASPR program.

  8. Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems

    NASA Technical Reports Server (NTRS)

    Skollermo, G.

    1979-01-01

    Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.

  9. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  10. Λ N → NN EFT potentials and hypertriton non-mesonic weak decay

    NASA Astrophysics Data System (ADS)

    Pérez-Obiol, Axel; Entem, David R.; Nogga, Andreas

    2018-05-01

    The potential for the Λ N → NN weak transition, the main responsible for the non-mesonic weak decay of hypernuclei, has been developed within the framework of effective field theory (EFT) up to next-to-leading order (NLO). The leading order (LO) and NLO contributions have been calculated in both momentum and coordinate space, and have been organised into the different operators which mediate the N → NN transition. We compare the ranges of the one-meson and two-pion exchanges for each operator. The non-mesonic weak decay of the hypertriton has been computed within the plane-wave approximation using the LO weak potential and modern strong EFT NN potentials. Formally, two methods to calculate the final state interactions among the decay products are presented. We briefly comment on the calculation of the {}{{Λ }}{}3H{\\to }3 He+{π }- mesonic weak decay.

  11. Electron heating and the potential jump across fast mode shocks. [in interplanetary space

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John

    1988-01-01

    Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.

  12. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite.

    PubMed

    Fahami, Abbas; Beall, Gary W; Betancourt, Tania

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Two-Term Asymptotic Approximation of a Cardiac Restitution Curve*

    PubMed Central

    Cain, John W.; Schaeffer, David G.

    2007-01-01

    If spatial extent is neglected, ionic models of cardiac cells consist of systems of ordinary differential equations (ODEs) which have the property of excitability, i.e., a brief stimulus produces a prolonged evolution (called an action potential in the cardiac context) before the eventual return to equilibrium. Under repeated stimulation, or pacing, cardiac tissue exhibits electrical restitution: the steady-state action potential duration (APD) at a given pacing period B shortens as B is decreased. Independent of ionic models, restitution is often modeled phenomenologically by a one-dimensional mapping of the form APDnext = f(B – APDprevious). Under some circumstances, a restitution function f can be derived as an asymptotic approximation to the behavior of an ionic model. In this paper, extending previous work, we derive the next term in such an asymptotic approximation for a particular ionic model consisting of two ODEs. The two-term approximation exhibits excellent quantitative agreement with the actual restitution curve, whereas the leading-order approximation significantly underestimates actual APD values. PMID:18080006

  14. Formally exact integral equation theory of the exchange-only potential in density functional theory: Refined closure approximation

    NASA Astrophysics Data System (ADS)

    March, N. H.; Nagy, Á.

    A fonnally exact integral equation theory for the exchange-only potential Vx(r) in density functional theory was recently set up by Howard and March [I.A. Howard, N.H. March, J. Chem. Phys. 119 (2003) 5789]. It involved a `closure' function P(r) satisfying the exact sum rule ∫ P(r) dr = 0. The simplest choice P(r) = 0 recovers then the approximation proposed by Della Sala and Görling [F. Della Sala, A. Görling, J. Chem. Phys. 115 (2001) 5718] and by Gritsenko and Baerends [O.V. Gritsenko, E.J. Baerends, Phys. Rev. A 64 (2001) 042506]. Here, refined choices of P(r) are proposed, the most direct being based on the KLI (Krieger-Li-Iafrate) approximation. A further choice given some attention is where P(r) involves frontier orbital properties. In particular, the introduction of the LUMO (lowest unoccupied molecular) orbital, along with the energy separation between HOMO (highest occupied molecular orbital) and LUMO levels, should prove a significant step beyond current approximations to the optimized potential method, all of which involve only single-particle occupied orbitals.

  15. Traveling-cluster approximation for uncorrelated amorphous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, A.K.; Mills, R.; Kaplan, T.

    1984-11-15

    We have developed a formalism for including cluster effects in the one-electron Green's function for a positionally disordered (liquid or amorphous) system without any correlation among the scattering sites. This method is an extension of the technique known as the traveling-cluster approximation (TCA) originally obtained and applied to a substitutional alloy by Mills and Ratanavararaksa. We have also proved the appropriate fixed-point theorem, which guarantees, for a bounded local potential, that the self-consistent equations always converge upon iteration to a unique, Herglotz solution. To our knowledge, this is the only analytic theory for considering cluster effects. Furthermore, we have performedmore » some computer calculations in the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results have been compared with ''exact calculations'' (which, in principle, take into account all cluster effects) and with the coherent-potential approximation (CPA), which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA and yet, apparently, the pair approximation distorts some of the features of the exact results.« less

  16. Swimming of a linear chain with a cargo in an incompressible viscous fluid with inertia

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2017-01-01

    An approximation to the added mass matrix of an assembly of spheres is constructed on the basis of potential flow theory for situations where one sphere is much larger than the others. In the approximation, the flow potential near a small sphere is assumed to be dipolar, but near the large sphere it involves all higher order multipoles. The analysis is based on an exact result for the potential of a magnetic dipole in the presence of a superconducting sphere. Subsequently, the approximate added mass hydrodynamic interactions are used in a calculation of the swimming velocity and rate of dissipation of linear chain structures consisting of a number of small spheres and a single large one, with account also of frictional hydrodynamic interactions. The results derived for periodic swimming on the basis of a kinematic approach are compared with the bilinear theory, valid for small amplitude of stroke, and with the numerical solution of the approximate equations of motion. The calculations interpolate over the whole range of scale number between the friction-dominated Stokes limit and the inertia-dominated regime.

  17. An accurate method for evaluating the kernel of the integral equation relating lift to downwash in unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1982-01-01

    The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.

  18. Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body.

    PubMed

    Kumar, G K; Yu, R K; Overholt, J L; Prabhakar, N R

    2000-01-01

    Carotid body expresses neutral endopeptidase (NEP)-like enzyme activity and phosphoramidon, an inhibitor of NEP augments sensory response of the carotid body to hypoxia (Kumar et al., 1990). NEP hydrolyzes substance P (SP) and methionine enkephalin (Met-ENK) in the nervous system. In the present study, we determined whether NEP hydrolyzes Met-ENK and SP in the carotid body and whether these peptides contribute to the phosphoramidon-induced potentiation of the sensory response to hypoxia. Experiments were performed on carotid bodies excised from anaesthetized adult cats. HPLC analysis showed that both SP and Met-ENK were hydrolyzed by the carotid body. Phosphoramidon (400 microM) markedly inhibited SP (approximately 90%) but had only marginal effect on Met-ENK hydrolysis (approximately 15%). Sensory responses of the carotid body in vitro to hypoxia (pO2, 68 +/- 6 mmHg) and SP (10 nmoles) were potentiated by phosphoramidon by approximately 80% and approximately 275% respectively (p < 0.01). SP-receptor antagonist abolished phosphoramidon-induced potentiation of the sensory response to hypoxia as well as to SP. These results demonstrate that SP is a preferred substrate for NEP in the carotid body and SP plays a major role in the potentiation of the hypoxic response of the carotid body by phosphoramidon.

  19. Massive hydraulic fracture mapping and characterization program. Surface potential data for Wattenberg 1975--1976 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.P.; Bartel, L.C.; Keck, L.J.

    1977-08-01

    Three massive hydraulic fracture experiments for natural gas stimulation were conducted by Halliburton for AMOCO in the Wattenberg field northeast of Denver, Colorado. The experiments were conducted on three wells--Martin Hart ''E'' No. 1, Salazar G.U. No. 1, and UPRR-22P. All three wells were open hole and the fracture zone was located at a depth of approximately 8000 ft. All were treated with approximately 300,000 gal of fluid and 600,000 lb of proppant. The surface electrical potential technique was used to attempt characterization and mapping of the fracture. The noise perturbating the system consists of telluric currents, currents from industrialmore » sources, and natural local currents. It is difficult to determine the exact signal-to-noise ratio or the exact origin of the noise without exhaustive field measurements and data analysis. However, improvements have been made in the surface potential gradient technique since the early developmental stage of the diagnostic program. To aid in the interpretation of the field data, mathematical modeling efforts have been undertaken. The model utilizes the Green's function integral equation approach where the so-called half-space Green's function is used. The model calculates the potential difference that exists at the surface as a function of fracturing conditions. Data analysis indicates that the fracture orientation for all three wells lies in a SE to NW direction and that the fractures are asymmetric.« less

  20. Subjective and physiological effects of oromucosal sprays containing cannabinoids (nabiximols): potentials and limitations for psychosis research.

    PubMed

    Schoedel, Kerri A; Harrison, Sarah Jane

    2012-01-01

    Cannabis use is associated with a spectrum of effects including euphoria, relaxation, anxiety, perceptual alterations, paranoia, and impairments in attention and memory. Cannabis is made up of approximately 80 different cannabinoid compounds, which have synergistic or antagonistic effects on the principle active ingredient in cannabis, delta-9-tetrahydrocannabinol (THC). The net overall effect of cannabis is thought to be related to the ratio of its composite constituents; in particular, the ratio of THC to cannabidiol (CBD). Since cannabinoids induce subjective and cognitive changes that share qualitative similarities with schizophrenia, cannabinoids have been used to model psychosis. Some limitations of cannabinoid models of psychosis include the relatively high variability in experiences between different individuals, the potential for inducing unwanted effects, such as toxic psychosis in study subjects, and the lack of data showing that effective anti-psychotic treatments can reverse the behavioural and cognitive/motor effects of cannabinoids. Nabiximols (Sativex®) is an oromucosal spray containing THC and CBD in an approximate 1:1 ratio. While not extensively studied, most studies confirm that nabiximols, despite the different route of administration and presence of CBD, have similar or slightly reduced subjective/cognitive effects compared to similar doses of oral THC. While the presence of CBD may have utility in some models, it is likely that the concentrations are not high enough to meaningfully affect those aspects important for psychosis research. This review suggests that while it may present an alternative to the use of oral THC, oromucosal nabiximols may not present substantial advantages for use in psychosis research.

  1. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    NASA Astrophysics Data System (ADS)

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  2. The coexistence temperature of hydrogen clathrates: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Luis, D. P.; Romero-Ramirez, I. E.; González-Calderón, A.; López-Lemus, J.

    2018-03-01

    Extensive molecular dynamics simulations in the equilibrium isobaric-isothermal (NPT) ensemble were developed to determine the coexistence temperatures of the water hydrogen mixture using the direct coexistence method. The water molecules were modeled using the four-site TIP4P/Ice analytical potential, and the hydrogen molecules were described using a three-site potential. The simulations were performed at different pressures (p = 900, 1500, 3000, and 4000 bars). At each pressure, a series of simulations were developed at different temperatures (from 230 to 270 K). Our results followed a line parallel to the experimental coexistence temperatures and underestimated these temperatures by approximately 25 K in the investigated range. The final configurations could or could not contain a fluid phase depending on the pressure, in accordance with the phase diagram. In addition, we explored the dynamics of the H2 molecules through clathrate hydrate cages and observed different behaviors of the H2 molecules in the small cages and the large cages of the sII structure.

  3. Tetraquark resonances computed with static lattice QCD potentials and scattering theory

    NASA Astrophysics Data System (ADS)

    Bicudo, Pedro; Cardoso, Marco; Peters, Antje; Pflaumer, Martin; Wagner, Marc

    2018-03-01

    We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP) = 0(1-), mass m = 10576-4+4 MeV and decay width Γ = 112-103+90 MeV.

  4. Thermodynamic Properties of Low-Density {}^{132}Xe Gas in the Temperature Range 165-275 K

    NASA Astrophysics Data System (ADS)

    Akour, Abdulrahman

    2018-01-01

    The method of static fluctuation approximation was used to calculate selected thermodynamic properties (internal energy, entropy, energy capacity, and pressure) for xenon in a particularly low-temperature range (165-270 K) under different conditions. This integrated microscopic study started from an initial basic assumption as the main input. The basic assumption in this method was to replace the local field operator with its mean value, then numerically solve a closed set of nonlinear equations using an iterative method, considering the Hartree-Fock B2-type dispersion potential as the most appropriate potential for xenon. The results are in very good agreement with those of an ideal gas.

  5. 2-D modeling and analysis of short-channel behavior of a front high- K gate stack triple-material gate SB SON MOSFET

    NASA Astrophysics Data System (ADS)

    Banerjee, Pritha; Kumari, Tripty; Sarkar, Subir Kumar

    2018-02-01

    This paper presents the 2-D analytical modeling of a front high- K gate stack triple-material gate Schottky Barrier Silicon-On-Nothing MOSFET. Using the two-dimensional Poisson's equation and considering the popular parabolic potential approximation, expression for surface potential as well as the electric field has been considered. In addition, the response of the proposed device towards aggressive downscaling, that is, its extent of immunity towards the different short-channel effects, has also been considered in this work. The analytical results obtained have been validated using the simulated results obtained using ATLAS, a two-dimensional device simulator from SILVACO.

  6. Nonlocality and Short-Range Wetting Phenomena

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  7. Nonlocality and short-range wetting phenomena.

    PubMed

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  8. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  9. Torsion of a Cosserat elastic bar with square cross section: theory and experiment

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.; Lakes, R. S.

    2018-04-01

    An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.

  10. Integrating flood modelling in a hydrological catchment model: flow approximations and spatial resolution.

    NASA Astrophysics Data System (ADS)

    van den Bout, Bastian; Jetten, Victor

    2017-04-01

    Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.

  11. Induced charging of shuttle orbiter by high electron-beam currents

    NASA Technical Reports Server (NTRS)

    Liemohn, H. B.

    1977-01-01

    Emission of high-current electron beams that was proposed for some Spacelab payloads required substantial return currents to the orbiter skin in order to neutralize the beam charge. Since the outer skin of the vehicle was covered with approximately 1200 sq m of thermal insulation which has the dielectric quality of air and an electrical conductivity that was estimated by NASA at 10 to the -9 power to 10 to the -10 power mhos/m, considerable transient charging and local potential differences were anticipated across the insulation. The theory for induced charging of spacecraft due to operation of electron guns was only developed for spherical metal vehicles and constant emission currents, which were not directly applicable to the orbiter situation. Field-aligned collection of electron return current from the ambient ionosphere at orbiter altitudes provides up to approximately 150 mA on the conducting surfaces and approximately 2.4 A on the dielectric thermal insulation. Local ionization of the neutral atmosphere by energetic electron bombardment or electrical breakdown may provide somewhat more return current.

  12. Particle dynamics around time conformal regular black holes via Noether symmetries

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  13. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589

  14. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    NASA Astrophysics Data System (ADS)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  15. 64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents.

    PubMed

    Wang, Jianjun; Yang, Chang-Tong; Kim, Young-Seung; Sreerama, Subramanya G; Cao, Qizhen; Li, Zi-Bo; He, Zhengjie; Chen, Xiaoyuan; Liu, Shuang

    2007-10-18

    This report presents synthesis and evaluation of the 64Cu-labeled triphenylphosphonium (TPP) cations as new radiotracers for imaging tumors by positron emission tomography. Biodistribution properties of 64Cu-L1, 64Cu-L2, 64Cu-L3, and 99mTc-Sestamibi were evaluated in athymic nude mice bearing U87MG human glioma xenografts. The most striking difference is that 64Cu-L1, 64Cu-L2, and 64Cu-L3 have much lower heart uptake (<0.6% ID/g) than 99mTc-Sestamibi ( approximately 18% ID/g) at >30 min p.i. Their tumor/heart ratios increase steadily from approximately 1 at 5 min p.i. to approximately 5 at 120 min p.i. The tumor/heart ratio of 64Cu-L3 is approximately 40 times better than that of 99mTc-Sestamibi at 120 min postinjection. Results from in vitro assays show that 64Cu-L1 is able to localize in tumor mitochondria. The tumor is clearly visualized in the tumor-bearing mice administered with 64Cu-L1 as 30 min postinjection. The 64Cu-labeled TPP/TPA cations are very selective radiotracers that are able to provide the information of mitochondrial bioenergetic function in tumors by monitoring mitochondrial potential in a noninvasive fashion.

  16. Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, N.; Ohashi, Y.; Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223

    2007-03-15

    The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid collisional hydrodynamics. We present extensive calculations of the superfluid density {rho}{sub s} in the BCS-BEC crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctuation effects into the BCS single-particle excitations described by the superfluid order parameter {delta} and Fermi chemical potential {mu}, using the Nozieres-Schmitt-Rink approximation. This treatment is shown to be necessary for consistent treatment of {rho}{sub s} over themore » entire BCS-BEC crossover. We also calculate the condensate fraction N{sub c} as a function of the temperature, a quantity which is quite different from the superfluid density {rho}{sub s}. We show that the mean-field expression for the condensate fraction N{sub c} is a good approximation even in the strong-coupling BEC regime. Our numerical results show how {rho}{sub s} and N{sub c} depend on temperature, from the weak-coupling BCS region to the BEC region of tightly bound Cooper pair molecules. In a companion paper [Phys. Rev. A 74, 063626 (2006)], we derive an equivalent expression for {rho}{sub s} from the thermodynamic potential, which exhibits the role of the pairing fluctuations in a more explicit manner.« less

  17. Cd and proton adsorption onto bacterial consortia grown from industrial wastes and contaminated geologic settings.

    PubMed

    Borrok, David M; Fein, Jeremy B; Kulpa, Charles F

    2004-11-01

    To model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior. Here we measure proton and Cd adsorption onto a range of bacterial consortia grown from heavily contaminated industrial wastes, groundwater, and soils. We model the results using a discrete site surface complexation approach to determine binding constants and site densities for each consortium. The results demonstrate that bacterial consortia from different contaminated environments exhibit a range of total site densities (approximately a 3-fold difference) and Cd-binding constants (approximately a 10-fold difference). These ranges for Cd binding constants may be small enough to suggest that bacteria-metal adsorption in contaminated environments can be described using relatively few "averaged" bacteria-metal binding constants (in conjunction with the necessary binding constants for competing surfaces and ligands). However, if additional precision is necessary, modeling parameters must be developed separately for each contaminated environment of interest.

  18. Topics in elementary particle physics

    NASA Astrophysics Data System (ADS)

    Jin, Xiang

    The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2), bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder's equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed. Although the closed-form solutions for Schroeder's equations can not always be approached analytically, by fitting the approximation solutions, one can still obtain closed-form solutions sometimes. Based on Schroeder's theory, approximate solutions for trajectories, velocities and potentials can also be constructed. The approximate solution is significantly useful to calculate the beta function in renormalization group trajectory. By "wrapping" the series solutions with the conjugations from different inverse functions, we generate different branches of the trajectory, and construct a counterexample for a folk theorem about limited cycles.

  19. On finding the analytic dependencies of the external field potential on the control function when optimizing the beam dynamics

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.

    2017-12-01

    When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.

  20. Two-population dynamics in a growing network model

    NASA Astrophysics Data System (ADS)

    Ivanova, Kristinka; Iordanov, Ivan

    2012-02-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  1. A Radial Axial-symmetric Intermediary Model for the Roto-orbital Motion

    NASA Astrophysics Data System (ADS)

    Crespo, F.; Molero, F. J.; Ferrer, S.; Scheeres, D. J.

    2018-03-01

    We study the roto-orbital dynamics of a uniform sphere and a body with axial symmetry by means of a radial intermediary, which defines an integrable system. Numerical comparisons of the MacCullagh's truncation of the gravity gradient potential and intermediary models are performed, concluding that the intermediary provides a valuable approximation with small differences when compared with the MacCullagh's one. Our analysis includes the analytical integration and a study of the special solutions and relative equilibria.

  2. Reusable Rocket Engine Maintenance Study

    NASA Technical Reports Server (NTRS)

    Macgregor, C. A.

    1982-01-01

    Approximately 85,000 liquid rocket engine failure reports, obtained from 30 years of developing and delivering major pump feed engines, were reviewed and screened and reduced to 1771. These were categorized into 16 different failure modes. Failure propagation diagrams were established. The state of the art of engine condition monitoring for in-flight sensors and between flight inspection technology was determined. For the 16 failure modes, the potential measurands and diagnostic requirements were identified, assessed and ranked. Eight areas are identified requiring advanced technology development.

  3. Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia.

    PubMed

    Ameni, Gobena; Vordermeier, Martin; Firdessa, Rebuma; Aseffa, Abraham; Hewinson, Glyn; Gordon, Stephen V; Berg, Stefan

    2011-06-01

    A preliminary study to characterise mycobacteria infecting tuberculous cattle from two different management systems in central Ethiopia was carried out. Approximately 27% of isolates from grazing cattle were Mycobacterium tuberculosis, while cattle in a more intensive-production system were exclusively infected with M. bovis. The practice of local farmers discharging chewed tobacco directly into the mouths of pastured cattle was identified as a potential route of human-to-cattle transmission of M. tuberculosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, A.; Burke, K.

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  5. Generation of concatenated Greenberger-Horne-Zeilinger-type entangled coherent state based on linear optics

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-03-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.

  6. Controlling coherence using the internal structure of hard pi pulses.

    PubMed

    Dong, Yanqun; Ramos, R G; Li, Dale; Barrett, S E

    2008-06-20

    The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si NMR linewidth of silicon has been reduced by a factor of about 70,00 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.

  7. Separation of plutonium from lanthanum by electrolysis in LiCl KCl onto molten bismuth electrode

    NASA Astrophysics Data System (ADS)

    Serp, J.; Lefebvre, P.; Malmbeck, R.; Rebizant, J.; Vallet, P.; Glatz, J.-P.

    2005-04-01

    This work presents a study on the electroseparation of plutonium from lanthanum using molten bismuth electrodes in LiCl-KCl eutectic at 733 K. The reduction potentials of Pu3+ and La3+ ions were measured on a Bi thin film electrode using cyclic voltammetry (CV). A difference between the peak potentials for the formation of PuBi2 and LaBi2 of approximately 100 mV was found. Separation tests were then carried out using different current densities and salt phase compositions between a plutonium rod anode and an unstirred molten Bi cathode in order to evaluate the efficiency of an electrolytic separation process. At a current density of 12 mA/cm2/wt% (Pu3+), only Pu3+ ions are reduced into the molten Bi electrode, leaving La3+ ions in the salt melt. Similar results were found at two different Pu/La concentration ratios ([Pu]/[La] = 4 and 10). At a current density of 26 mA/cm2/wt% (Pu3+), co-reduction of Pu and La was observed as expected by the large negative potential of the Bi cathode during the separation test.

  8. Numerical methods for the inverse problem of density functional theory

    DOE PAGES

    Jensen, Daniel S.; Wasserman, Adam

    2017-07-17

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  9. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.

    PubMed

    Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal

    2014-05-15

    We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.

  10. Numerical methods for the inverse problem of density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Daniel S.; Wasserman, Adam

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  11. Heat flow and hydrocarbon generation in the Transylvanian basin, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranganu, C.; Deming, D.

    1996-10-01

    The Transylvanian basin in central Romania is a Neogene depression superimposed on the Cretaceous nappe system of the Carpathian Mountains. The basin contains the main gas reserves of Romania, and is one of the most important gas-producing areas of continental Europe; since 1902, gas has been produced from more than 60 fields. Surface heat flow in the Transylvanian basin as estimated in other studies ranges from 26 to 58 mW/m{sup 2}, with a mean value of 38 mW/m{sup 2}, relatively low compared to surrounding areas. The effect of sedimentation on heat flow and temperature in the Transylvanian basin was estimatedmore » with a numerical model that solved the heat equation in one dimension. Because both sediment thickness and heat flow vary widely throughout the Transylvanian basin, a wide range of model variables were used to bracket the range of possibilities. Three different burial histories were considered (thin, average, and thick), along with three different values of background heat flow (low, average, and high). Altogether, nine different model permutations were studied. Modeling results show that average heat flow in the Transylvanian basin was depressed approximately 16% during rapid Miocene sedimentation, whereas present-day heat flow remains depressed, on average, about 17% below equilibrium values. We estimated source rock maturation and the timing of hydrocarbon generation by applying Lopatin`s method. Potential source rocks in the Transylvanian basin are Oligocene-Miocene, Cretaceous, and Jurassic black shales. Results show that potential source rocks entered the oil window no earlier than approximately 13 Ma, at depths of between 4200 and 8800 m. Most simulations encompassing a realistic range of sediment thicknesses and background heat flows show that potential source rocks presently are in the oil window; however, no oil has ever been discovered or produced in the Transylvanian basin.« less

  12. Systematic Improvement of Potential-Derived Atomic Multipoles and Redundancy of the Electrostatic Parameter Space.

    PubMed

    Jakobsen, Sofie; Jensen, Frank

    2014-12-09

    We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.

  13. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing.

    PubMed

    Le Foll, Christelle; Irani, Boman G; Magnan, Christophe; Dunn-Meynell, Ambrose A; Levin, Barry E

    2009-09-01

    We assessed the mechanisms by which specialized hypothalamic ventromedial nucleus (VMN) neurons utilize both glucose and long-chain fatty acids as signaling molecules to alter their activity as a potential means of regulating energy homeostasis. Fura-2 calcium (Ca(2+)) and membrane potential dye imaging, together with pharmacological agents, were used to assess the mechanisms by which oleic acid (OA) alters the activity of dissociated VMN neurons from 3- to 4-wk-old rats. OA excited up to 43% and inhibited up to 29% of all VMN neurons independently of glucose concentrations. In those neurons excited by both 2.5 mM glucose and OA, OA had a concentration-dependent effective excitatory concentration (EC(50)) of 13.1 nM. Neurons inhibited by both 2.5 mM glucose and OA had an effective inhibitory concentration (IC(50)) of 93 nM. At 0.5 mM glucose, OA had markedly different effects on these same neurons. Inhibition of carnitine palmitoyltransferase, reactive oxygen species formation, long-chain acetyl-CoA synthetase and ATP-sensitive K(+) channel activity or activation of uncoupling protein 2 (UCP2) accounted for only approximately 20% of OA's excitatory effects and approximately 40% of its inhibitory effects. Inhibition of CD36, a fatty acid transporter that can alter cell function independently of intracellular fatty acid metabolism, reduced the effects of OA by up to 45%. Thus OA affects VMN neuronal activity through multiple pathways. In glucosensing neurons, its effects are glucose dependent. This glucose-OA interaction provides a potential mechanism whereby such "metabolic sensing" neurons can respond to differences in the metabolic states associated with fasting and feeding.

  14. Comparison of exact solution with Eikonal approximation for elastic heavy ion scattering

    NASA Technical Reports Server (NTRS)

    Dubey, Rajendra R.; Khandelwal, Govind S.; Cucinotta, Francis A.; Maung, Khin Maung

    1995-01-01

    A first-order optical potential is used to calculate the total and absorption cross sections for nucleus-nucleus scattering. The differential cross section is calculated by using a partial-wave expansion of the Lippmann-Schwinger equation in momentum space. The results are compared with solutions in the Eikonal approximation for the equivalent potential and with experimental data in the energy range from 25A to 1000A MeV.

  15. Pseudospin symmetry of the Dirac equation for a Möbius square plus Mie type potential with a Coulomb-like tensor interaction via SUSYQM

    NASA Astrophysics Data System (ADS)

    Akpan, N. Ikot; Zarrinkamar, S.; Eno, J. Ibanga; Maghsoodi, E.; Hassanabadi, H.

    2014-01-01

    We investigate the approximate solution of the Dirac equation for a combination of Möbius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.

  16. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.

    PubMed

    Johnson, W R; Nilsen, J

    2016-03-01

    The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W. R.; Nilsen, J.

    Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less

  18. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter

    DOE PAGES

    Johnson, W. R.; Nilsen, J.

    2016-03-14

    Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less

  19. Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor.

    PubMed

    Jarlborg, Thomas; Bianconi, Antonio

    2016-04-20

    While 203 K high temperature superconductivity in H3S has been interpreted by BCS theory in the dirty limit here we focus on the effects of hydrogen zero-point-motion and the multiband electronic structure relevant for multigap superconductivity near Lifshitz transitions. We describe how the topology of the Fermi surfaces evolves with pressure giving different Lifshitz-transitions. A neck-disrupting Lifshitz-transition (type 2) occurs where the van Hove singularity, vHs, crosses the chemical potential at 210 GPa and new small 2D Fermi surface portions appear with slow Fermi velocity where the Migdal-approximation becomes questionable. We show that the neglected hydrogen zero-point motion ZPM, plays a key role at Lifshitz transitions. It induces an energy shift of about 600 meV of the vHs. The other Lifshitz-transition (of type 1) for the appearing of a new Fermi surface occurs at 130 GPa where new Fermi surfaces appear at the Γ point of the Brillouin zone here the Migdal-approximation breaks down and the zero-point-motion induces large fluctuations. The maximum Tc = 203 K occurs at 160 GPa where EF/ω0 = 1 in the small Fermi surface pocket at Γ. A Feshbach-like resonance between a possible BEC-BCS condensate at Γ and the BCS condensate in different k-space spots is proposed.

  20. Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation.

    PubMed

    Sanches, S; Fraga, M C; Silva, N A; Nunes, P; Crespo, J G; Pereira, V J

    2017-02-01

    The treatment of large volumes of olive mill wastewater is presently a challenge. This study reports the technical and economical feasibility of a sequential treatment of olive mill wastewater comprising a dissolved air flotation pre-treatment and nanofiltration. Different pilot nanofiltration assays were conducted in a concentration mode up to different volume reduction factors (29, 45, 58, and 81). Data attained demonstrated that nanofiltration can be operated at considerably high volume reduction factors and still be effective towards the removal of several components. A flux decline of approximately 50% was observed at the highest volume reduction factor, mainly due to increase of the osmotic pressure. Considerably high rejections were obtained across all experiments for total suspended solids (83 to >99%), total organic carbon (64 to 99%), chemical oxygen demand (53 to 77%), and oil and grease (67 to >82%). Treated water was in compliance with European legal limits for discharge regarding total suspended solids and oil and grease. The potential recovery of phenolic compounds was evaluated and found not relevant. It was demonstrated that nanofiltration is economically feasible, involving operation costs of approximately 2.56-3.08 €/m 3 , depending on the working plan schedule and volume reduction factor, and requiring a footprint of approximately 52 m 2 to treat 1000 m 3 of olive mill wastewater.

  1. Violation of the continuity equation in the Krieger-Li-Iafrate approximation for current-density functional theory

    NASA Astrophysics Data System (ADS)

    Siegmund, Marc; Pankratov, Oleg

    2011-01-01

    We show that the exchange-correlation scalar and vector potentials obtained from the optimized effective potential (OEP) equations and from the Krieger-Li-Iafrate (KLI) approximation for the current-density functional theory (CDFT) change under a gauge transformation such that the energy functional remains invariant. This alone does not assure, however, the theory’s compliance with the continuity equation. Using the model of a quantum ring with a broken angular symmetry which is penetrated by a magnetic flux we demonstrate that the physical current density calculated with the exact-exchange CDFT in the KLI approximation violates the continuity condition. In contrast, the current found from a solution of the full OEP equations satisfies this condition. We argue that the continuity violation stems from the fact that the KLI potentials are not (in general) the exact functional derivatives of a gauge-invariant exchange-correlation functional.

  2. Comparison of techniques for approximating ocean bottom topography in a wave-refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.

  3. Full-potential modeling of blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Caradonna, F. X.

    1986-01-01

    A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.

  4. Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen

    2018-05-01

    We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.

  5. Chiral symmetry restoration at finite temperature and chemical potential in the improved ladder approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Y.; Yoshida, Y.

    1997-02-01

    The chiral symmetry of QCD is studied at finite temperature and chemical potential using the Schwinger-Dyson equation in the improved ladder approximation. We calculate three order parameters: the vacuum expectation value of the quark bilinear operator, the pion decay constant, and the quark mass gap. We have a second order phase transition at the temperature T{sub c}=169 MeV along the zero chemical potential line, and a first order phase transition at the chemical potential {mu}{sub c}=598 MeV along the zero temperature line. We also calculate the critical exponents of the three order parameters. {copyright} {ital 1997} {ital The American Physicalmore » Society}« less

  6. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  7. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  8. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus.

    PubMed

    Turgut, Cafer; Katie Pepe, M; Cutright, Teresa J

    2004-09-01

    The possibility to clean heavy metal contaminated soils with hyperaccumulator plants has shown great potential. One of the most recently studied species used in phytoremediation applications are sunflowers. In this study, two cultivars of Helianthus annuus were used in conjunction with ethylene diamine tetracetic acid (EDTA) and citric acid (CA) as chelators. Two different concentrations of the chelators were studied for enhancing the uptake and translocation of Cd, Cr, and Ni from a silty-clay loam soil. When 1.0 g/kg CA was used, the highest total metal uptake was only 0.65 mg. Increasing the CA concentration posed a severe phytotoxicity to both cultivars as evidenced by stunted growth and diminished uptake rates. Decreasing the CA concentration to 0.1 and 0.3 g/kg yielded results that were not statistically different from the control. EDTA at a concentration of 0.1 g/kg yielded the best results for both cultivars achieving a total metal uptake of approximately 0.73 mg compared to approximately 0.40 mg when EDTA was present at 0.3 g/kg.

  9. Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine

    DOE PAGES

    Sadybekov, Arman; Krylov, Anna I.

    2017-07-07

    A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less

  10. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  11. Unified Bohm criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, L.; Tskhakaya, D. D.; Jelić, N.

    2015-09-15

    Recent decades have seen research into the conditions necessary for the formation of the monotonic potential shape in the sheath, appearing at the plasma boundaries like walls, in fluid, and kinetic approximations separately. Although either of these approaches yields a formulation commonly known as the much-acclaimed Bohm criterion (BC), the respective results involve essentially different physical quantities that describe the ion gas behavior. In the fluid approach, such a quantity is clearly identified as the ion directional velocity. In the kinetic approach, the ion behavior is formulated via a quantity (the squared inverse velocity averaged by the ion distribution function)more » without any clear physical significance, which is, moreover, impractical. In the present paper, we try to explain this difference by deriving a condition called here the Unified Bohm Criterion, which combines an advanced fluid model with an upgraded explicit kinetic formula in a new form of the BC. By introducing a generalized polytropic coefficient function, the unified BC can be interpreted in a form that holds, irrespective of whether the ions are described kinetically or in the fluid approximation.« less

  12. Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadybekov, Arman; Krylov, Anna I.

    A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less

  13. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics.

    PubMed

    Cheng, Jun; Sulpizi, Marialore; Sprik, Michiel

    2009-10-21

    The density functional theory based molecular dynamics (DFTMD) method for the computation of redox free energies presented in previous publications and the more recent modification for computation of acidity constants are reviewed. The method uses a half reaction scheme based on reversible insertion/removal of electrons and protons. The proton insertion is assisted by restraining potentials acting as chaperones. The procedure for relating the calculated deprotonation free energies to Brønsted acidities (pK(a)) and the oxidation free energies to electrode potentials with respect to the normal hydrogen electrode is discussed in some detail. The method is validated in an application to the reduction of aqueous 1,4-benzoquinone. The conversion of hydroquinone to quinone can take place via a number of alternative pathways consisting of combinations of acid dissociations, oxidations, or dehydrogenations. The free energy changes of all elementary steps (ten in total) are computed. The accuracy of the calculations is assessed by comparing the energies of different pathways for the same reaction (Hess's law) and by comparison to experiment. This two-sided test enables us to separate the errors related with the restrictions on length and time scales accessible to DFTMD from the errors introduced by the DFT approximation. It is found that the DFT approximation is the main source of error for oxidation free energies.

  14. Phase shifts in I = 2 ππ-scattering from two lattice approaches

    NASA Astrophysics Data System (ADS)

    Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.

    2013-12-01

    We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.

  15. Acetylcholine-induced current in perfused rat myoballs

    PubMed Central

    1980-01-01

    Spherical "myoballs" were grown under tissue culture conditions from striated muscle of neonatal rat thighs. The myoballs were examined electrophysiologically with a suction pipette which was used to pass current and perfuse internally. A microelectrode was used to record membrane potential. Experiments were performed with approximately symmetrical (intracellular and extracellular) sodium aspartate solutions. The resting potential, acetylcholine (ACh) reversal potential, and sodium channel reversal potential were all approximately 0 mV. ACh-induced currents were examined by use of both voltage jumps and voltage ramps in the presence of iontophoretically applied agonist. The voltage-jump relaxations had a single exponential time-course. The time constant, tau, was exponentially related to membrane potential, increasing e-fold for 81 mV hyperpolarization. The equilibrium current- voltage relationship was also approximately exponential, from -120 to +81 mV, increasing e-fold for 104 mV hyperpolarization. The data are consistent with a first-order gating process in which the channel opening rate constant is slightly voltage dependent. The instantaneous current-voltage relationship was sublinear in the hyperpolarizing direction. Several models are discussed which can account for the nonlinearity. Evidence is presented that the "selectivity filter" for the ACh channel is located near the intracellular membrane surface. PMID:7381423

  16. Active experiments in modifying spacecraft potential: Results from ATS-5 and ATS-6

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Whipple, E. C.

    1979-01-01

    The processing of data from onboard spacecraft instruments are described. The modification of spacecraft potentials is reviewed. Analysis of this data yielded the following results: (1) electron emission (E approximately 10 electron-volts) did not perturb the status of a satellite at low potential the absolute value of phi approximately 50 volts by more than 50 volts (the ATS 5 low energy limit), (2) emission of a low energy plasma (E approximatey 10 volts) does not change low potentials (the absolute value of phi approximately 5 volts) by more than a few volts (ATS 6 low energy resolution), (3) when ATS 6 entered eclipse in the presence of a high energy plasma (10 keV), the neutralizer suppressed any rise in the absolute value of phi (within a few volts resolution), (4) when the electron emitter on ATS 5 operated, it served to discharge negative potentials from thousands to hundreds of volts, and (5) when the neutralizer on ATS 6 was operated, it served to discharge kilovolt potentials to below 50 volts. Low altitude (100 - 300 km) experiments with KV electron beams are studied. Differential charging was eliminated by the operation of the main thruster on ATS 6 clamped on the spacecraft at -5 volts.

  17. Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state.

    PubMed

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  18. Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Nelson, R.; Siddiqui, Elisha

    We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less

  19. A method for early determination of meat ultimate pH.

    PubMed

    Young, O A; West, J; Hart, A L; van Otterdijk, F F H

    2004-02-01

    A patented method of rapidly determining the ultimate pH from approximate glycolytic potential of muscles of slaughtered animals has been devised. The method is based on the rapid hydrolysis of muscle glycogen to glucose by the enzyme amyloglucosidase and subsequent measurement of the liberated glucose. In acetate buffer at pH 4.5, glucose concentration can be determined in 30 s with domestic meters for diabetes control. The meter response differed from that of glucose in blood, but was linear with concentration. In slurries comprising homogenised meat in acetate buffer and added glucose, a similar linear response was obtained. Amyloglucosidase was capable of rapidly hydrolysing glycogen to glucose in such slurries. In the 24 h following slaughter, a decrease in glycogen, as determined by glucose, occurred in parallel with the decline in pH. At the same time, lactate progressively accumulated as expected. Values for the approximate glycolytic potential and (by calibration) ultimate pH, were obtained on prerigor muscle within 7 min of muscle sampling in an industrial environment. The method is suitable for on-line application in beef abattoirs particularly those employing hot boning where ultimate must be known at the grading point.

  20. Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N

    DOE PAGES

    Zhang, Yi; Nelson, R.; Siddiqui, Elisha; ...

    2016-12-29

    We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less

  1. Hypernetted-chain-like closure of Ornstein-Zernike equation in multibody dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Mo, Chao-jie; Qin, Li-zi; Yang, Li-jun

    2017-10-01

    We have derived a hypernetted-chain-like (HNC-like) approximate closure of the Ornstein-Zernike equation for multibody dissipative particle dynamics (MDPD) system in which the classic closures are not directly practicable. We first point out that the Percus's method is applicable to MDPD system in which particles interact with a density-dependent potential. And then an HNC-like closure is derived using Percus's idea and the saddle-point approximation of particle free energy. This HNC-like closure is compared with results of previous researchers, and in many cases, it demonstrates better agreement with computer simulation results. The HNC-like closure is used to predict the cluster crystallization in MDPD. We determine whether the cluster crystallization will happen in a system utilizing the widely applicable Hansen-Verlet freezing criterion and by observing the radial distribution function. The conclusions drawn from the results of the HNC-like closure are in agreement with computer simulation results. We evaluate different weight functions to determine whether they are prone to cluster crystallization. A new effective density-dependent pairwise potential is also proposed to help to explain the tendency to cluster crystallization of MDPD systems.

  2. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  3. Orbital-Dependent-Functionals within Density Functional Theory: Methodology and Applications

    NASA Astrophysics Data System (ADS)

    Makmal, Adi

    I have designed and implemented a new numerical scheme for solving Kohn-Sham (KS) equations for diatomic systems, together with a full solution of the OEP equation. The equations are solved on a real-space prolate spheroidal coordinate grid, such that all the system's electrons are taken into account. The OEP equation is solved via the S-iteration scheme. This newly developed software package is called DARSEC (DiAtomic Real-Space Electronic structure Calculations). It involves no approximation except for the one inherent in the XC functional. Thus it is especially suitable for examining new functionals of any kind, and ODFs in particular. It is also an ideal tool for assessing the validity of commonly used approximations, for the same reasons. One case for which this uniqueness of DARSEC was exploited in this thesis is the examination of the validity of the pseudopotential approximation for KS gaps that are calculated with EXX OEP (xOEP). Before this study, use of the pseudopotential approximation in such calculations was called into question. I have shown that KS gaps obtained with pseudopotentials that have been constructed in a manner consistent with the exact-exchange functional agree with the all-electron results (i.e. without the pseudopotential approximation), for the cases studied. This confirmed the reliability of the pseudopotential approximation for ODFs such as EXX. Explicit density-dependent XC functionals traditionally fail to obtain atomization-energy as well as charge-dissociation curves that are, at least qualitatively, correct for diatomic systems. On the other hand, Hartree-Fock (HF) theory encounters no such problem. Hence, an additional goal of this research was to study the performances of the EXX functional (being the DFT counterpart of HF) in describing binding energies and charge dissociations for stretched diatomic molecules. Moreover, I wanted to investigate the special features of the resulting single and local EXX KS potential, as opposed to the non-local orbital specific HF potentials. I asked the following questions: Is it at all possible to obtain correct binding energy curves and charge dissociation curves with the local exact-exchange KS potential? What are the main features of such a local KS potential? And how are they related to the spatial shapes of the KS orbitals? To answer these questions, I calculated the electronic structures of highly stretched H2, HF and LiF molecules with EXX, using the Krieger, Li, and Iafrate (KLI) scheme. All calculations were done with DARSEC, whose coordinate system is highly suitable for calculating such stretched diatomic molecules. By examining several electronic configurations in a systematic manner, low energy ones were identified, and qualitatively correct binding-energy curves were obtained. For the LiF molecule a qualitatively correct charge separation curve was also achieved. Once the local EXX KLI potential was obtained for highly stretched diatomic systems, I could study its properties. Specifically, I have identified and demonstrated the following features: (a) The location and size of a constant shift in the potential and its relation to orbital spatial shapes; (b) The dependence of the shift's position on the inter-atomic separation length; (c) The existence of multiple constant shifts of the same kind; (d) The relation between the eigenvalues of the highly stretched diatomic system and the corresponding eigenvalues of the separated atoms - and how this relation is correlated with the asymptotic shift of the local potential. Understanding this unique combination of features sheds light on the mechanism with which the EXX potential enforces the correct charge dissociation. Last, a study on a novel ODF was initiated. The new ODF, suggested by Stephan Kummel, has a local function that mixes a fraction of EXX with a complementary fraction of exchange of the homogenous electronic gas (LDA), where a different fraction is assigned for each point in space. To derive the corresponding potential, the functional derivative of the new energy expression with respect to the KS orbitals was analytically derived. The new energy and potential expressions were implemented into DARSEC, and preliminary examinations were carried out. (Abstract shortened by UMI.)

  4. UNAERO: A package of FORTRAN subroutines for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1985-01-01

    This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for approximating the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that approximate the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the approximations so that an accurate approximation is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the approximation over the reduced-frequency range. The denominator coefficients of the approximation may be calculated by means of a gradient method or a least-squares approximation technique. Both the approximation methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the approximations being recalculated.

  5. No effect of skin temperature on human ventilation response to hypercapnia during light exercise with a normothermic core temperature.

    PubMed

    Greiner, Jesse G; Clegg, Miriam E; Walsh, Michael L; White, Matthew D

    2010-05-01

    Hyperthermia potentiates the influence of CO(2) on pulmonary ventilation (.V(E)). It remains to be resolved how skin and core temperatures contribute to the elevated exercise ventilation response to CO(2). This study was conducted to assess the influences of mean skin temperature (_T(SK)) and end-tidal PCO(2) (P(ET)CO(2)) on .V(E) during submaximal exercise with a normothermic esophageal temperature (T(ES)). Five males and three females who were 1.76 +/- 0.11 m tall (mean +/- SD), 75.8 +/- 15.6 kg in weight and 22.0 +/- 2.2 years of age performed three 1 h exercise trials in a climatic chamber with the relative humidity (RH) held at 31.5 +/- 9.5% and the ambient temperature (T (AMB)) maintained at one of 25, 30, or 35 degrees C. In each trial, the volunteer breathed eucapnic air for 5 min during a rest period and subsequently cycle ergometer exercised at 50 W until T (ES) stabilized at approximately 37.1 +/- 0.4 degrees C. Once T (ES) stabilized in each trial, the volunteer breathed hypercapnic air twice for approximately 5 min with P(ET)CO(2) elevated by approximately +4 or +7.5 mmHg. The significantly (P < 0.05) different increases of P(ET)CO(2) of +4.20 +/- 0.49 and +7.40 +/- 0.51 mmHg gave proportionately larger increases in .V(E) of 10.9 +/- 3.6 and 15.2 +/- 3.6 L min(-1) (P = 0.001). This hypercapnia-induced hyperventilation was uninfluenced by varying the _T(SK) to three significantly different levels (P < 0.001) of 33.2 +/- 1.2 degrees C, to 34.5 +/- 0.8 degrees C to 36.4 +/- 0.5 degrees C. In conclusion, the results support that skin temperature between approximately 33 and approximately 36 degrees C has neither effect on pulmonary ventilation nor on hypercapnia-induced hyperventilation during a light exercise with a normothermic core temperature.

  6. THEORETICAL METHODS FOR COMPUTING ELECTRICAL CONDITIONS IN WIRE-PLATE ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The paper describes a new semi-empirical, approximate theory for predicting electrical conditions. In the approximate theory, analytical expressions are derived for calculating voltage-current characteristics and electric potential, electric field, and space charge density distri...

  7. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values

    PubMed Central

    Didoné, Dayane Domeneghini; Oppitz, Sheila Jacques; Folgearini, Jordana; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas

    2016-01-01

    Introduction Long Latency Auditory Evoked Potentials (LLAEP) with speech sounds has been the subject of research, as these stimuli would be ideal to check individualś detection and discrimination. Objective The objective of this study is to compare and describe the values of latency and amplitude of cortical potentials for speech stimuli in adults with normal hearing. Methods The sample population included 30 normal hearing individuals aged between 18 and 32 years old with ontological disease and auditory processing. All participants underwent LLAEP search using pairs of speech stimuli (/ba/ x /ga/, /ba/ x /da/, and /ba/ x /di/. The authors studied the LLAEP using binaural stimuli at an intensity of 75dBNPS. In total, they used 300 stimuli were used (∼60 rare and 240 frequent) to obtain the LLAEP. Individuals received guidance to count the rare stimuli. The authors analyzed latencies of potential P1, N1, P2, N2, and P300, as well as the ampleness of P300. Results The mean age of the group was approximately 23 years. The averages of cortical potentials vary according to different speech stimuli. The N2 latency was greater for /ba/ x /di/ and P300 latency was greater for /ba/ x /ga/. Considering the overall average amplitude, it ranged from 5.35 and 7.35uV for different speech stimuli. Conclusion It was possible to obtain the values of latency and amplitude for different speech stimuli. Furthermore, the N2 component showed higher latency with the / ba / x / di / stimulus and P300 for /ba/ x / ga /. PMID:27096012

  8. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less

  9. Temporal resolution improvement using PICCS in MDCT cardiac imaging

    PubMed Central

    Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang

    2009-01-01

    The current paradigm for temporal resolution improvement is to add more source-detector units and∕or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120°, which is roughly 50% of the standard short-scan angular range (∼240° for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications. PMID:19610302

  10. Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400.

    PubMed

    Master, E R; Mohn, W W

    2001-06-01

    We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gm(r) fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30 degrees C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7 degrees C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15 degrees C was approximately five times less than the level in LB400-1 grown at 30 degrees C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.

  11. Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations.

    PubMed

    Casacuberta, N; Masqué, P; Garcia-Orellana, J; Bruach, J M; Anguita, M; Gasa, J; Villa, M; Hurtado, S; Garcia-Tenorio, R

    2009-10-30

    Potentially harmful phosphate-based products derived from the wet acid digestion of phosphate rock represent one of the most serious problems facing the phosphate industry. This is particularly true for dicalcium phosphate (DCP), a food additive produced from either sulphuric acid or hydrochloric acid digestion of raw rock material. This study determined the natural occurring radionuclide concentrations of 12 DCP samples and 4 tricalcium phosphate (TCP) samples used for animal and human consumption, respectively. Metal concentrations (Al, Fe, Zn, Cd, Cr, As, Hg, Pb and Mg) were also determined. Samples were grouped into three different clusters (A, B, C) based on their radionuclide content. Whereas group A is characterized by high activities of 238U, 234U (approximately 10(3) Bq kg(-1)), 210Pb (2 x 10(3) Bq kg(-1)) and (210)Po ( approximately 800 Bq kg(-1)); group B presents high activities of (238)U, (234)U and (230)Th (approximately 10(3) Bq kg(-1)). Group C was characterized by very low activities of all radionuclides (< 50 Bq kg(-1)). Differences between the two groups of DCP samples for animal consumption (groups A and B) were related to the wet acid digestion method used, with group A samples produced from hydrochloric acid digestion, and group B samples produced using sulphuric acid. Group C includes more purified samples required for human consumption. High radionuclide concentrations in some DCP samples (reaching 2 x 10(3) and 10(3) Bq kg(-1) of 210Pb and 210Po, respectively) may be of concern due to direct or indirect radiological exposure via ingestion. Our experimental results based on 210Pb and 210Po within poultry consumed by humans, suggest that the maximum radiological doses are 11 +/- 2 microSv y(-1). While these results suggest that human health risks are small, additional testing should be conducted.

  12. Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the Fox and unified colored noise approximations

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Maggi, C.; Sharma, A.; Scacchi, A.; Brader, J. M.; Marini Bettolo Marconi, U.

    2017-11-01

    The equations of motion of active systems can be modeled in terms of Ornstein-Uhlenbeck processes (OUPs) with appropriate correlators. For further theoretical studies, these should be approximated to yield a Markovian picture for the dynamics and a simplified steady-state condition. We perform a comparative study of the unified colored noise approximation (UCNA) and the approximation scheme by Fox recently employed within this context. We review the approximations necessary to define effective interaction potentials in the low-density limit and study the conditions for which these represent the behavior observed in two-body simulations for the OUPs model and active Brownian particles. The demonstrated limitations of the theory for potentials with a negative slope or curvature can be qualitatively corrected by a new empirical modification. In general, we find that in the presence of translational white noise the Fox approach is more accurate. Finally, we examine an alternative way to define a force-balance condition in the limit of small activity.

  13. Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions

    NASA Astrophysics Data System (ADS)

    Rose, F.; Dupuis, N.

    2018-05-01

    We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.

  14. Use of the thin sheath approximation for obtaining ion temperatures from the ISEE 1 limited aperture RPA. [for magnetosphere

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Baugher, C. R.; Chappell, C. R.

    1982-01-01

    A procedure for analyzing low-energy (less than approximately 100 eV) ion data from the plasma composition experiment on ISEE 1 is set forth. The method is based on a derived analytic expression for particle flux to a limited aperture retarding potential analyzer (RPA) in the thin sheath approximation, which makes allowance for some effects of a charged spacecraft on plasma particle trajectories. Calculations using simulated data are employed in testing the efficacy and accuracy of the technique. On the basis of an analysis of these calculation results and the mathematical model, the method is seen as being able to provide accurate ion temperatures from all good plasmaspheric RPA data. It is noted that corresponding densities and spacecraft potentials should be accurate when spacecraft potentials are negative but that they are subject to error for positive spacecraft potentials, particularly when ion Mach numbers are much less than 1. An analysis of data from a representative ISEE 1 pass produces a plasmasphere temperature profile that is consistent in overall structure with previous observations.

  15. Diagnostic accuracy of chest X-rays acquired using a digital camera for low-cost teleradiology.

    PubMed

    Szot, Agnieszka; Jacobson, Francine L; Munn, Samson; Jazayeri, Darius; Nardell, Edward; Harrison, David; Drosten, Ralph; Ohno-Machado, Lucila; Smeaton, Laura M; Fraser, Hamish S F

    2004-02-01

    Store-and-forward telemedicine, using e-mail to send clinical data and digital images, offers a low-cost alternative for physicians in developing countries to obtain second opinions from specialists. To explore the potential usefulness of this technique, 91 chest X-ray images were photographed using a digital camera and a view box. Four independent readers (three radiologists and one pulmonologist) read two types of digital (JPEG and JPEG2000) and original film images and indicated their confidence in the presence of eight features known to be radiological indicators of tuberculosis (TB). The results were compared to a "gold standard" established by two different radiologists, and assessed using receiver operating characteristic (ROC) curve analysis. There was no statistical difference in the overall performance between the readings from the original films and both types of digital images. The size of JPEG2000 images was approximately 120KB, making this technique feasible for slow internet connections. Our preliminary results show the potential usefulness of this technique particularly for tuberculosis and lung disease, but further studies are required to refine its potential.

  16. Parenting, attention and externalizing problems: testing mediation longitudinally, repeatedly and reciprocally.

    PubMed

    Belsky, Jay; Pasco Fearon, R M; Bell, Brian

    2007-12-01

    Building on prior work, this paper tests, longitudinally and repeatedly, the proposition that attentional control processes mediate the effect of earlier parenting on later externalizing problems. Repeated independent measurements of all three constructs--observed parenting, computer-tested attentional control and adult-reported externalizing problems--were subjected to structural equation modeling using data from the large-scale American study of child care and youth development. Structural equation modeling indicated (a) that greater maternal sensitivity at two different ages (54 months, approximately 6 years) predicted better attentional control on the Continuous Performance Test (CPT) of attention regulation two later ages ( approximately 6/9 years); (2) that better attentional control at three different ages (54 months, approximately 6/9 years) predicted less teacher-reported externalizing problems at three later ages ( approximately 6/8/10 years); and (3) that attentional control partially mediated the effect of parenting on externalizing problems at two different lags (i.e., 54 months--> approximately 6 years--> approximately 8 years; approximately 6 years--> approximately 9 years--> approximately 10 years), though somewhat more strongly for the first. Additionally, (4) some evidence of reciprocal effects of attentional processes on parenting emerged (54 months--> approximately 6 years; approximately 6 years--> approximately 8 years), but not of problem behavior on attention. Because attention control partially mediates the effects of parenting on externalizing problems, intervention efforts could target both parenting and attentional processes.

  17. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity

    NASA Astrophysics Data System (ADS)

    Cinal, M.

    2010-01-01

    It is found that for closed-l-shell atoms, the exact local exchange potential vx(r) calculated in the exchange-only Kohn-Sham (KS) scheme of the density functional theory (DFT) is very well represented within the region of every atomic shell by each of the suitably shifted potentials obtained with the nonlocal Fock exchange operator for the individual Hartree-Fock (HF) orbitals belonging to this shell. This newly revealed property is not related to the well-known steplike shell structure in the response part of vx(r), but it results from specific relations satisfied by the HF orbital exchange potentials. These relations explain the outstanding proximity of the occupied HF and exchange-only KS orbitals as well as the high quality of the Krieger-Li-Iafrate and localized HF (or, equivalently, common-energy-denominator) approximations to the DFT exchange potential vx(r). Another highly accurate representation of vx(r) is given by the continuous piecewise function built of shell-specific exchange potentials, each defined as the weighted average of the shifted orbital exchange potentials corresponding to a given shell. The constant shifts added to the HF orbital exchange potentials, to map them onto vx(r), are nearly equal to the differences between the energies of the corresponding KS and HF orbitals. It is discussed why these differences are positive and grow when the respective orbital energies become lower for inner orbitals.

  18. Stepwise positional-orientational order and the multicritical-multistructural global phase diagram of the s=3/2 Ising model from renormalization-group theory.

    PubMed

    Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat

    2016-06-01

    The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.

  19. Padé approximant for normal stress differences in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.

    2018-04-01

    Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

  20. Parcperdue Geopressure -- Geothermal Project: Appendix E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweezy, L.R.

    1981-10-05

    The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and thatmore » the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.« less

  1. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    NASA Technical Reports Server (NTRS)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  2. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation inmore » retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.« less

  3. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract.

    PubMed

    van der Ven, Amelie T; Vivante, Asaf; Hildebrandt, Friedhelm

    2018-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) comprise a large spectrum of congenital malformations ranging from severe manifestations, such as renal agenesis, to potentially milder conditions, such as vesicoureteral reflux. CAKUT causes approximately 40% of ESRD that manifests within the first three decades of life. Several lines of evidence indicate that CAKUT is often caused by recessive or dominant mutations in single (monogenic) genes. To date, approximately 40 monogenic genes are known to cause CAKUT if mutated, explaining 5%-20% of patients. However, hundreds of different monogenic CAKUT genes probably exist. The discovery of novel CAKUT-causing genes remains challenging because of this pronounced heterogeneity, variable expressivity, and incomplete penetrance. We here give an overview of known genetic causes for human CAKUT and shed light on distinct renal morphogenetic pathways that were identified as relevant for CAKUT in mice and humans. Copyright © 2018 by the American Society of Nephrology.

  4. Potential of nitrogen gas (n2) flushing to extend the shelf life of cold stored pasteurised milk.

    PubMed

    Munsch-Alatossava, Patricia; Ghafar, Abdul; Alatossava, Tapani

    2013-03-11

    For different reasons, the amount of food loss for developing and developed countries is approximately equivalent. Altogether, these losses represent approximately 1/3 of the global food production. Significant amounts of pasteurised milk are lost due to bad smell and unpleasant taste. Currently, even under the best cold chain conditions, psychrotolerant spore-forming bacteria, some of which also harbour virulent factors, limit the shelf life of pasteurised milk. N2 gas-based flushing has recently been of interest for improving the quality of raw milk. Here, we evaluated the possibility of addressing bacterial growth in pasteurised milk during cold storage at 6 °C and 8 °C. Clearly, the treatments hindered bacterial growth, in a laboratory setting, when N2-treated milk were compared to the corresponding controls, which suggests that N2-flushing treatment constitutes a promising option to extend the shelf life of pasteurised milk.

  5. Infinite order quantum-gravitational correlations

    NASA Astrophysics Data System (ADS)

    Knorr, Benjamin

    2018-06-01

    A new approximation scheme for nonperturbative renormalisation group equations for quantum gravity is introduced. Correlation functions of arbitrarily high order can be studied by resolving the full dependence of the renormalisation group equations on the fluctuation field (graviton). This is reminiscent of a local potential approximation in O(N)-symmetric field theories. As a first proof of principle, we derive the flow equation for the ‘graviton potential’ induced by a conformal fluctuation and corrections induced by a gravitational wave fluctuation. Indications are found that quantum gravity might be in a non-metric phase in the deep ultraviolet. The present setup significantly improves the quality of previous fluctuation vertex studies by including infinitely many couplings, thereby testing the reliability of schemes to identify different couplings to close the equations, and represents an important step towards the resolution of the Nielsen identity. The setup further allows one, in principle, to address the question of putative gravitational condensates.

  6. Influence of air and water temperature on fill characteristics curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefevre, M.R.

    1985-01-01

    In a previous paper, the author discussed approximations of the Merkel Theory, as well as other approximations included in the CTI recommended method of calculation of the Demand curves. The paper concluded that the familiar difference of enthalpies, used as a cooling potential, which is the Merkel Theory, could continue to be used by simply adding a corrective multiplying factor derived from a direct comparison of the exact theory and the Merkel Theory. At the end of the paper the author briefly showed that the corrections to the Demand curve was only one part of the picture and that theremore » was also an influence of the temperatures of the Characteristic curve side. The object of this paper is to now review the influence of the air and water temperature on the Characteristic curve. This completes the work presented last year.« less

  7. Potential of Nitrogen Gas (N2) Flushing to Extend the Shelf Life of Cold Stored Pasteurised Milk

    PubMed Central

    Munsch-Alatossava, Patricia; Ghafar, Abdul; Alatossava, Tapani

    2013-01-01

    For different reasons, the amount of food loss for developing and developed countries is approximately equivalent. Altogether, these losses represent approximately 1/3 of the global food production. Significant amounts of pasteurised milk are lost due to bad smell and unpleasant taste. Currently, even under the best cold chain conditions, psychrotolerant spore-forming bacteria, some of which also harbour virulent factors, limit the shelf life of pasteurised milk. N2 gas-based flushing has recently been of interest for improving the quality of raw milk. Here, we evaluated the possibility of addressing bacterial growth in pasteurised milk during cold storage at 6 °C and 8 °C. Clearly, the treatments hindered bacterial growth, in a laboratory setting, when N2-treated milk were compared to the corresponding controls, which suggests that N2-flushing treatment constitutes a promising option to extend the shelf life of pasteurised milk. PMID:23478439

  8. Activity-dependent modulation of the axonal conduction of action potentials along rat hippocampal mossy fibers.

    PubMed

    Chida, Kuniaki; Kaneko, Kenya; Fujii, Satoshi; Yamazaki, Yoshihiko

    2015-01-01

    The axonal conduction of action potentials in the nervous system is generally considered to be a stable signal for the relaying of information, and its dysfunction is involved in impairment of cognitive function. Recent evidence suggests that the conduction properties and excitability of axons are more variable than traditionally thought. To investigate possible changes in the conduction of action potentials along axons in the central nervous system, we recorded action potentials from granule cells that were evoked and conducted antidromically along unmyelinated mossy fibers in the rat hippocampus. To evaluate changes in axons by eliminating any involvement of changes in the somata, two latency values were obtained by stimulating at two different positions and the latency difference between the action potentials was measured. A conditioning electrical stimulus of 20 pulses at 1 Hz increased the latency difference and this effect, which lasted for approximately 30 s, was inhibited by the application of an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist or a GluK1-containing kainate receptor antagonist, but not by an AMPA receptor-selective antagonist or an N-methyl-d-aspartate receptor antagonist. These results indicated that axonal conduction in mossy fibers is modulated in an activity-dependent manner through the activation of GluK1-containing kainate receptors. These dynamic changes in axonal conduction may contribute to the physiology and pathophysiology of the brain. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.

    PubMed

    Chao, Fa-An; Byrd, R Andrew

    2017-04-01

    The Carr-Purcell-Meiboom-Gill (CPMG) experiment is one of the most classical and well-known relaxation dispersion experiments in NMR spectroscopy, and it has been successfully applied to characterize biologically relevant conformational dynamics in many cases. Although the data analysis of the CPMG experiment for the 2-site exchange model can be facilitated by analytical solutions, the data analysis in a more complex exchange model generally requires computationally-intensive numerical analysis. Recently, a powerful computational strategy, geometric approximation, has been proposed to provide approximate numerical solutions for the adiabatic relaxation dispersion experiments where analytical solutions are neither available nor feasible. Here, we demonstrate the general potential of geometric approximation by providing a data analysis solution of the CPMG experiment for both the traditional 2-site model and a linear 3-site exchange model. The approximate numerical solution deviates less than 0.5% from the numerical solution on average, and the new approach is computationally 60,000-fold more efficient than the numerical approach. Moreover, we find that accurate dynamic parameters can be determined in most cases, and, for a range of experimental conditions, the relaxation can be assumed to follow mono-exponential decay. The method is general and applicable to any CPMG RD experiment (e.g. N, C', C α , H α , etc.) The approach forms a foundation of building solution surfaces to analyze the CPMG experiment for different models of 3-site exchange. Thus, the geometric approximation is a general strategy to analyze relaxation dispersion data in any system (biological or chemical) if the appropriate library can be built in a physically meaningful domain. Published by Elsevier Inc.

  10. Design of sustained release tablet containing fucoidan.

    PubMed

    Tran, Thao Truong-Dinh; Ngo, Dai Kieu-Phuong; Vo, Toi Van; Tran, Phuong Ha-Lien

    2015-01-01

    The study introduced a new therapeutic agent, fucoidan, which can offer potential medical treatments including anti-inflammatory and anti-coagulant activities, as well as anti-proliferative effects on cancer cells. Fucoidan was included in sustained release formulations expected for an effective plasma drug concentration for approximately 24 h. The matrices based on the two polymers hydroxypropyl methycellulose (HPMC) and polyethylene oxide (PEO) were prepared with various ratios between the polymers and fucoidan. The dissolution profiles of various matrix tablets performed in enzyme-free simulated intestinal fluid (pH 6.8) for 24 h indicated a higher potential of PEO-based matrix tablets in sustaining release of fucoidan. The swelling and erosion of the tablets were also characterized to elucidate the difference among those dissolution profiles.

  11. Alternative Derivations of the Statistical Mechanical Distribution Laws

    PubMed Central

    Wall, Frederick T.

    1971-01-01

    A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems. PMID:16578712

  12. Alternative derivations of the statistical mechanical distribution laws.

    PubMed

    Wall, F T

    1971-08-01

    A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems.

  13. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE PAGES

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    2018-01-09

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  14. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    PubMed

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  15. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  16. Nuclear force from lattice QCD.

    PubMed

    Ishii, N; Aoki, S; Hatsuda, T

    2007-07-13

    The nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32(4) [approximately (4.4 fm)(4)] lattice. A NN potential V(NN)(r) is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the (1)S(0) and (3)S(1) channels, we show that the central part of V(NN)(r) has a strong repulsive core of a few hundred MeV at short distances (r approximately < 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force.

  17. Collision for Li++He System. I. Potential Curves and Non-Adiabatic Coupling Matrix Elements

    NASA Astrophysics Data System (ADS)

    Yoshida, Junichi; O-Ohata, Kiyosi

    1984-02-01

    The potential curves and the non-adiabatic coupling matrix elements for the Li++He collision system were computed. The SCF molecular orbitals were constructed with the CGTO atomic bases centered on each nucleus and the center of mass of two nuclei. The SCF and CI calculations were done at various internuclear distances in the range of 0.1˜25.0 a.u. The potential energies and the wavefunctions were calculated with good approximation over whole internuclear distance. The non-adiabatic coupling matrix elements were calculated with the tentative method in which the ETF are approximately taken into account.

  18. The Potential-Well Distortion Effect and Coherent Instabilities of Electron Bunches in Storage Rings

    NASA Astrophysics Data System (ADS)

    Korchuganov, V. N.; Smygacheva, A. S.; Fomin, E. A.

    2018-05-01

    The effect of electromagnetic interaction between electron bunches and the vacuum chamber of a storage ring on the longitudinal motion of bunches is studied. Specifically, the potential-well distortion effect and the so-called coherent instabilities of coupled bunches are considered. An approximate analytical solution for the frequencies of incoherent oscillations of bunches distributed arbitrarily within the ring is obtained for a distorted potential well. A new approach to determining frequencies of coherent oscillations and an approximate analytical relation for estimating the stability of a system of bunches as a function of their distribution in the accelerator orbit are presented.

  19. An accurate and efficient method for evaluating the kernel of the integral equation relating pressure to normalwash in unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1982-01-01

    This paper describes an accurate economical method for generating approximations to the kernel of the integral equation relating unsteady pressure to normalwash in nonplanar flow. The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the non elementary integrals in the kernel by exponential approximations and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. Coefficients for 8, 12, 24, and 72 term approximations are tabulated in the report. Also, since the method is automated, it can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.

  20. Approximate bound-state solutions of the Dirac equation for the generalized yukawa potential plus the generalized tensor interaction

    NASA Astrophysics Data System (ADS)

    Ikot, Akpan N.; Maghsoodi, Elham; Hassanabadi, Hassan; Obu, Joseph A.

    2014-05-01

    In this paper, we obtain the approximate analytical bound-state solutions of the Dirac particle with the generalized Yukawa potential within the framework of spin and pseudospin symmetries for the arbitrary к state with a generalized tensor interaction. The generalized parametric Nikiforov-Uvarov method is used to obtain the energy eigenvalues and the corresponding wave functions in closed form. We also report some numerical results and present figures to show the effect of the tensor interaction.

  1. Solutions of the Dirac Equation with the Shifted DENG-FAN Potential Including Yukawa-Like Tensor Interaction

    NASA Astrophysics Data System (ADS)

    Yahya, W. A.; Falaye, B. J.; Oluwadare, O. J.; Oyewumi, K. J.

    2013-08-01

    By using the Nikiforov-Uvarov method, we give the approximate analytical solutions of the Dirac equation with the shifted Deng-Fan potential including the Yukawa-like tensor interaction under the spin and pseudospin symmetry conditions. After using an improved approximation scheme, we solved the resulting schr\\"{o}dinger-like equation analytically. Numerical results of the energy eigenvalues are also obtained, as expected, the tensor interaction removes degeneracies between spin and pseudospin doublets.

  2. On singlet s-wave electron-hydrogen scattering.

    NASA Technical Reports Server (NTRS)

    Madan, R. N.

    1973-01-01

    Discussion of various zeroth-order approximations to s-wave scattering of electrons by hydrogen atoms below the first excitation threshold. The formalism previously developed by the author (1967, 1968) is applied to Feshbach operators to derive integro-differential equations, with the optical-potential set equal to zero, for the singlet and triplet cases. Phase shifts of s-wave scattering are computed in the zeroth-order approximation of the Feshbach operator method and in the static-exchange approximation. It is found that the convergence of numerical computations is faster in the former approximation than in the latter.

  3. An accurate potential model for the a3Σu+ state of the alkali dimers Na2, K2, Rb2, and Cs2

    NASA Astrophysics Data System (ADS)

    Lau, Jascha A.; Toennies, J. Peter; Tang, K. T.

    2016-11-01

    A modified semi-empirical Tang-Toennies potential model is used to describe the a3Σu+ potentials of the alkali dimers. These potentials are currently of interest in connection with the laser manipulation of the ultracold alkali gases. The fully analytical model is based on three experimental parameters, the well depth De, well location Re, and the harmonic vibrational frequency ωe of which the latter is only slightly optimized within the range of the literature values. Comparison with the latest spectroscopic data shows good agreement for Na2, K2, Rb2, and Cs2, comparable to that found with published potential models with up to 55 parameters. The differences between the reduced potential of Li2 and the conformal reduced potentials of the heavier dimers are analyzed together with why the model describes Li2 less accurately. The new model potential provides a test of the principle of corresponding states and an excellent first order approximation for further optimization to improve the fits to the spectroscopic data and describe the scattering lengths and Feshbach resonances at ultra-low temperatures.

  4. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules

    DOE PAGES

    Li, Yi-Pei; Bell, Alexis T.; Head-Gordon, Martin

    2016-05-26

    The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO hf). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentialsmore » are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO hf model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By con trast, the HO hf model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO hf model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol -1 K -1 at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol -1 K -1, respectively. For a test set composed of nine alkanes ranging from C5 to C8, the heat capacities calculated with the UM-VT model agree with the experimental values to within a RMS error of 0.78 cal mol -1 K -1 , which is less than one-third of the RMS error of the HO hf (2.69 cal mol -1 K -1) and UM-N (2.41 cal mol -1 K -1) models.« less

  5. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  6. Direct application of Padé approximant for solving nonlinear differential equations.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Garcia-Gervacio, Jose Luis; Huerta-Chua, Jesus; Morales-Mendoza, Luis Javier; Gonzalez-Lee, Mario

    2014-01-01

    This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. 34L30.

  7. Social Communication Questionnaire scoring procedures for autism spectrum disorder and the prevalence of potential social communication disorder in ASD.

    PubMed

    Barnard-Brak, Lucy; Richman, David M; Chesnut, Steven Randall; Little, Todd D

    2016-12-01

    In analyzing data from the National Database for Autism Research, we utilized Mokken scaling techniques as a means of creating a more effective and efficient screening procedure for autism spectrum disorder (ASD) via the Social Communication Questionnaire (SCQ). With a sample of 1,040, approximately 80% (n = 827) of the sample were males while approximately 20% (n = 213) were females. In regard to ethnicity, approximately 68% of the sample were White/Caucasian, while 7% were African American, 16% were Hispanic, 4% were Asian, and 1% were Native American or American Indian. As the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5) states that, "individuals with a well-established DSM-IV diagnosis of autistic disorder, Asperger's disorder, or pervasive developmental disorder not otherwise specified should be given the diagnosis of autism spectrum disorder," (American Psychiatric Association, 2013, p. 51), the primary labeling difference between the DSM-IV and the DSM-5 would appear to be in identifying social communication disorder as a newly introduced disorder in the DSM-5, which we discuss. Though school psychologists are not dependent on the DSM to the same extent as clinical psychologists to provide services, school psychology is invested in the effective and efficient assessment of ASD. The current study demonstrates how Mokken scaling procedures may be utilized with respect to ASD identification via the SCQ as well as providing information regarding the prevalence of potential social communication disorder as a new disorder and its discrimination with ASD. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications

    PubMed Central

    Bachmann, Thomas; Wagner, Hermann

    2011-01-01

    Barn owl feathers at the leading edge of the wing are equipped with comb-like structures termed serrations on their outer vanes. Each serration is formed by one barb ending that separates and bends upwards. This structure is considered to play a role in air-flow control and noise reduction during flight. Hence, it has considerable potential for engineering applications, particularly in the aviation industry. Several publications have reported possible functions of serrations at artificial airfoils. However, only crude approximations of natural serrations have so far been investigated. We refer to these attempts as zero-order approximations of serrations. It was the goal of this study to present a quantitative three-dimensional characterization of natural serrations as first-order approximations (mean values) and second-order approximations (listed differences depending on the position of the serration along the leading edge). Confocal laser scanning microscopy was used for a three-dimensional reconstruction and investigation with high spatial resolution. Each serration was defined by its length, profile geometry and curvature. Furthermore, the orientation of the serrations at the leading edge was characterized by the inclination angle, the tilt angle and the separation distance of neighboring serrations. These data are discussed with respect to possible applications of serration-like structures for noise suppression and air-flow control. PMID:21507001

  9. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  10. Effective equilibrium states in mixtures of active particles driven by colored noise

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Brader, J. M.; Sharma, A.; Marconi, U. Marini Bettolo

    2018-01-01

    We consider the steady-state behavior of pairs of active particles having different persistence times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the particles are driven by colored noises with exponential correlation functions whose intensities and correlation times vary from species to species. By extending Fox's theory to many components, we derive by functional calculus an approximate Fokker-Planck equation for the configurational distribution function of the system. After illustrating the predicted distribution in the solvable case of two particles interacting via a harmonic potential, we consider systems of particles repelling through inverse power-law potentials. We compare the analytic predictions to computer simulations for such soft-repulsive interactions in one dimension and show that at linear order in the persistence times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body phenomena, such as demixing and depletion, by means of effective pair potentials.

  11. Aeolian geomorphology from the global perspective

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1985-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.

  12. Atomistic study of two-level systems in amorphous silica

    NASA Astrophysics Data System (ADS)

    Damart, T.; Rodney, D.

    2018-01-01

    Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.

  13. Active ion transport in dog tongue: a possible role in taste.

    PubMed

    DeSimone, J A; Heck, G L; DeSimone, S K

    1981-11-27

    An in vitro preparation of the dorsal epithelium of the dog tongue actively transports ions, producing a transepithelial potential difference characteristic of the ions and their concentration. Hypertonic sodium chloride solutions generally cause increased potentials and short-circuit currents and reduced resistances when placed on the mucosal surface. This hypertonic flux is eliminated by ouabain and is not found in ventral lingual epithelia. When either sodium acetate or tetramethylammonium chloride is substituted for sodium chloride in the mucosal medium, the currents are diminished but their sum at a given concentration approximates that for sodium chloride at the same concentration. This result suggests a current composed of inward sodium ion movement and outward chloride ion movement. Actively regulated potentials and currents, whether generated in the taste buds or in supporting cells, may be important in both normal chemotransduction and in taste responses evoked by currents passing through the tongue.

  14. Optimized nested Markov chain Monte Carlo sampling: theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Joshua D; Shaw, M Sam; Sewell, Thomas D

    2009-01-01

    Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples ofmore » the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.« less

  15. Steady and Oscillatory, Subsonic and Supersonic, Aerodynamic Pressure and Generalized Forces for Complex Aircraft Configurations and Applications to Flutter. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, L. T.

    1975-01-01

    A general method for analyzing aerodynamic flows around complex configurations is presented. By applying the Green function method, a linear integral equation relating the unknown, small perturbation potential on the surface of the body, to the known downwash is obtained. The surfaces of the aircraft, wake and diaphragm (if necessary) are divided into small quadrilateral elements which are approximated with hyperboloidal surfaces. The potential and its normal derivative are assumed to be constant within each element. This yields a set of linear algebraic equations and the coefficients are evaluated analytically. By using Gaussian elimination method, equations are solved for the potentials at the centroids of elements. The pressure coefficient is evaluated by the finite different method; the lift and moment coefficients are evaluated by numerical integration. Numerical results are presented, and applications to flutter are also included.

  16. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  17. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  18. Species differences in the formation of vabicaserin carbamoyl glucuronide.

    PubMed

    Tong, Zeen; Chandrasekaran, Appavu; DeMaio, William; Jordan, Ronald; Li, Hongshan; Moore, Robin; Poola, Nagaraju; Burghart, Peter; Hultin, Theresa; Scatina, JoAnn

    2010-04-01

    Vabicaserin is a potent 5-hydroxtryptamine 2C full agonist with therapeutic potential for a wide array of psychiatric disorders. Metabolite profiles indicated that vabicaserin was extensively metabolized via carbamoyl glucuronidation after oral administration in humans. In the present study, the differences in the extent of vabicaserin carbamoyl glucuronide (CG) formation in humans and in animals used for safety assessment were investigated. After oral dosing, the systemic exposure ratios of CG to vabicaserin were approximately 12 and up to 29 in monkeys and humans, respectively, and the ratios of CG to vabicaserin were approximately 1.5 and 1.7 in mice and dogs, respectively. These differences in systemic levels of CG are likely related to species differences in the rate and extent of CG formation and elimination. Whereas CG was the predominant circulating metabolite in humans and a major metabolite in mice, dogs, and monkeys, it was a relatively minor metabolite in rats, in which oxidative metabolism was the major metabolic pathway. Although the CG was not detected in plasma or urine of rats, approximately 5% of the dose was excreted in bile as CG in the 24-h collection postdose, indicating the rat had the metabolic capability of producing the CG. In vitro, in a CO(2)-enriched environment, the CG was the predominant metabolite in dog and human liver microsomes, a major metabolite in monkey and mice, and only a very minor metabolite in rats. Carbamoyl glucuronidation and hydroxylation had similar contributions to vabicaserin metabolism in mouse and monkey liver microsomes. However, only trace amounts of CG were formed in rat liver microsomes, and other metabolites were more prominent than the CG. In conclusion, significant differences in the extent of formation of the CG were observed among the various species examined. The exposure ratios of CG to vabicaserin were highest in humans, followed by monkeys, then mice and dogs, and lowest in rats, and the in vitro metabolite profiles generally correlated well with the in vivo metabolites.

  19. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Manoj K.; Gupta, Raj K.

    2011-11-01

    First, the nuclear proximity potential, obtained by using the semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), is shown to give more realistic barriers in frozen density approximation, as compared to the sudden approximation. Then, taking advantage of the fact that, in ETF method, different Skyrme forces give different barriers (height, position and curvature), we use the ℓ-summed extended-Wong model of Gupta and collaborators (2009) [1] under frozen densities approximation for calculating the cross-sections, where the Skyrme force is chosen with proper barrier characteristics, not-requiring additional "barrier modification" effects (lowering or narrowing, etc.), for a best fit to data at sub-barrier energies. The method is applied to capture cross-section data from 48Ca + 238U, 244Pu, and 248Cm reactions and to fusion-evaporation cross-sections from 58Ni + 58Ni, 64Ni + 64Ni, and 64Ni + 100Mo reactions, with effects of deformations and orientations of nuclei included, wherever required. Interestingly, whereas the capture cross-sections in Ca-induced reactions could be fitted to any force, such as SIII, SV and GSkI, by allowing a small change of couple of units in deduced ℓ-values at below-barrier energies, the near-barrier data point of 48Ca + 248Cm reaction could not be fitted to ℓ-values deduced for below-barrier energies, calling for a check of data. On the other hand, the fusion-evaporation cross-sections in Ni-induced reactions at sub-barrier energies required different Skyrme forces, representing "modifications of the barrier", for the best fit to data at all incident center-of-mass energies E's, displaying a kind of fusion hindrance at sub-barrier energies. This barrier modification effect is taken into care here by using different Skyrme forces for reactions belonging to different regions of the periodic table. Note that more than one Skyrme force (with identical barrier characteristics) could equally well fit the same data.

  20. Programmable Potentials: Approximate N-body potentials from coarse-level logic.

    PubMed

    Thakur, Gunjan S; Mohr, Ryan; Mezić, Igor

    2016-09-27

    This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the "coefficients" of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.

  1. Programmable Potentials: Approximate N-body potentials from coarse-level logic

    NASA Astrophysics Data System (ADS)

    Thakur, Gunjan S.; Mohr, Ryan; Mezić, Igor

    2016-09-01

    This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.

  2. Programmable Potentials: Approximate N-body potentials from coarse-level logic

    PubMed Central

    Thakur, Gunjan S.; Mohr, Ryan; Mezić, Igor

    2016-01-01

    This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out. PMID:27671683

  3. Domain wall suppression in trapped mixtures of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio

    2012-08-01

    The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.

  4. Regularized wave equation migration for imaging and data reconstruction

    NASA Astrophysics Data System (ADS)

    Kaplan, Sam T.

    The reflection seismic experiment results in a measurement (reflection seismic data) of the seismic wavefield. The linear Born approximation to the seismic wavefield leads to a forward modelling operator that we use to approximate reflection seismic data in terms of a scattering potential. We consider approximations to the scattering potential using two methods: the adjoint of the forward modelling operator (migration), and regularized numerical inversion using the forward and adjoint operators. We implement two parameterizations of the forward modelling and migration operators: source-receiver and shot-profile. For both parameterizations, we find requisite Green's function using the split-step approximation. We first develop the forward modelling operator, and then find the adjoint (migration) operator by recognizing a Fredholm integral equation of the first kind. The resulting numerical system is generally under-determined, requiring prior information to find a solution. In source-receiver migration, the parameterization of the scattering potential is understood using the migration imaging condition, and this encourages us to apply sparse prior models to the scattering potential. To that end, we use both a Cauchy prior and a mixed Cauchy-Gaussian prior, finding better resolved estimates of the scattering potential than are given by the adjoint. In shot-profile migration, the parameterization of the scattering potential has its redundancy in multiple active energy sources (i.e. shots). We find that a smallest model regularized inverse representation of the scattering potential gives a more resolved picture of the earth, as compared to the simpler adjoint representation. The shot-profile parameterization allows us to introduce a joint inversion to further improve the estimate of the scattering potential. Moreover, it allows us to introduce a novel data reconstruction algorithm so that limited data can be interpolated/extrapolated. The linearized operators are expensive, encouraging their parallel implementation. For the source-receiver parameterization of the scattering potential this parallelization is non-trivial. Seismic data is typically corrupted by various types of noise. Sparse coding can be used to suppress noise prior to migration. It is a method that stems from information theory and that we apply to noise suppression in seismic data.

  5. Prediction of surface tension of HFD-like fluids using the Fowler’s approximation

    NASA Astrophysics Data System (ADS)

    Goharshadi, Elaheh K.; Abbaspour, Mohsen

    2006-09-01

    The Fowler's expression for calculation of the reduced surface tension has been used for simple fluids using the Hartree-Fock Dispersion (HFD)-like potential (HFD-like fluids) obtained from the inversion of the viscosity collision integrals at zero pressure. In order to obtain the RDFs values needed for calculation of the surface tension, we have performed the MD simulation at different temperatures and densities and then fitted with an expression and compared the resulting RDFs with the experiment. Our results are in excellent accordance with experimental values when the vapor density has been considered, especially at high temperatures. We have also calculated the surface tension using a RDF's expression based on the Lennard-Jones (LJ) potential which was in good agreement with the molecular dynamics simulations. In this work, we have shown that our results based on HFD-like potential can describe the temperature dependence of the surface tension superior than that of LJ potential.

  6. Holographic QCD phase diagram with critical point from Einstein-Maxwell-dilaton dynamics

    NASA Astrophysics Data System (ADS)

    Knaute, J.; Yaresko, R.; Kämpfer, B.

    2018-03-01

    Supplementing the holographic Einstein-Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2 + 1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of approximately 5-8% by considering parameter variations and different low-temperature asymptotics for the second-order quark number susceptibility. The critical pressure as a function of the temperature has a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas-liquid one. The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order phase transition.

  7. Binding energy of the donor impurities in GaAs-Ga 1- x Al x As quantum well wires with Morse potential in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Aciksoz, Esra; Bayrak, Orhan; Soylu, Asim

    2016-10-01

    The behavior of a donor in the GaAs-Ga1-x Al x As quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (D e, r e, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential. Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.

  8. Kaon condensation in dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.; Heiselberg, H.; Pandharipande, V. R.

    The kaon energy in neutron matter is calculated analytically with the Klein-Gordon equation, by making a Wigner-Seitz cell approximation and employing a K{sup -}N square well potential. The transition from the low density Lenz potential, proportional to scattering length, to the high density Hartree potential is found to begin at fairly low densities. Exact nonrelativistic calculations of the kaon energy in a simple cubic crystal of neutrons are used to test the Wigner-Seitz and the Ericson-Ericson approximation methods. In this case the frequently used Erickson-Erickson approximation is found to be fairly accurate up to twice nuclear matter density. All themore » calculations indicate that by {approx}4 times nuclear matter density the Hartree limit is reached. We also show that in the Hartree limit the energy of zero momentum kaons does not have relativistic energy dependent factors present in the low density expansions. The results indicate that the density for kaon condensation is higher than previously estimated.« less

  9. Sex bias in paediatric autoimmune disease - Not just about sex hormones?

    PubMed

    Chiaroni-Clarke, Rachel C; Munro, Jane E; Ellis, Justine A

    2016-05-01

    Autoimmune diseases affect up to 10% of the world's population, and approximately 80% of those affected are female. The majority of autoimmune diseases occur more commonly in females, although some are more frequent in males, while others show no bias by sex. The mechanisms leading to sex biased disease prevalence are not well understood. However, for adult-onset autoimmune disease, at least some of the cause is usually ascribed to sex hormones. This is because levels of sex hormones are one of the most obvious physiological differences between adult males and females, and their impact on immune system function is well recognised. While for paediatric-onset autoimmune diseases a sex bias is not as common, there are several such diseases for which one sex predominates. For example, the oligoarticular subtype of juvenile idiopathic arthritis (JIA) occurs in approximately three times more girls than boys, with a peak age of onset well before the onset of puberty, and at a time when levels of androgen and oestrogen are low and not strikingly different between the sexes. Here, we review potential explanations for autoimmune disease sex bias with a particular focus on paediatric autoimmune disease, and biological mechanisms outside of sex hormone differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue

    DOE PAGES

    Shao, Xiongjun; DiMarco, Kay; Richard, Tom L.; ...

    2015-02-27

    We report that winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughlymore » constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained relatively constant while the early-harvest yielded much higher carbohydrate solubilization for both C. thermocellum fermentation and SSCF. C. thermocellum fermentation achieved higher carbohydrate solubilization than SSCF across all growth stages tested. In conclusion, although winter rye’s yield, composition, and biological reactivity change rapidly in the spring, it offers a substantial and stable income across the harvest season and thus flexibility for the farmer.« less

  11. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Xiongjun; DiMarco, Kay; Richard, Tom L.

    We report that winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughlymore » constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained relatively constant while the early-harvest yielded much higher carbohydrate solubilization for both C. thermocellum fermentation and SSCF. C. thermocellum fermentation achieved higher carbohydrate solubilization than SSCF across all growth stages tested. In conclusion, although winter rye’s yield, composition, and biological reactivity change rapidly in the spring, it offers a substantial and stable income across the harvest season and thus flexibility for the farmer.« less

  12. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    NASA Astrophysics Data System (ADS)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  13. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco

    2018-06-01

    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.

  14. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the discrepancies between different meteorological analyses. Met Office. NCEP, REAN, ECMWF and DAO analyses are commonly used for trajectory calculations and in chemical transport models; the choice of which analysis to use can strongly influence the results of such studies.

  15. Comparing different policy scenarios to reduce the consumption of ultra-processed foods in UK: impact on cardiovascular disease mortality using a modelling approach.

    PubMed

    Moreira, Patricia V L; Baraldi, Larissa Galastri; Moubarac, Jean-Claude; Monteiro, Carlos Augusto; Newton, Alex; Capewell, Simon; O'Flaherty, Martin

    2015-01-01

    The global burden of non-communicable diseases partly reflects growing exposure to ultra-processed food products (UPPs). These heavily marketed UPPs are cheap and convenient for consumers and profitable for manufacturers, but contain high levels of salt, fat and sugars. This study aimed to explore the potential mortality reduction associated with future policies for substantially reducing ultra-processed food intake in the UK. We obtained data from the UK Living Cost and Food Survey and from the National Diet and Nutrition Survey. By the NOVA food typology, all food items were categorized into three groups according to the extent of food processing: Group 1 describes unprocessed/minimally processed foods. Group 2 comprises processed culinary ingredients. Group 3 includes all processed or ultra-processed products. Using UK nutrient conversion tables, we estimated the energy and nutrient profile of each food group. We then used the IMPACT Food Policy model to estimate reductions in cardiovascular mortality from improved nutrient intakes reflecting shifts from processed or ultra-processed to unprocessed/minimally processed foods. We then conducted probabilistic sensitivity analyses using Monte Carlo simulation. Approximately 175,000 cardiovascular disease (CVD) deaths might be expected in 2030 if current mortality patterns persist. However, halving the intake of Group 3 (processed) foods could result in approximately 22,055 fewer CVD related deaths in 2030 (minimum estimate 10,705, maximum estimate 34,625). An ideal scenario in which salt and fat intakes are reduced to the low levels observed in Group 1 and 2 could lead to approximately 14,235 (minimum estimate 6,680, maximum estimate 22,525) fewer coronary deaths and approximately 7,820 (minimum estimate 4,025, maximum estimate 12,100) fewer stroke deaths, comprising almost 13% mortality reduction. This study shows a substantial potential for reducing the cardiovascular disease burden through a healthier food system. It highlights the crucial importance of implementing healthier UK food policies.

  16. Development of Uniform Microstructures in Immiscible Alloys by Processing in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Brush, L. N.

    1996-01-01

    Highly segregated macrostructures tend to develop during processing of hypermonotectic alloys because of the density difference existing between the two liquid phases. The approximately 4.6 seconds of low-gravity provided by Marshall Space Flight Center's 105 meter drop tube was utilized to minimize density-driven separation and promote uniform microstructures in hypermonotectic Ag-Ni and Ag-Mn alloys. For the Ag-Ni alloys a numerical model was developed to track heat flow and solidification of the bi-metal drop configuration. Results, potential applications, and future work are presented.

  17. High order filtering methods for approximating hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1991-01-01

    The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.

  18. Connection formulas for thermal density functional theory

    DOE PAGES

    Pribram-Jones, A.; Burke, K.

    2016-05-23

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  19. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  20. DFT investigation on electronic, magnetic, mechanical and thermodynamic properties under pressure of some EuMO3 (M  =  Ga, In) perovskites

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali

    2017-10-01

    The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M  =  Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.

  1. Micromechanical potentiometric sensors

    DOEpatents

    Thundat, Thomas G.

    2000-01-01

    A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

  2. First-Principles Molecular Dynamics Simulations of NaCl in Water: Performance of Advanced Exchange-Correlation Approximations in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    Our ability to correctly model the association of oppositely charged ions in water is fundamental in physical chemistry and essential to various technological and biological applications of molecular dynamics (MD) simulations. MD simulations using classical force fields often show strong clustering of NaCl in the aqueous ionic solutions as a consequence of a deep contact pair minimum in the potential of mean force (PMF) curve. First-Principles Molecular Dynamics (FPMD) based on Density functional theory (DFT) with the popular PBE exchange-correlation approximation, on the other hand, show a different result with a shallow contact pair minimum in the PMF. We employed two of most promising exchange-correlation approximations, ωB97xv by Mardiorossian and Head-Gordon and SCAN by Sun, Ruzsinszky and Perdew, to examine the PMF using FPMD simulations. ωB97xv is highly empirically and optimized in the space of range-separated hybrid functional with a dispersion correction while SCAN is the most recent meta-GGA functional that is constructed by satisfying various known conditions in well-defined physical limits. We will discuss our findings for PMF, charge transfer, water dipoles, etc.

  3. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    NASA Astrophysics Data System (ADS)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  4. Conjugate gradient and cross-correlation based least-square reverse time migration and its application

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun

    2017-09-01

    Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.

  5. Numerical Study of Nonlinear Structures of Locally Excited Marangoni Convection in the Long-Wave Approximation

    NASA Astrophysics Data System (ADS)

    Wertgeim, Igor I.

    2018-02-01

    We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.

  6. The 4th order GISS model of the global atmosphere

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Bayliss, A.; Storch, J.

    1977-01-01

    The new GISS 4th order model of the global atmosphere is described. It is based on 4th order quadratically conservative differences with the periodic application of a 16th order filter on the sea level pressure and potential temperature equations, a combination which is approximately enstrophy conserving. Several short range forecasts indicate a significant improvement over 2nd order forecasts with the same resolution (approximately 400 km). However the 4th order forecasts are somewhat inferior to 2nd order forecasts with double resolution. This is probably due to the presence of short waves in the range between 1000 km and 2000 km, which are computed more accurately by the 2nd order high resolution model. An operation count of the schemes indicates that with similar code optimization, the 4th order model will require approximately the same amount of computer time as the 2nd order model with the same resolution. It is estimated that the 4th order model with a grid size of 200 km provides enough accuracy to make horizontal truncation errors negligible over a period of a week for all synoptic scales (waves longer than 1000 km).

  7. RESIDUAL MUTAGENICITY OF THE ALASKAN OIL SPILL ORGANICS

    EPA Science Inventory

    RESIDUAL MUTAGENICITY OF THE ALASKAN OIL SPILL ORGANICS. L.D.

    The Exxon Valdez, on March 24, 1989, spilled approximately eleven million gallons of Prudhoe Bay crude oil into the waters of Prince William Sound. Approximately 300 miles of
    contaminated beach are potential...

  8. Validity of virial theorem in all-electron mixed basis density functional, Hartree–Fock, and GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Riichi; Accelrys K. K., Kasumigaseki Tokyu Building 17F, 3-7-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013; Tadokoro, Yoichi

    In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree–Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is inmore » excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA.« less

  9. Ray-theory approach to electrical-double-layer interactions.

    PubMed

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  10. BASIC INVESTIGATIONS IN PHOTOPOTENTIOMETRY.

    DTIC Science & Technology

    favorably with potentials calculated from the Nernst equation . The potentials are produced by a mechanism resembling a concentration cell with...transference. The effects of temperature and concentration are well defined by the Nernst equation . The observed potential at any time during the irradiation...is approximated by a potential calculated from the Nernst equation . (Author)

  11. Cumulant Green's function calculations of plasmon satellites in bulk sodium: Influence of screening and the crystal environment

    NASA Astrophysics Data System (ADS)

    Zhou, Jianqiang Sky; Gatti, Matteo; Kas, J. J.; Rehr, J. J.; Reining, Lucia

    2018-01-01

    We present ab initio calculations of the photoemission spectra of bulk sodium using different flavors of the cumulant expansion approximation for the Green's function. In particular, we study the dispersion and intensity of the plasmon satellites. We show that the satellite spectrum is much more sensitive to many details than the quasiparticle spectrum, which suggests that the experimental investigation of satellites could yield additional information beyond the usual studies of the band structure. In particular, a comparison to the homogeneous electron gas shows that the satellites are influenced by the crystal environment, although the crystal potential in sodium is weak. Moreover, the temperature dependence of the lattice constant is reflected in the position of the satellites. Details of the screening also play an important role; in particular, the contribution of transitions from 2 s and 2 p semicore levels influences the satellites, but not the quasiparticle. Moreover, inclusion of contributions to the screening beyond the random-phase approximation has an effect on the satellites. Finally, we elucidate the importance of the coupling of electrons and holes by comparing the results of the time-ordered and the retarded cumulant expansion approximations. Again, we find small but noticeable differences. Since all the small effects add up, our most advanced calculation yields a satellite position which is improved with respect to previous calculations by almost 1 eV. This stresses the fact that the calculation of satellites is much more delicate than the calculation of a quasiparticle band structure.

  12. A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation

    NASA Technical Reports Server (NTRS)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-01-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  13. First-principles energetics of water clusters and ice: A many-body analysis

    NASA Astrophysics Data System (ADS)

    Gillan, M. J.; Alfè, D.; Bartók, A. P.; Csányi, G.

    2013-12-01

    Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.

  14. Examining Management Success Potential.

    ERIC Educational Resources Information Center

    Quatrano, Louis A.

    The derivation of a model of management success potential in hospitals or health services administration is described. A questionnaire developed to assess management success potential in health administration students was voluntarily completed by approximately 700 incoming graduate students in 35 university health services administration programs…

  15. A forecast-based STDP rule suitable for neuromorphic implementation.

    PubMed

    Davies, S; Galluppi, F; Rast, A D; Furber, S B

    2012-08-01

    Artificial neural networks increasingly involve spiking dynamics to permit greater computational efficiency. This becomes especially attractive for on-chip implementation using dedicated neuromorphic hardware. However, both spiking neural networks and neuromorphic hardware have historically found difficulties in implementing efficient, effective learning rules. The best-known spiking neural network learning paradigm is Spike Timing Dependent Plasticity (STDP) which adjusts the strength of a connection in response to the time difference between the pre- and post-synaptic spikes. Approaches that relate learning features to the membrane potential of the post-synaptic neuron have emerged as possible alternatives to the more common STDP rule, with various implementations and approximations. Here we use a new type of neuromorphic hardware, SpiNNaker, which represents the flexible "neuromimetic" architecture, to demonstrate a new approach to this problem. Based on the standard STDP algorithm with modifications and approximations, a new rule, called STDP TTS (Time-To-Spike) relates the membrane potential with the Long Term Potentiation (LTP) part of the basic STDP rule. Meanwhile, we use the standard STDP rule for the Long Term Depression (LTD) part of the algorithm. We show that on the basis of the membrane potential it is possible to make a statistical prediction of the time needed by the neuron to reach the threshold, and therefore the LTP part of the STDP algorithm can be triggered when the neuron receives a spike. In our system these approximations allow efficient memory access, reducing the overall computational time and the memory bandwidth required. The improvements here presented are significant for real-time applications such as the ones for which the SpiNNaker system has been designed. We present simulation results that show the efficacy of this algorithm using one or more input patterns repeated over the whole time of the simulation. On-chip results show that the STDP TTS algorithm allows the neural network to adapt and detect the incoming pattern with improvements both in the reliability of, and the time required for, consistent output. Through the approximations we suggest in this paper, we introduce a learning rule that is easy to implement both in event-driven simulators and in dedicated hardware, reducing computational complexity relative to the standard STDP rule. Such a rule offers a promising solution, complementary to standard STDP evaluation algorithms, for real-time learning using spiking neural networks in time-critical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Examing the Effects of Different IMF, F10.7, and Auroral Inputs on the Thermospheric Neutral Winds

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Ridley, A. J.

    2003-12-01

    To obtain a better understanding of how the magnetosphere effects the global thermospheric and ionospheric structure, we conduct some numerical experiments using the University of Michigan's Global Ionosphere-Thermosphere Model (GITM). We have run GITM to roughly steady-state using different strengths of the high-latitude electric potential pattern, F10.7, and auroral inputs to determine how these effect the temporal history and stead-state of the thermospheric neutral winds. Our model reproduces the well known fact that the neutral winds are strongly driven by the ion convection above approximately 300 km, and that the ramp-up time is very dependent upon the altitude. We show quantitative results of the ramp-up times and maximum neutral wind speeds for the different driving conditions.

  17. Effect of EEG electrode density on dipole localization accuracy using two realistically shaped skull resistivity models.

    PubMed

    Laarne, P H; Tenhunen-Eskelinen, M L; Hyttinen, J K; Eskola, H J

    2000-01-01

    The effect of number of EEG electrodes on the dipole localization was studied by comparing the results obtained using the 10-20 and 10-10 electrode systems. Two anatomically detailed models with resistivity values of 177.6 omega m and 67.0 omega m for the skull were applied. Simulated potential values generated by current dipoles were applied to different combinations of the volume conductors and electrode systems. High and low resistivity models differed slightly in favour of the lower skull resistivity model when dipole localization was based on noiseless data. The localization errors were approximately three times larger using low resistivity model for generating the potentials, but applying high resistivity model for the inverse solution. The difference between the two electrode systems was minor in favour of the 10-10 electrode system when simulated, noiseless potentials were used. In the presence of noise the dipole localization algorithm operated more accurately using the denser electrode system. In conclusion, increasing the number of recording electrodes seems to improve the localization accuracy in the presence of noise. The absolute skull resistivity value also affects the accuracy, but using an incorrect value in modelling calculations seems to be the most serious source of error.

  18. Relaxation and approximate factorization methods for the unsteady full potential equation

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.

    1984-01-01

    The unsteady form of the full potential equation is solved in conservation form, using implicit methods based on approximate factorization and relaxation schemes. A local time linearization for density is introduced to enable solution to the equation in terms of phi, the velocity potential. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity, to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi obtained from requirements of density continuity. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. Results are presented for flows over airfoils, cylinders, and spheres. Comparisons are made with available Euler and full potential results.

  19. Measurement of the potential drop across the earth's collisionless bow shock

    NASA Technical Reports Server (NTRS)

    Formisano, V.

    1982-01-01

    The normal component of the dc electric field measured on ISEE-1 ordinarily exhibits an enhancement of a few mV/m over both upstream and downstream values at the earth's bow shock. Using the measured relative velocity between the shock and the spacecraft (from the ISEE-1/2 time delay in the magnetometer data), it is possible to transform the observed E enhancement to a potential drop (delta phi). For a subcritical shock the potential drop is found to be very close to the measured change of particle kinetic energy (delta phi, approximately 280 V on day 330, 1977), whereas for a supercritical shock the potential drop is only a fraction of the measured change of kinetic energy (delta phi, approximately 140 V on day 324, 1977).

  20. Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules

    DOE PAGES

    White, Alec F.; Head-Gordon, Martin; McCurdy, C. William

    2017-01-30

    The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less

  1. Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alec F.; Head-Gordon, Martin; McCurdy, C. William

    The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less

  2. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    PubMed Central

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is concluded that the inhibitory response to nerve stimulation and extract in the BRP may involve several ionic species. However, unlike that in gastrointestinal muscles the NANC response in the BRP is accompanied by an increased membrane resistance and does not primarily involve K+. The underlying mechanisms for the inhibitory response to both NANC nerve stimulation and inhibitory extract appear to be similar, compatible with the view that the latter may contain the inhibitory transmitter released from these nerves in this tissue. PMID:4027462

  3. Slow-roll approximation in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less

  4. Quantitative fundus autofluorescence in mice: correlation with HPLC quantitation of RPE lipofuscin and measurement of retina outer nuclear layer thickness.

    PubMed

    Sparrow, Janet R; Blonska, Anna; Flynn, Erin; Duncker, Tobias; Greenberg, Jonathan P; Secondi, Roberta; Ueda, Keiko; Delori, François C

    2013-04-17

    Our study was conducted to establish procedures and protocols for quantitative autofluorescence (qAF) measurements in mice, and to report changes in qAF, A2E bisretinoid concentration, and outer nuclear layer (ONL) thickness in mice of different genotypes and age. Fundus autofluorescence (AF) images (55° lens, 488 nm excitation) were acquired in albino Abca4(-/-), Abca4(+/-), and Abca4(+/+) mice (ages 2-12 months) with a confocal scanning laser ophthalmoscope (cSLO). Gray levels (GLs) in each image were calibrated to an internal fluorescence reference. The bisretinoid A2E was measured by quantitative high performance liquid chromatography (HPLC). Histometric analysis of ONL thicknesses was performed. The Bland-Altman coefficient of repeatability (95% confidence interval) was ±18% for between-session qAF measurements. Mean qAF values increased with age (2-12 months) in all groups of mice. qAF was approximately 2-fold higher in Abca4(-/-) mice than in Abca4(+/+) mice and approximately 20% higher in heterozygous mice. HPLC measurements of the lipofuscin fluorophore A2E also revealed age-associated increases, and the fold difference between Abca4(-/-) and wild-type mice was more pronounced (approximately 3-4-fold) than measurable by qAF. Moreover, A2E levels declined after 8 months of age, a change not observed with qAF. The decline in A2E levels in the Abca4(-/-) mice corresponded to reduced photoreceptor cell viability as reflected in ONL thinning beginning at 8 months of age. The qAF method enables measurement of in vivo lipofuscin and the detection of genotype and age-associated differences. The use of this approach has the potential to aid in understanding retinal disease processes and will facilitate preclinical studies.

  5. Impacts of the Minamata Convention for Mercury Emissions from Coal-fired Power Generation in Asia

    NASA Astrophysics Data System (ADS)

    Giang, A.; Stokes, L. C.; Streets, D. G.; Corbitt, E. S.; Selin, N. E.

    2014-12-01

    We explore the potential implications of the recently signed United Nations Minamata Convention on Mercury for emissions from coal-fired power generation in Asia, and the impacts of these emissions changes on deposition of mercury worldwide by 2050. We use qualitative interviews, document analysis, and engineering analysis to create plausible technology scenarios consistent with the Convention, taking into account both technological and political factors. We translate these scenarios into possible emissions inventories for 2050, based on IPCC development scenarios, and then use the GEOS-Chem global transport model to evaluate the effect of these different technology choices on mercury deposition over geographic regions and oceans. We find that China is most likely to address mercury control through co-benefits from technologies for SO2, NOx, and particulate matter (PM) capture that will be required to attain its existing air quality goals. In contrast, India is likely to focus on improvements to plant efficiency such as upgrading boilers, and coal washing. Compared to current technologies, we project that these changes will result in emissions decreases of approximately 140 and 190 Mg/yr for China and India respectively in 2050, under an A1B development scenario. With these emissions reductions, simulated average gross deposition over India and China are reduced by approximately 10 and 3 μg/m2/yr respectively, and the global average concentration of total gaseous mercury (TGM) is reduced by approximately 10% in the Northern hemisphere. Stricter, but technologically feasible, requirements for mercury control in both countries could lead to an additional 200 Mg/yr of emissions reductions. Modeled differences in concentration and deposition patterns between technology suites are due to differences in both the mercury removal efficiency of technologies and their resulting stack speciation.

  6. Communication: On the consistency of approximate quantum dynamics simulation methods for vibrational spectra in the condensed phase.

    PubMed

    Rossi, Mariana; Liu, Hanchao; Paesani, Francesco; Bowman, Joel; Ceriotti, Michele

    2014-11-14

    Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here, we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer model and a mixed quantum-classical model as representatives of the first family of methods, and centroid molecular dynamics and thermostatted ring polymer molecular dynamics as examples of the latter. We use as benchmarks D2O doped with HOD and pure H2O at three distinct thermodynamic state points (ice Ih at 150 K, and the liquid at 300 K and 600 K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm(-1). Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.

  7. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas.

    PubMed

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  8. Detection of sequence variation in parasite ribosomal DNA by electrophoresis in agarose gels supplemented with a DNA-intercalating agent.

    PubMed

    Zhu, X Q; Chilton, N B; Gasser, R B

    1998-05-01

    This study evaluated the use of a commercially available DNA intercalating agent (Resolver Gold) in agarose gels for the direct detection of sequence variation in ribosomal DNA (rDNA). This agent binds preferentially to AT sequence motifs in DNA. Regions of nuclear rDNA, known to provide genetic markers for the identification of species of parasitic ascarid nematodes (order Ascaridida), were amplified by polymerase chain reaction (PCR) and subjected to electrophoresis in standard agarose gels versus gels supplemented with Resolver Gold. Individual taxa examined could not be distinguished reliably based on the size of their amplicons in standard agarose gels, whereas they could be readily delineated based on mobility using Resolver Gold-supplemented gels. The latter was achieved because of differences (approximately 0.1-8.2%) in the AT content of the fragments among different taxa, which were associated with significant interspecific differences (approximately 11-39%) in the rDNA sequences employed. There was a tendency for fragments with higher AT content to migrate slower in supplemented agarose gels compared with those of lower AT content. The results indicate the usefulness of this electrophoretic approach to rapidly screen for sequence variability within or among PCR-amplified rDNA fragments of similar sizes but differing AT contents. Although evaluated on rDNA of parasites, the approach has potential to be applied to a range of genes of different groups of infectious organisms.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effectsmore » by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.« less

  10. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

    PubMed

    Shi, Ran; Guo, Ying

    2016-12-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  11. Potentials of Mean Force With Ab Initio Mixed Hamiltonian Models of Solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Michel; Schenter, Gregory K.; Garrett, Bruce C.

    2003-08-01

    We give an account of a computationally tractable and efficient procedure for the calculation of potentials of mean force using mixed Hamiltonian models of electronic structure where quantum subsystems are described with computationally intensive ab initio wavefunctions. The mixed Hamiltonian is mapped into an all-classical Hamiltonian that is amenable to a thermodynamic perturbation treatment for the calculation of free energies. A small number of statistically uncorrelated (solute-solvent) configurations are selected from the Monte Carlo random walk generated with the all-classical Hamiltonian approximation. Those are used in the averaging of the free energy using the mixed quantum/classical Hamiltonian. The methodology ismore » illustrated for the micro-solvated SN2 substitution reaction of methyl chloride by hydroxide. We also compare the potential of mean force calculated with the above protocol with an approximate formalism, one in which the potential of mean force calculated with the all-classical Hamiltonian is simply added to the energy of the isolated (non-solvated) solute along the reaction path. Interestingly the latter approach is found to be in semi-quantitative agreement with the full mixed Hamiltonian approximation.« less

  12. The potential global market size and public health value of an HIV-1 vaccine in a complex global market.

    PubMed

    Marzetta, Carol A; Lee, Stephen S; Wrobel, Sandra J; Singh, Kanwarjit J; Russell, Nina; Esparza, José

    2010-07-05

    An effective HIV vaccine will be essential for the control of the HIV pandemic. This study evaluated the potential global market size and value of a hypothetical HIV vaccine and considered clade diversity, disease burden, partial prevention of acquisition, impact of a reduction in viral load resulting in a decrease in transmission and delay to treatment, health care system differences regarding access, and HIV screening and vaccination, across all public and private markets. Vaccine product profiles varied from a vaccine that would have no effect on preventing infection to a vaccine that would effectively prevent infection and reduce viral load. High disease burden countries (HDBC; HIV prevalence > or = 1%) were assumed to routinely vaccinate pre-sexually active adolescents (10 years old), whereas low disease burden countries (LDBC; HIV prevalence rate <1%) were assumed to routinely vaccinate higher risk populations only. At steady state, routine vaccination demand for vaccines that would prevent infection only was 22-61 million annual doses with a potential market value of $210 million to $2.7 billion, depending on the vaccine product profile. If one-time catch-up campaigns were included (11-14 years old for HDBC and higher risk groups for LDBC), the additional cumulative approximately 70-237 million doses were needed over a 10-year period with a potential market value of approximately $695 million to $13.4 billion, depending on the vaccine product profile. Market size and value varied across market segments with the majority of the value in high income countries and the majority of the demand in low income countries. However, the value of the potential market in low income countries is still significant with up to $550 million annually for routine vaccination only and up to $1.7 billion for a one-time only catch-up campaign in 11-14 years old. In the most detail to date, this study evaluated market size and value of a potential multi-clade HIV vaccine, accounting for differences in disease burden, product profile and health care complexities. These findings provide donors and suppliers highly credible new data to consider in their continued efforts to develop an HIV-1 vaccine to address the worldwide disease burden. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  14. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices

    DTIC Science & Technology

    2006-08-15

    approximations to the metric, and space mapping wherein low-accuracy (coarse mesh) solutions can potentially be used more effectively in an...interface and algorithm development. • Work on space - mapping or related methods for utilizing models of varying levels of approximation within an

  15. Potential savings from redetermining disability among children receiving supplemental security income benefits.

    PubMed

    Pulcini, Christian D; Kotelchuck, Milton; Kuhlthau, Karen A; Nozzolillo, Alixandra A; Perrin, James M

    2012-01-01

    To compare the costs of redetermining disability to potential savings in Supplemental Security Income payments associated with different strategies for implementing Continuing Disability Reviews (CDRs) among children potentially enrolled in SSI from 2012 to 2021. We reviewed publicly available reports from the Social Security Administration and Government Accountability Office to estimate costs and savings. We considered CDRs for children ages 1-17 years, excluding mandated low-birth weight and age 18 redeterminations that SSA routinely has performed. If in 2012 the Social Security Administration performs the same number of CDRs for children as in 2010 (16,677, 1% of eligibles) at a cessation rate of 15%, the agency would experience net savings of approximately $145 million in benefit payments. If CDR numbers increased to the greatest level ever (183,211, 22% of eligibles, in 1999) at the same cessation rate, the agency would save approximately $1.6 billion in benefit payments. Increasing the numbers of CDRs for children represents a considerable opportunity for savings. Recognizing the dynamic nature of disability, the agency could reassess the persistence of disability systematically; doing so could free up resources from children who are no longer eligible and help the agency better direct its benefits to recipients with ongoing disability and whose families need support to meet the extra costs associated with raising a child with a major disability. Copyright © 2012 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  16. The Orbital precession around oblate spheroids

    NASA Astrophysics Data System (ADS)

    Montanus, J. M. C.

    2006-07-01

    An exact series will be given for the gravitational potential generated by an oblate gravitating source. To this end the corresponding Epstein-Hubbell type elliptic integral is evaluated. The procedure is based on the Legendre polynomial expansion method and on combinatorial techniques. The result is of interest for gravitational models based on the linearity of the gravitational potential. The series approximation for such potentials is of use for the analysis of orbital motions around a nonspherical source. It can be considered advantageous that the analysis is purely algebraic. Numerical approximations are not required. As an important example, the expression for the orbital precession will be derived for an object orbiting around an oblate homogeneous spheroid.

  17. Relativistic symmetries in the Rosen—Morse potential and tensor interaction using the Nikiforov—Uvarov method

    NASA Astrophysics Data System (ADS)

    Sameer, M. Ikhdair; Majid, Hamzavi

    2013-04-01

    Approximate analytical bound-state solutions of the Dirac particle in the fields of attractive and repulsive Rosen—Morse (RM) potentials including the Coulomb-like tensor (CLT) potential are obtained for arbitrary spin-orbit quantum number κ. The Pekeris approximation is used to deal with the spin-orbit coupling terms κ (κ± 1)r-2. In the presence of exact spin and pseudospin (p-spin) symmetries, the energy eigenvalues and the corresponding normalized two-component wave functions are found by using the parametric generalization of the Nikiforov—Uvarov (NU) method. The numerical results show that the CLT interaction removes degeneracies between the spin and p-spin state doublets.

  18. Effective potentials in nonlinear polycrystals and quadrature formulae

    NASA Astrophysics Data System (ADS)

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  19. Effective potentials in nonlinear polycrystals and quadrature formulae.

    PubMed

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471 , 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  20. Mean-trajectory approximation for electronic and vibrational-electronic nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Loring, Roger F.

    2017-04-01

    Mean-trajectory approximations permit the calculation of nonlinear vibrational spectra from semiclassically quantized trajectories on a single electronically adiabatic potential surface. By describing electronic degrees of freedom with classical phase-space variables and subjecting these to semiclassical quantization, mean-trajectory approximations may be extended to compute both nonlinear electronic spectra and vibrational-electronic spectra. A general mean-trajectory approximation for both electronic and nuclear degrees of freedom is presented, and the results for purely electronic and for vibrational-electronic four-wave mixing experiments are quantitatively assessed for harmonic surfaces with linear electronic-nuclear coupling.

Top