Kurbel, Sven; Borzan, Vladimir; Golem, Hilda; Dinjar, Kristijan
2017-02-01
Reported cochlear potential values of near 150 mV are often attributed to endolymph itself, although membrane potentials result from ion fluxes across the adjacent semipermeable membranes due to concentration gradients. Since any two fluids separated by a semipermeable membrane develop potential due to differences in solute concentrations, a proposed interpretation here is that positive potential emanates from the Reissner membrane due to small influx of sodium from perilymph to endolymph. Basolateral hair cell membranes leak potassium into the interstitial fluid and this negative potential inside hair cells further augments the electric gradient of cochlear potential. Taken together as a sum, these two potentials are near the reported values of cochlear potential. This is based on reported data for cochlear fluids used for the calculation of Nernst and Goldman potentials. The reported positive potential of Reissner membrane can be explained almost entirely by the traffic of Na+ that enters endolymph through this membrane. At the apical membrane of hair cells, acoustic stimulation modulates stereocillia permeability to potassium. Potassium concentration gradients on the apical membrane are low (the calculated Nernst value is <+3 mV), suggesting that the potassium current is not caused by the local potassium concentration gradient, but an electric field between the positive sodium generated potential on the Reissner membrane and negative inside hair cells. Potassium is forced by this overall electric field to enter hair cells when stereocilia are permeable due to mechanical bending. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chong
The electrical potential difference has been estimated across the mixing region of two plasmas with different degrees of ionization. The estimation has been carried out in two different contexts of a charge neutral mixing region and a charge non-neutral sheath. Ion energy gained due to the potential difference has also been estimated. In both analyses, ion energy gain is proportional to the degree of ionization, and a fairly large ionization appears to be needed for overcoming the potential energy barrier of strongly coupled plasmas.
Pérez, Alejandro; von Lilienfeld, O Anatole
2011-08-09
Thermodynamic integration, perturbation theory, and λ-dynamics methods were applied to path integral molecular dynamics calculations to investigate free energy differences due to "alchemical" transformations. Several estimators were formulated to compute free energy differences in solvable model systems undergoing changes in mass and/or potential. Linear and nonlinear alchemical interpolations were used for the thermodynamic integration. We find improved convergence for the virial estimators, as well as for the thermodynamic integration over nonlinear interpolation paths. Numerical results for the perturbative treatment of changes in mass and electric field strength in model systems are presented. We used thermodynamic integration in ab initio path integral molecular dynamics to compute the quantum free energy difference of the isotope transformation in the Zundel cation. The performance of different free energy methods is discussed.
[Loudness optimized registration of compound action potential in cochlear implant recipients].
Berger, Klaus; Hocke, Thomas; Hessel, Horst
2017-11-01
Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.
USDA-ARS?s Scientific Manuscript database
Production potential of many soils is affected by low supply of nutrients due to adverse constraints or spatio-temporal variation of soil physical and chemical properties. New oilseed crops differ in their nutrient needs for maximum performance in different soils and may not be able to economically ...
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Tunheim, J. A.; Heilman, J.
1977-01-01
The author has identified the following significant results. The finite difference model was used to calculate the differences in surface temperature between two hypothetical sites which result from a temperature difference at 50 cm due to the presence of shallow ground water at one of the sites. Although qualitative results of the model seemed consistant with experimental results, further evaluation showed a need for taking account of differences in thermal conductivity due to different moisture profiles at the two sites considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez
2015-01-19
Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor andmore » acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.« less
Recognition of LPS by TLR4: Potential for Anti-Inflammatory Therapies
Nijland, Reindert; Hofland, Tom; van Strijp, Jos A. G.
2014-01-01
LPS molecules of marine bacteria show structures distinct from terrestrial bacteria, due to the different environment that marine bacteria live in. Because of these different structures, lipid A molecules from marine bacteria are most often poor stimulators of the Toll-like receptor 4 (TLR4) pathway. Due to their low stimulatory potential, these lipid A molecules are suggested to be applicable as antagonists of TLR4 signaling in sepsis patients, where this immune response is amplified and unregulated. Antagonizing lipid A molecules might be used for future therapies against sepsis, therapies that currently do not exist. In this review, we will discuss these differences in lipid A structures and their recognition by the immune system. The modifications present in marine lipid A structures are described, and their potential as LPS antagonists will be discussed. Finally, since clinical trials built on antagonizing lipid A molecules have proven unsuccessful, we propose to also focus on different aspects of the TLR4 signaling pathway when searching for new potential drugs. Furthermore, we put forward the notion that bacteria probably already produce inhibitors of TLR4 signaling, making these bacterial products interesting molecules to investigate for future sepsis therapies. PMID:25056632
NASA Astrophysics Data System (ADS)
Moss, Jamal H.; Beauchamp, David A.; Cross, Alison D.; Farley, Edward V.; Murphy, James M.; Helle, John H.; Walker, Robert V.; Myers, Katherine W.
2009-12-01
A bioenergetic model of juvenile pink salmon ( Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 ( P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d -1, shelf habitat=0.806 g d -1, offshore habitat=0.820 g d -1, and nearshore habitat=0.703 g d -1) and not significantly different ( P=0.630). Consumption demand differed significantly between hatchery and wild stocks ( P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant ( P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.
Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Farley, E.V.; Murphy, J.M.; Helle, J.H.; Walker, R.V.; Myers, K.W.
2009-01-01
A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d-1, shelf habitat=0.806 g d-1, offshore habitat=0.820 g d-1, and nearshore habitat=0.703 g d-1) and not significantly different (P=0.630). Consumption demand differed significantly between hatchery and wild stocks (P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.
29 CFR 503.23 - Civil money penalty assessment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... penalties that are equal to the difference between the amount that should have been paid and the amount that... the violator achieved a financial gain due to the violation, or the potential financial loss or potential injury to the workers. ...
29 CFR 503.23 - Civil money penalty assessment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... penalties that are equal to the difference between the amount that should have been paid and the amount that... the violator achieved a financial gain due to the violation, or the potential financial loss or potential injury to the workers. ...
29 CFR 503.23 - Civil money penalty assessment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... penalties that are equal to the difference between the amount that should have been paid and the amount that... the violator achieved a financial gain due to the violation, or the potential financial loss or potential injury to the workers. ...
Topological States in Partially-PT -Symmetric Azimuthal Potentials
NASA Astrophysics Data System (ADS)
Kartashov, Yaroslav V.; Konotop, Vladimir V.; Torner, Lluis
2015-11-01
We introduce partially-parity-time (p PT ) -symmetric azimuthal potentials composed from individual PT -symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potential excitations carrying topological dislocations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such nonconservative ratchetlike structures support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely charged vortex solitons remain equivalent in similar fully-P T -symmetric potentials. The vortex solitons in the p P T - and P T -symmetric potentials are shown to feature qualitatively different internal current distributions, which are described by different discrete rotation symmetries of the intensity profiles.
NASA Astrophysics Data System (ADS)
Ibragimova, M. A.; Kozlovskiy, A. L.; Kenzhina, I. E.; Zdorovets, M. V.
2018-04-01
A series of CoZnO nanotubes was obtained by electrochemical deposition, with different atomic metal coefficients, due to a change in the applied potential difference. A systematic study of the morphology, structural and conductive properties of nanotubes was also carried out. It is established that the samples synthesized at the applied potentials difference of 1.5 and 1.75 V are three-component systems consisting of two oxide phases of ZnO and CoO1.92 cubic system and a phase of a solid solution of substitution Co0.65Zn0.35 of hexagonal type. The samples synthesized at a potential difference of 2.0 V represent an alloy of two oxide phases, ZnO and CoO1.92.
Ha, Chul-Won; Kim, Jin A; Heo, Jin-Chul; Han, Woo-Jung; Oh, Soo-Young; Choi, Suk-Joo
2017-01-01
Background The placenta is a very attractive source of mesenchymal stem cells (MSCs) for regenerative medicine due to readily availability, non-invasive acquisition, and avoidance of ethical issues. Isolating MSCs from parts of placenta tissue has obtained growing interest because they are assumed to exhibit different proliferation and differentiation potentials due to complex structures and functions of the placenta. The objective of this study was to isolate MSCs from different parts of the placenta and compare their characteristics. Methods Placenta was divided into amniotic epithelium (AE), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), chorionic trophoblast without villi (CT-V), decidua (DC), and whole placenta (Pla). Cells isolated from each layer were subjected to analyses for their morphology, proliferation ability, surface markers, and multi-lineage differentiation potential. MSCs were isolated from all placental layers and their characteristics were compared. Findings Surface antigen phenotype, morphology, and differentiation characteristics of cells from all layers indicated that they exhibited properties of MSCs. MSCs from different placental layers had different proliferation rates and differentiation potentials. MSCs from CM, CT-V, CV, and DC had better population doubling time and multi-lineage differentiation potentials compared to those from other layers. Conclusions Our results indicate that MSCs with different characteristics can be isolated from all layers of term placenta. These finding suggest that it is necessary to appropriately select MSCs from different placental layers for successful and consistent outcomes in clinical applications. PMID:28225815
Laser Radiation Pressure Acceleration of Monoenergetic Protons in an Ultra-Thin Foil
NASA Astrophysics Data System (ADS)
Eliasson, Bengt; Liu, Chuan S.; Shao, Xi; Sagdeev, Roald Z.; Shukla, Padma K.
2009-11-01
We present theoretical and numerical studies of the acceleration of monoenergetic protons in a double layer formed by the laser irradiation of an ultra-thin film. The stability of the foil is investigated by direct Vlasov-Maxwell simulations for different sets of laser-plasma parameters. It is found that the foil is stable, due to the trapping of both electrons and ions in the thin laser-plasma interaction region, where the electrons are trapped in a potential well composed of the ponderomo-tive potential of the laser light and the electrostatic potential due to the ions, and the ions are trapped in a potential well composed of the inertial potential in an accelerated frame and the electrostatic potential due to the electrons. The result is a stable double layer, where the trapped ions are accelerated to monoenergetic energies up to 100 MeV and beyond, which makes them suitable for medical applications cancer treatment. The underlying physics of trapped and untapped ions in a double layer is also investigated theoretically and numerically.
Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores
NASA Astrophysics Data System (ADS)
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.
2017-12-01
When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.
High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...
Inter-layer potential for hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded
2014-03-01
A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.
INNOVATIVE TOOLS AND METHODS FOR ASSESSING CHILDREN'S POTENTIAL CHEMICAL EXPOSURE
Children's exposures to environmental contaminants are different than adults, due in part to differences in physiologic functions. Research on children's exposure to environmental contaminants is currently being performed within EPA, academia, industry, and other research organi...
Surface tension, surface energy, and chemical potential due to their difference.
Hui, C-Y; Jagota, A
2013-09-10
It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.
NASA Astrophysics Data System (ADS)
Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.
2017-12-01
Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.
NASA Astrophysics Data System (ADS)
Keeley, N.; Mackintosh, R. S.
2018-01-01
Background: Precise fitting of scattering observables suggests that the nucleon-nucleus interaction is l dependent. Such l dependence has been shown to be S -matrix equivalent to an undulatory l -independent potential. The undulations include radial regions where the imaginary term is emissive. Purpose: To study the dynamical polarization potential (DPP) generated in proton-16O and neutron-16O interaction potentials by coupling to pickup channels. Undulatory features occurring in these DPPs can be compared with corresponding features of empirical optical model potentials (OMPs). Furthermore, the additional inclusion of coupling to vibrational states of the target will provide evidence for dynamically generated nonlocality. Methods: The fresco code provides the elastic channel S -matrix Sl j for chosen channel couplings. Inversion, Sl j→V (r ) +l .s VSO(r ) , followed by subtraction of the bare potential, yields an l -independent and local representation of the DPP due to the chosen couplings. Results: The DPPs have strongly undulatory features, including radial regions of emissivity. Certain features of empirical DPPs appear, e.g., the full inverted potential has emissive regions. The DPPs for different collective states are additive except near the nuclear center, whereas the collective and reaction channel DPPs are distinctly nonadditive over a considerable radial range, indicating dynamical nonlocality. Substantial differences between the DPPs due to pickup coupling for protons and neutrons occur; these imply a greater difference between proton and neutron OMPs than the standard phenomenological prescription. Conclusions: The onus is on those who object to undularity in the local and l -independent representation of nucleon elastic scattering to show why such undulations do not occur. This work suggests that it is not legitimate to halt model-independent fits to high-quality data at the appearance of undularity.
PCBs in the Last Frontier: A Case Study on the Scientific Method
ERIC Educational Resources Information Center
Tessmer, Michael
2005-01-01
Polychlorinated biphenyls (PCBs) are compounds that were once used as insulators in electrical transmission lines and in the production of polymers. Each PCB differs by the quantity and location of the chlorine atoms. PCB production was halted in 1977 due to their potential toxicity, but the chemicals are still found in the environment due to…
Multiple use management preferences by visitors with differing leisure identity salience
Ingrid E. Schneider; Patricia B. Winter
1998-01-01
Multiple use area management is of particular interest to both outdoor and urban planners due to an increase in and diversity of users. These areas pose special management challenges due to the diverse and potential conflicting interests involved. Diverse users are frequently excluded from management decisions, however. Further, when visitor input is solicited, it is...
NASA Astrophysics Data System (ADS)
Ranjit, N. K.; Shit, G. C.
2017-09-01
This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).
Using geographic information systems to evaluate cardiac arrest survival.
Warden, Craig R; Daya, Mohamud; LeGrady, Lara A
2007-01-01
To evaluate cardiac arrest survival using geographical information systems (GIS) methodology. Patient data were obtained from a fire district Utstein-style adult cardiac arrest registry that also included address data. All incident locations were geocoded and fire station first-due areas were mapped by using the new computer-aided dispatch geographic data. Retrospective assignment of first-due versus second-due fire response unit was done by using a GIS "point-in-polygon" algorithm Survival to hospital admission was the primary outcome measure for incidents responded to by first-due versus second-due apparatus controlling for other potential predictors of survival using logistic regression. Cluster analysis was also performed to evaluate potential areas of high or low rates of survival. There were 461 eligible patients with an average age of 67+/-17 years, 63% were male, 53% had a witnessed arrest, bystander cardiopulmonary resuscitation was performed in 38%, bystander automatic external defibrillator (AED) Page: 1 was used in 0.01%, ventricular fibrillation or ventricular tachycardia were the presenting rhythms in 44%, the average response time was 5.5+/-2.1 minutes, and survival to hospital admission was 17%. There was no significant difference in response time between survivors (4.97 minutes) and non-survivors (5.52 minutes), (difference 0.55 minutes, 95%CI -0.08 to 1.18 min). The number of cardiac arrest calls varied from 1 to 49 for each station and the rate of second-due response varied from 0 to 19%. There was a nonsignificant association of survival to hospital admission for the first-due area cohort: odds ratio 0.70, 95% CI 0.38-1.29. GIS is a new methodology for analyzing EMS incident data. It adds a spatial component of analysis to traditional statistical techniques. No spatial difference was found on patient survival in this analysis.
An Overview of Electron Acceptors in Microbial Fuel Cells
Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini
2017-01-01
Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators. PMID:28469607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, A.; Schmidt, O. G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, 09107 Chemnitz
2016-04-25
Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.
Yoshimura, Tatsuya; Nagatani, Hirohisa; Osakai, Toshiyuki
2014-05-01
The fluorescence behavior of anionic membrane-potential-sensitive dyes, bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3)) and bis-(1,3-diethylthiobarbituric acid)trimethine oxonol (DiSBAC2(3)), at a biomimetic 1,2-dichloroethane (DCE)/water (W) interface was studied by the mean of potential-modulated fluorescence (PMF) spectroscopy. The respective dyes gave a well-defined PMF signal due to the adsorption/desorption at the DCE/W interface. It was also found that the potentials where the two dyes gave the PMF signals were different by about 100 mV. We then attempted a combined use of the two dyes for determination of the Galvani potential difference across the DCE/W interface. When 40 μM DiBAC4(3) and 15 μM DiSBAC2(3) were initially added to the W phase, distinctly different spectra were obtained for different interfacial potentials. The ratio of the PMF signal intensities at 530 and 575 nm (the fluorescence maximum wavelengths for the respective dyes) showed a clear dependence on the interfacial potential. These results suggested the potential utility of the combined use of two dyes for the determination of membrane potentials in vivo.
Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan
2015-10-01
Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai Mountains and the south of Lesser Khingan Mountains, measures could be taken to increase the efficiency of resource utilization such as rational close-planting, selection of droughtresistant varieties, proper and timely fertilization, farming for soil water storage, optimization of crop layout and so on.
Imprint of thawing scalar fields on the large scale galaxy overdensity
NASA Astrophysics Data System (ADS)
Dinda, Bikash R.; Sen, Anjan A.
2018-04-01
We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.
Applications and toxicity of graphene family nanomaterials and their composites
Singh, Zorawar
2016-01-01
Graphene has attracted much attention of scientific community due to its enormous potential in different fields, including medical sciences, agriculture, food safety, cancer research, and tissue engineering. The potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene family nanomaterials (GFNs). Due to their unique chemical and physical properties, graphene and its derivatives have found important places in their respective application fields, yet they are being found to have cytotoxic and genotoxic effects too. Since the discovery of graphene, a number of researches are being conducted to find out the toxic potential of GFNs to different cell and animal models, finding their suitability for being used in new and varied innovative fields. This paper presents a systematic review of the research done on GFNs and gives an insight into the mode and action of these nanosized moieties. The paper also emphasizes on the recent and up-to-date developments in research on GFNs and their nanocomposites for their toxic effects. PMID:27051278
NASA Astrophysics Data System (ADS)
Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi
2017-04-01
Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.
Oceanographic Effects on Maritime Threats: Mines and Oil Spills in the Strait of Hormuz
2007-03-01
could potentially be used (Kreil, 2004). The full flow potential for all the pipelines together is about seven million barrels of oil a day... potential oil spills, and drift mining could mean the difference for a faster recovery from an incident at this choke point. The faster the clean...θ is potential temperature, g is the acceleration due to gravity, 1Λ is the dissipation length scale, , , and wu v′ ′ ′ denote the components
12 CFR 617.7415 - How does a qualified lender decide to restructure a loan?
Code of Federal Regulations, 2013 CFR
2013-01-01
... cost of foreclosure? (1) The difference between the outstanding balance due, as provided by the loan... qualified lender determines the potential cost to the lender of restructuring the loan as proposed in the application for restructuring is less than or equal to the potential cost of foreclosure, the qualified lender...
12 CFR 617.7415 - How does a qualified lender decide to restructure a loan?
Code of Federal Regulations, 2011 CFR
2011-01-01
... cost of foreclosure? (1) The difference between the outstanding balance due, as provided by the loan... qualified lender determines the potential cost to the lender of restructuring the loan as proposed in the application for restructuring is less than or equal to the potential cost of foreclosure, the qualified lender...
12 CFR 617.7415 - How does a qualified lender decide to restructure a loan?
Code of Federal Regulations, 2012 CFR
2012-01-01
... cost of foreclosure? (1) The difference between the outstanding balance due, as provided by the loan... qualified lender determines the potential cost to the lender of restructuring the loan as proposed in the application for restructuring is less than or equal to the potential cost of foreclosure, the qualified lender...
NASA Astrophysics Data System (ADS)
Rizal, A.; Dhahiyat, Y.; Zahidah; Andriani, Y.; Handaka, A. A.; Sahidin, A.
2018-04-01
Aquaponics is an evolving closed-system food production technology that integrates recirculating aquaculture with hydroponics. In this paper we give a brief literature overview of the benefit aspects of aquaponics by discussing its social, environmental, and economic impacts in different potential settings. The technology might be applied to commercial or community based urban food production, industrial scale production in rural areas, small scale farming in developing countries or as systems for education and decoration inside buildings. We concluded that due to the different potential applications and settings for installing the technology, benefit impacts need to be considered separately and that due the complexity, communities, urban and rural infrastructure and policy settings, further research and data acquisition is needed to be able to assess all benefit aspects.
High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Özcan, Meriac
2006-02-01
In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.
Effective Ion Heating in Guide Field Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Horiuchi, Ritoku; Usami, Shunsuke; Ono, Yasushi
2017-10-01
The energy conversion mechanism for ion perpendicular thermal energy is investigated by means of two-dimensional, full particle simulations in an open system. It is shown that ions gain kinetic energy due to the plasma potential drop, which is caused by the charge separation in the one pair of separatrix arms. Based on the force balance in the inflow direction, the strength of the normalized charge density can be expressed by electron Alfvén velocity, which is measurable value in the laboratory experiment and/or satellite observation. Meanwhile, we found that the accelerated ions form a ring shape like distribution in f(v1 ,v2) , as a result, the ion perpendicular temperature Ti , perp increases from inflow region. Here, both v1 and v2 are perpendicular to the magnetic field and v2 is parallel to the in-plane. The mixing of particle populations is verified by means of tracing ions and it is shown three typical particle orbits and each orbit has different entry angle to the potential drop. This ring shape like distribution consists three different population due to the difference of the entry angles to the potential drop. This mixing process will thermalize ions and produce entropy without collisions.
Two-temperature Brownian dynamics of a particle in a confining potential
NASA Astrophysics Data System (ADS)
Mancois, Vincent; Marcos, Bruno; Viot, Pascal; Wilkowski, David
2018-05-01
We consider the two-dimensional motion of a particle in a confining potential, subject to Brownian orthogonal forces associated with two different temperatures. Exact solutions are obtained for an asymmetric harmonic potential in the overdamped and underdamped regimes. For more general confining potentials, a perturbative approach shows that the stationary state exhibits some universal properties. The nonequilibrium stationary state is characterized with a nonzero orthoradial mean current, corresponding to a global rotation of the particle around the center. The rotation is due to two broken symmetries: two different temperatures and a mismatch between the principal axes of the confining asymmetric potential and the temperature axes. We confirm our predictions by performing a Brownian dynamics simulation. Finally, we propose to observe this effect on a laser-cooled atomic gas.
Exosomes and their role in the micro-/macro-environment: a comprehensive review
Javeed, Naureen; Mukhopadhyay, Debabrata
2017-01-01
The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care. PMID:28290182
Exosomes and their role in the micro-/macro-environment: a comprehensive review.
Javeed, Naureen; Mukhopadhyay, Debabrata
2017-09-26
The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care.
An induced current method for measuring zeta potential of electrolyte solution-air interface.
Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing
2014-02-15
This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.
Devendra Amatya; S. Tian; Z. Dai; Ge Sun
2016-01-01
A reliable estimate of potential evapotranspiration (PET) for a forest ecosystem is critical in ecohydrologic modeling related with water supply, vegetation dynamics, and climate change and yet is a challenging task due to its complexity. Based on long-term on-site measured hydro-climatic data and predictions from earlier validated hydrologic modeling studies...
Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Kaplar, Robert J.
2017-02-01
Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.
Time-dependent local potential in a Tomonaga-Luttinger liquid
NASA Astrophysics Data System (ADS)
Kamar, Naushad Ahmad; Giamarchi, Thierry
2017-12-01
We study the energy deposition in a one-dimensional interacting quantum system with a pointlike potential modulated in amplitude. The pointlike potential at position x =0 has a constant part and a small oscillation in time with a frequency ω . We use bosonization, renormalization group, and linear response theory to calculate the corresponding energy deposition. It exhibits a power law behavior as a function of the frequency that reflects the Tomonaga-Luttinger liquid (TLL) nature of the system. Depending on the interactions in the system, characterized by the TLL parameter K of the system, a crossover between weak and strong coupling for the backscattering due to the potential is possible. We compute the frequency scale ω*, at which such crossover exists. We find that the energy deposition due to the backscattering shows different exponents for K >1 and K <1 . We discuss possible experimental consequences, in the context of cold atomic gases, of our theoretical results.
Dykstra, Jordan A.; Facile, Tiffany; Patrick, Ryan J.; Francis, Kevin R.; Milanovich, Samuel; Weimer, Jill M.
2017-01-01
Abstract Due to their capacity to self‐renew, proliferate and generate multi‐lineage cells, adult‐derived stem cells offer great potential for use in regenerative therapies to stop and/or reverse degenerative diseases such as diabetes, heart failure, Alzheimer's disease and others. However, these subsets of cells can be isolated from different niches, each with differing potential for therapeutic applications. The stromal vascular fraction (SVF), a stem cell enriched and adipose‐derived cell population, has garnered interest as a therapeutic in regenerative medicine due to its ability to secrete paracrine factors that accelerate endogenous repair, ease of accessibility and lack of identified major adverse effects. Thus, one can easily understand the rush to employ adipose‐derived SVF to treat human disease. Perhaps faster than any other cell preparation, SVF is making its way to clinics worldwide, while critical preclinical research needed to establish SVF safety, efficacy and optimal, standardized clinical procedures are underway. Here, we will provide an overview of the current knowledge driving this phenomenon, its regulatory issues and existing studies, and propose potential unmapped applications. Stem Cells Translational Medicine 2017;6:1096–1108 PMID:28186685
Hazardous waste containment's primary objective is to isolate wastes deemed as hazardous from man and environmental systems of air, soil, and water. Hazardous wastes differ from other waste classifications due to their increased potential to cause human health effects or environ...
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
The application of the probabilistic risk assessment methodology to a Space Shuttle environment, particularly to the potential of losing the Shuttle during nominal operation is addressed. The different related concerns are identified and combined to determine overall program risks. A fault tree model is used to allocate system probabilities to the subsystem level. The loss of the vehicle due to failure to contain energetic gas and debris, to maintain proper propulsion and configuration is analyzed, along with the loss due to Orbiter, external tank failure, and landing failure or error.
EMI from Spacecraft Docking Systems Spacecraft Charging - Plasma Contact Potentials
NASA Technical Reports Server (NTRS)
Norgard, John D.; Scully, Robert; Musselman, Randall
2012-01-01
The plasma contact potential of a visiting vehicle (VV), such as the Orion Service Module (SM), is determined while docking at the Orion Crew Exploration Vehicle (CEV). Due to spacecraft charging effects on-orbit, the potential difference between the CEV and the VV can be large at docking, and an electrostatic discharge (ESD) could occur at capture, which could degrade, disrupt, damage, or destroy sensitive electronic equipment on the CEV and/or VV. Analytical and numerical models of the CEV are simulated to predict the worst-case potential difference between the CEV and the VV when the CEV is unbiased (solar panels unlit: eclipsed in the dark and inactive) or biased (solar panels sunlit: in the light and active).
Full-potential modeling of blade-vortex interactions
NASA Technical Reports Server (NTRS)
Jones, H. E.; Caradonna, F. X.
1986-01-01
A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.
Surface charging of a crater near lunar terminator
NASA Astrophysics Data System (ADS)
Anuar, A. K.
2017-05-01
Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.
Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A
2016-01-01
Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the equilibrium cycle cores due to hardened (or softened) spectrum. This study shows minimal impact of SiC-based cladding configurations on the transient response versus reference zirconium-based cladding. However, the FeCrAl cladding response indicates similar energy deposition, but with significantly shorter pulses of higher magnitude. Therefore the FeCrAl-based cases have a more rapid fuel thermal expansion rate and the resultant pellet-cladding interaction occurs more rapidly.« less
The Role of Brincidofovir in Preparation for a Potential Smallpox Outbreak.
Foster, Scott A; Parker, Scott; Lanier, Randall
2017-10-30
Smallpox (variola) virus is considered a Category A bioterrorism agent due to its ability to spread rapidly and the high morbidity and mortality rates associated with infection. Current recommendations recognize the importance of oral antivirals and call for having at least two smallpox antivirals with different mechanisms of action available in the event of a smallpox outbreak. Multiple antivirals are recommended due in large part to the propensity of viruses to become resistant to antiviral therapy, especially monotherapy. Advances in synthetic biology heighten concerns that a bioterror attack with variola would utilize engineered resistance to antivirals and potentially vaccines. Brincidofovir, an oral antiviral in late stage development, has proven effective against orthopoxviruses in vitro and in vivo, has a different mechanism of action from tecovirimat (the only oral smallpox antiviral currently in the US Strategic National Stockpile), and has a resistance profile that reduces concerns in the scenario of a bioterror attack using genetically engineered smallpox. Given the devastating potential of smallpox as a bioweapon, preparation of a multi-pronged defense that accounts for the most obvious bioengineering possibilities is strategically imperative.
NASA Astrophysics Data System (ADS)
Cukurova, Mutlu; Bennett, Judith; Abrahams, Ian
2018-01-01
Background: Recently, there is a growing interest in independent learning approaches globally. This is, at least in part, due to an increased demand for so-called '21st century skills' and the potential of independent learning to improve student skills to better prepare them for the future.
ERIC Educational Resources Information Center
Jansen, Amanda; Herbel-Eisenmann, Beth; Smith, John P., III
2012-01-01
Transitions from middle school to high school mathematics programs can be problematic for students due to potential differences between instructional approaches and curriculum materials. Given the minimal research on how students experience such differences, we report on the experiences of two students as they moved out of an integrated,…
{rho}-{omega} mixing and spin dependent charge-symmetry violating potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.
2008-10-15
We construct the charge symmetry violating (CSV) nucleon-nucleon potential induced by the {rho}{sup 0}-{omega} mixing due to the neutron-proton mass difference driven by the NN loop. Analytical expression for the two-body CSV potential is presented containing both the central and noncentral NN interaction. We show that the {rho}NN tensor interaction can significantly enhance the charge symmetry violating NN interaction even if the momentum dependent off-shell {rho}{sup 0}-{omega} mixing amplitude is considered. It is also shown that the inclusion of form factors removes the divergence arising out of the contact interaction. Consequently, we see that the precise size of the computedmore » scattering length difference depends on how the short-range aspects of the CSV potential are treated.« less
Wang, Yanqing; Burrell, Brian D
2016-08-01
Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl(-) gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl(-) export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl(-) equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl(-) import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl(-) import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl(-) gradients between neurons in determining the sign, potentiation vs. depression, of synaptic modulation under normal physiological conditions. Copyright © 2016 the American Physiological Society.
Wang, Yanqing
2016-01-01
Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl− gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana. Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl− export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl− equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl− import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl− import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl− gradients between neurons in determining the sign, potentiation vs. depression, of synaptic modulation under normal physiological conditions. PMID:27226449
Branched GDGT distributions in lakes from Mexico and Central America
NASA Astrophysics Data System (ADS)
Lei, A.; Werne, J. P.; Correa-Metrio, A.; Pérez, L.; Caballero, M.
2017-12-01
The potential to use bacterial derived branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct mean annual air temperatures from soils sparked significant interest in the terrestrial paleoclimate community, where a high-fidelity paleotemperature proxy is desperately needed. While the source of brGDGTs remains unknown (but are potentially attributed to the highly diverse phylum Acidobacteria), much evidence points to the potential for these bacteria to live not only in the terrestrial environment but also in lake water and sediments as well. Though the application of brGDGTs to lacustrine reconstructions is promising, the initial applications of soil-based MBT/CBT proxy to lacustrine sediments typically resulted in lower temperatures than were reasonable, likely due to additions from lacustrine bacterial brGDGTs. Here, we present data from a suite of >100 lakes in Mexico and Central America, producing a regional core-top calibration different from those developed in other regions. Results indicate a significant role for regional differences in controlling the brGDGTs distribution, likely due to different brGDGT-producing microbial communities thriving under varying environmental conditions. Rigorous development of brGDGT based proxies will improve our understanding of the source and applicability of these biomarkers, and increase confidence in the accuracy of paleotemperature reconstructions to numerous lacustrine records in the region.
Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.
Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter
2015-08-31
Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year.
Use and application of gelatin as potential biodegradable packaging materials for food products.
Nur Hanani, Z A; Roos, Y H; Kerry, J P
2014-11-01
The manufacture and potential application of biodegradable films for food application has gained increased interest as alternatives to conventional food packaging polymers due to the sustainable nature associated with their availability, broad and abundant source range, compostability, environmentally-friendly image, compatibility with foodstuffs and food application, etc. Gelatin is one such material and is a unique and popularly used hydrocolloid by the food industry today due to its inherent characteristics, thereby potentially offering a wide range of further and unique industrial applications. Gelatin from different sources have different physical and chemical properties as they contain different amino acid contents which are responsible for the varying characteristics observed upon utilization in food systems and when being utilized more specifically, in the manufacture of films. Packaging films can be successfully produced from all gelatin sources and the behaviour and characteristics of gelatin-based films can be altered through the incorporation of other food ingredients to produce composite films possessing enhanced physical and mechanical properties. This review will present the current situation with respect to gelatin usage as a packaging source material and the challenges that remain in order to move the manufacture of gelatin-based films nearer to commercial reality. Copyright © 2014 Elsevier B.V. All rights reserved.
Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing
Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter
2015-01-01
Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5–181 Nm3·tonFM−1), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248
Paediatric in-patient prescribing errors in Malaysia: a cross-sectional multicentre study.
Khoo, Teik Beng; Tan, Jing Wen; Ng, Hoong Phak; Choo, Chong Ming; Bt Abdul Shukor, Intan Nor Chahaya; Teh, Siao Hean
2017-06-01
Background There is a lack of large comprehensive studies in developing countries on paediatric in-patient prescribing errors in different settings. Objectives To determine the characteristics of in-patient prescribing errors among paediatric patients. Setting General paediatric wards, neonatal intensive care units and paediatric intensive care units in government hospitals in Malaysia. Methods This is a cross-sectional multicentre study involving 17 participating hospitals. Drug charts were reviewed in each ward to identify the prescribing errors. All prescribing errors identified were further assessed for their potential clinical consequences, likely causes and contributing factors. Main outcome measures Incidence, types, potential clinical consequences, causes and contributing factors of the prescribing errors. Results The overall prescribing error rate was 9.2% out of 17,889 prescribed medications. There was no significant difference in the prescribing error rates between different types of hospitals or wards. The use of electronic prescribing had a higher prescribing error rate than manual prescribing (16.9 vs 8.2%, p < 0.05). Twenty eight (1.7%) prescribing errors were deemed to have serious potential clinical consequences and 2 (0.1%) were judged to be potentially fatal. Most of the errors were attributed to human factors, i.e. performance or knowledge deficit. The most common contributing factors were due to lack of supervision or of knowledge. Conclusions Although electronic prescribing may potentially improve safety, it may conversely cause prescribing errors due to suboptimal interfaces and cumbersome work processes. Junior doctors need specific training in paediatric prescribing and close supervision to reduce prescribing errors in paediatric in-patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Aartee, E-mail: aartee.sharma08@gmail.com; Yadav, N.; Ghosh, S.
2015-07-31
A detailed study of the quantum modification of acousto-helicon wave spectra due to Bohm potential and Fermi degenerate pressure in colloids laden semiconductor plasma has been presented. We have used quantum hydrodynamic model of plasmas to arrive at most general dispersion relation in presence of magnetic field. This dispersion relation has been analyzed in three different velocity regimes and the expressions for gain constants have been obtained. From the present study it has been concluded that the quantum effect and the magnetic field significantly modify the wave characteristics particularly in high doping regime in semiconductor plasma medium in presence ofmore » colloids in it.« less
Jang, J; Seo, J K
2015-06-01
This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.
Computational study of small molecule binding for both tethered and free conditions
2010-01-01
Using a calix[4]arene-benzene complex as a test system we compare the potential of mean force for when the calix[4]arene is tethered versus free. When the complex is in vacuum our results show that the difference between tethered and free is primarily due to the entropic contribution to the potential of mean force resulting in a significant binding free energy difference of 6.6 kJ/mol. By contrast, when the complex is in water our results suggest that there is no appreciable difference between tethered and free. This study elucidates the roles of entropy and enthalpy for this small molecule system and emphasizes the point that tethering the receptor has the potential to dramatically impact the binding properties. These findings should be taken into consideration when using calixarene molecules in nanosensor design. PMID:20369865
20 CFR 408.903 - How do we determine the amount of an underpayment or overpayment?
Code of Federal Regulations, 2010 CFR
2010-04-01
... overpayment is the difference between the amount you are paid and the amount you are due for a given period. An underpayment or overpayment period begins with the first month for which there is a difference... underpayment. Where we have detected a potential overpayment but we have not made a determination of the...
20 CFR 408.903 - How do we determine the amount of an underpayment or overpayment?
Code of Federal Regulations, 2011 CFR
2011-04-01
... overpayment is the difference between the amount you are paid and the amount you are due for a given period. An underpayment or overpayment period begins with the first month for which there is a difference... underpayment. Where we have detected a potential overpayment but we have not made a determination of the...
20 CFR 408.903 - How do we determine the amount of an underpayment or overpayment?
Code of Federal Regulations, 2013 CFR
2013-04-01
... overpayment is the difference between the amount you are paid and the amount you are due for a given period. An underpayment or overpayment period begins with the first month for which there is a difference... underpayment. Where we have detected a potential overpayment but we have not made a determination of the...
20 CFR 408.903 - How do we determine the amount of an underpayment or overpayment?
Code of Federal Regulations, 2012 CFR
2012-04-01
... overpayment is the difference between the amount you are paid and the amount you are due for a given period. An underpayment or overpayment period begins with the first month for which there is a difference... underpayment. Where we have detected a potential overpayment but we have not made a determination of the...
20 CFR 408.903 - How do we determine the amount of an underpayment or overpayment?
Code of Federal Regulations, 2014 CFR
2014-04-01
... overpayment is the difference between the amount you are paid and the amount you are due for a given period. An underpayment or overpayment period begins with the first month for which there is a difference... underpayment. Where we have detected a potential overpayment but we have not made a determination of the...
Word Order Processing in a Second Language: From VO to OV
ERIC Educational Resources Information Center
Erdocia, Kepa; Zawiszewski, Adam; Laka, Itziar
2014-01-01
Event-related potential studies on second language processing reveal that L1/L2 differences are due either to proficiency, age of acquisition or grammatical differences between L1 and L2 (Kotz in "Brain Lang" 109(2-3):68-74, 2009). However, the relative impact of these and other factors in second language processing is still not well…
The profile of wounding in civilian public mass shooting fatalities.
Smith, Edward Reed; Shapiro, Geoff; Sarani, Babak
2016-07-01
The incidence and severity of civilian public mass shootings (CPMS) continue to rise. Initiatives predicated on lessons learned from military woundings have placed strong emphasis on hemorrhage control, especially via use of tourniquets, as means to improve survival. We hypothesize that both the overall wounding pattern and the specific fatal wounds in CPMS events are different from those in military combat fatalities and thus may require a new management strategy. A retrospective study of autopsy reports for all victims involved in 12 CPMS events was performed. Civilian public mass shootings was defined using the FBI and the Congressional Research Service definition. The site of injury, probable site of fatal injury, and presence of potentially survivable injury (defined as survival if prehospital care is provided within 10 minutes and trauma center care within 60 minutes of injury) was determined independently by each author. A total 139 fatalities consisting of 371 wounds from 12 CPMS events were reviewed. All wounds were due to gunshots. Victims had an average of 2.7 gunshots. Relative to military reports, the case fatality rate was significantly higher, and incidence of potentially survivable injuries was significantly lower. Overall, 58% of victims had gunshots to the head and chest, and only 20% had extremity wounds. The probable site of fatal wounding was the head or chest in 77% of cases. Only 7% of victims had potentially survivable wounds. The most common site of potentially survivable injury was the chest (89%). No head injury was potentially survivable. There were no deaths due to exsanguination from an extremity. The overall and fatal wounding patterns following CPMS are different from those resulting from combat operations. Given that no deaths were due to extremity hemorrhage, a treatment strategy that goes beyond use of tourniquets is needed to rescue the few victims with potentially survivable injuries. Prognostic/epidemiologic study, level IV; therapeutic/care management study, level V.
Speroni, Lucia; Bustuoabad, Victoria de Los Angeles; Gasparri, Julieta; Chiaramoni, Nadia Silvia; Taira, María Cristina; Ruggiero, Raúl Alejandro; Alonso, Silvia Del Valle
2009-02-01
MC-C fibrosarcoma and B16F0 melanoma tumors were implanted intradermally in the dorsal region of the foot of mice. Tumor progression was compared to standard implantation in the flank. Although foot tumors only reached 13% (MC-C) and 25% (B16F0) of the mean volume of flank tumors, a more malignant phenotype in terms of histology and survival rate was observed in this type of tumors. Moreover, lung metastases were only detected in hosts bearing foot tumors, in contrast to MC-C and B16F0 populations with tumors growing in the flank. In addition, cellular influx and local immune reaction were higher in the dorsal region of the foot. According to our results, the dermis of the flank allows excessive tumor growth due to its low reactivity. Thus, differences in innate and adaptive immune effectors between the evaluated tumor microenvironments would account for the differences in tumor malignancy. Due to its striking differences with the standard flank inoculation, the tumor implantation model herein introduced could be a valuable tool to study the metastatic potential of different cell lines and the microenvironment components affecting tumor growth.
Chiral magnetic effect without chirality source in asymmetric Weyl semimetals
NASA Astrophysics Data System (ADS)
Kharzeev, Dmitri E.; Kikuchi, Yuta; Meyer, René
2018-05-01
We describe a new type of the chiral magnetic effect (CME) that should occur in Weyl semimetals (WSMs) with an asymmetry in the dispersion relations of the left- and right-handed (LH and RH) chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source can generate a non-vanishing chiral chemical potential. This is due to the different capacities of the LH and RH chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation for a rotationally invariant WSM with different Fermi velocities in the left and right chiral Weyl cones; we also consider the case of a WSM with Weyl nodes at different energies. We argue that this effect is generically present in WSMs with different dispersion relations for LH and RH chiral Weyl cones, such as SrSi2 recently predicted as a WSM with broken inversion and mirror symmetries, as long as the chiral relaxation time is much longer than the transport scattering time.
Simulation of 'stationary' SAP and SEP phenomena by 2-dimensional potential field modelling.
Cunningham, K; Halliday, A M; Jones, S J
1986-11-01
In order to model the distribution of potentials in the hand due to antidromic SAP propagation and in the body due to afferent conduction of the median nerve volley, 2-dimensional matrices of the appropriate shape were constructed, each containing a 'generator' consisting of up to 3 'source' and 3 'sink' points. The value of the field potential at other sites was calculated using a finite difference method. It was shown that the potential gradient is virtually zero in matrix zones which are separated from the region containing the generator by a constriction in the boundary of the conductor. Points on the far side of the constriction remain virtually equipotential, at a level determined by the potential at the junction. This is naturally influenced by the proximity of the generator, so that as the generator approaches the constriction a potential difference will develop between points on the far side, irrespective of their distance from the junction, and other remote parts of the matrix. In the context of human SAPs and SEPs, such factors may be of paramount importance in the generation of so-called 'stationary' or 'far-field' potentials. With additional postulates concerning the manner in which the SAP is attenuated by the termination of axons as it propagates through the hand, and the course taken by the median nerve volley between the arm and neck, it was possible to model the majority of stationary SAP phenomena described by Kimura et al. (1984), and also the distribution and latency of the P9 SEP component following median nerve stimulation.
Potential disruption of protein-protein interactions by graphene oxide
NASA Astrophysics Data System (ADS)
Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong
2016-06-01
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.
Potential disruption of protein-protein interactions by graphene oxide.
Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong
2016-06-14
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.
Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers
NASA Astrophysics Data System (ADS)
N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.
2015-09-01
Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.
(Non-)Arguments in Long-Distance Extractions.
Nyvad, Anne Mette; Kizach, Johannes; Christensen, Ken Ramshøj
2015-10-01
Previous research has shown that in fully grammatical sentences, response time increases and acceptability decreases when the filler in a long-distance extraction is incompatible with the matrix verb. This effect could potentially be due to a difference between argument and adjunct extraction. In this paper we investigate the effect of long extraction of arguments and adjuncts where incompatibility is kept constant. Based on the results from two offline surveys and an online experiment, we argue that the argument/adjunct asymmetry in terms of acceptability is due to differences in processing difficulty, but that both types of extraction involve the same intermediate attachment sites in the online processing.
Development of a Computerized Data Base to Monitor Wheeled Vehicle Corrosion
1989-10-01
the region which corrodes. This potential difference , or voltage of these little batteries or cells, is due to the difference in the oxygen...availability at the point of attack. Differential aeration cells occur at all places where there is a difference in the availability of oxygen and can only...program is actually an evaluation of the various corrosion prevention systems and methods which were applied to the wheeled vehicles when they were
Donald Campbell's doubt: cultural difference or failure of communication?
Shweder, Richard A
2010-06-01
The objection, rightfully noted but then dismissed by Henrich et al., that the observed variation across populations "may be due to various methodological artifacts that arise from translating experiments across contexts" is a theoretically profound and potentially constructive criticism. It parallels Donald Campbell's concern that many cultural differences reported by psychologists "come from failures of communication misreported as differences." Ironically, Campbell's doubt is a good foundation for investigations in cultural psychology.
NASA Astrophysics Data System (ADS)
Lee, Han Soo; Shimoyama, Tomohisa; Popinet, Stéphane
2015-10-01
The impacts of tides on extreme tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea (SIS), Japan, are investigated through numerical experiments. Tsunami experiments are conducted based on five scenarios that consider tides at four different phases, such as flood, high, ebb, and low tides. The probes that were selected arbitrarily in the Bungo and Kii Channels show less significant effects of tides on tsunami heights and the arrival times of the first waves than those that experience large tidal ranges in inner basins and bays of the SIS. For instance, the maximum tsunami height and the arrival time at Toyomaesi differ by more than 0.5 m and nearly 1 h, respectively, depending on the tidal phase. The uncertainties defined in terms of calculated maximum tsunami heights due to tides illustrate that the calculated maximum tsunami heights in the inner SIS with standing tides have much larger uncertainties than those of two channels with propagating tides. Particularly in Harima Nada, the uncertainties due to the impacts of tides are greater than 50% of the tsunami heights without tidal interaction. The results recommend simulate tsunamis together with tides in shallow water environments to reduce the uncertainties involved with tsunami modeling and predictions for tsunami hazards preparedness. This article was corrected on 26 OCT 2015. See the end of the full text for details.
Insight into Environmental Effects on Bonding and Redox Properties of [4Fe-4S] Clusters in Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Shuqiang; Ichiye, Toshiko
The large differences in redox potentials between the HiPIPs and ferredoxins are generally attributed to hydrogen bonds and electrostatic effects from the protein and solvent. Recent ligand K-edge X-ray absorption studies by Solomon and co-workers show that the Fe-S covalencies of [4Fe-4S] clusters in the two proteins differ considerably apparently because of hydrogen bonds from water, indicating electronic effects may be important. However, combined density function theory (DFT) and photoelectron spectroscopy studies by our group and Wang and co-workers indicate that hydrogen bonds tune the potential of [4Fe-4S] clusters by mainly electrostatics. The DFT studies here rationalize both results, namelymore » that the observed change in the Fe-S covalency is due to differences in ligand conformation between the two proteins rather than hydrogen bonds. Moreover, the ligand conformation affects the calculated potentials by 100 mV and, thus, is a heretofore unconsidered means of tuning the potential.« less
Evidence against a hypothesis of vestibular efferent function
NASA Technical Reports Server (NTRS)
Cochran, S. L.
1994-01-01
Efferent stimulation and nicotinic agonists can either decrease or increase the frequency of occurrence of EPSPs recorded from VIIIth nerve afferents in the frog. It has been hypothesized that the distribution of hair cell resting membrane potentials overlaps the equilibrium potential dictated by the nicotinic-gated channels on the hair cells. Nicotinic mediated increases in EPSP frequency would then be due to depolarization of hair cells that were more hyperpolarized at rest, while decreases in EPSP frequency would be due to hyperpolarization of hair cells more depolarized at rest. In order to test this hypothesis, while recording from afferents which showed an increase in EPSP frequency due to bath application of the nicotinic agonist DMPP (1,1-dimethyl-4-phenylpiperizinium iodide), hair cells were depolarized with 10 mM K+ in the bath, and then the effects of DMPP on EPSP frequency were assessed. In this situation, DMPP still increased EPSP frequency, suggesting that the equilibrium potential for the nicotinic-gated channel was much more positive than the resting potentials of the hair cells. An alternative hypothesis then seems likely, that the nicotinic receptors on hair cells are able to activate different iontophores that result in either hair cell depolarization or hyperpolarization, dependent upon which iontophore predominates in the hair cells innervating a particular afferent.
Fortier, Pierre A; Bray, Chelsea
2013-04-16
Previous studies revealed mechanisms of dendritic inputs leading to action potential initiation at the axon initial segment and backpropagation into the dendritic tree. This interest has recently expanded toward the communication between different parts of the dendritic tree which could preprocess information before reaching the soma. This study tested for effects of asymmetric voltage attenuation between different sites in the dendritic tree on summation of synaptic inputs and action potential initiation using the NEURON simulation environment. Passive responses due to the electrical equivalent circuit of the three-dimensional neuron architecture with leak channels were examined first, followed by the responses after adding voltage-gated channels and finally synaptic noise. Asymmetric attenuation of voltage, which is a function of asymmetric input resistance, was seen between all pairs of dendritic sites but the transfer voltages (voltage recorded at the opposite site from stimulation among a pair of dendritic sites) were equal and also summed linearly with local voltage responses during simultaneous stimulation of both sites. In neurons with voltage-gated channels, we reproduced the observations where a brief stimulus to the proximal ascending dendritic branch of a pyramidal cell triggers a local action potential but a long stimulus triggers a somal action potential. Combined stimulation of a pair of sites in this proximal dendrite did not alter this pattern. The attraction of the action potential onset toward the soma with a long stimulus in the absence of noise was due to the higher density of voltage-gated sodium channels at the axon initial segment. This attraction was, however, negligible at the most remote distal dendritic sites and was replaced by an effect due to high input resistance. Action potential onset occurred at the dendritic site of higher input resistance among a pair of remote dendritic sites, irrespective of which of these two sites received the synaptic input. Exploration of the parameter space showed how the gradient of voltage-gated channel densities and input resistances along a dendrite could draw the action potential onset away from the stimulation site. The attraction of action potential onset toward the higher density of voltage-gated channels in the soma during stimulation of the proximal dendrite was, however, reduced after the addition of synaptic noise. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C B; Lakshmipriya, Thangavel; Tang, Thean-Hock
2015-01-01
Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.
NASA Astrophysics Data System (ADS)
Celis, A.; Nair, M. N.; Sicot, M.; Nicolas, F.; Kubsky, S.; Malterre, D.; Taleb-Ibrahimi, A.; Tejeda, A.
2018-05-01
We have studied the influence of one-dimensional periodic nanostructured substrates on graphene band structure. One-monolayer-thick graphene is extremely sensitive to periodic terrace arrays, as demonstrated on two different nanostructured substrates, namely Ir(332) and multivicinal curved Pt(111). Photoemission shows the presence of minigaps related to the spatial periodicity. The potential barrier strength of the one-dimensional periodic nanostructuration can be tailored with the step-edge type and the nature of the substrate. The minigap opening further demonstrates the presence of backward scattered electronic waves on the surface and the absence of Klein tunneling on the substrate, probably due to the fast variation of the potential, of a spatial extent of the order of the lattice parameter of graphene.
Young's moduli of carbon materials investigated by various classical molecular dynamics schemes
NASA Astrophysics Data System (ADS)
Gayk, Florian; Ehrens, Julian; Heitmann, Tjark; Vorndamme, Patrick; Mrugalla, Andreas; Schnack, Jürgen
2018-05-01
For many applications classical carbon potentials together with classical molecular dynamics are employed to calculate structures and physical properties of such carbon-based materials where quantum mechanical methods fail either due to the excessive size, irregular structure or long-time dynamics. Although such potentials, as for instance implemented in LAMMPS, yield reasonably accurate bond lengths and angles for several carbon materials such as graphene, it is not clear how accurate they are in terms of mechanical properties such as for instance Young's moduli. We performed large-scale classical molecular dynamics investigations of three carbon-based materials using the various potentials implemented in LAMMPS as well as the EDIP potential of Marks. We show how the Young's moduli vary with classical potentials and compare to experimental results. Since classical descriptions of carbon are bound to be approximations it is not astonishing that different realizations yield differing results. One should therefore carefully check for which observables a certain potential is suited. Our aim is to contribute to such a clarification.
Effect of Base Sequence "Defects" on the Electrostatic Potential of Dissolved DNA
NASA Astrophysics Data System (ADS)
Adams, Scott V.; Wagner, Katrina; Kephart, Thomas S.; Edwards, Glenn
1997-11-01
An analytical model of the electrostatic potential surrounding dissolved DNA has been developed. The model consists of an all-atom, mathematically helical structure for DNA, in which the atoms are arranged in infinite lines of discrete point charges on concentric cylindrical surfaces. The surrounding solvent and counterions are treated with the Debye-Huckel approximation (Wagner et al., Biophysical Journal 73, 21-30, 1997). Variation in the electrostatic potential due to structural differences between A, B, and Z conformations and homopolymer base sequence is apparent. The most recent modification to the model exploits the principle of superposition to calculate the potential of DNA with a base sequence containing `defects.' That is, the base sequence is no longer uniform along the polymer. Differences between the potential of homopolymer DNA and the potential of DNA containing base `defects' are immediately obvious. These results may aid in understanding the role of electrostatics in base-sequence specificity exhibited by DNA-binding proteins.
Naik, Ganesh R; Kumar, Dinesh K
2011-01-01
The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.
ERIC Educational Resources Information Center
Cukurova, Mutlu; Bennett, Judith; Abrahams, Ian
2018-01-01
Background: Recently, there is a growing interest in independent learning approaches globally. This is, at least in part, due to an increased demand for so-called "21st century skills" and the potential of independent learning to improve student skills to better prepare them for the future. Purpose: This paper reports a study that…
BIOPLUME III is a 2D, finite difference model for simulating the natural attenuation of organic contaminants in groundwater due to the processes of advection, dispersion, sorption, and biodegradation. Biotransformation processes are potentially important in the restoration of aq...
Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters
NASA Astrophysics Data System (ADS)
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj
2018-04-01
Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.
Diets of giants: the nutritional value of herbivorous dinosaur diet during the Mesozoic
NASA Astrophysics Data System (ADS)
Gill, Fiona; Hummel, Juergen; Sharifi, Reza; Lee, Alexandra; Lomax, Barry
2017-04-01
A major uncertainty in estimating energy budgets and population densities of extinct animals is the carrying capacity of their ecosystems, constrained by net primary productivity (NPP) and digestible energy content of that NPP. The hypothesis that increases in NPP of land plants due to elevated atmospheric CO2 contributed to the unparalleled size of the sauropods, the largest ever land animals, has recently been rejected, based on modern studies on herbivorous insects. However, the nutritional value of plants grown under elevated CO2 levels might be very different for vertebrate megaherbivores with more complex digestive systems and different protein:energy requirements than insects. Here we show that the metabolisable energy (ME) value of five species of potential dinosaur food plants does not decline consistently with increasing CO2 growth concentrations, with maxima observed at 1200 ppm CO2. Our data potentially rebut the hypothesis of constraints on herbivore diet quality in the Mesozoic due to CO2 levels.
Technological advances in CO2 conversion electro-biorefinery: A step toward commercialization.
ElMekawy, Ahmed; Hegab, Hanaa M; Mohanakrishna, Gunda; Elbaz, Ashraf F; Bulut, Metin; Pant, Deepak
2016-09-01
The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Plants and Isolates of Celastraceae Family on Cancer Pathways.
Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Seyed, Mohamed Ali
2015-01-01
The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
NASA Astrophysics Data System (ADS)
Molina, A.; Laborda, E.; Compton, R. G.
2014-03-01
Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.
On the nature of liquid junction and membrane potentials.
Perram, John W; Stiles, Peter J
2006-09-28
Whenever a spatially inhomogeneous electrolyte, composed of ions with different mobilities, is allowed to diffuse, charge separation and an electric potential difference is created. Such potential differences across very thin membranes (e.g. biomembranes) are often interpreted using the steady state Goldman equation, which is usually derived by assuming a spatially constant electric field. Through the fundamental Poisson equation of electrostatics, this implies the absence of free charge density that must provide the source of any such field. A similarly paradoxical situation is encountered for thick membranes (e.g. in ion-selective electrodes) for which the diffusion potential is normally interpreted using the Henderson equation. Standard derivations of the Henderson equation appeal to local electroneutrality, which is also incompatible with sources of electric fields, as these require separated charges. We analyse self-consistent solutions of the Nernst-Planck-Poisson equations for a 1 : 1-univalent electrolyte to show that the Goldman and Henderson steady-state membrane potentials are artefacts of extraneous charges created in the reservoirs of electrolyte solution on either side of the membrane, due to the unphysical nature of the usual (Dirichlet) boundary conditions assumed to apply at the membrane-electrolyte interfaces. We also show, with the aid of numerical simulations, that a transient electric potential difference develops in any confined, but initially non-uniform, electrolyte solution. This potential difference ultimately decays to zero in the real steady state of the electrolyte, which corresponds to thermodynamic equilibrium. We explain the surprising fact that such transient potential differences are well described by the Henderson equation by using a computer algebra system to extend previous steady-state singular perturbation theories to the time-dependent case. Our work therefore accounts for the success of the Henderson equation in analysing experimental liquid-junction potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-Ying; Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1; An, Sheng-Bai
2014-10-15
We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary ofmore » the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.« less
Voskresenskaia, O N; Klemesheva, Iu N; Akimova, T N
2012-01-01
The authors demonstrated the possibility for the practical use of the index "Rehabilitation Potential" in the evaluation of the degree of restoration of neurological deficit developed due to cerebral stroke. The most significant factors characterizing the organization and implementation of rehabilitation measures in different periods of stroke and the effect of these factors on the level of rehabilitation potential of disabled persons with consequences of stroke are specified. It has been shown that the perfect organization of restorative treatment has a positive effect on the level of rehabilitation potential of disabled persons.
A Compendium of Transcriptomic Effects of Endocrine Disrupting Chemicals on the Fathead Minnow Ovary
Understanding potential hazards of chemicals released into the environment is challenging not only due to the large and growing number of chemicals and materials that need to be screened, but also to the bioavailability, exposure conditions, and species differences among others. ...
EXPLORING NEW QUESTIONS OF MULTIPLE AIR POLLUTANTS, SOURCES AND HEALTH IN DENVER
The results of this proposed research will provide a more comprehensive understanding of the burden of disease due to ambient air pollution by expanding the scope of the health impacts and by investigating potential explanations for differences in observed associations in diff...
Bennett, Jerry M.; Cortes, Peter M.
1985-01-01
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367
Bennett, J M; Cortes, P M
1985-09-01
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.
Density and glass forming ability in amorphous atomic alloys: The role of the particle softness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglass, Ian; Hudson, Toby; Harrowell, Peter
A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie Liming; Xing Da; Yang Diwu
2007-04-23
Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreignmore » objects.« less
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
The temperature dependent collective dynamics of liquid sodium
NASA Astrophysics Data System (ADS)
Patel, A. B.; Khambholja, S. G.; Bhatt, N. K.; Thakore, B. Y.; Vyas, P. R.; Jani, A. R.
2012-06-01
Liquid alkali metals show, near the melting point, an upward bending of the dispersion relation at small momentum transfer values. This so-called positive dispersion can be described within generalized hydrodynamics as a visco-elastic reaction of the liquid. There is a speculation that long-living clusters could be the physical reason behind this phenomenon. To shed light on this question a treatment of pseudopotential theory on liquid sodium was performed at different temperatures starting at the melting point. In the present study, we used the modified empty core potential due to Hasegawa et al. (J. Non-Cryst. Solids, 117/118 (1990) 300) along with a local field correction due to Ichimaru-Utsumi (IU) to explain electron-ion interaction. The potential used is composed of a full electron-ion interaction and a repulsive delta function, which represents the orthogonalisation effect due to the s core states. The temperature dependence of pair potential is calculated by using the damping term exp(-πkBTr/2kF). While the expression for phonon dispersions are derived within the memory function formalism. Results thus obtained are well compared with the other theoretical and experimental results.
Mishra, S; Bhalke, S; Pandit, G G; Puranik, V D
2009-07-01
(210)Po was estimated in the edible muscle and soft tissue of 15 different marine species (fish, crab, prawn and bivalve) collected from Trans-Thane Creek area (Trombay) and Thane. Potential risks associated with consumption of marine organisms due to (210)Po collected from this particular area to human beings were assessed. Estimation of (210)Po was carried out using radiochemical separation and alpha spectrometric technique. The concentration of (210)Po was found to vary from 0.18 to 10.9 Bqkg(-1) wet wt in different biota species and maximum concentrations were observed in bivalves. The variations in (210)Po concentration in different species are mainly due to difference in metabolism and feeding habits. The daily intake and individual dose of (210)Po to human beings through biota consumption was calculated and found to be 31.89 mBqd(-1) and 19.44 microSvyr(-1), respectively. An assessment of the risk on human beings due to consumption of marine organism was undertaken using carcinogenic slope factor for (210)Po. 5th, 50th and 95th percentile of life time risk was calculated to be 9.74E-06, 4.39E-05 and 2.12E-04, respectively.
Roubal, George; Atlas, Ronald M.
1978-01-01
Hydrocarbon-utilizing microorganisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene ≫ pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population. PMID:655706
Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K
2010-07-15
Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. 2010 Elsevier B.V. All rights reserved.
Dickson, Danielle S.; Federmeier, Kara D.
2015-01-01
Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. PMID:25278134
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... an indication of potential variability in future projections due to differences in actual meteorology... maintaining attainment of the NAAQS at these locations if there are adverse variations in meteorology or... the Central Regional Air Planning Association (CENRAP) modeling of 2002 emissions and meteorology.\\22...
USDA-ARS?s Scientific Manuscript database
The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observati...
Does Parental Employment Affect Children's Educational Attainment?
ERIC Educational Resources Information Center
Schildberg-Hoerisch, Hannah
2011-01-01
This paper analyzes whether there exists a causal relationship between parental employment and children's educational attainment. We address potential endogeneity problems due to (i) selection of parents in the labor market by estimating a model on sibling differences and (ii) reverse causality by focusing on parents' employment when children are…
Phosphorus and nitrogen losses from poultry litter stacks and leaching through soils
USDA-ARS?s Scientific Manuscript database
The practice of stacking poultry litter in fields prior to spreading provides important logistical benefits to farmers but is controversial due to its potential to serve as a source of nutrients to leachate and runoff. We evaluated nutrient fate under stacked poultry litter to assess differences in ...
Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage
ERIC Educational Resources Information Center
Blake, Margaret Lehman
2006-01-01
Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…
Phosphorus retention by fly-ash amended filter media in aged bioretention cells
USDA-ARS?s Scientific Manuscript database
Bioretention cells (BRCs) have shown potential for stormwater quantity and quality control. However, the phosphorus (P) removal in BRC has been variable due to differences of soil properties in filter media. The objectives of this research were to identify and evaluate P accumulation in filter media...
Nitrogen competition between corn and weeds in soils under organic and conventional management
USDA-ARS?s Scientific Manuscript database
Cropping systems research has shown that organic systems can have comparable yields to conventional systems at higher weed biomass levels. Higher weed tolerance in organic systems could be due to differences in labile soil organic matter and nitrogen (N) mineralization potential. The objective of ou...
Microbial Cellulases and Their Industrial Applications
Kuhad, Ramesh Chander; Gupta, Rishi; Singh, Ajay
2011-01-01
Microbial cellulases have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Due to the complexity of enzyme system and immense industrial potential, cellulases have been a potential candidate for research by both the academic and industrial research groups. Nowadays, significant attentions have been devoted to the current knowledge of cellulase production and the challenges in cellulase research especially in the direction of improving the process economics of various industries. Scientific and technological developments and the future prospects for application of cellulases in different industries are discussed in this paper. PMID:21912738
The crystal acceleration effect for cold neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru; Berdnikov, Ya. A.; Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru
A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to itsmore » homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.« less
Potential disruption of protein-protein interactions by graphene oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Mei; Kang, Hongsuk; Luan, Binquan
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions andmore » eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.« less
Lateva, Zoia C; McGill, Kevin C
2007-12-01
Motor-unit action potentials (MUAPs) with unstable satellite (late-latency) components are found in EMG signals from the brachioradialis muscles of normal subjects. We analyzed the morphology and blocking behavior of these MUAPs to determine their anatomical origin. EMG signals were recorded from the brachioradialis muscles of 5 normal subjects during moderate-level isometric contractions. MUAP waveforms, discharge patterns, and blocking were determined using computer-aided EMG decomposition. Twelve MUAPs with unstable satellite potentials were detected, always two together in the same signal. Each MUAP also had a second unstable component associated with its main spike. The blocking behavior of the unstable components depended on how close together the two MUAPs were when they discharged. The latencies and blocking behavior indicate that the unstable components came from branched muscle fibers innervated by two different motoneurons. The satellite potentials were due to action potentials that traveled to the branching point along one branch and back along the other. The blockings were due to action-potential collisions when both motoneurons discharged close together in time. Animal studies suggest that branched muscle fibers may be a normal characteristic of series-fibered muscles. This study adds to our understanding of these muscles in humans.
Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials.
Olsen, Jógvan Magnus Haugaard; List, Nanna Holmgaard; Kristensen, Kasper; Kongsted, Jacob
2015-04-14
Quantum-mechanical embedding methods have in recent years gained significant interest and may now be applied to predict a wide range of molecular properties calculated at different levels of theory. To reach a high level of accuracy in embedding methods, both the electronic structure model of the active region and the embedding potential need to be of sufficiently high quality. In fact, failures in quantum mechanics/molecular mechanics (QM/MM)-based embedding methods have often been associated with the QM/MM methodology itself; however, in many cases the reason for such failures is due to the use of an inaccurate embedding potential. In this paper, we investigate in detail the quality of the electronic component of embedding potentials designed for calculations on protein biostructures. We show that very accurate explicitly polarizable embedding potentials may be efficiently designed using fragmentation strategies combined with single-fragment ab initio calculations. In fact, due to the self-interaction error in Kohn-Sham density functional theory (KS-DFT), use of large full-structure quantum-mechanical calculations based on conventional (hybrid) functionals leads to less accurate embedding potentials than fragment-based approaches. We also find that standard protein force fields yield poor embedding potentials, and it is therefore not advisable to use such force fields in general QM/MM-type calculations of molecular properties other than energies and structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan
2006-08-15
The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less
Wall charging of a helicon antenna wrapped plasma filled dielectric tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K., E-mail: kbarada@physics.ucla.edu; Chattopadhyay, P. K., E-mail: pkchatto@ipr.res.in; Ghosh, J.
2015-01-15
Dielectric wall charging of a cylindrical glass wall surrounded by a helicon antenna of 18 cm length is measured in a linear helicon plasma device with a diverging magnetic field. The ions because of their lesser mobility do not respond to the high frequency electric field and the electrons charge the wall to a negative DC potential also known as the DC self-bias. The wall potential in this device is characterized for different neutral pressure, magnetic field, and radio frequency (RF) power. Axial variation of wall potential shows higher self-bias potentials near the antenna rings. Ion magnetization in the source chambermore » increases both wall charging and plasma potential of the source due to confinement.« less
Potential Analysis of Rainfall-induced Sediment Disaster
NASA Astrophysics Data System (ADS)
Chen, Jing-Wen; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Tsai, Kuang-Jung; Chue, Yung-Sheng
2014-05-01
Most of the mountain regions in Taiwan are sedimentary and metamorphic rocks which are fragile and highly weathered. Severe erosion occurs due to intensive rainfall and rapid flow, the erosion is even worsen by frequent earthquakes and severely affects the stability of hillsides. Rivers are short and steep in Taiwan with large runoff differences in wet and dry seasons. Discharges respond rapidly with rainfall intensity and flood flows usually carry large amount of sediment. Because of the highly growth in economics and social change, the development in the slope land is inevitable in Taiwan. However, sediment disasters occur frequently in high and precipitous region during typhoon. To make the execution of the regulation of slope land development more efficiency, construction of evaluation model for sediment potential is very important. In this study, the Genetic Adaptive Neural Network (GANN) was implemented in texture analysis techniques for the classification of satellite images of research region before and after typhoon or extreme rainfall and to obtain surface information and hazard log data. By using GANN weight analysis, factors, levels and probabilities of disaster of the research areas are presented. Then, through geographic information system the disaster potential map is plotted to distinguish high potential regions from low potential regions. Finally, the evaluation processes for sediment disaster after rainfall due to slope land use are established. In this research, the automatic image classification and evaluation modules for sediment disaster after rainfall due to slope land disturbance and natural environment are established in MATLAB to avoid complexity and time of computation. After implementation of texture analysis techniques, the results show that the values of overall accuracy and coefficient of agreement of the time-saving image classification for different time periods are at intermediate-high level and above. The results of GANN show that the weight of building density is the largest in all slope land disturbance factors, followed by road density, orchard density, baren land density, vegetation density, and farmland density. The weight of geology is the largest in all natural environment factors, followed by slope roughness, slope, and elevation. Overlaying the locations of large sediment disaster in the past on the potential map predicted by GANN, we found that most damage areas were in the region with medium-high or high potential of landslide. Therefore, the proposed potential model of sediment disaster can be used in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
On the size dependence of the scattering greenhouse effect of CO2 ice particles
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2011-10-01
In this contribution we study the potential greenhouse effect due to scattering of CO2 ice clouds for atmospheric conditions of terrestrial extrasolar planets. Therefore, we calculate the scattering and absorption properties of CO2 ice particles using Mie theory for assumed particle size distributions with different effective radii and particle densities to determine the scattering and absorption characteristics of such clouds. Implications especially in view of a potential greenhouse warming of the planetary surface are discussed.
Jansen, Rick J; Alexander, Bruce H; Hayes, Richard B; Miller, Anthony B; Wacholder, Sholom; Church, Timothy R
2018-01-01
When some individuals are screen-detected before the beginning of the study, but otherwise would have been diagnosed symptomatically during the study, this results in different case-ascertainment probabilities among screened and unscreened participants, referred to here as lead-time-biased case-ascertainment (LTBCA). In fact, this issue can arise even in risk-factor studies nested within a randomized screening trial; even though the screening intervention is randomly allocated to trial arms, there is no randomization to potential risk-factors and uptake of screening can differ by risk-factor strata. Under the assumptions that neither screening nor the risk factor affects underlying incidence and no other forms of bias operate, we simulate and compare the underlying cumulative incidence and that observed in the study due to LTBCA. The example used will be constructed from the randomized Prostate, Lung, Colorectal, and Ovarian cancer screening trial. The derived mathematical model is applied to simulating two nested studies to evaluate the potential for screening bias in observational lung cancer studies. Because of differential screening under plausible assumptions about preclinical incidence and duration, the simulations presented here show that LTBCA due to chest x-ray screening can significantly increase the estimated risk of lung cancer due to smoking by 1% and 50%. Traditional adjustment methods cannot account for this bias, as the influence screening has on observational study estimates involves events outside of the study observation window (enrollment and follow-up) that change eligibility for potential participants, thus biasing case ascertainment.
Bardhan, Jaydeep P; Jungwirth, Pavel; Makowski, Lee
2012-09-28
Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular "linear response" model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution).
Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee
2012-01-01
Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular “linear response” model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution). PMID:23020318
Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Tang, Thean-Hock
2015-01-01
Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues. PMID:26180812
Shaffiq Said Rahmat, Said Mohd; Md Saad, Wan Mazlina
2013-01-01
The study aimed to investigate the effects of different tube potentials and concentrations of iodinated contrast media (CM) on the image enhancement, contrast-to-noise ratio (CNR) and noise in micro-computed tomography (µCT) images. A phantom containing of five polyethylene tube was filled with 2 mL of deionized water and iodinated CM (Omnipaque 300 mgI/mL) at four different concentrations: 5, 10, 15, and 20 mol/L, respectively. The phantom was scanned with a µCT machine (SkyScan 1176) using various tube potentials: 40, 50, 60, 70, 80, and 90 kVp, a fixed tube current; 100 µA, and filtration of 0.2 mm aluminum (Al). The percentage difference of image enhancement, CNR and noise of all images, acquired at different kVps and concentrations, were calculated. The image enhancement, CNR and noise curves with respect to tube potential and concentration were plotted and analysed. The highest image enhancement was found at the lowest tube potential of 40 kVp. At this kVp setting, the percentage difference of image enhancement [Hounsfield Unit (HU) of 20 mol/L iodine concentration over HU of deionized water] was 43%. By increasing the tube potential, it resulted with the reduction of HU, where only 17.5% different were noticed for 90 kVp. Across all iodine concentrations (5-20 M), CNR peaked at 80 kVp and then these values showed a slight decreasing pattern, which might be due insufficient tube current compensation. The percentage difference of image noise obtained at 40 and 90 kVp was 72.4%. Lower tube potential setting results in higher image enhancement (HU) in conjunction with increasing concentration of iodinated CM. Overall, the tube potential increment will substantially improve CNR and reduce image noise. PMID:24273743
NASA Astrophysics Data System (ADS)
Diego, P.; Bertello, I.; Candidi, M.; Mura, A.; Coco, I.; Vannaroni, G.; Ubertini, P.; Badoni, D.
2017-11-01
The floating potential variability of the Electric Field Detector (EFD) probes, on board the Chinese Seismo-Electromagnetic Satellite (CSES), has been modeled, and the effects of several structural and environmental elements have been determined. The expected floating potentials of the probes are computed considering the ambient ionospheric plasma parameter variations. In addition, the ion collection variability, due to the different probe attitudes along the orbit, and its effect on each floating potential, are considered. Particular attention is given to the analysis of the shadow produced by the stubs, in order to determine the artificial electric field introduced by instrumental effects which has to be subtracted from the real measurements. The modulation of the altered electric field, due to the effect on shadowing of the ion drift, as measured by the ESA satellite Swarm A in a similar orbit, is also modeled. Such simulations are made in preparation of real EFD data analysis performed during the upcoming flight of CSES.
Kutscher, Daniel J; Sanz-Medel, Alfredo; Bettmer, Jörg
2012-08-01
In this study, the binding behaviour of methylmercury (MeHg(+)) towards proteins is investigated. Free sulfhydryl groups in cysteine residues are known to be the most likely binding partners, due to the high affinity of mercury to sulphur. However, detailed knowledge about discrete binding sites in living organisms has been so far scarce. A metallomics approach using different methods like size-exclusion chromatography (SEC) and liquid chromatography (LC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) as well as complementary mass spectrometric techniques (electrospray ionisation-tandem mass spectrometry, ESI-MS/MS) are combined to sequence and identify possible target proteins or peptides after enzymatic digestion. Potential targets for MeHg(+) in tuna fish muscle tissue are investigated using the certified reference material CRM464 as a model tissue. Different extraction procedures appropriate for the extraction of proteins are evaluated for their efficiency using isotope dilution analysis for the determination of total Hg in the extracts. Due to the high chemical stability of the mercury-sulphur bond, the bioconjugate can be quantitatively extracted with a combination of tris(hydroxymethyl)aminomethane (TRIS) and sodium dodecyl sulphate (SDS). Using different separation techniques such as SEC and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) it can be shown that major binding occurs to a high-molecular weight protein (M(w) > 200 kDa). A potential target protein, skeletal muscle myosin heavy chain, could be identified after tryptic digestion and capillary LC-ESI-MS/MS.
Hunt, R.J.; Anderson, M.P.; Kelson, V.A.
1998-01-01
This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.
Contribution potential of glaciers to water availability in different climate regimes
Kaser, Georg; Großhauser, Martin; Marzeion, Ben
2010-01-01
Although reliable figures are often missing, considerable detrimental changes due to shrinking glaciers are universally expected for water availability in river systems under the influence of ongoing global climate change. We estimate the contribution potential of seasonally delayed glacier melt water to total water availability in large river systems. We find that the seasonally delayed glacier contribution is largest where rivers enter seasonally arid regions and negligible in the lowlands of river basins governed by monsoon climates. By comparing monthly glacier melt contributions with population densities in different altitude bands within each river basin, we demonstrate that strong human dependence on glacier melt is not collocated with highest population densities in most basins. PMID:21059938
Nakajima, T; Takazawa, S; Hayashida, S; Nakagome, K; Sasaki, T; Kanno, O
2000-02-01
The effects of zolpidem and zopiclone, non-benzodiazepine ultra-short-acting hypnotics, on cognitive function and vigilance level were investigated in the morning following nocturnal administration using event-related potentials (ERP) and a sleep latency test (SLT). Zopiclone significantly shortened the sleep latency the following morning, whereas zolpidem did not, perhaps due to the difference in the elimination half-lives between the compounds. No significant effect was observed for either drug on the ERP indices, including the P3, mismatch negativity and negative difference components. At a clinically prescribed dosage these sleep inducers have no remarkable effect on cognitive or attentional functions but increase sleepiness of the subjects.
On the influence of Aerosols in measurement of electric field from Earth surface using a Field-Mill
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Sundar De, Syam; Paul, Suman; Hazra, Pranab; Guha, Gautam
2016-07-01
Aerosol particles influence the electrical conductivity of air. The value is reduced through the removal of small ions responsible for the conductivity. The metropolitan city, Kolkata (latitude 22.56° N, longitude 88.5° E) is densely populated surrounded by various types of Industries. Air is highly invaded by pollutant particles here for which the city falls under small-scale fair-weather condition where electric field and air-earth current get perturbed by ionization and different aerosols produced locally. Fine particles having diameter < 0.1 μm (Aitken nuclei) are distributed in air which decreases the electrical conductivity and increases the columnar resistance. Aerosol particles steadily change the status at different times of the day through coagulation, sedimentation, charge-transfer initiated by precipitation. The diurnal variation of potential gradient is caused mainly due to urbanization, emission from industry and traffic. The rate of production of haze (atmospheric suspension) and their vertical transportation control the daily variation of atmospheric potential. The nuclei of pollutant particles combine with ions and decrease the concentration of small ions thereby reducing the conductivity. The pollutants, influenced by CO _{2} and other green house gas emission from fossil fuels are also responsible for the variation of electric field. Variation in consumption of Oil and Gasoline due to traffic in the city contributes a high Aitken count and there are changes in atmospheric dispersion following reduction of conductivity of the medium. Outcome of some important measurement of potential gradient and air-earth current will be presented. Different parameters like air-conductivity, relative abundance of smoke, visibility would offer new signatures of aerosol-influence on electric potential gradient. Some of those will be reported here.
Mechanical behaviour of degradable phosphate glass fibres and composites-a review.
Colquhoun, R; Tanner, K E
2015-12-23
Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.
Lower Response Rates on Alumni Surveys Might Not Mean Lower Response Representativeness
ERIC Educational Resources Information Center
Lambert, Amber D.; Miller, Angie L.
2014-01-01
The purpose of this research is to explore some possible issues with response representativeness in alumni surveys. While alumni surveys can provide important information, they often have lower response rates due to bad contact information and other reasons. In this study we investigate potential differences between responses on the National…
Epidemiological studies have observed between city heterogeneity in PM2.5-mortality risk estimates. These differences could potentially be due to the use of central-site monitors as a surrogate for exposure which do not account for an individual's activities or ambient pollutant ...
ERIC Educational Resources Information Center
Hall, Peter
2006-01-01
This paper discusses the three outreach projects in Kent, a girls grammar school with a mixed sixth form. Due to the selective system in Kent they have around 100 potential feeder schools with their Year 7 intake of around 150 arriving from about 70 different primary schools, some of which are independent. In this article, the author describes the…
Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...
USDA-ARS?s Scientific Manuscript database
Feeding patterns in group-housed grow-finishing pigs have been investigated for use in management decisions, identifying sick animals, and determining genetic differences within a herd. Development of models to predict swine feeding behaviour has been limited due the large number of potential enviro...
Decline in Values of Slash Pine Stands Infected with Fusiform Rust
F.E. Bridgwater; W.D. Smith
2002-01-01
Losses in product values due tofusiform rust, caused by Cronartium quercuum (Berk.) Miyabe ex Shirai f. sp. fusiforme, were estimated from four, 2.5-yr-old slash pine, Pinus elliotii Engelm., plantations planted in southern Mississippi over a range of sites with different growth potential and expected rust infection levels. The...
Modeling erosion from forest roads with WEPP
J. McFero Grace
2007-01-01
Forest roads can be major sources of soil erosion from forest watersheds. Sediments from forest roads are a concern due to their potential delivery to stream systems resulting in degradation of water quality. The Water Erosion Prediction Project (WEPP) was used to predict erosion from forest road components under different management practices. WEPP estimates are...
Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array
Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope
2014-01-01
The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490
Engineering stem cells for future medicine.
Ricotti, Leonardo; Menciassi, Arianna
2013-03-01
Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.
Transport of ions through a (6,6) carbon nanotube under electric fields
NASA Astrophysics Data System (ADS)
Shen, Li; Xu, Zhen; Zhou, Zhe-Wei; Hu, Guo-Hui
2014-11-01
The transport of water and ions through carbon nanotubes (CNTs) is crucial in nanotechnology and biotechnology. Previous investigation indicated that the ions can hardly pass through (6,6) CNTs due to their hydrated shells. In the present study, utilizing molecular dynamics simulation, it is shown that the energy barrier mainly originating from the hydrated water molecules could be overcome by applying an electric field large enough in the CNT axis direction. Potential of mean force is calculated to show the reduction of energy barrier when the electric field is present for (Na+, K+, Cl-) ions. Consequently, ionic flux through (6,6) CNTs can be found once the electric field becomes larger than a threshold value. The variation of the coordination numbers of ions at different locations from the bulk to the center of the CNT is also explored to elaborate this dynamic process. The thresholds of the electric field are different for Na+, K+, and Cl- due to their characteristics. This consequence might be potentially applied in ion selectivity in the future.
NASA Astrophysics Data System (ADS)
Golbamaki, Nazanin; Rasulev, Bakhtiyor; Cassano, Antonio; Marchese Robinson, Richard L.; Benfenati, Emilio; Leszczynski, Jerzy; Cronin, Mark T. D.
2015-01-01
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Naito, M; Fuchikami, N; Sasaki, N; Kambara, T
1991-01-01
The dynamic response of the lipid bilayer membrane is studied theoretically using a microscopic model of the membrane. The time courses of membrane potential variations due to monovalent salt stimulation are calculated explicitly under various conditions. A set of equations describing the time evolution of membrane surface potential and diffusion potential is derived and solved numerically. It is shown that a rather simple membrane such as lipid bilayer has functions capable of reproducing the following properties of dynamic response observed in gustatory receptor potential. Initial transient depolarization does not occur under Ringer adaptation but does under water. It appears only for comparatively rapid flows of stimuli, the peak height of transient response is expressed by a power function of the flow rate, and the membrane potential gradually decreases after reaching its peak under long and strong stimulation. The dynamic responses in the present model arise from the differences between the time dependences in the surface potential phi s and the diffusion potential phi d across a membrane. Under salt stimulation phi d cannot immediately follow the variation in phi s because of the delay due to the charging up of membrane capacitance. It is suggested that lipid bilayer in the apical membrane is the most probable agency producing the initial phasic response to the stimulation. PMID:1873461
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.
2010-01-01
Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.
NASA Astrophysics Data System (ADS)
Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.
1990-12-01
An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.
Electrohydrodynamic Flows in Electrochemical Systems
NASA Technical Reports Server (NTRS)
Saville, D. A.
2005-01-01
Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies.
NASA Astrophysics Data System (ADS)
Kumar, Priyank; Bhatt, Nisarg K.; Vyas, Pulastya R.; Gohel, Vinod B.
2016-10-01
The thermophysical properties of rhodium are studied up to melting temperature by incorporating anharmonic effects due to lattice ions and thermally excited electrons. In order to account anharmonic effects due to lattice vibrations, we have employed mean field potential (MFP) approach and for thermally excited electrons Mermin functional. The local form of the pseudopotential with only one effective adjustable parameter rc is used to construct MFP and hence vibrational free energy due to ions - Fion. We have studied equation of state at 300 K and further, to access the applicability of present conjunction scheme, we have also estimated shock-Hugoniot and temperature along principle Hugoniot. We have carried out the study of temperature variation of several thermophysical properties like thermal expansion (βP), enthalpy (EH), specific heats at constant pressure and volume (CP and CV), specific heats due to lattice ions and thermally excited electrons ( and , isothermal and adiabatic bulk moduli (BT and Bs) and thermodynamic Gruneisen parameter (γth) in order to examine the inclusion of anharmonic effects in the present study. The computed results are compared with available experimental results measured by using different methods and previously obtained theoretical results using different theoretical philosophy. Our computed results are in good agreement with experimental findings and for some physical quantities better or comparable with other theoretical results. We conclude that local form of the pseudopotential used accounts s-p-d hybridization properly and found to be transferable at extreme environment without changing the values of the parameter. Thus, even the behavior of transition metals having complexity in electronic structure can be well understood with local pseudopotential without any modification in the potential at extreme environment. Looking to the success of present scheme (MFP + pseudopotential) we would like to extend it further for the study of liquid state properties as well as thermophysical properties of d and f block metals.
Heym, Eva C; Kampen, Helge; Walther, Doreen
2018-06-01
Due to their large diversity of potential blood hosts, breeding habitats, and resting sites, zoological gardens represent highly interesting places to study mosquito ecology. In order to better assess the risk of mosquito-borne disease-agent transmission in zoos, potential vector species must be known, as well as the communities in which they occur. For this reason, species composition and dynamics were examined in 2016 in two zoological gardens in Germany. Using different methods for mosquito sampling, a total of 2,257 specimens belonging to 20 taxa were collected. Species spectra depended on the collection method but generally differed between the two zoos, while species compositions and relative abundances varied seasonally in both of them. As both sampled zoos were located in the same climatic region and potential breeding sites within the zoos were similar, the differences in mosquito compositions are attributed to immigration of specimens from surrounding landscapes, although the different sizes of the zoos and the different blood host populations available probably also have an impact. Based on the differences in species composition and the various biological characteristics of the species, the risk of certain pathogens to be transmitted must also be expected to differ between the zoos. © 2018 The Society for Vector Ecology.
Slope activity in Gale crater, Mars
Dundas, Colin M.; McEwen, Alfred S.
2015-01-01
High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.
Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L
2013-08-01
The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P < 0.003). Differences due to diet were found for selenium fecal (P < 0.0001) and urine (P < 0.0001) excretions, with decreased concentrations found for horses consuming organic selenium yeast (ADD). In contrast, fecal K (%) was greater (P = 0.0421) for horses consuming ADD, whereas concentrations of fecal solids, total N, ammonia N, P, total ammonia, and fecal output did not differ between dietary treatments (P > 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P < 0.0001). In conclusion, the addition of certain chelated mineral sources, organic Se yeast, DFM, and Yucca schidigera extract did not decrease most nutrient concentrations excreted. Horses consuming organic selenium as part of the additive diet had lower fecal and urine Se concentrations, as well as greater fecal K concentrations.
Tronstad, Christian; Kalvøy, Håvard; Grimnes, Sverre; Martinsen, Ørjan G
2013-11-01
The shapes of skin conductance (SC) and skin potential (SP) responses are often similar, but can also be very different due to an unexplained cause. Using a new method to measure SC and SP simultaneously at the same electrode, this difference was investigated in a new way by comparing their temporal peak differences. SC, SP, skin susceptance (SS), and transepidermal water loss (TEWL) were recorded from 40 participants during relaxation and stress. The SP response could peak anywhere between the onset of an SC response to some time after the peak of an SC response. This peak time difference was associated with the magnitude of the SCR, the hydration of the skin, and the filling of the sweat ducts. Interpretation of the results in light of existing biophysical theories suggests that this peak difference may indicate the hydraulic capacity state of the sweat ducts at the time of a response. Copyright © 2013 Society for Psychophysiological Research.
Zheng, Liu-Gen; Liu, Gui-Jian; Kang, Yu; Yang, Ren-Kang
2010-07-01
The Chaohu is one of the largest five freshwater lakes in China. It provides freshwater for agriculture, life, and part of industry. The quality of water becomes worst and worst due to the toxic matter. In this study, we collected the samples from the sedimentary mud in the lake. The distribution of some potential hazardous trace elements (Cu, Ni, Cr, As, Pb, Cd, and Hg) in the sediments of western Chaohu Lake, has been determined and studied, and the enrichment factors, the index of geoaccumulation, and potential ecological risk were analyzed and calculated. The results show that: the levels of selected potential hazardous trace element vary from different sampling sites and significant anthropogenic impact of Pb and Cd occur in sediments. The contamination rank of Pb and Cd are moderate, and Pb has a light potential ecological risk, but Cd is heavy. The total potential ecological risk of the selected hazardous trace elements in this study in Chaohu Lake is moderate. Cluster and correlation analysis indicate that the selected potential hazardous trace element pollutant has different source and co-contamination also occur in sediments.
Effects of ion concentration on thermally-chargeable double-layer supercapacitors
NASA Astrophysics Data System (ADS)
Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu
2013-11-01
The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.
Effects of ion concentration on thermally-chargeable double-layer supercapacitors.
Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu
2013-11-22
The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.
Effects of salt secretion on psychrometric determinations of water potential of cotton leaves.
Klepper, B; Barrs, H D
1968-07-01
Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about -10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about -10 bars.
Sun, Zhelin; Wang, Deli; Xiang, Jie
2014-11-25
Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.
Dellinger, Ryan W.; Gomez Garcia, Angela M.; Meyskens, Frank L.
2015-01-01
Summary Resveratrol, a natural polyphenol found in grapes, berries and other plants, has been proposed as an ideal chemopreventative agent due to its plethora of health promoting activities. However, despite its lofty promise as a cancer prevention agent its success in human clinical trials has been limited due to its poor bioavailability. Thus, interest in other natural polyphenols is intensifying including the naturally occurring dimethylated analog of resveratrol, pterostilbene. The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the metabolism of both resveratrol and pterostilbene. The current study sought to elucidate the UGT family members responsible for the metabolism of pterostilbene and to examine gender differences in the glucuronidation of resveratrol and pterostilbene. We demonstrate that UGT1A1 and UGT1A3 are mainly responsible for pterostilbene glucuronidation although UGT1A8, UGT1A9 and UGT1A10 also had detectable activity. Intriguingly, UGT1A1 exhibits the highest activity against both resveratrol and pterostilbene despite altered hydroxyl group specificity. Using pooled human liver microsomes, enzyme kinetics were determined for pterostilbene and resveratrol glucuronides. In all cases females were more efficient than males, indicating potential gender differences in stilbene metabolism. Importantly, the glucuronidation of pterostilbene is much less efficient than that of resveratrol, indicating that pterostilbene will have dramatically decreased metabolism in humans. PMID:23965644
Sandel, M H; Kolkman, J J; Kuipers, E J; Cuesta, M A; Meuwissen, S G
2000-09-01
It has been suggested that admission to a gastroenterology service (GAS) is associated with a better prognosis and lower cost for treatment of gastrointestinal (GI) diseases, such as upper GI bleeding (UGB). However, a large potential bias by higher comorbidity on internal medicine services (MED) could not be excluded from these studies. We therefore compared patients with upper GI bleeding admitted to a gastroenterology or internal medicine department, with special emphasis on prognostic factors, such as comorbidity, and outcome. Between 1991 and 1995, 322 patients were admitted to our hospital for UGB. Forty-five patients had variceal and 277 patients had nonvariceal upper GI bleeding (NUGB). Of 232 patients with primary NUGB, 125 were admitted to GAS and 93 to MED. The charts of these patients were revised, comorbidity was carefully recorded, and the Rockall risk score was calculated. All deaths were individually classified as unavoidable, mostly due to severe underlying illness, or potentially avoidable. No differences in delay for endoscopy or treatment were observed between GAS and MED. The rebleeding, surgery, and mortality rates in GAS and MED patients were 11.6% versus 11.5% (NS), 7.8% versus 7.3% (NS), and 2.4% versus 10.8% (p = 0.02), respectively. Rockall scores differed between GAS and MED patients (3.1 +/- 1.8 vs 3.7 +/- 1.7, p = 0.02). The mortality rate stratified by Rockall score was lower for the GAS patients. However, individual analysis revealed that only three of 13 deaths were potentially avoidable: two of 10 at the MED and one of three at the GAS. The lower mortality among nonvariceal upper GI bleeding patients admitted to a gastroenterological service compared to an internal medicine service was mainly due to lesser comorbidity. This effect was not detected by stratification according to Rockall, but shown with analysis of individual patient charts only. The latter underscores the potential pitfalls when comparing outcome or cost of treatment between different medical services.
Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials
NASA Astrophysics Data System (ADS)
Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu
2018-03-01
We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.
NASA Astrophysics Data System (ADS)
Vlahovic, B.; Suslov, V. M.; Filikhin, I.
2017-03-01
Three-nucleon systems are considered assuming the neutrons and protons to be distinguishable particles. The configuration space Faddeev equations within the s-wave approach are applied for studying bound state and scattering problems. The phenomenological Malfliet-Tjon MT I-III and Afnan-Tang ATS3 NN potentials are used with scaling factors chosen to reproduce the singlet nn, pp and np experimental scattering lengths. Numerical evaluation for the charge symmetry breaking energy is found to be about 50 keV for ^3H and ^3He nuclei. To determine any effects related to the nn ( pp) and np potential differences, the nd and pd breakup scattering calculations were performed at E_{lab}=4.0 and 14.1 MeV. We found the effects due to potential differences are small but noticeable. We discuss the dependence of calculated inelasticities and phase-shifts with respect to the chosen value for cutoff radius.
Dynamical ion transfer between coupled Coulomb crystals in a double-well potential.
Klumpp, Andrea; Zampetaki, Alexandra; Schmelcher, Peter
2017-09-01
We investigate the nonequilibrium dynamics of coupled Coulomb crystals of different sizes trapped in a double well potential. The dynamics is induced by an instantaneous quench of the potential barrier separating the two crystals. Due to the intra- and intercrystal Coulomb interactions and the asymmetric population of the potential wells, we observe a complex reordering of ions within the two crystals as well as ion transfer processes from one well to the other. The study and analysis of the latter processes constitutes the main focus of this work. In particular, we examine the dependence of the observed ion transfers on the quench amplitude performing an analysis for different crystalline configurations ranging from one-dimensional ion chains via two-dimensional zigzag chains and ring structures to three-dimensional spherical structures. Such an analysis provides us with the means to extract the general principles governing the ion transfer dynamics and we gain some insight on the structural disorder caused by the quench of the barrier height.
Pérez-Alcázar, M; Nicolás, M J; Valencia, M; Alegre, M; Iriarte, J; Artieda, J
2008-03-01
Steady-state potentials are oscillatory responses generated by rhythmic stimulation of a sensory pathway. The frequency of the response, which follows the frequency of stimulation and potentially indicates the preferential working frequency of the auditory neural network, is maximal at a stimulus rate of 40 Hz for auditory stimuli in humans, but may be different in other species. Our aim was to explore the responses to different frequencies in the rat. The stimulus was a tone modulated in amplitude by a sinusoid with linearly-increasing frequency from 1 to 250 Hz ("chirp"). Time-frequency transforms were used for response analysis in 12 animals, awake and under ketamine/xylazine anesthesia. We studied whether the responses were due to increases in amplitude or to phase-locking phenomena, using single-sweep time-frequency transforms and inter-trial phase analysis. A progressive decrease in the amplitude of the response was observed from the maximal values (around 15 Hz) up to the limit of the test (250 Hz). The high-frequency component was mainly due to phase-locking phenomena with a smaller amplitude contribution. Under anesthesia, the amplitude and phase-locking of lower frequencies (under 100 Hz) decreased, while the phase-locking over 200 Hz increased. In conclusion, amplitude-modulation following responses differ between humans and rats in response range and frequency of maximal amplitude. Anesthesia with ketamine/xylazine modifies differentially the amplitude and the phase-locking of the responses. These findings should be taken into account when assessing the changes in cortical oscillatory activity related to different drugs, in healthy rodents and in animal models of neurodegenerative diseases.
Iordan, Cristina; Lausselet, Carine; Cherubini, Francesco
2016-12-15
This study assesses the environmental sustainability of electricity production through anaerobic co-digestion of sewage sludge and organic wastes. The analysis relies on primary data from a biogas plant, supplemented with data from the literature. The climate impact assessment includes emissions of near-term climate forcers (NTCFs) like ozone precursors and aerosols, which are frequently overlooked in Life Cycle Assessment (LCA), and the application of a suite of different emission metrics, based on either the Global Warming Potential (GWP) or the Global Temperature change Potential (GTP) with a time horizon (TH) of 20 or 100 years. The environmental performances of the biogas system are benchmarked against a conventional fossil fuel system. We also investigate the sensitivity of the system to critical parameters and provide five different scenarios in a sensitivity analysis. Hotspots are the management of the digestate (mainly due to the open storage) and methane (CH 4 ) losses during the anaerobic co-digestion. Results are sensitive to the type of climate metric used. The impacts range from 52 up to 116 g CO 2 -eq./MJ electricity when using GTP100 and GWP20, respectively. This difference is mostly due to the varying contribution from CH 4 emissions. The influence of NTCFs is about 6% for GWP100 (worst case), and grows up to 31% for GWP20 (best case). The biogas system has a lower performance than the fossil reference system for the acidification and particulate matter formation potentials. We argue for an active consideration of NTCFs in LCA and a critical reflection over the climate metrics to be used, as these aspects can significantly affect the final outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria
2010-08-01
The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.
Dickson, Danielle S; Federmeier, Kara D
2014-11-01
Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Convection due to an unstable density difference across a permeable membrane
NASA Astrophysics Data System (ADS)
Puthenveettil, Baburaj A.; Arakeri, Jaywant H.
We study natural convection driven by unstable concentration differences of sodium chloride (NaCl) across a horizontal permeable membrane at Rayleigh numbers (Ra) of 1010 to 1011 and Schmidt number (Sc)=600. A layer of brine lies over a layer of distilled water, separated by the membrane, in square-cross-section tanks. The membrane is permeable enough to allow a small flow across it at higher driving potentials. Based on the predominant mode of transport across the membrane, three regimes of convection, namely an advection regime, a diffusion regime and a combined regime, are identified. The near-membrane flow in all the regimes consists of sheet plumes formed from the unstable layers of fluid near the membrane. In the advection regime observed at higher concentration differences (Bb) show a common log-normal probability density function at all Ra. We propose a phenomenology which predicts /line{lambda}_b sqrt{Z_w Z_{V_i}}, where Zw and Z_{V_i} are, respectively, the near-wall length scales in Rayleighnard convection (RBC) and due to the advection velocity. In the combined regime, which occurs at intermediate values of C/2)4/3. At lower driving potentials, in the diffusion regime, the flux scaling is similar to that in turbulent RBC.
Bandyopadhyay, Kaustav; Uluçay, Orhan; Şakiroğlu, Muhammet; Udvardi, Michael K.; Verdier, Jerome
2016-01-01
Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination. PMID:27618017
Walsh, Matthew C; Trentham-Dietz, Amy; Gangnon, Ronald E; Nieto, F Javier; Newcomb, Polly A; Palta, Mari
2012-06-01
Increasing numbers of individuals are choosing to opt out of population-based sampling frames due to privacy concerns. This is especially a problem in the selection of controls for case-control studies, as the cases often arise from relatively complete population-based registries, whereas control selection requires a sampling frame. If opt out is also related to risk factors, bias can arise. We linked breast cancer cases who reported having a valid driver's license from the 2004-2008 Wisconsin women's health study (N = 2,988) with a master list of licensed drivers from the Wisconsin Department of Transportation (WDOT). This master list excludes Wisconsin drivers that requested their information not be sold by the state. Multivariate-adjusted selection probability ratios (SPR) were calculated to estimate potential bias when using this driver's license sampling frame to select controls. A total of 962 cases (32%) had opted out of the WDOT sampling frame. Cases age <40 (SPR = 0.90), income either unreported (SPR = 0.89) or greater than $50,000 (SPR = 0.94), lower parity (SPR = 0.96 per one-child decrease), and hormone use (SPR = 0.93) were significantly less likely to be covered by the WDOT sampling frame (α = 0.05 level). Our results indicate the potential for selection bias due to differential opt out between various demographic and behavioral subgroups of controls. As selection bias may differ by exposure and study base, the assessment of potential bias needs to be ongoing. SPRs can be used to predict the direction of bias when cases and controls stem from different sampling frames in population-based case-control studies.
Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao
2016-06-01
Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.
Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard
2011-01-01
We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.
Warp-averaging event-related potentials.
Wang, K; Begleiter, H; Porjesz, B
2001-10-01
To align the repeated single trials of the event-related potential (ERP) in order to get an improved estimate of the ERP. A new implementation of the dynamic time warping is applied to compute a warp-average of the single trials. The trilinear modeling method is applied to filter the single trials prior to alignment. Alignment is based on normalized signals and their estimated derivatives. These features reduce the misalignment due to aligning the random alpha waves, explaining amplitude differences in latency differences, or the seemingly small amplitudes of some components. Simulations and applications to visually evoked potentials show significant improvement over some commonly used methods. The new implementation of the dynamic time warping can be used to align the major components (P1, N1, P2, N2, P3) of the repeated single trials. The average of the aligned single trials is an improved estimate of the ERP. This could lead to more accurate results in subsequent analysis.
Geodesy and metrology with a transportable optical clock
NASA Astrophysics Data System (ADS)
Grotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, Davide
2018-05-01
Optical atomic clocks, due to their unprecedented stability1-3 and uncertainty3-6, are already being used to test physical theories7,8 and herald a revision of the International System of Units9,10. However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy11, a major challenge remains: their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations12-14. Here, we report the first field measurement campaign with a transportable 87Sr optical lattice clock12. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km away, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171Yb lattice clock15 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.
Seif, Salem; Planz, Viktoria; Windbergs, Maike
2017-10-01
Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions. © 2017 Deutsche Pharmazeutische Gesellschaft.
Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Chen, Ranbin; San, Haisheng; Liu, Guohua; Wang, Kaiying
2015-05-01
We report the fabrication of sandwich-type metal/TiO2 nanotube (TNT) array/metal structures as well as their betavoltaic effects under build-in voltage through contact potential difference. The sandwiched structure is integrated by immobilized TNT arrays on Ti foil with radioisotope 63Ni planar source on Ni substrate (Ni-63Ni/TNT array/Ti). Under irradiation of the 63Ni source with activity of 8 mCi, the structure (TNT diameter ∼ 130 nm, length ∼ 11 μm) presents optimum energy conversion efficiency of 7.30% with open-circuit voltage of 1.54 V and short-circuit current of 12.43 nA. The TNT arrays exhibit a highly potential for developing betavoltaic batteries due to its wide band gap and nanotube array configuration. The TNT-betavoltaic concept offers a facile solution for micro/nano electronics with high efficiency and long life-time instead of conventional planar junction-type batteries.
NASA Astrophysics Data System (ADS)
Koppan, A.; Fenyvesi, A.; Szarka, L.; Wesztergom, V.
2002-05-01
Electrical potential differences (EPD) in the trunk of a Turkey oak tree (measured by using non-polarising electrodes deepened in the sap wood) have been continuously recorded in the Geophysical Observatory "Istv n Széchenyi" of the Hungarian Academy of Sciences since 1997. Besides of various geophysical observations, meteorological and direct sap-flow measurements have also been carried out in the observatory. As it was found (Kopp n A., Szarka L., Wesztergom V., 2000: Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. C.R. Acad. Sci. Paris, Life Sciences 323, 559-563), the measured electric potential difference data have a characteristic sinusoidal daily fluctuation, and the intensity of the diurnal variations has a double-peak annual characteristics, which coincides with the life activity maximums of the tree. We have found a remarkable inter-correlation between trunk EPD, water potential of air (derived from meteorological data), and direct sap flow velocity data from a neighboring tree. All these results clearly demonstrate that the sap streaming due to the transpiration and root pressure generates the largest part of measured potential differences. The ratio of the flow velocity of a diluted solution forced through stems and the potential differences was found to be constant (Gindl, W., L”ppert, H.-G., Wimmer, R., 1999: Relationship between streaming potential and sap velocity in Salix alba L. Phyton, 39, 217-224.). On the contrary in our in-vivo experiments the relationship between the measured sap flow velocity and EPD is non-linear, which means that the conductivity (i.e. ion concentration) of the xylem sap itself also has a daily fluctuation.
Macroscopic quantum interference from atomic tunnel arrays
Anderson; Kasevich
1998-11-27
Interference of atomic de Broglie waves tunneling from a vertical array of macroscopically populated traps has been observed. The traps were located in the antinodes of an optical standing wave and were loaded from a Bose-Einstein condensate. Tunneling was induced by acceleration due to gravity, and interference was observed as a train of falling pulses of atoms. In the limit of weak atomic interactions, the pulse frequency is determined by the gravitational potential energy difference between adjacent potential wells. The effect is closely related to the ac Josephson effect observed in superconducting electronic systems.
Perceptual and Affective Responses to Sampled Capsaicin Differ by Reported Intake
Nolden, Alissa A.; Hayes, John E.
2016-01-01
The present study was conducted to a) generate suprathresold dose-response functions for multiple qualities evoked by capsaicin across a wide range of concentrations, and b) revisit how intensity ratings and liking may differ as a function of self reported intake. Individuals rated eight samples of capsaicin for perceived burn and bitterness, as well as disliking/liking. Measures of reported preference for chili peppers, chili intake frequency, prior experience and personality measures were also assessed. Here, we confirm prior findings showing that burn in the laboratory differs with reported chili intake, with infrequent consumers reporting more burn. We extend these findings by exploring how capsaicin perception varies by reported liking, and measures of variety seeking. We also address the question of whether differences in burn ratings may potentially be an artifact of differential scale usage across groups due to prior experience, and not chronic desensitization, as is typically assumed. By using generalized scaling methods and recalled sensations, we conclude the differences observed here and elsewhere are not likely due to differences in how participants use rating scales. PMID:28392628
Takayama, Kazuo; Morisaki, Yuta; Kuno, Shuichi; Nagamoto, Yasuhito; Harada, Kazuo; Furukawa, Norihisa; Ohtaka, Manami; Nishimura, Ken; Imagawa, Kazuo; Sakurai, Fuminori; Tachibana, Masashi; Sumazaki, Ryo; Noguchi, Emiko; Nakanishi, Mahito; Hirata, Kazumasa; Kawabata, Kenji; Mizuguchi, Hiroyuki
2014-11-25
Interindividual differences in hepatic metabolism, which are mainly due to genetic polymorphism in its gene, have a large influence on individual drug efficacy and adverse reaction. Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells have the potential to predict interindividual differences in drug metabolism capacity and drug response. However, it remains uncertain whether human iPSC-derived HLCs can reproduce the interindividual difference in hepatic metabolism and drug response. We found that cytochrome P450 (CYP) metabolism capacity and drug responsiveness of the primary human hepatocytes (PHH)-iPS-HLCs were highly correlated with those of PHHs, suggesting that the PHH-iPS-HLCs retained donor-specific CYP metabolism capacity and drug responsiveness. We also demonstrated that the interindividual differences, which are due to the diversity of individual SNPs in the CYP gene, could also be reproduced in PHH-iPS-HLCs. We succeeded in establishing, to our knowledge, the first PHH-iPS-HLC panel that reflects the interindividual differences of hepatic drug-metabolizing capacity and drug responsiveness.
Chowdhury, Fabliha Ahmed; Hossain, Md Kamal; Mostofa, A. G. M.; Akbor, Maruf Mohammad
2018-01-01
Glioblastoma multiforme (GBM) is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM. PMID:29651429
Spice use in food: Properties and benefits.
Jessica Elizabeth, De La Torre; Gassara, Fatma; Kouassi, Anne Patricia; Brar, Satinder Kaur; Belkacemi, Khaled
2017-04-13
Spices are parts of plants that due to their properties are used as colorants, preservatives, or medicine. The uses of spices have been known since long time, and the interest in the potential of spices is remarkable due to the chemical compounds contained in spices, such as phenylpropanoids, terpenes, flavonoids, and anthocyanins. Spices, such as cumin (cuminaldehyde), clove (eugenol), and cinnamon (cinnamaldehyde) among others, are known and studied for their antimicrobial and antioxidant properties due to their main chemical compounds. These spices have the potential to be used as preservatives in many foods namely in processed meat to replace chemical preservatives. Main chemical compounds in spices also confer other properties providing a variety of applications to spices, such as insecticidal, medicines, colorants, and natural flavoring. Spices provide beneficial effects, such as antioxidant activity levels that are comparable to regular chemical antioxidants used so they can be used as a natural alternative to synthetic preservatives. In this review, the main characteristics of spices will be described as well as their chemical properties, different applications of these spices, and the advantages and disadvantages of their use.
Meeting in the Middle? A Study of Parent-Professional Partnerships
ERIC Educational Resources Information Center
O'Connor, Una
2008-01-01
The relationship between a parent and their child who has SEN is one that, by necessity, is shared with a larger than usual group of professionals. It is perhaps inevitable, then, that this relationship has been an occasionally precarious one, with a potential for conflict due to differing perspectives and priorities. Although the ideal of…
In this U.S.-focused analysis we use outputs from two global climate models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change...
Evaluating Differences in Landscape Interpretation between Webcam and Field-Based Experiences
ERIC Educational Resources Information Center
Kolivras, Korine N.; Luebbering, Candice R.; Resler, Lynn M.
2012-01-01
Field trips have become less common due to issues including budget constraints and large class sizes. Research suggests that virtual field trips can substitute for field visits, but the role of webcams has not been evaluated. To investigate the potential for webcams to substitute for field trips, participants viewed urban and physical landscapes…
USDA-ARS?s Scientific Manuscript database
Feeding patterns of pigs in the grow-finish phase have been investigated for use in management decisions, identifying sick animals, and determining genetic differences within a herd. Development of models to predict swine feeding behavior has been limited due the large number of potential environmen...
Toddler Autism Screening Questionnaire: Development and Potential Clinical Validity
ERIC Educational Resources Information Center
Tsai, Wen-Che; Soong, Wei-Tsuen; Shyu, Yea-Ing Lotus
2012-01-01
No feasible screening instrument is available for early detection of children with autism in Taiwan. The existing instruments may not be appropriate for use in Taiwan due to different health care systems and child-rearing cultures. The purpose of this study was to develop and test a screening questionnaire for generic autism. The initial 18-item…
ERIC Educational Resources Information Center
Haegeland, Torbjorn; Raaum, Oddbjorn; Salvanes, Kjell G.
2012-01-01
Evidence on the effectiveness of school inputs remains inconclusive, partly due to the challenge of identification as families sort themselves into school districts and resources are potentially allocated to compensate (or reinforce) differences in pupil abilities. Using variation in school resources induced by the location of waterfalls in…
Rajabi, Mohsen; Struble, Evi; Zhou, Zhaohua; Karnaukhova, Elena
2012-01-01
Human C1-esterase inhibitor (C1-INH) is a multifunctional plasma protein with a wide range of inhibitory and non-inhibitory properties, mainly recognized as a key down-regulator of the complement and contact cascades. The potentiation of C1-INH by heparin and other glycosaminoglycans (GAGs) regulates a broad spectrum of C1-INH activities in vivo both in normal and disease states. SCOPE OF RESEARCH: We have studied the potentiation of human C1-INH by heparin using Surface Plasmon Resonance (SPR), circular dichroism (CD) and a functional assay. To advance a SPR for multiple-unit interaction studies of C1-INH we have developed a novel (consecutive double capture) approach exploring different immobilization and layout. Our SPR experiments conducted in three different design versions showed marked acceleration in C1-INH interactions with complement protease C1s as a result of potentiation of C1-INH by heparin (from 5- to 11-fold increase of the association rate). Far-UV CD studies suggested that heparin binding did not alter C1-INH secondary structure. Functional assay using chromogenic substrate confirmed that heparin does not affect the amidolytic activity of C1s, but does accelerate its consumption due to C1-INH potentiation. This is the first report that directly demonstrates a significant acceleration of the C1-INH interactions with C1s due to heparin by using a consecutive double capture SPR approach. The results of this study may be useful for further C-INH therapeutic development, ultimately for the enhancement of current C1-INH replacement therapies. Published by Elsevier B.V.
Groundwater potential zoning of a peri-urban wetland of south Bengal Basin, India.
Sahu, Paulami; Sikdar, Pradip K
2011-03-01
Demand for groundwater for drinking, agricultural, and industrial purposes has increased due to rapid increase in population. Therefore, it is imperative to assess the groundwater potential of different areas, especially in a fragile wetland ecosystem to select appropriate sites for developing well fields to minimize adverse environmental impacts of groundwater development. This study considers East Calcutta Wetlands (ECW)--a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems developed by local people through ages, using wastewater of the city. The subsurface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades, and sand mixed with occasional gravels and thin intercalations of silty clay. Groundwater occurs mostly under confined condition except in those places where the top aquitard has been obliterated due to scouring action of past channels. The groundwater in the study area is being over-extracted at the rate of 65 × 10(3) m(3)/day. Overlay analysis in Geographic Information System platform using multiple criteria such as water quality index, hydraulic conductivity, groundwater velocity, and depth to piezometric surface reveals that in and around ECW, there are five groundwater potential zones. About 74% of the aquifer of this area shows very poor to medium groundwater potential. Management options such as minimization of groundwater abstraction by introducing the treated surface water supply system and the implementation of rainwater harvesting and artificial recharge in high-rise buildings and industries are suggested for different potential zones.
Septicaemia caused by Edwardsiella tarda and Plesiomonas shigelloides in captive penguin chicks.
Nimmervoll, H; Wenker, C; Robert, N; Albini, S
2011-03-01
Three cases of fatal septicaemia due to Plesiomonas shigelloides and one due to Edwardsiella tarda were diagnosed in newborn penguins from the Basle Zoo, Switzerland from 2003 to 2007. The affected penguins were of two different species (king penguin, Aptenodytes patagonicus, and African penguin, Spheniscus demersus) and between 2 and 10 days old at the time of death. The causative agents, E. tarda and P. shigelloides are ubiquitous bacteria which are reported to be present in the normal intestinal flora of wild and captive aquatic animals, including penguins. Their occurrence and infectious potential is discussed.
O'Brien, Niall Joseph; Cummins, Enda J
2011-05-01
Nanomaterials are finding application in many different environmentally relevant products and processes due to enhanced catalytic, antimicrobial, and oxidative properties of materials at this scale. As the market share of nano-functionalized products increases, so too does the potential for environmental exposure and contamination. This study presents some exposure ranking methods that consider potential metallic nanomaterial surface water exposure and fate, due to nano-functionalized products, through a number of exposure pathways. These methods take into account the limited and disparate data currently available for metallic nanomaterials and apply variability and uncertainty principles, together with qualitative risk assessment principles, to develop a scientific ranking. Three exposure scenarios with three different nanomaterials were considered to demonstrate these assessment methods: photo-catalytic exterior paint (nano-scale TiO₂), antimicrobial food packaging (nano-scale Ag), and particulate-reducing diesel fuel additives (nano-scale CeO₂). Data and hypotheses from literature relating to metallic nanomaterial aquatic behavior (including the behavior of materials that may relate to nanomaterials in aquatic environments, e.g., metals, pesticides, surfactants) were used together with commercial nanomaterial characteristics and Irish natural aquatic environment characteristics to rank the potential concentrations, transport, and persistence behaviors within subjective categories. These methods, and the applied scenarios, reveal where data critical to estimating exposure and risk are lacking. As research into the behavior of metallic nanomaterials in different environments emerges, the influence of material and environmental characteristics on nanomaterial behavior within these exposure- and risk-ranking methods may be redefined on a quantitative basis. © 2010 Society for Risk Analysis.
Palacio, Herman; Otálvaro, Felipe; Giraldo, Luis Fernando; Ponchel, Gilles; Segura-Sánchez, Freimar
2017-12-01
Drug delivery represents one of the most important research fields within the pharmaceutical industry. Different strategies are reported every day in a dynamic search for carriers with the ability to transport drugs across the body, avoiding or decreasing toxic issues and improving therapeutic activity. One of the most interesting strategies currently under research is the development of drug delivery systems sensitive to different stimuli, due to the high potential attributed to the selective delivery of the payload. In this work, a stimuli-sensitive nanocarrier was built with a bifunctional acrylic polymer, linked by imine and disulfide bonds to thiolate chitosan, the latter being a biopolymer widely known in the field of tissue engineering and drug delivery by its biodegradability and biocompatibility. These polymer nanoparticles were exposed to different changes in pH and redox potential, which are environments commonly found inside cancer cells. The results proof the ability of the nanoparticles to keep the original structure when either changes in pH or redox potential were applied individually. However, when both stimuli were applied simultaneously, a disassembly of the nanoparticles was evident. These special characteristics make these nanoparticles suitable nanocarriers with potential for the selective delivery of anticancer drugs.
A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si.
Shin, Kumjae; Lee, Hoontaek; Sung, Min; Lee, Sang Hoon; Shin, Hyunjung; Moon, Wonkyu
2017-10-01
We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1981-01-01
Quasi-geostrophic disturbance instability characteristics are studied in light of a linearized, two-layer Eady model in which both the static stability and the zonal current shear are uniform but different in each layer. It is shown that the qualitative character of the instability is determined by the sign of the basic-state potential vorticity gradient at the layer interface, and that there is a qualitative similarity between the effects of Richardson number variations due to changes in static stability and those due to changes in shear. The two-layer model is also used to construct an analog of the Williams (1974) continuous model of generalized Eady waves, the basic state in that case having zero potential vorticity gradient in the interior. The model results are in good agreement with the earlier Williams findings.
Body piercing with fatal consequences.
Ranga, N; Jeffery, A J
2011-01-25
Body modifications such as piercings, tattoos and surgery have increased in popularity in recent times and have become more socially acceptable. The common complications of piercing different parts of the human anatomy are well-documented, including sepsis, allergic reactions and, more rarely, endocarditis and ischaemia. Deaths related to piercing complications are primarily septic in origin. In this case, a man in his 50s died due to complications of his multiple umbilical piercings. The cause of death was unusually linked to body modification; the umbilical piercings had ultimately led to a mesenteric infarction. Cases such as these are forensically important due to potential manslaughter charges that could be brought against a piercing establishment. More importantly, this case highlights another extreme complication of body modification. Fashion statements are always changing and impact upon many lives. It is important to highlight to people the potentially life-threatening complications of common piercing practices.
NASA Astrophysics Data System (ADS)
Harpold, R. E.; Urban, T. J.; Schutz, B. E.
2008-12-01
Interest in elevation change detection in the polar regions has increased recently due to concern over the potential sea level rise from the melting of the polar ice caps. Repeat track analysis can be used to estimate elevation change rate by fitting elevation data to model parameters. Several aspects of this method have been tested to improve the recovery of the model parameters. Elevation data from ICESat over Antarctica and Greenland from 2003-2007 are used to test several grid sizes and types, such as grids based on latitude and longitude and grids centered on the ICESat reference groundtrack. Different sets of parameters are estimated, some of which include seasonal terms or alternate types of slopes (linear, quadratic, etc.). In addition, the effects of including crossovers and other solution constraints are evaluated. Simulated data are used to infer potential errors due to unmodeled parameters.
Meneguetti, Beatriz T.; Machado, Leandro dos Santos; Oshiro, Karen G. N.; Nogueira, Micaella L.; Carvalho, Cristiano M. E.; Franco, Octávio L.
2017-01-01
Bacterial resistance is a major threat to plant crops, animals and human health, and over the years this situation has increasingly spread worldwide. Due to their many bioactive compounds, plants are promising sources of antimicrobial compounds that can potentially be used in the treatment of infections caused by microorganisms. As well as stem, flowers and leaves, fruits have an efficient defense mechanism against pests and pathogens, besides presenting nutritional and functional properties due to their multifunctional molecules. Among such compounds, the antimicrobial peptides (AMPs) feature different antimicrobials that are capable of disrupting the microbial membrane and of acting in binding to intra-cytoplasmic targets of microorganisms. They are therefore capable of controlling or halting the growth of microorganisms. In summary, this review describes the major classes of AMPs found in fruits, their possible use as biotechnological tools and prospects for the pharmaceutical industry and agribusiness. PMID:28119671
Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser
NASA Astrophysics Data System (ADS)
Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki
2012-12-01
An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact potential difference between the PMMA and the stainless steel. Furthermore, the current in air using the dual coaxial glass pipes was less than that using the ejector.
Faulkner, Hope; Clarke, Holly J.; O’Sullivan, Maurice G.; Kerry, Joseph P.
2018-01-01
There has been a surge in interest in relation to differentiating dairy products derived from pasture versus confined systems. The impact of different forage types on the sensory properties of milk and cheese is complex due to the wide range of on farm and production factors that are potentially involved. The main effect of pasture diet on the sensory properties of bovine milk and cheese is increased yellow intensity correlated to β-carotene content, which is a possible biomarker for pasture derived dairy products. Pasture grazing also influences fat and fatty acid content which has been implicated with texture perception changes in milk and cheese and increased omega-3 fatty acids. Changes in polyunsaturated fatty acids in milk and cheese due to pasture diets has been suggested may increase susceptibility to lipid oxidation but does not seem to be an issue to due increased antioxidants and the reducing environment of cheese. It appears that pasture derived milk and cheese are easier to discern by trained panellists and consumers than milk derived from conserved or concentrate diets. However, milk pasteurization, inclusion of concentrate in pasture diets, cheese ripening time, have all been linked to reducing pasture dietary effects on sensory perception. Sensory evaluation studies of milk and cheese have, in general, found that untrained assessors who best represent consumers appear less able to discriminate sensory differences than trained assessors and that differences in visual and textural attributes are more likely to be realized than flavour attributes. This suggests that sensory differences due to diet are often subtle. Evidence supports the direct transfer of some volatiles via inhalation or ingestion but more so with indirect transfer post rumen metabolism dietary components. The impact of dietary volatiles on sensory perception of milk and dairy products obviously depends upon their concentration and odour activity, however very little quantitative studies have been carried out to date. Some studies have highlighted potential correlation of pasture with enhanced “barny” or “cowy” sensory attributes and subsequently linked these to accumulation of p-cresol from the metabolism of β-carotene and aromatic amino acids or possibly isoflavones in the rumen. p-Cresol has also been suggested as a potential biomarker for pasture derived dairy products. Other studies have linked terpenes to specific sensory properties in milk and cheese but this only appears to be relevant in milk and cheese derived from unseeded wild pasture where high concentrations accumulate, as their odour threshold is quite high. Toluene also a product of β-carotene metabolism has been identified as a potential biomarker for pasture derived dairy products but it has little impact on sensory perception due to its high odour threshold. Dimethyl sulfone has been linked to pasture diets and could influence sensory perception as its odour threshold is low. Other studies have linked the presence of maize and legumes (clover) in silage with adverse sensory impacts in milk and cheese. Considerably more research is required to define key dietary related impacts on the flavour of milk and cheese. PMID:29534042
Effects of Salt Secretion on Psychrometric Determinations of Water Potential of Cotton Leaves
Klepper, Betty; Barrs, H. D.
1968-01-01
Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about −10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about −10 bars. PMID:16656895
Staunton 1 reclamation demonstration project. Aquatic ecosystems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinikour, W. S.
1981-02-01
To provide long-term indications of the potential water quality improvements following reclamation efforts at the Staunton 1 Reclamation Demonstration Project, macroinvertebrates were collected from three on-site ponds and from the receiving stream (Cahokia Creek) for site drainage. Implications for potential benthic community differences resulting from site runoff were disclosed, but macroinvertebrate diversity throughout Cahokia Creek was limited due to an unstable, sandy substrate. The three ponds sampled were the New Pond, which was created as part of the reclamation activities; the Shed Pond, which and the Old Pond, which, because it was an existing, nonimpacted pond free of site runoff,more » served as a control. Comparisons of macroinvertebrates from the ponds indicated the potential for the New Pond to develop into a productive ecosystem. Macroinvertebrates in the New Pond were generally species more tolerant of acid mine drainage conditions. However, due to the present limited faunal densities and the undesirable physical and chemical characteristics of the New Pond, the pond should not be stocked with fish at this time.« less
Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing
2010-07-01
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2x after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Color Improves Speed of Processing But Not Perception in a Motion Illusion
Perry, Carolyn J.; Fallah, Mazyar
2012-01-01
When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored. PMID:22479255
Color improves speed of processing but not perception in a motion illusion.
Perry, Carolyn J; Fallah, Mazyar
2012-01-01
When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored.
NASA Astrophysics Data System (ADS)
Kim, Yong-Sang; Ko, Sang-Jin; Lee, Sangkyu; Kim, Jung-Gu
2018-03-01
An interpretation of the relation between the electric field and the applied current for cathodic protection is investigated using a boundary element method simulation. Also, a conductivity-difference environment is set for the interface influence. The variation of the potential distribution is increased with the increase of the applied current and the conductivity difference due to the rejection of the current at the interface. In the case of the electric field, the tendencies of the increasing rate and the applied currents are similar, but the interface influence is different according to the directional component and field type (decrease of E z and increases of E x and E y) due to the directional difference between the electric fields. Also, the change tendencies of the electric fields versus the applied current plots are affected by the polarization curve tendency regarding the polarization type (activation and concentration polarizations in the oxygen-reduction and hydrogen-reduction reactions). This study shows that the underwater electric signature is determined by the polarization behavior of the materials.
Ground-based optical atomic clocks as a tool to monitor vertical surface motion
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai
2015-09-01
According to general relativity, a clock experiencing a shift in the gravitational potential ΔU will measure a frequency change given by Δf/f ≈ ΔU/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of Δf/f ˜ 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.
Laser profile changes due to photon-axion induced beam splitting
NASA Astrophysics Data System (ADS)
Scarlett, Carol
2013-09-01
This paper looks at a potentially unique measurable due to photon-axion coupling in an external magnetic field. Traditionally, detection of such a coupling has focused on observation of an optical rotation of the beam's polarization due to either a birefringence or a path length difference (p.l.d.) between two polarization states. Such experiments, utilizing mirror cavities, have been significantly limited in sensitivity; approaching coupling strengths of ~ga=10-7 GeV-1. Here the bifurcation of a beam in a cavity is explored along with the possibility of measuring its influence on the photon density. Simulations indicate that coupling to levels ga~10-12 are, with an appropriate choice of cavity, within measurable limits. This is due to a rapid growth of a signal defined by the energy loss from the center accompanying an increase in the region beyond the beam waist. Finally, the influence of a non-zero axion mass is explored.
USDA-ARS?s Scientific Manuscript database
Nitrous oxide (N2O) emissions are increasing at an unprecedented rate due to increased nitrogen (N) fertilizers use. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation st...
ERIC Educational Resources Information Center
Nisiforou, Olympia; Charalambides, Alexandros George
2012-01-01
Biodiversity is a key resource as it provides both goods and services to society. However, humans value these resources differently, especially when biodiversity is exploited for its economic potential; a destruction on a scale rarely seen before. In order to decrease the threats that biodiversity is facing due to human activity, globally (climate…
USDA-ARS?s Scientific Manuscript database
Emissions of ammonia (NH3) and nitrous oxide (N2O) vary among animal facilities due to differences in housing structure and associated manure management. Bedded pack barns are structures with a roof and sidewalls resulting in a lower air velocity and evaporation potential inside the structure. But s...
ERIC Educational Resources Information Center
Mwoma, Teresa; Pillay, Jace
2016-01-01
Educational status is an important indicator of children's wellbeing and future life opportunities. It can predict growth potential and economic viability of a state. While this is an ideal situation for all children, the case may be different for orphans and vulnerable children (OVC) due to the challenges they go through on a daily basis. This…
Stem Cell, Regenerative Medicine and Cancer | Center for Cancer Research
Of the estimated trillion cells that build up our bodies, only a little number can self-renew and give rise to many different cell types. These unspecialized cells are called stem cells. Stem cell division and differentiation is fundamental to the development of the mature organism. Stem cells have recently attracted significant attention largely due to their potential medical
McGrory, Ellen R; Brown, Colin; Bargary, Norma; Williams, Natalya Hunter; Mannix, Anthony; Zhang, Chaosheng; Henry, Tiernan; Daly, Eve; Nicholas, Sarah; Petrunic, Barbara M; Lee, Monica; Morrison, Liam
2017-02-01
The presence of arsenic in groundwater has become a global concern due to the health risks from drinking water with elevated concentrations. The Water Framework Directive (WFD) of the European Union calls for drinking water risk assessment for member states. The present study amalgamates readily available national and sub-national scale datasets on arsenic in groundwater in the Republic of Ireland. However, due to the presence of high levels of left censoring (i.e. arsenic values below an analytical detection limit) and changes in detection limits over time, the application of conventional statistical methods would inhibit the generation of meaningful results. In order to handle these issues several arsenic databases were integrated and the data modelled using statistical methods appropriate for non-detect data. In addition, geostatistical methods were used to assess principal risk components of elevated arsenic related to lithology, aquifer type and groundwater vulnerability. Geographic statistical methods were used to overcome some of the geographical limitations of the Irish Environmental Protection Agency (EPA) sample database. Nearest-neighbour inverse distance weighting (IDW) and local indicator of spatial association (LISA) methods were used to estimate risk in non-sampled areas. Significant differences were also noted between different aquifer lithologies, indicating that Rhyolite, Sandstone and Shale (Greywackes), and Impure Limestone potentially presented a greater risk of elevated arsenic in groundwaters. Significant differences also occurred among aquifer types with poorly productive aquifers, locally important fractured bedrock aquifers and regionally important fissured bedrock aquifers presenting the highest potential risk of elevated arsenic. No significant differences were detected among different groundwater vulnerability groups as defined by the Geological Survey of Ireland. This research will assist management and future policy directions of groundwater resources at EU level and guide future research focused on understanding arsenic mobilisation processes to facilitate in guiding future development, testing and treatment requirements of groundwater resources. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chaosheng
2010-05-01
Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with.
Commercial antibodies and their validation
Voskuil, JLA
2014-01-01
Despite an impressive growth in the business of research antibodies a general lack of trust in commercial antibodies remains in place. A variety of issues, each one potentially causing an antibody to fail, underpin the frustrations that scientists endure. Lots of money goes to waste in buying and trying one failing antibody after the other without realizing all the pitfalls that come with the product: Antibodies can get inactivated, both the biological material and the assay itself can potentially be flawed, a single antibody featuring in many different catalogues can be deemed as a set of different products, and a bad choice of antibody type, wrong dilutions, and lack of proper validation can all jeopardize the intended experiments. Antibodies endorsed by scientific research papers do not always meet the scientist’s requirements either due to flawed specifications, or due to batch-to-batch variations. Antibodies can be found with Quality Control data obtained from previous batches that no longer represent the batch on sale. In addition, one cannot assume that every antibody is fit for every application. The best chance of success is to try an antibody that already was confirmed to perform correctly in the required platform. PMID:25324967
Vacuum selection on axionic landscapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gaoyuan; Battefeld, Thorsten, E-mail: gaoyuan.wang@stud.uni-goettingen.de, E-mail: tbattefe@astro.physik.uni-goettingen.de
2016-04-01
We compute the distribution of minima that are reached dynamically on multi-field axionic landscapes, both numerically and analytically. Such landscapes are well suited for inflationary model building due to the presence of shift symmetries and possible alignment effects (the KNP mechanism). The resulting distribution of dynamically reached minima differs considerably from the naive expectation based on counting all vacua. These differences are more pronounced in the presence of many fields due to dynamical selection effects: while low lying minima are preferred as fields roll down the potential, trajectories are also more likely to get trapped by one of the manymore » nearby minima. We show that common analytic arguments based on random matrix theory in the large D-limit to estimate the distribution of minima are insufficient for quantitative arguments pertaining to the dynamically reached ones. This discrepancy is not restricted to axionic potentials. We provide an empirical expression for the expectation value of such dynamically reached minimas' height and argue that the cosmological constant problem is not alleviated in the absence of anthropic arguments. We further comment on the likelihood of inflation on axionic landscapes in the large D-limit.« less
A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment.
Dai, Qizhou; Min, Xia; Weng, Mili
2016-10-01
Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment. The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.
Ganga, G M D; Esposto, K F; Braatz, D
2012-01-01
The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.
Gao, Xiang; Liu, Shaojun; Zhang, Yang; Luo, Zhongyang; Cen, Kefa
2011-04-15
Several metal-doped activated carbons (Fe, Co, Ni, V, Mn, Cu and Ce) were prepared and characterized. The results of N(2) adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that some metals (Cu and Fe) were partly reduced by carbon during preparation. Activity tests for the removal of SO(2) and the selective catalytic reduction of NO with ammonia were carried out. Due to different physicochemical properties, different pathways for the SO(2) removal had been put out, i.e., catalytic oxidation, direct reaction and adsorption. This classification depended on the standard reduction potentials of metal redox pairs. Samples impregnated with V, Ce and Cu showed good activity for NO reduction by NH(3), which was also ascribed to the reduction potential values of metal redox pairs. Ce seemed to be a promising alternative to V due to the higher activity in NO reduction and the nontoxic property. A metal cation which could easily convert between the two valences seemed to be crucial to the good performance of both SO(2) and NO removal, just like V and Cu. Copyright © 2011 Elsevier B.V. All rights reserved.
Marschall, Robert; Tudzynski, Paul
2014-10-01
Reactive oxygen species (ROS) are produced in conserved cellular processes either as by-products of the cellular respiration in mitochondria, or purposefully for defense mechanisms, signaling cascades or cell homeostasis. ROS have two diametrically opposed attributes due to their highly damaging potential for DNA, lipids and other molecules and due to their indispensability for signaling and developmental processes. In filamentous fungi, the role of ROS in growth and development has been studied in detail, but these analyses were often hampered by the lack of reliable and specific techniques to monitor different activities of ROS in living cells. Here, we present a new method for live cell imaging of ROS in filamentous fungi. We demonstrate that by use of a mixture of two fluorescent dyes it is possible to monitor H2O2 and superoxide specifically and simultaneously in distinct cellular structures during various hyphal differentiation processes. In addition, the method allows for reliable fluorometric quantification of ROS. We demonstrate that this can be used to characterize different mutants with respect to their ROS production/scavenging potential. Copyright © 2014 Elsevier Inc. All rights reserved.
Intermediate Temperature Fluids Life Tests - Experiments
NASA Technical Reports Server (NTRS)
Anderson, William G.; Bonner, Richard W.; Dussinger, Peter M.; Hartenstine, John R.; Sarraf, David B.; Locci, Ivan E.
2007-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 725 K (170 to 450 C), including space nuclear power system radiators, fuel cells, and high temperature electronics cooling. Historically, water has been used in heat pipes at temperatures up to about 425 K (150 C). Recent life tests, updated below, demonstrate that titanium/water and Monel/water heat pipes can be used at temperatures up to 550 K (277 C), due to water's favorable transport properties. At temperatures above roughly 570 K (300 C), water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. An electromotive force method was used to predict the compatibility of halide working fluids with envelope materials. This procedure was used to reject aluminum and aluminum alloys as envelope materials, due to their high decomposition potential. Titanium and three corrosion resistant superalloys were chosen as envelope materials. Life tests were conducted with these envelopes and six different working fluids: AlBr3, GaCl3, SnCl4, TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3 was incompatible. As the temperature approaches 725 K (450 C), cesium is a potential heat pipe working fluid. Life tests results are also presented for cesium/Monel 400 and cesium/70-30 copper/nickel heat pipes operating near 750 K (477 C). These materials are not suitable for long term operation, due to copper transport from the condenser to the evaporator.
NASA Astrophysics Data System (ADS)
Rajni, Kumar, Prashant
2017-10-01
Many nanofluidic systems are being used in a wide range of applications due to advances in nanotechnology. Due to nanoscale size of the system, the physics involved in the electric double layer and consequently the different phenomena related to it are different than those at microscale. The Poisson-Boltzmann equation governing the electric double layer in the system has many shortcomings such as point sized ions. The inclusion of finite size of ions give rise to various electrokinetic phenomena. Electrocapillarity is one such phenomena where the size effect plays an important role. Theeffect of asymmetric finite ion sizes in nano-confinement in the view of osmotic pressure and electrocapillarity is analyzed. As the confinement width of the system becomes comparable with the Debye length, the overlapped electric double layer (EDL) is influenced and significantly deformed by the steric effects. The osmotic pressure from the modified Poisson-Boltzmann equation in nanoslit is obtained. Due to nonlinear nature of the modified PB equation, the solution is obtained through numerical method. Afterwards, the electrocapillarity due to the steric effect is analyzed under constant surface potential condition at the walls of the nanoslit along with the flat interface assumption.
Critical insight into the influence of the potential energy surface on fission dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurek, K.; Grand Accelerateur National d'Ions Lourds; Schmitt, C.
The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. Whenmore » utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.« less
Merenstein, D J; Smith, K H; Scriven, M; Roberts, R F; Sanders, M E; Petterson, S
2010-07-01
Probiotic functional foods are widely advertised to consumers primarily based on probiotic supplements. Determine if consumption of yogurt containing a high dose of probiotics improves health in children ages 1-3 years attending daycare/school centers. Double-blinded, randomized, placebo-controlled, allocation concealment clinical trial. Outpatient participants in the Washington, DC area. 182 healthy children between the age of 1 and 3 years attending daycare/school at least 3 days a week. Active was a strawberry yogurt-based drink supplemented with Bifidobacterium animalis ssp. lactis (B. lactis) BB-12. The placebo was indistinguishable from the active drink, differing only in absence of the probiotic BB-12. Primary objective was to determine if consumption of a probiotic-containing yogurt-based drink decreases absences due to illnesses from daycare for children ages 1-3 years. Secondary was to determine if probiotic-containing yogurt-based drink improves overall parental satisfaction due to decreased absences from work and an overall healthier child. There were no significant differences in the days of missed school per group, with 51.9% in the active group and 47.1% in the placebo group missing at least 1 day of school throughout the study. Additionally, there were no differences in any secondary outcomes among the groups. Consumption of a yogurt-based drink delivering 10(10) CFU of Bifidobacterium animalis ssp. lactis (B. lactis) BB-12 per day did not decrease the number of days missed of school due to an illness. Additional independent research on the potential of BB-12 to reduce illness in children needs to be conducted.
Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia
2015-09-01
Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. Published by Elsevier B.V.
Glycine-Glomus-Bradyrhizobium Symbiosis 1
Bethlenfalvay, Gabor J.; Brown, Milford S.; Franson, Raymond L.
1990-01-01
Soybean (Glycine max [L.] Merr.) plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (VAM plants) or fertilized with KH2PO4 (nonVAM plants) and grown for 50 days under controlled conditions. Plants were harvested over a 4-day period during which the soil was permitted to dry slowly. The harvest was terminated when leaf gas exchange was no longer measurable due to drought stress. Significantly different effects in shoot water content, but not in shoot water potential, were found in VAM and nonVAM plants in response to drought stress. Leaf conductances of the two treatments showed similar response patterns to changes in soil water and shoot water potential but were significantly different in magnitude and trend relative to shoot water content. The relationships between transpiration, CO2 exchange and water-use efficiency (WUE) were the same in VAM and nonVAM plants in response to decreasing soil water and shoot water potential. As a function of shoot water content, however, WUE showed different response patterns in VAM and nonVAM plants. PMID:16667771
Bioassays for toxicological risk assessment of landfill leachate: A review.
Ghosh, Pooja; Thakur, Indu Shekhar; Kaushik, Anubha
2017-07-01
Landfilling is the most common solid waste management practice. However, there exist a potential environmental risk to the surface and ground waters due to the possible leaching of contaminants from the landfill leachates. Current municipal solid waste landfill regulatory approaches consider physicochemical characterization of the leachate and do not assess their potential toxicity. However, assessment of toxic effects of the leachates using rapid, sensitive and cost-effective biological assays is more useful in assessing the risks as they measure the overall toxicity of the chemicals in the leachate. Nevertheless, more research is needed to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants in order to evaluate leachate toxicity. There is a need for a multispecies approach using organisms representing different trophic levels so as to understand the potential impacts of leachate on different trophic organisms. The article reviews different bioassays available for assessing the hazard posed by landfill leachates. From the review it appears that there is a need for a multispecies approach to evaluate leachate toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad, E-mail: mohammadhasan786@gmail.com; Ghatak, Ananya, E-mail: gananya04@gmail.com; Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com
2014-05-15
We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights:more » •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.« less
Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure
NASA Astrophysics Data System (ADS)
Ning, Renxia; Jiao, Zheng; Bao, Jie
2017-05-01
A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.
Origin of the different color of ruby and emerald
NASA Astrophysics Data System (ADS)
García-Lastra, J. M.; Barriuso, M. T.; Aramburu, J. A.; Moreno, M.
2005-09-01
The different color exhibited by ruby and emerald is a fundamental but still unsolved question. According to recent EXAFS measurements, such a difference can hardly be explained on the basis of a different average distance between Cr3+ and the six oxygen ligands. The puzzling difference in color between the two gemstones is shown in this work to arise essentially from the distinct electrostatic potential imposed by the rest of lattice ions upon the active electrons of the CrO69- unit. Main effects are shown to come from the electric field generated in the neighborhood of the Cr3+ site in ruby which is absent in the case of emerald due to symmetry.
Júnior, V A P; Melo, P G S; Pereira, H S; Bassinello, P Z; Melo, L C
2015-05-29
Gastrointestinal health is of great importance due to the increasing consumption of functional foods, especially those concern-ing diets rich in fiber content. The common bean has been valorized as a nutritious food due to its appreciable fiber content and the fact that it is consumed in many countries. The current study aimed to evaluate and compare the genetic potential of common bean progenies of the carioca group, developed through different breeding methods, for crude fiber content. The progenies originated through hybridization of two advanced strains, CNFC 7812 and CNFC 7829, up to the F7 generation using three breeding methods: bulk-population, bulk within F2 families, and single seed descent. Fifteen F8 progenies were evaluated in each method, as well as two check cultivars and both parents, us-ing a 7 x 7 simple lattice design, with experimental plots comprised of two 4-m long rows. Field trials were conducted in eleven environments encompassing four Brazilian states and three different sowing times during 2009 and 2010. Estimates of genetic parameters indicate differences among the breeding methods, which seem to be related to the different processes for sampling the advanced progenies inherent to each method, given that the trait in question is not subject to natural selection. Variability amongst progenies occurred within the three breeding methods and there was also a significant effect of environment on the progeny for all methods. Progenies developed by bulk-population attained the highest estimates of genetic parameters, had less interaction with the environment, and greater variability.
Tenderholt, Adam L.; Szilagyi, Robert K.; Holm, Richard H.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.
2009-01-01
Molybdenum- or tungsten-containing enzymes catalyze oxygen atom transfer reactions involved in carbon, sulfur, or nitrogen metabolism. It has been observed that reduction potentials and oxygen atom transfer rates are different for W relative to Mo enzymes and the isostructural Mo/W complexes. Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations on [MoVO(bdt)2]− and [WVO(bdt)2]−, where bdt = benzene-1,2-dithiolate(2−), have been used to determine that the energies of the half-filled redox-active orbital, and thus the reduction potentials and M=O bond strengths, are different for these complexes due to relativistic effects in the W sites. PMID:17720249
Electrostatic hazards of charging of bedclothes and ignition in medical facilities.
Endo, Yuta; Ohsawa, Atsushi; Yamaguma, Mizuki
2018-02-26
We investigated the charge generated on bedclothes (cotton and polyester) during bedding exchange with different humidities and the ignitability of an alcohol-based hand sanitizer (72.3 mass% ethanol) due to static spark with different temperatures to identify the hazards of electrostatic shocks and ignitions occurring previously in medical facilities. The results indicated that charging of the polyester bedclothes may induce a human body potential of over about 10 kV, resulting in shocks even at a relative humidity of 50%, and a human body potential of higher than about 8 kV can cause a risk for the ignition of the hand sanitizer. The grounding of human bodies via footwear and flooring, therefore, is essential to avoid such hazards (or to reduce such risks).
The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masanet, Eric; Shehabi, Arman; Liang, Jiaqi
The energy use of data centers is a topic that has received much attention, given that data centers currently account for 1-2% of global electricity use. However, cloud computing holds great potential to reduce data center energy demand moving forward, due to both large reductions in total servers through consolidation and large increases in facility efficiencies compared to traditional local data centers. However, analyzing the net energy implications of shifts to the cloud can be very difficult, because data center services can affect many different components of society’s economic and energy systems.
Electrical resistivity of liquid lanthanides using charge hard sphere system
NASA Astrophysics Data System (ADS)
Sonvane, Y. A.; Thakor, P. B.; Jani, A. R.
2013-06-01
In the present paper, we have studied electrical resistivity (ρ) of liquid lanthanides. To describe the structural information, the structure factor S(q) due to the charged hard sphere (CHS) reference systems is used along with our newly constructed model potential. To see the influence of exchange and correlation effect on the electrical resistivity (ρ) have used different local field correction functions like Hartree (H), Sarkar et al (S) and Taylor (T). Lastly we conclude that the proper choice of the model potential along with local field correction function plays a vital role to the study of the electrical resistivity (ρ).
Erosion Potential of Tooth Whitening Regimens as Evaluated with Polarized Light Microscopy.
Brambert, Patrick; Qian, Fang; Kwon, So Ran
2015-11-01
Tooth whitening is a widely utilized esthetic treatment in dentistry. With increased access to over-the-counter (OTC) systems concerns have been raised as to potential adverse effects associated with overuse of whitening materials. Therefore, this study aimed to evaluate enamel erosion due to different whitening regimens when used in excess of recommended guidelines. Extracted human teeth (n = 66) were randomly divided into 11 groups (n = 6/group). Specimens were exposed to OTC products: Crest Whitestrips and 5-minute natural white and a do-it-yourself (DIY) strawberry whitening recipe. Within each regimen, groups were further divided per exposure time: specimens receiving the recommended product dosage; 5 times the recommended dosage; and 10 times the recommended dosage. Negative and positive controls were treated with grade 3 water and 1.0% citric acid, respectively. Specimens were nail-varnished to limit application to a 1 × 4 mm window. Following treatment, specimens were sectioned and erosion (drop in μm) measured using polarized light microscopy. Two-sample t-test was used to detect difference in amount of enamel erosion between negative and positive groups, while one-way analysis of variance (ANOVA), followed by post hoc Dunnett's test was used to detect difference between set of treatment groups and negative control groups or among all experimental groups. There was significant difference in mean amount of enamel erosion (p < 0.0001). Mean enamel erosion for positive control group was significantly greater than that for negative control group (23.50 vs 2.65 μm). There was significant effect for type of treatments on enamel erosion [F(9,50) = 25.19; p < 0.0001]. There was no significant difference between the negative control and each of treatment groups (p > 0.05 for all instances), except for Natural White_10 times treatment group (p < 0.0001) that was significantly greater than the negative control group (14.82 vs 2.65 μm). Caution is advised when using certain over-the-counter products beyond recommended guidelines as there is potential for enamel erosion. Enamel erosion due to the overuse of whitening products varies for different modalities and products. Therefore, caution is advised when using certain over-the-counter products beyond recommended guidelines, as there is potential for enamel erosion.
Hydraulic Limits on Maximum Plant Transpiration
NASA Astrophysics Data System (ADS)
Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.
2011-12-01
Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water potential compare well with measured peak transpiration and minimum water potentials across plant types and biomes, suggesting that plant water transport system and stomatal regulation co-evolved to meet peak atmospheric demands, thus sustaining carbon uptake while avoiding tissue damage even in such harsh conditions.
Hazardous air pollutants in industrial area of Mumbai - India.
Srivastava, Anjali; Som, Dipanjali
2007-09-01
Hazardous Air Pollutants (HAPs) have a potential to be distributed into different component of environment with varying persistence. In the current study fourteen HAPs have been quantified in the air using TO-17 method in an industrial area of Mumbai. The distribution of these HAPs in different environmental compartments have been calculated using multi media mass balance model, TaPL3, along with long range transport potential and persistence. Results show that most of the target compounds partition mostly in air. Phenol and trifluralin, partition predominantly into soil while ethyl benzene and xylene partition predominantly into vegetation compartment. Naphthalene has the highest persistence followed by ethyl benzene, xylene and 1,1,1 trihloro ethane. Long range transport potential is maximum for 1,1,1 trichloroethane. Assessment of human health risk in terms of non-carcinogenic hazard and carcinogenic risk due to exposure to HAPs. have been estimated for industrial workers and residents in the study area considering all possible exposure routes using the output from TaPL3 model. The overall carcinogenic risk for residents and workers are estimated as high as unity along with very high hazard potential.
Self-consistent field calculations of conductance through conjugated molecules at finite bias
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Stafström, Sven
2001-03-01
Conductance through conjugated molecules have previously been calculated for a large number of systems using the Landauer formula but only a few calculations have included charging effects. In this study we present calculations in the mean field approximation of the conductance of metal-molecule-metal systems using two different kinds of molecules for a large number of configurations and applied biases. The molecules are described in the Pariser-Parr Pople model. Current-voltage (I-V) characteristics and charge distribution of the molecule connected by one dimensional leads to reservoirs is solved within the Hartree-Fock approximation. Charging of the molecule occurs when the chemical potential of the reservoirs approach the resonant tunneling levels. The ensuing potential difference, due to the charging, shifts the tunneling peaks which affects the I-V curves considerably. Asymmetrical interaction with the metal leads, e.g. molecule on a metal surface contacted with an STM-tip, also give asymmetrical I-V curves where the potential of the molecule is shown to more closely follow the potential of the surface. Negative differential conductance is discussed in systems consisting of two weakly coupled molecules.
Simulating soybean canopy temperature as affected by weather variables and soil water potential
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1982-01-01
Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.
Assessment of geothermal energy potential by geophysical methods: Nevşehir Region, Central Anatolia
NASA Astrophysics Data System (ADS)
Kıyak, Alper; Karavul, Can; Gülen, Levent; Pekşen, Ertan; Kılıç, A. Rıza
2015-03-01
In this study, geothermal potential of the Nevşehir region (Central Anatolia) was assessed by using vertical electrical sounding (VES), self-potential (SP), magnetotelluric (MT), gravity and gravity 3D Euler deconvolution structure analysis methods. Extensive volcanic activity occurred in this region from Upper Miocene to Holocene time. Due to the young volcanic activity Nevşehir region can be viewed as a potential geothermal area. We collected data from 54 VES points along 5 profiles, from 28 MT measurement points along 2 profiles (at frequency range between 320 and 0.0001 Hz), and from 4 SP profiles (total 19 km long). The obtained results based on different geophysical methods are consistent with each other. Joint interpretation of all geological and geophysical data suggests that this region has geothermal potential and an exploration well validated this assessment beyond doubt.
Cursory examination of the zeta potential behaviors of two optical materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesar, A.; Oja, T.
1992-01-02
When an oxide surface is placed in water, a difference in potential across the interface occurs due to dipole orientation. Hydroxyl groups or bound oxygen atoms on the oxide surface will orient adjacent water molecules which balance the dipole charge. This occurs over some small distance called the electrical double layer. Trace amounts of high field strength ions present in the vicinity of the double layer can have significant effects on the double layer. When there is movement of the oxide surface with respect to the water, a shearing of the double layer occurs. The electrical potential at this surfacemore » of shear is termed the zeta potential. The impetus for this study was to document the zeta potential behavior in water of two optical materials. (1) a multicomponent phosphate glass; and (2) Zerodur, a silicate glass-ceramic.« less
NASA Astrophysics Data System (ADS)
Xie, Qiaoyun; Huang, Wenjiang; Dash, Jadunandan; Song, Xiaoyu; Huang, Linsheng; Zhao, Jinling; Wang, Renhong
2015-12-01
Leaf area index (LAI) is an important indicator for monitoring crop growth conditions and forecasting grain yield. Many algorithms have been developed for remote estimation of the leaf area index of vegetation, such as using spectral vegetation indices, inversion of radiative transfer models, and supervised learning techniques. Spectral vegetation indices, mathematical combination of reflectance bands, are widely used for LAI estimation due to their computational simplicity and their applications ranged from the leaf scale to the entire globe. However, in many cases, their applicability is limited to specific vegetation types or local conditions due to species specific nature of the relationship used to transfer the vegetation indices to LAI. The overall objective of this study is to investigate the most suitable vegetation index for estimating winter wheat LAI under eight different types of fertilizer and irrigation conditions. Regression models were used to estimate LAI using hyperspectral reflectance data from the Pushbroom Hyperspectral Imager (PHI) and in-situ measurements. Our results showed that, among six vegetation indices investigated, the modified soil-adjusted vegetation index (MSAVI) and the normalized difference vegetation index (NDVI) exhibited strong and significant relationships with LAI, and thus were sensitive across different nitrogen and water treatments. The modified triangular vegetation index (MTVI2) confirmed its potential on crop LAI estimation, although second to MSAVI and NDVI in our study. The enhanced vegetation index (EVI) showed moderate performance. However, the ratio vegetation index (RVI) and the modified simple ratio index (MSR) predicted the least accurate estimations of LAI, exposing the simple band ratio index's weakness under different treatment conditions. The results support the use of vegetation indices for a quick and effective LAI mapping procedure that is suitable for winter wheat under different management practices.
Gordeev, S A; Voronin, S G
2016-01-01
To analyze the efficacy of modified (passive radiocarpal articulation flexion/extension) and «standard» (passive radiocarpal articulation flexion) methods of kinesthetic evoked potentials for proprioceptive sensitivity assessment in healthy subjects and patients with spondylotic cervical myelopathy. The study included 14 healthy subjects (4 women and 10 men, mean age 54.1±10.5 years) and 8 patients (2 women and 6 men, mean age 55.8±10.9 years) with spondylotic cervical myelopathy. Muscle-joint sensation was examined during the clinical study. A modified method of kinesthetic evoked potentials was developed. This method differed from the "standard" one by the organization of a cycle including several passive movements,where each new movement differed from the preceding one by the direction. The modified method of kinesthetic evoked potentials ensures more reliable kinesthetic sensitivity assessment due to movement variability. Asignificant increaseof the latent periods of the early components of the response was found in patients compared to healthy subjects. The modified method of kinesthetic evoked potentials can be used for objective diagnosis of proprioceptive sensitivity disorders in patients with spondylotic cervical myelopathy.
Dirac and non-Dirac conditions in the two-potential theory of magnetic charge
NASA Astrophysics Data System (ADS)
Scott, John; Evans, Timothy J.; Singleton, Douglas; Dzhunushaliev, Vladimir; Folomeev, Vladimir
2018-05-01
We investigate the Cabbibo-Ferrari, two-potential approach to magnetic charge coupled to two different complex scalar fields, Φ _1 and Φ _2, each having different electric and magnetic charges. The scalar field, Φ _1, is assumed to have a spontaneous symmetry breaking self-interaction potential which gives a mass to the "magnetic" gauge potential and "magnetic" photon, while the other "electric" gauge potential and "electric" photon remain massless. The magnetic photon is hidden until one reaches energies of the order of the magnetic photon rest mass. The second scalar field, Φ _2, is required in order to make the theory non-trivial. With only one field one can always use a duality rotation to rotate away either the electric or magnetic charge, and thus decouple either the associated electric or magnetic photon. In analyzing this system of two scalar fields in the Cabbibo-Ferrari approach we perform several duality and gauge transformations, which require introducing non-Dirac conditions on the initial electric and magnetic charges. We also find that due to the symmetry breaking the usual Dirac condition is altered to include the mass of the magnetic photon. We discuss the implications of these various conditions on the charges.
Reexamination of the interaction of atoms with a LiF(001) surface
NASA Astrophysics Data System (ADS)
Miraglia, J. E.; Gravielle, M. S.
2017-02-01
Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.
Research issues in implementing remote presence in teleoperator control
NASA Technical Reports Server (NTRS)
Corker, K.; Mishkin, A. H.; Lyman, J.
1981-01-01
The concept of remote presence in telemanipulation is presented. A conceptual design of a prototype teleoperator system incorporating remote presence is described. The design is presented in functional terms, sensor, display, and control subsystem. An intermediate environment, in which the human operator is made to feel present, is explicated. The intermediate environment differs from the task environment due to the quantity and type of information presented to an operator and due to scaling factors protecting the operator from the hazards of the task environment. Potential benefits of remote presence systems, both for manipulation and for the study of human cognition and preception are discussed.
Occupational exposure due to naturally occurring radionuclide material in granite quarry industry.
Ademola, J A
2012-02-01
The potential occupational exposure in granite quarry industry due to the presence of naturally occurring radioactive material (NORM) has been investigated. The activity concentrations of (40)K, (226)Ra and (232)Th were determined using gamma-ray spectroscopy method. The annual effective dose of workers through different exposure pathways was determined by model calculations. The total annual effective dose varied from 21.48 to 33.69 μSv y(-1). Inhalation dose contributes the highest to the total effective dose. The results obtained were much lower than the intervention exemption levels (1.0 mSv y(-1)) given in the International Commission on Radiological Protection Publication 82.
NASA Astrophysics Data System (ADS)
Gumbs, Godfrey; Balassis, Antonios; Dahal, Dipendra; Lawrence Glasser, M.
2016-10-01
We compute and compare the effects due to a uniform perpendicular magnetic field as well as temperature on the static polarization functions for monolayer graphene (MLG), associated with the Dirac point, with that for the two-dimensional electron liquid (2DEL) with the use of comprehensive numerical calculations. The relevance of our study to the Friedel oscillations for the screening of the potential for a dilute distribution of impurities is reported too. Our results show substantial differences due to screening for the 2DEL and MLG which have not been given adequate attention previously.
Adsorption of metal atoms at a buckled graphene grain boundary using model potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helgee, Edit E.; Isacsson, Andreas
Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphene grain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of themore » adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable.« less
Scavenging rate ecoassay: a potential indicator of estuary condition.
Porter, Augustine G; Scanes, Peter R
2015-01-01
Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress.
Toward a Metagenomic Understanding on the Bacterial Composition and Resistome in Hong Kong Banknotes
Heshiki, Yoshitaro; Dissanayake, Thrimendra; Zheng, Tingting; Kang, Kang; Yueqiong, Ni; Xu, Zeling; Sarkar, Chinmoy; Woo, Patrick C. Y.; Chow, Billy K. C.; Baker, David; Yan, Aixin; Webster, Christopher J.; Panagiotou, Gianni; Li, Jun
2017-01-01
Currency is possibly one of the main media transmitting pathogens and drug resistance due to its wide circulation in daily life. In this study, we made a comprehensive characterization of the bacterial community present on banknotes collected from different geographical regions of Hong Kong (HK) by performing in vitro characterization of the bacterial presence and resistome profile, as well as metagenomic analysis including microbial diversity, the prevalence of potential pathogens, the dissemination potential of antibiotic-resistance genes (ARGs), among others. When comparing the bacterial community of HK banknotes with other HK environmental samples, including water and marine sediment, we revealed that HK banknotes cover nearly 50% of total genera found in all the environmental samples, implying that banknotes harbor diverse bacteria originated from a variety of environments. Furthermore, the banknotes have higher abundance of potential pathogenic species (~5 times more) and ARGs (~5 times more) with higher dissemination potential (~48 times more) compared with other environmental samples. These findings unveiled the capabilities of this common medium of exchange to accommodate various bacteria, and transmit pathogens and antibiotic resistance. Furthermore, the observed independence of microbiome profile from the city's topological indices led us to formulate a hypothesis that due to their high circulation banknotes may harbor a homogenized microbiome. PMID:28450856
Heshiki, Yoshitaro; Dissanayake, Thrimendra; Zheng, Tingting; Kang, Kang; Yueqiong, Ni; Xu, Zeling; Sarkar, Chinmoy; Woo, Patrick C Y; Chow, Billy K C; Baker, David; Yan, Aixin; Webster, Christopher J; Panagiotou, Gianni; Li, Jun
2017-01-01
Currency is possibly one of the main media transmitting pathogens and drug resistance due to its wide circulation in daily life. In this study, we made a comprehensive characterization of the bacterial community present on banknotes collected from different geographical regions of Hong Kong (HK) by performing in vitro characterization of the bacterial presence and resistome profile, as well as metagenomic analysis including microbial diversity, the prevalence of potential pathogens, the dissemination potential of antibiotic-resistance genes (ARGs), among others. When comparing the bacterial community of HK banknotes with other HK environmental samples, including water and marine sediment, we revealed that HK banknotes cover nearly 50% of total genera found in all the environmental samples, implying that banknotes harbor diverse bacteria originated from a variety of environments. Furthermore, the banknotes have higher abundance of potential pathogenic species (~5 times more) and ARGs (~5 times more) with higher dissemination potential (~48 times more) compared with other environmental samples. These findings unveiled the capabilities of this common medium of exchange to accommodate various bacteria, and transmit pathogens and antibiotic resistance. Furthermore, the observed independence of microbiome profile from the city's topological indices led us to formulate a hypothesis that due to their high circulation banknotes may harbor a homogenized microbiome.
Impact of Groundwater Salinity on Bioremediation Enhanced by Micro-Nano Bubbles
Li, Hengzhen; Hu, Liming; Xia, Zhiran
2013-01-01
Micro-nano bubbles (MNBs) technology has shown great potential in groundwater bioremediation because of their large specific surface area, negatively charged surface, long stagnation, high oxygen transfer efficiency, etc. Groundwater salinity, which varies from sites due to different geological and environmental conditions, has a strong impact on the bioremediation effect. However, the groundwater salinity effect on MNBs’ behavior has not been reported. In this study, the size distribution, oxygen transfer efficiency and zeta potential of MNBs was investigated in different salt concentrations. In addition, the permeability of MNBs’ water through sand in different salt concentrations was studied. The results showed that water salinity has no influence on bubble size distribution during MNBs generation. MNBs could greatly enhance the oxygen transfer efficiency from inner bubbles to outer water, which may greatly enhance aerobic bioremediation. However, the enhancement varied depending on salt concentration. 0.7 g/L was found to be the optimal salt concentration to transfer oxygen. Moreover, MNBs in water salinity of 0.7 g/L had the minimum zeta potential. The correlation of zeta potential and mass transfer was discussed. The hydraulic conductivities of sand were similar for MNBs water with different salt concentrations. The results suggested that salinity had a great influence on MNBs performance, and groundwater salinity should be taken into careful consideration in applying MNBs technology to the enhancement of bioremediation. PMID:28788299
Panigrahi, Shrabani; Jana, Santanu; Calmeiro, Tomás; Nunes, Daniela; Martins, Rodrigo; Fortunato, Elvira
2017-10-24
Highly luminescent CsPbBr 3 perovskite quantum dots (QDs) have gained huge attention in research due to their various applications in optoelectronics, including as a light absorber in photovoltaic solar cells. To improve the performances of such devices, it requires a deeper knowledge on the charge transport dynamics inside the solar cell, which are related to its power-conversion efficiency. Here, we report the successful fabrication of an all-inorganic CsPbBr 3 perovskite QD sensitized solar cell and the imaging of anomalous electrical potential distribution across the layers of the cell under different illuminations using Kelvin probe force microscopy. Carrier generation, separation, and transport capacity inside the cells are dependent on the light illumination. Large differences in surface potential between electron and hole transport layers with unbalanced carrier separation at the junction have been observed under white light (full solar spectrum) illumination. However, under monochromatic light (single wavelength of solar spectrum) illumination, poor charge transport occurred across the junction as a consequence of less difference in surface potential between the active layers. The outcome of this study provides a clear idea on the carrier dynamic processes inside the cells and corresponding surface potential across the layers under the illumination of different wavelengths of light to understand the functioning of the solar cells and ultimately for the improvement of their photovoltaic performances.
NASA Astrophysics Data System (ADS)
Biswas, A.; Sharma, S. P.
2012-12-01
Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the best result without any ambiguity and smaller uncertainty. Keywords: SP anomaly, inclined sheet, 2D structure, forward problems, VFSA Optimization,
Development of a methodology to assess man-made risks in Germany
NASA Astrophysics Data System (ADS)
Borst, D.; Jung, D.; Murshed, S. M.; Werner, U.
2006-09-01
Risk is a concept used to describe future potential outcomes of certain actions or events. Within the project "CEDIM - Risk Map Germany - Man-made Hazards" it is intended to develop methods for assessing and mapping the risk due to different human-induced hazards. This is a task that has not been successfully performed for Germany so far. Concepts of catastrophe modelling are employed including the spatial modelling of hazard, the compilation of different kinds of exposed elements, the estimation of their vulnerability and the direct loss potential in terms of human life and health. The paper is divided in two sections: First, an analytic framework for assessing the broad spectrum of human-induced risks is introduced. This approach is then applied for three important types of human-induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP) or air traffic, and terrorism. For the analysis of accidents, risk is measured with respect to getting injured or dying when living in certain buffer zones around hazard locations. NPP hazard expert knowledge is used and supplemented with observations on aging effects leading to a proprietary index value for the risk. Air traffic risk is modelled as an area related phenomenon based on available accident statistics leading to an expected value of risk. Terrorism risk is assessed by the attraction certain elements (like embassies in the case of conventional threats) display in the eye of potential aggressors. For non-conventional targets like football games, a detailed approach measuring their susceptibility to different kinds of attacks within predefined scenarios was developed; this also allows a ranking of attack modes.
Contrasting light spectra constrain the macro and microstructures of scleractinian corals.
Rocha, Rui J M; Silva, Ana M B; Fernandes, M Helena Vaz; Cruz, Igor C S; Rosa, Rui; Calado, Ricardo
2014-01-01
The morphological plasticity of scleractinian corals can be influenced by numerous factors in their natural environment. However, it is difficult to identify in situ the relative influence of a single biotic or abiotic factor, due to potential interactions between them. Light is considered as a major factor affecting coral skeleton morphology, due to their symbiotic relation with photosynthetic zooxanthellae. Nonetheless, most studies addressing the importance of light on coral morphological plasticity have focused on photosynthetically active radiation (PAR) intensity, with the effect of light spectra remaining largely unknown. The present study evaluated how different light spectra affect the skeleton macro- and microstructures in two coral species (Acropora formosa sensu Veron (2000) and Stylophora pistillata) maintained under controlled laboratory conditions. We tested the effect of three light treatments with the same PAR but with a distinct spectral emission: 1) T5 fluorescent lamps with blue emission; 2) Light Emitting Diodes (LED) with predominantly blue emission; and 3) Light Emitting Plasma (LEP) with full spectra emission. To exclude potential bias generated by genetic variability, the experiment was performed with clonal fragments for both species. After 6 months of experiment, it was possible to detect in coral fragments of both species exposed to different light spectra significant differences in morphometry (e.g., distance among corallites, corallite diameter, and theca thickness), as well as in the organization of their skeleton microstructure. The variability found in the skeleton macro- and microstructures of clonal organisms points to the potential pitfalls associated with the exclusive use of morphometry on coral taxonomy. Moreover, the identification of a single factor influencing the morphology of coral skeletons is relevant for coral aquaculture and can allow the optimization of reef restoration efforts.
Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman
2015-09-03
Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.
A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.
Kim, Sung Won; Koo, Bon Seok; Lee, Dong Hyun
2014-06-01
The pyrolysis of Scenedesmus sp. and Jatropha seedshell cake (JSC) was investigated under similar operating condition in a fluidized bed reactor for comparison of pyrolytic behaviors from different species of lipids-containing biomass. Microalgae showed a narrower main peak in differential thermogravimetric curve compared to JSC due to different constituents. Pyrolysis liquid yields were similar; liquid's oil proportion of microalgae is higher than JSC. Microalgae bio-oil was characterized by similar carbon and hydrogen contents and higher H/C and O/C molar ratios compared to JSC due to compositional difference. The pyrolytic oils from microalgae and JSC contained more oxygen and nitrogen and less sulfur than petroleum and palm oils. The pyrolytic oils showed high yields of fatty oxygenates and nitrogenous compounds. The microalgae bio-oil features in high concentrations of aliphatic compounds, fatty acid alkyl ester, alcohols and nitriles. Microalgae showed potentials for alternative feedstock for green diesel, and commodity and valuable chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Faster-X evolution: Theory and evidence from Drosophila.
Charlesworth, Brian; Campos, José L; Jackson, Benjamin C
2018-02-12
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.
Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments
NASA Astrophysics Data System (ADS)
Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.
2012-03-01
Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.
Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules
NASA Astrophysics Data System (ADS)
Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.
2018-02-01
In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.
Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype
NASA Astrophysics Data System (ADS)
Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.
2018-03-01
In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.
ERIC Educational Resources Information Center
Hope, Wilbert W.; Johnson, Clyde; Johnson, Leon P.
2004-01-01
The differences in the levels of volatile organic compounds (VOCs), in the ambient air from the two urban locations, were studied by the undergraduate analytical chemistry students. Tetraglyme is very widely used due to its simplicity and its potential for use to investigate VOCs in ambient and indoor air employing a purge-and-trap concentrator…
Ground-Based High-Power Microwave Decoy Discrimination System.
1987-12-23
understanding of plasma instabilities, self-induced magnetic effects , space - charge considerations, production of ion currents, etc. 3.3.4 Cross-Field...breakdown, due to small potential differences. Interaction volumes can therefore be large, avoiding breakdown and space - charge effects (at the price...the interference of the incident and reflected wave, and by the electrostatic forces of the surface (positive) and space charge (negative) trapped in
Comment on "Optical Imaging of Light-Induced Thermopower in Semiconductors"
NASA Astrophysics Data System (ADS)
Apertet, Y.
2018-03-01
In a recent article [Phys. Rev. Applied 5, 024005 (2016), 10.1103/PhysRevApplied.5.024005], Gibelli and co-workers proposed a method to determine the thermopower, i.e., the Seebeck coefficient, using photoluminescence measurements. The photoluminescence spectra are used to obtain the local gradients of both the electrochemical potential difference between electron and holes and the temperature of the electron-hole plasma. However, the definition of the thermopower given in that article seems erroneous due to a confusion between the different physical quantities needed to derive this parameter.
Sol-Gel Processing of MgF₂ Antireflective Coatings.
Löbmann, Peer
2018-05-02
There are different approaches for the preparation of porous antireflective λ/4 MgF₂ films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible.
Strömberg, Sten; Nistor, Mihaela; Liu, Jing
2014-11-01
The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2(4) full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors' impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors' influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deep Dielectric Charging of Spacecraft Polymers by Energetic Protons
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Dennison, J. R.
2007-01-01
The majority of research in the field of spacecraft charging concentrates on electron charging effects with little discussion of charging by protons. For spacecraft orbiting in the traditional LEO and GEO environments this emphasis on electrons is appropriate since energetic electrons are the dominant species in those orbits. But for spacecraft in orbits within the inner radiation belts or for interplanetary and lunar space probes, proton charging (center dot) effects may also be of concern. To examine bulk spacecraft charging effects in these environments several typical highly insulating spacecraft polymers were exposed to energetic protons (center dot) with energies from 1 Me V to lO Me V to simulate protons from the solar wind and from solar energetic proton events. Results indicate that effects in proton charged dielectrics are distinctly different than those observed due to electron charging. In most cases, the positive surface potential continued to increase for periods on the order of minutes to a day, followed by long time scale decay at rates similar to those observed for electron charging. All samples charged to positive potentials with substantially lower magnitudes than for equivalent electron doses. Possible explanations for the different behavior of the measured surface potentials from proton irradiation are discussed; these are related to the evolving internal charge distribution from energy dependent electron and proton transport, electron emission, charge migration due to dark current and radiation induced conductivity, and electron capture by embedded protons.
Space Radiation Risk Assessment
NASA Astrophysics Data System (ADS)
Blakely, E.
Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from
Computational study of the rovibrational spectrum of CO₂-CS₂.
Brown, James; Wang, Xiao-Gang; Carrington, Tucker; Grubbs, G S; Dawes, Richard
2014-03-21
A new intermolecular potential energy surface, rovibrational transition frequencies, and line strengths are computed for CO2-CS2. The potential is made by fitting energies obtained from explicitly correlated coupled-cluster calculations using an interpolating moving least squares method. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. In agreement with previous experiments, the global minimum of the potential energy surface (PES) is cross shaped. The PES also has slipped-parallel minima. Rovibrational wavefunctions are localized in the cross minima and the slipped-parallel minima. Vibrational parent analysis was used to assign vibrational labels to rovibrational states. Tunneling occurs between the two cross minima. Because more than one symmetry operation interconverts the two wells, the symmetry (-oo) of the upper component of the tunneling doublet is different from the symmetry (-ee) of the tunneling coordinate. This unusual situation is due to the multidimensional nature of the double well tunneling. For the cross ground vibrational state, calculated rotational constants differ from their experimental counterparts by less than 0.0001 cm(-1). Most rovibrational states were found to be incompatible with the standard effective rotational Hamiltonian often used to fit spectra. This appears to be due to coupling between internal and overall rotation of the dimer. A simple 2D model accounting for internal rotation was used for two cross-shaped fundamentals to obtain good fits.
NASA Astrophysics Data System (ADS)
Cao, Zuohao; Zhang, Da-Lin
2005-11-01
In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.
Berg, Matthias; Accardi, Antonio; Paulus, Beate; Schmidt, Burkhard
2014-08-21
The present work is concerned with the weak interactions between hydrogen and halogen molecules, i.e., the interactions of pairs H2-X2 with X = F, Cl, Br, which are dominated by dispersion and quadrupole-quadrupole forces. The global minimum of the four-dimensional (4D) coupled cluster with singles and doubles and perturbative triples (CCSD(T)) pair potentials is always a T shaped structure where H2 acts as the hat of the T, with well depths (De) of 1.3, 2.4, and 3.1 kJ/mol for F2, Cl2, and Br2, respectively. MP2/AVQZ results, in reasonable agreement with CCSD(T) results extrapolated to the basis set limit, are used for detailed scans of the potentials. Due to the large difference in the rotational constants of the monomers, in the adiabatic approximation, one can solve the rotational Schrödinger equation for H2 in the potential of the X2 molecule. This yields effective two-dimensional rotationally adiabatic potential energy surfaces where pH2 and oH2 are point-like particles. These potentials for the H2-X2 complexes have global and local minima for effective linear and T-shaped complexes, respectively, which are separated by 0.4-1.0 kJ/mol, where oH2 binds stronger than pH2 to X2, due to higher alignment to minima structures of the 4D-pair potential. Further, we provide fits of an analytical function to the rotationally adiabatic potentials.
Effect of confining wall potential on charged collimated dust beam in low-pressure plasma
NASA Astrophysics Data System (ADS)
Kausik, S. S.; Kakati, B.; Saikia, B. K.
2013-05-01
The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.
NASA Astrophysics Data System (ADS)
Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; Circolo, Diego; Basile, Filomena; Corda, Daniela; de Luca, Anna Chiara
2016-04-01
Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder that shows high mortality rates due to immature lymphocyte B-cell proliferation. B-ALL diagnosis requires identification and classification of the leukemia cells. Here, we demonstrate the use of Raman spectroscopy to discriminate normal lymphocytic B-cells from three different B-leukemia transformed cell lines (i.e., RS4;11, REH, MN60 cells) based on their biochemical features. In combination with immunofluorescence and Western blotting, we show that these Raman markers reflect the relative changes in the potential biological markers from cell surface antigens, cytoplasmic proteins, and DNA content and correlate with the lymphoblastic B-cell maturation/differentiation stages. Our study demonstrates the potential of this technique for classification of B-leukemia cells into the different differentiation/maturation stages, as well as for the identification of key biochemical changes under chemotherapeutic treatments. Finally, preliminary results from clinical samples indicate high consistency of, and potential applications for, this Raman spectroscopy approach.
Case Mix Difference Can Affect Evaluation of Outcome of Treatment for Colorectal Cancer.
Ljungman, David; Kodeda, Karl; Derwinger, Kristoffer
2015-07-01
To explore the potential effects of patient selection, for example by organization, on survival as outcome parameter in colorectal cancer treatment. The main cohort was identified in a Hospital-based registry and outcome data of all 2,717 patients operated on for colorectal cancer between 2000-2011 were evaluated. A simulation of different center settings was performed using several potential selection criteria, including emergency cases, referral surgery and palliative resection, and used for comparison of outcome data. Overall survival and cancer-specific survival can be significantly affected in both short-term (30-/90-day) mortality and long-term survival by factors of organizational level. Survival data as an outcome parameter can be affected by the composition of the patient cohort and thus reflect possible selection bias for example due to organization, referral patterns and practice customs. This potential bias should be acknowledged when making inter-hospital comparisons of outcome. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes.
Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin
2017-12-26
This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH₃-N, SO₄ 2- together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.
Piracetam interactions with neuroleptics in psychopharmacological tests.
Bourin, M; Poisson, L; Larousse, C
1986-01-01
Two psychopharmacological tests which usually predict neuroleptic activity were conducted after joint administration of piracetam and three neuroleptics (haloperidol, fluphenazine and sulpiride) chosen for their different chemical classes and dopaminergic affinities. In these tests, specific doses of the neuroleptics were used to determine whether piracetam induced potentiation or antagonism of their action. Overall, piracetam increased neuroleptic action regardless of the administration timetable used, but the interaction of fluphenazine differed from that of the other two substances, because piracetam did not modify its action in a specific test of the presynaptic DA-2 dopaminergic receptors. This variation for fluphenazine may be explained by the fact that its pKa value is closer to that of piracetam, thus preventing better bioavailability of the neuroleptic, or its better affinity for DA-1 dopaminergic receptors. Nevertheless, the variation may have been due to a differing affinity for dopaminergic receptors, although this hypothesis is not completely satisfactory because it does not account for differences due to the administration timetable. It is thus suggested that action occurs on nonspecific sites and has the effect of increasing overall neuroleptic bioavailability.
Electrical properties of dislocations in III-Nitrides
NASA Astrophysics Data System (ADS)
Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.
2014-02-01
Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.
Independence through social networks: bridging potential among older women and men.
Cornwell, Benjamin
2011-11-01
Most studies of older adults' social networks focus on their access to dense networks that yield access to social support. This paper documents gender differences in the extent to which older adults maintain a related, but distinct, form of social capital-bridging potential, which involves serving as a tie between two unconnected parties and thus boosts independence and control of everyday social life. I use egocentric social network data from a national sample of 3,005 older adults--collected in 2005-2006 by the National Social Life, Health, and Aging Project--to compare older men's and women's network bridging potential using multivariate regression analysis. Older women are more likely than older men to have bridging potential in their networks-between both kin and non-kin contacts. These gender differences increase with age. Older women are also more likely to have network members who are not connected to or monopolized by their spouse or partner. Some, but not all, of these gender differences are due to the fact that older women have larger social networks and maintain more ties to people outside of the household. These findings raise important questions about the relational advantages older women have over older men, including greater autonomy, and contradict stereotypes about women having more closely knit, kin-centered networks than men.
Periphyton Biofilms Influence Net Methylmercury Production in an Industrially Contaminated System.
Olsen, Todd A; Brandt, Craig C; Brooks, Scott C
2016-10-18
Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from the industrially contaminated East Fork Poplar Creek, Tennessee (EFPC) were measured during 2014-2016 using stable Hg isotopic rate assays. 201 Hg II and MM 202 Hg were added to intact periphyton samples in ambient streamwater and the formation of MM 201 Hg and loss of MM 202 Hg were monitored over time and used to calculate first-order rate potentials for methylation and demethylation. The influences of location, temperature/season, light exposure and biofilm structure on methylation and demethylation potentials were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate potential (k d ). In contrast, the within-site temperature-dependent difference in net methylation was driven by changes in the methylation rate potential (k m ). Samples incubated in the dark had lower net methylation due to lower k m values than those incubated in the light. Disrupting the biofilm structure decreased k m and resulted in lower net methylation. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 3.71-7.88 mg d -1 MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.
Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A
2017-09-11
Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.
Quantitative operando visualization of the energy band depth profile in solar cells.
Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei
2015-07-13
The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.
Quantitative operando visualization of the energy band depth profile in solar cells
Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei
2015-01-01
The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580
Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation.
Sosnik, Alejandro; Menaker Raskin, Maya
2015-11-01
Polymeric micelles are nanostructures formed by the self-aggregation of copolymeric amphiphiles above the critical micellar concentration. Due to the flexibility to tailor different molecular features, they have been exploited to encapsulate motley poorly-water soluble therapeutic agents. Moreover, the possibility to combine different amphiphiles in one single aggregate and produce mixed micelles that capitalize on the features of the different components substantially expands the therapeutic potential of these nanocarriers. Despite their proven versatility, polymeric micelles remain elusive to the market and only a few products are currently undergoing advanced clinical trials or reached clinical application, all of them for the therapy of different types of cancer and administration by the intravenous route. At the same time, they emerge as a nanotechnology platform with great potential for non-parenteral mucosal administration. However, for this, the interaction of polymeric micelles with mucus needs to be strengthened. The present review describes the different attempts to develop mucoadhesive polymeric micelles and discusses the challenges faced in the near future for a successful bench-to-bedside translation. Copyright © 2015 Elsevier Inc. All rights reserved.
Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M
2014-01-01
This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.
Discount rates and the education gradient in mammography in the UK.
Bíró, Anikó
2013-09-01
I analyse intertemporal decisions on undertaking breast cancer screening by women aged 50-64 years in the UK and provide estimates of the rate of discounting potential future benefits of screening. I also analyse education differences in mammography decisions and examine the underlying mechanisms by which education influences breast cancer screening attendance. I estimate a structural model, which reveals that although there are differences in the disutility of breast cancer screening between education groups, there is no difference in the estimated discount factor. These results suggest that the observed education gradient is mainly due to differences in health behaviours and healthcare attitudes. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hunger, Sebastian; Karrasch, Pierre; Wessollek, Christine
2016-10-01
The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.
Invited review: gender issues related to spaceflight: a NASA perspective.
Harm, D L; Jennings, R T; Meck, J V; Powell, M R; Putcha, L; Sams, C P; Schneider, S M; Shackelford, L C; Smith, S M; Whitson, P A
2001-11-01
This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.
Invited review: gender issues related to spaceflight: a NASA perspective
NASA Technical Reports Server (NTRS)
Harm, D. L.; Jennings, R. T.; Meck, J. V.; Powell, M. R.; Putcha, L.; Sams, C. P.; Schneider, S. M.; Shackelford, L. C.; Smith, S. M.; Whitson, P. A.
2001-01-01
This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.
Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wenge; Pan, Haihua; Zhang, Zhisen
Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less
Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite
Jiang, Wenge; Pan, Haihua; Zhang, Zhisen; ...
2017-06-15
Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less
Impact and Estimation of Balance Coordinate System Rotations and Translations in Wind-Tunnel Testing
NASA Technical Reports Server (NTRS)
Toro, Kenneth G.; Parker, Peter A.
2017-01-01
Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.
Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents
Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua
2016-01-01
Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273
A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034
NASA Technical Reports Server (NTRS)
Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.
2014-01-01
The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.
Tunable far-infrared plasmonically induced transparency in graphene based nano-structures
NASA Astrophysics Data System (ADS)
Dolatabady, Alireza; Granpayeh, Nosrat
2018-07-01
In this paper, a structure is proposed to show the phenomenon of tunable far-infrared plasmonically induced transparency. The structure includes a nano-ribbon waveguide side-coupled to nano-stub resonators. The realized effect is due to the coupling between the consecutive nano-stub resonators spaced in properly designed distances, providing a constructive interference in the virtually created Fabry–Perot cavity. Due to the Fabry–Perot like cavity created between two consecutive nano-stubs, periodic values of nano-stubs separation can produce transparency windows. Increasing the number of nano-stubs would increase the number of transparency windows in different frequencies. The structure is theoretically investigated and numerically simulated by using the finite difference time domain method. Owing to the chemical potential dependency of graphene conductivity, the transparency windows can be actively tuned. The proposed component can be extensively utilized in nano-scale switching and slow-light systems.
Cardiotoxicity screening: a review of rapid-throughput in vitro approaches.
Li, Xichun; Zhang, Rui; Zhao, Bin; Lossin, Christoph; Cao, Zhengyu
2016-08-01
Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.
Human health risks due to consumption of chemically contaminated fishery products.
Ahmed, F E; Hattis, D; Wolke, R E; Steinman, D
1993-01-01
A small proportion of fishery products contaminated with appreciable amounts of potentially hazardous inorganic and organic contaminants from natural and environmental sources seem to pose the greatest potential for toxicity to consumers of fishery products in the United States. Health risks due to chemicals (e.g., modest changes in the overall risk of cancer, subtle deficits of neurological development in fetuses and children) are difficult to measure directly in people exposed to low levels. Immunocompetence may increase cancer risk. Inferences about the potential magnitude of these problems must be based on the levels of specific chemical present, observations of human populations and experimental animals exposed to relatively high doses, and theories about the likely mechanisms of action of specific intoxicants and the population distribution of sensitivity of human exposure. Lognormal distributions were found to provide good descriptions of the pattern of variation of contaminant concentrations among different species and geographic areas; this variability offers a solution for reduction of exposure through restricting harvest of aquatic animals from certain sites and by excluding certain species. Available information suggest that risks are not generally of high magnitude; nevertheless, their control will significantly improve public health.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8143635
NASA Astrophysics Data System (ADS)
Lee, Jaewon; Kim, Kyung-Hyun; Chung, Chin-Wook
2017-02-01
The remote plasma has been generally used as the auxiliary plasma source for indirect plasma processes such as cleaning or ashing. When tandem plasma sources that contain main and remote plasma sources are discharged, the main plasma is affected by the remote plasma and vice versa. Charged particles can move between two chambers due to the potential difference between the two plasmas. For this reason, the electron energy possibility function of the main plasma can be controlled by adjusting the remote plasma state. In our study, low energy electrons in the main plasma are effectively heated with varying remote plasma powers, and high energy electrons which overcome potential differences between two plasmas—are exchanged with no remarkable change in the plasma density and the effective electron temperature.
NASA Astrophysics Data System (ADS)
Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua
2018-04-01
Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming a plasma discharge channel. With the increasing of the gaps among the high and low-potential targets, the peak values of the discharge current decreased first then increased. When the gaps of split targets reached a certain value, the peak values of the discharge current decreased again. Meanwhile, the gaps among high and low-potential targets was 5mm, the peak value of the discharge current was the smallest. With the increasing of the gaps among the split targets, a primary discharge duration also increased. However, when the gaps among the split targets were greater than 5mm, increasing trend of discharge duration would slow down. When the gaps among the split targets were greater than 7mm, there was a secondary discharge phenomenon, and the physical explanations were given about the influence of different gaps among the split targets on the discharge effects created by hypervelocity impact.
Loureiro, Adriana; Costa, Cláudia; Almendra, Ricardo; Freitas, Ângela; Santana, Paula
2015-11-01
This study's aims are: (i) identifying spatial patterns for the risk of hospitalization due to mental illness and for the potential risk resulting from contextual factors with influence on mental health; and (ii) analyzing the spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors in the metropolitan areas of Lisbon and Porto, Portugal. A cross-sectional ecological study was conducted by applying statistical methods for assessing spatial dependency and heterogeneity. Results reveal a spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors with a statistical relevance of moderate intensity. 20% of the population under study lives in areas with a simultaneously high potential risk resulting from contextual factors and risk of hospitalization due to mental illness. Porto Metropolitan Area show the highest percentage of population living in parishes with a significantly high risk of hospitalization due to mental health, which puts forward the need for interventions on territory-adjusted contextual factors influencing mental health.
Ahumada, Luis Armando Carvajal; González, Marco Xavier Rivera; Sandoval, Oscar Leonardo Herrera; Olmedo, José Javier Serrano
2016-01-01
The main objective of this article is to demonstrate through experimental means the capacity of the quartz crystal resonator (QCR) to characterize biological samples of aqueous dilutions of hyaluronic acid according to their viscosity and how this capacity may be useful in the potential diagnosis of arthritic diseases. The synovial fluid is viscous due to the presence of hyaluronic acid, synthesized by synovial lining cells (type B), and secreted into the synovial fluid thus making the fluid viscous. In consequence, aqueous dilutions of hyaluronic acid may be used as samples to emulate the synovial fluid. Due to the viscoelastic and pseudo-plastic behavior of hyaluronic acid, it is necessary to use the Rouse model in order to obtain viscosity values comparable with viscometer measures. A Fungilab viscometer (rheometer) was used to obtain reference measures of the viscosity in each sample in order to compare them with the QCR prototype measures. PMID:27879675
Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles
2018-01-01
Natural gas hydrates occur widely on the ocean-bed and in permafrost regions, and have potential as an untapped energy resource. Their formation and growth, however, poses major problems for the energy sector due to their tendency to block oil and gas pipelines, whereas their melting is viewed as a potential contributor to climate change. Although recent advances have been made in understanding bulk methane hydrate formation, the effect of impurity particles, which are always present under conditions relevant to industry and the environment, remains an open question. Here we present results from neutron scattering experiments and molecular dynamics simulations that show that the formation of methane hydrate is insensitive to the addition of a wide range of impurity particles. Our analysis shows that this is due to the different chemical natures of methane and water, with methane generally excluded from the volume surrounding the nanoparticles. This has important consequences for our understanding of the mechanism of hydrate nucleation and the design of new inhibitor molecules. PMID:29401390
Stark, John D; Chen, Xue Dong; Johnson, Catherine S
2012-05-01
Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24-36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Novel circulating biomarkers for non-alcoholic fatty liver disease: A systematic review.
Sahebkar, Amirhossein; Sancho, Elena; Abelló, David; Camps, Jordi; Joven, Jorge
2018-02-01
Currently, a liver biopsy remains the only reliable way to precisely diagnose non-alcoholic fatty liver disease (NAFLD) and establish the severity of liver injury, presence of fibrosis, and architecture remodeling. However, the cost and the intrinsic invasive procedure of a liver biopsy rules it out as a gold standard diagnostic test, and the imaging test are not the best choice due to the price, and currently is being refined. The lack of a biomarker of NAFLD pushes to develop this new line of research. The aim of the present systematic review is to clarify and update all the NAFLD biomarkers described in the literature until recently. We highlight α-ketoglutarate and CK18-F as currently the best potential biomarker of NAFLD. However, due to methodological differences, we propose the implementation of international, multicenter, multiethnic studies with larger population size, and biopsy proven NAFLD diagnosis to analyze and compare α-ketoglutarate and CK18-F as potential biomarkers of the silent evolution of NAFLD. © 2017 Wiley Periodicals, Inc.
Topical amitriptyline and ketamine for the treatment of neuropathic pain.
Mercadante, Sebastiano
2015-01-01
A neuropathy is a disturbance of function or pathological change in nerves. In some cases, peripheral neuropathic pain may occur due to a lesion or disease of the peripheral somatosensory nervous system. Efficacy of different agents for peripheral neuropathic pain conditions is less than optimal. The administration of topical analgesics might be an option, due to the potential of reduced adverse effects and increased patient compliance. There is major interest in compounding topical analgesics for peripheral neuropathic pain, but several challenges remain for this approach. Topical analgesics have the potential to be a valuable additional approach for the management of peripheral neuropathic pain. Topical amitriptyline-ketamine combination (AK) is a promising agent for peripheral neuropathic pain conditions. Some studies have shown its efficacy in neuropathic pain conditions. However, this data was not uniformely obtained and its role remains still controversial. Efficacy may depend on many factors, including the choice of the vehicle, the concentration, the pain site, and specific diseases. More studies are necessary to support the use of AK in clinical practice.
Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage.
Gaston, Elizabeth; Fraser, John F; Xu, Zhi Ping; Ta, Hang T
2018-02-01
Internal bleeding is defined as the loss of blood that occurs inside of a body cavity. After a traumatic injury, hemorrhage accounts for over 35% of pre-hospital deaths and 40% of deaths within the first 24 hours. Coagulopathy, a disorder in which the blood is not able to properly form clots, typically develops after traumatic injury and results in a higher rate of mortality. The current methods to treat internal bleeding and coagulopathy are inadequate due to the requirement of extensive medical equipment that is typically not available at the site of injury. To discover a potential route for future research, several current and novel treatment methods have been reviewed and analyzed. The aim of investigating different potential treatment options is to expand available knowledge, while also call attention to the importance of research in the field of treatment for internal bleeding and hemorrhage due to trauma. Copyright © 2017 Elsevier Inc. All rights reserved.
Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl 2 plasma
Upadhyay, Janardan; Im, Do; Popović, Svetozar; ...
2015-10-08
The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled plasma is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, andmore » disc-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl 2 discharge. Lastly, the reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.« less
St Jacques, Peggy L; Conway, Martin A; Cabeza, Roberto
2011-10-01
Gender differences are frequently observed in autobiographical memory (AM). However, few studies have investigated the neural basis of potential gender differences in AM. In the present functional MRI (fMRI) study we investigated gender differences in AMs elicited using dynamic visual images vs verbal cues. We used a novel technology called a SenseCam, a wearable device that automatically takes thousands of photographs. SenseCam differs considerably from other prospective methods of generating retrieval cues because it does not disrupt the ongoing experience. This allowed us to control for potential gender differences in emotional processing and elaborative rehearsal, while manipulating how the AMs were elicited. We predicted that males would retrieve more richly experienced AMs elicited by the SenseCam images vs the verbal cues, whereas females would show equal sensitivity to both cues. The behavioural results indicated that there were no gender differences in subjective ratings of reliving, importance, vividness, emotion, and uniqueness, suggesting that gender differences in brain activity were not due to differences in these measures of phenomenological experience. Consistent with our predictions, the fMRI results revealed that males showed a greater difference in functional activity associated with the rich experience of SenseCam vs verbal cues, than did females.
Big city, small world: density, contact rates, and transmission of dengue across Pakistan.
Kraemer, M U G; Perkins, T A; Cummings, D A T; Zakar, R; Hay, S I; Smith, D L; Reiner, R C
2015-10-06
Macroscopic descriptions of populations commonly assume that encounters between individuals are well mixed; i.e. each individual has an equal chance of coming into contact with any other individual. Relaxing this assumption can be challenging though, due to the difficulty of acquiring detailed knowledge about the non-random nature of encounters. Here, we fitted a mathematical model of dengue virus transmission to spatial time-series data from Pakistan and compared maximum-likelihood estimates of 'mixing parameters' when disaggregating data across an urban-rural gradient. We show that dynamics across this gradient are subject not only to differing transmission intensities but also to differing strengths of nonlinearity due to differences in mixing. Accounting for differences in mobility by incorporating two fine-scale, density-dependent covariate layers eliminates differences in mixing but results in a doubling of the estimated transmission potential of the large urban district of Lahore. We furthermore show that neglecting spatial variation in mixing can lead to substantial underestimates of the level of effort needed to control a pathogen with vaccines or other interventions. We complement this analysis with estimates of the relationships between dengue transmission intensity and other putative environmental drivers thereof. © 2015 The Authors.
Blood characterization using UV/vis spectroscopy
NASA Astrophysics Data System (ADS)
Mattley, Yvette D.; Mitrani-Gold, F.; Orton, S.; Bacon, Christina P.; Leparc, German F.; Bayona, M.; Potter, Robert L.; Garcia-Rubio, Luis H.
1995-05-01
The current methods used for typing blood involve an agglutination reaction which results from the association of specific antibodies with antigens present on the erythrocyte cell surface. While this method is effective, it requires involved laboratory procedures to detect the cell surface antigens. As an alternative technique, uv/vis spectroscopy has been investigated as a novel way to characterize and differentiate the blood types. Typing with this technique is based on spectral differences which appear throughout portions of both the ultraviolet and visible range. The origin of these spectral differences is unknown and presently under investigation. They may be due to intrinsic absorption differences at the molecular level, and/or they may be due to scattering differences brought about by either subtle variation in cell surface characteristics, cell shape or state of aggregation. As the background optical density in these samples is identified and accounted for, the spectral differences become more defined. This work and the continuation of this project will be included in a general database encompassing a wide range of blood samples. In addition, long term goals involve the investigation of diseased blood with the potential of providing a more rapid diagnosis for blood borne pathogens.
Pontes Júnior, V A; Melo, P G S; Pereira, H S; Melo, L C
2016-09-02
Grain yield is strongly influenced by the environment, has polygenic and complex inheritance, and is a key trait in the selection and recommendation of cultivars. Breeding programs should efficiently explore the genetic variability resulting from crosses by selecting the most appropriate method for breeding in segregating populations. The goal of this study was to evaluate and compare the genetic potential of common bean progenies of carioca grain for grain yield, obtained by different breeding methods and evaluated in different environments. Progenies originating from crosses between lines and CNFC 7812 and CNFC 7829 were replanted up to the F 7 generation using three breeding methods in segregating populations: population (bulk), bulk within F 2 progenies, and single-seed descent (SSD). Fifteen F 8 progenies per method, two controls (BRS Estilo and Perola), and the parents were evaluated in a 7 x 7 simple lattice design, with plots of two 4-m rows. The tests were conducted in 10 environments in four States of Brazil and in three growing seasons in 2009 and 2010. Genetic parameters including genetic variance, heritability, variance of interaction, and expected selection gain were estimated. Genetic variability among progenies and the effect of progeny-environment interactions were determined for the three methods. The breeding methods differed significantly due to the effects of sampling procedures on the progenies and due to natural selection, which mainly affected the bulk method. The SSD and bulk methods provided populations with better estimates of genetic parameters and more stable progenies that were less affected by interaction with the environment.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon.
Jusys, Tomas
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001-2004 and 2005-2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009-2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation.
Dimer formation of perylene: An ultracold spectroscopic and computational study
NASA Astrophysics Data System (ADS)
Birer, Ö.; Yurtsever, E.
2015-10-01
The electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.
Plasmatic antioxidant capacity due to ascorbate using TEMPO scavenging and electron spin resonance.
Piehl, Lidia L; Facorro, Graciela B; Huarte, Mónica G; Desimone, Martín F; Copello, Guillermo J; Díaz, Luis E; de Celis, Emilio Rubín
2005-09-01
Ascorbate is the most effective water-soluble antioxidant and its plasma concentration is usually measured by different methods including colorimetric assays, HPLC or capillary electrophoresis. Plasma antioxidant capacity is determined by indexes such as total reactive antioxidant potential, total antioxidant reactivity, oxygen radical absorbance capacity, etc. We developed an alternative method for the evaluation of the plasma antioxidant status due to ascorbate. TEMPO kinetics scavenging analyzed by ESR spectroscopy was performed on plasma samples in different antioxidant situations. Plasma ascorbate concentrations were determined by capillary electrophoresis. Ascorbyl radical levels were measured by ESR. Plasma reactivity with TEMPO (PR-T) reflected plasma ascorbate levels. Average PR-T for normal plasmas resulted 85+/-27 micromol/l (n=43). PR-T during ascorbic acid intake (1 g/day) increased to an average value of 130+/-20 micromol/l (p<0.001, n=20). PR-T correlated with the plasmatic ascorbate levels determined by capillary electrophoresis (r=0.92), presenting as an advantage the avoiding of the deproteination step. Plasma ascorbyl radical levels increase from 16+/-2 to 24+/-3 nmol/l (p<0.005, n=14) after ascorbate intake. PR-T could be considered as a measure of the plasmatic antioxidant capacity due to the plasma ascorbate levels and could be useful to investigate different antioxidant situations.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001–2004 and 2005–2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009–2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation. PMID:29689071
Dorazio, Robert M.; Connor, Edward F.
2014-01-01
We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations - as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities.
Characterization of crosstalk in stereoscopic display devices.
Zafar, Fahad; Badano, Aldo
2014-12-01
Many different types of stereoscopic display devices are used for commercial and research applications. Stereoscopic displays offer the potential to improve performance in detection tasks for medical imaging diagnostic systems. Due to the variety of stereoscopic display technologies, it remains unclear how these compare with each other for detection and estimation tasks. Different stereo devices have different performance trade-offs due to their display characteristics. Among them, crosstalk is known to affect observer perception of 3D content and might affect detection performance. We measured and report the detailed luminance output and crosstalk characteristics for three different types of stereoscopic display devices. We recorded the effect of other issues on recorded luminance profiles such as viewing angle, use of different eye wear, and screen location. Our results show that the crosstalk signature for viewing 3D content can vary considerably when using different types of 3D glasses for active stereo displays. We also show that significant differences are present in crosstalk signatures when varying the viewing angle from 0 degrees to 20 degrees for a stereo mirror 3D display device. Our detailed characterization can help emulate the effect of crosstalk in conducting computational observer image quality assessment evaluations that minimize costly and time-consuming human reader studies.
NASA Astrophysics Data System (ADS)
Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.
2017-12-01
Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic carbon and phosphorus acquisition in the Marcell bog may increase whereas nitrogen acquisition would remain unchanged. The lack of temperature response for leucine amino peptidase has been measured in other systems but may be less of a concern in the Marcell bog due to low microbial biomass and enzymatic activity at depth and relatively low peat C:N ratios.
Novel ion channel targets in atrial fibrillation.
Hancox, Jules C; James, Andrew F; Marrion, Neil V; Zhang, Henggui; Thomas, Dierk
2016-08-01
Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel β subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.
Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland
2010-12-01
In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.
Using vignettes to rethink Latino-white disparities in self-rated health
Bzostek, Sharon; Sastry, Narayan; Goldman, Noreen; Pebley, Anne; Duffy, Denise
2016-01-01
Researchers often rely on respondents’ self-rated health (SRH) to measure social disparities in health, but recent studies suggest that systematically different reporting styles across groups can yield misleading conclusions about disparities in SRH. In this study, we test whether this finding extends to ethnic differences in self-assessments of health in particular domains. We document differences between US-born whites and four Latino subgroups in respondents’ assessments of health in six health domains using data from the second wave of the Los Angeles Family and Neighborhood Study (N=1468). We use both conventional methods and an approach that uses vignettes to adjust for differential reporting styles. Our results suggest that despite consistent evidence from the literature that Latinos tend to rate their overall health more poorly than whites, and that Latino immigrants report worse SRH than US-born Latinos, this pattern is not true of self-reports in individual health domains. We find that at the bivariate level, US-born whites (and often US-born Mexicans) have significantly more pessimistic reporting styles than Latino immigrants. After adding controls, we find evidence of significantly different reporting styles for only one domain: US-born Mexicans and whites consistently interpret head pain more severely than the other Latino subgroups. Finally, we find that both before and after adjusting for differences in rating styles across groups, non-Mexican Latino immigrants report better social and physical functioning and less pain than other groups. Our findings underscore the advantages of domain-specific ratings when evaluating ethnic differences in self-assessments of health. We encourage researchers studying social disparities in health to consider respondents’ self-assessments in a variety of domains, and to also investigate (when possible) potential biases in their findings due to different reporting styles. The anchoring vignettes approach we use is one potential method for overcoming biases due to different rating styles across groups. PMID:26706402
Changes in extremes due to half a degree warming in observations and models
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.
2017-12-01
Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
Bifidobacterium--friend or foe? A case of urinary tract infection with Bifidobacterium species.
Pathak, Poonam; Trilligan, Cheryl; Rapose, Alwyn
2014-09-24
Bifidobacterium-a commensal of the human intestine is considered non-pathogenic and has been advocated as a probiotic due to its potential beneficial effects. However, there have been case reports implicating bifidobacteria as pathogenic agents in a variety of different infectious conditions. We discuss here one such case of a complicated urinary tract infection associated with Bifidobacterium spp. 2014 BMJ Publishing Group Ltd.
Excitation energy spectrum in helium II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, P.; Chan, C.K.
1979-11-01
We obtain the roton part of the excitation energy spectrum in He II qualitatively. We point out that the distinct difference between this calculation and that of Parry and Ter Haar is that we do not use the Born approximation in the evaluation of t-matrix elements. We found that in addition to the contribution due to the hard-core part, the attractive potential helps to form the roton dip.
Gil-Serna, Jessica; Patiño, Belén; Cortes, Laura; Gonzalez-Jaen, Maria Teresa; Vazquez, Covadonga
2015-04-01
Aspergillus steynii and Aspergillus westerdijkiae are the main ochratoxin A (OTA) producing species of Aspergillus section Circumdati. Due to its recent description, few data are available about the influence of ecophysiological factors on their growth and OTA production profiles. In this work, the effect of temperature (20, 24 and 28 °C) and water activity (aw) (0.928, 0.964 and 0.995) on growth, sporulation and OTA production by these fungi was examined in CYA and media prepared from paprika, green coffee, anise, grapes, maize and barley. Growth was positively affected by the highest temperature and aw values indicating that both species might be expected in warm climates or storage conditions. However, optimal growth conditions showed differences depending on the medium. OTA production was markedly affected by substrate and showed qualitative and quantitative differences. Both species, especially A. steynii, represent a great potential risk of OTA contamination due to their high production in a variety of conditions and substrates, in particular in barley and paprika-based media. Additionally, neither growth nor sporulation did result good indicators of OTA production by A. steynii or A. westerdijkiae; therefore, specific and highly-sensitive detection methods become essential tools for control strategies to reduce OTA risk by these species. Copyright © 2014 Elsevier Ltd. All rights reserved.
A sex difference in effect of prior experience on object-mediated problem-solving in gibbons.
Cunningham, Clare; Anderson, James; Mootnick, Alan
2011-07-01
Understanding the functionally relevant properties of objects is likely facilitated by learning with a critical role for past experience. However, current evidence is conflicting regarding the effect of prior object exposure on acquisition of object manipulation skills. This may be due to the influence of life history variables on the capacity to benefit from such experience. This study assessed effect of task-relevant object exposure on object-mediated problem-solving in 22 gibbons using a raking-in task. Despite not using tools habitually, 14 gibbons spontaneously used a rake to obtain a reward. Having prior experience with the rake in an unrewarded context did not improve learning efficiency in males. However, females benefitted significantly from the opportunity to interact with the rake before testing, with reduced latencies to solution compared to those with no previous exposure. These results reflect potential sex differences in approach to novelty that moderate the possible benefits of prior experience. Due to their relatively high energetic requirements, reproductively active females may be highly motivated to explore potential resources; however, increased investment in developing offspring could make them more guarded in their investigations. Previous exposure that allows females to learn of an object's neutrality can offset this cautious exploration.
The effect of superhydrophobic wetting state on corrosion protection--the AKD example.
Ejenstam, Lina; Ovaskainen, Louise; Rodriguez-Meizoso, Irene; Wågberg, Lars; Pan, Jinshan; Swerin, Agne; Claesson, Per M
2013-12-15
Corrosion is of considerable concern whenever metal is used as construction material. In this study we address whether superhydrophobic coatings could be used as part of an environmentally friendly corrosion-protective system, and specific focus is put on how the wetting regime of a superhydrophobic coating affects corrosion inhibition. Superhydrophobic alkyl ketene dimer (AKD) wax coatings were produced, using different methods resulting in hierarchical structures, where the coatings exhibit the same surface chemistry but different wetting regimes. Contact angle measurements, ESEM, confocal Raman microscopy, open circuit potential and electrochemical impedance spectroscopy were used to evaluate the surfaces. Remarkably high impedance values of 10(10)Ω cm(2) (at 10(-2) Hz) were reached for the sample showing superhydrophobic lotus-like wetting. Simultaneous open circuit potential measurements suggest that the circuit is broken, most likely due to the formation of a thin air layer at the coating-water interface that inhibits ion transport from the electrolyte to the metal substrate. The remaining samples, showing superhydrophobic wetting in the rose state and hydrophobic Wenzel-like wetting, showed less promising corrosion-protective properties. Due to the absence of air films on these surfaces the coatings were penetrated by the electrolyte, which allowed the corrosion reaction to proceed. Copyright © 2013 Elsevier Inc. All rights reserved.
Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina
2014-01-01
The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025
Potential contributions of root decomposition to the nitrogen cycle in arctic forest and tundra.
Träger, Sabrina; Milbau, Ann; Wilson, Scott D
2017-12-01
Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the N cycle in forest and tundra to gain insight into belowground consequences of the widely observed increase in woody vegetation that accompanies climate change in the Arctic. We combined measurements of root production from minirhizotron images with tissue analysis of roots from differing root diameter and color classes to obtain potential N input following decomposition. In addition, we tested for changes in N concentration of roots during early stages of decomposition, and investigated whether vegetation type (forest or tundra) affected changes in tissue N concentration during decomposition. For completeness, we also present respective measurements of leaves. The potential N input from roots was twofold greater in forest than in tundra, mainly due to greater root production in forest. Potential N input varied with root diameter and color, but this variation tended to be similar in forest and tundra. As for roots, the potential N input from leaves was significantly greater in forest than in tundra. Vegetation type had no effect on changes in root or leaf N concentration after 1 year of decomposition. Our results suggest that shifts in vegetation that accompany climate change in the Arctic will likely increase plant-associated potential N input both belowground and aboveground. In contrast, shifts in vegetation might not alter changes in tissue N concentration during early stages of decomposition. Overall, differences between forest and tundra in potential contribution of decomposing roots to the N cycle reinforce differences between habitats that occur for leaves.
Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.
Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z
2015-01-01
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Arthur, R J; Pease, J N
1992-01-01
An evaluation of the Siemens Digiscan has been undertaken to determine whether digital luminescence radiography (DLR) could replace conventional radiography in the examination of the neonate and young infant. Whilst the overall image quality of the digital radiograph was consistently higher than for conventional radiography the difference was less marked than we had expected. Furthermore, the potential for reduction in radiation dose by reducing the repeat rate due to incorrect exposure was limited. The potential advantages of DLR have been critically examined in relationship to neonatal radiography and a number of problems encountered during the evaluation have been highlighted.
Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation
Diender, Martijn; Stams, Alfons J. M.; Sousa, Diana Z.
2015-01-01
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved. PMID:26635746
The impact of land use on estimates of pesticide leaching potential: Assessments and uncertainties
NASA Astrophysics Data System (ADS)
Loague, Keith
1991-11-01
This paper illustrates the magnitude of uncertainty which can exist for pesticide leaching assessments, due to data uncertainties, both between soil orders and within a single soil order. The current work differs from previous efforts because the impact of uncertainty in recharge estimates is considered. The examples are for diuron leaching in the Pearl Harbor Basin. The results clearly indicate that land use has a significant impact on both estimates of pesticide leaching potential and the uncertainties associated with those estimates. It appears that the regulation of agricultural chemicals in the future should include consideration for changing land use.
Disposable chemical sensors and biosensors made on cellulose paper.
Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan
2014-03-07
Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.
Cheng, Guanliang; Coolen, Lique M; Padmanabhan, Vasantha; Goodman, Robert L; Lehman, Michael N
2010-01-01
Recent work in sheep has identified a neuronal subpopulation in the arcuate nucleus that coexpresses kisspeptin, neurokinin B, and dynorphin (referred to here as KNDy cells) and that mediate the negative feedback influence of progesterone on GnRH secretion. We hypothesized that sex differences in progesterone negative feedback are due to sexual dimorphism of KNDy cells and compared neuropeptide and progesterone receptor immunoreactivity in this subpopulation between male and female sheep. In addition, because sex differences in progesterone negative feedback and neurokinin B are due to the influence of testosterone (T) during fetal life, we determined whether prenatal T exposure would mimic sex differences in KNDy cells. Adult rams had nearly half the number of kisspeptin, neurokinin B, dynorphin, and progesterone receptor-positive cells in the arcuate nucleus as did females, but the percentage of KNDy cells colocalizing progesterone receptors remained high in both sexes. Prenatal T treatment also reduced the number of dynorphin, neurokinin B, and progesterone receptor-positive cells in the female arcuate nucleus; however, the number of kisspeptin cells remained high and at levels comparable to control females. Thus, sex differences in kisspeptin in the arcuate nucleus, unlike that of dynorphin and neurokinin B, are not due solely to exposure to prenatal T, suggesting the existence of different critical periods for multiple peptides coexpressed within the same neuron. In addition, the imbalance between inhibitory (dynorphin) and stimulatory (kisspeptin) neuropeptides in this subpopulation provides a potential explanation for the decreased ability of progesterone to inhibit GnRH neurons in prenatal T-treated ewes.
Heuss-Assbichler, S; Magel, G; Fehr, K T
2010-10-01
Long-term hydrogen generation was observed in a Bavarian mono-landfill for municipal solid waste incineration (MSWI) residues. Hydration reactions of non-noble metals, especially aluminum, predominantly produce hydrogen at alkaline reaction conditions. Microscopic investigations show that aluminum metal may occur in different forms: as larger single grains, as small particles embedded in a vitrified matrix or less frequently in blowholes together with metallic silica. Four types of corrosion texture were observed, indicating different reaction mechanisms: aluminum hydroxide rims caused by hydration reactions at alkaline reaction conditions (reaction type 1) and multiphase rims with ettringite and hydrocalumite due to the reaction of aluminum hydroxide with sulfate and chloride ions which are solved in the pore water (reaction type 2). Galvanic corrosion textures due to the electric potential difference between aluminum and embedded intermetallic Fe- or Cu-rich exsolution phases lead to two further corrosion textures: Strong hydration effects of aluminum except a border of aluminum remnant directly beside the Fe- or Cu-rich segregations were only observed in fresh samples (reaction type 3). The reaction type 4 shows a network of Al-hydroxide veins occurring along the embedded intermetallic Fe- or Cu-rich exsolution segregation pattern within the metallic aluminum grain. Metal particles enclosed in vitrified particles offers the potential for future corrosion processes. The occurrence of corrosion types 1, 2 and 3 in fresh bottom ashes indicates that these reaction mechanisms predominate during the first reaction period in the presence of chlorine in an alkaline solution. Corrosion type 4, however, was additionally observed in aged samples. Here aluminum acts as sacrificed anode implying electrochemical reaction due to electrolytic pore water. Chloride in the system keeps the reaction alive as Al-hydroxide is solved which normally builds a protection shield around the aluminum metal particles. Due to field observations and experimental results we have reasonable indications that after an initial strong formation of hydrogen the reaction time for hydrogen production in the landfill is lengthened for several decades by the presence of chloride in the alkaline pore water. (c) 2010 Elsevier Ltd. All rights reserved.
Sex differences and emotion regulation: an event-related potential study.
Gardener, Elyse K T; Carr, Andrea R; Macgregor, Amy; Felmingham, Kim L
2013-01-01
Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.
NASA Astrophysics Data System (ADS)
Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.
2017-12-01
It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.
Potential of herbs in skin protection from ultraviolet radiation
Korać, Radava R.; Khambholja, Kapil M.
2011-01-01
Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A “sclerojuglonic” compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374
NASA Astrophysics Data System (ADS)
Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2017-05-01
Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.
Sex-related responses after traumatic brain injury: Considerations for preclinical modeling.
Späni, Claudia B; Braun, David J; Van Eldik, Linda J
2018-05-18
Traumatic brain injury (TBI) has historically been viewed as a primarily male problem, since men are more likely to experience a TBI because of more frequent participation in activities that increase risk of head injuries. This male bias is also reflected in preclinical research where mostly male animals have been used in basic and translational science. However, with an aging population in which TBI incidence is increasingly sex-independent due to falls, and increasing female participation in high-risk activities, the attention to potential sex differences in TBI responses and outcomes will become more important. These considerations are especially relevant in designing preclinical animal models of TBI that are more predictive of human responses and outcomes. This review characterizes sex differences following TBI with a special emphasis on the contribution of the female sex hormones, progesterone and estrogen, to these differences. This information is potentially important in developing and customizing TBI treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
Platinum redispersion on metal oxides in low temperature fuel cells.
Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan
2013-03-07
We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.
Zhang, Chaosheng; Tang, Ya; Luo, Lin; Xu, Weilin
2009-11-01
Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with.
Lee, Kathy E.; Blazer, Vicki; Denslow, Nancy D.; Goldstein, Robert M.; Talmage, Philip J.
2000-01-01
The presence of HAAs in selected Minnesota streams was indicated by biological characteristics in common carp. Biological characteristics used in this study identified WWTP effluent as a potential source of HAAs. Additionally, fish located at sites upstream of WWTP effluent primarily draining agricultural land show indications of HAAs, which may be the result of agricultural runoff or other sources of HAAs. There was variability among all sites and among sites within each site group. Differences among sites may be due to differences in water chemistry or fish exposure time. Natural variation in the biological characteristics may account for some of the differences observed in this study. This study and others indicate the presence of HAAs in surface water and the potential signs of endocrine disruption in resident fish populations. Detailed controlled studies could confirm the effects of particular chemicals such as pesticides or components of WWTPs on fish reproduction and population structure.
Rosa, Roberto; Veronesi, Paolo; Leonelli, Cristina
2013-09-01
The thermal development of latent fingerprints on paper surfaces is a simple, safe, and chemicals-free method, based on the faster heating of the substrate underlying the print residue. Microwave heating is proposed for the first time for the development of latent fingerprints on cellulose-based substrate, in order to add to the thermal development mechanism the further characteristic of being able to heat the fingerprint residues to a different extent with respect to the substrate, due to the intrinsic difference in their dielectric properties. Numerical simulation was performed to confirm and highlight the selectivity of microwaves, and preliminary experimental results point out the great potentialities of this technique, which allowed developing both latent sebaceous-rich and latent eccrine-rich fingerprints on different porous surfaces, in less than 30 sec time with an applied output power of 500 W. Microwaves demonstrated more effectiveness in the development of eccrine-rich residues, aged up to 12 weeks. © 2013 American Academy of Forensic Sciences.
Assessing the impact of different satellite retrieval methods on forecast available potential energy
NASA Technical Reports Server (NTRS)
Whittaker, Linda M.; Horn, Lyle H.
1990-01-01
The effects of the inclusion of satellite temperature retrieval data, and of different satellite retrieval methods, on forecasts made with the NASA Goddard Laboratory for Atmospheres (GLA) fourth-order model were investigated using, as the parameter, the available potential energy (APE) in its isentropic form. Calculation of the APE were used to study the differences in the forecast sets both globally and in the Northern Hemisphere during 72-h forecast period. The analysis data sets used for the forecasts included one containing the NESDIS TIROS-N retrievals, the GLA retrievals using the physical inversion method, and a third, which did not contain satellite data, used as a control; two data sets, with and without satellite data, were used for verification. For all three data sets, the Northern Hemisphere values for the total APE showed an increase throughout the forecast period, mostly due to an increase in the zonal component, in contrast to the verification sets, which showed a steady level of total APE.
Effect of non-parabolicity and confinement potential on exciton binding energy in a quantum well
NASA Astrophysics Data System (ADS)
Vignesh, G.; Nithiananthi, P.
2018-04-01
The effect of non-parabolicity(NP) (both conduction and valance band) on the binding energy(EB) of a ground state exciton in GaAs/AlxGa1-xAs single Quantum Well(QW) has been calculated using variational method. Confinement of a light hole(LH-CB1-X) and heavy hole(HH-CB1-X) exciton have been numerically evaluated as a function of well width and barrier heights by imposing three different confinement potentials such as square(SQW), parabolic(PQW) and triangular(TQW). Due to NP effects, EB of exciton is increasedin the narrow well region irrespective of the type of exciton, barrier height and nature of the confinement potentials applied. Non-parabolicity effect is prominent in abrupt(SQW) and linearlyvarying(TQW) confinement potentials. All these effects are attributed to be an inter-play between the Coulombic interaction and NP effects among the subband structures.
Modeling the Energy Use of a Connected and Automated Transportation System (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Brown, A.
Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing trafficmore » flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.« less
Ensuring safety of implanted devices under MRI using reversed RF polarization.
Overall, William R; Pauly, John M; Stang, Pascal P; Scott, Greig C
2010-09-01
Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm. 2010 Wiley-Liss, Inc.
Real-time recognition of feedback error-related potentials during a time-estimation task.
Lopez-Larraz, Eduardo; Iturrate, Iñaki; Montesano, Luis; Minguez, Javier
2010-01-01
Feedback error-related potentials are a promising brain process in the field of rehabilitation since they are related to human learning. Due to the fact that many therapeutic strategies rely on the presentation of feedback stimuli, potentials generated by these stimuli could be used to ameliorate the patient's progress. In this paper we propose a method that can identify, in real-time, feedback evoked potentials in a time-estimation task. We have tested our system with five participants in two different days with a separation of three weeks between them, achieving a mean single-trial detection performance of 71.62% for real-time recognition, and 78.08% in offline classification. Additionally, an analysis of the stability of the signal between the two days is performed, suggesting that the feedback responses are stable enough to be used without the needing of training again the user.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniraj, M.; Barman, Sudipta Roy
By imaging the spatial intensity distribution of the electrons from a Stoffel-Johnson (SJ) type low energy electron source for inverse photoemission spectroscopy (IPES), we find that the focus is distorted when the beam current exceeds the limiting value due to space charge effect. The space charge effect and the contact potential difference suppress the beam current at low energies (<10 eV). In this work, we show that these limitations of the SJ source can be overcome by compensation of the contact potential difference between the cathode and the lens electrodes and an uniform well focused electron beam with the set kineticmore » energy can be obtained. The size of the electron beam is around 1 mm full width at half maximum over the whole energy range of 5 to 30 eV generally used for IPES. The compensation of the contact potential difference also enhances the beam current substantially at low energies (<10 eV) and uniform beam current is achieved for the whole energy range. We find that the drift in the electron beam position is sensitive to the lens electrode separation and it is about 1 mm over the whole energy range. By measuring the n = 1 image potential state on Cu(100), we show that the resolution is better when the cathode filament current is set to lower values.« less
Statistical modeling of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2.
Ushakov, Vladimir G; Troe, Jürgen; Johnson, Ryan S; Guo, Hua; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A
2015-08-14
The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.
Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.
Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew
2015-11-12
In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.
Scavenging Rate Ecoassay: A Potential Indicator of Estuary Condition
Porter, Augustine G.; Scanes, Peter R.
2015-01-01
Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress. PMID:26024225
Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna
2015-02-01
Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. © 2014 Scandinavian Plant Physiology Society.
Phase shifts in I = 2 ππ-scattering from two lattice approaches
NASA Astrophysics Data System (ADS)
Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.
2013-12-01
We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.
Sol-Gel Processing of MgF2 Antireflective Coatings
Löbmann, Peer
2018-01-01
There are different approaches for the preparation of porous antireflective λ/4 MgF2 films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible. PMID:29724064
1983-05-20
an impurity-mobility reduction factor of about 100. We finally note that there is no indication of an emitter-base noise source due to oxide surface...in N2 + 1% 02, at 11000C, for 3 hrs. Different phosphorus surface concentrations have been realized using different in situ oxidation times (prior to...depletion change per unit area at the surface potential Ts = 1.5 OF , Cox and C are the oxide and the depletion capacitances per unit area
Describing contrast across scales
NASA Astrophysics Data System (ADS)
Syed, Sohaib Ali; Iqbal, Muhammad Zafar; Riaz, Muhammad Mohsin
2017-06-01
Due to its sensitive nature against illumination and noise distributions, contrast is not widely used for image description. On the contrary, the human perception of contrast along different spatial frequency bandwidths provides a powerful discriminator function that can be modeled in a robust manner against local illumination. Based upon this observation, a dense local contrast descriptor is proposed and its potential in different applications of computer vision is discussed. Extensive experiments reveal that this simple yet effective description performs well in comparison with state of the art image descriptors. We also show the importance of this description in multiresolution pansharpening framework.
Characterisation of RPLC columns packed with porous sub-2 microm particles.
Petersson, Patrik; Euerby, Melvin R
2007-08-01
Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.
Microbial effects on two tropical soils amended with different types of biochar
NASA Astrophysics Data System (ADS)
Paz, Jorge; Méndez, Ana; Fun, Shenglei; Gascó, Gabriel
2013-04-01
There is an increasing interest in using biochar as soil amendment due to its potential to reduce greenhouse gas emissions from soils and to mitigate heavy metal pollution. In addition, sometimes biochar has been found to increase soil productivity due to its favourable effect on soil aggregation and water holding capacity. However, results obtained can differ greatly depending on the type of biochar utilised. On the other hand, the response of the microbial community to biochar addition is not so well understood. In our experiment we have sampled two soils, differing in their fertility status. A greenhouse pot experiment was established to see the effect of adding four different biochars, differing on their feedstock (Miscanthus, sewage sludge, paper mill waste and pinewood). Additionally, half of the samples excluded soil earthworms, while the other half had 3 individuals of the earthworm Pontoscolex corethrurus. Pots, containing 400 g of soil, were planted with proso millet. Assessed parameters included millet height, soil microbial biomass and soil enzymatic activity related to different biogeochemical cycles (invertase, B-glucosaminidase, B-glucosidase, urease, phosphomonoesterase, arylsulphatase) The effects of biochar on soil biological properties depended on the type of feedstock used for biochar production and pre-existent soil parameters such as soil fertility status. Earthworm presence generally had a positive effect on soil microbial properties.
Epp, Bastian; Yasin, Ifat; Verhey, Jesko L
2013-12-01
The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. Copyright © 2013 Elsevier B.V. All rights reserved.
Dai, Lengshi; Shinn-Cunningham, Barbara G
2016-01-01
Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.
NASA Astrophysics Data System (ADS)
Blotevogel, Simon; Oliva, Priscia; Darrozes, José; Viers, Jérôme; Audry, Stéphane; Courjault-Radé, Pierre; Orgogozo, Laurent; Le Guedard, Marina; Schreck, Eva
2015-04-01
Understanding the influence of soil composition in wine taste is of great economic and environmental interest in France and around the world. Nevertheless the impact of soil composition on wine taste is still controversially discussed. Since inorganic soil components do not have a proper taste and do not enter the plant anyway, their influence needs to be induced by nutrient absorption and its impact on plant functioning and grape composition. Indeed recent development of geological tracers of origin proof the existence of soil chemical and isotopic signatures in wine. However, type and scale of the impact of soil composition on wine taste are not well understood yet, and little experimental evidence exists due to the complexity of mechanisms involved. Thus, to provide evidence for the impact of soil composition on grape composition and potentially wine taste, we studied soil and plant material from two relevant vineyards (Soave, Italia). On those two directly adjacent vineyards, two different wines are produced with the same plant material and cultivation techniques. The vineyards only differ by their underlying bedrock - limestone versus basaltic rock - and thus present suitable conditions for investigating the impact of soil composition on grapes and wine. Pedological and mineralogical parameters were analyzed for the two vineyards whereas chemical extractions (citrate, CaCl2) were performed to determine nutrient bioavailability in both soils. Elemental compositions were determined by ICP-MS analyses in different compartments (soils, vine leaves and grapes). Isotopic fractionation of Cu and Zn was investigated in various samples as source tracers and in order to better understand fractionation mechanisms involved. Finally, plant health was studied using the Omega-3 biomarker which determines the fatty acid composition in vine leaves, directly involved in photosynthetic processes. Results show that the vineyards are characterized by two different soil types due to the geological difference. These soils differ in elemental compositions and bioavailability of mineral nutrients, preconditions for a potential influence on plants and wine. Elemental ratios of soils are partly transmitted to leaves and grapes of correspondent plants, including nutrients such as Ca. Plant photosynthetic functioning is significantly better on the limestone vineyard due to lower Cu bioavailability: Omega-3 values are negatively linked to Cu bioavailability in corresponding soils. These observations suggest a difference in organic molecule synthesis depending on the vineyard soil, which might include components relevant for taste and fermentation. Cu and Zn isotopic ratios do not differ between both soils. The main fractionation of Cu and Zn isotopes occurs at the soil-plant interface making those isotopes suitable tracers for uptake mechanisms. As a result Zn isotope ratios reveal a strong recycling of Zn in the soil-plant continuum. Our results show a significant influence of soil composition on grape composition, plant biochemistry and potentially wine taste. Determination of organic and sensorial composition of grapes and wine is ongoing and will be discussed in further communications.
Hussain, Hafiz A.; Hussain, Saddam; Khaliq, Abdul; Ashraf, Umair; Anjum, Shakeel A.; Men, Shengnan; Wang, Longchang
2018-01-01
Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors. PMID:29692787
Particle emissions from microalgae biodiesel combustion and their relative oxidative potential.
Rahman, M M; Stevanovic, S; Islam, M A; Heimann, K; Nabi, M N; Thomas, G; Feng, B; Brown, R J; Ristovski, Z D
2015-09-01
Microalgae are considered to be one of the most viable biodiesel feedstocks for the future due to their potential for providing economical, sustainable and cleaner alternatives to petroleum diesel. This study investigated the particle emissions from a commercially cultured microalgae and higher plant biodiesels at different blending ratios. With a high amount of long carbon chain lengths fatty acid methyl esters (C20 to C22), the microalgal biodiesel used had a vastly different average carbon chain length and level of unsaturation to conventional biodiesel, which significantly influenced particle emissions. Smaller blend percentages showed a larger reduction in particle emission than blend percentages of over 20%. This was due to the formation of a significant nucleation mode for the higher blends. In addition measurements of reactive oxygen species (ROS), showed that the oxidative potential of particles emitted from the microalgal biodiesel combustion were lower than that of regular diesel. Biodiesel oxygen content was less effective in suppressing particle emissions for biodiesels containing a high amount of polyunsaturated C20-C22 fatty acid methyl esters and generated significantly increased nucleation mode particle emissions. The observed increase in nucleation mode particle emission is postulated to be caused by very low volatility, high boiling point and high density, viscosity and surface tension of the microalgal biodiesel tested here. Therefore, in order to achieve similar PM (particulate matter) emission benefits for microalgal biodiesel likewise to conventional biodiesel, fatty acid methyl esters (FAMEs) with high amounts of polyunsaturated long-chain fatty acids (≥C20) may not be desirable in microalgal biodiesel composition.
Cannabis sativa (Hemp) Seeds, Δ9-Tetrahydrocannabinol, and Potential Overdose.
Yang, Yi; Lewis, Melissa M; Bello, Angelica M; Wasilewski, Ewa; Clarke, Hance A; Kotra, Lakshmi P
2017-01-01
Introduction: Cannabis sativa (hemp) seeds are popular for their high nutrient content, and strict regulations are in place to limit the amount of potentially harmful phytocannabinoids, especially Δ 9 -tetrahydrocannabinol (Δ 9 -THC). In Canada, this limit is 10 μg of Δ 9 -THC per gram of hemp seeds (10 ppm), and other jurisdictions in the world follow similar guidelines. Materials and Methods: We investigated three different brands of consumer-grade hemp seeds using four different procedures to extract phytocannabinoids, and quantified total Δ 9 -THC and cannabidiol (CBD). Discussion: We discovered that Δ 9 -THC concentrations in these hemp seeds could be as high as 1250% of the legal limit, and the amount of phytocannabinoids depended on the extraction procedure employed, Soxhlet extraction being the most efficient across all three brands of seeds. Δ 9 -THC and CBD exhibited significant variations in their estimated concentrations even from the same brand, reflecting the inhomogeneous nature of seeds and variability due to the extraction method, but almost in all cases, Δ 9 -THC concentrations were higher than the legal limit. These quantities of total Δ 9 -THC may reach as high as 3.8 mg per gram of hemp seeds, if one were consuming a 30-g daily recommended amount of hemp seeds, and is a cause for concern for potential toxicity. It is not clear if these high quantities of Δ 9 -THC are due to contamination of the seeds, or any other reason. Conclusion: Careful consideration of the extraction method is very important for the measurement of cannabinoids in hemp seeds.
Cannabis sativa (Hemp) Seeds, Δ9-Tetrahydrocannabinol, and Potential Overdose
Yang, Yi; Lewis, Melissa M.; Bello, Angelica M.; Wasilewski, Ewa; Clarke, Hance A.; Kotra, Lakshmi P.
2017-01-01
Abstract Introduction: Cannabis sativa (hemp) seeds are popular for their high nutrient content, and strict regulations are in place to limit the amount of potentially harmful phytocannabinoids, especially Δ9-tetrahydrocannabinol (Δ9-THC). In Canada, this limit is 10 μg of Δ9-THC per gram of hemp seeds (10 ppm), and other jurisdictions in the world follow similar guidelines. Materials and Methods: We investigated three different brands of consumer-grade hemp seeds using four different procedures to extract phytocannabinoids, and quantified total Δ9-THC and cannabidiol (CBD). Discussion: We discovered that Δ9-THC concentrations in these hemp seeds could be as high as 1250% of the legal limit, and the amount of phytocannabinoids depended on the extraction procedure employed, Soxhlet extraction being the most efficient across all three brands of seeds. Δ9-THC and CBD exhibited significant variations in their estimated concentrations even from the same brand, reflecting the inhomogeneous nature of seeds and variability due to the extraction method, but almost in all cases, Δ9-THC concentrations were higher than the legal limit. These quantities of total Δ9-THC may reach as high as 3.8 mg per gram of hemp seeds, if one were consuming a 30-g daily recommended amount of hemp seeds, and is a cause for concern for potential toxicity. It is not clear if these high quantities of Δ9-THC are due to contamination of the seeds, or any other reason. Conclusion: Careful consideration of the extraction method is very important for the measurement of cannabinoids in hemp seeds. PMID:29098190
Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.
Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine
2017-04-01
The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs)
NASA Astrophysics Data System (ADS)
Kawase, Hiroaki; Nagashima, Tatsuya; Sudo, Kengo; Nozawa, Toru
2011-03-01
We consider future changes in tropospheric ozone based on the Representative Concentration Pathways (RCPs), which are new emission and concentration scenarios for the 5th coupled model intercomparison project. In contrast to the SRES scenarios, all the RCP scenarios assume an emission reduction of NOx by the late 21st Century that has the potential to achieve tropospheric ozone reduction. However, increasing radiative forcing (RF) due to greenhouse gases and changes in CH4 concentration also contribute to differences in the tropospheric ozone distribution among RCP scenarios. In the RCP4.5 and RCP6.0, assuming the stabilization of RF, the increase in tropospheric ozone due to enhanced residual circulation is cancelled out by the ozone reduction due to ozone precursor reductions. In contrast, in the RCP8.5, assuming increasing RF even after 2100, further enhanced residual circulation and significant increase in CH4 cause a dramatic increase in tropospheric ozone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The papers in this volume deal with various facets of concrete technology. The first four papers discuss concrete performance from the perspectives of design, specifications, and testing. The following three papers address the use and management of by-products in cementitious systems. Kakodkar et al. present the results of a study to determine the influence of five different Class C fly ashes on inhibiting the expansion of concrete due to alkali-silica reaction. Ramakrishnan et al. present the results of an extensive study to determine the influence of natural possolans in reducing the deleterious expansion of concrete due to alkai-silica reaction. Themore » test results showed that all the natural pozzolans used in the study, except one, were very effective in reducing the expansions due to alkali-silica reaction. Johnston discusses a modified interpretation of the ASTM P214 test results for determining potential reactivity of sands used for concrete in South Dakota.« less
Imperfection and radiation damage in protein crystals studied with coherent radiation
Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian
2016-01-01
Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage. PMID:26698068
[Legionnaire's disease with predominant liver involvement].
Magro Molina, A; Plaza Poquet, V; Giner Galvañ, V
2002-04-01
Like other pneumonias due to atypical agents, pneumonia due to Legionela Pneumophila has no characteristic clinical facts, although fever and non-productive cough are almost constant and diarrhea with changes in mental status are common. Hyponatremia and moderate transient hypertransaminasemia are common too. Severe systemic affectation after hematogenous dissemination similar to those described with typical bacterial pneumonias is a prominent difference with other atypical agents, with high mortality rates in the absence of appropriate treatment. Etiological diagnosis is very difficult and it is normally achieved late in the course of the infection. Because of diagnostic difficulties and potential mortality in predisposed patients, empirical antibiotherapy has been extensively recommended. We present a patient affected by critical community-acquired pneumonia due to Legionela Pneumophila serogroup 1 with liver alteration as the main manifestation and good response to empirical antibiotherapy with claritromycine and rifampin. We recommended the empirical use of such therapy in those pneumonias without microbiological diagnosis and torpid evolution.
Wright, Rachel L; Peters, Derek M; Robinson, Paul D; Watt, Thomas N; Hollands, Mark A
2015-01-01
Studying the relationships between centre of mass (COM) and centre of pressure (COP) during walking has been shown to be useful in determining movement stability. The aim of the current study was to compare COM-COP separation measures during walking between groups of older adults with no history of falling, and a history of falling due to tripping or slipping. Any differences between individuals who have fallen due to a slip and those who have fallen due to a trip in measures of dynamic balance could potentially indicate differences in the mechanisms responsible for falls. Forty older adults were allocated into groups based on their self-reported fall history during walking. The non-faller group had not experienced a fall in at least the previous year. Participants who had experienced a fall were split into two groups based on whether a trip or slip resulted in the fall(s). A Vicon system was used to collect full body kinematic trajectories. Two force platforms were used to measure ground reaction forces. The COM was significantly further ahead of the COP at heel strike for the trip (14.3 ± 2.7 cm) and slip (15.3 ± 1.1 cm) groups compared to the non-fallers (12.0 ± 2.7 cm). COM was significantly further behind the COP at foot flat for the slip group (-14.9 ± 3.6 cm) compared to the non-fallers (-10.3 ± 3.9 cm). At mid-swing, the COM of the trip group was ahead of the COP (0.9 ± 1.6 cm), whereas for the slip group the COM was behind the COP (-1.2 ± 2.2 cm). These results show identifiable differences in dynamic balance control of walking between older adults with a history of tripping or slipping and non-fallers. Copyright © 2014 Elsevier B.V. All rights reserved.
Summary of 2006 to 2010 FPMU Measurements of International Space Station Frame Potential Variations
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Wright, Kenneth H., Jr.; Chandler, Michael O.; Coffey, Victoria N.; Craven, Paul D.; Schneider, Todd A.; Parker, Linda N.; Ferguson, Dale C.; Koontz, Steve L.; Alred, John W.
2010-01-01
Electric potential variations on the International Space Station (ISS) structure in low Earth orbit are dominated by contributions from interactions of the United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment and inductive potentials generated by motion of the large vehicle across the Earth?s magnetic field. The Floating Potential Measurement Unit (FPMU) instrument suite comprising two Langmuir probes, a plasma impedance probe, and a floating potential probe was deployed in August 2006 for use in characterizing variations in ISS potential, the state of the ionosphere along the ISS orbit and its effect on ISS charging, evaluating effects of payloads and visiting vehicles, and for supporting ISS plasma hazard assessments. This presentation summarizes observations of ISS frame potential variations obtained from the FPMU from deployment in 2006 through the current time. We first describe ISS potential variations due to current collection by solar arrays in the day time sector of the orbit including eclipse exit and entry charging events, potential variations due to plasma environment variations in the equatorial anomaly, and visiting vehicles docked to the ISS structure. Next, we discuss potential variations due to inductive electric fields generated by motion of the vehicle across the geomagnetic field and the effects of external electric fields in the ionosphere. Examples of night time potential variations at high latitudes and their possible relationship to auroral charging are described and, finally, we demonstrate effects on the ISS potential due to European Space Agency and US plasma contactor devices.
Komini Babu, S.; Chung, H. T.; Zelenay, P.; ...
2015-09-14
This manuscript presents micro-scale experimental diagnostics and nano-scale resolution X-ray imaging applied to the study of proton conduction in non-precious metal catalyst (NPMC) fuel cell cathodes. NPMC’s have the potential to reduce the cost of the fuel cell for multiple applications. But, NPMC electrodes are inherently thick compared to the convention Pt/C electrode due to the lower volumetric activity. Thus, the electric potential drop through the Nafion across the electrode thickness can yield significant performance loss. Ionomer distributions in the NPMC electrodes with different ionomer loading are extracted from morphological data using nanoscale X-ray computed tomography (nano-XCT) imaging of themore » cathode. Microstructured electrode scaffold (MES) diagnostics are used to measure the electrolyte potential at discrete points across the thickness of the catalyst layer. When using that apparatus, the electrolyte potential drop, the through-thickness reaction distribution, and the proton conductivity are measured and correlated with the corresponding Nafion morphology and cell performance.« less
An ab initio-based Er–He interatomic potential in hcp Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; ye, Yeting; Fan, K. M.
2014-09-01
We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less
Wijesinghe, W A J P; Jeon, You-Jin
2012-03-01
Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.
Latency correction of event-related potentials between different experimental protocols
NASA Astrophysics Data System (ADS)
Iturrate, I.; Chavarriaga, R.; Montesano, L.; Minguez, J.; Millán, JdR
2014-06-01
Objective. A fundamental issue in EEG event-related potentials (ERPs) studies is the amount of data required to have an accurate ERP model. This also impacts the time required to train a classifier for a brain-computer interface (BCI). This issue is mainly due to the poor signal-to-noise ratio and the large fluctuations of the EEG caused by several sources of variability. One of these sources is directly related to the experimental protocol or application designed, and may affect the amplitude or latency of ERPs. This usually prevents BCI classifiers from generalizing among different experimental protocols. In this paper, we analyze the effect of the amplitude and the latency variations among different experimental protocols based on the same type of ERP. Approach. We present a method to analyze and compensate for the latency variations in BCI applications. The algorithm has been tested on two widely used ERPs (P300 and observation error potentials), in three experimental protocols in each case. We report the ERP analysis and single-trial classification. Main results. The results obtained show that the designed experimental protocols significantly affect the latency of the recorded potentials but not the amplitudes. Significance. These results show how the use of latency-corrected data can be used to generalize the BCIs, reducing the calibration time when facing a new experimental protocol.
Nanometer-scale surface potential and resistance mapping of wide-bandgap Cu(In,Ga)Se2 thin films
NASA Astrophysics Data System (ADS)
Jiang, C.-S.; Contreras, M. A.; Mansfield, L. M.; Moutinho, H. R.; Egaas, B.; Ramanathan, K.; Al-Jassim, M. M.
2015-01-01
We report microscopic characterization studies of wide-bandgap Cu(In,Ga)Se2 photovoltaic thin films using the nano-electrical probes of scanning Kelvin probe force microscopy and scanning spreading resistance microscopy. With increasing bandgap, the potential imaging shows significant increases in both the large potential features due to extended defects or defect aggregations and the potential fluctuation due to unresolvable point defects with single or a few charges. The resistance imaging shows increases in both overall resistance and resistance nonuniformity due to defects in the subsurface region. These defects are expected to affect open-circuit voltage after the surfaces are turned to junction upon device completion.
ERIC Educational Resources Information Center
Klein, Markus
2011-01-01
This article addresses the question of why fields of study differ in early labour market returns. It is argued that the higher the potential training costs of a field of study the more problematic the labour market integration of graduates. This is due to the fact that employers use the occupational specificity and selectivity of a study programme…
Improving Visual Threat Detection: Research to Validate the Threat Detection Skills Trainer
2013-08-01
potential threats present in this scene and explain the meaning and implications of these threats. You have two minutes to write a response...could be due to the nature of the tasks or to fatigue. Requiring Soldiers to write answers on multiple trials, and across similar tasks, might have...tasks will likely be significantly different from those experienced in the trainer. This would remove the writing requirement over multiple trials
Jean-Christophe Domec; Daniel M. Johnson
2012-01-01
Due to the diurnal and seasonal fluctuations in leaf-to-air vapor pressure deficit (D), one of the key regulatory roles played by stomata is to limit transpiration-induced leaf water deficit. Different types of plants are known to vary in the sensitivity of stomatal conductance (gs) to D with important consequences for their survival and growth. Plants that minimize...
ERIC Educational Resources Information Center
Delacruz, Girlie C.
2011-01-01
Due to their motivational nature, there has been growing interest in the potential of games to help teach academic content and skills. This report examines how different levels of detail about a game's scoring rules affect math learning and performance. Data were collected from 164 students in the fourth to sixth grades at five after-school…
Antimicrobial activity of an aspartic protease from Salpichroa origanifolia fruits.
Díaz, M E; Rocha, G F; Kise, F; Rosso, A M; Guevara, M G; Parisi, M G
2018-05-08
Plant proteases play a fundamental role in several processes like growth, development and in response to biotic and abiotic stress. In particular, aspartic proteases (AP) are expressed in different plant organs and have antimicrobial activity. Previously, we purified an AP from Salpichroa origanifolia fruits called salpichroin. The aim of this work was to determine the cytotoxic activity of this enzyme on selected plant and human pathogens. For this purpose, the growth of the selected pathogens was analysed after exposure to different concentrations of salpichroin. The results showed that the enzyme was capable of inhibiting Fusarium solani and Staphylococcus aureus in a dose-dependent manner. It was determined that 1·2 μmol l -1 of salpichroin was necessary to inhibit 50% of conidial germination, and the minimal bactericidal concentration was between 1·9 and 2·5 μmol l -1 . Using SYTOX Green dye we were able to demonstrate that salpichroin cause membrane permeabilization. Moreover, the enzyme treated with its specific inhibitor pepstatin A did not lose its antibacterial activity. This finding demonstrates that the cytotoxic activity of salpichroin is due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of the AP could represent a potential alternative for the control of pathogens that affect humans or crops of economic interest. This study provides insights into the antimicrobial activity of an aspartic protease isolated from Salpichroa origanifolia fruits on plant and human pathogens. The proteinase inhibited Fusarium solani and Staphylococcus aureus in a dose-dependent manner due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of salpichroin suggests its potential applications as an important tool for the control of pathogenic micro-organisms affecting humans and crops of economic interest. Therefore, it would represent a new alternative to avoid the problems of environmental pollution and antimicrobial resistance. © 2018 The Society for Applied Microbiology.
Functionalization of graphene using deep eutectic solvents
NASA Astrophysics Data System (ADS)
Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali
2015-08-01
Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.
Functionalization of graphene using deep eutectic solvents.
Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali
2015-12-01
Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
Regulation and Function of Adult Neurogenesis: From Genes to Cognition
Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.
2014-01-01
Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858
A variable pressure method for characterizing nanoparticle surface charge using pore sensors.
Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff
2012-04-03
A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.
Molecular Diagnosis of Putative Stargardt Disease by Capture Next Generation Sequencing
Shi, Wei; Huang, Ping; Min, Qingjie; Li, Minghan; Yu, Xinping; Wu, Yaming; Zhao, Guangyu; Tong, Yi; Jin, Zi-Bing; Qu, Jia; Gu, Feng
2014-01-01
Stargardt Disease (STGD) is the commonest genetic form of juvenile or early adult onset macular degeneration, which is a genetically heterogeneous disease. Molecular diagnosis of STGD remains a challenge in a significant proportion of cases. To address this, seven patients from five putative STGD families were recruited. We performed capture next generation sequencing (CNGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Seven disease-causing mutations in ABCA4 and two in PROM1 were identified by CNGS, which provides a confident genetic diagnosis in these five families. We also provided a genetic basis to explain the differences among putative STGD due to various mutations in different genes. Meanwhile, we show for the first time that compound heterozygous mutations in PROM1 gene could cause cone-rod dystrophy. Our findings support the enormous potential of CNGS in putative STGD molecular diagnosis. PMID:24763286
NASA Astrophysics Data System (ADS)
Yasick, A. L.; Wolin, J. A.; Krebs, R. A.
2005-05-01
This study investigates two species of stoneflies with potentially opposing dispersal capabilities and genetic structure within four watersheds in the Lake Erie drainage system of Northeast Ohio. This research is two fold; it provides information on genetic variation of two understudied aquatic invertebrate species and the impact of human land-use practices on this variation. Populations of Allocapnia recta, a winter emerging stonefly are predicted to have the least genetic variation within the four watersheds and most differences among sites due to its rudimentary wing structure and winter emergence. Leuctra tenuis is predicted to have greater genetic variability within sites and fewer differences among sites because of its higher migration potential. In both species, models of isolation by distance will be tested. Distinct polymorphisms exist within the 16s rRNA region of A. recta suggesting that this fragment has sufficient variation to address these questions.
Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review.
Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan
2015-01-01
From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.
Ki, Jang-Seu
2018-01-01
Carotenoids are natural pigments that play pivotal roles in many physiological functions. The characteristics of carotenoids, their effects on health, and the cosmetic benefits of their usage have been under investigation for a long time; however, most reviews on this subject focus on carotenoids obtained from several microalgae, vegetables, fruits, and higher plants. Recently, microalgae have received much attention due to their abilities in producing novel bioactive metabolites, including a wide range of different carotenoids that can provide for health and cosmetic benefits. The main objectives of this review are to provide an updated view of recent work on the health and cosmetic benefits associated with carotenoid use, as well as to provide a list of microalgae that produce different types of carotenoids. This review could provide new insights to researchers on the potential role of carotenoids in improving human health. PMID:29329235
Deep Brain Stimulation for Dystonia: A Novel Perspective on the Value of Genetic Testing
Jinnah, H. A.; Alterman, Ron; Klein, Christine; Krauss, Joachim K.; Moro, Elena; Vidailhet, Marie; Raike, Robert
2017-01-01
The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal movements and postures. There are many different clinical manifestations and underlying causes. Deep brain stimulation (DBS) provides an effect treatment, but outcomes can vary considerably among the different subtypes of dystonia. Several variables are thought to contribute to this variation including age of onset and duration of dystonia, specific characteristics of the dystonic movements, location of stimulation and stimulator settings, and others. The potential contributions of genetic factors have received little attention. In this review, we summarize evidence that some of the variation in DBS outcomes for dystonia is due to genetic factors. The evidence suggests that more methodical genetic testing may provide useful information in the assessment of potential surgical candidates, and in advancing our understanding of the biological mechanisms that influence DBS outcomes. PMID:28160152
Plant Bioelectric Potential of Hard-leaf Cabbage to Irradiation-light Frequency
NASA Astrophysics Data System (ADS)
Tokuda, Masaki; Shao, Lixin; Oyabu, Takashi; Nanto, Hidehito
Bioelectric potential was investigated to examine the availability of vegetable growth control. The potential is a kind of information transmitted by the vegetable and it varies markedly with one’s physiological phenomenon, light, air contaminant and insect which are external factors. Highly-efficient growth control can be made possible due to clarifying the relationship between the external factors and the potential. Vegetable can be used as a sensor in addition. A hard-leaf cabbage (Ancient specie) was adopted as a subjective plant in this study and the bioelectric potential was measured. The analysis was carried out using the summation of the potential (vm1) for one minute. The data was input every 0.1 seconds through a difference amplifier. The potential characteristic was investigated as a function of light frequency emitting from a LED panel. In addition, the potential was studied when ethyl alcohol existed and not existed as an air contaminant. As a result, it becomes obvious that the vm1 is raised when blue and red lights are irradiated. The lights mainly contribute to photosynthesis. The potential increases in the presence of ethyl alcohol which was adopted as a kind of nutrient.
DIRECT IMAGE PROCESSING OF CORRODING SURFACES APPLIED TO FRICTION STIR WELDING.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ISAACS,H.S.ET AL.
An in situ process for visually locating corrosion is presented. The process visually displays image differences obtained by subtracting one digitized image from another. The difference image shows only where changes have taken place during period between the recording of the two images. Changes are due to both corrosion attack of the surface and concentration changes of dissolved corrosion products in solution. Indicators added to the solution assist by decorating sites of corrosion as diffusion and convection of the dissolved products increase the size of the affected region. A study of the initial stages of corrosion of a friction stirmore » welded Al alloy 7075 has been performed using this imaging technique. Pitting potential measurements suggest that there was an initial increased sensitivity to corrosion. The difference image technique demonstrated that it was due to a reformation of the passive film that occurs with Zn containing Al alloys which occurs preferentially along flow protected regions. The most susceptible region of the weld was found to be where both limited deformation and thermal transients are produced during welding.« less
Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm.
Furlan, João Pedro Rueda; Stehling, Eliana Guedes
2018-01-10
β-lactam antibiotics are widely used for the treatment of different types of infections worldwide and the resistance to these antibiotics has grown sharply, which is of great concern. Resistance to β-lactams in gram-negative bacteria is mainly due to the production of β-lactamases, which are classified according to their functional activities. The aim of this study was to verify the presence of β-lactamases encoding genes in feces, soil, and water from a Brazilian pig farm. Different β-lactamases encoding genes were found, including bla CTX-M-Gp1 , bla CTX-M-Gp9 , bla SHV , bla OXA-1-like , bla GES , and bla VEB . The bla SHV and bla CTX-M-Gp1 genes have been detected in all types of samples, indicating the spread of β-lactam resistant bacteria among farm pigs and the environment around them. These results indicate that β-lactamase encoding genes belonging to the cloxacillinase, ESBL, and carbapenemase and they have high potential to spread in different sources, due to the fact that genes are closely related to mobile genetic elements, especially plasmids.
NASA Astrophysics Data System (ADS)
Wu, Wenqing; Zhang, Hui
2018-03-01
In order to investigate the possible structural diseases brought to the top flange of existing prestressed concrete box girder bridge due to the shrinkage and creep difference between new and old bridge, the stress state of the existing box girder before and after widening and the mechanisms of potential structural diseases were analyzed using finite element method in this paper. Results showed that the inner flange of the old box girder were generally in the state of large tensile stress, the main reason for which was the shrinkage and creep effect difference of the new and old bridge. And the tensile stress was larger than tensile strength of C50 concrete, which would most likely cause crack in the deck plate of box girder. Hence, reinforcement measures are needed to be designed carefully. Meanwhile, the transverse deformation of widened structure had exceeded the distance between the anti-seismic block and the web of box girder at the end cross section, which would squeeze anti-seismic block severely. Therefore, it is necessary to limit the length of continuous bridge in need of widening.
Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes
Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin
2017-01-01
This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater. PMID:29278390
Liu, Y; Polo, A; Zequera, M; Harba, R; Canals, R; Vilcahuaman, L; Bello, Y
2016-08-01
Prevention of serious diabetic foot complication like ulceration or infection is an important issue. As the development of thermal graphic technologies, foot temperature-guided avoidance therapy has been recommended. Doctors from Hospital National Dos de Mayo are studying on the risk of the diabetic foot passing from Grade 0 to Grade 1 in the Wagner Scale. This risk to develop ulcers is related to the temperature difference of corresponding area between left and right foot. Generally speaking, the diabetic foot with greater mean temperature difference has more potential to develop ulcers; especially, area whose temperature difference of more than 2.2°C is where doctors and patients must pay much attention to potential problems like ulceration or infection. A system in Visual Studio was developed taking the thermal images as input and producing image with absolute mean temperature difference of 7different regions or four plantar angiosomes as output. The program process contained essential medical image processing issues such as segmentation, location and regionalization, in which adapted algorithms were implemented. From a database of 85 patients provided only 60 were used due to the quality of acquisition.
Medeiros, Gustavo Costa; Leppink, Eric W.; Yaemi, Ana; Mariani, Mirella; Tavares, Hermano; Grant, Jon E.
2015-01-01
Aims The objective of this paper is to perform a cross-cultural comparison of gambling disorder (GD) due to electronic gaming machines (EGM), a form of gambling that may have a high addictive potential. Our goal is to investigate two treatment-seeking samples of adults collected in Brazil and the United States, countries with different socio-cultural backgrounds. This comparison may lead to a better understanding of cultural influences on GD. Methods The total studied sample involved 733 treatment-seeking subjects: 353 men and 380 women (average age = 45.80, standard deviation ±10.9). The Brazilian sample had 517 individuals and the American sample 216. Subjects were recruited by analogous strategies. Results We found that the Brazilian sample was younger, predominantly male, less likely to be Caucasian, more likely to be partnered, had a faster progression from recreational gambling to GD, and were more likely to endorse chasing losses. Conclusion This study demonstrated that there are significant differences between treatment-seeking samples of adults presenting GD due to EGM in Brazil and in the United States. These findings suggest that cultural aspects may have a relevant role in GD due to EGM. PMID:26474662
Electrical burns in sports fishing: a case report.
Valença-Filipe, R; Egipto, P; Horta, R; Braga, J M; Costa, J; Silva, A
2014-11-01
Electrical burns are among the most devastating types of burns, with wide-ranging injuries. They can sometimes occur in the context of fishing, usually involving high voltages. The authors present the case of a 59-year-old-man who suffered a sports accident during a fishing competition, with the formation of an electrical arc due to proximity of the fishing rod and high voltage cables. He presented burns affecting 3% of TBSA, third degree deep burns on trunk and left hand; no signs of cardiac injury. He was admitted to our Burn Unit for monitoring, care dressing and surgical treatment; complete wound healing was achieved after 24 days. Due to its relatively small share among burns, published data on electrical injuries and fishing remain scarce, and differ in patient collectives due to infrastructural or environmental differences. The authors are not aware of published specific reports on electrical burns in sports fishing practice, like the case here presented. The authors want to alert for potential medical, social and economic consequences of this type of sports accidents that could be entirely avoidable with some preventive measures. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Fracture Risk in Type 2 Diabetes: Current Perspectives and Gender Differences
Romeo, Elisabetta L.; Nunziata, Morabito; Ruffo, Maria Concetta; Catalano, Antonino; Cucinotta, Domenico
2016-01-01
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of osteoporotic fractures, resulting in disabilities and increased mortality. The pathophysiological mechanisms linking diabetes to osteoporosis have not been fully explained, but alterations in bone structure and quality are well described in diabetic subjects, likely due to a combination of different factors. Insulin deficiency and dysfunction, obesity and hyperinsulinemia, altered level of oestrogen, leptin, and adiponectin as well as diabetes-related complications, especially peripheral neuropathy, orthostatic hypotension, or reduced vision due to retinopathy may all be associated with an impairment in bone metabolism and with the increased risk of fractures. Finally, medications commonly used in the treatment of T2DM may have an impact on bone metabolism and on fracture risk, particularly in postmenopausal women. When considering the impact of hypoglycaemic drugs on bone, it is important to balance their potential direct effects on bone quality with the risk of falling-related fractures due to the associated hypoglycaemic risk. In this review, experimental and clinical evidence connecting bone metabolism and fracture risk to T2DM is discussed, with particular emphasis on hypoglycaemic treatments and gender-specific implications. PMID:28044077
Jensen-Dahm, Christina; Madsen, Caspar Skau; Waldemar, Gunhild; Ballegaard, Martin; Hejl, Anne-Mette; Johnsen, Birger; Jensen, Troels Staehelin
2016-04-01
Clinical studies have found that patients with Alzheimer's disease report pain of less intensity and with a lower affective response, which has been thought to be due to altered pain processing. The authors wished to examine the cerebral processing of non-painful and painful stimuli using somatosensory evoked potentials and contact heat evoked potentials in patients with Alzheimer's disease and in healthy elderly controls. Case-control study Twenty outpatients with mild-moderate Alzheimer's disease and in 17 age- and gender-matched healthy controls were included Contact heat evoked potentials and somatosensory evoked potentials were recorded in all subjects. Furthermore, warmth detection threshold and heat pain threshold were assessed. Patients and controls also rated quality and intensity of the stimuli. The authors found no difference on contact heat evoked potential amplitude (P = 0.59) or latency of N2 or P2 wave (P = 0.62 and P = 0.75, respectively) between patients and controls. In addition, there was no difference in regard to pain intensity scores or pain quality. The patients and controls had similar warmth detection threshold and heat pain threshold. Somatosensory evoked potentials, amplitude, and latency were within normal range and similar for the two groups. The findings suggest that the processing of non-painful and painful stimuli is preserved in patients with mild to moderate Alzheimer's disease. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ab Initio Study of KCl and AgCl Clusters.
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Cathey, Tommy; Valdez, Alexandra
This paper presents a theoretical study of molecular clusters that examines the chemical and physical properties of small KnCln and AgnCln clusters (n = 2 - 24). Due to combinations of attractive and repulsive long-range forces, such clusters exhibit structural and dynamical behavior different from that of homogeneous clusters. The potentially important role of these molecular species in biochemical and medicinal processes is widely known. This work applies the hybrid ab initio methods to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations were performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. Potential design of new medicinal drugs is explored. We will also investigate model and material dependence of the results. AMP program of the National Science Foundation.
A review on the removal of antibiotics by carbon nanotubes.
Cong, Qiao; Yuan, Xing; Qu, Jiao
2013-01-01
Increasing concerns have been raised regarding the potential risks of antibiotics to human and ecological health due to their extensive use. Carbon nanotubes (CNTs) have drawn special research attention because of their unique properties and potential applications as a kind of adsorbents. This review summarizes the currently available research on the adsorption of antibiotics on CNTs, and will provide useful information for CNT application and risk assessment. Four different models, the Freundlich model (FM), Langmuir model (LM), Polanyi-Mane model (PMM), and Dubinin-Ashtakhov model (DAM), are often used to fit the adsorption isotherms. Because different mechanisms may act simultaneously, including electrostatic interactions, hydrophobic interactions, π-π bonds, and hydrogen bonds, the prediction of organic chemical adsorption on CNTs is not straightforward. Properties of CNTs, such as specific surface area, adsorption sites, and oxygen content, may influence the adsorption of antibiotics on CNTs. Adsorption heterogeneity and hysteresis are two features of antibiotic-CNT interactions. In addition, CNTs with adsorbed antibiotics may have potential risks for human health. So, further research examining how to reduce such risks is needed.
Enhancement of pumped current in quantum dots
NASA Astrophysics Data System (ADS)
Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro
A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.
Cabrera, Alvaro Fuentes; Hoffmann, Pablo Faundez
2010-01-01
This study is focused on the single-trial classification of auditory event-related potentials elicited by sound stimuli from different spatial directions. Five naϊve subjects were asked to localize a sound stimulus reproduced over one of 8 loudspeakers placed in a circular array, equally spaced by 45°. The subject was seating in the center of the circular array. Due to the complexity of an eight classes classification, our approach consisted on feeding our classifier with two classes, or spatial directions, at the time. The seven chosen pairs were 0°, which was the loudspeaker directly in front of the subject, with all the other seven directions. The discrete wavelet transform was used to extract features in the time-frequency domain and a support vector machine performed the classification procedure. The average accuracy over all subjects and all pair of spatial directions was 76.5%, σ = 3.6. The results of this study provide evidence that the direction of a sound is encoded in single-trial auditory event-related potentials.
New therapeutic potentials of milk thistle (Silybum marianum).
Milić, Natasa; Milosević, Natasa; Suvajdzić, Ljiljana; Zarkov, Marija; Abenavoli, Ludovico
2013-12-01
Silymarin is a bioflavonoid complex extract derived from dry seeds of Milk thistle [(Silybum marianum(L.) Gaemrnt. (Fam. Asteraceae/Compositaceae)] whose hepatoprotective effect has clinically been proved. Low toxicity, favorable pharmacokinetics, powerful antioxidant, detoxifying, preventive, protective and regenerative effects and side effects similar to placebo make silymarin extremely attractive and safe for therapeutic use. The medicinal properties of silymarin and its main component silibinin have been studied in the treatment of Alzheimer's disease, Parkinson's disease, sepsis, burns, osteoporosis, diabetes, cholestasis and hypercholesterolemia. Owing to its apoptotic effect, without cytotoxic effects, silymarin possesses potential applications in the treatment of various cancers. Silymarin is being examined as a neuro-, nephro- and cardio-protective in the damage of different etiologies due to its strong antioxidant potentials. Furthermore, it has fetoprotective (against the influence of alcohol) and prolactin effects and is safe to be used during pregnancy and lactation. Finally, the cosmetics industry is examining the antioxidant and UV-protective effects of silymarin. Further clinical studies and scientific evidence that silymarin and silibinin are effective in the therapy of various pathologies are indispensable in order to confirm their different flavonolignan pharmacological effects.
Potential disturbance interactions with a single IGV in an F109 turbofan engine
NASA Astrophysics Data System (ADS)
Kirk, Joel F.
A common cause of aircraft engine failure is the high cycle fatigue of engine blades and stators. One of the primary causes of these failures is due to blade row interactions, which cause an aerodynamic excitation to be resonant with a mechanical natural frequency. Traditionally, the primary source of such aerodynamic excitations has been practically limited to viscous wakes from upstream components. However, more advanced designs require that blade rows be very highly loaded and closely spaced. This results in aerodynamic excitation from potential fields of down stream engine components, in addition to the known wake excitations. An experimental investigation of the potential field from the fan of a Honeywell F109 turbofan engine has been completed. The investigation included velocity measurements upstream of the fan, addition of an airfoil shaped probe upstream of the fan on which surface pressure measurements were acquired, and measurement of the velocity in the interaction region between the probe and the fan. This investigation sought to characterize the response on the upstream probe due to the fan potential field and the interaction between a viscous wake and the potential field; as such, all test conditions were for subsonic fan speeds. The results from the collected data show that fan-induced potential disturbances propagate upstream at acoustic velocities, to produce vane surface-pressure amplitudes as high as 40 percent Joel F. Kirk of the inlet, mean total pressure. Further, these fan-induced pressure amplitudes display large variations between the two vane surfaces. An argument is made that the structure of the pressure response is consistent with the presence of two distinct sources of unsteady forcing disturbances. The disturbances on the incoming-rotation-facing surface of the IGV propagated upstream at a different speed than those on the outgoing-rotation-facing surface, indicating that one originated from a rotating source and the other from a stationary source. An argument is made to suggest that the stationary source is due to the rotor blades cutting through the wake of the IGV.
1989-01-01
Antipyrylazo III was introduced into frog cut twitch fibers (17-19 degrees C) by diffusion. After action potential stimulation, the change in indicator absorbance could be resolved into two components that had different time courses and wavelength dependences. The first component was early and transient and due to an increase in myoplasmic free [Ca] (Maylie, J., M. Irving, N.L. Sizto, and W.K. Chandler, 1987, Journal of General Physiology, 89:83-143). The second component, usually measured at 590 nm (near the isosbestic wavelength for Ca), developed later than the Ca transient and returned towards baseline about 100 times more slowly. Although the wavelength dependence of this component is consistent with an increase in either free [Mg] or pH, its time course is clearly different from that of the signals obtained with the pH indicators phenol red and 4',5'-dimethyl-5-(and -6-) carboxyfluorescein, suggesting that it is mainly due to an increase in free [Mg]. After a single action potential in freshly prepared cut fibers that contained 0.3 mM antipyrylazo III, the mean peak amplitude of delta A (590) would correspond to an increase in free [Mg] of 47 microM if all the signal were due to a change in [Mg] and all the intracellular indicator reacted with Mg as in cuvette calibrations. With either repetitive action potential stimulation or voltage-clamp depolarization, the delta A (590) signal continued to develop throughout the period when free [Ca] was elevated and then recovered to within 40-90% of the prestimulus baseline with an average rate constant between 0.5 and 1.0 s-1. With prolonged voltage-clamp depolarization, both the amplitude and rate of development of the delta A(590) signal increased with the amplitude of the depolarization and appeared to saturate at levels corresponding to an increase in free [Mg] of 0.8-1.4 mM and a maximum rate constant of 3-4 s-1, respectively. These results are consistent with the idea that the delta A(590) signal is primarily due to changes in myoplasmic free [Mg] produced by a change in the Mg occupancy of the Ca,Mg sites on parvalbumin that results from the Ca transient. PMID:2786550
SnO2-based memristors and the potential synergies of integrating memristors with MEMS
NASA Astrophysics Data System (ADS)
Zubia, David; Almeida, Sergio; Talukdar, Arka; Mireles, Jose; MacDonald, Eric
2012-06-01
Memristors, usually in the form metal/metal-oxide/metal, have attracted much attention due to their potential application for non-volatile memory. Their simple structure and ease of fabrication make them good candidates for dense memory with projections of 22 terabytes per wafer. Excellent switching times of ~10 ns, memory endurance of >109 cycles, and extrapolated retention times of >10 yrs have been reported. Interestingly, memristors use the migration of ions to change their resistance in response to charge flow, and can therefore measure and remember the amount of current that has flowed. This is similar to many MEMS devices in which the motion of mass is an operating principle of the device. Memristors are also similar to MEMS in the sense that they can both be resistant to radiation effects. Memristors are radiation tolerant since information is stored as a structural change and not as electronic charge. Functionally, a MEMS device's sensitivity to radiation is concomitant to the role that the dielectric layers play in the function of the device. This is due to radiation-induced trapped charge in the dielectrics which can alter device performance and in extreme cases cause failure. Although different material systems have been investigated for memristors, SnO2 has received little attention even though it demonstrates excellent electronic properties and a high resistance to displacement damage from radiation due to a large Frenkel defect energy (7 eV) compared its bandgap (3.6 eV). This talk discusses recent research on SnO2-based memristors and the potential synergies of integrating memristors with MEMS.
Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude
2009-06-01
The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.
Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu
2017-05-01
This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.
NASA Astrophysics Data System (ADS)
Wang, Guoqing; Bu, Tong; Zako, Tamotsu; Watanabe-Tamaki, Ryoko; Tanaka, Takuo; Maeda, Mizuo
2017-09-01
Due to the potential of gold nanoparticle (AuNP)-based trace analysis, the discrimination of small AuNP clusters with different assembling stoichiometry is a subject of fundamental and technological importance. Here we prepare oligomerized AuNPs with controlled stoichiometry through DNA-directed assembly, and demonstrate that AuNP monomers, dimers and trimers can be clearly distinguished using dark field microscopy (DFM). The scattering intensity for of AuNP structures with stoichiometry ranging from 1 to 3 agrees well with our theoretical calculations. This study demonstrates the potential of utilizing the DFM approach in ultra-sensitive detection as well as the use of DNA-directed assembly for plasmonic nano-architectures.
Monitoring of environmental conditions in the Alaskan forests using ERS-1 SAR data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Way, Jobea; Mcdonald, Kyle; Viereck, Leslie; Adams, Phyllis
1992-01-01
Preliminary results from an analysis of the multitemporal radar backscatter signatures of tree species acquired by European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data are presented. Significant changes in radar backscatter are detected. Correlation of these differences with ground truth observations indicate that these are due to changes in soil and liquid water content as a result of freeze/thaw events. C-band observations acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (JPL AIRSAR) instrument demonstrate the potential of a C-band radar instrument to monitor drought/flood events. The potential of ERS-1 for monitoring phenologic changes in the forest and for classifying tree species is less promising.
NASA Astrophysics Data System (ADS)
Avendaño-Estrada, A.; Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.
2014-11-01
There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [11C ]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avendaño-Estrada, A., E-mail: avilarod@uwalumni.com; Lara-Camacho, V. M., E-mail: avilarod@uwalumni.com; Ávila-García, M. C., E-mail: avilarod@uwalumni.com
2014-11-07
There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [{sup 11}C]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.
Low birth weight: Is it related to assisted reproductive technology or underlying infertility?
Kondapalli, Laxmi A.; Perales-Puchalt, Alfredo
2013-01-01
Since 1978, we have witnessed a successful evolution of assisted reproductive technology (ART), with improvement of the pregnancy rates and a growing demand. However, in recent years, there has been increasing concern regarding its safety due to the potential health impact on its infants. The raise of the developmental origins of adult disease has positioned low birth weight (LBW) as a significant health issue. Despite multiple studies have associated ART with LBW, the etiology of this association remains largely unknown. This paper reviews the potential association between different components of ART and infertility with LBW, while acknowledging the limitations to interpretation of the existing literature. PMID:23375144
The economics and ethics of aerosol geoengineering strategies
NASA Astrophysics Data System (ADS)
Goes, Marlos; Keller, Klaus; Tuana, Nancy
2010-05-01
Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with the rate of change. Second, the relative contribution of aerosol geoengineering to an economically optimal portfolio hinges critically on deeply uncertain estimates of the damages due to aerosol forcing. Even if we assume that aerosol forcing could be deployed continuously, the aerosol geoengineering does not considerably displace the reduction of greenhouse gas emissions in the simple economic optimal growth model until the damages due to the aerosol forcing are rather low. Third, deploying aerosol geoengineering may also fail an ethical test regarding issues of intergenerational justice. Substituting aerosol geoengineering for reducing greenhouse gas emissions constitutes a conscious risk transfer to future generations, for example due to the increased risk of future abrupt climate change. This risk transfer is in tension with the requirement of intergenerational justice that present generations should not create benefits for themselves in exchange for burdens on future generations.
Environmental and Spatial Influences on Biogeography and Community Structure of Benthic Diatoms
NASA Astrophysics Data System (ADS)
Plante, C.; Hill-Spanik, K.; Lowry, J.
2016-02-01
Several theoretical and practical reasons suggest that benthic microalgae could be useful bioindicators. For instance, an ideal indicator species or community would be associated with a given habitat due to local physical conditions or biotic interactions (i.e., `environmental filtering'), not due to dispersal limitation. Due to their small size, immense abundances, and reliance on passive dispersal, the popular notion about micro-organisms is that `Everything is everywhere, but, the environment selects' (Baas-Becking 1934). Although much recent research concerning planktonic bacteria and dispersal limitation has been conducted, very little in this regard is known about microeukaryotes, especially benthic microbes. The purpose of our study was to identify and compare spatial and environmental influences on benthic diatom community structure and biogeography. In summer 2015, sediment was sampled at various spatial scales from four barrier island beaches in South Carolina, USA, and high-throughput (Ion Torrent) DNA sequencing was used to characterize diatom assemblages. ANOSIM and principal coordinates analysis revealed that communities were statistically distinct on the four islands. Community dissimilarity was compared to both spatial distance and environmental differences to determine potential influences of these variables on community structure. We found that geographic distance had the strongest correlation with community similarity, with and without one anomalous location, while differences in temperature (air, water, and sediment), nutrients, organic matter, and turbidity also had significant but weaker relationships with community structure. Surprisingly, air temperature, which changes on very short time scales, appeared to be the environmental factor most strongly related to diatom species composition, potentially implicating some unmeasured variable (e.g., cloud cover). However, we also found that temperature and geographic distance were strongly correlated. Future research will expand the spatial scope of this preliminary study and employ techniques (partial Mantel tests) to control for co-variation among variables.
Blasco, R.; Mallavarapu, M.; Wittich, R.; Timmis, K. N.; Pieper, D. H.
1997-01-01
A rapid decline in cell viability of different PCB-metabolizing organisms was observed in soil microcosms amended with 4-chlorobiphenyl. The toxic effect could not be attributed to 4-chlorobiphenyl but was due to a compound formed from the transformation of 4-chlorobiphenyl by the natural microflora. Potential metabolites of 4-chlorobiphenyl, 4-chlorobenzoate and 4-chlorocatechol, caused similar toxic effects. We tested the hypothesis that the toxic effects are due to the formation of protoanemonin, a plant-derived antibiotic, which is toxic to microorganisms and which has been shown to be formed from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. Consistent with our hypothesis, addition to soil microcosms of strains able to reroute intermediary 4-chlorocatechol from the 3-oxoadipate pathway and into the meta-cleavage pathway or able to mineralize 4-chlorocatechol by a modified ortho-cleavage pathway resulted in reversal of this toxic effect. Surprisingly, while direct addition of protoanemonin influenced both the viability of fungi and the microbial activity of the soil microcosm, there was little effect on bacterial viability due to its rapid degradation. This rapid degradation accounts for our inability to detect this compound in soils amended with 4-chlorocatechol. However, significant accumulation of protoanemonin was observed by a mixed bacterial community enriched with benzoate or a mixture of benzoate and 4-methylbenzoate, providing the metabolic potential of the soil to form protoanemonin. The effects of soil heterogeneity and microcosm interactions are discussed in relation to the different effects of protoanemonin when applied as a shock load and when it is produced in small amounts from precursors over long periods. PMID:16535507
To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?
NASA Astrophysics Data System (ADS)
Henneberg, O.; Lohmann, U.
2017-12-01
Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL
Smieszek, Timo; White, Peter J
2016-01-01
Mycoplasma genitalium is a potentially major cause of urethritis, cervicitis, pelvic inflammatory disease, infertility, and increased HIV risk. A better understanding of its natural history is crucial to informing control policy. Two extensive cohort studies (students in London, UK; Ugandan sex workers) suggest very different clearance rates; we aimed to understand the reasons and obtain improved estimates by making maximal use of the data from the studies. As M. genitalium is a sexually-transmitted infectious disease, we developed a model for time-to-event analysis that incorporates the processes of (re)infection and clearance, and fitted to data from the two cohort studies to estimate incidence and clearance rates under different scenarios of sexual partnership dynamics and study design (including sample handling and associated test sensitivity). In the London students, the estimated clearance rate is 0.80 p.a. (mean duration 15 months), with incidence 1.31%-3.93% p.a. Without adjusting for study design, corresponding estimates from the Ugandan data are 3.44 p.a. (mean duration 3.5 months) and 58% p.a. Apparent differences in clearance rates are probably mostly due to lower testing sensitivity in the Uganda study due to differences in sample handling, with 'true' clearance rates being similar, and adjusted incidence in Uganda being 28% p.a. Some differences are perhaps due to the sex workers having more-frequent antibiotic treatment, whilst reinfection within ongoing sexual partnerships might have caused some of the apparently-persistent infection in the London students. More information on partnership dynamics would inform more accurate estimates of natural-history parameters. Detailed studies in men are also required.
Standardized verification of fuel cycle modeling
Feng, B.; Dixon, B.; Sunny, E.; ...
2016-04-05
A nuclear fuel cycle systems modeling and code-to-code comparison effort was coordinated across multiple national laboratories to verify the tools needed to perform fuel cycle analyses of the transition from a once-through nuclear fuel cycle to a sustainable potential future fuel cycle. For this verification study, a simplified example transition scenario was developed to serve as a test case for the four systems codes involved (DYMOND, VISION, ORION, and MARKAL), each used by a different laboratory participant. In addition, all participants produced spreadsheet solutions for the test case to check all the mass flows and reactor/facility profiles on a year-by-yearmore » basis throughout the simulation period. The test case specifications describe a transition from the current US fleet of light water reactors to a future fleet of sodium-cooled fast reactors that continuously recycle transuranic elements as fuel. After several initial coordinated modeling and calculation attempts, it was revealed that most of the differences in code results were not due to different code algorithms or calculation approaches, but due to different interpretations of the input specifications among the analysts. Therefore, the specifications for the test case itself were iteratively updated to remove ambiguity and to help calibrate interpretations. In addition, a few corrections and modifications were made to the codes as well, which led to excellent agreement between all codes and spreadsheets for this test case. Although no fuel cycle transition analysis codes matched the spreadsheet results exactly, all remaining differences in the results were due to fundamental differences in code structure and/or were thoroughly explained. As a result, the specifications and example results are provided so that they can be used to verify additional codes in the future for such fuel cycle transition scenarios.« less
Adaptation to flood risk: Results of international paired flood event studies
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Di Baldassarre, Giuliano; Vorogushyn, Sergiy; Aerts, Jeroen C. J. H.; Apel, Heiko; Aronica, Giuseppe T.; Arnbjerg-Nielsen, Karsten; Bouwer, Laurens M.; Bubeck, Philip; Caloiero, Tommaso; Chinh, Do T.; Cortès, Maria; Gain, Animesh K.; Giampá, Vincenzo; Kuhlicke, Christian; Kundzewicz, Zbigniew W.; Llasat, Maria Carmen; Mârd, Johanna; Matczak, Piotr; Mazzoleni, Maurizio; Molinari, Daniela; Dung, Nguyen V.; Petrucci, Olga; Schröter, Kai; Slager, Kymo; Thieken, Annegret H.; Ward, Philip J.; Merz, Bruno
2017-10-01
As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.
Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria
2016-01-01
Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873
Concentration and biochemical gradients of seston in Lake Ontario
Kelly, Patrick T.; Weidel, Brian C.; Paufve, Matthew R.; O'Malley, Brian P.; Watkins, James M.; Rudstam, Lars G.; Jones, Stuart E.
2017-01-01
Spatial variability in resource quantity and quality may have important implications for the distribution and productivity of primary consumers. In Lake Ontario, ecosystem characteristics suggest the potential for significant spatial heterogeneity in seston quantity and quality, particularly due to the potential for nearshore-offshore gradients in allochthonous nutrient supply, and the formation of a deep chlorophyll layer (DCL) in July. We assessed total and zooplankton food particle size-fractionated chlorophyll a concentrations, as well as carbon-to-phosphorus stoichiometry and essential fatty acid composition of seston across a distance-from-shore and depth transect. We observed time, sampling depth, and distance from shore to be the best predictors of chlorophyll a concentration. Resource quality was much more homogenous in space, but there were strong patterns through time, as both stoichiometric and fatty acid qualities in general were greatest in May, and lowest in July/August. We did observe a peak in essential fatty acid concentration near the DCL in during time of formation, possibly due to differences in phytoplankton community composition between the DCL and epilimnion. These results suggest the potential for a spatially and temporally dynamic resource base for consumers in Lake Ontario, which may be important in developing a broader understanding of variable consumer productivity.
Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.
Tamura, Youjiro
2018-01-01
A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.
Mir, Hina; Singh, Rajesh; Kloecker, Goetz H; Lillard, James W; Singh, Shailesh
2015-04-30
Lung cancer (LuCa) is the leading cause of cancer-related deaths worldwide regardless of the gender. High mortality associated with LuCa is due to metastasis, molecular mechanisms of which are yet to be defined. Here, we present evidence that chemokine receptor CXCR6 and its only natural ligand, CXCL16, are significantly expressed by non-small cell lung cancer (NSCLC) and are involved in the pathobiology of LuCa. CXCR6 expression was significantly higher in two subtypes of NSCLC (adenocarcinomas-ACs and squamous cell carcinoma-SCCs) as compared to non-neoplastic tissue. Additionally, serum CXCL16 was significantly elevated in LuCa cases as compared to healthy controls. Similar to CXCR6 tissue expression, serum level of CXCL16 in AC patients was significantly higher than SCC patients. Biological significance of this axis was validated using SCC and AC cell lines. Expression of CXCR6 was higher in AC cells, which also showed higher migratory and invasive potential than SCC. Differences in migratory and invasive potential between AC and SCC were due to differential expression of metalloproteinases following CXCL16 stimulation. Hence, our findings suggest clinical and biological significance of CXCR6/CXCL16 axis in LuCa, which could be used as potential prognostic marker and therapeutic target.
Mir, Hina; Singh, Rajesh; Kloecker, Goetz H.; Lillard, James W.; Singh, Shailesh
2015-01-01
Lung cancer (LuCa) is the leading cause of cancer-related deaths worldwide regardless of the gender. High mortality associated with LuCa is due to metastasis, molecular mechanisms of which are yet to be defined. Here, we present evidence that chemokine receptor CXCR6 and its only natural ligand, CXCL16, are significantly expressed by non-small cell lung cancer (NSCLC) and are involved in the pathobiology of LuCa. CXCR6 expression was significantly higher in two subtypes of NSCLC (adenocarcinomas-ACs and squamous cell carcinoma-SCCs) as compared to non-neoplastic tissue. Additionally, serum CXCL16 was significantly elevated in LuCa cases as compared to healthy controls. Similar to CXCR6 tissue expression, serum level of CXCL16 in AC patients was significantly higher than SCC patients. Biological significance of this axis was validated using SCC and AC cell lines. Expression of CXCR6 was higher in AC cells, which also showed higher migratory and invasive potential than SCC. Differences in migratory and invasive potential between AC and SCC were due to differential expression of metalloproteinases following CXCL16 stimulation. Hence, our findings suggest clinical and biological significance of CXCR6/CXCL16 axis in LuCa, which could be used as potential prognostic marker and therapeutic target. PMID:25888629
A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Alan; Colbow, Vesna; Harvey, David
2013-01-01
The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stressmore » test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.« less
Rodgers, Kiri J.; Hursthouse, Andrew; Cuthbert, Simon
2015-01-01
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes. PMID:26393631
Rodgers, Kiri J; Hursthouse, Andrew; Cuthbert, Simon
2015-09-18
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes.
Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria
2016-01-01
Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.
Marshall, Nicholas; Locklin, Jason
2011-11-01
In this Article, we describe a protocol for surface functionalization of benzenediazonium hexafluorophosphate monolayers by in situ electrochemical reduction of bis(benzenediazonium) hexafluorophosphate. Due to the considerable difference in potential between the first and second reduction of this species, it is possible to form a high density of surface-bound diazonium groups by use of a mild potential which selectively reduces only one diazonium group per ring. The resulting diazonium-containing monolayer reacts readily with solutions of electron-rich aromatic compounds. The reaction with ferrocene produces a dense (2.7 × 10(-10) mol/cm(2)) ferrocene-containing monolayer through a Gomberg-Bachmann type arylation. The resulting ferrocene group exhibits relatively rapid electron transfer to the electrode due to the conjugated linker layer as measured by alternating current voltammetry (ACV) and cyclic voltammetry. Aromatic systems with π-donor substitutents (N,N-dimethylaniline, N,N,N',N'-tetramethyldiaminobenzophenone, and hydroquinone) react through an azo-coupling to form monolayers linked to the surface through an azobenzene moiety. The redox properties of these electron-rich species tethered to the surface were observed and quantified using cyclic voltammetry. This simple and versatile functionalization procedure has a wide variety of potential applications in surface science and materials research.
3-D geoelectrical modelling using finite-difference: a new boundary conditions improvement
NASA Astrophysics Data System (ADS)
Maineult, A.; Schott, J.-J.; Ardiot, A.
2003-04-01
Geoelectrical prospecting is a well-known and frequently used method for quantitative and non-destructive subsurface exploration until depths of a few hundreds metres. Thus archeological objects can be efficiently detected as their resistivities often contrast with those of the surrounding media. Nevertheless using the geoelectrical prospecting method has long been restricted due to inhability to model correctly arbitrarily-shaped structures. The one-dimensional modelling and inversion have long been classical, but are of no interest for the majority of field data, since the natural distribution of resistivity is rarely homogeneous or tabular. Since the 1970's some authors developed discrete methods in order to solve the two and three-dimensional problem, using mathematical tools such as finite-element or finite-difference. The finite-difference approach is quite simple, easily understandable and programmable. Since the work of Dey and Morrison (1979), this approach has become quite popular. Nevertheless, one of its major drawbacks is the difficulty to establish satisfying boundary conditions. Recently Lowry et al. (1989) and Zhao and Yedlin (1996) suggested some refinements on the improvement of the boundary problem. We propose a new betterment, based on the splitting of the potential into two terms, the potential due to a reference tabular medium and a secondary potential caused by a disturbance of this medium. The surface response of a tabular medium has long been known (see for example Koefoed 1979). Here we developed the analytical solution for the electrical tabular potential everywhere in the medium, in order to establish more satisfying boundary conditions. The response of the perturbation, that is to say the object of interest, is then solved using volume-difference and preconditioned conjugate gradient. Finally the grid is refined one or more times in the perturbed domain in order to ameliorate the precision. This method of modelling is easy to implement and numerical computations run very fast. Thanks to improved boundary conditions and refinement processes, edges effects are reduced. Moreover, one important conclusion of this work is the necessity to prefer three-dimensional prospecting, since in some cases a unique profile can lead to misinterpretation, as shown by the comparison of transverse profiles through a buried cylinder and through a buried sphere.
Mani, Tomoyasu; Grills, David C.; Miller, John R.
2015-01-02
A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of moleculesmore » to be determined in the absence of electrolyte in an environment of low dielectric constant.« less
On Electron-Positron Pair Production by a Spatially Inhomogeneous Electric Field
NASA Astrophysics Data System (ADS)
Chervyakov, A.; Kleinert, H.
2018-05-01
A detailed analysis of electron-positron pair creation induced by a spatially non-uniform and static electric field from vacuum is presented. A typical example is provided by the Sauter potential. For this potential, we derive the analytic expressions for vacuum decay and pair production rate accounted for the entire range of spatial variations. In the limit of a sharp step, we recover the divergent result due to the singular electric field at the origin. The limit of a constant field reproduces the classical result of Euler, Heisenberg and Schwinger, if the latter is properly averaged over the width of a spatial variation. The pair production by the Sauter potential is described for different regimes from weak to strong fields. For all these regimes, the locally constant-field rate is shown to be the upper limit.
Taha, Muhammad; Arbin, Mastura; Ahmat, Norizan; Imran, Syahrul; Rahim, Fazal
2018-04-01
Due to the great biological importance of β-glucuronidase inhibitors, here in this study, we have synthesized a library of novel benzothiazole derivatives (1-30), characterized by different spectroscopic methods and evaluated for β-glucuronidase inhibitory potential. Among the series sixteen compounds i.e.1-6, 8, 9, 11, 14, 15, 20-23 and 26 showed outstanding inhibitory potential with IC 50 value ranging in between 16.50 ± 0.26 and 59.45 ± 1.12 when compared with standard d-Saccharic acid 1,4-lactone (48.4 ± 1.25 µM). Except compound 8 and 23 all active analogs showed better potential than the standard. Structure activity relationship has been established. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Priya, Anjali; Mishra, Ram Awadh
2016-04-01
In this paper, analytical modeling of surface potential is proposed for new Triple Metal Gate (TMG) fully depleted Recessed-Source/Dain Silicon On Insulator (SOI) Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The metal with the highest work function is arranged near the source region and the lowest one near the drain. Since Recessed-Source/Drain SOI MOSFET has higher drain current as compared to conventional SOI MOSFET due to large source and drain region. The surface potential model developed by 2D Poisson's equation is verified by comparison to the simulation result of 2-dimensional ATLAS simulator. The model is compared with DMG and SMG devices and analysed for different device parameters. The ratio of metal gate length is varied to optimize the result.
Sticking properties of ice grains
NASA Astrophysics Data System (ADS)
Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.
2017-06-01
We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.
Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen
2016-01-01
European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5-17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.
Mechanoelectric feedback in a model of the passively inflated left ventricle.
Vetter, F J; McCulloch, A D
2001-05-01
Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler-Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles.
Interaction of the geomagnetic field with northward interplanetary magnetic field
NASA Astrophysics Data System (ADS)
Bhattarai, Shree Krishna
The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.
2017-01-01
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus. PMID:28280255
Malik, Ruchi; Johnston, Daniel
2017-04-05
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus. Copyright © 2017 the authors 0270-6474/17/373940-16$15.00/0.
What’s the risk? Identifying potential human pathogens within grey-headed flying foxes faeces
Galbraith, Penelope; Coutts, Scott; Prosser, Toby; Boyce, John; McCarthy, David T.
2018-01-01
Pteropus poliocephalus (grey-headed flying foxes) are recognised vectors for a range of potentially fatal human pathogens. However, to date research has primarily focused on viral disease carriage, overlooking bacterial pathogens, which also represent a significant human disease risk. The current study applied 16S rRNA amplicon sequencing, community analysis and a multi-tiered database OTU picking approach to identify faecal-derived zoonotic bacteria within two colonies of P. poliocephalus from Victoria, Australia. Our data show that sequences associated with Enterobacteriaceae (62.8% ± 24.7%), Pasteurellaceae (19.9% ± 25.7%) and Moraxellaceae (9.4% ± 11.8%) dominate flying fox faeces. Further colony specific differences in bacterial faecal colonisation patterns were also identified. In total, 34 potential pathogens, representing 15 genera, were identified. However, species level definition was only possible for Clostridium perfringens, which likely represents a low infectious risk due to the low proportion observed within the faeces and high infectious dose required for transmission. In contrast, sequences associated with other pathogenic species clusters such as Haemophilus haemolyticus-H. influenzae and Salmonella bongori-S. enterica, were present at high proportions in the faeces, and due to their relatively low infectious doses and modes of transmissions, represent a greater potential human disease risk. These analyses of the microbial community composition of Pteropus poliocephalus have significantly advanced our understanding of the potential bacterial disease risk associated with flying foxes and should direct future epidemiological and quantitative microbial risk assessments to further define the health risks presented by these animals. PMID:29360880
Poplawsky, Alexander J.; Dingledine, Raymond
2011-01-01
Functional MRI (fMRI) indirectly measures neural activity by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In the present study, we used magnetic resonance to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free-induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of [-1.2 ± 0.3] ×10-5 radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase due to a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using magnetic resonance. PMID:21728204
NASA Astrophysics Data System (ADS)
Foerster, M.; Haaland, S.; Cnossen, I.
2014-12-01
We present statistical studies of both the high-latitude ionospheric potential pattern deduced from long-term observations of the Cluster Electron Drift Instrument (EDI) and upper thermospheric neutral wind circulation patterns in the Northern (NH) and Southern Hemisphere (SH) obtained from accelerometers on board of low-Earth orbiting satellites like CHAMP during about the same time interval. The cross-polar cap potential difference during southward IMF conditions appears to be on average slightly (~7%) larger in the SH compared with the NH, while the neutral wind magnitude and vorticity amplitude are mostly larger in the NH than in the SH, especially during high solar activity conditions. We attribute such behaviour to peculiarities of the hemispheres due to the non-dipolar portions of Earth's main magnetic field that constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The pole is presently displaced almost twice the distance in the SH compared to the NH, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. To analyse this behaviour, we have run several numerical simulations using the first-principle Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model under various seasonal conditions. The survey of both the numerical simulation results and the observations confirm prominent asymmetries between the two hemispheres for these parameters.
Unique determination of "subatomic" contrast by imaging covalent backbonding.
Sweetman, Adam; Rahe, Philipp; Moriarty, Philip
2014-05-14
The origin of so-called "subatomic" resolution in dynamic force microscopy has remained controversial since its first observation in 2000. A number of detailed experimental and theoretical studies have identified different possible physicochemical mechanisms potentially giving rise to subatomic contrast. In this study, for the first time we are able to assign the origin of a specific instance of subatomic contrast as being due to the back bonding of a surface atom in the tip-sample junction.
Cancer diagnosis by infrared spectroscopy: methodological aspects
NASA Astrophysics Data System (ADS)
Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.
1998-04-01
IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.
Effects of ionizing radiation in ginkgo and guarana [rapid communication
NASA Astrophysics Data System (ADS)
Rabelo Soriani, Renata; Cristina Satomi, Lucilia; Pinto, Terezinha de Jesus A.
2005-07-01
Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo ( Ginkgo biloba L.) and guaraná ( Paullinia cupana H.B.K.).
Structural and dynamical properties of recombining ultracold neutral plasma
NASA Astrophysics Data System (ADS)
Tiwari, Sanat Kumar; Shaffer, Nathaniel R.; Baalrud, Scott D.
2017-10-01
An ultracold plasma (UCP) is an evolving collection of free charges and bound charges (Rydberg atoms). Over time, bound species concentration increases due to recombination. We present the structural and dynamical properties of an evolving UCP using classical molecular dynamics simulation. Coulomb collapse is avoided using a repulsive core with the attractive Coulomb potential. The repulsive core size controls the concentration of bound states, as it determines the depth of the potential well between opposite charges. We vary the repulsive core size to emulate the quasi-static state of plasma at different time during the evolution. Binary, chain and ring-like bound states are observed in the simulation carried out at different coupling strengths and repulsive core size. The effect of bound states can be seen as molecular peaks in the radial distribution function (RDF). The thermodynamic properties associated with the free charges can be analyzed from RDF by separating free from bound states. These bound states also change the dynamical properties of the plasma. The electron velocity auto-correlation displays oscillations due to the orbital motion in bound states. These bound states act like a neutral species, damping electron plasmon modes and broadening the ion acoustic mode. This work is supported by AFOSR Grant Number FA9550-16-1-0221. It used computational resources by XSEDE, which is supported by NSF Grant Number ACI-1053575.
Improvement of Ion/Ioff for h-BN encapsulated bilayer graphene by graphite local back gate electrode
NASA Astrophysics Data System (ADS)
Uwanno, Teerayut; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke
The critical issue for bilayer graphene (BLG) devices is low Ion/Ioff even at the band gap of 0.3eV. Band gap in BLG can be formed by creating potential difference between the two layers of BLG. This can be done by applying external electric field perpendicularly to BLG to induce different carrier densities in the two layers. Due to such origin, the spatial uniformity of band gap in the channel is quite sensitive to charge inhomogeneity in BLG. In order to apply electric field of 3V/nm to open the maximum band gap of 0.3eV, high- k gate stack has been utilized so far. However, oxide dielectrics usually have large charge inhomogeneity causing in-plane potential fluctuation in BLG channel. Due to surface flatness and small charge inhomogeneity, h-BN has been used as dielectrics to achieve high quality graphene devices, however, Ion/Iofffor BLG/ h-BN heterostuctures has not been reported yet. In this study, we used graphite as local back gate electrode to BLG encapsulated with h-BN. This resulted in much higher Ion/Ioff, indicating the importance of screening of charge inhomogeneity from SiO2 substrate surface by local graphite back gate electrode. This research was partly supported by JSPS Core-to-Core Program, A. Advanced Research Networks.
NASA Astrophysics Data System (ADS)
Roy, J. C.; Ferri, A.; Salaün, F.; Giraud, S.; Chen, G.; Jinping, G.
2017-10-01
Chitosan-based emulsions were prepared at pH from 4.0 to 6.0. The zeta potential and droplet size were monitored at different pH. Double emulsions (wateroil- water) were observed due to the stiff conformation of chitosan at pH 4.0. At pH 5.0, the emulsion droplets were the smallest (2.9 μm) of the experimental pH range. The emulsion droplets were well dispersed due to high surface charge of chitosan (for example, +50 mV at pH 5.5) in entire pH range. The emulsion was treated with carboxymethyl cellulose (CMC) for neutralizing the charged chitosan on the surface of emulsion droplets. Above 10×10-2 mg/ml of CMC, no change in zeta potential was observed indicating no more free chitosan existed after neutralization with CMC. The emulsion was then crosslinked with different amount of glutaraldehyde. Upon increasing the amount of glutaraldehyde, the amount of core content inside the microcapsule and encapsulation efficiency of shell materials decreased gradually. The Dynamic Scanning Calorimetry data confirmed no interaction between core and shell material in the microencapsulation process. The thermal degradation of the microcapsules was examined by thermogravimetric analysis and a gradual decrease in the degradation temperature upon increasing glutaraldehyde concentration was found. The tuning of CMC concentration can provide valuable information regarding stable emulsion and efficient microcapsule formulation via coacervation.
NASA Astrophysics Data System (ADS)
Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.
2015-03-01
Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.
Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel
NASA Astrophysics Data System (ADS)
Criado, Maria; Provis, John L.
2018-06-01
The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.
The Charging of Dust Grains in the Inner Heliosheath
NASA Astrophysics Data System (ADS)
Avinash, K.; Slavin, J.; Zank, G. P.; Frisch, P.
2008-12-01
Equilibrium electric charge and surface potential on a dust grain in the heliosheath are calculated. The grain is charged due to heliosheath plasma flux, photo electrons flux, secondary electron emission flux and transmission flux. Realistically, the heliosheath plasma consists of solar electrons, solar wind ions [SWI] and pick up ions [PUI]. These species interact differently with TS and thus have different characteristics down stream in the heliosheath. The PUI suffer multiple reflections at TS and are accelerated to high energies in the range of ~ 106 K. The solar electrons, on the other hand, are heated adiabatically through the TS and have temperature in the range ~ 5x105 K. The SWI may have a smaller temperature typically in the range 1-5x104 K The density of electrons could be in the range ~5 x 10-4 cm-3, while the ratio of PUI to SWI density could range from 0.1 to 0.5. Taking into account these parameters, grain charging due to different plasma species and other fluxes mentioned earlier, is calculated. Our results show that (a) surface potential is very sensitive to electron temp. It goes through a maxima and for realistic values close to or less than 5x105 K it can be as big as 26V which is twice the value calculated by Kimura and Mann1. This may have implications for electrostatic disruption and the size distribution of dust particles in the heliosheath. With PUI density the surface potential increases about 10 to 20 %. Though temperature of PUI is significantly larger than that of electrons, it is not large enough to make up for the mass ratio of electrons to protons. On account small temperature and electron/proton mass ratio, the effect of SWI on dust charge is very weak. (1) H. Kimura and I. Mann, Ap.J. 499, 454 (1998).
Porous media matric potential and water content measurements during parabolic flight
NASA Technical Reports Server (NTRS)
Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani
2005-01-01
Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.
Gallagher, J
2016-04-15
Personal measurement studies and modelling investigations are used to examine pollutant exposure for pedestrians in the urban environment: each presenting various strengths and weaknesses in relation to labour and equipment costs, a sufficient sampling period and the accuracy of results. This modelling exercise considers the potential benefits of modelling results over personal measurement studies and aims to demonstrate how variations in fleet composition affects exposure results (presented as mean concentrations along the centre of both footpaths) in different traffic scenarios. A model of Pearse Street in Dublin, Ireland was developed by combining a computational fluid dynamic (CFD) model and a semi-empirical equation to simulate pollutant dispersion in the street. Using local NOx concentrations, traffic and meteorological data from a two-week period in 2011, the model were validated and a good fit was presented. To explore the long-term variations in personal exposure due to variations in fleet composition, synthesised traffic data was used to compare short-term personal exposure data (over a two-week period) with the results for an extended one-year period. Personal exposure during the two-week period underestimated the one-year results by between 8% and 65% on adjacent footpaths. The findings demonstrate the potential for relative differences in pedestrian exposure to exist between the north and south footpaths due to changing wind conditions in both peak and off-peak traffic scenarios. This modelling approach may help overcome potential under- or over-estimations of concentrations in personal measurement studies on the footpaths. Further research aims to measure pollutant concentrations on adjacent footpaths in different traffic and wind conditions and to develop a simpler modelling system to identify pollutant hotspots on our city footpaths so that urban planners can implement improvement strategies to improve urban air quality. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of Potential Deep-Seated Landslide in Hekeng Watershed by Environment Indices
NASA Astrophysics Data System (ADS)
Hsieh, C. J.; Chompuchan, C.
2014-12-01
Landslides are a major natural disaster in Taiwan relevant to the human life. After the catastrophic Xiaolin landslide during Typhoon Morakot in August 2009 caused around 400 casualties, the deep-seated landslide has become a serious issue. This study explored the potential deep-seated landslide in Hekeng watershed extracted from SPOT-5 imageries. The empirical topographic correction was applied to minimize effect of the mountain shaded area due to the difference of sun elevation and terrain angle. Consequently the multi-temporal environmental indices, i.e., modified Normalized Difference Vegetation Index (mNDVI) and modified Normalized Difference Water Index (mNDWI) were corrected. Seasonal vegetation cover and surface moisture change were analyzed incorporate with a slope which obtain from DEM data. The result showed that the distribution of potential deep-seated landslide vulnerable area mainly located at headstream watershed. It could be explained that the headstream watershed has less human interference, therefore the environmental indices interpreted those area as deep soil layer and dense vegetation coverage. However, the upstream canal could suffer from the long-term erosion and possibly cause slope toe collapse. In addition, the western watershed is the afforestation zone whereas the eastern watershed is natural forest zone with higher development ratio. The upslope forest management of eastern and western watershed should be discussed variously.
Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities.
Jacobsen, Anna L; Pratt, R Brandon; Davis, Stephen D; Ewers, Frank W
2007-12-01
Vulnerability to water stress-induced cavitation was measured on 27 woody shrub species from three arid plant communities including chaparral, coastal sage and Mojave Desert scrub. Dry season native embolism and pre-dawn water potential, and both wet and dry season xylem specific hydraulic conductivity (Ks) were measured. Cavitation resistance, estimated as water potential at 50% loss in conductivity (Psi50), was measured on all species during the wet season and on a subset of species during the dry season. Cavitation resistance varied with sampling season, with 8 of 13 sampled species displaying significant seasonal shifts. Native embolism and water potential were useful in identification of species displaying seasonal shifts. The Ks was not different among sites or seasons. The Psi50 varied among species and communities. Within communities, interspecific variation may be partially explained by differences in rooting depth or leaf habit (evergreen, semi-deciduous, deciduous). Communities diverged in their Psi50 with chaparral species displaying the greatest cavitation resistance regardless of sampling season. The greater cavitation resistance of chaparral species is surprising, considering the greater aridity of the Mojave Desert site. Adaptation to arid environments is due to many plant traits, and aridity does not necessarily lead to convergence in cavitation resistance.
NASA Astrophysics Data System (ADS)
Stoker, J. M.; Rowley, R. L.
1989-09-01
Mutual diffusion coefficients for selected alkanes in carbon tetrachloride were calculated using molecular dynamics and Lennard-Jones (LJ) potentials. Use of effective spherical LJ parameters is desirable when possible for two reasons: (i) computer time is saved due to the simplicity of the model and (ii) the number of parameters in the model is kept to a minimum. Results of this study indicate that mutual diffusivity is particularly sensitive to the molecular size cross parameter, σ12, and that the commonly used Lorentz-Berthelot rules are inadequate for mixtures in which the component structures differ significantly. Good agreement between simulated and experimental mutual diffusivities is obtained with a combining rule for σ12 which better represents these asymmetric mixtures using pure component LJ parameters obtained from self-diffusion coefficient data. The effect of alkane chain length on the mutual diffusion coefficient is correctly predicted. While the effects of alkane branching upon the diffusion coefficient are comparable in size to the uncertainty of these calculations, the qualitative trend due to branching is also correctly predicted by the MD results.
Thrombin-Binding Aptamer Quadruplex Formation: AFM and Voltammetric Characterization
Diculescu, Victor Constantin; Chiorcea-Paquim, Ana-Maria; Eritja, Ramon; Oliveira-Brett, Ana Maria
2010-01-01
The adsorption and the redox behaviour of thrombin-binding aptamer (TBA) and extended TBA (eTBA) were studied using atomic force microscopy and voltammetry at highly oriented pyrolytic graphite and glassy carbon. The different adsorption patterns and degree of surface coverage were correlated with the sequence base composition, presence/absence of K+, and voltammetric behaviour of TBA and eTBA. In the presence of K+, only a few single-stranded sequences present adsorption, while the majority of the molecules forms stable and rigid quadruplexes with no adsorption. Both TBA and eTBA are oxidized and the only anodic peak corresponds to guanine oxidation. Upon addition of K+ ions, TBA and eTBA fold into a quadruplex, causing the decrease of guanine oxidation peak and occurrence of a new peak at a higher potential due to the oxidation of G-quartets. The higher oxidation potential of G-quartets is due to the greater difficulty of electron transfer from the inside of the quadruplex to the electrode surface than electron transfer from the more flexible single strands. PMID:20798847
Samnani, Sunil Sadruddin; Vaska, Marcus; Ahmed, Salim; Turin, Tanvir C
2017-10-01
With advances in medical practice and fields of research, reviews occupy a key position for summarizing existing knowledge. Due to the differences and overlap in terminology, the full potential for reviews may be lost due to confusion of indistinct approaches. The main objective of this study was to provide a descriptive outline of each of the common review types with their characteristics and examples in a health care system. Ascoping search was conducted using the keywords associated with the literature review typology. The SALSA(Search, Appraisal, Synthesis and Analysis) analytical framework was used to identify and distinguish each type of review. Nine common types of reviews and associated methodologies were evaluated against the already established SALSA framework. Their description, strengths and weaknesses are presented. The results provided a basic idea of different types of reviews based on the intended level of knowledge synthesis by which researchers can identify the appropriate type of review based on their intended audience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen
2014-03-01
Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis,more » respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.« less
Fernández-Lara, Rebeca; Gordillo, Belén; Rodríguez-Pulido, Francisco J; Lourdes González-Miret, M; Del Villar-Martínez, Alma A; Dávila-Ortiz, Gloria; Heredia, Francisco J
2015-10-01
The phenolic composition (by HPLC-DAD-MS) and color characteristics (by Imaging Tristimulus Colorimetry) of four strawberry cultivars that have shown good climate adaptation to subtropical area (Nikte, Zamorana, Jacona and Pakal) have been assessed. 24 monomeric phenolics were identified, including 15 anthocyanins, 5 phenolic acids, 1 flavanol and 4 flavonols. Nikte and Zamorana showed the highest phenolic potential mainly due to their higher content of anthocyanins, while Pakal was richer in phenolic acids. Regarding color, Nikte and Zamorana were the more similar cultivars having the lowest values of lightness and hue. On the contrary, the color of Pakal was quite different from all the rest, due to the specific distribution between pelargonidin and cyanidin. The inclusion of both phenolic and colorimetric information in the Linear Discriminant Analysis allowed reaching very good discriminations among cultivars. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heat inactivation of poliovirus in wastewater sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.L.; Ashley, C.S.; Moseley, R.H.
1976-09-01
The effect of raw and anaerobically digested sludge on heat inactivation of poliovirus was investigated. Raw sludge was found to be very protective of poliovirus plaque-forming ability at all temperatures studied, but digested sludge had variable effects that were highly dependent upon the experimental conditions. In low concentrations and at relatively low inactivation temperatures, digested sludge is nearly as protective of poliovirus as raw sludge. However, at higher temperatures and concentrations, digested sludge caused a significant acceleration of poliovirus inactivation. The difference between the protective capability of raw and digested sludge is not due to loss of protective material, becausemore » this component is present in the solids of digested sludge as well as in those of raw sludge. Instead, the difference is due to a virucidal agent acquired during digestion. Addition of this agent to the solids of either raw or digested sludge reverses the protective potential of these solids during heat treatment of poliovirus.« less
Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers
NASA Astrophysics Data System (ADS)
Guo, S.; Zhao, F. Y.; Li, Y.; Song, G. L.; Li, A.; Chai, K.; Liang, L.; Ma, Z.; Weller, D.; Liu, R. B.
2016-10-01
High-quality Tin doped Cadmium Sulfide (CdS) comb-like nanostructures have been synthesized by a simple in situ seeding chemical vapor deposition process. The color-tunable dual emission of these comb-like nanostructures is demonstrated by changing the excitation power intensity. In fact, the color-tunable emission is in principal due to the variation of the dual emission intensity, which is proven by photoluminescence spectra and real color photoluminescence charge-coupled device images. Especially for different parts in the nano comb, the emission color can be varied even under the same pumping power. This is mainly due to the difference in local structure. By comparison, the color variation was not observed in pure CdS multi-branched nanostructures. The lifetime results demonstrate that the green emission originate from the recombination of free excitons. The origin of red emission is from the recombination of the dopant-induced intrinsic or extrinsic defect states. These findings provide potential applications of laser assisted anti-counterfeit label and micro-size monitors.
Bernstein, Hans C; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross P; Miller, Charles D; Peyton, Brent M; Cooksey, Keith E; Gardner, Robert D; Sims, Ronald C
2014-03-01
Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for industrial control are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and respiration on two distinct microalgal biofilms cultured using a novel rotating algal biofilm reactor operated at field- and laboratory-scales. Clear differences in oxygenic photosynthesis and respiration were observed based on different culturing conditions, microalgal composition, light intensity and nitrogen availability. The cultures were also evaluated as potential biofuel synthesis strategies. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to traditional planktonic microalgal studies. Physiological characterizations of these microalgal biofilms identify fundamental parameters needed to understand and control process optimization. Published by Elsevier Ltd.
Angel, Juana; Steele, A Duncan; Franco, Manuel A
2014-01-01
Rotavirus (RV) is a major vaccine-preventable killer of young children worldwide. Two RV vaccines are globally commercially available and other vaccines are in different stages of development. Due to the absence of a suitable correlate of protection (CoP), all RV vaccine efficacy trials have had clinical endpoints. These trials represent an important challenge since RV vaccines have to be introduced in many different settings, placebo-controlled studies are unethical due to the availability of licensed vaccines, and comparator assessments for new vaccines with clinical endpoints are very large, complex, and expensive to conduct. A CoP as a surrogate endpoint would allow predictions of vaccine efficacy for new RV vaccines and enable a regulatory pathway, contributing to the more rapid development of new RV vaccines. The goal of this review is to summarize experiences from RV natural infection and vaccine studies to evaluate potential CoP for use as surrogate endpoints for assessment of new RV vaccines, and to explore challenges and opportunities in the field.
Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni
2017-04-01
The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lam, Hing-Lan
2017-01-01
A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.
Olsen, J.B.; Spearman, William J.; Sage, G.K.; Miller, S.J.; Flannery, B.G.; Wenburg, J.K.
2004-01-01
We used microsatellite and mitochondrial DNA-restriction fragment length polymorphism (mtDNA-RFLP) analyses to test the hypothesis that chum salmon Oncorhynchus keta and coho salmon O. kisutch in the Yukon River, Alaska, exhibit population structure at differing spatial scales. If the hypothesis is true, then the risk of losing genetic diversity because of habitat degradation from a gold mine near a Yukon River tributary could differ between the two species. For each species, collections were made from two tributaries in both the Innoko and Tanana rivers, which are tributaries to the lower and middle Yukon River. The results revealed a large difference in the degree and spatial distribution of population structure between the two species. For chum salmon, the microsatellite loci (F-statistic [FST] = 0.021) and mtDNA (F ST = -0.008) revealed a low degree of interpopulation genetic diversity on a relatively large geographic scale. This large-scale population structure should minimize, although not eliminate, the risk of genetic diversity loss due to localized habitat degradation. For coho salmon, the microsatellites (FST = 0.091) and mtDNA (FST = 0.586) revealed a high degree of interpopulation genetic diversity on a relatively small geographic scale. This small-scale population structure suggests that coho salmon are at a relatively high risk of losing genetic diversity due to lo-calized habitat degradation. Our study underscores the importance of a multispecies approach for evaluating the potential impact of land-use activities on the genetic diversity of Pacific salmon.
Parkinson, Bonny; Pearson, Sallie-Anne; Viney, Rosalie
2014-01-01
Published economic evaluations of trastuzumab for the treatment of HER2-positive metastatic breast cancer have arrived at different conclusions regarding the cost-effectiveness of trastuzumab, despite comparative efficacy being demonstrated by a small set of randomised controlled trials (RCTs). This article aims to provide insight into the quality of the evaluations and explore the possible drivers of the conflicting conclusions. A systematic literature review was conducted to identify all published economic evaluations that compared the incremental costs and outcomes of trastuzumab versus a comparator. Fifteen economic evaluations were identified. In the evaluations that estimated efficacy using an RCT, the key drivers of the conclusions regarding cost-effectiveness were: the approach used to estimate overall survival in the control group given crossover to trastuzumab following progression in the trials; the inclusion of treatment beyond progression; inclusion of wastage due to unused vial portions, adverse events, and the cost of HER2 testing. Four evaluations used non-randomised approaches to estimate efficacy, thus introducing the potential for confounding. As a result these evaluations reported relatively optimistic estimates of comparative effectiveness. Finally the evaluations used different thresholds to determine whether treatment with trastuzumab was cost-effective. There were numerous drivers of the different conclusions regarding the cost-effectiveness of trastuzumab, many of which are due to judgements made by the authors when translating data from RCTs. Many of the potential drivers were not identified by the published systematic reviews of economic evaluations and perhaps more remain unidentified because of inconsistent and limited reporting.
Negative social comparisons and psychosis proneness in a healthy adolescent population.
Cotier, F A; Toulopoulou, T
2017-10-01
There is growing evidence of an association between negative social comparisons (NSC) and both psychosis, and psychosis proneness. The majority of the work thus far, however, has focused largely on one type of NSC, namely, social rank. Whilst social rank is clearly an important factor, an individual's perception of belonging is likely also of importance; particularly, when considering individuals from collectivistic cultures such as China, where greater emphasis is placed on fitting into the group. There is also limited research investigating what factors may contribute towards the relationship between NSC and psychosis proneness, and to what extent this relationship may be due to common familial factors. To address these issues, we examined whether (1) Social rank and perceived belonging predict negative, positive and depressive psychotic experiences in a Chinese, adolescent, twin and sibling population, (2) coping styles moderate the impact of these relationships and (3), there is a familial association between NSC and psychosis proneness. Both social rank and perceived belonging were found to predict the negative and depressive dimensions of psychosis. These relationships were moderated by problem-focused coping styles. Interestingly, the association between perception of belonging, and negative psychotic experiences was familial-and stronger in Monozygotic twins-indicating perhaps shared aetiology due to common genes. Our findings highlight NSC as potential vulnerability markers for negative and depressive psychotic experiences, and suggest potentially different aetiological pathways amongst different NSC and different psychotic experiences. On a clinical level, our findings emphasize the need to consider coping styles when treating at-risk individuals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Attractor cosmology from nonminimally coupled gravity
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2018-03-01
By using a bottom-up reconstruction technique for nonminimally coupled scalar-tensor theories, we realize the Einstein frame attractor cosmologies in the Ω (ϕ )-Jordan frame. For our approach, what is needed for the reconstruction method to work is the functional form of the nonminimal coupling Ω (ϕ ) and of the scalar-to-tensor ratio, and also the assumption of the slow-roll inflation in the Ω (ϕ )-Jordan frame. By appropriately choosing the scalar-to-tensor ratio, we demonstrate that the observational indices of the attractor cosmologies can be realized directly in the Ω (ϕ )-Jordan frame. We investigate the special conditions that are required to hold true in for this realization to occur, and we provide the analytic form of the potential in the Ω (ϕ )-Jordan frame. Also, by performing a conformal transformation, we find the corresponding Einstein frame canonical scalar-tensor theory, and we calculate in detail the corresponding observational indices. The result indicates that although the spectral index of the primordial curvature perturbations is the same in the Jordan and Einstein frames, at leading order in the e -foldings number, the scalar-to-tensor ratio differs. We discuss the possible reasons behind this discrepancy, and we argue that the difference is due to some approximation we performed to the functional form of the potential in the Einstein frame, in order to obtain analytical results, and also due to the difference in the definition of the e -foldings number in the two frames, which is also pointed out in the related literature. Finally, we find the F (R ) gravity corresponding to the Einstein frame canonical scalar-tensor theory.
Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele
2017-01-01
The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs. PMID:28245627