Sample records for potential differential expression

  1. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    PubMed

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  2. Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations.

    PubMed

    Kompisch, Kai Michael; Lange, Claudia; Steinemann, Doris; Skawran, Britta; Schlegelberger, Brigitte; Müller, Reinhard; Schumacher, Udo

    2010-11-01

    Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.

  3. Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth.

    PubMed

    Pacary, Emilie; Tixier, Emmanuelle; Coulet, Florence; Roussel, Simon; Petit, Edwige; Bernaudin, Myriam

    2007-07-01

    This study demonstrates that the Rho-kinase (ROCK) inhibitor, Y-27632, potentiates not only the effect of cobalt chloride (CoCl(2)) but also that of deferoxamine, another HIF-1 inducer, on mesenchymal stem cell (MSC) neuronal differentiation. HIF-1 is essential for CoCl(2)+/-Y-27632-induced MSC neuronal differentiation, since agents inhibiting HIF-1 abolish the changes of morphology and cell cycle arrest-related gene or protein expressions (p21, cyclin D1) and the increase of neuronal marker expressions (Tuj1, NSE). Y-27632 potentiates the CoCl(2)-induced decrease of cyclin D1 and nestin expressions, the increase of HIF-1 activation and EPO expression, and decreases pVHL expression. Interestingly, CoCl(2) decreases RhoA expression, an effect potentiated by Y-27632, revealing crosstalk between HIF-1 and RhoA/ROCK pathways. Moreover, we demonstrate a synergistic effect of CoCl(2) and Y-27632 on neurosphere differentiation into neurons and PC12 neurite outgrowth underlining that a co-treatment targeting both HIF-1 and ROCK pathways might be relevant to differentiate stem cells into neurons.

  4. THY-1 Receptor Expression Differentiates Cardiosphere-Derived Cells with Divergent Cardiogenic Differentiation Potential

    PubMed Central

    Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb

    2014-01-01

    Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447

  5. Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Kyeongah; Nam, Sorim; Kim, Bomi

    N-Myc downstream-regulated gene 2 (NDRG2), a member of the NDRG family of differentiation-related genes, has been characterized as a regulator of dendritic cell differentiation from monocytes, CD34{sup +} progenitor cells, and myelomonocytic leukemic cells. In this study, we show that NDRG2 overexpression inhibits the differentiation of U937 cells into osteoclasts in response to stimulation with a combination of macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (RANKL). U937 cells stably expressing NDRG2 are unable to differentiate into multinucleated osteoclast-like cells and display reduced tartrate-resistant acid phosphatase (TRAP) activity and resorption pit formation. Furthermore, NDRG2 expression significantly suppressesmore » the expression of genes that are crucial for the proliferation, survival, differentiation, and function of osteoclasts, including c-Fos, Atp6v0d2, RANK, and OSCAR. The activation of ERK1/2 and p38 is also inhibited by NDRG2 expression during osteoclastogenesis, and the inhibition of osteoclastogenesis by NDRG2 correlates with the down-regulation of the expression of the transcription factor PU.1. Taken together, our results suggest that the expression of NDRG2 potentially inhibits osteoclast differentiation and plays a role in modulating the signal transduction pathway responsible for osteoclastogenesis. - Highlights: • The expression of NDRG2 significantly impairs osteoclast differentiation. • PU.1 and p38 MAPK inhibitions by NDRG2 are critical for the inhibition of osteoclastogenesis. • Knockdown of NDRG2 rescues the ability of monocytes to differentiate into osteoclasts. • NDRG2 expression in BM and primary macrophages also impairs osteoclast differentiation. • This study implies the potential of NDRG2 expression in the inhibition of osteoclastogenesis.« less

  6. The Effect of Recombinant Tyrosine Hydroxylase Expression on the Neurogenic Differentiation Potency of Mesenchymal Stem Cells

    PubMed Central

    Duruksu, Gokhan; Karaoz, Erdal

    2018-01-01

    Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs. Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH. Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation. Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines. PMID:29656620

  7. Anti-differentiation non-coding RNA, ANCR, is differentially expressed in different types of brain tumors.

    PubMed

    Malakootian, Mahshid; Mirzadeh Azad, Fatemeh; Fouani, Youssef; Taheri Bajgan, Elham; Saberi, Hooshang; Mowla, Seyed Javad

    2018-06-01

    Long non-coding RNAs (lncRNAs) are important modulators of various cellular and molecular events, including cancer-associated pathways. The Anti-differentiation ncRNA (ANCR) is a key regulator of keratinocyte differentiation, where its expression is necessary to maintain epidermal progenitor's cells. Herein, we investigated the expression pattern of ANCR in the course of neural differentiation. Moreover, we used published RNAseq data and clinical samples to evaluate the alteration of ANCR expression in different cell types and brain tumors. Furthermore, we manipulated ANCR expression in glioma cell lines to clarify a potential functional role for ANCR in tumorigenesis. Our qRT-PCR results revealed a significant upregulation of ANCR in more malignant and less differentiated types of brain tumors (P = 0.03). This data was in accordance with down regulation of ANCR during neural differentiation. ANCR suppression caused an elevation in apoptosis rate, as well as a G1 cell cycle arrest in glioblastoma cell line. Altogether, our data demonstrated that ANCR may play a role in glioma genesis and that it could be considered as a potential diagnostic and therapeutic target to combat brain cancers.

  8. DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.

    PubMed

    Yang, Jing; Yu, Hui; Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan

    2013-01-01

    Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named "Differential Regulation Analysis" (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.

  9. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de; Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de; Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, andmore » CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but strong in MSC. • Osteogenic differentiation is significantly stronger for CDC than for MSC.« less

  10. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells.

    PubMed

    Scharmach, E; Hessel, S; Niemann, B; Lampen, A

    2009-11-30

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  11. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells

    PubMed Central

    Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John

    2013-01-01

    Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130

  12. The effect of chemically modified electrospun silica nanofiber on the mRNA and miRNA expression profile of neural stem cell differentiation.

    PubMed

    Mercado, Augustus T; Yeh, Jui-Ming; Chin, Ting Yu; Chen, Wen Shuo; Chen-Yang, Yui Whei; Chen, Chung-Yung

    2016-11-01

    A detailed genomic and epigenomic analyses of neural stem cells (NSCs) differentiation in synthetic microenvironments is essential for the advancement of regenerative medicine and therapeutic treatment of diseases. This study identified the changes in mRNA and miRNA expression profile during NSC differentiation on an artificial matrix. NSCs were grown on a surface-modified, electrospun tetraethyl-orthosilicate nanofiber (designated as SNF-AP) by providing a 3D-environment for cell growth and differentiation. Differentially expressed mRNAs and miRNAs of NSC differentiated in this microenvironment were identified through microarray analysis. The genes and miRNA targets responsible for the differentiation fate of NSCs and neuron development process were determined using Ingenuity Pathway Analysis (IPA). SNF-AP enhanced the expression of genes that activates the proliferation, development, and outgrowth of neurons, differentiation and generation of cells, neuritogenesis, outgrowth of neurites, microtubule dynamics, formation of cellular protrusions, and long-term potentiation during NSC differentiation. On the other hand, PDL inhibited neuritogenesis, microtubule dynamics, and proliferation and differentiation of cells and activated the apoptosis function. Moreover, the nanomaterial promoted the expression of more let-7 miRNAs, which have vital roles in NSC differentiation. Overall, SNF-AP is biocompatible and applicable scaffold for NSC differentiation in the development of neural tissue engineering. These findings are useful in enhancing in vitro NSC differentiation potential for preclinical studies and future clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2730-2743, 2016. © 2016 Wiley Periodicals, Inc.

  13. Using differential gene expression to study Entamoeba histolytica pathogenesis

    PubMed Central

    Gilchrist, Carol A.; Petri, William A.

    2010-01-01

    The release of the Entamoeba histolytica genome has facilitated the development of techniques to survey rapidly and to relate gene expression with biology. The association and potential contribution of differential gene expression to the life cycle and the virulence of this protozoan parasite of humans are reviewed here. PMID:19217826

  14. The expression of the class 1 glucose transporter isoforms in human embryonic stem cells, and the potential use of GLUT2 as a marker for pancreatic progenitor enrichment.

    PubMed

    Segev, Hana; Fishman, Betina; Schulman, Rita; Itskovitz-Eldor, Joseph

    2012-07-01

    Even before the first appearance of the developing pancreas, glucose is the major substrate in the growing embryo. The transport of glucose across cell membranes is facilitated by a family of membranal glucose transporters (GLUT). We analyzed changes in expression of class 1 glucose transporters (GLUT1-4) during human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC) differentiation, from undifferentiated cells to 28-day-old embryoid bodies (EBs). We also examined the potential use of GLUT2 as a marker for differentiating pancreatic progenitor cells. Using quantitative real time polymerase chain reaction (qPCR), western blot, and immunofluorescence, we observed enhanced expression of GLUT1 and GLUT2 during differentiation, but only minor change in GLUT3 expression. GLUT4 expression was found to be very low both at the RNA and in the protein levels. Expression of the early pancreatic transcription factor, pancreatic duodenal homeobox gene 1 (PDX1), correlated with GLUT2 expression, suggesting the potential use of GLUT2 as a surface marker for tracking pancreatic precursor cells. After sorting EBs according to their membranal GLUT2 expression, GLUT2 and PDX1 expression were found elevated, as was expression of other endodermal markers such as PAX4, NGN3, CXCR4, and SOX17. This simple method may be used to differentiate embryonic stem cells and to isolate from them, using GLUT2 as a surface marker, an enriched pancreatic progenitor cell population in order to achieve insulin-producing cells. The sorted GLUT2 cells may potentially be used in the future as insulin-producing cells for beta cell therapies.

  15. Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients

    PubMed Central

    Li, Li; Zhang, Jiangyu; Deng, Qingshan; Li, Jieming; Li, Zhengfen; Xiao, Yao; Hu, Shuiwang; Li, Tiantian; Tan, Qiuxiao; Li, Xiaofang; Luo, Bingshu; Mo, Hui

    2016-01-01

    Objectives To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Methods Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). Results DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05) higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. Conclusions The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions. PMID:27846214

  16. Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients.

    PubMed

    Li, Li; Zhang, Jiangyu; Deng, Qingshan; Li, Jieming; Li, Zhengfen; Xiao, Yao; Hu, Shuiwang; Li, Tiantian; Tan, Qiuxiao; Li, Xiaofang; Luo, Bingshu; Mo, Hui

    2016-01-01

    To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05) higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions.

  17. Circulating Long Noncoding RNAs as Potential Biomarkers of Sepsis: A Preliminary Study.

    PubMed

    Dai, Yu; Liang, Zhixin; Li, Yulin; Li, Chunsun; Chen, Liangan

    2017-11-01

    Long noncoding RNAs (lncRNAs) are becoming promising biomarker candidates in various diseases as assessed via sequencing technologies. Sepsis is a life-threatening disease without ideal biomarkers. The aim of this study was to investigate the expression profile of lncRNAs in the peripheral blood of sepsis patients and to find potential biomarkers of sepsis. A lncRNA expression profile was performed using peripheral blood from three sepsis patients and three healthy volunteers using microarray screening. The differentially expressed lncRNAs were validated by real-time quantitative polymerase chain reaction (qRT-PCR) in a further set of 22 sepsis patients and 22 healthy volunteers. Among 1316 differentially expressed lncRNAs, 771 were downregulated and 545 were upregulated. Results of the qRT-PCR were consistent with the microarray data. lncRNA ENST00000452391.1, uc001vji.1, and uc021zxw.1 were significantly differentially expressed between sepsis patients and healthy volunteers. Moreover, lncRNA ENST00000504301.1 and ENST00000452391.1 were significantly differentially expressed between sepsis survivors and nonsurvivors. The lncRNA expression profile in the peripheral blood of sepsis patients significantly differed from that of healthy volunteers. Circulating lncRNAs may be good candidates for sepsis biomarkers.

  18. ABCG2 Is a Selectable Marker for Enhanced Multilineage Differentiation Potential in Periodontal Ligament Stem Cells

    PubMed Central

    Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Várady, György; Szabó, Gyula; Uher, Ferenc; Sarkadi, Balázs

    2015-01-01

    Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth. PMID:25101689

  19. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  20. Technique for evaluation of the strong potential Born approximation for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sil, N.C.; McGuire, J.H.

    1985-04-01

    A technique is presented for evaluating differential cross sections in the strong potential Born (SPB) approximation. Our final expression is expressed as a finite sum of one-dimensional integrals, expressible as a finite sum of derivatives of hypergeometric functions.

  1. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    PubMed

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Establishment and characterization of the reversibly immortalized mouse fetal heart progenitors.

    PubMed

    Li, Mi; Chen, Yuan; Bi, Yang; Jiang, Wei; Luo, Qing; He, Yun; Su, Yuxi; Liu, Xing; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Zhang, Hongyu; Shui, Wei; Wu, Ningning; Zhu, Jing; Tian, Jie; Yi, Qi-Jian; Luu, Hue H; Haydon, Rex C; He, Tong-Chuan; Zhu, Gao-Hui

    2013-01-01

    Progenitor cell-based cardiomyocyte regeneration holds great promise of repairing an injured heart. Although cardiomyogenic differentiation has been reported for a variety of progenitor cell types, the biological factors that regulate effective cardiomyogenesis remain largely undefined. Primary cardiomyogenic progenitors (CPs) have a limited life span in culture, hampering the CPs' in vitro and in vivo studies. The objective of this study is to investigate if primary CPs isolated from fetal mouse heart can be reversibly immortalized with SV40 large T and maintain long-term cell proliferation without compromising cardiomyogenic differentiation potential. Primary cardiomyocytes were isolated from mouse E15.5 fetal heart, and immortalized retrovirally with the expression of SV40 large T antigen flanked with loxP sites. Expression of cardiomyogenic markers were determined by quantitative RT-PCR and immunofluorescence staining. The immortalization phenotype was reversed by using an adenovirus-mediated expression of the Cre reconbinase. Cardiomyogenic differentiation induced by retinoids or dexamethasone was assessed by an α-myosin heavy chain (MyHC) promoter-driven reporter. We demonstrate that the CPs derived from mouse E15.5 fetal heart can be efficiently immortalized by SV40 T antigen. The conditionally immortalized CPs (iCP15 clones) exhibit an increased proliferative activity and are able to maintain long-term proliferation, which can be reversed by Cre recombinase. The iCP15 cells express cardiomyogenic markers and retain differentiation potential as they can undergo terminal differentiate into cardiomyctes under appropriate differentiation conditions although the iCP15 clones represent a large repertoire of CPs at various differentiation stages. The removal of SV40 large T increases the iCPs' differentiation potential. Thus, the iCPs not only maintain long-term cell proliferative activity but also retain cardiomyogenic differentiation potential. Our results suggest that the reported reversible SV40 T antigen-mediated immortalization represents an efficient approach for establishing long-term culture of primary cardiomyogenic progenitors for basic and translational research.

  3. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells.

    PubMed

    Szaraz, Peter; Gratch, Yarden S; Iqbal, Farwah; Librach, Clifford L

    2017-08-09

    Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this differentiation strategy can effectively harness the cardiomyogenic potential of young MSCs, such as FTM HUCPVCs, and suggests that in vitro pre-differentiation could be a potential strategy to increase their regenerative efficacy in vivo.

  4. Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    PubMed Central

    Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.

    2013-01-01

    Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281

  5. Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch.

    PubMed

    Wu, Yu-Fu; Huang, Yu-Ting; Wang, Hsing-Kuo; Yao, Chung-Chen Jane; Sun, Jui-Sheng; Chao, Yuan-Hung

    2017-12-28

    Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPAR γ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy. Furthermore, the beneficial effects of mechanical stretch on tenocytes suggest that an appropriate physical load possesses therapeutic potential for diabetic tendinopathy.

  6. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation

    PubMed Central

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo

    2016-01-01

    Purpose Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. Materials and Methods This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Results Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Conclusion Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders. PMID:27593875

  7. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.

    PubMed

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun

    2016-11-01

    Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.

  8. Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes.

    PubMed

    Zhou, X; Song, C; Grzymala, T L; Oi, F M; Scharf, M E

    2006-12-01

    In lower termites, the worker caste is a totipotent immature stage that is capable of differentiating into other adult caste phenotypes. We investigated the diversity of family 4 cytochrome P450 (CYP4) genes in Reticulitermes flavipes workers, with the specific goal of identifying P450s potentially involved in regulating caste differentiation. Seven novel CYP4 genes were identified. Quantitative real-time PCR revealed the tissue distribution of expression for the seven CYP4s, as well as temporal expression changes in workers in association with a release from colony influences and during juvenile hormone (JH)-induced soldier caste differentiation. Several fat-body-related CYP4 genes were differentially expressed after JH treatment. Still other genes changed expression in association with removal from colony influences, suggesting that primer pheromones and/or other colony influences impact their expression. These findings add to a growing database of candidate termite caste-regulatory genes, and provide explicit evidence that colony factors influence termite gene expression.

  9. DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    2001-01-01

    Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.

  10. Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures.

    PubMed

    Halle, Bo; Thomassen, Mads; Venkatesan, Ranga; Kaimal, Vivek; Marcusson, Eric G; Munthe, Sune; Sørensen, Mia D; Aaberg-Jessen, Charlotte; Jensen, Stine S; Meyer, Morten; Kruse, Torben A; Christiansen, Helle; Schmidt, Steffen; Mollenhauer, Jan; Schulz, Mette K; Andersen, Claus; Kristensen, Bjarne W

    2016-07-01

    Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using a NanoString nCounter platform. This revealed 19 over-expressed miRs in the non-differentiated GSCs. Additionally, non-differentiated GSCs were compared to neural stem cells (NSCs) using a microarray platform. This revealed four significantly over-expressed miRs in the non-differentiated GSCs in comparison to the NSCs. The three most over-expressed miRs in the non-differentiated GSCs compared to xenografts were miR-126, -137 and -128. KEGG pathway analysis suggested the main biological function of these over-expressed miRs to be cell-cycle arrest and diminished proliferation. To functionally validate the profiling results suggesting association of these miRs with stem-like properties, experimental over-expression of miR-128 was performed. A consecutive limiting dilution assay confirmed a significantly elevated spheroid formation in the miR-128 over-expressing cells. This may provide potential therapeutic targets for anti-miRs to identify novel treatment options for GBM patients.

  11. Differential gene expression in queen–worker caste determination in bumble-bees

    PubMed Central

    Pereboom, Jeffrey J. M; Jordan, William C; Sumner, Seirian; Hammond, Robert L; Bourke, Andrew F. G

    2005-01-01

    Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen–worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression. PMID:16024376

  12. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    PubMed

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  13. Expansion and hepatic differentiation of rat multipotent adult progenitor cells in microcarrier suspension culture.

    PubMed

    Park, Y; Subramanian, K; Verfaillie, C M; Hu, W S

    2010-10-01

    Many potential applications of stem cells require large quantities of cells, especially those involving large organs such as the liver. For such applications, a scalable reactor system is desirable to ensure a reliable supply of sufficient quantities of differentiation competent or differentiated cells. We employed a microcarrier culture system for the expansion of undifferentiated rat multipotent adult progenitor cells (rMAPC) as well as for directed differentiation of these cells to hepatocyte-like cells. During the 4-day expansion culture, cell concentration increased by 85-fold while expression level of pluripotency markers were maintained, as well as the MAPC differentiation potential. Directed differentiation into hepatocyte-like cells on the microcarriers themselves gave comparable results as observed with cells cultured in static cultures. The cells expressed several mature hepatocyte-lineage genes and asialoglycoprotein receptor-1 (ASGPR-1) surface protein, and secreted albumin and urea. Microcarrier culture thus offers the potential of large-scale expansion and differentiation of stem cells in a more controlled bioreactor environment. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses

    PubMed Central

    2014-01-01

    Background Mesenchymal stem cells (MSC) are multipotent progenitor cells characterized by their ability to both self-renew and differentiate into tissues of mesodermal origin. The plasticity or transdifferentiation potential of MSC is not limited to mesodermal derivatives, since under appropriate cell culture conditions and stimulation by bioactive factors, MSC have also been differentiated into endodermal (hepatocytes) and neuroectodermal (neurons) cells. The potential of MSC for hepatogenic and neurogenic differentiation has been well documented in different animal models; however, few reports are currently available on large animal models. In the present study we sought to characterize the hepatogenic and neurogenic differentiation and multipotent potential of bovine MSC (bMSC) isolated from bone marrow (BM) of abattoir-derived fetuses. Results Plastic-adherent bMSC isolated from fetal BM maintained a fibroblast-like morphology under monolayer culture conditions. Flow cytometric analysis demonstrated that bMSC populations were positive for MSC markers CD29 and CD73 and pluripotency markers OCT4 and NANOG; whereas, were negative for hematopoietic markers CD34 and CD45. Levels of mRNA of hepatic genes α-fetoprotein (AFP), albumin (ALB), alpha1 antitrypsin (α1AT), connexin 32 (CNX32), tyrosine aminotransferase (TAT) and cytochrome P450 (CYP3A4) were up-regulated in bMSC during a 28-Day period of hepatogenic differentiation. Functional analyses in differentiated bMSC cultures evidenced an increase (P < 0.05) in albumin and urea production and glycogen storage. bMSC cultured under neurogenic conditions expressed NESTIN and MAP2 proteins at 24 h of culture; whereas, at 144 h also expressed TRKA and PrPC. Levels of MAP2 and TRKA mRNA were up-regulated at the end of the differentiation period. Conversely, bMSC expressed lower levels of NANOG mRNA during both hepatogenic and neurogenic differentiation processes. Conclusion The expression patterns of linage-specific markers and the production of functional metabolites support the potential for hepatogenic and neurogenic differentiation of bMSC isolated from BM of abattoir-derived fetuses. The simplicity of isolation and the potential to differentiate into a wide variety of cell lineages lays the foundation for bMSC as an interesting alternative for investigation in MSC biology and eventual applications for regenerative therapy in veterinary medicine. PMID:25011474

  15. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    PubMed

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  16. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  17. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    PubMed

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  18. Altered expression of CD45 isoforms in differentiation of acute myeloid leukemia.

    PubMed

    Miyachi, H; Tanaka, Y; Gondo, K; Kawada, T; Kato, S; Sasao, T; Hotta, T; Oshima, S; Ando, Y

    1999-11-01

    Specific expression of different CD45 isoforms can be seen in various stages of differentiation of normal nucleated hematopoietic cells. Association of membrane expression of CD45 isoforms and differential levels of leukemia cells was studied in 91 cases with de novo acute myeloid leukemia (AML). Membrane expression of CD45RA and CD45RO was analyzed by flow cytometry and their expression patterns were compared with AML subtypes classified according to the French-American-British (FAB) classification. CD45RA was essentially expressed in all of the FAB myelocytic subtypes (M0-M3). Its expression in percentage was lower in the most differentiated subtype of AML (M3) when compared with other myelocytic subtypes. CD45RO expression was rarely observed in cases with myelocytic subtypes (1/56 cases of M0, M1, M2, and M3) except for the minimally differentiated myelocytic subtype (M0) or those with potential for differentiation to T-cell lineage where three of 12 cases showed CD45RO expression. When leukemia cells of an M3 case were differentiated to mature granulocytes by treatment of all-trans-retinoic acid, they showed increasing expression of CD45RO. In subtypes with a monocytic component (M4 and M5), both of CD45RA and CD45RO expression were observed and mutually exclusive. When 10 cases of M5 were subdivided by the differential level into undifferentiated (M5a) and differentiated monocytic leukemia (M5b), expression of CD45RA and CD45RO was strictly restricted to cases with M5a and M5b, respectively. These results suggest that CD45 isoform expression in AML characterizes differential levels both in myelocytic and monocytic lineages and specifically disturbed in each subtype. The assessment of CD45 isoform expression appears to provide an insight on biological characteristics and a useful supplementary test for differential diagnosis of AML subtypes. Copyright 1999 Wiley-Liss, Inc.

  19. CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Palmieri, Francesca; Tatullo, Marco

    2016-10-01

    Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146 Low and CD146 High cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146 Low cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146 High subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146 Low than in CD146 High population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.

  20. Postmitotic Expression of SOD1G93A Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation

    PubMed Central

    Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio

    2015-01-01

    To determine the role of mutant SOD1 gene (SOD1G93A) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1G93A gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1G93A in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1G93A gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1G93A gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1G93A gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1G93A in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1G93A on myogenic program and disclosed potential signaling, activated by SOD1G93A, that affect the identity of the myogenic cell population. PMID:26491230

  1. Postmitotic Expression of SOD1(G93A) Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation.

    PubMed

    Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio

    2015-01-01

    To determine the role of mutant SOD1 gene (SOD1(G93A)) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1(G93A) gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1(G93A) in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1(G93A) gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1(G93A) gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1(G93A) gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1(G93A) in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1(G93A) on myogenic program and disclosed potential signaling, activated by SOD1(G93A), that affect the identity of the myogenic cell population.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Ki Shuk; Department of Neonatology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna; Rosner, Margit

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could representmore » a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.« less

  3. Genes are differentially expressed at transcriptional level of Neocaridina denticulata following short-term exposure to nonylphenol.

    PubMed

    Liu, Chang-Lun; Sung, Hung-Hung

    2011-09-01

    To assess the toxicity of nonylphenol towards aquatic crustaceans, Neocaridina denticulata were exposed short-term to sublethal concentration (0.001-0.5 mg/L). Following treatment, differentially expressed genes were identified using suppression subtractive hybridization on samples prepared from whole specimens. There were 20 differentially expressed sequence tags that corresponded to known genes and could be divided into six functional classes: defence, translation, metabolism, ribosomal gene expression, respiration, and genes involved in the stress response. Using semi-quantitative RT-PCR, we found that 14 of the differentially expressed sequence tags significantly responded to nonylphenol, including six at a nominal concentration of 0.01 mg/L; among them, 12 genes were down-regulated. These results suggest that under non-lethal concentrations of nonylphenol, the polluted aquatic environment may still present a potential risk to N. denticulata.

  4. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells.

    PubMed

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi

    2015-10-13

    To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells

    PubMed Central

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y.; Tanaka, Minoru; Miyajima, Atsushi

    2015-01-01

    Summary To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM+ cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM+ cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM+ cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. PMID:26365514

  6. Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells

    PubMed Central

    Hoang, Michael; Kim, Jeffrey J.; Kim, Yiyoung; Tong, Elizabeth; Trammell, Benjamin; Liu, Yao; Shi, Songtao; Lee, Chang-Ryul; Hong, Christine; Wang, Cun-Yu; Kim, Yong

    2016-01-01

    Epigenetic changes, such as alteration of DNA methylation patterns, have been proposed as a molecular mechanism underlying the effect of alcohol on the maintenance of adult stem cells. We have performed genome-wide gene expression microarray and DNA methylome analysis to identify molecular alterations via DNA methylation changes associated with exposure of human dental pulp stem cells (DPSCs) to ethanol (EtOH). By combined analysis of the gene expression and DNA methylation, we have found a significant number of genes that are potentially regulated by EtOH-induced DNA methylation. As a focused approach, we have also performed a pathway-focused RT-PCR array analysis to examine potential molecular effects of EtOH on genes involved in epigenetic chromatin modification enzymes, fibroblastic markers, and stress and toxicity pathways in DPSCs. We have identified and verified that lysine specific demethylase 6B (KDM6B) was significantly dysregulated in DPSCs upon EtOH exposure. EtOH treatment during odontogenic/osteogenic differentiation of DPSCs suppressed the induction of KDM6B with alterations in the expression of differentiation markers. Knockdown of KDM6B resulted in a marked decrease in mineralization from implanted DPSCs in vivo. Furthermore, an ectopic expression of KDM6B in EtOH-treated DPSCs restored the expression of differentiation-related genes. Our study has demonstrated that EtOH-induced inhibition of KDM6B plays a role in the dysregulation of odontogenic/osteogenic differentiation in the DPSC model. This suggests a potential molecular mechanism for cellular insults of heavy alcohol consumption that can lead to decreased mineral deposition potentially associated with abnormalities in dental development and also osteopenia/osteoporosis, hallmark features of fetal alcohol spectrum disorders. PMID:27286573

  7. Caste- and development-associated gene expression in a lower termite

    PubMed Central

    Scharf, Michael E; Wu-Scharf, Dancia; Pittendrigh, Barry R; Bennett, Gary W

    2003-01-01

    Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals. PMID:14519197

  8. Differentiation‐associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic‐metabolizing activity of “luminal” muscle‐invasive bladder cancers

    PubMed Central

    Arlt, Volker M.; Indra, Radek; Joel, Madeleine; Stiborová, Marie; Eardley, Ian; Ahmad, Niaz; Otto, Wolfgang; Burger, Maximilian; Rubenwolf, Peter; Phillips, David H.; Southgate, Jennifer

    2018-01-01

    Extra‐hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self‐defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro‐carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier‐forming differentiated states in vitro. However, ethoxyresorufin O‐deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP‐DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain‐of‐function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle‐invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into “luminal” and “basal” groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over‐expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1‐activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over‐expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP‐function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies. PMID:29323757

  9. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer.

    PubMed

    Adib, Samane; Valojerdi, Mojtaba Rezazadeh

    2017-10-01

    The ability of ovarian theca stem cells to differentiate into oocyte and theca cells may lead to a major advancement in reproductive biology and infertility treatments. However, there is little information about function, growth and differentiation potential of these immature cells. In this study adult sheep theca stem cells (TSCs) characteristics, and differentiation potential into osteocyte-like cells (OSLCs), adipocyte-like cells (ALCs), theca progenitor-like cells (TPCs), and oocyte-like cells (OLCs) were investigated. TSCs were isolated, cultured, and compared with mesenchymal stem cells (MSCs), fibroblast cells (FCs), and pluripotent embryonic ovarian cells (EO). Adherent TSCs were morphologically similar to FCs. Cell cycle analysis showed high proliferation capacity of TSCs. TSCs were positive for the mesenchymal cells surface markers, and also expressed POU5F1. Differentiation potential of TSCs into OSLCs and ALCs were confirmed by alizarin red and oil red staining respectively. OSTEOCALCIN and COL1 were expressed in OSLCs. ALCs were positive for PPARα and LPL. TPCs expressed theca specific genes (GLI2, GLI3, PTCH1, CYP17A1, 3β-HSD and LHR) and secreted testosterone, dehydroepiandrostenedione (DHEA), androstenedione, progesterone and estradiol. Lipid droplets in these steroid cells were viewed by oil red staining. OLCs expressed oocyte-specific marker genes including, ZP3, ZP2, GDF9, SYCP3, PRDM1, STELLA, FRAGILIS, DAZL, as well as POU5F1, and showed separated sphere structure. Our results indicated that TSCs derived from ovarian follicles contain MSCs and pluripotent stem cells (PSCs) that can be differentiated into lineages of mesenchymal origin and are capable of differentiation into TPCs and OLCs under in vitro conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Transcriptome study of differential expression in schizophrenia

    PubMed Central

    Sanders, Alan R.; Göring, Harald H. H.; Duan, Jubao; Drigalenko, Eugene I.; Moy, Winton; Freda, Jessica; He, Deli; Shi, Jianxin; Gejman, Pablo V.

    2013-01-01

    Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves’ disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia. PMID:23904455

  11. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    PubMed

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-09-29

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  12. Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells.

    PubMed

    Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschläger, Markus

    2006-07-15

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.

  13. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    PubMed

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  14. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    PubMed

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.

  15. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn; Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072; Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibitedmore » a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.« less

  16. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation.

    PubMed

    Ding, Ke; Liu, Wen-Ying; Zeng, Qiang; Hou, Fang; Xu, Jian-Zhong; Yang, Zhong

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis

    PubMed Central

    Yang, Fang; Wang, Yumei

    2018-01-01

    Sepsis is a type of systemic inflammatory response syndrome with high morbidity and mortality. Skeletal muscle dysfunction is one of the major complications of sepsis that may also influence the outcome of sepsis. The aim of the present study was to explore and identify potential mechanisms and therapeutic targets of sepsis. Systemic bioinformatics analysis of skeletal muscle gene expression profiles from the Gene Expression Omnibus was performed. Differentially expressed genes (DEGs) in samples from patients with sepsis and control samples were screened out using the limma package. Differential co-expression and coregulation (DCE and DCR, respectively) analysis was performed based on the Differential Co-expression Analysis package to identify differences in gene co-expression and coregulation patterns between the control and sepsis groups. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of DEGs were identified using the Database for Annotation, Visualization and Integrated Discovery, and inflammatory, cancer and skeletal muscle development-associated biological processes and pathways were identified. DCE and DCR analysis revealed several potential therapeutic targets for sepsis, including genes and transcription factors. The results of the present study may provide a basis for the development of novel therapeutic targets and treatment methods for sepsis. PMID:29805480

  18. Network-based expression analyses and experimental validations revealed high co-expression between Yap1 and stem cell markers compared to differentiated cells.

    PubMed

    Dehghanian, Fariba; Hojati, Zohreh; Esmaeili, Fariba; Masoudi-Nejad, Ali

    2018-05-21

    The Hippo signaling pathway is identified as a potential regulatory pathway which plays critical roles in differentiation and stem cell self-renewal. Yap1 is a primary transcriptional effector of this pathway. The importance of Yap1 in embryonic stem cells (ESCs) and differentiation procedure remains a challenging question, since two different observations have been reported. To answer this question we used co-expression network and differential co-expression analyses followed by experimental validations. Our results indicate that Yap1 is highly co-expressed with stem cell markers in ESCs but not in differentiated cells (DCs). The significant Yap1 down-regulation and also translocation of Yap1 into the cytoplasm during P19 differentiation was also detected. Moreover, our results suggest the E2f7, Lin28a and Dppa4 genes as possible regulatory nuclear factors of Hippo pathway in stem cells. The present findings are actively consistent with studies that suggested Yap1 as an essential factor for stem cell self-renewal. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Influence of 1α, 25-dihydroxyvitamin D3 [1, 25(OH)2D3] on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes.

    PubMed

    Hdud, Ismail M; Loughna, Paul T

    2014-01-01

    Sox 9 is a major marker of chondrocyte differentiation. When chondrocytes are cultured in vitro they progressively de-differentiate and this is associated with a decline in Sox 9 expression. The active form of vitamin D, 1, 25 (OH)2D3 has been shown to be protective of cartilage in both humans and animals. In this study equine articular chondrocytes were grown in culture and the effects of 1, 25 (OH)2D3 upon Sox 9 expression examined. The expression of the transient receptor potential vanilloid (TRPV) ion channels 5 and 6 in equine chondrocytes in vitro, we have previously shown, is inversely correlated with de-differentiation. The expression of these channels in response to 1, 25 (OH)2D3 administration was therefore also examined. The active form of vitamin D (1, 25 (OH)2D3) when administered to cultured equine chondrocytes at two different concentrations significantly increased the expression of Sox 9 at both. In contrast 1, 25 (OH)2D3 had no significant effect upon the expression of either TRPV 5 or 6 at either the protein or the mRNA level. The increased expression of Sox 9, in equine articular chondrocytes in vitro, in response to the active form of vitamin D suggests that this compound could be utilized to inhibit the progressive de-differentiation that is normally observed in these cells. It is also supportive of previous studies indicating that 1α, 25-dihydroxyvitamin D3 can have a protective effect upon cartilage in animals in vivo. The previously observed correlation between the degree of differentiation and the expression levels of TRPV 5/6 had suggested that these ion channels may have a direct involvement in, or be modulated by, the differentiation process in vitro. The data in the present study do not support this.

  20. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor-Associated Genes in PDLSCs.

    PubMed

    Abd Rahman, Fazliny; Mohd Ali, Johari; Abdullah, Mariam; Abu Kasim, Noor Hayaty; Musa, Sabri

    2016-07-01

    This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs). Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay. ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35). ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.

  1. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor

    PubMed Central

    Hwang, Se Hwan; Cho, Hye Kyung; Park, Sang Hi; Lee, WeonSun; Lee, Hee Jin; Lee, Dong Chang; Park, Sun Hwa; Lim, Mi Hyun; Back, Sang A; Yun, Byeong Gon; Sun, Dong Il

    2015-01-01

    The characteristics of mesenchymal stem cells (MSCs) derived from human turbinates (hTMSCs) have not been investigated in allergic rhinitis. We evaluated the influence of allergic state of the donor on the characteristics, proliferation, and differentiation potential of hTMSCs, compared with hTMSCs derived from non-allergic patients. hTMSCs were isolated from five non-allergic and five allergic patients. The expression of toll-like receptors (TLRs) in hTMSCs was measured by FACS, and cell proliferation was measured using a cell counting kit. Cytokine secretion was analyzed using multiplex immunoassays. The osteogenic, chondrogenic, and adipogenic differentiation potentials of hTMSCs were evaluated by histology and gene expression analysis. In allergic patients, FACS analysis showed that TLR3 and TLR4 were more highly expressed on the surface of hTMSCs than TLR2 and TLR5. The proliferation of hTMSCs was not influenced by the presence of TLR priming. The expression of IL-6, IL-8, IL-12, IP-10, and RANTES was upregulated after the TLR4 priming. The differentiation potential of hTMSCs was not influenced by TLR priming. These characteristics of hTMSCs were similar to those of hTMSCs from non-allergic patients. We conclude that the allergic condition of the donor does not influence TLR expression, proliferation, or immunomodulatory potential of hTMSCs. PMID:26376485

  2. Priming integrin α5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis

    PubMed Central

    Hamidouche, Zahia; Fromigué, Olivia; Ringe, Jochen; Häupl, Thomas; Vaudin, Pascal; Pagès, Jean-Christophe; Srouji, Samer; Livne, Erella; Marie, Pierre J.

    2009-01-01

    Adult human mesenchymal stromal cells (hMSCs) have the potential to differentiate into chondrogenic, adipogenic, or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptome analysis, we found that integrin α5 (ITGA5) expression is up-regulated during dexamethasone-induced osteoblast differentiation of hMSCs. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers and in vitro osteogenesis of hMSCs. Down-regulation of endogenous ITGA5 using specific shRNAs blunted osteoblast marker gene expression and osteogenic differentiation. Molecular analyses showed that the enhanced osteoblast differentiation induced by ITGA5 was mediated by activation of focal adhesion kinase/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of endogenous ITGA5 using agonists such as a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. Importantly, we demonstrated that hMSCs engineered to overexpress ITGA5 exhibited a marked increase in their osteogenic potential in vivo. Taken together, these findings not only reveal that ITGA5 is required for osteoblast differentiation of adult hMSCs but also provide a targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs. This may be used for tissue regeneration in bone disorders where the recruitment or capacity of hMSCs is compromised. PMID:19843692

  3. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis.

    PubMed

    Hamidouche, Zahia; Fromigué, Olivia; Ringe, Jochen; Häupl, Thomas; Vaudin, Pascal; Pagès, Jean-Christophe; Srouji, Samer; Livne, Erella; Marie, Pierre J

    2009-11-03

    Adult human mesenchymal stromal cells (hMSCs) have the potential to differentiate into chondrogenic, adipogenic, or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptome analysis, we found that integrin alpha5 (ITGA5) expression is up-regulated during dexamethasone-induced osteoblast differentiation of hMSCs. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers and in vitro osteogenesis of hMSCs. Down-regulation of endogenous ITGA5 using specific shRNAs blunted osteoblast marker gene expression and osteogenic differentiation. Molecular analyses showed that the enhanced osteoblast differentiation induced by ITGA5 was mediated by activation of focal adhesion kinase/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of endogenous ITGA5 using agonists such as a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. Importantly, we demonstrated that hMSCs engineered to overexpress ITGA5 exhibited a marked increase in their osteogenic potential in vivo. Taken together, these findings not only reveal that ITGA5 is required for osteoblast differentiation of adult hMSCs but also provide a targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs. This may be used for tissue regeneration in bone disorders where the recruitment or capacity of hMSCs is compromised.

  4. LIN28A enhances the therapeutic potential of cultured neural stem cells in a Parkinson's disease model.

    PubMed

    Rhee, Yong-Hee; Kim, Tae-Ho; Jo, A-Young; Chang, Mi-Yoon; Park, Chang-Hwan; Kim, Sang-Mi; Song, Jae-Jin; Oh, Sang-Min; Yi, Sang-Hoon; Kim, Hyeon Ho; You, Bo-Hyun; Nam, Jin-Wu; Lee, Sang-Hun

    2016-10-01

    The original properties of tissue-specific stem cells, regardless of their tissue origins, are inevitably altered during in vitro culturing, lessening the clinical and research utility of stem cell cultures. Specifically, neural stem cells derived from the ventral midbrain lose their dopamine neurogenic potential, ventral midbrain-specific phenotypes, and repair capacity during in vitro cell expansion, all of which are critical concerns in using the cultured neural stem cells in therapeutic approaches for Parkinson's disease. In this study, we observed that the culture-dependent changes of neural stem cells derived from the ventral midbrain coincided with loss of RNA-binding protein LIN28A expression. When LIN28A expression was forced and sustained during neural stem cell expansion using an inducible expression-vector system, loss of dopamine neurogenic potential and midbrain phenotypes after long-term culturing was blocked. Furthermore, dopamine neurons that differentiated from neural stem cells exhibited remarkable survival and resistance against toxic insults. The observed effects were not due to a direct action of LIN28A on the differentiated dopamine neurons, but rather its action on precursor neural stem cells as exogene expression was switched off in the differentiating/differentiated cultures. Remarkable and reproducible behavioural recovery was shown in all Parkinson's disease rats grafted with neural stem cells expanded with LIN28A expression, along with extensive engraftment of dopamine neurons expressing mature neuronal and midbrain-specific markers. These findings suggest that LIN28A expression during stem cell expansion could be used to prepare therapeutically competent donor cells. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Viral MicroRNAs Identified in Human Dental Pulp.

    PubMed

    Zhong, Sheng; Naqvi, Afsar; Bair, Eric; Nares, Salvador; Khan, Asma A

    2017-01-01

    MicroRNAs (miRs) are a family of noncoding RNAs that regulate gene expression. They are ubiquitous among multicellular eukaryotes and are also encoded by some viruses. Upon infection, viral miRs (vmiRs) can potentially target gene expression in the host and alter the immune response. Although prior studies have reported viral infections in human pulp, the role of vmiRs in pulpal disease is yet to be explored. The purpose of this study was to examine the expression of vmiRs in normal and diseased pulps and to identify potential target genes. Total RNA was extracted and quantified from normal and inflamed human pulps (N = 28). Expression profiles of vmiRs were then interrogated using miRNA microarrays (V3) and the miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Santa Clara, CA). To identify vmiRs that were differentially expressed, we applied a permutation test. Of the 12 vmiRs detected in the pulp, 4 vmiRs (including those from herpesvirus and human cytomegalovirus) were differentially expressed in inflamed pulp compared with normal pulp (P < .05). Using bioinformatics, we identified potential target genes for the differentially expressed vmiRs. They included key mediators involved in the detection of microbial ligands, chemotaxis, proteolysis, cytokines, and signal transduction molecules. These data suggest that miRs may play a role in interspecies regulation of pulpal health and disease. Further research is needed to elucidate the mechanisms by which vmiRs can potentially modulate the host response in pulpal disease. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Human embryonic stem cell-derived neural crest cells capable of expressing markers of osteochondral or meningeal-choroid plexus differentiation.

    PubMed

    Sternberg, Hal; Jiang, Jianjie; Sim, Pamela; Kidd, Jennifer; Janus, Jeffrey; Rinon, Ariel; Edgar, Ron; Shitrit, Alina; Larocca, David; Chapman, Karen B; Binette, Francois; West, Michael D

    2014-01-01

    The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.

  7. Unraveling the oral cancer lncRNAome: Identification of novel lncRNAs associated with malignant progression and HPV infection.

    PubMed

    Nohata, Nijiro; Abba, Martin C; Gutkind, J Silvio

    2016-08-01

    The role of long non-coding RNA (lncRNA) expression in human head and neck squamous cell carcinoma (HNSCC) is still poorly understood. In this study, we aimed at establishing the onco-lncRNAome profiling of HNSCC and to identify lncRNAs correlating with prognosis and patient survival. The Atlas of Noncoding RNAs in Cancer (TANRIC) database was employed to retrieve the lncRNA expression information generated from The Cancer Genome Atlas (TCGA) HNSCC RNA-sequencing data. RNA-sequencing data from HNSCC cell lines were also considered for this study. Bioinformatics approaches, such as differential gene expression analysis, survival analysis, principal component analysis, and Co-LncRNA enrichment analysis were performed. Using TCGA HNSCC RNA-sequencing data from 426 HNSCC and 42 adjacent normal tissues, we found 728 lncRNA transcripts significantly and differentially expressed in HNSCC. Among the 728 lncRNAs, 55 lncRNAs were significantly associated with poor prognosis, such as overall survival and/or disease-free survival. Next, we found 140 lncRNA transcripts significantly and differentially expressed between Human Papilloma Virus (HPV) positive tumors and HPV negative tumors. Thirty lncRNA transcripts were differentially expressed between TP53 mutated and TP53 wild type tumors. Co-LncRNA analysis suggested that protein-coding genes that are co-expressed with these deregulated lncRNAs might be involved in cancer associated molecular events. With consideration of differential expression of lncRNAs in a HNSCC cell lines panel (n=22), we found several lncRNAs that may represent potential targets for diagnosis, therapy and prevention of HNSCC. LncRNAs profiling could provide novel insights into the potential mechanisms of HNSCC oncogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Unraveling the Oral Cancer lncRNAome: Identification of Novel lncRNAs Associated with Malignant Progression and HPV Infection

    PubMed Central

    Nohata, Nijiro; Abba, Martin C.; Gutkind, J. Silvio

    2017-01-01

    Objectives The role of long non-coding RNA (lncRNA) expression in human head and neck squamous cell carcinoma (HNSCC) is still poorly understood. In this study, we aimed at establishing the onco-lncRNAome profiling of HNSCC and to identify lncRNAs correlating with prognosis and patient survival. Materials and Methods The Atlas of Noncoding RNAs in Cancer (TANRIC) database was employed to retrieve the lncRNA expression information generated from The Cancer Genome Atlas (TCGA) HNSCC RNA-sequencing data. RNA-sequencing data from HNSCC cell lines were also considered for this study. Bioinformatics approaches, such as differential gene expression analysis, survival analysis, principal component analysis, and Co-LncRNA enrichment analysis were performed. Results Using TCGA HNSCC RNA-sequencing data from 426 HNSCC and 42 adjacent normal tissues, we found 728 lncRNA transcripts significantly and differentially expressed in HNSCC. Among the 728 lncRNAs, 55 lncRNAs were significantly associated with poor prognosis, such as overall survival and/or disease-free survival. Next, we found 140 lncRNA transcripts significantly and differentially expressed between Human Papilloma Virus (HPV) positive tumors and HPV negative tumors. Thirty lncRNA transcripts were differentially expressed between TP53 mutated and TP53 wild type tumors. Co-LncRNA analysis suggested that protein-coding genes that are co-expressed with these deregulated lncRNAs might be involved in cancer associated molecular events. With consideration of differential expression of lncRNAs in a HNSCC cell lines panel (n=22), we found several lncRNAs that may represent potential targets for diagnosis, therapy and prevention of HNSCC. Conclusion LncRNAs profiling could provide novel insights into the potential mechanisms of HNSCC oncogenesis. PMID:27424183

  9. Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

    PubMed Central

    Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893

  10. HOXA9 is critical in the proliferation, differentiation, and malignancy of leukaemia cells both in vitro and in vivo.

    PubMed

    Chen, Shibing; Yu, Juan; Lv, Xin; Zhang, Lijuan

    2017-10-01

    Progress in the understanding of the molecular mechanism for acute myeloid leukaemia is of great significance to generate new potential targets for treatment. Recent studies showed that HOXA9, a homeodomain-containing transcription factor, is commonly deregulated in acute leukaemia. In this study, we elucidated the direct correlation between HoxA9 expression and progression of leukaemia using 2 different types of leukaemia cells HL-60 and MOLT-3. The HoxA9 expression level was decreased in leukaemia cells with the treatment of all-trans retinoic acid or arsenic trioxide (As 2 O 3 ). Downregulation of HoxA9 could impair the proliferation and promote the leukaemia cell death. HoxA9 silencing also potentiated the differentiation of leukaemia cells, and in vivo studies demonstrated that HoxA9 downregulation could interfere the tumour growth. Interestingly, HoxA9 silencing also led to the alteration in miRNA expression, mediating the promoting effect on the leukaemia cell differentiation. Therefore, this work provided a promising and potentially efficient target to leukaemia treatment, indicating that HoxA9 is likely to be an ideal candidate in the gene therapy against acute myeloid leukaemia. In this study, we elucidated the critical role of HoxA9 in the proliferation and differentiation of leukaemia cells both in vitro and in vivo. The effect of HoxA9 modulation was correlated with the clinical effect of all-trans retinoic acid and As 2 O 3 . Furthermore, HoxA9 also regulated the miRNA expression, controlling the leukaemia cell differentiation. Therefore, this work provided new insights into molecular mechanism underlying the leukaemia treatment, potentially putting forward a brand new target to the gene therapy against leukaemia. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2010-07-01

    We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.

  12. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential

    PubMed Central

    Han, Juhee; Mistriotis, Panagiotis; Lei, Pedro; Wang, Dan; Liu, Song; Andreadis, Stelios T.

    2012-01-01

    Although the therapeutic potential of mesenchymal stem cells (MSC) is widely accepted, loss of cell function due to donor aging or culture senescence are major limiting factors hampering their clinical application. Our laboratory recently showed that MSC originating from older donors suffer from limited proliferative capacity and significantly reduced myogenic differentiation potential. This is a major concern, as the patients most likely to suffer from cardiovascular disease are elderly. Here we tested the hypothesis that a single pluripotency associated transcription factor, namely Nanog, may reverse the proliferation and differentiation potential of BM-MSC from adult donors. Microarray analysis showed that adult (a)BM-MSC expressing Nanog clustered close to Nanog-expressing neonatal cells. Nanog markedly upregulated genes involved in cell cycle, DNA replication and DNA damage repair and enhanced the proliferation rate and clonogenic capacity of aBM-MSC. Notably, Nanog reversed the myogenic differentiation potential and restored the contractile function of aBM-MSC to a similar level as that of neonatal (n)BM-MSC. The effect of Nanog on contractility was mediated – at least in part - through activation of the TGF-β pathway by diffusible factors secreted in the conditioned medium of Nanog-expressing BM-MSC. Overall, our results suggest that Nanog may be used to overcome the effects of organismal aging on aBM-MSC, thereby increasing the potential of MSC from aged donors for cellular therapy and tissue regeneration. PMID:22949105

  13. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  14. Proteome and Transcriptome Analysis of Ovary, Intersex Gonads, and Testis Reveals Potential Key Sex Reversal/Differentiation Genes and Mechanism in Scallop Chlamys nobilis.

    PubMed

    Shi, Yu; Liu, Wenguang; He, Maoxian

    2018-04-01

    Bivalve mollusks exhibit hermaphroditism and sex reversal/differentiation. Studies generally focus on transcriptional profiling and specific genes related to sex determination and differentiation. Few studies on sex reversal/differentiation have been reported. A combination analysis of gonad proteomics and transcriptomics was conducted on Chlamys nobilis to provide a systematic understanding of sex reversal/differentiation in bivalves. We obtained 4258 unique peptides and 93,731 unigenes with good correlation between messenger RNA and protein levels. Candidate genes in sex reversal/differentiation were found: 15 genes differentially expressed between sexes were identified and 12 had obvious sexual functions. Three novel genes (foxl2, β-catenin, and sry) were expressed highly in intersex individuals and were likely involved in the control of gonadal sex in C. nobilis. High expression of foxl2 or β-catenin may inhibit sry and activate 5-HT receptor and vitellogenin to maintain female development. High expression of sry may inhibit foxl2 and β-catenin and activate dmrt2, fem-1, sfp2, sa6, Amy-1, APCP4, and PLK to maintain male function. High expression of sry, foxl2, and β-catenin in C. nobilis may be involved in promoting and maintaining sex reversal/differentiation. The downstream regulator may not be dimorphic expressed genes, but genes expressed in intersex individuals, males and females. Different expression patterns of sex-related genes and gonadal histological characteristics suggested that C. nobilis may change its sex from male to female. These findings suggest highly conserved sex reversal/differentiation with diverged regulatory pathways during C. nobilis evolution. This study provides valuable genetic resources for understanding sex reversal/differentiation (intersex) mechanisms and pathways underlying bivalve reproductive regulation.

  15. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.

    PubMed

    Reich, Christine M; Raabe, Oksana; Wenisch, Sabine; Bridger, Philip S; Kramer, Martin; Arnhold, Stefan

    2012-06-01

    In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.

  16. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor.

    PubMed

    Bae, Sung Hae; Ryu, Hoon; Rhee, Ki-Jong; Oh, Ji-Eun; Baik, Soon Koo; Shim, Kwang Yong; Kong, Jee Hyun; Hyun, Shin Young; Pack, Hyun Sung; Im, Changjo; Shin, Ha Cheol; Kim, Yong Man; Kim, Hyun Soo; Eom, Young Woo; Lee, Jong In

    2015-04-01

    l-ascorbic acid 2-phosphate (Asc-2P) acts as an antioxidant and a stimulator of hepatocyte growth factor (HGF) production. Previously, we reported that depletion of growth factors such as fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), FGF-4 and HGF during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF). In this study, we investigated the proliferation and differentiation potential of BMSCs by FGF-2 and Asc-2P. Co-treatment with FGF-2 and Asc-2P induced optimal proliferation of BMSCs and increased the accumulation rate of BMSC numbers during a 2-month culture period. Moreover, differentiation potential was maintained by co-treatment with FGF-2 and Asc-2P via HGF expression. Adipogenic differentiation potential by FGF-2 and Asc-2P was dramatically suppressed by c-Met inhibitors (SU11274). These data suggest that co-treatment with FGF-2 and Asc-2P would be beneficial in obtaining BMSCs that possess "stemness" during long-term culture.

  17. Hepatocyte nuclear factor-4alpha induces transdifferentiation of hematopoietic cells into hepatocytes.

    PubMed

    Khurana, Satish; Jaiswal, Amit K; Mukhopadhyay, Asok

    2010-02-12

    Hematopoietic stem cells can directly transdifferentiate into hepatocytes because of cellular plasticity, but the molecular basis of transdifferentiation is not known. Here, we show the molecular basis using lineage-depleted oncostatin M receptor beta-expressing (Lin(-)OSMRbeta(+)) mouse bone marrow cells in a hepatic differentiation culture system. Differentiation of the cells was marked by the expression of albumin. Hepatocyte nuclear factor (HNF)-4alpha was expressed and translocated into the nuclei of the differentiating cells. Suppression of its activation in OSM-neutralized culture medium inhibited cellular differentiation. Ectopic expression of full-length HNF4alpha in 32D myeloid cells resulted in decreased myeloid colony-forming potential and increased expression of hepatocyte-specific genes and proteins. Nevertheless, the neohepatocytes produced in culture expressed active P450 enzyme. The obligatory role of HNF4alpha in hepatic differentiation was confirmed by transfecting Lin(-)OSMRbeta(+) cells with dominant negative HNF4alpha in the differentiation culture because its expression inhibited the transcription of the albumin and tyrosine aminotransferase genes. The loss and gain of functional activities strongly suggested that HNF4alpha plays a central role in the transdifferentiation process. For the first time, this report demonstrates the mechanism of transdifferentiation of hematopoietic cells into hepatocytes, in which HNF4alpha serves as a molecular switch.

  18. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method.

    PubMed

    Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H

    2014-05-01

    We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    PubMed

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Endothelium trans differentiated from Wharton's jelly mesenchymal cells promote tissue regeneration: potential role of soluble pro-angiogenic factors.

    PubMed

    Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio

    2014-01-01

    Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.

  1. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells

    PubMed Central

    Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi

    2013-01-01

    Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily) PMID:24639722

  2. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  3. Transcriptomic profile adaptations following exposure of equine satellite cells to nutriactive phytochemical gamma-oryzanol.

    PubMed

    Szcześniak, K A; Ciecierska, A; Ostaszewski, P; Sadkowski, T

    2016-01-01

    Adult skeletal muscle myogenesis depends on the activation of satellite cells that have the potential to differentiate into new fibers. Gamma-oryzanol (GO), a commercially available nutriactive phytochemical, has gained global interest on account of its muscle-building and regenerating effects. Here, we investigated GO for its potential influence on myogenesis, using equine satellite cell culture model, since the horse is a unique animal, bred and exercised for competitive sport. To our knowledge, this is the first report where the global gene expression in cultured equine satellite cells has been described. Equine satellite cells were isolated from semitendinosus muscle and cultured until the second day of differentiation. Differentiating cells were incubated with GO for the next 24 h. Subsequently, total RNA from GO-treated and control cells was isolated, amplified, labeled, and hybridized to two-color Horse Gene Expression Microarray slides. Quantitative PCR was used for the validation of microarray data. Our results revealed 58 genes with changed expression in GO-treated vs. control cells. Analysis of expression changes suggests that various processes are reinforced by GO in differentiating equine satellite cells, including inhibition of myoblast differentiation, increased proliferation and differentiation, stress response, and increased myogenic lineage commitment. The present study may confirm putative muscle-enhancing abilities of GO; however, the collective role of GO in skeletal myogenesis remains equivocal. The diversity of these changes is likely due to heterogenous growth rate of cells in primary culture. Genes identified in our study, modulated by the presence of GO, may become potential targets of future research investigating impact of this supplement in skeletal muscle on proteomic and biochemical level.

  4. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson's disease.

    PubMed

    Hsieh, Wen-Ting; Chiang, Been-Huang

    2014-07-09

    Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.

  5. Correlation between Urothelial Differentiation and Sensory Proteins P2X3, P2X5, TRPV1, and TRPV4 in Normal Urothelium and Papillary Carcinoma of Human Bladder

    PubMed Central

    Sterle, Igor; Zupančič, Daša; Romih, Rok

    2014-01-01

    Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns. PMID:24868547

  6. Correlation between urothelial differentiation and sensory proteins P2X3, P2X5, TRPV1, and TRPV4 in normal urothelium and papillary carcinoma of human bladder.

    PubMed

    Sterle, Igor; Zupančič, Daša; Romih, Rok

    2014-01-01

    Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.

  7. Identification of differentially expressed genes in childhood asthma.

    PubMed

    Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen

    2018-05-01

    Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.

  8. Biological and molecular characterization of cellular differentiation in Tetrahymena vorax: a potential biocontrol protozoan.

    PubMed

    Green, M M; LeBoeuf, R D; Churchill, P F

    2000-01-01

    Tetrahymena vorax (T. vorax) is an indigenous fresh water protozoan with the natural biological potential to maintain a specific aquatic microbial flora by ingesting and eliminating specific microorganism. To investigate the molecular mechanisms controlling Tetrahymena vorax (T. vorax) cellular differentiation from a small-mouth vegetative cell to a voracious large-mouth carnivore capable of ingesting prey ciliates and bacteria from aquatic environments, we use DNA subtraction and gene discovery techniques to identify and isolate T. vorax differentiation-specific genes. The physiological necessity for one newly discovered gene, SUBII-TG, was determined in vivo using an antisense oligonucleotide directed against the 5' SUBII-TG DNA sequence. The barriers to delivering antisense oligonucleotides to the cytoplasm of T. vorax were circumvented by employing a new but simple procedure of processing the oligonucleotide with the differentiation stimulus, stomatin. In these studies, the antisense oligonucleotide down-regulated SUBII-TG mRNA expression, and blocked differentiation and ingestion of prey ciliates. The ability to down-regulate SUBII-TG expression with the antisense oligonucleotide suggests that the molecular mechanisms controlling the natural biological activities of T. vorax can be manipulated to further study its cellular differentiation and potential as a biocontrol microorganism.

  9. Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues.

    PubMed

    Do, Jeong Tae; Choi, Hyun Woo; Choi, Youngsok; Schöler, Hans R

    2011-06-01

    The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.

  10. Residual Expression of the Reprogramming Factors Prevents Differentiation of iPSC Generated from Human Fibroblasts and Cord Blood CD34+ Progenitors

    PubMed Central

    Ramos-Mejía, Verónica; Montes, Rosa; Bueno, Clara; Ayllón, Verónica; Real, Pedro J.; Rodríguez, René; Menendez, Pablo

    2012-01-01

    Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation. PMID:22545141

  11. Characteristics of mesenchymal stem cells isolated from bone marrow of giant panda.

    PubMed

    Liu, Yuliang; Liu, Yang; Yie, Shangmian; Lan, Jingchao; Pi, Jinkui; Zhang, Zhihe; Huang, He; Cai, Zhigang; Zhang, Ming; Cai, Kailai; Wang, Hairui; Hou, Rong

    2013-09-01

    In present study, we report on bone marrow (BM) mesenchymal stem cells (MSCs) that are isolated from giant pandas. Cells were collected from the BM of two stillborn giant pandas. The cells were cultured and expanded in 10% fetal bovine serum medium. Cell morphology was observed under an inverted microscopy, and the proliferation potential of the cells was evaluated by counting cell numbers for eight consecutive days. Differentiation potentials of the cells were determined by using a variety of differentiation protocols for osteocytes, adipocytes, neuron cells, and cardiomyocytes. Meanwhile, the specific gene expressions for MSCs or differentiated cells were analyzed by RT-PCR. The isolated cells exhibited a fibroblast-like morphology; expressed mesenchymal specific markers such as cluster of differentiation 73 (CD73), SRY (sex determining region Y)-box 2 (SOX-2), guanine nucleotide-binding protein-like 3 (GNL3), and stem cell factor receptor (SCFR); and could be differentiated into osteocytes and adipocytes that were characterized by Alizarin Red and Oil Red O staining. Under appropriate induction conditions, these cells were also able to differentiate into neuroglial-like or myocardial-like cells that expressed specific myocardial markers such as GATA transcription factors 4 (GATA-4), cardiac troponin T (cTnT), and myosin heavy chain 7B (MYH7B), or neural specific markers such as Nestin and glial fibrillary acidic protein (GFAP). This study demonstrated stem cells recovery and growth from giant pandas. The findings suggest that cells isolated from the BM of giant pandas have a high proliferative capacity and multiple differentiation potential in vitro which might aid conservation efforts.

  12. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation

    PubMed Central

    Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro

    2011-01-01

    Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809

  13. Altered expression of four miRNA (miR-1238-3p, miR-202-3p, miR-630 and miR-766-3p) and their potential targets in peripheral blood from vitiligo patients.

    PubMed

    Shang, Zhiwei; Li, Hongwen

    2017-10-01

    Vitiligo is an acquired skin disease with pigmentary disorder. Autoimmune destruction of melanocytes is thought to be major factor in the etiology of vitiligo. miRNA-based regulators of gene expression have been reported to play crucial roles in autoimmune disease. Therefore, we attempt to profile the miRNA expressions and predict their potential targets, assessing the biological functions of differentially expressed miRNA. Total RNA was extracted from peripheral blood of vitiligo (experimental group, n = 5) and non-vitiligo (control group, n = 5) age-matched patients. Samples were hybridized to a miRNA array. Box, scatter and principal component analysis plots were performed, followed by unsupervised hierarchical clustering analysis to classify the samples. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was conducted for validation of microarray data. Three different databases, TargetScan, PITA and microRNA.org, were used to predict the potential target genes. Gene ontology (GO) annotation and pathway analysis were performed to assess the potential functions of predicted genes of identified miRNA. A total of 100 (29 upregulated and 71 downregulated) miRNA were filtered by volcano plot analysis. Four miRNA were validated by quantitative RT-PCR as significantly downregulated in the vitiligo group. The functions of predicted target genes associated with differentially expressed miRNA were assessed by GO analysis, showing that the GO term with most significantly enriched target genes was axon guidance, and that the axon guidance pathway was most significantly correlated with these miRNA. In conclusion, we identified four downregulated miRNA in vitiligo and assessed the potential functions of target genes related to these differentially expressed miRNA. © 2017 Japanese Dermatological Association.

  14. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity.

  15. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prouillac, Caroline, E-mail: c.prouillac@vetagro-sup.fr; Koraichi, Farah; Videmann, Bernadette

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as amore » potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.« less

  16. Hepatic differentiation potential of commercially available human mesenchymal stem cells.

    PubMed

    Ong, Shin-Yeu; Dai, Hui; Leong, Kam W

    2006-12-01

    The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.

  17. Differentially-Expressed Pseudogenes in HIV-1 Infection

    PubMed Central

    Gupta, Aditi; Brown, C. Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-01-01

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these “functional” pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit. PMID:26426037

  18. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Oh, Ji-Eun; Lee, Jong In

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, thesemore » secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF) through suppression of AKT and ERK signaling.« less

  19. SVEP1 is a novel marker of activated pre-determined skeletal muscle satellite cells.

    PubMed

    Shefer, Gabi; Benayahu, Dafna

    2010-03-01

    In this study we explored the expression pattern of SVEP1, a novel cell adhesion molecule (CAM), in bona fide satellite cells and their immediate progeny. We show that SVEP1 is expressed in activated satellite cells prior to their determination to the myogenic lineage. SVEP1 was also expressed during early phases of myogenic differentiation through the initial stage of myoblast fusion and myotube formation. The expression of SVEP1 was shown by immunostaining two cell culture systems: freshly isolated myofibers and primary myoblasts. Pax7 was used to pinpoint satellite cells situated in their niche on myofibers, and activated satellite cells were determined based on BrdU incorporation (Pax7(+)/BrdU(+)cells). MyoD marked satellite cells fated to undergo myogenesis as well as proliferating and differentiating myoblasts. Differentiating myoblasts and myotubes were identified based on their sarcomeric myosin expression. We showed that SVEP1 was specifically expressed in pre-determined activated satellite cells (Pax7(+)/ BrdU(+) /MyoD(-)) accounting for about 24% of total satellite cells. On the other hand, SVEP1 expression was absent in quiescent satellite cells (Pax7(+)/BrdU(-)/MyoD(-)). Moreover, based on MyoD/sarcomeric myosin co-expression SVEP1 was shown to be expressed throughout the early phases of myogenesis up until myoblast fusion and myotube formation. A decline in SVEP1 expression occurred upon myotube maturation. We suggest SVEP1 as a potential biomarker for pre-fated satellite cells. The impact of this finding is that it may allow scrutinizing signals that affect differentiation commitment. Thus, holds a therapeutic potential for maladies that involve deregulated stem cell fate-decision.

  20. Identification of differential pathways in papillary thyroid carcinoma utilizing pathway co-expression analysis.

    PubMed

    Qiu, Wei-Hai; Chen, Gui-Yan; Cui, Lu; Zhang, Ting-Ming; Wei, Feng; Yang, Yong

    2016-01-01

    To identify differential pathways between papillary thyroid carcinoma (PTC) patients and normal controls utilizing a novel method which combined pathway with co-expression network. The proposed method included three steps. In the first step, we conducted pretreatments for background pathways and gained representative pathways in PTC. Subsequently, a co-expression network for representative pathways was constructed using empirical Bayes (EB) approach to assign a weight value for each pathway. Finally, random model was extracted to set the thresholds of identifying differential pathways. We obtained 1267 representative pathways and their weight values based on the co-expressed pathway network, and then by meeting the criterion (Weight > 0.0296), 87 differential pathways in total across PTC patients and normal controls were identified. The top three ranked differential pathways were CREB phosphorylation, attachment of GPI anchor to urokinase plasminogen activator receptor (uPAR) and loss of function of SMAD2/3 in cancer. In conclusion, we successfully identified differential pathways (such as CREB phosphorylation, attachment of GPI anchor to uPAR and post-translational modification: synthesis of GPI-anchored proteins) for PTC using the proposed pathway co-expression method, and these pathways might be potential biomarkers for target therapy and detection of PTC.

  1. Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    PubMed Central

    Everett, Peter; Clish, Clary B.; Sukhatme, Vikas P.

    2010-01-01

    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy. PMID:20824065

  2. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    PubMed

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  3. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    PubMed Central

    Abdel-Rahman, Engy A.; Reda, Asmaa M.; Ashamallah, Sylvia A.; Ismail, Amani M.; Ismail, Hossam El-Din A.; El-Badri, Nagwa

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine. PMID:28584815

  4. A microarray analysis of potential genes underlying the neurosensitivity of mice to propofol.

    PubMed

    Lowes, Damon A; Galley, Helen F; Lowe, Peter R; Rikke, Brad A; Johnson, Thomas E; Webster, Nigel R

    2005-09-01

    Establishing the mechanism of action of general anesthetics at the molecular level is difficult because of the multiple targets with which these drugs are associated. Inbred short sleep (ISS) and long sleep (ILS) mice are differentially sensitive in response to ethanol and other sedative hypnotics and contain a single quantitative trait locus (Lorp1) that accounts for the genetic variance of loss-of-righting reflex in response to propofol (LORP). In this study, we used high-density oligonucleotide microarrays to identify global gene expression and candidate genes differentially expressed within the Lorp1 region that may give insight into the molecular mechanism underlying LORP. Microarray analysis was performed using Affymetrix MG-U74Av2 Genechips and a selection of differentially expressed genes was confirmed by semiquantitative reverse transcription-polymerase chain reaction. Global expression in the brains of ILS and ISS mice revealed 3423 genes that were significantly expressed, of which 139 (4%) were differentially expressed. Analysis of genes located within the Lorp1 region showed that 26 genes were significantly expressed and that just 2 genes (7%) were differentially expressed. These genes encoded for the proteins AWP1 (associated with protein kinase 1) and "BTB (POZ) domain containing 1," whose functions are largely uncharacterized. Genes differentially expressed outside Lorp1 included seven genes with previously characterized neuronal functions and thus stand out as additional candidate genes that may be involved in mediating the neurosensitivity differences between ISS and ILS.

  5. Adipose-derived stem cell: a better stem cell than BMSC.

    PubMed

    Zhu, Yanxia; Liu, Tianqing; Song, Kedong; Fan, Xiubo; Ma, Xuehu; Cui, Zhanfeng

    2008-08-01

    To further study the proliferation and multi-differentiation potentials of adipose-derived stem cells (ADSCs), the cells were isolated with improved methods and their growth curves were achieved with cck-8. Surface protein expression was analyzed by flow cytometry to characterize the cell phenotype. The multi-lineage potential of ADSCs was testified by differentiating cells with adipogenic, chondrogenic, osteogenic, and myogenic inducers. The results showed that about 5 x 10(5) stem cells could be obtained from 400 to 600 mg adipose tissue. The ADSCs can be continuously cultured in vitro for up to 1 month without passage and they have several logarithmic growth phases during the culture period. Also, the flow cytometry analysis showed that ADSCs expressed high levels of stem cell-related antigens (CD13, CD29, CD44, CD105, and CD166), while did not express hematopoiesis-related antigens CD34 and CD45, and human leukocyte antigen HLA-DR was also negative. Moreover, stem cell-related transcription factors, Nanog, Oct-4, Sox-2, and Rex-1 were positively expressed in ADSCs. The expression of alkaline phosphatase (ALP) was detected in the early osteogenic induction and the calcified nodules were observed by von Kossa staining. Intracellular lipid droplets could be observed by Oil Red staining. Differentiated cardiomyocytes were observed by connexin43 fluorescent staining. In order to obtain more stem cells, we can subculture ADSCs every 14 days instead of the normal 5 days. ADSCs still keep strong proliferation ability, maintain their phenotypes, and have stronger multi-differentiation potential after 25 passages. Copyright 2008 John Wiley & Sons, Ltd.

  6. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  7. Genes involved in muscle contractility and nutrient signaling pathways within celiac disease risk loci show differential mRNA expression.

    PubMed

    Montén, Caroline; Gudjonsdottir, Audur H; Browaldh, Lars; Arnell, Henrik; Nilsson, Staffan; Agardh, Daniel; Naluai, Åsa Torinsson

    2015-06-30

    Risk gene variants for celiac disease, identified in genome-wide linkage and association studies, might influence molecular pathways important for disease development. The aim was to examine expression levels of potential risk genes close to these variants in the small intestine and peripheral blood and also to test if the non-coding variants affect nearby gene expression levels in children with celiac disease. Intestinal biopsy and peripheral blood RNA was isolated from 167 children with celiac disease, 61 with potential celiac disease and 174 disease controls. Transcript levels for 88 target genes, selected from celiac disease risk loci, were analyzed in biopsies of a smaller sample subset by qPCR. Differentially expressed genes (3 from the pilot and 8 previously identified) were further validated in the larger sample collection (n = 402) of both tissues and correlated to nearby celiac disease risk variants. All genes were significantly down- or up-regulated in the intestinal mucosa of celiac disease children, NTS being most down-regulated (Fold change 3.6, p < 0.001). In contrast, PPP1R12B isoform C was up-regulated in the celiac disease mucosa (Fold change 1.9, p < 0.001). Allele specific expression of GLS (rs6741418, p = 0.009), INSR (rs7254060, p = 0.003) and NCALD (rs652008, p = 0.005) was also detected in the biopsies. Two genes (APPL2 and NCALD) were differentially expressed in peripheral blood but no allele specific expression was observed in this tissue. The differential expression of NTS and PPP1R12B indicate a potential role for smooth muscle contractility and cell proliferation in celiac disease, whereas other genes like GLS, NCALD and INSR suggests involvement of nutrient signaling and energy homeostasis in celiac disease pathogenesis. A disturbance in any of these pathways might contribute to development of childhood celiac disease.

  8. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche.

    PubMed

    Sánchez, Catherine A; Andahur, Eliana I; Valenzuela, Rodrigo; Castellón, Enrique A; Fullá, Juan A; Ramos, Christian G; Triviño, Juan C

    2016-01-26

    The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets.

  9. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy.

    PubMed

    Moyle, Louise A; Blanc, Eric; Jaka, Oihane; Prueller, Johanna; Banerji, Christopher Rs; Tedesco, Francesco Saverio; Harridge, Stephen Dr; Knight, Robert D; Zammit, Peter S

    2016-11-14

    Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD.

  10. Releasing Ski-Smad4 mediated suppression is essential to license Th17 differentiation

    PubMed Central

    Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y.; Serody, Jonathan S.; Chen, Xian; Xu, Xiaojiang; Wade, Paul A.; Cook, Donald N.; Ting, Jenny P.; Wan, Yisong Y.

    2017-01-01

    Th17 cells are critically involved in host defense, inflammation, and autoimmunity1–5. TGF-β is instrumental in Th17 differentiation by cooperating with IL-66,7. Yet, the mechanism of how TGF-β enables Th17 differentiation remains elusive. Here we reveal that TGF-β licenses Th17 differentiation by releasing Ski-Smad4-complex suppressed RORγt expression. We found serendipitously that, unlike wild-type T cells, Smad4-deficient T cells differentiated into Th17 cells in the absence of TGF-β signaling in a RORγt-dependent manner. Ectopic Smad4 expression suppressed the RORγt expression and Th17 differentiation of Smad4-deficient T cells. Unexpectedly however, TGF-β neutralized Smad4 mediated suppression without affecting Smad4 binding to Rorc locus. Proteomic analysis revealed that Smad4 interacted with Ski, a transcriptional repressor degraded upon TGF-β stimulation. Ski controlled the histone acetylation/de-acetylation of Rorc locus and Th17 differentiation via Smad4 because ectopic Ski expression inhibited H3K9Ac of Rorc locus, Rorc expression and Th17 differentiation in a Smad4-dependent manner. Therefore, TGF-β-induced disruption of Ski releases Ski-Smad4 complex imposed suppression of RORγt to license Th17 differentiation. This study reveals a critical mechanism by which TGF-β controls Th17 differentiation and uncovers Ski-Smad4 axis as a potential therapeutic target for treating Th17 related diseases. PMID:29072299

  11. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-05

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Aberrant Expression of Retinoic Acid Signaling Molecules Influences Patient Survival in Astrocytic Gliomas

    PubMed Central

    Campos, Benito; Centner, Franz-Simon; Bermejo, Justo Lorenzo; Ali, Ramadan; Dorsch, Katharina; Wan, Feng; Felsberg, Jörg; Ahmadi, Rezvan; Grabe, Niels; Reifenberger, Guido; Unterberg, Andreas; Burhenne, Jürgen; Herold-Mende, Christel

    2011-01-01

    Undifferentiated cell populations may influence tumor growth in malignant glioma. We investigated potential disruptions in the retinoic acid (RA) differentiation pathway that could lead to a loss of differentiation capacity, influencing patient prognosis. Expression of key molecules belonging to the RA differentiation pathway was analyzed in 283 astrocytic gliomas and was correlated with tumor proliferation, tumor differentiation, and patient survival. In addition, in situ concentrations of retinoids were measured in tumors, and RA signaling events were studied in vitro. Unlike other tumors, in gliomas expression of most RA signaling molecules increased with malignancy and was associated with augmented intratumoral retinoid levels in high-grade gliomas. Aberrantly expressed RA signaling molecules included i) the retinol-binding protein CRBP1, which facilitates cellular retinoid uptake; ii) ALDH1A1, capable of activating RA precursors; iii) the RA-degrading enzyme CYP26B1; and iv) the RA-binding protein FABP5, which can inhibit RA-induced differentiation. In contrast, expression of the RA-binding protein CRABP2, which fosters differentiation, was decreased in high-grade tumors. Moreover, expression of CRBP1 correlated with tumor proliferation, and FABP5 expression correlated with an undifferentiated tumor phenotype. CRBP1 and ALDH1A1 were independent prognostic markers for adverse patient survival. Our data indicate a complex and clinically relevant deregulation of RA signaling, which seems to be a central event in glioma pathogenesis. PMID:21514413

  13. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    PubMed

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.

  14. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

    PubMed Central

    Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de Fátima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars. PMID:25268626

  15. Human Keratinocytes That Express hTERT and Also Bypass a p16INK4a-Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics

    PubMed Central

    Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.

    2000-01-01

    Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628

  16. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    PubMed

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can be potential cell sources for tooth regeneration. However, these previous methods still have problems, such as usage of other cell types, heterogeneity of differentiated cells, and tumorigenicity. In the present study, a novel method to differentiate iPS cells into odontoblast-like cells without tumorigenicity using gene transfection was established. It is an important advance in the establishment of efficient methods to generate homogeneous functional odontogenic cells derived from iPS cells. ©AlphaMed Press.

  17. Gene expression during ovarian differentiation in parasitic and non-parasitic lampreys: implications for fecundity and life history types.

    PubMed

    Spice, Erin K; Whyard, Steven; Docker, Margaret F

    2014-11-01

    Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Expression of PD-1 and PD-L1 in poorly differentiated neuroendocrine carcinomas of the digestive system: a potential target for anti-PD-1/PD-L1 therapy.

    PubMed

    Roberts, Jordan A; Gonzalez, Raul S; Das, Satya; Berlin, Jordan; Shi, Chanjuan

    2017-12-01

    Poorly differentiated neuroendocrine carcinoma of the digestive system has a dismal prognosis with limited treatment options. This study aimed to investigate expression of the PD-1/PD-L1 pathway in these tumors. Thirty-seven patients with a poorly differentiated neuroendocrine carcinoma of the digestive system were identified. Their electronic medical records, pathology reports, and pathology slides were reviewed for demographics, clinical history, and pathologic features. Tumor sections were immunohistochemically labeled for PD-1 and PD-L1, and expression of PD-1 and PD-L1 on tumor and tumor-associated immune cells was analyzed and compared between small cell and large cell neuroendocrine carcinomas. The mean age of patients was 61 years old with 18 men and 19 women. The colorectum (n=20) was the most common primary site; other primary sites included the pancreaticobiliary system, esophagus, stomach, duodenum, and ampulla. Expression of PD-1 was detected on tumor cells (n=6, 16%) as well as on tumor-associated immune cells (n=23, 63%). The 6 cases with PD-1 expression on tumor cells also had the expression on immune cells. Expression of PD-L1 was visualized on tumor cells in 5 cases (14%) and on tumor-associated immune cells in 10 cases (27%). There was no difference in PD-1 and PD-L1 expression between small cell and large cell neuroendocrine carcinomas. In conclusion, PD-1/PD-L1 expression is a frequent occurrence in poorly differentiated neuroendocrine carcinomas of the digestive system. Checkpoint blockade targeting the PD-1/PD-L1 pathway may have a potential role in treating patients with this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. YY1 and HDAC9c transcriptionally regulate p38-mediated mesenchymal stem cell differentiation into osteoblasts

    PubMed Central

    Chen, Ya-Huey; Chung, Chiao-Chen; Liu, Yu-Chia; Lai, Wei-Chen; Lin, Zong-Shin; Chen, Tsung-Ming; Li, Long-Yuan; Hung, Mien-Chie

    2018-01-01

    Mesenchymal stem cells (MSCs) have a high self-renewal potential and can differentiate into various types of cells, including adipocytes, osteoblasts, and chondrocytes. Previously, we reported that the enhancer of zeste homolog 2 (EZH2), the catalytic component of the Polycomb-repressive complex 2, and HDAC9c mediate the osteogenesis and adipogenesis of MSCs. In the current study, we identify the role of p38 in osteogenic differentiation from a MAPK antibody array screen and investigate the mechanisms underlying its transcriptional regulation. Our data show that YY1, a ubiquitously expressed transcription factor, and HDAC9c coordinate p38 transcriptional activity to promote its expression to facilitate the osteogenic potential of MSCs. Our results show that p38 mediates osteogenic differentiation, and this has significant implications in bone-related diseases, bone tissue engineering, and regenerative medicine. PMID:29637005

  20. Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Goto, Tsuyoshi; Mori, Ayaka; Nagaoka, Satoshi

    2013-08-01

    The molecular mechanisms underlying the potential health benefit effects of soybean proteins on obesity-associated metabolic disorders have not been fully clarified. In this study, we investigated the effects of soluble soybean protein peptic hydrolysate (SPH) on adipocyte differentiation by using 3T3-L1 murine preadipocytes. The addition of SPH increased lipid accumulation during adipocyte differentiation. SPH increased the mRNA expression levels of an adipogenic marker gene and decreased that of a preadipocyte marker gene, suggesting that SPH promotes adipocyte differentiation. SPH induced antidiabetic and antiatherogenic adiponectin mRNA expression and secretion. Moreover, SPH increased the mRNA expression levels of insulin-responsive glucose transporter 4 and insulin-stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, during adipocyte differentiation were up-regulated in 3T3-L1 cells treated with SPH, and lipid accumulation during adipocyte differentiation induced by SPH was inhibited in the presence of a PPARγ antagonist. However, SPH did not exhibit PPARγ ligand activity. These findings indicate that SPH stimulates adipocyte differentiation, at least in part, via the up-regulation of PPARγ expression levels. These effects of SPH might be important for the health benefit effects of soybean proteins on obesity-associated metabolic disorders. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  2. Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Kamrava, Seyed Kamran; Alizadeh, Rafieh; Farhadi, Mohammad; Absalan, Moloud; Falah, Masoumeh; Faghihi, Faezeh; Zare-Sadeghi, Arash; Komeili, Ali

    2018-05-25

    Cell transplantation is a potential therapeutic approach for repairing neuropathological and neurodegenerative disorders of central nervous system by replacing the degenerated cells with new ones. Among a variety of stem cell candidates to provide these new cells, olfactory ectomesenchymal stem cells (OE-MSCs) have attracted a great attention due to their neural crest origin, easy harvest, high proliferation, and autologous transplantation. Since there is no report on differentiation potential of these cells into motor neuron-like cells, we evaluated this potential using Real-time PCR, flowcytometry and immunocytochemistry after the treatment with differentiation cocktail containing retinoic acid and Sonic Hedgehog. Immunocytochemistry staining of the isolated OE-MSCs demonstrated their capability to express nestin and vimentin, as the two markers of primitive neuroectoderm. The motor neuron differentiation of OE-MSCs resulted in changing their morphology into bipolar cells with high expression of motor neuron markers of ChAT, Hb-9 and Islet-1 at the level of mRNA and protein. Consequently, we believe that the OE-MSCs have great potential to differentiate into motor neuron-like cells and can be an ideal stem cell source for the treatment of motor neuron-related disorders of central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes.

    PubMed

    Bociąga-Jasik, Monika; Polus, Anna; Góralska, Joanna; Czech, Urszula; Gruca, Anna; Śliwa, Agnieszka; Garlicki, Aleksander; Mach, Tomasz; Dembińska-Kieć, Aldona

    2013-01-01

    The iatrogenic, HIV-related lipodystrophy is associated with development of the significant metabolic and cardiovascular complications. The underlying mechanisms of antiretroviral (ARV) drugs are not completely explored. The aim of the study was to characterize effects of the protease inhibitor (PI)--saquinavir (SQV) on metabolic functions, and gene expression during differentiation in cells (Chub-S7) culture. SQV in concentrations observed during antiretroviral therapy (ART) significantly decreased mitochondrial membrane potential (MMP), oxygen consumption and ATP generation. The effects were greater in already differentiated cells. This was accompanied by characteristic changes in the expression of the genes involved in endoplasmic reticulum (ER) stress, and differentiation (lipid droplet formation) process such as: WNT10a, C/EBPa, AFT4, CIDEC, ADIPOQ, LPIN1. The results indicate that SQV affects not only metabolic (mitochondrial) activity of adipocytes, but affects the expression of genes related to differentiation and to a lesser extent to cell apoptosis.

  4. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  5. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils.

    PubMed

    Gounni, A S; Gregory, B; Nutku, E; Aris, F; Latifa, K; Minshall, E; North, J; Tavernier, J; Levit, R; Nicolaides, N; Robinson, D; Hamid, Q

    2000-09-15

    Interleukin-9 (IL-9) has been implicated in the pathogenesis of allergic disorders. To examine the interaction between IL-9 and eosinophils, we evaluated mature peripheral blood eosinophils for their expression of the specific alpha-subunit of the IL-9 receptor (IL-9R-alpha). The expression of IL-9R-alpha by human eosinophils was detected at the messenger RNA (mRNA) and protein levels by reverse transcriptase-polymerase chain reaction (RT-PCR), flow cytometry, and immunocytochemical analysis, respectively. Functional analyses demonstrated that recombinant human (rh)IL-9 inhibited in vitro peripheral blood human eosinophil apoptosis in a concentration-dependent manner. We then examined the role of IL-9 in eosinophil differentiation using the human cord blood CD34(+) cells and human promyelocytic leukemia cells (HL-60). The addition of IL-9 to CD34(+) cells cultured in IL-3 and IL-5 enhanced eosinophil development, and IL-9 alone induced the expression of IL-5R-alpha. IL-9 also up-regulated the IL-5R-alpha chain cell surface expression during terminal eosinophil differentiation of the HL-60 cell line. Our findings suggest that IL-9 may potentiate in vivo eosinophil function by increasing their survival and IL-5-mediated differentiation and maturation. Taken together, these results suggest a mechanism by which IL-9 potentiates airway and tissue eosinophilia.

  6. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells

    PubMed Central

    Mach, François; Sauty, Alain; Iarossi, Albert S.; Sukhova, Galina K.; Neote, Kuldeep; Libby, Peter; Luster, Andrew D.

    1999-01-01

    Activated T lymphocytes accumulate early in atheroma formation and persist at sites of lesion growth and rupture, suggesting that they may play an important role in the pathogenesis of atherosclerosis. Moreover, atherosclerotic lesions contain the Th1-type cytokine IFN-γ, a potentiator of atherosclerosis. The present study demonstrates the differential expression of the 3 IFN-γ–inducible CXC chemokines — IFN-inducible protein 10 (IP-10), monokine induced by IFN-γ (Mig), and IFN-inducible T-cell α chemoattractant (I-TAC) — by atheroma-associated cells, as well as the expression of their receptor, CXCR3, by all T lymphocytes within human atherosclerotic lesions in situ. Atheroma-associated endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages (MØ) all expressed IP-10, whereas Mig and I-TAC were mainly expressed in ECs and MØ, as detected by double immunofluorescence staining. ECs of microvessels within lesions also expressed abundant I-TAC. In vitro experiments supported these results and showed that IL-1β, TNF-α, and CD40 ligand potentiated IP-10 expression from IFN-γ–stimulated ECs. In addition, nitric oxide (NO) treatment decreased IFN-γ induction of IP-10. Our findings suggest that the differential expression of IP-10, Mig, and I-TAC by atheroma-associated cells plays a role in the recruitment and retention of activated T lymphocytes observed within vascular wall lesions during atherogenesis. PMID:10525042

  7. Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-11-29

    Goat fecundity is important for agriculture and varies depending on the genetic background of the goat. Two excellent domestic breeds in China, the Jining Grey and Laiwu Black goats, have different fecundity and prolificacies. To explore the potential miRNAs that regulate the expression of the genes involved in these prolific differences and to potentially discover new miRNAs, we performed a genome-wide analysis of the miRNAs in the ovaries from these two goats using RNA-Seq technology. Thirty miRNAs were differentially expressed between the Jining Grey and Laiwu Black goats. Gene Ontology and KEGG pathway analyses revealed that the target genes of the differentially expressed miRNAs were significantly enriched in several biological processes and pathways. A protein-protein interaction analysis indicated that the miRNAs and their target genes were related to the reproduction complex regulation network. The differential miRNA expression profiles found in the ovaries between the two distinctive breeds of goats studied here provide a unique resource for addressing fecundity differences in goats.

  8. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement

    PubMed Central

    Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya

    2012-01-01

    Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344

  9. Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential

    PubMed Central

    Kaneko, Kunihiko

    2011-01-01

    The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems. PMID:22073296

  10. Clonal population of adult stem cells: life span and differentiation potential.

    PubMed

    Seruya, Mitchel; Shah, Anup; Pedrotty, Dawn; du Laney, Tracey; Melgiri, Ryan; McKee, J Andrew; Young, Henry E; Niklason, Laura E

    2004-01-01

    Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50-70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-beta1 (TGF-beta1) differentiated into a homogeneous population expressing alpha-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.

  11. Nicotine Deteriorates the Osteogenic Differentiation of Periodontal Ligament Stem Cells through α7 Nicotinic Acetylcholine Receptor Regulating wnt Pathway

    PubMed Central

    Dong, Zhiwei; Liu, Fen; Zhang, Yu; Yu, Yang; Shang, Fengqing; Wu, Lizheng; Wang, Xiaojing; Jin, Yan

    2013-01-01

    Aims Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor (α7 nAChR). Methods hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. Results Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. Conclusions These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis. PMID:24376645

  12. Keratin 5/14‑mediated cell differentiation and transformation are regulated by TAp63 and Notch‑1 in oral squamous cell carcinoma‑derived cells.

    PubMed

    Srivastava, Saumya S; Alam, Hunain; Patil, Sonam J; Shrinivasan, Rashmi; Raikundalia, Sweta; Chaudhari, Pratik Rajeev; Vaidya, Milind M

    2018-05-01

    Keratins 5/14 (K5/14) are intermediate filament proteins expressed in the basal layer of stratified epithelial cells and are known targets of p63. Previous research in our laboratory showed that upon K5/14 downregulation in oral squamous cell carcinoma (OSCC)‑derived cells, there was an increase in intracellular Notch‑1 levels and differentiation markers such as involucrin, keratin 1 and a decrease in tumorigenic potential in vivo. However, the molecules involved in the K14 regulated cell differentiation and transformation are not known to date. In order to understand the possible role of TAp63, we downregulated TAp63 in a K14‑knockdown background. We observed that there was a decrease in the expression of Notch‑1. Expression levels of differentiation markers such as involucrin, K1, loricrin and filaggrin were also decreased. Furthermore, TAp63 downregulation led to an increase in invasion, migration and in vivo tumorigenic potential of these cells. We observed a decrease in β‑catenin signaling in K14‑downregulated cells. Notably, when TAp63 was downregulated in K14‑knockdown cells, there was increase in non‑phospho β‑catenin levels. Hence, this study indicates that TAp63 plays an important role in K14‑downregulated cells possibly by regulating the Notch‑1 expression. K14 regulates the expression of TAp63 which in turn regulates expression of Notch‑1. The present study is a step forward in our quest to understand the functional significance of molecules that regulate the process of differentiation and tumorigenesis in stratified epithelial cells.

  13. Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras.

    PubMed

    Künzel, Timo; Heiermann, Reinhard; Frank, Uri; Müller, Werner; Tilmann, Wido; Bause, Markus; Nonn, Anja; Helling, Matthias; Schwarz, Ryan S; Plickert, Günter

    2010-12-01

    To analyse cell migration and the differentiation potential of migratory stem cells in Hydractinia, we generated animals with an eGFP reporter gene stably expressed and transmitted via the germline. The transgene was placed under the control of two different actin promoters and the promoter of elongation factor-1α. One actin promoter (Act-II) and the EF-1α promoter enabled expression of the transgene in all cells, the other actin promoter (Act-I) in epithelial and gametogenic cells, but not in the pluripotent migratory stem cells. We produced chimeric animals consisting of histocompatible wild type and transgenic parts. When the transgene was under the control of the epithelial cell specific actin-I promoter, non-fluorescent transgenic stem cells immigrated into wild type tissue, stopped migration and differentiated into epithelial cells which then commenced eGFP-expression. Migratory stem cells are therefore pluripotent and can give rise not only to germ cells, nematocytes and nerve cells, but also to epithelial cells. While in somatic cells expression of the act-I promoter was restricted to epithelial cells it became also active in gametogenesis. The act-I gene is expressed in spermatogonia, oogonia and oocytes. In males the expression pattern showed that migratory stem cells are the precursors of both the spermatogonia and their somatic envelopes. Comparative expression studies using the promoters of the actin-II gene and the elongation factor-1α gene revealed the potential of transgenic techniques to trace the development of the nervous system. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias

    2013-07-30

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.

  15. Vitronectin-Based, Biomimetic Encapsulating Hydrogel Scaffolds Support Adipogenesis of Adipose Stem Cells

    PubMed Central

    Clevenger, Tracy N.; Hinman, Cassidy R.; Ashley Rubin, Rebekah K.; Smither, Kate; Burke, Daniel J.; Hawker, Craig J.; Messina, Darin; Van Epps, Dennis

    2016-01-01

    Soft tissue defects are relatively common, yet currently used reconstructive treatments have varying success rates, and serious potential complications such as unpredictable volume loss and reabsorption. Human adipose-derived stem cells (ASCs), isolated from liposuction aspirate have great potential for use in soft tissue regeneration, especially when combined with a supportive scaffold. To design scaffolds that promote differentiation of these cells down an adipogenic lineage, we characterized changes in the surrounding extracellular environment during adipogenic differentiation. We found expression changes in both extracellular matrix proteins, including increases in expression of collagen-IV and vitronectin, as well as changes in the integrin expression profile, with an increase in expression of integrins such as αVβ5 and α1β1. These integrins are known to specifically interact with vitronectin and collagen-IV, respectively, through binding to an Arg-Gly-Asp (RGD) sequence. When three different short RGD-containing peptides were incorporated into three-dimensional (3D) hydrogel cultures, it was found that an RGD-containing peptide derived from vitronectin provided strong initial attachment, maintained the desired morphology, and created optimal conditions for in vitro 3D adipogenic differentiation of ASCs. These results describe a simple, nontoxic encapsulating scaffold, capable of supporting the survival and desired differentiation of ASCs for the treatment of soft tissue defects. PMID:26956095

  16. MicroRNA signatures in B-cell lymphomas

    PubMed Central

    Di Lisio, L; Sánchez-Beato, M; Gómez-López, G; Rodríguez, M E; Montes-Moreno, S; Mollejo, M; Menárguez, J; Martínez, M A; Alves, F J; Pisano, D G; Piris, M A; Martínez, N

    2012-01-01

    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required. PMID:22829247

  17. c-Myc-Induced Survivin Is Essential for Promoting the Notch-Dependent T Cell Differentiation from Hematopoietic Stem Cells

    PubMed Central

    Haque, Rizwanul; Song, Jianyong; Haque, Mohammad; Lei, Fengyang; Sandhu, Praneet; Ni, Bing; Zheng, Songguo; Fang, Deyu; Yang, Jin-Ming; Song, Jianxun

    2017-01-01

    Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling–regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc–dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling–regulated differentiation of T lymphocytes from hematopoietic stem cells. PMID:28272325

  18. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs).

    PubMed

    Kandasamy, Majury; Roll, Lars; Langenstroth, Daniel; Brüstle, Oliver; Faissner, Andreas

    2017-06-01

    Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487 LeX , 5750 LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487 LeX -, 5750 LeX - and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs FGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs FGF-2/EGF . Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487 LeX , 5750 LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.

  19. Differentiation of human adipose-derived stem cells co-cultured with urothelium cell line toward a urothelium-like phenotype in a nude murine model.

    PubMed

    Zhang, Ming; Peng, Yubing; Zhou, Zhe; Zhou, Juan; Wang, Zhong; Lu, Mujun

    2013-02-01

    To investigated the urothelium differentiation potential of adipose-derived stem cells (ASCs) that were coimplanted with the immortalized human bladder urothelium cell line (SV-HUC-1) into the subcutaneous tissue of athymic mice. The ASCs were isolated from the human adipose tissue of patients undergoing liposuction procedures and were expanded in vitro. After labeling with CM-DiI, the ASCs were mixed with SV-HUC-1 and implanted into the subcutaneous tissue of athymic mice for 2 and 4 weeks. The urothelium-specific markers uroplakin-Ia and uroplakin-II were detected by immunofluorescence. The transformation rate of ASCs into the urothelium phenotype was evaluated at each measurement point. We found that 25.87% ± 1.38% of ASCs expressed the urothelium-specific marker uroplakin-Ia and 23.60% ± 2.57% of ASCs expressed uroplakin-II 2 weeks after coimplantation with SV-HUC-1 in vivo. After 4 weeks, 70.07% ± 3.84% of ASCs expressed uroplakin-Ia and 65.56% ± 2.94% expressed uroplakin-II. However, no obvious organizational multilayered urothelium structure, such as that of the native bladder mucosa, was found in the subcutaneous tissues of the athymic mice. The results of our study have demonstrated that ASCs could be differentiated toward the urothelium-like phenotype when they were coimplanted in direct contact with cells of a mature urothelium cell line, and the proportion of differentiated cells increased from 2 to 4 weeks. The differentiation potential of ASCs toward the urothelial cell type suggests that ASCs might have potential to be used in urinary tract repair with a tissue engineering approach in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Potential Role of S100A8 in Cutaneous Squamous Cell Carcinoma Differentiation.

    PubMed

    Shin, Jung-Min; Chang, In-Kyu; Lee, Young-Ho; Yeo, Min-Kyung; Kim, Jin-Man; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon; Lee, Young

    2016-04-01

    S100A8 is differentially expressed in various cell types and is associated with a number of malignant disorders. S100A8 may affect tumor biology. However, its role in cutaneous squamous cell carcinoma (SCC) is not well established. This study aims to investigate the relationship between S100A8 and cutaneous SCC development. We performed immunohistochemical staining to detect S100A8 expression in facial skin specimens of premalignant actinic keratosis (AK), malignant SCC, and normal tissues. In addition, we utilized postconfluence and high calcium-induced differentiation in a culture system model. Furthermore, we constructed a recombinant adenovirus expressing GFP-tagged S100A8 to investigate the role of S100A8 in SCC cell differentiation. S100A8 was significantly overexpressed in human cutaneous SCC compared to that in normal and AK tissues. S100A8 was gradually upregulated in SCC cells in a post-confluence-induced differentiation model. Overexpression of S100A8 in SCC cells induced by adenoviral transduction led to increased expression levels of differentiation markers, such as loricrin, involucrin, and filaggrin. S100A8 overexpression also increased loricrin and involucrin luciferase activity. S100A8 regulates cutaneous SCC differentiation and induces well-differentiated SCC formation in skin.

  1. Protein half-life determines expression of proteostatic networks in podocyte differentiation.

    PubMed

    Schroeter, Christina B; Koehler, Sybille; Kann, Martin; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T; Rinschen, Markus M

    2018-04-25

    Podocytes are highly specialized, epithelial, postmitotic cells, which maintain the renal filtration barrier. When adapting to considerable metabolic and mechanical stress, podocytes need to accurately maintain their proteome. Immortalized podocyte cell lines are a widely used model for studying podocyte biology in health and disease in vitro. In this study, we performed a comprehensive proteomic analysis of the cultured human podocyte proteome in both proliferative and differentiated conditions at a depth of >7000 proteins. Similar to mouse podocytes, human podocyte differentiation involved a shift in proteostasis: undifferentiated podocytes have high expression of proteasomal proteins, whereas differentiated podocytes have high expression of lysosomal proteins. Additional analyses with pulsed stable-isotope labeling by amino acids in cell culture and protein degradation assays determined protein dynamics and half-lives. These studies unraveled a globally increased stability of proteins in differentiated podocytes. Mitochondrial, cytoskeletal, and membrane proteins were stabilized, particularly in differentiated podocytes. Importantly, protein half-lives strongly contributed to protein abundance in each state. These data suggest that regulation of protein turnover of particular cellular functions determines podocyte differentiation, a paradigm involving mitophagy and, potentially, of importance in conditions of increased podocyte stress and damage.-Schroeter, C. B., Koehler, S., Kann, M., Schermer, B., Benzing, T., Brinkkoetter, P. T., Rinschen, M. M. Protein half-life determines expression of proteostatic networks in podocyte differentiation.

  2. Hypoxia modulates the differentiation potential of stem cells of the apical papilla.

    PubMed

    Vanacker, Julie; Viswanath, Aiswarya; De Berdt, Pauline; Everard, Amandine; Cani, Patrice D; Bouzin, Caroline; Feron, Olivier; Diogenes, Anibal; Leprince, Julian G; des Rieux, Anne

    2014-09-01

    Stem cells from the apical papilla (SCAP) are a population of mesenchymal stem cells likely involved in regenerative endodontic procedures and have potential use as therapeutic agents in other tissues. In these situations, SCAP are exposed to hypoxic conditions either within a root canal devoid of an adequate blood supply or in a scaffold material immediately after implantation. However, the effect of hypoxia on SCAP proliferation and differentiation is largely unknown. Therefore, the objective of this study was to evaluate the effect of hypoxia on the fate of SCAP. SCAP were cultured under normoxia (21% O2) or hypoxia (1% O2) in basal or differentiation media. Cellular proliferation, gene expression, differentiation, and protein secretion were analyzed by live imaging, quantitative reverse-transcriptase polymerase chain reaction, cellular staining, and enzyme-linked immunosorbent assay, respectively. Hypoxia had no effect on SCAP proliferation, but it evoked the up-regulation of genes specific for osteogenic differentiation (runt-related transcription factor 2, alkaline phosphatase, and transforming growth factor-β1), neuronal differentiation ( 2'-3'-cyclic nucleotide 3' phosphodiesterase, SNAIL, neuronspecific enolase, glial cell-derived neurotrophic factor and neurotrophin 3), and angiogenesis (vascular endothelial growth factor A and B). Hypoxia also increased the sustained production of VEGFa by SCAP. Moreover, hypoxia augmented the neuronal differentiation of SCAP in the presence of differentiation exogenous factors as detected by the up-regulation of NSE, VEGFB, and GDNF and the expression of neuronal markers (PanF and NeuN). This study shows that hypoxia induces spontaneous differentiation of SCAP into osteogenic and neurogenic lineages while maintaining the release of the proangiogenic factor VEGFa. This highlights the potential of SCAP to promote pulp-dentin regeneration. Moreover, SCAP may represent potential therapeutic agents for neurodegenerative conditions because of their robust differentiation potential. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.

  4. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed Central

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba. PMID:27379148

  5. Differentiated all-trans retinoic acid response of naive CD4+CD25– cells isolated from rats with collagen-induced arthritis and healthy ones under in vitro conditions

    PubMed Central

    Żyromska, Edyta; Piasecki, Tomasz; Rossowska, Joanna; Kędzierska, Anna; Nowak, Marcin; Żyromski, Marcin; Chełmońska-Soyta, Anna

    2017-01-01

    Aim o the study To compare the potential of CD4+CD25– cells, isolated from both healthy rats and rats with CIA (Collagen-Induced Arthritis), for differentiation into regulatory T cells in the presence of all-trans retinoic acid in order to learn more about the activation mechanisms and therapeutic potential of regulatory T cells. Material and methods Sorted CD4+CD25– cells were cultured in vitro with/without ATRA, and then the frequency of regulatory T cells and their ability to secrete IL-10 by CD4+ FOXP3+ cells was examined. Gene expression of the foxp3, rarα, rarβ, rxrβ, and ppar β/δ and protein expression of the Rarα, Rarβ, and Rxrβ in cells after stimulation with ATRA were also investigated. Results CD4+CD25– cells isolated from healthy animals or from animals with CIA are characterised by different potential of the differentiation into CD4+CD25+ FOXP3+ cells. Retinoic acid receptor Rxrβ is present in the CD4+CD25– cells isolated from rats with CIA. Conclusions We showed that although ATRA did not increase the frequency of Treg in culture, it significantly increased expression of rarβ and rxrβ only in lymphocytes taken from diseased animals and foxp3 expression only in healthy animals. Moreover, after ATRA stimulation, the frequency of Treg-produced IL-10 tended to be lower in diseased animals than in the healthy group. The results imply that the potential of naïve cell CD4 lymphocytes to differentiate into Tregs and their putative suppressive function is dependent on the donor’s health status. PMID:28680330

  6. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets.

    PubMed

    Homayounfar, Negar; Verma, Prashant; Nosrat, Ali; El Ayachi, Ikbale; Yu, Zongdong; Romberg, Elaine; Huang, George T-J; Fouad, Ashraf F

    2016-03-01

    The ferret canine tooth has been introduced as a suitable model for studying dental pulp regeneration. The aim of this study was to isolate and characterize ferret dental pulp stem cells (fDPSCs) and their differentiation potential. Dental pulp stem cells were isolated from freshly extracted ferret canine teeth. The cells were examined for the expression of stem cell markers STRO-1, CD90, CD105, and CD146. The osteo/odontogenic and adipogenic differentiation potential of fDPSCs was evaluated. Osteogenic and odontogenic marker genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) on days 1, 4, and 8 after osteo/odontogenic induction of fDPSCs including dentin sialophosphoprotein (DSPP), dentin matrix protein-1, osteopontin, and alkaline phosphatase. Human dental pulp cells were used as the control. The results were analyzed using 3-way analysis of variance. fDPSCs were positive for STRO1, CD90, and CD105 and negative for CD146 markers with immunohistochemistry. fDPSCs showed strong osteogenic and weak adipogenic potential. The overall expression of DSPP was not significantly different between fDPSCs and human dental pulp cells. The expression of DSPP in osteo/odontogenic media was significantly higher in fDPSCs on day 4 (P < .01). The overall expression of dentin matrix protein-1, osteopontin, and alkaline phosphatase was significantly higher in fDPSCs (P = .0005). fDPSCs were positive for several markers of dental pulp stem cells resembling human DPSCs and appeared to show a stronger potential to differentiate to osteoblastic rather than odontoblastic lineage. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri

    PubMed Central

    Lu, Zhaogeng; Xu, Jing; Li, Weixing; Zhang, Li; Cui, Jiawen; He, Qingsong; Wang, Li; Jin, Biao

    2017-01-01

    Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in flowers. PMID:28298915

  8. Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway.

    PubMed

    Yan, Yu-Hui; Li, Shao-Heng; Gao, Zhong; Zou, Sa-Feng; Li, Hong-Yan; Tao, Zhen-Yu; Song, Jie; Yang, Jing-Xian

    2016-12-01

    Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimer's disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A Comparative Study to Evaluate Myogenic Differentiation Potential of Human Chorion versus Umbilical Cord Blood-derived Mesenchymal Stem Cells.

    PubMed

    Bana, Nikoo; Sanooghi, Davood; Soleimani, Mansoureh; Hayati Roodbari, Nasim; Alavi Moghaddam, Sepideh; Joghataei, Mohammad Taghi; Sayahpour, Forough Azam; Faghihi, Faezeh

    2017-08-01

    Musculodegenerative diseases threaten the life of many patients in the world. Since drug administration is not efficient in regeneration of damaged tissues, stem cell therapy is considered as a good strategy to restore the lost cells. Since the efficiency of myogenic differentiation potential of human Chorion- derived Mesenchymal Stem Cells (C-MSCs) has not been addressed so far; we set out to evaluate myogenic differentiation property of these cells in comparison with Umbilical Cord Blood- derived Mesenchymal Stem Cells (UCB-MSCs) in the presence of 5-azacytidine. To do that, neonate placenta Umbilical Cord Blood were transferred to the lab. After characterization of the isolated cells using flowcytometry and multilineage differentiation capacity, the obtained Mesenchymal Stem Cells were cultured in DMEM/F12 supplemented with 2% FBS and 10μM of 5-azacytidine to induce myogenic differentiation. Real-time PCR and immunocytochemistry were used to assess the myogenic properties of the cells. Our data showed that C-MSCs and UCB-MSCs were spindle shape in morphology. They were positive for CD90, CD73 and CD44 antigens, and negative for hematopoietic markers. They also differentiated into osteoblast and adipoblast lineages. Real-time PCR results showed that the cells could express MyoD, desmin and α-MHC at the end of the first week (P<0.05). No significant upregulation was detected in the expression of GATA-4 in both groups. Immunocytochemical staining revealed the expression of Desmin, cTnT and α-MHC. Results showed that these cells are potent to differentiate into myoblast- like cells. An upregulation in the expression of some myogenic markers (desmin, α- MHC) was observed in C-MSCs in comparison with UCB-MSCs. Copyright © 2017. Published by Elsevier Ltd.

  10. The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma.

    PubMed

    Leone, A; Mitsiades, N; Ward, Y; Spinelli, B; Poulaki, V; Tsokos, M; Kelly, K

    2001-05-31

    Gem is a small GTP-binding protein within the Ras superfamily whose function has not been determined. We report here that ectopic Gem expression is sufficient to stimulate cell flattening and neurite extension in N1E-115 and SH-SY5Y neuroblastoma cells, suggesting a role for Gem in cytoskeletal rearrangement and/or morphological differentiation of neurons. Consistent with this potential function, in clinical samples of neuroblastoma, Gem protein was most highly expressed within cells which had differentiated to express ganglionic morphology. Gem was also observed in developing trigeminal nerve ganglia in 12.5 day mouse embryos, demonstrating that Gem expression is a property of normal ganglionic development. Although Gem expression is rare in epithelial and hematopoietic cancer cell lines, constitutive Gem levels were detected in several neuroblastoma cell lines and could be further induced as much as 10-fold following treatment with PMA or the acetylcholine muscarinic agonist, carbachol.

  11. Detergents with different chemical properties induce variable degree of cytotoxicity and mRNA expression of lipid-metabolizing enzymes and differentiation markers in cultured keratinocytes.

    PubMed

    Wei, Tianling; Geijer, Sophia; Lindberg, Magnus; Berne, Berit; Törmä, Hans

    2006-12-01

    The knowledge how detergents with different chemical properties influence epidermal keratinocytes is sparse. In the present study, the effects of five detergents were examined with respect to cell-toxicity and mRNA expression of key-enzymes in barrier lipid production and keratinocyte differentiation markers. First, the LD(50) for each detergent were determined. Secondly, keratinocytes were exposed to sub-toxic concentrations and the mRNA expression was analysed by real-time PCR after 24 h exposure to the detergents. SLS and CAPB induced a concentration-dependent increase in the expression of enzymes producing cholesterol and ceramides, while transcripts of enzymes producing fatty acids were unaffected. SLES and cocoglucoside increased the expression of certain enzymes involved in cholesterol and fatty acid synthesis while sodium cocoamphoacetate (SCAA) stimulated expression of transcripts involved in fatty acid synthesis. The expression of differentiation markers were increased by SLS, SLES and CAPB, while SCAA and cocoglucoside exhibited no effect. The present findings show that detergents have variable effects on lipid synthesis and keratinocyte differentiation, which could partly explain their barrier destruction potential in vivo.

  12. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1

    PubMed Central

    Ma, Qinlong; Chen, Chunhai; Deng, Ping; Zhu, Gang; Lin, Min; Zhang, Lei; Xu, Shangcheng; He, Mindi; Lu, Yonghui; Duan, Weixia; Pi, Huifeng; Cao, Zhengwang; Pei, Liping; Li, Min; Liu, Chuan; Zhang, Yanwen; Zhong, Min; Zhou, Zhou; Yu, Zhengping

    2016-01-01

    Exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) can enhance hippocampal neurogenesis in adult mice. However, little is focused on the effects of ELF-EMFs on embryonic neurogenesis. Here, we studied the potential effects of ELF-EMFs on embryonic neural stem cells (eNSCs). We exposed eNSCs to ELF-EMF (50 Hz, 1 mT) for 1, 2, and 3 days with 4 hours per day. We found that eNSC proliferation and maintenance were significantly enhanced after ELF-EMF exposure in proliferation medium. ELF-EMF exposure increased the ratio of differentiated neurons and promoted the neurite outgrowth of eNSC-derived neurons without influencing astrocyes differentiation and the cell apoptosis. In addition, the expression of the proneural genes, NeuroD and Ngn1, which are crucial for neuronal differentiation and neurite outgrowth, was increased after ELF-EMF exposure. Moreover, the expression of transient receptor potential canonical 1 (TRPC1) was significantly up-regulated accompanied by increased the peak amplitude of intracellular calcium level induced by ELF-EMF. Furthermore, silencing TRPC1 expression eliminated the up-regulation of the proneural genes and the promotion of neuronal differentiation and neurite outgrowth induced by ELF-EMF. These results suggest that ELF-EMF exposure promotes the neuronal differentiation and neurite outgrowth of eNSCs via up-regulation the expression of TRPC1 and proneural genes (NeuroD and Ngn1). These findings also provide new insights in understanding the effects of ELF-EMF exposure on embryonic brain development. PMID:26950212

  13. Effect of autologous platelet-rich plasma on the chondrogenic differentiation of rabbit adipose-derived stem cells in vitro

    PubMed Central

    TANG, XIAO-BO; DONG, PEI-LONG; WANG, JIAN; ZHOU, HAI-YANG; ZHANG, HAI-XIANG; WANG, SHAN-ZHENG

    2015-01-01

    This study aimed to isolate rabbit adipose-derived stem cells (ADSCs) and explore the potential of platelet-rich plasma (PRP) in the chondrogenic differentiation of ADSCs, thereby potentially providing a new approach for the repair and regeneration of cartilage injury. Rabbit ADSCs were isolated and characterized by induction towards adipogenic, osteogenic and chondrogenic lineages in vitro. The isolated ADSCs were also cultured with or without 10% PRP. Immunofluorescence staining, toluidine blue staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect type II collagen (Col II) and aggrecan (AGC) expression. Col II immunofluorescence staining and toluidine blue staining indicated that following induction by autologous PRP, ADSCs manifested Col II and AGC expression. The expression of Col II and AGC mRNA was significantly upregulated in the PRP-treated cells when compared with that in control cells. Autologous PRP produced by laboratory centrifugation was able to promote the chondrogenic differentiation of rabbit ADSCs in vitro. PMID:26622340

  14. Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament.

    PubMed

    Navabazam, Ali Reza; Sadeghian Nodoshan, Fatemeh; Sheikhha, Mohammad Hasan; Miresmaeili, Sayyed Mohsen; Soleimani, Mehrdad; Fesahat, Farzaneh

    2013-03-01

    Human dental stem cells have high proliferative potential for self-renewal that is important to the regenerative capacity of the tissue. Objective : The aim was to isolate human dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC) and periapical follicle stem cells (PAFSC) for their potential role in tissue regeneration. In this experimental study, the postnatal stem cells were isolated from dental pulp, preapical follicle and periodontal ligament .The cells were stained for different stem cell markers by immunocytochemistry. To investigate the mesenchymal nature of cells, differentiation potential along osteoblastic and adipogenic lineages and gene expression profile were performed. For proliferation potential assay, Brdu staining and growth curve tests were performed. Finally, all three cell types were compared together regarding their proliferation, differentiation and displaying phenotype. The isolated cell populations have similar fibroblastic like morphology and expressed all examined cell surface molecule markers. These cells were capable of differentiating into osteocyte with different capability and adipocyte with the same rate. PAFSCs showed more significant proliferation rate than others. Reverse transcriptase PCR (RT-PCR) for nanog, oct4, Alkaline phosphatase (ALP) and glyceraldehydes-3-phosphate dehydrogenease (GADPH) as control gene showed strong positive expression of these genes in all three isolated cell types. PDLSCs, DPSCs and PAFSCs exist in various tissues of the teeth and can use as a source of mesenchymal stem cells for developing bioengineered organs and also in craniomaxillofacial reconstruction with varying efficiency in differentiation and proliferation.

  15. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells.

    PubMed

    Hassan, Ghmkin; Bahjat, Mohammad; Kasem, Issam; Soukkarieh, Chadi; Aljamali, Majd

    2018-01-01

    Articular cartilage has a poor capacity for self-repair, and thus still presents a major challenge in orthopedics. Mesenchymal stem cells (MSCs) are multipotent stem cells with the potential to differentiate into chondrocytes in the presence of transforming growth factor beta (TGF-β). Platelet lysate (PL) contains a relatively large number of growth factors, including TGF-β, and has been shown to ameliorate cartilage repair. Here, we investigated the ability of PL to direct chondrogenic differentiation of MSCs along with other standard differentiation components in a pellet culture system. We isolated and expanded MSCs from human umbilical cords using a PL-supplemented medium and characterized the cells based on immunophenotype and potential for differentiation to adipocytes and osteocytes. We further cultured MSCs as pellets in a chondrogenic-differentiation medium supplemented with PL. After 21 days, the pellets were processed for histological analysis and stained with alician blue and acridine orange. The expression of SOX9 was investigated using RT-PCR. MSCs maintained their stemness characteristics in the PL-supplemented medium. However, the distribution of cells in the pellets cultured in the PL-supplemented chondrogenic differentiation medium had a greater similarity to cartilage tissue-derived chondrocytes than to the negative control. The intense alician blue staining indicated an increased production of mucopolysaccharides in the differentiated pellets, which also showed elevated expression of SOX9 . Our data suggest that MSCs could be differentiated to chondrocytes in the presence of PL and absence of exogenous TGF-β. Further research needs to be conducted to understand the exact role and potential of PL in chondrogenic differentiation and chondrocyte regeneration.

  16. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA

    NASA Technical Reports Server (NTRS)

    Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr; hide

    2003-01-01

    Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.

  17. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyoung Ho; Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr; Troy, Frederic A., E-mail: fatroy@ucdavis.edu

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC withmore » epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.« less

  18. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation.

    PubMed

    Gu, Xiuge; Li, Mengying; Jin, Ye; Liu, Dongxu; Wei, Fulan

    2017-12-02

    Researchers have been exploring the molecular mechanisms underlying the control of periodontal ligament stem cell (PDLSC) osteogenic differentiation. Recently, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) were shown to function as competitive endogenous RNAs (ceRNAs) to regulate the effect of microRNAs (miRNAs) on their target genes during cell differentiation. However, comprehensive identification and integrated analysis of lncRNAs and circRNAs acting as ceRNAs during PDLSC osteogenic differentiation have not been performed. PDLSCs were derived from healthy human periodontal ligament and cultured separately with osteogenic induction and normal media for 7 days. Cultured PDLSCs were positive for STRO-1 and CD146 and negative for CD31 and CD45. Osteo-induced PDLSCs showed increased ALP (alkaline phosphatase) activity and up-regulated expression levels of the osteogenesis-related markers ALP, Runt-related transcription factor 2 and osteocalcin. Then, a total of 960 lncRNAs and 1456 circRNAs were found to be differentially expressed by RNA sequencing. The expression profiles of eight lncRNAs and eight circRNAs were measured with quantitative real-time polymerase chain reaction and were shown to agree with the RNA-seq results. Furthermore, the potential functions of lncRNAs and circRNAs as ceRNAs were predicted based on miRanda and were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. In total, 147 lncRNAs and 1382 circRNAs were predicted to combine with 148 common miRNAs and compete for miRNA binding sites with 744 messenger RNAs. These mRNAs were predicted to significantly participate in osteoblast differentiation, the MAPK pathway, the Wnt pathway and the signaling pathways regulating pluripotency of stem cells. Among them, lncRNAs coded as TCONS_00212979 and TCONS_00212984, as well as circRNA BANP and circRNA ITCH, might interact with miRNA34a and miRNA146a to regulate PDLSC osteogenic differentiation via the MAPK pathway. This study comprehensively identified lncRNAs/circRNAs and first integrated their potential ceRNA function during PDLSC osteogenic differentiation. These findings suggest that specific lncRNAs and circRNAs might function as ceRNAs to promote PDLSC osteogenic differentiation and periodontal regeneration.

  19. Proteomic analysis of cell cycle arrest and differentiation induction caused by ATPR, a derivative of all-trans retinoic acid, in human gastric cancer SGC-7901 cells.

    PubMed

    Xia, Quan; Zhao, Yingli; Wang, Jiali; Qiao, Wenhao; Zhang, Dongling; Yin, Hao; Xu, Dujuan; Chen, Feihu

    2017-07-01

    4-amino-2-trifluoromethyl-phenyl retinate (ATPR) was reported to potentially inhibit proliferation and induce differentiation activity in some tumor cells. In this study, a proteomics approach was used to investigate the possible mechanism by screening the differentially expressed protein profiles of SGC-7901 cells before and after ATPR-treatment in vitro. Peptides digested from the total cellular proteins were analyzed by reverse phase LC-MS/MS followed by a label-free quantification analysis. The SEQUEST search engine was used to identify proteins and bioinformatics resources were used to investigate the involved pathways for the differentially expressed proteins. Thirteen down-regulated proteins were identified in the ATPR-treated group. Bioinformatics analysis showed that the effects of ATPR on 14-3-3ε might potentially involve the PI3K-AKT-FOXO pathway and P27Kip1 expression. Western blot and RT-PCR analysis showed that ATPR could inhibit AKT phosphorylation, up-regulate the expression of FOXO1A and P27Kip1 at both the protein and mRNA levels, and down-regulate the cytoplasmic expression of cyclin E and CDK2. ATPR-induced G0/G1 phase arrest and differentiation can be ablated if the P27kip1 gene is silenced with sequence-specific siRNA or in 14-3-3ε overexpression of SGC-7901 cells. ATPR might cause cell cycle arrest and differentiation in SGC-7901 cells by simultaneously inhibiting the phosphorylation of AKT and down-regulating 14-3-3ε. This change would then enhance the inhibition of cyclin E/CDK2 by up-regulating FOXO1A and P27Kip1. Our findings could be of value for finding new drug targets and for developing more effective differentiation inducer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  1. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)

    PubMed Central

    Zhu, Bin; Li, Xiuxia; Liu, Ying; Gao, Xiwu; Liang, Pei

    2017-01-01

    The diamondback moth (DBM), Plutella xylostella (L.), is one of the most serious cruciferous pests and has developed high resistance to most insecticides, including chlorantraniliprole. Previous studies have reported several protein-coding genes that involved in chlorantraniliprole resistance, but research on resistance mechanisms at the post-transcription level is still limited. In this study, a global screen of microRNAs (miRNAs) associated with chlorantraniliprole resistance in P. xylostella was performed. The small RNA libraries for a susceptible (CHS) and two chlorantraniliprole resistant strains (CHR, ZZ) were constructed and sequenced, and a total of 199 known and 30 novel miRNAs were identified. Among them, 23 miRNAs were differentially expressed between CHR and CHS, and 90 miRNAs were differentially expressed between ZZ and CHS, of which 11 differentially expressed miRNAs were identified in both CHR and ZZ. Using miRanda and RNAhybrid, a total of 1,411 target mRNAs from 102 differentially expressed miRNAs were predicted, including mRNAs in several groups of detoxification enzymes. The expression of several differentially expressed miRNAs and their potential targets was validated by qRT-PCR. The results may provide important clues for further study of the mechanisms of miRNA-mediated chlorantraniliprole resistance in DBM and other target insects. PMID:28098189

  2. Transcriptional expression analysis of survivin splice variants reveals differential expression of survivin-3α in breast cancer.

    PubMed

    Moniri Javadhesari, Solmaz; Gharechahi, Javad; Hosseinpour Feizi, Mohammad Ali; Montazeri, Vahid; Halimi, Monireh

    2013-04-01

    Survivin, which is a novel member of the inhibitor of apoptosis family proteins, is known to play an important role in the regulation of cell cycle and apoptosis. Differential expression of survivin in tumor tissues introduces it as a new candidate molecular marker for cancer. Here we investigated the expression of survivin and its splice variants in breast tumors, as well as normal adjacent tissues obtained from the same patients. Thirty five tumors and 17 normal adjacent tissues from women diagnosed with breast cancer were explored in this study. Differential expression of different survivin splice variants was detected and semiquantitatively analyzed using reverse transcription-polymerase chain reaction. Results showed that survivin and its splice variants were differentially expressed in tumor specimens compared with normal adjacent tissues. The expression of survivin-3B and survivin-3α was specifically detected in tumor tissues compared with normal adjacent ones (53% in tumor tissues compared to 5% in normal adjacent for survivin-3B and 65% in tumor tissues and 0.0% in normal adjacent tissues for survivin-3α). Statistical analysis showed that survivin and survivin-ΔEx3 were upregulated in benign (90%, p<0.034) and malignant (76%, p<0.042) tumors, respectively. On the other hand, our results showed that survivin-2α (100% of the cases) was the dominant expressed variant of survivin in breast cancer. The data presented here showed that survivin splice variants were differentially expressed in benign and malignant breast cancer tissues, suggesting their potential role in breast cancer development. Differential expression of survivin-2α and survivin-3α splice variants highlights their usefulness as new candidate markers for breast cancer diagnosis and prognosis.

  3. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less

  4. Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells

    PubMed Central

    Janjanin, Sasa; Djouad, Farida; Shanti, Rabie M; Baksh, Dolores; Gollapudi, Kiran; Prgomet, Drago; Rackwitz, Lars; Joshi, Arjun S; Tuan, Rocky S

    2008-01-01

    Introduction Mesenchymal progenitor cells (MPCs) are multipotent progenitor cells in adult tissues, for example, bone marrow (BM). Current challenges of clinical application of BM-derived MPCs include donor site morbidity and pain as well as low cell yields associated with an age-related decrease in cell number and differentiation potential, underscoring the need to identify alternative sources of MPCs. Recently, MPC sources have diversified; examples include adipose, placenta, umbilicus, trabecular bone, cartilage, and synovial tissue. In the present work, we report the presence of MPCs in human tonsillar tissue. Methods We performed comparative and quantitative analyses of BM-MPCs with a subpopulation of adherent cells isolated from this lymphoid tissue, termed tonsil-derived MPCs (T-MPCs). The expression of surface markers was assessed by fluorescent-activated cell sorting analysis. Differentiation potential of T-MPCs was analyzed histochemically and by reverse transcription-polymerase chain reaction for the expression of lineage-related marker genes. The immunosuppressive properties of MPCs were determined in vitro in mixed lymphocyte reactions. Results Surface epitope analysis revealed that T-MPCs were negative for CD14, CD31, CD34, and CD45 expression and positive for CD29, CD44, CD90, and CD105 expression, a characteristic phenotype of BM-MPCs. Similar to BM-MPCs, T-MPCs could be induced to undergo adipogenic differentiation and, to a lesser extent, osteogenic and chondrogenic differentiation. T-MPCs did not express class II major histocompatibility (MHC) antigens, and in a similar but less pronounced manner compared with BM-MPCs, T-MPCs were immunosuppressive, inhibiting the proliferation of T cells stimulated by allogeneic T cells or by non-specific mitogenic stimuli via an indoleamine 2,3-dioxygenase-dependent mechanism. Conclusion Human palatine T-MPCs represent a new source of progenitor cells, potentially applicable for cell-based therapies. PMID:18662393

  5. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid.

    PubMed

    Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.

  6. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling

    PubMed Central

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-01-01

    The canonical Wnt/β-catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β-catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non-differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription-quantitative PCR (RT-qPCR) was used for validation. Since miR-214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT-qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR-214 were investigated using a dual-luciferase reporter assay, RT-qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR-214 on Wnt/β-catenin signaling. The present results demonstrated that miR-214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast-specific genes and ALP. In addition, miR-214 was demonstrated to directly interact with the 3′-untranslated region of the β-catenin gene CTNNB1, and suppressed Wnt/β-catenin signaling through the inhibition of β-catenin. The results of the present study suggested that miR-214 may participate in the regulation of the Wnt/β-catenin signaling pathway, and may have potential as a candidate target for the development of preventive or therapeutic agents for the treatment of patients with osteogenic disorders. PMID:29152645

  7. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β‑catenin signaling.

    PubMed

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-12-01

    The canonical Wnt/β‑catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β‑catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non‑differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription‑quantitative PCR (RT‑qPCR) was used for validation. Since miR‑214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT‑qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR‑214 were investigated using a dual‑luciferase reporter assay, RT‑qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR‑214 on Wnt/β‑catenin signaling. The present results demonstrated that miR‑214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast‑specific genes and ALP. In addition, miR‑214 was demonstrated to directly interact with the 3'‑untranslated region of the β‑catenin gene CTNNB1, and suppressed Wnt/β‑catenin signaling through the inhibition of β‑catenin. The results of the present study suggested that miR‑214 may participate in the regulation of the Wnt/β‑catenin signaling pathway, and may have potential as a candidate target for the development of preventive or therapeutic agents for the treatment of patients with osteogenic disorders.

  8. [Role of CD2-associated protein in podocyte differentiation.].

    PubMed

    Jiang, Hua-Jun; Chang, Ying; Zhu, Zhong-Hua; Liu, Jian-She; Deng, An-Guo; Zhang, Chun

    2008-02-25

    To study the cellular changes and the potential role of CD2-associated protein (CD2AP) in podocyte differentiation, conditionally immortalized murine podocyte cell line was cultured in RPMI 1640 medium under permissive condition at 33 °C. After transfection with CD2AP small interfering RNA (siRNA) the cells were shifted to non-permissive condition at 37 °C. Simultaneously, untransfected cells were taken as differentiation control. The podocyte proliferation rate was determined by MTT method. The expressions of CD2AP, WT1, synaptopodin and nephrin mRNAs were examined by RT-PCR. CD2AP, WT1 and nephrin protein expressions were examined by Western blot. The distribution of CD2AP, nephrin, F-actin and tubulin in differentiated and undifferentiated podocytes was detected by laser scanning confocal microscopy. The results showed: (1) CD2AP, WT1 and nephrin were stably expressed in differentiated and undifferentiated podocytes while synaptopodin was only expressed in differentiated podocytes. (2) CD2AP and nephrin mRNA and protein expressions were up-regulated during podocyte differentiation (P<0.05). (3) CD2AP and tubulin were distributed in the cytoplasm and perinulcear region in undifferentiated podocytes, and F-actin was predominantly localized to a cortical belt and paralleled to the cell axis. Under differentiation condition, CD2AP distribution profile was presented as peripheral accumulation, tubulin took on fascicular style and F-actin extended into foot processes in podocytes. CD2AP colocalized with nephrin and F-actin in undifferentiated podocytes. (4) After transfection with CD2AP siRNA, the expression of CD2AP was partially inhibited and cell growth was arrested; Synaptopodin, the differentiation podocyte marker, was apparently down-regulated; The differentiation of podocytes was delayed. The results demonstrate that podocyte differentiation is accompanied by cytoskeleton rearrangement and cell morphology change. CD2AP might play an essential role in podocyte differentiation.

  9. Lung Metabolic Activation as an Early Biomarker of the Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity

    PubMed Central

    Wellman, Tyler J.; de Prost, Nicolas; Tucci, Mauro; Winkler, Tilo; Baron, Rebecca M.; Filipczak, Piotr; Raby, Benjamin; Chu, Jen-hwa; Harris, R. Scott; Musch, Guido; dos Reis Falcao, Luiz F.; Capelozzi, Vera; Venegas, Jose; Melo, Marcos F. Vidal

    2016-01-01

    Background The acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification, and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. We aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS, and to assess gene expression in differentially activated regions. Methods We produced ARDS in sheep with intravenous LPS (10ng/kg/h) and mechanical ventilation for 20h. Using positron emission tomography, we assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with 13NN-saline, and aeration using transmission scans. Species-specific micro-array technology was used to assess regional gene expression. Results Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histological injury, suggesting its predictive value for severity of disease progression. Local time-courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than non-dependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. Conclusions Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets. PMID:27611185

  10. Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9hi, SSEA-1− Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    PubMed Central

    Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang

    2006-01-01

    Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs. PMID:17183690

  11. Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes

    PubMed Central

    Tokar, Tomas; Pastrello, Chiara; Ramnarine, Varune R.; Zhu, Chang-Qi; Craddock, Kenneth J.; Pikor, Larrisa A.; Vucic, Emily A.; Vary, Simon; Shepherd, Frances A.; Tsao, Ming-Sound; Lam, Wan L.; Jurisica, Igor

    2018-01-01

    In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status. PMID:29507679

  12. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes.

    PubMed

    Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud

    2018-01-01

    Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

  13. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong

    2009-04-01

    Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.

  14. Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology.

    PubMed

    Guan, Jun-Jie; Niu, Xin; Gong, Fei-Xiang; Hu, Bin; Guo, Shang-Chun; Lou, Yuan-Lei; Zhang, Chang-Qing; Deng, Zhi-Feng; Wang, Yang

    2014-07-01

    Stem cells in human urine have gained attention in recent years; however, urine-derived stem cells (USCs) are far from being well elucidated. In this study, we compared the biological characteristics of USCs with adipose-derived stem cells (ASCs) and investigated whether USCs could serve as a potential cell source for neural tissue engineering. USCs were isolated from voided urine with a modified culture medium. Through a series of experiments, we examined the growth rate, surface antigens, and differentiation potential of USCs, and compared them with ASCs. USCs showed robust proliferation ability. After serial propagation, USCs retained normal karyotypes. Cell surface antigen expression of USCs was similar to ASCs. With lineage-specific induction factors, USCs could differentiate toward the osteogenic, chondrogenic, adipogenic, and neurogenic lineages. To assess the ability of USCs to survive, differentiate, and migrate, they were seeded onto hydrogel scaffold and transplanted into rat brain. The results showed that USCs were able to survive in the lesion site, migrate to other areas, and express proteins that were associated with neural phenotypes. The results of our study demonstrate that USCs possess similar biological characteristics with ASCs and have multilineage differentiation potential. Moreover USCs can differentiate to neuron-like cells in rat brain. The present study shows that USCs are a promising cell source for tissue engineering and regenerative medicine.

  15. MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy.

    PubMed

    Sommariva, Elena; D'Alessandra, Yuri; Farina, Floriana Maria; Casella, Michela; Cattaneo, Fabio; Catto, Valentina; Chiesa, Mattia; Stadiotti, Ilaria; Brambilla, Silvia; Dello Russo, Antonio; Carbucicchio, Corrado; Vettor, Giulia; Riggio, Daniela; Sandri, Maria Teresa; Barbuti, Andrea; Vernillo, Gianluca; Muratori, Manuela; Dal Ferro, Matteo; Sinagra, Gianfranco; Moimas, Silvia; Giacca, Mauro; Colombo, Gualtiero Ivanoe; Pompilio, Giulio; Tondo, Claudio

    2017-07-06

    Diagnosis of Arrhythmogenic CardioMyopathy (ACM) is challenging and often late after disease onset. No circulating biomarkers are available to date. Given their involvement in several cardiovascular diseases, plasma microRNAs warranted investigation as potential non-invasive diagnostic tools in ACM. We sought to identify circulating microRNAs differentially expressed in ACM with respect to Healthy Controls (HC) and Idiopathic Ventricular Tachycardia patients (IVT), often in differential diagnosis. ACM and HC subjects were screened for plasmatic expression of 377 microRNAs and validation was performed in 36 ACM, 53 HC, 21 IVT. Variable importance in data partition was estimated through Random Forest analysis and accuracy by Receiver Operating Curves. Plasmatic miR-320a showed 0.53 ± 0.04 fold expression difference in ACM vs. HC (p < 0.01). A similar trend was observed when comparing ACM (n = 13) and HC (n = 17) with athletic lifestyle, a ACM precipitating factor. Importantly, ACM patients miR-320a showed 0.78 ± 0.05 fold expression change vs. IVT (p = 0.03). When compared to non-invasive ACM diagnostic parameters, miR-320a ranked highly in discriminating ACM vs. IVT and it increased their accuracy. Finally, miR-320a expression did not correlate with ACM severity. Our data suggest that miR-320a may be considered a novel potential biomarker of ACM, specifically useful in ACM vs. IVT differentiation.

  16. Novel candidate genes of the PARK7 interactome as mediators of apoptosis and acetylation in multiple sclerosis: An in silico analysis.

    PubMed

    Vavougios, George D; Zarogiannis, Sotirios G; Krogfelt, Karen Angeliki; Gourgoulianis, Konstantinos; Mitsikostas, Dimos Dimitrios; Hadjigeorgiou, Georgios

    2018-01-01

    currently only 4 studies have explored the potential role of PARK7's dysregulation in MS pathophysiology Currently, no study has evaluated the potential role of the PARK7 interactome in MS. The aim of our study was to assess the differential expression of PARK7 mRNA in peripheral blood mononuclears (PBMCs) donated from MS versus healthy patients using data mining techniques. The PARK7 interactome data from the GDS3920 profile were scrutinized for differentially expressed genes (DEGs); Gene Enrichment Analysis (GEA) was used to detect significantly enriched biological functions. 27 differentially expressed genes in the MS dataset were detected; 12 of these (NDUFA4, UBA2, TDP2, NPM1, NDUFS3, SUMO1, PIAS2, KIAA0101, RBBP4, NONO, RBBP7 AND HSPA4) are reported for the first time in MS. Stepwise Linear Discriminant Function Analysis constructed a predictive model (Wilk's λ = 0.176, χ 2 = 45.204, p = 1.5275e -10 ) with 2 variables (TIDP2, RBBP4) that achieved 96.6% accuracy when discriminating between patients and controls. Gene Enrichment Analysis revealed that induction and regulation of programmed / intrinsic cell death represented the most salient Gene Ontology annotations. Cross-validation on systemic lupus erythematosus and ischemic stroke datasets revealed that these functions are unique to the MS dataset. Based on our results, novel potential target genes are revealed; these differentially expressed genes regulate epigenetic and apoptotic pathways that may further elucidate underlying mechanisms of autorreactivity in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    PubMed Central

    Soundararajan, Ramani; Prabha, Punit; Rai, Umesh; Dixit, Aparna

    2012-01-01

    Momordica charantia (bitter gourd) has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation. PMID:22654956

  18. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold.

    PubMed

    Sonomoto, Koshiro; Yamaoka, Kunihiro; Kaneko, Hiroaki; Yamagata, Kaoru; Sakata, Kei; Zhang, Xiangmei; Kondo, Masahiro; Zenke, Yukichi; Sabanai, Ken; Nakayamada, Shingo; Sakai, Akinori; Tanaka, Yoshiya

    2016-01-01

    Mesenchymal stem cells (MSCs) have immunosuppressive activity and can differentiate into bone and cartilage; and thus seem ideal for treatment of rheumatoid arthritis (RA). Here, we investigated the osteogenesis and chondrogenesis potentials of MSCs seeded onto nano-fiber scaffolds (NFs) in vitro and possible use for the repair of RA-affected joints. MSCs derived from healthy donors and patients with RA or osteoarthritis (OA) were seeded on poly-lactic-glycolic acid (PLGA) electrospun NFs and cultured in vitro. Healthy donor-derived MSCs seeded onto NFs stained positive with von Kossa at Day 14 post-stimulation for osteoblast differentiation. Similarly, MSCs stained positive with Safranin O at Day 14 post-stimulation for chondrocyte differentiation. Surprisingly, even cultured without any stimulation, MSCs expressed RUNX2 and SOX9 (master regulators of bone and cartilage differentiation) at Day 7. Moreover, MSCs stained positive for osteocalcin, a bone marker, and simultaneously also with Safranin O at Day 14. On Day 28, the cell morphology changed from a spindle-like to an osteocyte-like appearance with processes, along with the expression of dentin matrix protein-1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE), suggesting possible differentiation of MSCs into osteocytes. Calcification was observed on Day 56. Expression of osteoblast and chondrocyte differentiation markers was also noted in MSCs derived from RA or OA patients seeded on NFs. Lactic acid present in NFs potentially induced MSC differentiation into osteoblasts. Our PLGA scaffold NFs induced MSC differentiation into bone and cartilage. NFs induction process resembled the procedure of endochondral ossification. This finding indicates that the combination of MSCs and NFs is a promising therapeutic technique for the repair of RA or OA joints affected by bone and cartilage destruction.

  19. Candidate Genes Expressed in Tolerant Common Wheat With Resistant to English Grain Aphid.

    PubMed

    Luo, Kun; Zhang, Gaisheng; Wang, Chunping; Ouellet, Thérèse; Wu, Jingjing; Zhu, Qidi; Zhao, Huiyan

    2014-10-01

    The English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae), is a common worldwide pest of wheat (Triticum aestivum L.). The use of improved resistant cultivars by the farmers is the most effective and environmentally friendly method to control this aphid in the field. The winter wheat genotypes 98-10-35 and Amigo are resistant to S. avenae. To identify genes responsible for resistance to S. avenae in these genotypes, differential-display reverse transcription-polymerase chain reaction was used to identify the corresponding differentially expressed sequences in current study. Two backcross progenies were obtained by crossing the two resistant genotypes with the susceptible genotype 1376. Six potential expected-differential bands were sequenced. Lengths of the expressed sequence tags ranged from 128 to 532 bp. Although these expressed sequences were likely associated with S. avenae resistance, there was one expressed sequence tag located on 7DL chromosome, and its potential function may associate with the ability to maintain photosynthesis in wheat. That serves as an active way for tolerant common wheat with resistant to S. avenae. Cloning the full length of these sequences would help us thoroughly understand the mechanism of wheat resistance to S. avenae and be valuable for breeding cultivars with S. avenae resistance. © 2014 Entomological Society of America.

  20. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    PubMed

    Bajek, Anna; Gurtowska, Natalia; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-05-14

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from healthy donors, due to mechanical and ultrasound-assisted liposuction and cultured in standard medium to the second passage. Differentiation potential and markers expression was evaluated to confirm the mesenchymal nature of cells. Then, the BD LyoplateTM Human Cell Surface Marker Screening Panel was used. Results shown that both population of ASCs are characterized by high expression of markers specific for ASCs: cluster of differentiation (CD)9, CD10, CD34, CD44, CD49d, CD54, CD55, CD59, CD71 and low expression of CD11a, CD11c and CD144. Moreover, we have noticed significant differences in antigen expression in 58 markers from the 242 studied. Presented study shows for the first time that different liposuction methods are not a significant factor which can influence the expression of human ASCs surface markers. © 2015 The Authors.

  1. Comprehensive Identification of Sexual Dimorphism-Associated Differentially Expressed Genes in Two-Way Factorial Designed RNA-Seq Data on Japanese Quail (Coturnix coturnix japonica)

    PubMed Central

    Rodriguez-Zas, Sandra; Oh, Jae-Don; Han, Jae Yong; Lee, Kichoon; Park, Tae Sub; Shin, Sangsu; Jiao Jiao, Zhang; Ghosh, Mrinmoy; Jeong, Dong Kee; Cho, Seoae; Kim, Heebal; Song, Ki-Duk; Lee, Hak-Kyo

    2015-01-01

    Japanese quail (Coturnix coturnix japonica) reach sexual maturity earlier, breed rapidly and successfully, and cost less and require less space than other birds raised commercially. Given the value of this species for food production and experimental use, more studies are necessary to determine chromosomal regions and genes associated with gender and breed-differentiation. This study employed Trinity and edgeR for transcriptome analysis of next-generation RNA-seq data, which included 4 tissues obtained from 3 different breeding lines of Japanese quail (random bred control, heavy weight, low weight). Differentially expressed genes shared between female and male tissue contrast groups were analyzed to identify genes related to sexual dimorphism as well as potential novel candidate genes for molecular sexing. Several of the genes identified in the present study as significant sex-related genes have been previously found in avian gene expression analyses (NIPBL, UBAP2), and other genes found differentially expressed in this study and not previously associated with sex-related differences may be considered potential candidates for molecular sexing (TERA, MYP0, PPR17, CASQ2). Additionally, other genes likely associated with neuronal and brain development (CHKA, NYAP), as well as body development and size differentiation (ANKRD26, GRP87) in quail were identified. Expression of homeobox protein regulating genes (HXC4, ISL1) shared between our two sex-related contrast groups (Female Brain vs. Male Brain and Ovary vs. Testis) indicates that these genes may regulate sex-specific anatomical development. Results reveal genetic features of the quail breed and could allow for more effective molecular sexing as well as selective breeding for traits important in commercial production. PMID:26418419

  2. Epigenetic control of skin differentiation genes by phytocannabinoids

    PubMed Central

    Pucci, Mariangela; Rapino, Cinzia; Di Francesco, Andrea; Dainese, Enrico; D'Addario, Claudio; Maccarrone, Mauro

    2013-01-01

    BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases. PMID:23869687

  3. Csf2 null mutation alters placental gene expression and trophoblast glycogen cell and giant cell abundance in mice.

    PubMed

    Sferruzzi-Perri, Amanda N; Macpherson, Anne M; Roberts, Claire T; Robertson, Sarah A

    2009-07-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be associated with placental development, including Mid1, Cd24a, Tnfrsf11b, and Wdfy1. Genes controlling trophoblast differentiation (Ascl2, Tcfeb, Itgav, and Socs3) were also differentially expressed. The CSF2 ligand and the CSF2 receptor alpha subunit were predominantly synthesized in the placental junctional zone. Altered placental structure in Csf2 null mice at E15 was characterized by an expanded junctional zone and by increased Cx31(+) glycogen cells and cyclin-dependent kinase inhibitor 1C (CDKN1C(+), P57(Kip2+)) giant cells, accompanied by elevated junctional zone transcription of genes controlling spongiotrophoblast and giant cell differentiation and secretory function (Ascl2, Hand1, Prl3d1, and Prl2c2). Granzyme genes implicated in tissue remodeling and potentially in trophoblast invasion (Gzmc, Gzme, and Gzmf) were downregulated in the junctional zone of Csf2 null mutant placentae. These data demonstrate aberrant placental gene expression in Csf2 null mutant mice that is associated with altered differentiation and/or functional maturation of junctional zone trophoblast lineages, glycogen cells, and giant cells. We conclude that CSF2 is a regulator of trophoblast differentiation and placental development, which potentially influences the functional capacity of the placenta to support optimal fetal growth in pregnancy.

  4. Potential Role of S100A8 in Cutaneous Squamous Cell Carcinoma Differentiation

    PubMed Central

    Shin, Jung-Min; Chang, In-Kyu; Lee, Young-Ho; Yeo, Min-Kyung; Kim, Jin-Man; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon

    2016-01-01

    Background S100A8 is differentially expressed in various cell types and is associated with a number of malignant disorders. S100A8 may affect tumor biology. However, its role in cutaneous squamous cell carcinoma (SCC) is not well established. Objective This study aims to investigate the relationship between S100A8 and cutaneous SCC development. Methods We performed immunohistochemical staining to detect S100A8 expression in facial skin specimens of premalignant actinic keratosis (AK), malignant SCC, and normal tissues. In addition, we utilized postconfluence and high calcium-induced differentiation in a culture system model. Furthermore, we constructed a recombinant adenovirus expressing GFP-tagged S100A8 to investigate the role of S100A8 in SCC cell differentiation. Results S100A8 was significantly overexpressed in human cutaneous SCC compared to that in normal and AK tissues. S100A8 was gradually upregulated in SCC cells in a post-confluence-induced differentiation model. Overexpression of S100A8 in SCC cells induced by adenoviral transduction led to increased expression levels of differentiation markers, such as loricrin, involucrin, and filaggrin. S100A8 overexpression also increased loricrin and involucrin luciferase activity. Conclusion S100A8 regulates cutaneous SCC differentiation and induces well-differentiated SCC formation in skin. PMID:27081264

  5. PPARgamma is not a critical mediator of primary monocyte differentiation or foam cell formation.

    PubMed

    Patel, Lisa; Charlton, Steven J; Marshall, Ian C; Moore, Gary B T; Coxon, Phil; Moores, Kitty; Clapham, John C; Newman, Suzanna J; Smith, Stephen A; Macphee, Colin H

    2002-01-18

    In the present report we clarify the role of PPARgamma in differentiation and function of human-derived monocyte/macrophages in vitro. Rosiglitazone, a selective PPARgamma activator, had no effect on the kinetics of appearance of monocyte/macrophage differentiation markers or on cell size or granularity. Depletion of PPARgamma by more than 90% using antisense oligonucleotides did not influence accumulation of oxidized LDL or prevent the upregulation of CD36 that normally accompanies oxLDL treatment. In contrast, PPARgamma depletion reduced the expression of ABCA1 and LXRalpha mRNAs. Metalloproteinase-9 expression, a marker of atherosclerotic plaque vulnerability, was suppressed by rosiglitazone. We conclude that activation of PPARgamma does not affect monocyte/macrophage differentiation. In addition, PPARgamma is not absolutely required for oxLDL-driven lipid accumulation, but is required for full expression of ABCA1 and LXRalpha. Our data support a role for rosiglitazone as a potential directly acting antiatherosclerotic agent.

  6. Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications.

    PubMed

    Quintiliano, Kerlin; Crestani, Thayane; Silveira, Davi; Helfer, Virginia Etges; Rosa, Annelise; Balbueno, Eduardo; Steffens, Daniela; Jotz, Geraldo Pereira; Pilger, Diogo André; Pranke, Patricia

    2016-11-01

    Scaffolds produced by electrospinning act as supports for cell proliferation and differentiation, improved through the release of neurotrophic factors. The objective of this study was to develop aligned and random nanofiber scaffolds with and without nerve growth factor to evaluate the potential of mesenchymal stem cells (MSCs) for neural differentiation. Nanofiber morphology, diameter, degradability, cell morphology, adhesion, proliferation, viability, cytotoxicity, and neural differentiation were performed to characterize the scaffolds. The expression for nestin, β-III tubulin, and neuron-specific enolase was also evaluated. The scaffolds demonstrated a satisfactory environment for MSC growth, being nontoxic. The MSCs cultivated on the scaffolds were able to adhere and proliferate. The evaluation of neural differentiation indicated that in all groups of scaffolds the MSCs were able to upregulate neural gene expression.

  7. IDPT: Insights into potential intrinsically disordered proteins through transcriptomic analysis of genes for prostate carcinoma epigenetic data.

    PubMed

    Mallik, Saurav; Sen, Sagnik; Maulik, Ujjwal

    2016-07-15

    Involvement of intrinsically disordered proteins (IDPs) with various dreadful diseases like cancer is an interesting research topic. In order to gain novel insights into the regulation of IDPs, in this article, we perform a transcriptomic analysis of mRNAs (genes) for transcripts encoding IDPs on a human multi-omics prostate carcinoma dataset having both gene expression and methylation data. In this regard, firstly the genes that consist of both the expression and methylation data, and that are corresponding to the cancer-related prostate-tissue-specific disordered proteins of MobiDb database, are selected. We apply standard t-test for determining differentially expressed genes as well as differentially methylated genes. A network having these genes and their targeter miRNAs from Diana Tarbase v7.0 database and corresponding Transcription Factors from TRANSFAC and ITFP databases, is then built. Thereafter, we perform literature search, and KEGG pathway and Gene Ontology analyses using DAVID database. Finally, we report several significant potential gene-markers (with the corresponding IDPs) that have inverse relationship between differential expression and methylation patterns, and that are hub genes of the TF-miRNA-gene network. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The epigenetic landscape of mammary gland development and functional differentiation

    USDA-ARS?s Scientific Manuscript database

    Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conf...

  9. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  10. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation.

    PubMed

    Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-Chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y; Serody, Jonathan S; Chen, Xian; Xu, Xiaojiang; Wade, Paul A; Cook, Donald N; Ting, Jenny P Y; Wan, Yisong Y

    2017-11-02

    T helper 17 (T H 17) cells are critically involved in host defence, inflammation, and autoimmunity. Transforming growth factor β (TGFβ) is instrumental in T H 17 cell differentiation by cooperating with interleukin-6 (refs 6, 7). Yet, the mechanism by which TGFβ enables T H 17 cell differentiation remains elusive. Here we reveal that TGFβ enables T H 17 cell differentiation by reversing SKI-SMAD4-mediated suppression of the expression of the retinoic acid receptor (RAR)-related orphan receptor γt (RORγt). We found that, unlike wild-type T cells, SMAD4-deficient T cells differentiate into T H 17 cells in the absence of TGFβ signalling in a RORγt-dependent manner. Ectopic SMAD4 expression suppresses RORγt expression and T H 17 cell differentiation of SMAD4-deficient T cells. However, TGFβ neutralizes SMAD4-mediated suppression without affecting SMAD4 binding to the Rorc locus. Proteomic analysis revealed that SMAD4 interacts with SKI, a transcriptional repressor that is degraded upon TGFβ stimulation. SKI controls histone acetylation and deacetylation of the Rorc locus and T H 17 cell differentiation via SMAD4: ectopic SKI expression inhibits H3K9 acetylation of the Rorc locus, Rorc expression, and T H 17 cell differentiation in a SMAD4-dependent manner. Therefore, TGFβ-induced disruption of SKI reverses SKI-SMAD4-mediated suppression of RORγt to enable T H 17 cell differentiation. This study reveals a critical mechanism by which TGFβ controls T H 17 cell differentiation and uncovers the SKI-SMAD4 axis as a potential therapeutic target for treating T H 17-related diseases.

  11. Reprogrammed mouse astrocytes retain a "memory" of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts.

    PubMed

    Tian, Changhai; Wang, Yongxiang; Sun, Lijun; Ma, Kangmu; Zheng, Jialin C

    2011-02-01

    Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.

  12. Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2015-10-01

    The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.

  13. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue

    PubMed Central

    Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W.; Simó, Rafael; Tinahones, Francisco J.

    2016-01-01

    Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n = 8; body mass index [BMI]: 23 ± 1 kg/m2) and obese (n = 8; BMI: 35 ± 5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor’s BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. Significance The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal stem cells (hASCs) with potential consequences in mature cells. This study explores the immunophenotypic profile of hASCs obtained from lean and obese individuals and its potential relationship with the altered plasticity of hASCs observed in obesity. In this context, an altered pattern of cell surface marker expression in obese-derived hASCs in both undifferentiated and differentiated stages is demonstrated. Differences in proliferation, migration, and differentiation capacity of hASCs from obese adipose tissue correlated with alterations in cell surface expression. Remarkably, altered plasticity observed in obese-derived hASCs was maintained in the absence of hypoxia, suggesting that these cells might be obesity conditioned. PMID:26956208

  14. Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal ligament-derived stem cell proliferation, migration, and osteogenic differentiation.

    PubMed

    Chen, Zhuo; Liu, Hui-Li

    2017-04-01

    Nicotine hinders the regenerative potentials of human periodontal ligament-derived stem cells (PDLSCs) and delays the healing process of periodontal diseases, but the underlying mechanism remains unclear. miR-1305 upregulation and its potential target RUNX2 downregulation exist in the PDLSCs exposed to nicotine. In this study, we aimed to investigate whether nicotine inhibits PDLSC proliferation, migration, and osteogenic differentiation by increasing miR-1305 level and decreasing RUNX2 level. Quantitative real-time PCR (qRT-PCR) and Western blot assays were performed to detect the expression levels of miR-1305 and RUNX2 in the PDLSCs exposed to nicotine, respectively. PDLSCs with miR-1305 overexpression, low expression, or RUNX2 overexpression were constructed by lipofectin transfection. MTT, migration, and Western blot assays were applied to assess the effect of miR-1305 on PDLSC proliferation, migration, and osteogenic differentiation, respectively. Target prediction and luciferase reporter assays were performed to investigate the targets of miR-1305. Nicotine promoted miR-1305 expression and inhibited RUNX2 expression in PDLSCs. Cell proliferation, migration, and differentiation detection showed that nicotine suppressed proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieved the inhibitory effect of nicotine on PDLSCs. Moreover, we identified and validated that RUNX2 was a direct target of miR-1305, and upregulation of RUNX2 had similar effects with the downregulation of miR-1305 on relieving the inhibitory effect of nicotine on PDLSCs. Nicotine suppresses proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieves the inhibitory effect of nicotine on PDLSCs depending on its target RUNX2. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Stemness-Related Transcriptional Factors and Homing Gene Expression Profiles in Hepatic Differentiation and Cancer

    PubMed Central

    Toraih, Eman A; Fawzy, Manal S; El-Falouji, Abdullah I; Hamed, Elham O; Nemr, Nader A; Hussein, Mohammad H; Fadeal, Noha M Abd El

    2016-01-01

    Stem cell transcriptional signature activation is an essential event in the development of cancer. This study aimed to investigate the differential expression profiles of three pluripotency-associated genes, OCT4, NANOG and SOX2, G-protein-coupled chemokine receptor 4 (CXCR4) and the ligand CXCL2, and alpha-fetoprotein (AFP) in hepatogenic differentiated stem cells and in sera of hepatitis C virus (HCV) and HCV-induced hepatocellular carcinoma (HCC) patients. Mesenchymal stem cells derived from umbilical cord blood were differentiated using hepatogenic differentiation media. Serum specimens were collected from 96 patients (32 cirrhotic HCV, 32 early HCC and 32 late HCC) and 96 controls. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed for relative quantification of the six target genes using the Livak method. In silico network analysis was also executed to explore the pluripotency and tumorigenetic regulatory circuits in liver cancer. The expression levels of all genes declined gradually during the stages of stem cell differentiation. On univariate and multivariate analyses, NANOG, CXCR4 and AFP were significantly upregulated in late clinical stage HCC patients. In contrast, SOX2 and CXCL2 were markedly overexpressed in cirrhotic patients and could be used for clear demarcation between cirrhotic and HCC patients in our cases. In conclusion, our data highlight the potential role of the SOX2 stem cell marker and CXCL2 chemokine in liver cell degeneration and fibrogenesis in HCV-induced hepatic cirrhosis in our sample of the Egyptian population. In addition, the significant association of NANOG and CXCR4 high expression with late HCC could contribute to the acquisition of stem cell–like properties in hepatic cancer and dissemination in late stages, respectively. Taken together, our results could have potential application in HCC prognosis and treatment. PMID:27623812

  16. Molecular Validation of Chondrogenic Differentiation and Hypoxia Responsiveness of Platelet-Lysate Expanded Adipose Tissue-Derived Human Mesenchymal Stromal Cells.

    PubMed

    Galeano-Garces, Catalina; Camilleri, Emily T; Riester, Scott M; Dudakovic, Amel; Larson, Dirk R; Qu, Wenchun; Smith, Jay; Dietz, Allan B; Im, Hee-Jeong; Krych, Aaron J; Larson, A Noelle; Karperien, Marcel; van Wijnen, Andre J

    2017-07-01

    To determine the optimal environmental conditions for chondrogenic differentiation of human adipose tissue-derived mesenchymal stromal/stem cells (AMSCs). In this investigation we specifically investigate the role of oxygen tension and 3-dimensional (3D) culture systems. Both AMSCs and primary human chondrocytes were cultured for 21 days in chondrogenic media under normoxic (21% oxygen) or hypoxic (2% oxygen) conditions using 2 distinct 3D culture methods (high-density pellets and poly-ε-caprolactone [PCL] scaffolds). Histologic analysis of chondro-pellets and the expression of chondrocyte-related genes as measured by reverse transcriptase quantitative polymerase chain reaction were used to evaluate the efficiency of differentiation. AMSCs are capable of expressing established cartilage markers including COL2A1, ACAN, and DCN when grown in chondrogenic differentiation media as determined by gene expression and histologic analysis of cartilage markers. Expression of several cartilage-related genes was enhanced by low oxygen tension, including ACAN and HAPLN1. The pellet culture environment also promoted the expression of hypoxia-inducible cartilage markers compared with cells grown on 3D scaffolds. Cell type-specific effects of low oxygen and 3D environments indicate that mesenchymal cell fate and differentiation potential is remarkably sensitive to oxygen. Genetic programming of AMSCs to a chondrocytic phenotype is effective under hypoxic conditions as evidenced by increased expression of cartilage-related biomarkers and biosynthesis of a glycosaminoglycan-positive matrix. Lower local oxygen levels within cartilage pellets may be a significant driver of chondrogenic differentiation.

  17. In Vitro Differentiation of First Trimester Human Umbilical Cord Perivascular Cells into Contracting Cardiomyocyte-Like Cells.

    PubMed

    Szaraz, Peter; Librach, Matthew; Maghen, Leila; Iqbal, Farwah; Barretto, Tanya A; Kenigsberg, Shlomit; Gauthier-Fisher, Andrée; Librach, Clifford L

    2016-01-01

    Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of our study was to investigate the cardiomyogenic differentiation potential of first trimester human umbilical cord perivascular cells (FTM HUCPVCs), a novel, young source of immunoprivileged mesenchymal stromal cells. Based on the expression of cardiomyocyte markers (cTnT, MYH6, SIRPA, and CX43) FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to bone marrow MSCs, while their immunogenicity remained significantly lower as indicated by HLA-A and HLA-G expression and susceptibility to T cell mediated cytotoxicity. When applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells within 1 week of coculture, making them the first MSC type with this ability. Our results indicate that young FTM HUCPVCs have superior cardiomyogenic potential coupled with beneficial immunogenic properties when compared to MSCs of older tissue sources, suggesting that in vitro predifferentiation could be a potential strategy to increase their effectiveness in vivo.

  18. Transcriptome Analysis of Orbital Adipose Tissue in Active Thyroid Eye Disease Using Next Generation RNA Sequencing Technology

    PubMed Central

    Lee, Bradford W.; Kumar, Virender B.; Biswas, Pooja; Ko, Audrey C.; Alameddine, Ramzi M.; Granet, David B.; Ayyagari, Radha; Kikkawa, Don O.; Korn, Bobby S.

    2018-01-01

    Objective: This study utilized Next Generation Sequencing (NGS) to identify differentially expressed transcripts in orbital adipose tissue from patients with active Thyroid Eye Disease (TED) versus healthy controls. Method: This prospective, case-control study enrolled three patients with severe, active thyroid eye disease undergoing orbital decompression, and three healthy controls undergoing routine eyelid surgery with removal of orbital fat. RNA Sequencing (RNA-Seq) was performed on freshly obtained orbital adipose tissue from study patients to analyze the transcriptome. Bioinformatics analysis was performed to determine pathways and processes enriched for the differential expression profile. Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) was performed to validate the differential expression of selected genes identified by RNA-Seq. Results: RNA-Seq identified 328 differentially expressed genes associated with active thyroid eye disease, many of which were responsible for mediating inflammation, cytokine signaling, adipogenesis, IGF-1 signaling, and glycosaminoglycan binding. The IL-5 and chemokine signaling pathways were highly enriched, and very-low-density-lipoprotein receptor activity and statin medications were implicated as having a potential role in TED. Conclusion: This study is the first to use RNA-Seq technology to elucidate differential gene expression associated with active, severe TED. This study suggests a transcriptional basis for the role of statins in modulating differentially expressed genes that mediate the pathogenesis of thyroid eye disease. Furthermore, the identification of genes with altered levels of expression in active, severe TED may inform the molecular pathways central to this clinical phenotype and guide the development of novel therapeutic agents. PMID:29760827

  19. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells.

    PubMed

    Gallo, P; Grimaldi, S; Latronico, M V G; Bonci, D; Pagliuca, A; Gallo, P; Ausoni, S; Peschle, C; Condorelli, G

    2008-02-01

    Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is extremely difficult and, therefore, an easy and standardizable technique is needed to evaluate differentiation strategies. Vectors driving cardiac-specific expression may represent an important tool not only for monitoring new cardiac-differentiation strategies, but also for the manipulation of cardiac differentiation of ESCs. To this aim, we generated cardiac-specific lentiviral vectors (LVVs) in which expression is driven by a short fragment of the cardiac troponin-I proximal promoter (TNNI3) with a human cardiac alpha-actin enhancer, and tested its suitability in inducing tissue-specific gene expression and ability to track the CMC lineage during differentiation of ESCs. We determined that (1) TNNI3-LVVs efficiently drive cardiac-specific gene expression and mark the cardiomyogenic lineage in human and mouse ESC differentiation systems (2) the cardiac alpha-actin enhancer confers a further increase in gene-expression specificity of TNNI3-LVVs in hESCs. Although this technique may not be useful in tracking small numbers of cells, data suggested that TNNI3-based LVVs are a powerful tool for manipulating human ESCs and modifying hESC-derived CMCs.

  20. Plasticity for axolotl lens regeneration is associated with age‐related changes in gene expression

    PubMed Central

    Sousounis, Konstantinos; Athippozhy, Antony T.; Voss, S. Randal

    2014-01-01

    Abstract Mexican axolotls lose potential for lens regeneration 2 weeks after hatching. We used microarrays to identify differently expressed genes before and after this critical time, using RNA isolated from iris. Over 3700 genes were identified as differentially expressed in response to lentectomy between young (7 days post‐hatching) and old (3 months post‐hatching) axolotl larvae. Strikingly, many of the genes were only expressed in the early or late iris. Genes that were highly expressed in young iris significantly enriched electron transport chain, transcription, metabolism, and cell cycle gene ontologies, all of which are associated with lens regeneration. In contrast, genes associated with cellular differentiation and tissue maturation were uniquely expressed in old iris. Many of these expression differences strongly suggest that young and old iris samples were collected before and after the spleen became developmentally competent to produce and secrete cells with humoral and innate immunity functions. Our study establishes the axolotl as a powerful model to investigate age‐related cellular differentiation and immune system ontogeny within the context of tissue regeneration. PMID:27499863

  1. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer.

    PubMed

    Dehghanian, Fariba; Hojati, Zohreh; Hosseinkhan, Nazanin; Mousavian, Zaynab; Masoudi-Nejad, Ali

    2018-05-26

    The Hippo signaling pathway (HSP) has been identified as an essential and complex signaling pathway for tumor suppression that coordinates proliferation, differentiation, cell death, cell growth and stemness. In the present study, we conducted a genome-scale co-expression analysis to reconstruct the HSP in colorectal cancer (CRC). Five key modules were detected through network clustering, and a detailed discussion of two modules containing respectively 18 and 13 over and down-regulated members of HSP was provided. Our results suggest new potential regulatory factors in the HSP. The detected modules also suggest novel genes contributing to CRC. Moreover, differential expression analysis confirmed the differential expression pattern of HSP members and new suggested regulatory factors between tumor and normal samples. These findings can further reveal the importance of HSP in CRC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells.

    PubMed

    Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander

    2017-10-23

    Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues.

  3. Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential.

    PubMed

    Siegel, Georg; Krause, Petra; Wöhrle, Stefanie; Nowak, Patrick; Ayturan, Miriam; Kluba, Torsten; Brehm, Bernhard R; Neumeister, Birgid; Köhler, David; Rosenberger, Peter; Just, Lothar; Northoff, Hinnak; Schäfer, Richard

    2012-09-01

    Despite their paracrine activites, cardiomyogenic differentiation of bone marrow (BM)-derived mesenchymal stem cells (MSCs) is thought to contribute to cardiac regeneration. To systematically evaluate the role of differentiation in MSC-mediated cardiac regeneration, the cardiomyogenic differentiation potential of human MSCs (hMSCs) and murine MSCs (mMSCs) was investigated in vitro and in vivo by inducing cardiomyogenic and noncardiomyogenic differentiation. Untreated hMSCs showed upregulation of cardiac tropopin I, cardiac actin, and myosin light chain mRNA and protein, and treatment of hMSCs with various cardiomyogenic differentiation media led to an enhanced expression of cardiomyogenic genes and proteins; however, no functional cardiomyogenic differentiation of hMSCs was observed. Moreover, co-culturing of hMSCs with cardiomyocytes derived from murine pluripotent cells (mcP19) or with murine fetal cardiomyocytes (mfCMCs) did not result in functional cardiomyogenic differentiation of hMSCs. Despite direct contact to beating mfCMCs, hMSCs could be effectively differentiated into cells of only the adipogenic and osteogenic lineage. After intramyocardial transplantation into a mouse model of myocardial infarction, Sca-1(+) mMSCs migrated to the infarcted area and survived at least 14 days but showed inconsistent evidence of functional cardiomyogenic differentiation. Neither in vitro treatment nor intramyocardial transplantation of MSCs reliably generated MSC-derived cardiomyocytes, indicating that functional cardiomyogenic differentiation of BM-derived MSCs is a rare event and, therefore, may not be the main contributor to cardiac regeneration.

  4. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin

    PubMed Central

    Roy, Jahnabi; Wycislo, Kathryn L.; Pondenis, Holly; Fan, Timothy M.

    2017-01-01

    Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics. PMID:28910304

  5. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin.

    PubMed

    Roy, Jahnabi; Wycislo, Kathryn L; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2017-01-01

    Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yonghan; Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 daysmore » of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.« less

  7. Differential co-expression analysis of rheumatoid arthritis with microarray data.

    PubMed

    Wang, Kunpeng; Zhao, Liqiang; Liu, Xuefeng; Hao, Zhenyong; Zhou, Yong; Yang, Chuandong; Li, Hongqiang

    2014-11-01

    The aim of the present study was to investigate the underlying molecular mechanisms of rheumatoid arthritis (RA) using microarray expression profiles from osteoarthritis and RA patients, to improve diagnosis and treatment strategies for the condition. The gene expression profile of GSE27390 was downloaded from Gene Expression Omnibus, including 19 samples from patients with RA (n=9) or osteoarthritis (n=10). Firstly, the differentially expressed genes (DEGs) were obtained with the thresholds of |logFC|>1.0 and P<0.05, using the t‑test method in LIMMA package. Then, differentially co-expressed genes (DCGs) and differentially co-expressed links (DCLs) were screened with q<0.25 by the differential coexpression analysis and differential regulation analysis of gene expression microarray data package. Secondly, pathway enrichment analysis for DCGs was performed by the Database for Annotation, Visualization and Integrated Discovery and the DCLs associated with RA were selected by comparing the obtained DCLs with known transcription factor (TF)-targets in the TRANSFAC database. Finally, the obtained TFs were mapped to the known TF-targets to construct the network using cytoscape software. A total of 1755 DEGs, 457 DCGs and 101988 DCLs were achieved and there were 20 TFs in the obtained six TF-target relations (STAT3-TNF, PBX1‑PLAU, SOCS3-STAT3, GATA1-ETS2, ETS1-ICAM4 and CEBPE‑GATA1) and 457 DCGs. A number of TF-target relations in the constructed network were not within DCLs when the TF and target gene were DCGs. The identified TFs may have an important role in the pathogenesis of RA and have the potential to be used as biomarkers for the development of novel diagnostic and therapeutic strategies for RA.

  8. Effect of black soybean koji extract on glucose utilization and adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Huang, Chi-Chang; Huang, Wen-Ching; Hou, Chien-Wen; Chi, Yu-Wei; Huang, Hui-Yu

    2014-05-09

    Adipocyte differentiation and the extent of subsequent fat accumulation are closely related to the occurrence and progression of diseases such as insulin resistance and obesity. Black soybean koji (BSK) is produced by the fermentation of black soybean with Aspergilllus awamori. Previous study indicated that BSK extract has antioxidative and multifunctional bioactivities, however, the role of BSK in the regulation of energy metabolism is still unclear. We aimed to investigate the effect of glucose utilization on insulin-resistant 3T3-L1 preadipocytes and adipogenesis-related protein expression in differentiated adipocytes with BSK treatment. Cytoxicity assay revealed that BSK did not adversely affect cell viability at levels up to 200 µg/mL. The potential for glucose utilization was increased by increased glucose transporter 1 (GLUT1), GLUT4 and protein kinase B (AKT) protein expression in insulin-resistant 3T3-L1 cells in response to BSK treatment. Simultaneously, BSK inhibited lipid droplet accumulation in differentiated 3T3-L1 cells. The inhibitory effect of adipogenesis was associated with downregulated peroxisome proliferator-activated receptor g (PPARγ) level and upregulated Acrp30 protein expression. Our results suggest that BSK extract could improve glucose uptake by modulating GLUT1 and GLUT4 expression in a 3T3-L1 insulin-resistance cell model. In addition, BSK suppressed differentiation and lipid accumulation in mature 3T3-L1 adipocytes, which may suggest its potential for food supplementation to prevent obesity and related metabolic abnormalities.

  9. Proteomics-based approach identified differentially expressed proteins with potential roles in endometrial carcinoma.

    PubMed

    Li, Zhengyu; Min, Wenjiao; Huang, Canhua; Bai, Shujun; Tang, Minghai; Zhao, Xia

    2010-01-01

    We used proteomic approaches to identify altered expressed proteins in endometrial carcinoma, with the aim of discovering potential biomarkers or therapeutic targets for endometrial carcinoma. The global proteins extracted from endometrial carcinoma and normal endometrial tissues were separated by 2-dimensional electrophoresis and analyzed with PDQuest (Bio-Rad, Hercules, Calif) software. The differentially expressed spots were identified by mass spectrometry and searched against NCBInr protein database. Those proteins with potential roles were confirmed by Western blotting and immunohistochemical assays. Ninety-nine proteins were identified by mass spectrometry, and a cluster diagram analysis indicated that these proteins were involved in metabolism, cell transformation, protein folding, translation and modification, proliferation and apoptosis, signal transduction, cytoskeleton, and so on. In confirmatory immunoblotting and immunohistochemical analyses, overexpressions of epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A were also observed in endometrial carcinoma tissues, which were consistent with the proteomic results. Our results suggested that these identified proteins, including epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A, might be of potential values in the studies of endometrial carcinogenesis or investigations of diagnostic biomarkers or treatment targets for endometrial carcinoma.

  10. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    PubMed Central

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  11. Myt1L Promotes Differentiation of Oligodendrocyte Precursor Cells and is Necessary for Remyelination After Lysolecithin-Induced Demyelination.

    PubMed

    Shi, Yanqing; Shao, Qi; Li, Zhenghao; Gonzalez, Ginez A; Lu, Fengfeng; Wang, Dan; Pu, Yingyan; Huang, Aijun; Zhao, Chao; He, Cheng; Cao, Li

    2018-04-01

    The differentiation and maturation of oligodendrocyte precursor cells (OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1L (myelin transcription factor 1-like), mainly expressed in neurons, has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1L in neuron/glia antigen 2-positive (NG2 + ) OPCs was significantly higher than that in mature CC1 + oligodendrocytes. In primary cultured OPCs, overexpression of Myt1L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. ChIP assays showed that Myt1L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1L is an essential regulator of OPC differentiation, thereby supporting Myt1L as a potential therapeutic target for demyelinating diseases.

  12. A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development

    PubMed Central

    Klein-Hessling, Stefan; Rudolf, Ronald; Muhammad, Khalid; Knobeloch, Klaus-Peter; Maqbool, Muhammad Ahmad; Cauchy, Pierre; Andrau, Jean-Christophe; Avots, Andris; Talora, Claudio; Ellenrieder, Volker; Screpanti, Isabella; Serfling, Edgar; Patra, Amiya Kumar

    2016-01-01

    NFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1β expression, preTCR-positive thymocytes express both Nfatc1β and P1 promoter-derived Nfatc1α transcripts. Inducing NFATc1α activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1β from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes. PMID:27312418

  13. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  14. Sex hormone-binding globulin b expression in the rainbow trout ovary prior to sex differentiation.

    PubMed

    Pérez, Claudio; Araneda, Cristian; Estay, Francisco; Díaz, Nelson F; Vizziano-Cantonnet, Denise

    2018-04-01

    Salmonids have two sex hormone-binding globulin (Shbg) paralogs. Shbga is mainly expressed in the liver, while Shbgb is secreted by the granulosa cells of the rainbow trout ovary. Coexpression of shbgb and the gonadal aromatase cyp19a1a mRNAs been observed in granulosa cells, suggesting a physiological coordination between Shbgb expression and estrogen synthesis. As estrogens are essential for female sex determination in the fish ovary, we propose that Shbgb participates in early ovarian differentiation, either by binding with estrogen or through another mechanism that remains to be discovered. To elucidate this potential role, monosex populations of female trout were studied during the molecular ovarian differentiation period (28-56 dpf). shbgb mRNA expression was measured using qPCR and compared with expression of genes for other ovarian markers (cyp19a1a, foxl2, follistatin, and estrogen receptors). shbgb transcript expression was detected during the final stages of embryonic development (21-26 dpf) and during molecular ovarian differentiation (32-52 dpf) after hatching (which occurred at 31 dpf). In situ hybridization localized shbgb transcription to the undifferentiated ovary at 42 dpf, and shbgb and cyp19a1a mRNA showed similar expression patterns. These results suggest that Shbgb is involved in early ovarian differentiation, supporting an important role for the salmonid shbgb gene in sex determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.

    PubMed

    Wang, Hwai-Shi; Hung, Shih-Chieh; Peng, Shu-Tine; Huang, Chun-Chieh; Wei, Hung-Mu; Guo, Yi-Jhih; Fu, Yu-Show; Lai, Mei-Chun; Chen, Chin-Chang

    2004-01-01

    The Wharton's jelly of the umbilical cord contains mucoid connective tissue and fibroblast-like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5-azacytidine or by culturing them in cardiomyocyte-conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N-cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.

  16. Differential circular RNAs expression in ovary during oviposition in honey bees.

    PubMed

    Chen, Xiao; Shi, Wei; Chen, Chao

    2018-04-27

    Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. The mechanism and function of circRNAs have been reported in some species. However, little is known regarding circRNAs in honey bees. In this study, we analyzed circRNAs through bioinformatics, and predicted 12,211 circRNAs in the ovary of honey bee queens. 1340, 175 and 100 circRNAs were differentially expressed in comparisons of egg-laying queens vs virgin queens, egg-laying inhibited queens vs egg-laying queens and egg-laying recovery queens vs egg-laying inhibited queens. Further, functional annotation of differentially expressed circRNAs revealed several pathways that are closely related to ovary activation and oviposition, including insulin secretion and calcium signaling pathways. Moreover, the potential interactions among circRNAs, miRNAs, lncRNAs and mRNAs were investigated. Ame_circ_0005197 and ame_circ_0016640 were observed to sponge several reproductive related miRNAs. These findings demonstrate that circRNAs have potential effects in ovary activation and oviposition of honey bees. Copyright © 2018. Published by Elsevier Inc.

  17. Identification of Potential Biomarkers for Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment by Vitreous iTRAQ-Based Proteomic Profiling

    PubMed Central

    Wu, Zhifeng; Ding, Nannan; Yu, Mengxi; Wang, Ke; Luo, Shasha; Zou, Wenjun; Zhou, Ying; Yan, Biao; Jiang, Qin

    2016-01-01

    Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is a complicated and serious type of rhegmatogenous retinal detachment (RRD). In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography-electrospray ion trap-mass spectrometry-mass spectrometry (nano-LC-ESI-MS/MS) and bioinformatic analysis. Our result shows that 103 differentially expressed proteins, including 54 up-regulated and 49 down-regulated proteins were identified in RRDCD. Gene ontology (GO) analysis suggested that most of the differentially expressed proteins were extracellular.The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis suggested that proteins related to complement and coagulation cascades were significantly enriched. iTRAQ-based proteomic profiling reveals that complement and coagulation cascades and inflammation may play important roles in the pathogenesis of RRDCD. This study may provide novel insights into the pathogenesis of RRDCD and offer potential opportunities for the diagnosis and treatment of RRDCD. PMID:27941623

  18. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    PubMed

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  19. Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis

    PubMed Central

    Chen, Kenian; Wu, Jia Qian

    2014-01-01

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo. PMID:25407807

  20. MiRNAs with Apoptosis Regulating Potential Are Differentially Expressed in Chronic Exercise-Induced Physiologically Hypertrophied Hearts

    PubMed Central

    Ramprasath, Tharmarajan; Kalpana, Krishnan

    2015-01-01

    Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms. PMID:25793527

  1. Electron dynamics inside a vacuum tube diode through linear differential equations

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Orozco, Fco. Javier González; Orozco

    2014-04-01

    In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child-Langmuir formulation.

  2. Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness.

    PubMed

    Baer, Patrick C; Griesche, Nadine; Luttmann, Werner; Schubert, Ralf; Luttmann, Arlette; Geiger, Helmut

    2010-01-01

    The potential of cultured adipose-derived stem cells (ASC) in regenerative medicine and new cell therapeutic concepts has been shown recently by many investigations. However, while the method of isolation of ASC from liposuction aspirates depending on plastic adhesion is well established, a standard expansion medium optimally maintaining the undifferentiated state has not been described. We cultured ASC in five commonly used culture media (two laboratory-made media and three commercially available media) and compared them with a standard medium. We analyzed the effects on cell morphology, proliferation, hepatocyte growth factor (HGF) expression, stem cell marker profile and differentiation potential. Proliferation was measured with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a fluorescent assay. Release of HGF was assessed by an immunoassay. Expression of characteristic stem cell-related transcription factors and markers was evaluated by quantitative polymerase chain reaction (qPCR) (Nanog, Sox-2, Rex-1, nestin and Oct-4) and flow cytometry (CD44, CD73, CD90, CD105 and CD166), and differentiation was shown by adipogenic medium. The morphology and expansion of ASC were significantly affected by the media used, whereas none of the media influenced the ASC potential to differentiate into adipocytes. Furthermore, two of the media induced an increase in expression of transcription factors, an increased secretion of HGF and a decrease in CD105 expression. Culture of ASC in one of these two media before using the cells in cell therapeutic approaches may have a benefit on their regenerative potential.

  3. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells.

    PubMed

    Kehl, Debora; Generali, Melanie; Görtz, Sabrina; Geering, Diego; Slamecka, Jaroslav; Hoerstrup, Simon P; Bleul, Ulrich; Weber, Benedikt

    2017-10-01

    Amniotic fluid represents an abundant source of multipotent stem cells, referred as broadly multipotent given their differentiation potential and expression of pluripotency-related genes. However, the origin of this broadly multipotent cellular fraction is not fully understood. Several sources have been proposed so far, including embryonic and extraembryonic tissues. In this regard, the ovine developmental model uniquely allows for direct comparison of fetal fluid-derived cells from two separate fetal fluid cavities, the allantois and the amnion, over the entire duration of gestation. As allantoic fluid mainly collects fetal urine, cells originating from the efferent urinary tract can directly be compared with cells deriving from the extraembryonic amniotic tissues and the fetus. This study shows isolation of cells from the amniotic [ovine amniotic fluid cells (oAFCs)] and allantoic fluid [ovine allantoic fluid cells (oALCs)] in a strictly paired fashion with oAFCs and oALCs derived from the same fetus. Both cell types showed cellular phenotypes comparable to standard mesenchymal stem cells (MSCs), with trilineage differentiation potential, and expression of common ovine MSC markers. However, the expression of MSC markers per single cell was higher in oAFCs as measured by flow cytometry. oAFCs exhibited higher proliferative capacities and showed significantly higher expression of pluripotency-related genes OCT4, STAT3, NANOG, and REX1 by quantitative real-time polymerase chain reaction compared with paired oALCs. No significant decrease of pluripotency-related gene expression was noted over gestation, implying that cells with high differentiation potential may be isolated at the end of pregnancy. In conclusion, this study suggests that cells with highest stem cell characteristics may originate from the fetus itself or the amniotic fetal adnexa rather than from the efferent urinary tract or the allantoic fetal adnexa.

  4. Differentiation of umbilical cord derived mesenchymal stem cells to hepatocyte cells by transfection of miR-106a, miR-574-3p, and miR-451.

    PubMed

    Khosravi, Maryam; Azarpira, Negar; Shamdani, Sara; Hojjat-Assari, Suzzan; Naserian, Sina; Karimi, Mohammad Hossein

    2018-08-15

    Studying the profile of micro RNAs (miRs) elucidated the highest expressed miRs in hepatic differentiation. In this study, we investigated to clarify the role of three embryonic overexpressed miRs (miR-106a, miR-574-3p and miR-451) during hepatic differentiation of human umbilical cord derived mesenchymal stem cells (UC-MSCs). We furthermore, aimed to explore whether overexpression of any of these miRs alone is sufficient to induce the differentiation of the UC-MSCs into hepatocyte-like cells. UC-MSCs were transfected either alone or together with miR-106a, miR-574-3p and miR-451 and their potential hepatic differentiation and alteration in gene expression profile, morphological changes and albumin secretion ability were investigated. We found that up-regulation of any of these three miRs alone cannot induce expression of all hepatic specific genes. Transfection of each miR alone, led to Sox17, FoxA2 expression that are related to initiation step of hepatic differentiation. However, concurrent ectopic overexpression of three miRs together can induce UC-MSCs differentiation into functionally mature hepatocytes. These results show that miRs have the capability to directly convert UC-MSCs to a hepatocyte phenotype in vitro. Copyright © 2018. Published by Elsevier B.V.

  5. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation

    PubMed Central

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-01-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3-E1 osteoblastic cells and osteoclast-like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST-1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that mangiferin significantly increased the mRNA level of runt-related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate-resistant acid phosphatase-positive multinuclear cells. RT-PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast-associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3-E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes. PMID:28627701

  6. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation.

    PubMed

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-08-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3‑E1 osteoblastic cells and osteoclast‑like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST‑1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription‑polymerase chain reaction (RT‑PCR) demonstrated that mangiferin significantly increased the mRNA level of runt‑related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate‑resistant acid phosphatase‑positive multinuclear cells. RT‑PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast‑associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3‑E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes.

  7. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.

    PubMed

    Batsali, Aristea K; Pontikoglou, Charalampos; Koutroulakis, Dimitrios; Pavlaki, Konstantia I; Damianaki, Athina; Mavroudi, Irene; Alpantaki, Kalliopi; Kouvidi, Elisavet; Kontakis, George; Papadaki, Helen A

    2017-04-26

    In view of the current interest in exploring the clinical use of mesenchymal stem cells (MSCs) from different sources, we performed a side-by-side comparison of the biological properties of MSCs isolated from the Wharton's jelly (WJ), the most abundant MSC source in umbilical cord, with bone marrow (BM)-MSCs, the most extensively studied MSC population. MSCs were isolated and expanded from BM aspirates of hematologically healthy donors (n = 18) and from the WJ of full-term neonates (n = 18). We evaluated, in parallel experiments, the MSC immunophenotypic, survival and senescence characteristics as well as their proliferative potential and cell cycle distribution. We also assessed the expression of genes associated with the WNT- and cell cycle-signaling pathway and we performed karyotypic analysis through passages to evaluate the MSC genomic stability. The hematopoiesis-supporting capacity of MSCs from both sources was investigated by evaluating the clonogenic cells in the non-adherent fraction of MSC co-cultures with BM or umbilical cord blood-derived CD34 + cells and by measuring the hematopoietic cytokines levels in MSC culture supernatants. Finally, we evaluated the ability of MSCs to differentiate into adipocytes and osteocytes and the effect of the WNT-associated molecules WISP-1 and sFRP4 on the differentiation potential of WJ-MSCs. Both ex vivo-expanded MSC populations showed similar morphologic, immunophenotypic, survival and senescence characteristics and acquired genomic alterations at low frequency during passages. WJ-MSCs exhibited higher proliferative potential, possibly due to upregulation of genes that stimulate cell proliferation along with downregulation of genes related to cell cycle inhibition. WJ-MSCs displayed inferior lineage priming and differentiation capacity toward osteocytes and adipocytes, compared to BM-MSCs. This finding was associated with differential expression of molecules related to WNT signaling, including WISP1 and sFRP4, the respective role of which in the differentiation potential of WJ-MSCs was specifically investigated. Interestingly, treatment of WJ-MSCs with recombinant human WISP1 or sFRP4 resulted in induction of osteogenesis and adipogenesis, respectively. WJ-MSCs exhibited inferior hematopoiesis-supporting potential probably due to reduced production of stromal cell-Derived Factor-1α, compared to BM-MSCs. Overall, these data are anticipated to contribute to the better characterization of WJ-MSCs and BM-MSCs for potential clinical applications.

  8. An orthologous transcriptional signature differentiates responses towards closely related chemicals in Arabidopsis thaliana and brassica napus

    EPA Science Inventory

    Herbicides are structurally diverse chemicals that inhibit plant-specific targets, however their off-target and potentially differentiating side-effects are less well defined. In this study, genome-wide expression profiling based on Affymetrix AtH1 arrays was used to identify dis...

  9. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells.

    PubMed

    Brown, Christine E; Starr, Renate; Aguilar, Brenda; Shami, Andrew F; Martinez, Catalina; D'Apuzzo, Massimo; Barish, Michael E; Forman, Stephen J; Jensen, Michael C

    2012-04-15

    To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. ©2012 AACR.

  10. Transcriptome analysis of zebrafish embryos exposed to deltamethrin.

    PubMed

    Chueh, Tsung-Cheng; Hsu, Li-Sung; Kao, Chin-Ming; Hsu, Tung-Wei; Liao, Hung-Yu; Wang, Kuan-Yi; Chen, Ssu Ching

    2017-05-01

    Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1548-1557, 2017. © 2016 Wiley Periodicals, Inc.

  11. Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits.

    PubMed

    Yuyama, Priscila Mary; Reis Júnior, Osvaldo; Ivamoto, Suzana Tiemi; Domingues, Douglas Silva; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães; Charmetant, Pierre; Leroy, Thierry; Pereira, Luiz Filipe Protasio

    2016-02-01

    Studies in diploid parental species of polyploid plants are important to understand their contributions to the formation of plant and species evolution. Coffea eugenioides is a diploid species that is considered to be an ancestor of allopolyploid Coffea arabica together with Coffea canephora. Despite its importance in the evolutionary history of the main economic species of coffee, no study has focused on C. eugenioides molecular genetics. RNA-seq creates the possibility to generate reference transcriptomes and identify coding genes and potential candidates related to important agronomic traits. Therefore, the main objectives were to obtain a global overview of transcriptionally active genes in this species using next-generation sequencing and to analyze specific genes that were highly expressed in leaves and fruits with potential exploratory characteristics for breeding and understanding the evolutionary biology of coffee. A de novo assembly generated 36,935 contigs that were annotated using eight databases. We observed a total of ~5000 differentially expressed genes between leaves and fruits. Several genes exclusively expressed in fruits did not exhibit similarities with sequences in any database. We selected ten differentially expressed unigenes in leaves and fruits to evaluate transcriptional profiles using qPCR. Our study provides the first gene catalog for C. eugenioides and enhances the knowledge concerning the mechanisms involved in the C. arabica homeologous. Furthermore, this work will open new avenues for studies into specific genes and pathways in this species, especially related to fruit, and our data have potential value in assisted breeding applications.

  12. Differential gene expression for Curvularia eragrostidis pathogenic incidence in crabgrass (Digitaria sanguinalis) revealed by cDNA-AFLP analysis.

    PubMed

    Wang, Jianshu; Wang, Xuemin; Yuan, Bohua; Qiang, Sheng

    2013-01-01

    Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C. eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D. sanguinalis.

  13. Identification of Differentially Expressed Genes in Breast Muscle and Skin Fat of Postnatal Pekin Duck

    PubMed Central

    Schachtschneider, Kyle Michael; Liu, Xiaolin; Huang, Wei; Xie, Ming; Hou, Shuisheng

    2014-01-01

    Lean-type Pekin duck is a commercial breed that has been obtained through long-term selection. Investigation of the differentially expressed genes in breast muscle and skin fat at different developmental stages will contribute to a comprehensive understanding of the potential mechanisms underlying the lean-type Pekin duck phenotype. In the present study, RNA-seq was performed on breast muscle and skin fat at 2-, 4- and 6-weeks of age. More than 89% of the annotated duck genes were covered by our RNA-seq dataset. Thousands of differentially expressed genes, including many important genes involved in the regulation of muscle development and fat deposition, were detected through comparison of the expression levels in the muscle and skin fat of the same time point, or the same tissue at different time points. KEGG pathway analysis showed that the differentially expressed genes clustered significantly in many muscle development and fat deposition related pathways such as MAPK signaling pathway, PPAR signaling pathway, Calcium signaling pathway, Fat digestion and absorption, and TGF-beta signaling pathway. The results presented here could provide a basis for further investigation of the mechanisms involved in muscle development and fat deposition in Pekin duck. PMID:25264787

  14. MMP‐2 and MMP‐14 Silencing Inhibits VEGFR2 Cleavage and Induces the Differentiation of Porcine Adipose‐Derived Mesenchymal Stem Cells to Endothelial Cells

    PubMed Central

    Almalki, Sami G.; Llamas Valle, Yovani

    2017-01-01

    Abstract The molecular mechanisms that control the ability of adipose‐derived mesenchymal stem cells (AMSCs) to remodel three‐dimensional extracellular matrix barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of AMSCs to endothelial cells (ECs) in vitro. MSCs were isolated from porcine abdominal adipose tissue, and characterized by immunopositivity to CD44, CD90, CD105, and immunonegativity to CD14 and CD45. Plasticity of AMSCs was confirmed by multilineage differentiation. The mRNA transcripts for MMPs and Tissue Inhibitor of Metalloproteinases (TIMPs), and protein expression of EC markers were analyzed. The enzyme activity and protein expression were analyzed by gelatin zymography, enzyme‐linked immunosorbent assay (ELISA), and Western blot. The differentiation of AMSCs to ECs was confirmed by mRNA and protein expressions of the endothelial markers. The mRNA transcripts for MMP‐2 and MMP‐14 were significantly increased during the differentiation of MSCs into ECs. Findings revealed an elevated MMP‐14 and MMP‐2 expression, and MMP2 enzyme activity. Silencing of MMP‐2 and MMP‐14 significantly increased the expression of EC markers, formation of capillary tubes, and acetylated‐low‐density lipoprotein uptake, and decreased the cleavage of vascular endothelial growth factor receptor type 2 (VEGFR2). Inhibition of VEGFR2 significantly decreased the expression of EC markers. These novel findings demonstrate that the upregulation of MMP2 and MMP14 has an inhibitory effect on the differentiation of AMSCs to ECs, and silencing these MMPs inhibit the cleavage of VEGFR2 and stimulate the differentiation of AMSCs to ECs. These findings provide a potential mechanism for the regulatory role of MMP‐2 and MMP‐14 in the re‐endothelialization of coronary arteries following intervention. Stem Cells Translational Medicine 2017;6:1385–1398 PMID:28213979

  15. Hypoxia Promotes Osteogenesis but Suppresses Adipogenesis of Human Mesenchymal Stromal Cells in a Hypoxia-Inducible Factor-1 Dependent Manner

    PubMed Central

    Lohanatha, Ferenz L.; Hahne, Martin; Strehl, Cindy; Fangradt, Monique; Tran, Cam Loan; Schönbeck, Kerstin; Hoff, Paula; Ode, Andrea; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2012-01-01

    Background Bone fracture initiates a series of cellular and molecular events including the expression of hypoxia-inducible factor (HIF)-1. HIF-1 is known to facilitate recruitment and differentiation of multipotent human mesenchymal stromal cells (hMSC). Therefore, we analyzed the impact of hypoxia and HIF-1 on the competitive differentiation potential of hMSCs towards adipogenic and osteogenic lineages. Methodology/Principal Findings Bone marrow derived primary hMSCs cultured for 2 weeks either under normoxic (app. 18% O2) or hypoxic (less than 2% O2) conditions were analyzed for the expression of MSC surface markers and for expression of the genes HIF1A, VEGFA, LDHA, PGK1, and GLUT1. Using conditioned medium, adipogenic or osteogenic differentiation as verified by Oil-Red-O or von-Kossa staining was induced in hMSCs under either normoxic or hypoxic conditions. The expression of HIF1A and VEGFA was measured by qPCR. A knockdown of HIF-1α by lentiviral transduction was performed, and the ability of the transduced hMSCs to differentiate into adipogenic and osteogenic lineages was analyzed. Hypoxia induced HIF-1α and HIF-1 target gene expression, but did not alter MSC phenotype or surface marker expression. Hypoxia (i) suppressed adipogenesis and associated HIF1A and PPARG gene expression in hMSCs and (ii) enhanced osteogenesis and associated HIF1A and RUNX2 gene expression. shRNA-mediated knockdown of HIF-1α enhanced adipogenesis under both normoxia and hypoxia, and suppressed hypoxia-induced osteogenesis. Conclusions/Significance Hypoxia promotes osteogenesis but suppresses adipogenesis of human MSCs in a competitive and HIF-1-dependent manner. We therefore conclude that the effects of hypoxia are crucial for effective bone healing, which may potentially lead to the development of novel therapeutic approaches. PMID:23029528

  16. Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection.

    PubMed

    Liu, Jun-Ying; Fan, Hui-Yan; Wang, Ying; Zhang, Yong-Liang; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2017-01-01

    Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development, defense, and symptom development. Here, 547 known miRNAs representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. A phylogenetic analysis was performed, and 8 Beta lineage-specific miRNAs were identified. Through a differential expression analysis, miRNAs associated with Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis and stem-loop RT-qPCR. In total, 103 known miRNAs representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with that of the mock-inoculated control. Targets of these differentially expressed miRNAs were also predicted by degradome sequencing. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.

  17. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    PubMed

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various growth stages and chlorophyll biosynthesis pathway related proteins, especially magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), may provide new insights into the molecular mechanisms of rice hull development and chlorophyll associated regulation.

  18. Proteomics Analysis of Tissue Samples Reveals Changes in Mitochondrial Protein Levels in Parathyroid Hyperplasia over Adenoma

    PubMed Central

    AKPINAR, GURLER; KASAP, MURAT; CANTURK, NUH ZAFER; ZULFIGAROVA, MEHIN; ISLEK, EYLÜL ECE; GULER, SERTAC ATA; SIMSEK, TURGAY; CANTURK, ZEYNEP

    2017-01-01

    Background/Aim: To unveil the pathophysiology of primary hyperparathyroidism, molecular details of parathyroid hyperplasia and adenoma have to be revealed. Such details will provide the tools necessary for differentiation of these two look-alike diseases. Therefore, in the present study, a comparative proteomic study using postoperative tissue samples from the parathyroid adenoma and parathyroid hyperplasia patients was performed. Materials and Methods: Protein extracts were prepared from tissue samples (n=8 per group). Protein pools were created for each group and subjected to DIGE and conventional 2DE. Following image analysis, spots representing the differentially regulated proteins were excised from the and used for identification via MALDI-TOF/TOF analysis. Results: The identities of 40 differentially-expressed proteins were revealed. Fourteen of these proteins were over-expressed in the hyperplasia while 26 of them were over-expressed in the adenoma. Conclusion: Most proteins found to be over-expressed in the hyperplasia samples were mitochondrial, underlying the importance of the mitochondrial activity as a potential biomarker for differentiation of parathyroid hyperplasia from adenoma. PMID:28446534

  19. [Effect of trichostatin A on the osteogenic differentiation potential of periodontal ligament stem cells in inflammatory microenvironment induced by tumor necrosis factor-α stimulation].

    PubMed

    Wang, H; Chen, Q; Liu, W J; Yang, Z H; Li, D; Jin, F

    2016-04-09

    To compare the expression of histone deacetylase(HDAC)1-11 of human periodontal ligament stem cells(PDLSC)in normal and inflammatory microenvironments, and to investigate the effect of histone deacetylase inhibitor trichostatin A(TSA)on the osteogenic differentiation potential of PDLSC in inflammatory microenvironment induced by tumor necrosis factor-α(TNF-α)stimulation. PDLSC were isolated from periodontal ligament tissues obtained from the surgically extracted human teeth and cultured by single-colony selection. The expression of HDAC1-11 in cells with or without TNF-α(10 μg/L)stimulation was evaluated by quantitative real time-PCR(RT-PCR). The effect of TSA on cell proliferation was investigated by methyl thiazolyl tetrazolium(MTT)assay. The influence of TSA on osteogenic differentiation of PDLSC in inflammatory microenvironment with TNF-α stimulation was assessed by alizarin red staining, quantitative RT-PCR and Western blotting, respectively. The expression of HDAC in PDLSC with TNF-α stimulation was significantly higher than that in normal PDLSC(P<0.05)(except HDAC7, P=0.243). TSA had no significant effect on PDLSC proliferation at the concentration of 50 nmol/L(P=0.232). The alizarin red staining showed that PDLSC in TNF-α group generated less mineralized nodule than the control group, while the cell matrix mineralization in TSA group was improved obviously. TNF-α had an inhibitory effect on the expression of osteogenesis related genes, runt-related transcription factor-2(RUNX2)and alkaline phosphatase(ALP), with relative gene expression ratio(experimental/control)decreased to 0.17 ± 0.02 and 0.32 ± 0.03, while TSA could significantly increase the genes' expression to 0.67±0.03 and 0.89±0.02(P<0.01). Western blotting test showed that in TNF-α group the expression of osteogenesis related proteins was obviously reduced, and compared with the TNF-α group, TSA could significantly promote the expression of proteinsin inflammatory microenvironment. PDLSC in inflammatory microenvironment by TNF-α stimulation had a higher expression of HDAC than that in normal conditions. TSA, as a histone deacetylase inhibitor, could significantly promote the osteogenic differentiation potential of PDLSC in inflammatory microenvironment by suppressing HDAC.

  20. Thrombospondin-4 Promotes Neuronal Differentiation of NG2 Cells via the ERK/MAPK Pathway.

    PubMed

    Yang, Hai Jie; Ma, Shuang Ping; Ju, Fei; Zhang, Ya Ping; Li, Zhi Chao; Zhang, Bin Bin; Lian, Jun Jiang; Wang, Lei; Cheng, Bin Feng; Wang, Mian; Feng, Zhi Wei

    2016-12-01

    NG2-expressing neural progenitors can produce neurons in the central nervous system, providing a potential cell resource of therapy for neurological disorders. However, the mechanism underlying neuronal differentiation of NG2 cells remains largely unknown. In this report, we found that a thrombospondin (TSP) family member, TSP4, is involved in the neuronal differentiation of NG2 cells. When TSP4 was overexpressed, NG2 cells underwent spontaneous neuronal differentiation, as demonstrated by the induction of various neuronal differentiation markers such as NeuN, Tuj1, and NF200, at the messenger RNA and protein levels. In contrast, TSP4 silencing had an opposite effect on the expression of neuronal differentiation markers in NG2 cells. Next, the signaling pathway responsible for TSP4-mediated NG2 cell differentiation was investigated. We found that ERK but not p38 and AKT signaling was affected by TSP4 overexpression. Furthermore, when ERK signaling was blocked by the inhibitor U0126, the neuronal marker expression of NG2 cells was substantially increased. Together, these findings suggested that TSP4 promoted neuronal differentiation of NG2 cells by inhibiting ERK/MAPK signaling, revealing a novel role of TSP4 in cell fate specification of NG2 cells.

  1. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Chen, Lin; Zeng, Jing

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observedmore » that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic differentiaton and expression of BMP2 in PMVECs. • CBDL-rat serum activates the BMP2/smad signaling pathway. • The downregulation of Smurf1 stimulates the accumulation of Smad1/5 in PMVECs. • Noggin reverses partially the myogenic differentiaton in PMVECs.« less

  2. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    PubMed Central

    2010-01-01

    Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets. PMID:21062462

  3. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells.

    PubMed

    Shirakawa, Aiko-Konno; Nagakubo, Daisuke; Hieshima, Kunio; Nakayama, Takashi; Jin, Zhe; Yoshie, Osamu

    2008-03-01

    In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA. In this study, we examined the regulation of CCR10 expression in terminally differentiating human B cells. As reported previously, IL-21 efficiently induced the differentiation of activated human CD19+ B cells into IgD-CD38+ plasma cells in vitro. A minor proportion of the resulting CD19+IgD-CD38+ cells expressed CCR10 at low levels. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the active metabolite of vitamine D3, dramatically increased the proportion of CD19+IgD-CD38+ cells expressing high levels of CCR10. The 1,25-(OH)2D3 also increased the number of CCR10+ cells expressing surface IgA, although the majority of CCR10+ cells remained negative for surface IgA. Thus, 1,25-(OH)2D3 alone may not be sufficient for the induction of IgA expression in terminally differentiating human B cells. To further determine whether 1,25-(OH)2D3 directly induces CCR10 expression in terminally differentiating B cells, we next performed the analysis on the human CCR10 promoter. We identified a proximal Ets-1 site and an upstream potential vitamin D response element to be critical for the inducible expression of CCR10 by 1,25-(OH)2D3. We confirmed the specific binding of Ets-1 and 1,25-(OH)2D3-activated vitamin D receptor to the respective sites. In conclusion, 1,25-(OH)2D3 efficiently induces CCR10 expression in terminally differentiating human B cells in vitro. Furthermore, the human CCR10 promoter is cooperatively activated by Ets-1 and vitamin D receptor in the presence of 1,25-(OH)2D3.

  4. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Bing; Xiao, Bo; Liang, Desheng

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the expression of Bcl-2, suggesting potential novel therapeutic targets for atherosclerosis.« less

  5. Filling gaps in PPAR-alpha signaling through comparative nutrigenomics analysis.

    PubMed

    Cavalieri, Duccio; Calura, Enrica; Romualdi, Chiara; Marchi, Emmanuela; Radonjic, Marijana; Van Ommen, Ben; Müller, Michael

    2009-12-11

    The application of high-throughput genomic tools in nutrition research is a widespread practice. However, it is becoming increasingly clear that the outcome of individual expression studies is insufficient for the comprehensive understanding of such a complex field. Currently, the availability of the large amounts of expression data in public repositories has opened up new challenges on microarray data analyses. We have focused on PPARalpha, a ligand-activated transcription factor functioning as fatty acid sensor controlling the gene expression regulation of a large set of genes in various metabolic organs such as liver, small intestine or heart. The function of PPARalpha is strictly connected to the function of its target genes and, although many of these have already been identified, major elements of its physiological function remain to be uncovered. To further investigate the function of PPARalpha, we have applied a cross-species meta-analysis approach to integrate sixteen microarray datasets studying high fat diet and PPARalpha signal perturbations in different organisms. We identified 164 genes (MDEGs) that were differentially expressed in a constant way in response to a high fat diet or to perturbations in PPARs signalling. In particular, we found five genes in yeast which were highly conserved and homologous of PPARalpha targets in mammals, potential candidates to be used as models for the equivalent mammalian genes. Moreover, a screening of the MDEGs for all known transcription factor binding sites and the comparison with a human genome-wide screening of Peroxisome Proliferating Response Elements (PPRE), enabled us to identify, 20 new potential candidate genes that show, both binding site, both change in expression in the condition studied. Lastly, we found a non random localization of the differentially expressed genes in the genome. The results presented are potentially of great interest to resume the currently available expression data, exploiting the power of in silico analysis filtered by evolutionary conservation. The analysis enabled us to indicate potential gene candidates that could fill in the gaps with regards to the signalling of PPARalpha and, moreover, the non-random localization of the differentially expressed genes in the genome, suggest that epigenetic mechanisms are of importance in the regulation of the transcription operated by PPARalpha.

  6. Effects of the Endocrine-Disrupting Chemical DDT on Self-Renewal and Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Strong, Amy L.; Shi, Zhenzhen; Strong, Michael J.; Miller, David F.B.; Rusch, Douglas B.; Buechlein, Aaron M.; Flemington, Erik K.; McLachlan, John A.; Nephew, Kenneth P.

    2014-01-01

    Background: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. Methods: We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. Results: MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. Conclusion: Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs. Citation: Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA. 2015. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. Environ Health Perspect 123:42–48; http://dx.doi.org/10.1289/ehp.1408188 PMID:25014179

  7. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration.

    PubMed

    Jones, Melissa K; Lu, Bin; Saghizadeh, Mehrnoosh; Wang, Shaomei

    2016-01-01

    Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell-based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell-based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. RNA-seq data of retinas from RCS rats injected with hNPCs (RCS(hNPCs)) were compared to sham surgery in RCS (RCS(sham)) and wild-type Long Evans (LE(sham)) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCS(sham) and LE(sham) samples. Additionally, 283 genes were differentially expressed between the RCS(hNPCs) and RCS(sham) samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCS(sham). Pathway analysis of the differential expression gene sets identified three affected pathways in RCS(hNPCs), which all play roles in phagocytosis signaling. Immunofluorescent staining detected the increased presence of macrophages and microglia in RCS(sham) retinas, which decreased in RCS(hNPCs) retinas similar to the patterns detected in LE(sham). The results from this study provide evidence of the gene expression changes that occur following treatment with hNPCs in the degenerating retina. This information can be used in future studies to potentially enhance or predict responses to hNPC and other stem cell therapies for retinal degenerative diseases.

  8. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs.

    PubMed

    Luo, Wen; Chen, Jiahui; Li, Limin; Ren, Xueyi; Cheng, Tian; Lu, Shiyi; Lawal, Raman Akinyanju; Nie, Qinghua; Zhang, Xiquan; Hanotte, Olivier

    2018-05-21

    The transcription factor c-Myc is an important regulator of cellular proliferation, differentiation and embryogenesis. While c-Myc can inhibit myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that c-Myc does not only inhibits myoblast differentiation but also promotes myoblast proliferation and muscle fibre hypertrophy. By performing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we identified the genome-wide binding profile of c-Myc in skeletal muscle cells. c-Myc achieves its regulatory effects on myoblast proliferation and differentiation by targeting the cell cycle pathway. Additionally, c-Myc can regulate cell cycle genes by controlling miRNA expression of which dozens of miRNAs can also be regulated directly by c-Myc. Among these c-Myc-associated miRNAs (CAMs), the roles played by c-Myc-induced miRNAs in skeletal muscle cells are similar to those played by c-Myc, whereas c-Myc-repressed miRNAs play roles that are opposite to those played by c-Myc. The cell cycle, ERK-MAPK and Akt-mediated pathways are potential target pathways of the CAMs during myoblast differentiation. Interestingly, we identified four CAMs that can directly bind to the c-Myc 3' UTR and inhibit c-Myc expression, suggesting that a negative feedback loop exists between c-Myc and its target miRNAs during myoblast differentiation. c-Myc also potentially regulates many long intergenic noncoding RNAs (lincRNAs). Linc-2949 and linc-1369 are directly regulated by c-Myc, and both lincRNAs are involved in the regulation of myoblast proliferation and differentiation by competing for the binding of muscle differentiation-related miRNAs. Our findings do not only provide a genome-wide overview of the role the c-Myc plays in skeletal muscle cells but also uncover the mechanism of how c-Myc and its target genes regulate myoblast proliferation and differentiation, and muscle fibre hypertrophy.

  9. Gene expression analysis of bud and leaf color in tea.

    PubMed

    Wei, Kang; Zhang, Yazhen; Wu, Liyun; Li, Hailin; Ruan, Li; Bai, Peixian; Zhang, Chengcai; Zhang, Fen; Xu, Liyi; Wang, Liyuan; Cheng, Hao

    2016-10-01

    Purple shoot tea attributing to the high anthocyanin accumulation is of great interest for its wide health benefits. To better understand potential mechanisms involved in purple buds and leaves formation in tea plants, we performed transcriptome analysis of six green or purple shoot tea individuals from a F1 population using the Illumina sequencing method. Totally 292 million RNA-Seq reads were obtained and assembled into 112,233 unigenes, with an average length of 759 bp and an N50 of 1081 bp. Moreover, totally 2193 unigenes showed significant differences in expression levels between green and purple tea samples, with 1143 up- and 1050 down-regulated in the purple teas. Further real time PCR analysis confirmed RNA-Seq results. Our study identified 28 differentially expressed transcriptional factors and A CsMYB gene was found to be highly similar to AtPAP1 in Arabidopsis. Further analysis of differentially expressed genes involved in anthocyanin biosynthesis and transportation showed that the late biosynthetic genes and genes involved in anthocyanin transportation were largely affected but the early biosynthetic genes were less or none affected. Overall, the identification of a large number of differentially expressed genes offers a global view of the potential mechanisms associated with purple buds and leaves formation, which will facilitate molecular breeding in tea plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Differentiation of Human Dental Stem Cells Reveal a Role for microRNA-218

    PubMed Central

    Gay, Isabel; Cavender, Adriana; Peto, David; Sun, Zhao; Speer, Aline; Cao, Huojun; Amendt, Brad A.

    2013-01-01

    Background Regeneration of the lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in the periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data is available on micro-RNAs (miRNAs) activity behind human-derived dental stem cells. Methods In this study, we isolated periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and gingival stem cells (GSCs) from extracted third molars; human bone marrow stem cells (BMSCs) were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. A miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. Results RUNX2 expression demonstrated the successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human dental stem cells (DSCs). DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. Conclusions These data reveal a miRNA regulated pathway for the differentiation of human DSCs and a select network of human microRNAs that control DSC osteogenic differentiation. PMID:23662917

  11. Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential.

    PubMed

    Linning, Katrina D; Tai, Mei-Hui; Madhukar, Burra V; Chang, C C; Reed, Donald N; Ferber, Sarah; Trosko, James E; Olson, L Karl

    2004-10-01

    The limited availability of transplantable human islets has stimulated the development of methods needed to isolate adult pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation. The objective of this study was to determine whether modulation of intracellular redox state with N-acetyl-L-cysteine (NAC) would allow for the propagation of pancreatic stem/progenitor cells from adult human pancreatic tissue. Cells were propagated from human pancreatic tissue using a serum-free, low-calcium medium supplemented with NAC and tested for their ability to differentiate when cultured under different growth conditions. Human pancreatic cell (HPC) cultures coexpressed alpha-amylase, albumin, vimentin, and nestin. The HPC cultures, however, did not express other genes associated with differentiated pancreatic exocrine, duct, or endocrine cells. A number of transcription factors involved in endocrine cell development including Beta 2, Islet-1, Nkx6.1, Pax4, and Pax6 were expressed at variable levels in HPC cultures. In contrast, pancreatic duodenal homeobox factor 1 (Pdx-1) expression was extremely low and at times undetectable. Overexpression of Pdx-1 in HPC cultures stimulated somatostatin, glucagon, and carbonic anhydrase expression but had no effect on insulin gene expression. HPC cultures could form 3-dimensional islet-like cell aggregates, and this was associated with expression of somatostatin and glucagon but not insulin. Cultivation of HPCs in a differentiation medium supplemented with nicotinamide, exendin-4, and/or LY294002, an inhibitor of phosphatidylinositol-3 kinase, stimulated expression of insulin mRNA and protein. These data support the use of intracellular redox modulation for the enrichment of pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation.

  12. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{submore » 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.« less

  13. DNetDB: The human disease network database based on dysfunctional regulation mechanism.

    PubMed

    Yang, Jing; Wu, Su-Juan; Yang, Shao-You; Peng, Jia-Wei; Wang, Shi-Nuo; Wang, Fu-Yan; Song, Yu-Xing; Qi, Ting; Li, Yi-Xue; Li, Yuan-Yuan

    2016-05-21

    Disease similarity study provides new insights into disease taxonomy, pathogenesis, which plays a guiding role in diagnosis and treatment. The early studies were limited to estimate disease similarities based on clinical manifestations, disease-related genes, medical vocabulary concepts or registry data, which were inevitably biased to well-studied diseases and offered small chance of discovering novel findings in disease relationships. In other words, genome-scale expression data give us another angle to address this problem since simultaneous measurement of the expression of thousands of genes allows for the exploration of gene transcriptional regulation, which is believed to be crucial to biological functions. Although differential expression analysis based methods have the potential to explore new disease relationships, it is difficult to unravel the upstream dysregulation mechanisms of diseases. We therefore estimated disease similarities based on gene expression data by using differential coexpression analysis, a recently emerging method, which has been proved to be more potential to capture dysfunctional regulation mechanisms than differential expression analysis. A total of 1,326 disease relationships among 108 diseases were identified, and the relevant information constituted the human disease network database (DNetDB). Benefiting from the use of differential coexpression analysis, the potential common dysfunctional regulation mechanisms shared by disease pairs (i.e. disease relationships) were extracted and presented. Statistical indicators, common disease-related genes and drugs shared by disease pairs were also included in DNetDB. In total, 1,326 disease relationships among 108 diseases, 5,598 pathways, 7,357 disease-related genes and 342 disease drugs are recorded in DNetDB, among which 3,762 genes and 148 drugs are shared by at least two diseases. DNetDB is the first database focusing on disease similarity from the viewpoint of gene regulation mechanism. It provides an easy-to-use web interface to search and browse the disease relationships and thus helps to systematically investigate etiology and pathogenesis, perform drug repositioning, and design novel therapeutic interventions.Database URL: http://app.scbit.org/DNetDB/ #.

  14. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are a class of endogenous, small, non-coding RNAs that regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in high plants. However, the diversity of miRNAs and their roles in floral development in Japanese apricot (Prunus mume Sieb. et Zucc) remains largely unexplored. Imperfect flowers with pistil abortion seriously decrease production yields. To understand the role of miRNAs in pistil development, pistil development-related miRNAs were identified by Solexa sequencing in Japanese apricot. Results Solexa sequencing was used to identify and quantitatively profile small RNAs from perfect and imperfect flower buds of Japanese apricot. A total of 22,561,972 and 24,952,690 reads were sequenced from two small RNA libraries constructed from perfect and imperfect flower buds, respectively. Sixty-one known miRNAs, belonging to 24 families, were identified. Comparative profiling revealed that seven known miRNAs exhibited significant differential expression between perfect and imperfect flower buds. A total of 61 potentially novel miRNAs/new members of known miRNA families were also identified by the presence of mature miRNAs and corresponding miRNA*s in the sRNA libraries. Comparative analysis showed that six potentially novel miRNAs were differentially expressed between perfect and imperfect flower buds. Target predictions of the 13 differentially expressed miRNAs resulted in 212 target genes. Gene ontology (GO) annotation revealed that high-ranking miRNA target genes are those implicated in the developmental process, the regulation of transcription and response to stress. Conclusions This study represents the first comparative identification of miRNAomes between perfect and imperfect Japanese apricot flowers. Seven known miRNAs and six potentially novel miRNAs associated with pistil development were identified, using high-throughput sequencing of small RNAs. The findings, both computationally and experimentally, provide valuable information for further functional characterisation of miRNAs associated with pistil development in plants. PMID:22863067

  15. Global Expression Profiling in Atopic Eczema Reveals Reciprocal Expression of Inflammatory and Lipid Genes

    PubMed Central

    Sääf, Annika M.; Tengvall-Linder, Maria; Chang, Howard Y.; Adler, Adam S.; Wahlgren, Carl-Fredrik; Scheynius, Annika; Nordenskjöld, Magnus; Bradley, Maria

    2008-01-01

    Background Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood. Methodology/Findings We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE. Conclusions/Significance Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema. PMID:19107207

  16. Organotypic culture of human amnion cells in air-liquid interface as a potential substitute for skin regeneration.

    PubMed

    Fatimah, Simat Siti; Chua, Kienhui; Tan, Geok Chin; Azmi, Tengku Ibrahim; Tan, Ay Eeng; Abdul Rahman, Hayati

    2013-08-01

    The aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture. HAECs at passage 1-2 were seeded onto a fibrin layer populated with human amnion mesenchymal cells to form the organotypic cultures. The organotypic HAECs were then cultured for 7, 14 and 21 d in two types of culture system: the submerged culture and the air-liquid interface culture. Cell morphogenesis was examined under the light and electron microscopes (transmission and scanning) and analyzed by immunohistochemistry. Organotypic HAECs formed a single layer epithelium after 3 wk in submerged as well as air-liquid interface cultures. Ultrastructurally, desmosomes were observed in organotypic HAECs cultured in the air-liquid interface but not in the submerged culture. The presence of desmosomes marked the onset of early epidermal differentiation. Organotypic HAECs were positive against anti-CK18 and anti-CK14 in both the submerged and the air-liquid interface cultures. The co-expression of CK14 and CK18 suggested that differentiation of HAECs into skin may follow the process of embryonic skin development. However, weak expression of CK14 was observed after 2 and 3 wk of culture in air-liquid interface. CK10, involucrin, type IV collagen and laminin-5 expression was absent in organotypic HAECs. This observation reflects the initial process of embryonic epidermal differentiation and stratification. Results from the present study suggest that the air-liquid interface could stimulate early differentiation of organotypic HAECs to epidermal cells, with a potential use for skin regeneration. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters!

    PubMed

    Chaudhury, Arun

    2015-01-01

    Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of "sphincter proteome." Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled "idiopathic" and facilitating practice of precision medicine.

  18. Bioinformatic Identification of Potential MicroRNAs and Their Targets in the Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Higher Basidiomycetes).

    PubMed

    Mu, Da-Shuai; Li, Chenyang; Shi, Liang; Zhang, Xuchen; Ren, Ang; Zhao, Ming-Wen

    2015-01-01

    MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNA molecules that negatively regulate gene expression at the transcriptional or the post-transcriptional level. Although a large number of miRNAs have been identified in many species, especially model plants and animals, miRNAs in fungi remain largely unknown. In this study, based on a database of expressed sequence tags in Ganoderma lucidum, 89 potential miRNAs were identified using computational methods. Real-time polymerase chain reaction analysis of miRNA-like samples prepared from G. lucidum at different development stages revealed that miRNA-like RNAs were differentially expressed in different stages. Furthermore, a total of 28 potential targets were found based on near-perfect or perfect complementarity between the randomly selected 9 miRNA-like RNAs and the target sequences, and potential targets for G. lucidum miRNA-like RNAs were predicted. Finally, we studied the expression pattern of 4 target genes in 3 different development stages of G. lucidum to further understand the mechanism of interaction between miRNA-like RNAs and their target genes. Our analysis paves the way toward identifying fungal miRNA-like RNAs that might be involved in various physiological and cellular differentiation processes.

  19. Modulation of microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins

    PubMed Central

    Harden, Mallory E.; Prasad, Nripesh; Griffiths, Anthony

    2017-01-01

    ABSTRACT The E6 and E7 proteins are the major oncogenic drivers encoded by high-risk human papillomaviruses (HPVs). While many aspects of the transforming activities of these proteins have been extensively studied, there are fewer studies that have investigated how HPV E6/E7 expression affects the expression of cellular noncoding RNAs. The goal of our study was to investigate HPV16 E6/E7 modulation of cellular microRNA (miR) levels and to determine the potential consequences for cellular gene expression. We performed deep sequencing of small and large cellular RNAs in primary undifferentiated cultures of human foreskin keratinocytes (HFKs) with stable expression of HPV16 E6/E7 or a control vector. After integration of the two data sets, we identified 51 differentially expressed cellular miRs associated with the modulation of 1,456 potential target mRNAs in HPV16 E6/E7-expressing HFKs. We discovered that the degree of differential miR expression in HFKs expressing HPV16 E6/E7 was not necessarily predictive of the number of corresponding mRNA targets or the potential impact on gene expression. Additional analyses of the identified miR-mRNA pairs suggest modulation of specific biological activities and biochemical pathways. Overall, our study supports the model that perturbation of cellular miR expression by HPV16 E6/E7 importantly contributes to the rewiring of cellular regulatory circuits by the high-risk HPV E6 and E7 proteins that contribute to oncogenic transformation. PMID:28049151

  20. Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation.

    PubMed

    Russ, Holger A; Landsman, Limor; Moss, Christopher L; Higdon, Roger; Greer, Renee L; Kaihara, Kelly; Salamon, Randy; Kolker, Eugene; Hebrok, Matthias

    2016-01-01

    Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation.

  1. Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation

    PubMed Central

    Russ, Holger A.; Landsman, Limor; Moss, Christopher L.; Higdon, Roger; Greer, Renee L.; Kaihara, Kelly; Salamon, Randy; Kolker, Eugene; Hebrok, Matthias

    2016-01-01

    Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation. PMID:26681951

  2. Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions.

    PubMed

    Tang, Yi; Liu, Lin; Wang, Pei; Chen, Donglei; Wu, Ziqiang; Tang, Chunbo

    2017-12-01

    Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered to be a promising method for periodontitis treatment. The molecular mechanism of functional regulation by MSCs remains unclear, thus limiting their application. Our previous study discovered that Periostin (POSTN) promoted the migration and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLSCs), but it is still unclear whether POSTN is able to restore the regenerative potential of PDLSCs under inflammatory conditions. In this study, we investigated the effect of POSTN on PDLSCs under inflammatory conditions and its mechanism. PDLSCs were isolated from periodontal ligament tissue. TNF-α was used at 10 ng/mL to mimic inflammatory conditions. Lentivirus POSTN shRNA was used to knock down POSTN. Recombinant human POSTN (rhPOSTN) was used to stimulate PDLSCs. A scratch assay was used to analyse cell migration. Alkaline phosphatase (ALP) activity, Alizarin Red staining and expression of osteogenesis-related genes were used to investigate the osteogenic differentiation potential. Western blot analysis was used to detect the mitogen-activated protein kinases (MAPK) and AKT signalling pathways. After a 10 ng/mL TNF-α treatment, knockdown of POSTN impeded scratch closure, inhibited ALP activity and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in PDLSCs, while 75 ng/mL rhPOSTN significantly accelerated scratch closure, enhanced ALP activity and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of POSTN inhibited expression of phosphorylated c-Jun N-terminal kinase (p-JNK), while 75 ng/mL rhPOSTN increased expression of p-JNK in PDLSCs with TNF-α treatment. Furthermore, inhibition of JNK by its inhibitor SP600125 dramatically blocked POSTN-enhanced scratch closure, ALP activity and mineralization in PDLSCs. Our results revealed that POSTN might promote the migration and osteogenic differentiation potential of PDLSCs via the JNK pathway, providing insight into the mechanism underlying MSC biology under inflammatory conditions and identifying a potential target for improving periodontal tissue regeneration. © 2017 John Wiley & Sons Ltd.

  3. In Vitro Hepatic Trans-Differentiation of Human Mesenchymal Stem Cells Using Sera from Congestive/Ischemic Liver during Cardiac Failure

    PubMed Central

    Bishi, Dillip Kumar; Mathapati, Santosh; Cherian, Kotturathu Mammen; Guhathakurta, Soma; Verma, Rama Shanker

    2014-01-01

    Cellular therapy for end-stage liver failures using human mesenchymal stem cells (hMSCs)-derived hepatocytes is a potential alternative to liver transplantation. Hepatic trans-differentiation of hMSCs is routinely accomplished by induction with commercially available recombinant growth factors, which is of limited clinical applications. In the present study, we have evaluated the potential of sera from cardiac-failure-associated congestive/ischemic liver patients for hepatic trans-differentiation of hMSCs. Results from such experiments were confirmed through morphological changes and expression of hepatocyte-specific markers at molecular and cellular level. Furthermore, the process of mesenchymal-to-epithelial transition during hepatic trans-differentiation of hMSCs was confirmed by elevated expression of E-Cadherin and down-regulation of Snail. The functionality of hMSCs-derived hepatocytes was validated by various liver function tests such as albumin synthesis, urea release, glycogen accumulation and presence of a drug inducible cytochrome P450 system. Based on these findings, we conclude that sera from congestive/ischemic liver during cardiac failure support a liver specific microenvironment for effective hepatic trans-differentiation of hMSCs in vitro. PMID:24642599

  4. Mechanical Strain Promotes Oligodendrocyte Differentiation by Global Changes of Gene Expression

    PubMed Central

    Jagielska, Anna; Lowe, Alexis L.; Makhija, Ekta; Wroblewska, Liliana; Guck, Jochen; Franklin, Robin J. M.; Shivashankar, G. V.; Van Vliet, Krystyn J.

    2017-01-01

    Differentiation of oligodendrocyte progenitor cells (OPC) to oligodendrocytes and subsequent axon myelination are critical steps in vertebrate central nervous system (CNS) development and regeneration. Growing evidence supports the significance of mechanical factors in oligodendrocyte biology. Here, we explore the effect of mechanical strains within physiological range on OPC proliferation and differentiation, and strain-associated changes in chromatin structure, epigenetics, and gene expression. Sustained tensile strain of 10–15% inhibited OPC proliferation and promoted differentiation into oligodendrocytes. This response to strain required specific interactions of OPCs with extracellular matrix ligands. Applied strain induced changes in nuclear shape, chromatin organization, and resulted in enhanced histone deacetylation, consistent with increased oligodendrocyte differentiation. This response was concurrent with increased mRNA levels of the epigenetic modifier histone deacetylase Hdac11. Inhibition of HDAC proteins eliminated the strain-mediated increase of OPC differentiation, demonstrating a role of HDACs in mechanotransduction of strain to chromatin. RNA sequencing revealed global changes in gene expression associated with strain. Specifically, expression of multiple genes associated with oligodendrocyte differentiation and axon-oligodendrocyte interactions was increased, including cell surface ligands (Ncam, ephrins), cyto- and nucleo-skeleton genes (Fyn, actinins, myosin, nesprin, Sun1), transcription factors (Sox10, Zfp191, Nkx2.2), and myelin genes (Cnp, Plp, Mag). These findings show how mechanical strain can be transmitted to the nucleus to promote oligodendrocyte differentiation, and identify the global landscape of signaling pathways involved in mechanotransduction. These data provide a source of potential new therapeutic avenues to enhance OPC differentiation in vivo. PMID:28473753

  5. Differentiation of Mesenchymal Stem Cells Towards Nephrogenic Lineage and Their Enhanced Resistance to Oxygen Peroxide-induced Oxidative Stress.

    PubMed

    Tayyeb, Asima; Shahzad, Naveed; Ali, Gibran

    2017-07-01

    Mesenchymal stem cells (MSCs) have been publicized to ameliorate kidney injury both in vitro and in vivo. However, very less is known if MSCs can be differentiated towards renal lineages and their further application potential in kidney injuries. The present study developed a conditioning system of growth factors fibroblast growth factor 2, transforming growth factor-β2, and leukemia inhibitory factor for in vitro differentiation of MSCs isolated from different sources towards nephrogenic lineage. Less invasively isolated adipose-derived MSCs were also compared to bone marrow-derived MSCs for their differentiation potential to induce renal cell. Differentiated MSCs were further evaluated for their resistance to oxidative stress induced by oxygen peroxide. A combination of growth factors successfully induced differentiation of MSCs. Both types of differentiated cells showed significant expression of pronephrogenic markers (Wnt4, Wt1, and Pax2) and renal epithelial markers (Ecad and ZO1). In contrast, expression of mesenchymal stem cells marker Oct4 and Vim were downregulated. Furthermore, differentiated adipose-derived MSCs and bone marrow-derived MSCs showed enhanced and comparable resistance to oxygen peroxide-induced oxidative stress. Adipose-derived MSC provides a promising alternative to bone marrow-derived MSC as a source of autologous stem cells in human kidney injuries. In addition, differentiated MSCs with further in vivo investigations may serve as a cell source for tissue engineering or cell therapy in different renal ailments.

  6. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome.

    PubMed

    Judelson, Howard S; Ah-Fong, Audrey M V; Aux, George; Avrova, Anna O; Bruce, Catherine; Cakir, Cahid; da Cunha, Luis; Grenville-Briggs, Laura; Latijnhouwers, Maita; Ligterink, Wilco; Meijer, Harold J G; Roberts, Samuel; Thurber, Carrie S; Whisson, Stephen C; Birch, Paul R J; Govers, Francine; Kamoun, Sophien; van West, Pieter; Windass, John

    2008-04-01

    Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.

  7. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study.

    PubMed

    Wang, Shan-Zheng; Chang, Qing; Kong, Xiang-Fei; Wang, Chen

    2015-01-01

    The interests in platelet-rich plasma (PRP) and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs). We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs) on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1), dexamethasone (DEX), and vitamin C (Vc) was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  8. A Multidimensional Comparison of Maritally and Sexually Dysfunctioned Couples.

    ERIC Educational Resources Information Center

    Berg, Phyllis; Snyder, Douglas K.

    The Marital Satisfaction Inventory (MSI) is a potential instrument for differentiating couples with specific sexual distress from those with more general marital complaints. Couples (N=45) expressing primary complaints of dissatisfaction with their sexual relationship and couples (N=45) expressing primary complaints of generalized marital distress…

  9. Differentiation of NUT Midline Carcinoma by Epigenomic Reprogramming

    PubMed Central

    Schwartz, Brian E.; Hofer, Matthias D.; Lemieux, Madeleine E.; Bauer, Daniel E.; Cameron, Michael J.; West, Nathan H.; Agoston, Elin S.; Reynoird, Nicolas; Khochbin, Saadi; Ince, Tan A.; Christie, Amanda; Janeway, Katherine A.; Vargas, Sara O.; Perez-Atayde, Antonio R.; Aster, Jon C.; Sallan, Stephen E.; Kung, Andrew L.; Bradner, James E.; French, Christopher A.

    2011-01-01

    NUT midline carcinoma (NMC) is a lethal pediatric tumor defined by the presence of BRD-NUT fusion proteins that arrest differentiation. Here we explore the mechanisms underlying the ability of BRD4-NUT to prevent squamous differentiation. In both gain-of and loss-of-expression assays we find that expression of BRD4-NUT is associated with globally decreased histone acetylation and transcriptional repression. Bulk chromatin acetylation can be restored by treatment of NMC cells with histone deacetylase inhibitors (HDACi), engaging a program of squamous differentiation and arrested growth in vitro that closely mimics the effects of siRNA mediated attenuation of BRD4-NUT expression. The potential therapeutic utility of HDACi differentiation therapy was established in three different NMC xenograft models, where it produced significant growth inhibition and a survival benefit. Based on these results and translational studies performed with patient-derived primary tumor cells, a child with NMC was treated with the FDA-approved HDAC inhibitor, vorinostat. An objective response was obtained after five weeks of therapy, as determined by positron emission tomography. These findings provide preclinical support for trials of HDACi in patients with NMC. PMID:21447744

  10. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells.

    PubMed

    Marei, Hany El Sayed; El-Gamal, Aya; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Farag, Amany; Cenciarelli, Carlo; Thomas, Caceci; Anwarul, Hasan

    2018-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; β Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  11. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  12. Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy.

    PubMed

    O'Reilly, Paul; Ortutay, Csaba; Gernon, Grainne; O'Connell, Enda; Seoighe, Cathal; Boyce, Susan; Serrano, Luis; Szegezdi, Eva

    2014-12-19

    Identification of differentially expressed genes from transcriptomic studies is one of the most common mechanisms to identify tumor biomarkers. This approach however is not well suited to identify interaction between genes whose protein products potentially influence each other, which limits its power to identify molecular wiring of tumour cells dictating response to a drug. Due to the fact that signal transduction pathways are not linear and highly interlinked, the biological response they drive may be better described by the relative amount of their components and their functional relationships than by their individual, absolute expression. Gene expression microarray data for 109 tumor cell lines with known sensitivity to the death ligand cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was used to identify genes with potential functional relationships determining responsiveness to TRAIL-induced apoptosis. The machine learning technique Random Forest in the statistical environment "R" with backward elimination was used to identify the key predictors of TRAIL sensitivity and differentially expressed genes were identified using the software GeneSpring. Gene co-regulation and statistical interaction was assessed with q-order partial correlation analysis and non-rejection rate. Biological (functional) interactions amongst the co-acting genes were studied with Ingenuity network analysis. Prediction accuracy was assessed by calculating the area under the receiver operator curve using an independent dataset. We show that the gene panel identified could predict TRAIL-sensitivity with a very high degree of sensitivity and specificity (AUC=0·84). The genes in the panel are co-regulated and at least 40% of them functionally interact in signal transduction pathways that regulate cell death and cell survival, cellular differentiation and morphogenesis. Importantly, only 12% of the TRAIL-predictor genes were differentially expressed highlighting the importance of functional interactions in predicting the biological response. The advantage of co-acting gene clusters is that this analysis does not depend on differential expression and is able to incorporate direct- and indirect gene interactions as well as tissue- and cell-specific characteristics. This approach (1) identified a descriptor of TRAIL sensitivity which performs significantly better as a predictor of TRAIL sensitivity than any previously reported gene signatures, (2) identified potential novel regulators of TRAIL-responsiveness and (3) provided a systematic view highlighting fundamental differences between the molecular wiring of sensitive and resistant cell types.

  13. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.

  14. Concomitant inhibition of prolyl hydroxylases and ROCK initiates differentiation of mesenchymal stem cells and PC12 towards the neuronal lineage.

    PubMed

    Pacary, Emilie; Petit, Edwige; Bernaudin, Myriam

    2008-12-12

    This study demonstrates that a prolyl hydroxylase inhibitor, FG-0041, is able, in combination with the ROCK inhibitor, Y-27632, to initiate differentiation of mesenchymal stem cells (MSCs) into neuron-like cells. FG-0041/Y-27632 co-treatment provokes morphological changes into neuron-like cells, increases neuronal marker expression and provokes modifications of cell cycle-related gene expression consistent with a cell cycle arrest of MSC, three events showing the engagement of MSC towards the neuronal lineage. Moreover, as we observed in our previous studies with cobalt chloride and desferroxamine, the activation of HIF-1 by this prolyl hydroxylase inhibitor is potentiated by Y-27632 which could explain at least in part the effect of this co-treatment on MSC neuronal differentiation. In addition, we show that this co-treatment enhances neurite outgrowth and tyrosine hydroxylase expression in PC12 cells. Altogether, these results evidence that concomitant inhibition of prolyl hydroxylases and ROCK represents a relevant protocol to initiate neuronal differentiation.

  15. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development.

    PubMed

    Baertschiger, Reto M; Bosco, Domenico; Morel, Philippe; Serre-Beinier, Veronique; Berney, Thierry; Buhler, Leo H; Gonelle-Gispert, Carmen

    2008-07-01

    Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.

  16. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats.

    PubMed

    Tang, Qianzi; Huang, Wenyao; Guan, Jiuqiang; Jin, Long; Che, Tiandong; Fu, Yuhua; Hu, Yaodong; Tian, Shilin; Wang, Dawei; Jiang, Zhi; Li, Xuewei; Li, Mingzhou

    2015-08-10

    Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    PubMed

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Getting the most out of RNA-seq data analysis.

    PubMed

    Khang, Tsung Fei; Lau, Ching Yee

    2015-01-01

    Background. A common research goal in transcriptome projects is to find genes that are differentially expressed in different phenotype classes. Biologists might wish to validate such gene candidates experimentally, or use them for downstream systems biology analysis. Producing a coherent differential gene expression analysis from RNA-seq count data requires an understanding of how numerous sources of variation such as the replicate size, the hypothesized biological effect size, and the specific method for making differential expression calls interact. We believe an explicit demonstration of such interactions in real RNA-seq data sets is of practical interest to biologists. Results. Using two large public RNA-seq data sets-one representing strong, and another mild, biological effect size-we simulated different replicate size scenarios, and tested the performance of several commonly-used methods for calling differentially expressed genes in each of them. We found that, when biological effect size was mild, RNA-seq experiments should focus on experimental validation of differentially expressed gene candidates. Importantly, at least triplicates must be used, and the differentially expressed genes should be called using methods with high positive predictive value (PPV), such as NOISeq or GFOLD. In contrast, when biological effect size was strong, differentially expressed genes mined from unreplicated experiments using NOISeq, ASC and GFOLD had between 30 to 50% mean PPV, an increase of more than 30-fold compared to the cases of mild biological effect size. Among methods with good PPV performance, having triplicates or more substantially improved mean PPV to over 90% for GFOLD, 60% for DESeq2, 50% for NOISeq, and 30% for edgeR. At a replicate size of six, we found DESeq2 and edgeR to be reasonable methods for calling differentially expressed genes at systems level analysis, as their PPV and sensitivity trade-off were superior to the other methods'. Conclusion. When biological effect size is weak, systems level investigation is not possible using RNAseq data, and no meaningful result can be obtained in unreplicated experiments. Nonetheless, NOISeq or GFOLD may yield limited numbers of gene candidates with good validation potential, when triplicates or more are available. When biological effect size is strong, NOISeq and GFOLD are effective tools for detecting differentially expressed genes in unreplicated RNA-seq experiments for qPCR validation. When triplicates or more are available, GFOLD is a sharp tool for identifying high confidence differentially expressed genes for targeted qPCR validation; for downstream systems level analysis, combined results from DESeq2 and edgeR are useful.

  19. Fndc5 knockdown induced suppression of mitochondrial integrity and significantly decreased cardiac differentiation of mouse embryonic stem cells.

    PubMed

    Nazem, Shima; Rabiee, Farzaneh; Ghaedi, Kamran; Babashah, Sadegh; Sadeghizadeh, Majid; Nasr-Esfahani, Mohammad Hossein

    2018-06-01

    Fibronectin type III domain-containing 5 protein (Fndc5) is a glycosylated protein with elevated expression in high energy demanded tissues as heart, brain, and muscle. It has been shown that upregulation of Fndc5 is regulated by peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α), which is known as a master regulator of mitochondrial function and biogenesis. Also, our group indicated that Fndc5 expression increases gradually during cardiac differentiation of mouse embryonic stem cells (mESCs). In this paper, to clarify the importance of Fndc5 in cardiac differentiation, we south to knock down Fndc5 expression by generation a stably transduced mESC line that derives the expression of a short hairpin RNA (shRNA) against Fndc5 gene following doxycycline (Dox) induction. Knock-down of Fndc5 demonstrated a considerable decrease in expression of cardiac progenitor and cardiomyocyte markers. Considering the fact that mitochondria play a crucial role in cardiac differentiation of ESCs, we investigated the role of Fndc5, as a downstream target of PGC1-α, on mitochondrial indices. Results showed that expression of nuclear encoded mitochondrial genes including PGC1-α, Atp5b, Ndufb5, and SOD2 significantly decreased. Moreover, mitochondrial membrane potential (ΔΨm) and relative ATP content of cardiomyocytes decreased markedly with relative ROS level increase. Together, our results suggest that Fndc5 attenuates process of cardiac differentiation of mESCs which is associated with modulation of mitochondrial function and gene expression. © 2017 Wiley Periodicals, Inc.

  20. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    PubMed

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  1. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Weiguo, E-mail: liangweiguo@tom.com; Fang, Dejian; Ye, Dongping

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-αmore » decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.« less

  2. Differential co-expression analysis of a microarray gene expression profiles of pulmonary adenocarcinoma.

    PubMed

    Fu, Shijie; Pan, Xufeng; Fang, Wentao

    2014-08-01

    Lung cancer severely reduces the quality of life worldwide and causes high socioeconomic burdens. However, key genes leading to the generation of pulmonary adenocarcinoma remain elusive despite intensive research efforts. The present study aimed to identify the potential associations between transcription factors (TFs) and differentially co‑expressed genes (DCGs) in the regulation of transcription in pulmonary adenocarcinoma. Gene expression profiles of pulmonary adenocarcinoma were downloaded from the Gene Expression Omnibus, and gene expression was analyzed using a computational method. A total of 37,094 differentially co‑expressed links (DCLs) and 251 DCGs were identified, which were significantly enriched in 10 pathways. The construction of the regulatory network and the analysis of the regulatory impact factors revealed eight crucial TFs in the regulatory network. These TFs regulated the expression of DCGs by promoting or inhibiting their expression. In addition, certain TFs and target genes associated with DCGs did not appear in the DCLs, which indicated that those TFs could be synergistic with other factors. This is likely to provide novel insights for research into pulmonary adenocarcinoma. In conclusion, the present study may enhance the understanding of disease mechanisms and lead to an improved diagnosis of lung cancer. However, further studies are required to confirm these observations.

  3. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells.

    PubMed

    Peng, Shao-Yu; Chou, Chien-Wen; Kuo, Yu-Hsuan; Shen, Perng-Chih; Shaw, S W Steven

    2017-06-01

    Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations. Copyright © 2017. Published by Elsevier B.V.

  4. Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived SAGE libraries

    PubMed Central

    Silveira, Nelson JF; Varuzza, Leonardo; Machado-Lima, Ariane; Lauretto, Marcelo S; Pinheiro, Daniel G; Rodrigues, Rodrigo V; Severino, Patrícia; Nobrega, Francisco G; Silva, Wilson A; de B Pereira, Carlos A; Tajara, Eloiza H

    2008-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor. PMID:19014460

  5. The effect of syndecan-4 and glypican-1 knockdown on the proliferation and differentiation of turkey satellite cells differing in age and growth rates.

    PubMed

    Velleman, Sandra G; Clark, Daniel L; Tonniges, Jeffrey R

    2018-09-01

    Posthatch skeletal muscle growth requires myogenic satellite cells and the dynamic expression of cell membrane-associated proteins. The membrane associated heparan sulfate proteoglycans, syndecan-4 and glypican-1, link the satellite cell niche to the intracellular environment. Sydnecan-4 and glypican-1 are differentially expressed with age in turkey satellite cells and their over-expression impacts both satellite cell proliferation and differentiation, but their effect on satellite cells from lines with different growth potentials is not known. The objective of the current study was to determine if syndecan-4 and glypican-1 regulation of satellite cell proliferation and differentiation is affected by age and growth selection. Pectoralis major satellite cells isolated at 1 d, 7 and 16-wk of age from a Randombred Control 2 (RBC2) line and a 16-wk body weight (F) line selected from the RBC2 line turkeys were studied. Syndecan-4 and glypican-1 expression was knocked down in both lines. The F-line cells proliferated faster than RBC2 line cells regardless of age, while differentiation tended to be greater in RBC2 line cells than F-line cells at each age. Syndecan-4 knockdown decreased proliferation at 7- and 16-wk but not 1 d cells, and increased differentiation at 1 d and 7 wk but not 16 wk cells. Glypican-1 knockdown differentially affected proliferation depending on cell age, whereas differentiation was decreased for 7- and 16-wk but not 1 d cells. These data suggest syndecan-4 and glypican-1 differentially affected satellite cell function in an age-dependent manner, but had little impact on differences in proliferation and differentiation due to growth selection. Copyright © 2018. Published by Elsevier Inc.

  6. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio

    2015-10-15

    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs. © 2015 UICC.

  7. Identification of the key molecules involved in chronic copper exposure-aggravated memory impairment in transgenic mice of Alzheimer's disease using proteomic analysis.

    PubMed

    Yu, Jun; Luo, Xiaobin; Xu, Hua; Ma, Quan; Yuan, Jianhui; Li, Xuling; Chang, Raymond Chuen-Chung; Qu, Zhongsen; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by a progressive impairment of cognitive functions including spatial learning and memory. Excess copper exposure accelerates the development of AD; however, the potential mechanisms by which copper exacerbates the symptoms of AD remain unknown. In this study, we explored the effects of chronic copper exposure on cognitive function by treating 6 month-old triple AD transgenic (3xTg-AD) mice with 250 ppm copper sulfate in drinking water for 6 months, and identified several potential key molecules involved in the effects of chronic copper exposure on memory by proteomic analysis. The behavioral test showed that chronic copper exposure aggravated memory impairment of 3xTg-AD mice. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry revealed a total of 44 differentially expressed proteins (18 upregulated and 26 down-regulated) in hippocampus between the wild-type (WT) mice and non-exposed 3xTg-AD mice. A total of 40 differentially expressed proteins were revealed (20 upregulated and 20 down-regulated) in hippocampus between copper exposed and non-exposed 3xTg-AD mice. Among these differentially expressed proteins, complexin-1 and complexin-2, two memory associated proteins, were significantly decreased in hippocampus of 3xTg-AD mice compared with the WT mice. Furthermore, the expression of these two proteins was further down-regulated in 3xTg-AD mice when exposed to copper. The abnormal expression of complexin-1 and complexin-2 identified by proteomic analysis was verified by western blot analysis. Taken together, our data showed that chronic copper exposure accelerated memory impairment and altered the expression of proteins in hippocampus in 3xTg-AD mice. The functional analysis on the differentially expressed proteins suggested that complexin-1 and complexin-2 may be the key molecules involved in chronic copper exposure-aggravated memory impairment in AD.

  8. [Study of testicular cancer gene expression in samples of oral leukoplakia and squamous cell carcinoma of the mouth].

    PubMed

    Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S

    2012-01-01

    Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.

  9. Aqueous Ethanolic Extract of Tinospora cordifolia as a Potential Candidate for Differentiation Based Therapy of Glioblastomas

    PubMed Central

    Mishra, Rachana; Kaur, Gurcharan

    2013-01-01

    Glioblastomas are the most aggressive primary brain tumors and their heterogeneity and complexity often renders them non responsive to various conventional treatments. Search for herbal products having potential anti-cancer activity is an active area of research in the Indian traditional system of medicine i.e., Ayurveda. Tinospora cordifolia, also named as ‘heavenly elixir’ is used in various ayurvedic decoctions as panacea to treat several body ailments. The current study investigated the anti-brain cancer potential of 50% ethanolic extract of Tinospora cordifolia (TCE) using C6 glioma cells. TCE significantly reduced cell proliferation in dose-dependent manner and induced differentiation in C6 glioma cells, resulting in astrocyte-like morphology as indicated by phase contrast images, GFAP expression and process outgrowth data of TCE treated cells which exhibited higher number and longer processes than untreated cells. Reduced proliferation of cells was accompanied by enhanced expression of senescence marker, mortalin and its translocation from perinuclear to pancytoplasmic spaces. Further, TCE showed anti-migratory and anti-invasive potential as depicted by wound scratch assay and reduced expression of plasticity markers NCAM and PSA-NCAM along with MMP-2 and 9. On analysis of the cell cycle and apoptotic markers, TCE treatment was seen to arrest the C6 cells in G0/G1 and G2/M phase, suppressing expression of G1/S phase specific protein cyclin D1 and anti-apoptotic protein Bcl-xL, thus supporting its anti-proliferative and apoptosis inducing potential. Present study provides the first evidence for the presence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastatic potential of TCE in glioma cells and possible signaling pathways involved in its mode of action. Our primary data suggests that TCE and its active components may prove to be promising phytotherapeutic interventions in gliobalstoma multiformae.  PMID:24205314

  10. Advanced glycation end product-induced astrocytic differentiation of cultured neurospheres through inhibition of Notch-Hes1 pathway-mediated neurogenesis.

    PubMed

    Guo, Yijing; Wang, Pin; Sun, Haixia; Cai, Rongrong; Xia, Wenqing; Wang, Shaohua

    2013-12-23

    This study aims to investigate the roles of the Notch-Hes1 pathway in the advanced glycation end product (AGE)-mediated differentiation of neural stem cells (NSCs). We prepared pLentiLox3.7 lentiviral vectors that express short hairpin RNA (shRNA) against Notch1 and transfected it into NSCs. Cell differentiation was analyzed under confocal laser-scanning microscopy. The percentage of neurons and astrocytes was quantified by normalizing the total number of TUJ1+ (Neuron-specific class III β-tubulin) and GFAP+ (Glial fibrillary acidic protein) cells to the total number of Hoechst 33342-labeled cell nuclei. The protein and gene expression of Notch-Hes1 pathway components was examined via western blot analysis and real-time PCR. After 1 week of incubation, we found that AGE-bovine serum albumin (BSA) (400 μg/mL) induced the astrocytic differentiation of cultured neurospheres and inhibited neuronal formation. The expression of Notch-Hes1 pathway components was upregulated in the cells in the AGE-BSA culture medium. Immunoblot analysis indicated that shRNA silencing of Notch1 expression in NSCs significantly increases neurogenesis and suppresses astrocytic differentiation in NSCs incubated with AGE-BSA. AGEs promote the astrocytic differentiation of cultured neurospheres by inhibiting neurogenesis through the Notch-Hes1 pathway, providing a potential therapeutic target for hyperglycemia-related cognitive deficits.

  11. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  12. An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    PubMed Central

    Huang, Lei; Zhao, Shuangping; Frasor, Jonna M.; Dai, Yang

    2011-01-01

    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers. PMID:21789246

  13. RAC1 regulate tumor necrosis factor-α-mediated impaired osteogenic differentiation of dental pulp stem cells.

    PubMed

    Feng, Guijuan; Shen, Qijie; Lian, Min; Gu, Zhifeng; Xing, Jing; Lu, Xiaohui; Huang, Dan; Li, Liren; Huang, Shen; Wang, Yi; Zhang, Jinlong; Shi, Jiahai; Zhang, Dongmei; Feng, Xingmei

    2015-09-01

    Human dental pulp contains a rapidly proliferative subpopulation of precursor cells termed dental pulp stem cells (DPSCs) that show self-renewal and multilineage differentiation, including neurogenic, chondrogenic, osteogenic and adipogenic. We previously reported that tomuor necrosis factor-α (TNF-α) (10 ng/mL) triggered osteogenic differentiation of human DPSCs via the nuclear factor-κB (NF-κB) signaling pathway. While previous studies showed that cells treated with TNF-α at higher concentrations showed decreased osteogenic differentiation capability. In this study we analyze the function of TNF-α (100 ng/mL) on osteogenic differentiation of human DPSCs for the first time and identify the underlying molecule mechanisms. Our data revealed that TNF-α with higher concentration significantly reduced mineralization and the expression of bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2). Further, we revealed that TNF-α could suppress the osteogenic differentiation of DPSCs via increasing the expression of RAC1, which could activate the Wnt/β-catenin signaling pathway and liberate β-catenin to translocate into the nucleus. Genetic silencing of RAC1 expression using siRNA restored osteogenic differentiation of DPSCs. Our findings may provide a potential approach to bone regeneration in inflammatory microenvironments. © 2015 Japanese Society of Developmental Biologists.

  14. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines

    PubMed Central

    2010-01-01

    To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders. PMID:20670406

  15. Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage.

    PubMed

    Raju, Ravali; Chau, David; Cho, Dong Seong; Park, Yonsil; Verfaillie, Catherine M; Hu, Wei-Shou

    2017-02-15

    The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 10 9 -10 10 cells, because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage, to allow for at least an eightfold increase in cell number, with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array, and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition, our transcriptome, protein and functional studies, including albumin secretion, drug-induced CYP450 expression and urea production, all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications.

  16. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance.

    PubMed

    McDowell, Ian C; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.

  17. Transcriptome of American Oysters, Crassostrea virginica, in Response to Bacterial Challenge: Insights into Potential Mechanisms of Disease Resistance

    PubMed Central

    McDowell, Ian C.; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E.; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance. PMID:25122115

  18. Long non-coding RNA Gm2199 rescues liver injury and promotes hepatocyte proliferation through the upregulation of ERK1/2.

    PubMed

    Gao, Qiang; Gu, Yunyan; Jiang, Yanan; Fan, Li; Wei, Zixiang; Jin, Haobin; Yang, Xirui; Wang, Lijuan; Li, Xuguang; Tai, Sheng; Yang, Baofeng; Liu, Yan

    2018-05-22

    Long non-coding RNAs (lncRNAs) are a new class of regulators of various human diseases. This study was designed to explore the potential role of lncRNAs in experimental hepatic damage. In vivo hepatic damage in mice and in vitro hepatocyte damage in AML12 and NCTC1469 cells were induced by carbon tetrachloride (CCl 4 ) treatments. Expression profiles of lncRNAs and mRNAs were analyzed by microarray. Bioinformatics analyses were conducted to predict the potential functions of differentially expressed lncRNAs with respect to hepatic damage. Overexpression of lncRNA Gm2199 was achieved by transfection of the pEGFP-N1-Gm2199 plasmid in vitro and adeno-associated virus-Gm2199 in vivo. Cell proliferation and viability was detected by cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assay. Protein and mRNA expressions of extracellular signal-regulated kinase-1/2 (ERK1/2) were detected by western blot and quantitative real-time reverse-transcription PCR (qRT-PCR). Microarray analysis identified 190 and 148 significantly differentially expressed lncRNAs and mRNAs, respectively. The analyses of lncRNA-mRNA co-expression and lncRNA-biological process networks unraveled potential roles of the differentially expressed lncRNAs including Gm2199 in the pathophysiological processes leading to hepatic damage. Gm2199 was downregulated in both damaged livers and hepatocyte lines. Overexpression of Gm2199 restored the reduced proliferation of damaged hepatocyte lines and increased the expression of ERK1/2. Overexpression of Gm2199 also promoted the proliferation and viability of normal hepatocyte lines and increased the level of p-ERK1/2. Overexpression of Gm2199 in vivo also protected mouse liver injury induced by CCl 4 , evidenced by more proliferating hepatocytes, less serum alanine aminotransferase, less serum aspartate aminotransferase, and decreased hepatic hydroxyproline. The ability of Gm2199 to maintain hepatic proliferation capacity indicates it as a novel anti-liver damage lncRNA.

  19. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis

    PubMed Central

    Rosiak, Kamila; Smolarz, Maciej; Stec, Wojciech J.; Peciak, Joanna; Grzela, Dawid; Winiecka-Klimek, Marta; Stoczynska-Fidelus, Ewelina; Krynska, Barbara; Piaskowski, Sylwester; Rieske, Piotr

    2016-01-01

    Background The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. Methods Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. Results Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. Conclusions Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust apoptosis causes differentiation deficiency of IDH1R132H-expressing cells. PMID:27145078

  20. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantovani, Cristina; Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea; Department of Surgical and Perioperative Science, Umea University, Umea

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 atmore » similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.« less

  1. Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell–Specific Genes

    PubMed Central

    Sunohara, Mitsuhiro; Pouldar, Tiffany M.; Wang, Hongjun; Liu, Yixin; Rieger, Megan E.; Tran, Evelyn; Flodby, Per; Siegmund, Kimberly D.; Crandall, Edward D.; Laird-Offringa, Ite A.

    2017-01-01

    Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type–specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells’ roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription–polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell–specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases. PMID:27749084

  2. Exploring Transcription Factors-microRNAs Co-regulation Networks in Schizophrenia.

    PubMed

    Xu, Yong; Yue, Weihua; Yao Shugart, Yin; Li, Sheng; Cai, Lei; Li, Qiang; Cheng, Zaohuo; Wang, Guoqiang; Zhou, Zhenhe; Jin, Chunhui; Yuan, Jianmin; Tian, Lin; Wang, Jun; Zhang, Kai; Zhang, Kerang; Liu, Sha; Song, Yuqing; Zhang, Fuquan

    2016-07-01

    Transcriptional factors (TFs) and microRNAs (miRNAs) have been recognized as 2 classes of principal gene regulators that may be responsible for genome coexpression changes observed in schizophrenia (SZ). This study aims to (1) identify differentially coexpressed genes (DCGs) in 3 mRNA expression microarray datasets; (2) explore potential interactions among the DCGs, and differentially expressed miRNAs identified in our dataset composed of early-onset SZ patients and healthy controls; (3) validate expression levels of some key transcripts; and (4) explore the druggability of DCGs using the curated database. We detected a differential coexpression network associated with SZ and found that 9 out of the 12 regulators were replicated in either of the 2 other datasets. Leveraging the differentially expressed miRNAs identified in our previous dataset, we constructed a miRNA-TF-gene network relevant to SZ, including an EGR1-miR-124-3p-SKIL feed-forward loop. Our real-time quantitative PCR analysis indicated the overexpression of miR-124-3p, the under expression of SKIL and EGR1 in the blood of SZ patients compared with controls, and the direction of change of miR-124-3p and SKIL mRNA levels in SZ cases were reversed after a 12-week treatment cycle. Our druggability analysis revealed that many of these genes have the potential to be drug targets. Together, our results suggest that coexpression network abnormalities driven by combinatorial and interactive action from TFs and miRNAs may contribute to the development of SZ and be relevant to the clinical treatment of the disease. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Exploring Transcription Factors-microRNAs Co-regulation Networks in Schizophrenia

    PubMed Central

    Xu, Yong; Yue, Weihua; Yao Shugart, Yin; Li, Sheng; Cai, Lei; Li, Qiang; Cheng, Zaohuo; Wang, Guoqiang; Zhou, Zhenhe; Jin, Chunhui; Yuan, Jianmin; Tian, Lin; Wang, Jun; Zhang, Kai; Zhang, Kerang; Liu, Sha; Song, Yuqing; Zhang, Fuquan

    2016-01-01

    Background: Transcriptional factors (TFs) and microRNAs (miRNAs) have been recognized as 2 classes of principal gene regulators that may be responsible for genome coexpression changes observed in schizophrenia (SZ). Methods: This study aims to (1) identify differentially coexpressed genes (DCGs) in 3 mRNA expression microarray datasets; (2) explore potential interactions among the DCGs, and differentially expressed miRNAs identified in our dataset composed of early-onset SZ patients and healthy controls; (3) validate expression levels of some key transcripts; and (4) explore the druggability of DCGs using the curated database. Results: We detected a differential coexpression network associated with SZ and found that 9 out of the 12 regulators were replicated in either of the 2 other datasets. Leveraging the differentially expressed miRNAs identified in our previous dataset, we constructed a miRNA–TF–gene network relevant to SZ, including an EGR1–miR-124-3p–SKIL feed-forward loop. Our real-time quantitative PCR analysis indicated the overexpression of miR-124-3p, the under expression of SKIL and EGR1 in the blood of SZ patients compared with controls, and the direction of change of miR-124-3p and SKIL mRNA levels in SZ cases were reversed after a 12-week treatment cycle. Our druggability analysis revealed that many of these genes have the potential to be drug targets. Conclusions: Together, our results suggest that coexpression network abnormalities driven by combinatorial and interactive action from TFs and miRNAs may contribute to the development of SZ and be relevant to the clinical treatment of the disease. PMID:26609121

  4. Nicotine-induced chondrogenic differentiation of human bone marrow stromal cells in vitro.

    PubMed

    Ying, Xiaozhou; Zhang, Wei; Cheng, Shaowen; Nie, Pengfei; Cheng, Xiaojie; Shen, Yue; Wang, Wei; Xue, Enxing; Chen, Qingyu; Kou, Dongquan; Peng, Lei; Zhang, Yu; Lu, Chuanzhu

    2012-11-01

    Nicotine has been reported that it has a dose-dependent effect on matrix mineralization by human bone marrow cells. However, there is no relevant research concerning on chondrogenic differentiation potential of bone marrow stromal stem cells (BMSCs) treated with nicotine in vitro. The aims of the study were to examine the effects of nicotine (0, 10(-7), 10(-6) and 10(-5) M) on the proliferation and chondrogenic differentiation of BMSCs from three healthy donors in vitro. BMSCs proliferation was analyzed by CCK8 assay and real-time polymerase chain reaction was used to assay the expression of type II collagen, aggrecan, type I collagen and type X collagen. The proteoglycan content was stained by Alcian blue, and the sulfated glycosaminoglycan (sGAG) content of BMSCs was quantified spectrofluorometrically using dimethylmethylene blue. The cell viability was not significantly impaired until up to a concentration of 10(-5) M nicotine. Nicotine promoted the proliferation and enhanced the expression of type II collagen at the level up to 10(-6) M (P < 0.05). The expression of aggrecan was reduced at the concentration of 10(-5) M nicotine at day 14 (P < 0.05), and there was no significant difference in aggrecan gene expression at 10(-7) and 10(-6) M nicotine levels compared to control group (n.s.). Also the fibroblastic and hypertrophic gene expressions were down-regulated in the chondrogenic medium with 10(-7)-10(-5) M nicotine (P < 0.05). It was implied that local application of nicotine at an appropriate concentration may be a promising approach for enhancing chondrogenic differentiation capacity of BMSCs in cell-based cartilage tissue engineering. Also these results indicate that nicotine maybe a potentially useful drug for the treatment of Osteoarthritis.

  5. Circulating levels of miR-150 are associated with poorer outcomes of A/H1N1 infection.

    PubMed

    Morán, Juan; Ramírez-Martínez, Gustavo; Jiménez-Alvarez, Luis; Cruz, Alfredo; Pérez-Patrigeon, Santiago; Hidalgo, Alfredo; Orozco, Lorena; Martínez, Angélica; Padilla-Noriega, Luis; Avila-Moreno, Federico; Cabello, Carlos; Granados, Julio; Ortíz-Quintero, Blanca; Ramírez-Venegas, Alejandra; Ruíz-Palacios, Guillermo M; Zlotnik, Albert; Merino, Enrique; Zúñiga, Joaquín

    2015-10-01

    Overproduction of pro-inflammatory cytokines and chemokines is frequently associated with severe clinical manifestations in patients infected with influenza A/H1N1 virus. Micro-RNAs (miRNAs) are highly conserved small non-coding RNA molecules that post-transcriptionally regulate gene expression and are potential biomarkers and therapeutic targets in different inflammatory conditions. We studied the circulating and miRNA profiles in critically ill A/H1N1 patients, A/H1N1 patients with milder disease, asymptomatic housemates and healthy controls. Cytokine, chemokine and growth factors that were potential targets of differentially expressed miRNAs were assessed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and interactome analysis of these miRNAs were also performed. Critically ill patients exhibited a significant over-expression of circulating miR-150 (p<0.005) when compared to patients with milder disease. miR-29c, miR-145 and miR-22 were differentially expressed in patients with severe A/H1N1 disease whereas miR-210, miR-126 and miR-222 were downregulated in individuals exposed to the A/H1N1 virus. Significant correlations (p<0.05) between circulating levels of miR-150 with IL-1ra, IL-2, IL-6, CXCL8, IFN-γ, CXCL10 and G-CSF were detected, particularly in critically ill patients. The up-regulation of miR-150 is associated with poorer outcomes of A/H1N1 infection. The differential expression of miRNAs related with immune processes in severe A/H1N1 disease supports the potential role of these miRNAs as biomarkers of disease progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Th9 cells: differentiation and disease

    PubMed Central

    Kaplan, Mark H.

    2014-01-01

    Summary CD4+ T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo. PMID:23405898

  7. Differential gene expression in Varroa jacobsoni mites following a host shift to European honey bees (Apis mellifera).

    PubMed

    Andino, Gladys K; Gribskov, Michael; Anderson, Denis L; Evans, Jay D; Hunt, Greg J

    2016-11-16

    Varroa mites are widely considered the biggest honey bee health problem worldwide. Until recently, Varroa jacobsoni has been found to live and reproduce only in Asian honey bee (Apis cerana) colonies, while V. destructor successfully reproduces in both A. cerana and A. mellifera colonies. However, we have identified an island population of V. jacobsoni that is highly destructive to A. mellifera, the primary species used for pollination and honey production. The ability of these populations of mites to cross the host species boundary potentially represents an enormous threat to apiculture, and is presumably due to genetic variation that exists among populations of V. jacobsoni that influences gene expression and reproductive status. In this work, we investigate differences in gene expression between populations of V. jacobsoni reproducing on A. cerana and those either reproducing or not capable of reproducing on A. mellifera, in order to gain insight into differences that allow V. jacobsoni to overcome its normal species tropism. We sequenced and assembled a de novo transcriptome of V. jacobsoni. We also performed a differential gene expression analysis contrasting biological replicates of V. jacobsoni populations that differ in their ability to reproduce on A. mellifera. Using the edgeR, EBSeq and DESeq R packages for differential gene expression analysis, we found 287 differentially expressed genes (FDR ≤ 0.05), of which 91% were up regulated in mites reproducing on A. mellifera. In addition, mites found reproducing on A. mellifera showed substantially more variation in expression among replicates. We searched for orthologous genes in public databases and were able to associate 100 of these 287 differentially expressed genes with a functional description. There is differential gene expression between the two mite groups, with more variation in gene expression among mites that were able to reproduce on A. mellifera. A small set of genes showed reduced expression in mites on the A. mellifera host, including putative transcription factors and digestive tract developmental genes. The vast majority of differentially expressed genes were up-regulated in this host. This gene set showed enrichment for genes associated with mitochondrial respiratory function and apoptosis, suggesting that mites on this host may be experiencing higher stress, and may be less optimally adapted to parasitize it. Some genes involved in reproduction and oogenesis were also overexpressed, which should be further studied in regards to this host shift.

  8. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  9. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Rui; Yao, Rui; Du, Juan

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stemmore » cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation.« less

  10. Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification.

    PubMed

    Lu, Tzong-Shi; Yiao, Szu-Yu; Lim, Kenneth; Jensen, Roderick V; Hsiao, Li-Li

    2010-07-01

    The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. MATERIAL #ENTITYSTARTX00026; Differential protein expression patterns was assessed by western blot following protein quantification by the Lowry and Bradford methods. We have observed significant variations in protein concentrations following assessment with the Lowry versus Bradford methods, using identical samples. Greater variations in protein concentration readings were observed over time and in samples with higher concentrations, with the Bradford method. Identical samples quantified using both methods yielded significantly different expression patterns on Western blot. We show for the first time that methodical variations observed in these protein assay techniques, can potentially translate into differential protein expression patterns, that can be falsely taken to be biologically significant. Our study therefore highlights the pivotal need to carefully consider methodical approaches to protein quantification in techniques that report quantitative differences.

  11. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    PubMed

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. AKT1 provides an essential survival signal required for differentiation and stratification of primary human keratinocytes.

    PubMed

    Thrash, Barry R; Menges, Craig W; Pierce, Robert H; McCance, Dennis J

    2006-04-28

    Keratinocyte differentiation and stratification are complex processes involving multiple signaling pathways, which convert a basal proliferative cell into an inviable rigid squame. Loss of attachment to the basement membrane triggers keratinocyte differentiation, while in other epithelial cells, detachment from the extracellular matrix leads to rapid programmed cell death or anoikis. The potential role of AKT in providing a survival signal necessary for stratification and differentiation of primary human keratinocytes was investigated. AKT activity increased during keratinocyte differentiation and was attributed to the specific activation of AKT1 and AKT2. Targeted reduction of AKT1 expression, but not AKT2, by RNA interference resulted in an abnormal epidermis in organotypic skin cultures with a thin parabasal region and a pronounced but disorganized cornified layer. This abnormal stratification was due to significant cell death in the suprabasal layers and was alleviated by caspase inhibition. Normal expression patterns of both early and late markers of keratinocyte differentiation were also disrupted, producing a poorly developed stratum corneum.

  13. Using expression genetics to study the neurobiology of ethanol and alcoholism.

    PubMed

    Farris, Sean P; Wolen, Aaron R; Miles, Michael F

    2010-01-01

    Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research. Copyright 2010 Elsevier Inc. All rights reserved.

  14. A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis.

    PubMed

    Han, Xiang Hua; Jin, Yong-Ri; Seto, Marianne; Yoon, Jeong Kyo

    2011-03-25

    R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.

  15. A WNT/β-Catenin Signaling Activator, R-spondin, Plays Positive Regulatory Roles during Skeletal Myogenesis*

    PubMed Central

    Han, Xiang Hua; Jin, Yong-Ri; Seto, Marianne; Yoon, Jeong Kyo

    2011-01-01

    R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway. PMID:21252233

  16. ERα inhibited myocardin-induced differentiation in uterine fibroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Xing-Hua, E-mail: xinghualiao@hotmail.com; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457; Li, Jun-Yan

    Uterine fibroids, also known as uterine leiomyomas, are a benign tumor of the human uterus and the commonest estrogen-dependent benign tumor found in women. Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. The role of myocardin and its relationship with ERα in uterine fibroids have barely been addressed. We noticed that the expression of myocardin was markedly reduced in human uterine fibroid tissue compared with corresponding normal or adjacent myometrium tissue. Here we reported that myocardin induced the transcription and expression of differentiation markers SM22α and alpha smooth muscle actin (α-SMA) in rat primary uterine smoothmore » muscle cells (USMCs) and this effect was inhibited by ERα. Notably, we showed that, ERα induced expression of proliferation markers PCNA and ki-67 in rat primary USMCs. We also found ERα interacted with myocardin and formed complex to bind to CArG box and inhibit the SM22α promoter activity. Furthermore, ERα inhibited the transcription and expression of myocardin, and reduced the levels of transcription and expression of downstream target SM22α, a SMC differentiation marker. Our data thus provided important and novel insights into how ERα and myocardin interact to control the cell differentiation and proliferation of USMCs. Thus, it may provide potential therapeutic target for uterine fibroids.« less

  17. Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster.

    PubMed

    Wüst, Stas; Dröse, Stefan; Heidler, Juliana; Wittig, Ilka; Klockner, Ina; Franko, Andras; Bonke, Erik; Günther, Stefan; Gärtner, Ulrich; Boettger, Thomas; Braun, Thomas

    2018-05-01

    Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate alpha v integrin expression on cultured human macrophages.

    PubMed

    De Nichilo, M O; Burns, G F

    1993-03-15

    The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.

  19. Low-intensity pulsed ultrasound stimulation facilitates in vitro osteogenic differentiation of human adipose-derived stem cells via up-regulation of heat shock protein (HSP)70, HSP90, and bone morphogenetic protein (BMP) signaling pathway.

    PubMed

    Zhang, Zhonglei; Ma, Yalin; Guo, Shaowen; He, Yi; Bai, Gang; Zhang, Wenjun

    2018-05-29

    Low-intensity pulsed ultrasound (LIPUS) has positive effects on osteogenic differentiation. However, the effect of LIPUS on osteogenic differentiation of human adipose-derived stem cells (hASCs) is unclear. In the present study, we investigated whether LIPUS could promote the proliferation and osteogenic differentiation of hASCs. hASCs were isolated and osteogenically induced with LIPUS stimulation at 20 and 30 mW cm -2 for 30 min day -1 Cell proliferation and osteogenic differentiation potential of hASCs were respectively analyzed by cell counting kit-8 assay, Alizarin Red S staining, real-time polymerase chain reaction, and Western blotting. The results indicated that LIPUS stimulation did not significantly affect the proliferation of hASCs, but significantly increased their alkaline phosphatase activity on day 6 of culture and markedly promoted the formation of mineralized nodules on day 21 of culture. The mRNA expression levels of runt-related transcription factor, osteopontin, and osteocalcin were significantly up-regulated by LIPUS stimulation. LIPUS stimulation did not affect the expression of heat shock protein (HSP) 27, HSP40, bone morphogenetic protein (BMP)-6 and BMP-9, but significantly up-regulated the protein levels of HSP70, HSP90, BMP-2, and BMP-7 in the hASCs. Further studies found that LIPUS increased the mRNA levels of Smad 1 and Smad 5, elevated the phosphorylation of Smad 1/5, and suppressed the expression of BMP antagonist Noggin. These findings indicated that LIPUS stimulation enhanced osteogenic differentiation of hASCs possibly through the up-regulation of HSP70 and HSP90 expression and activation of BMP signaling pathway. Therefore, LIPUS might have the potential to promote the repair of bone defect. © 2018 The Author(s).

  20. Extremely High Expression of Antisense RNA for Wilms' Tumor 1 in Active Osteoclasts: Suppression of Wilms' Tumor 1 Protein Expression during Osteoclastogenesis.

    PubMed

    Li, Yin-Ji; Kukita, Akiko; Kyumoto-Nakamura, Yukari; Kukita, Toshio

    2016-09-01

    Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. miR-200 family promotes podocyte differentiation through repression of RSAD2

    PubMed Central

    Li, Zhigui; Yin, Hongqiang; Hao, Shuang; Wang, Lifeng; Gao, Jing; Tan, Xiaoyue; Yang, Zhuo

    2016-01-01

    Mature podocytes are highly differentiated cells with several characteristic phenotypic features that are involved in the glomerular filtration function. During kidney development, a series of changes of the morphological characteristics and cellular functions may happen in podocytes. The miR-200 family functions in various biological and pathological processes. But the underlying molecular mechanisms of miR-200 family that functions in podocyte differentiation remain poorly understood. Herein is shown that miR-200a, miR-200b and miR-429 are significantly upregulated during the differentiation of podocytes, with highest upregulation of miR-200a. In these cells, restraint of miR-200 family by RNA interference assay revealed a prominent inhibition of cell differentiation. More intriguingly, miR-200 family directly inhibited the radical S-adenosyl methionine domain-containing protein 2 (RASD2) expression. Moreover, further upregulation of RSAD2 combining with restraint of miR-200 family revealed a promotion of podocyte dedifferentiation and proliferation. In addition, the expression of RSAD2 is consistent with that of in vitro podocyte differentiation in prenatal and postnatal mouse kidney, and significantly down-regulated during the kidney development. Together, these findings indicate that miR-200 family may potentially promote podocyte differentiation through repression of RSAD2 expression. Our data also demonstrate a novel role of the antiviral protein RSAD2 as a regulator in cell differentiation. PMID:27251424

  2. LncRNAs expression in adjuvant-induced arthritis rats reveals the potential role of LncRNAs contributing to rheumatoid arthritis pathogenesis.

    PubMed

    Jiang, Hui; Qin, Xiu-Juan; Li, Wei-Ping; Ma, Rong; Wang, Ting; Li, Zhu-Qing

    2016-11-15

    Long non-coding RNAs (LncRNAs) are an important class of widespread molecules involved in diverse biological functions, which are exceptionally expressed in numerous types of diseases. Currently, limited study on LncRNA in rheumatoid arthritis (RA) is available. In this study, we aimed to identify the specifically expressed LncRNA that are relevant to adjuvant-induced arthritis (AA) in rats, and to explore the possible molecular mechanisms of RA pathogenesis. To identify LncRNAs specifically expressed in rheumatoid arthritis, the expression of LncRNAs in synoviums of rats from the model group (n=3) was compared with that in the control group (n=3) using Arraystar Rat LncRNA/mRNA microarray and real-time polymerase chain reaction (RT-PCR). Up to 260 LncRNAs were found to be differentially expressed (≥1.5-fold-change) in the synoviums between AA model and the normal rats (170 up-regulated and 90 down-regulated LncRNAs in AA rats compared with normal rats). Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between the differentially expressed LncRNAs and mRNAs. Six LncRNAs, XR_008357, U75927, MRAK046251, XR_006457, DQ266363 and MRAK003448, were selected to analyze the relationship between LncRNAs and RA via the CNC network and GO analysis. Real-time PCR result confirmed that the six LncRNAs were specifically expressed in the AA rats. These results revealed that clusters of LncRNAs were uniquely expressed in AA rats compared with controls, which manifests that these differentially expressed LncRNAs in AA rats might play a vital role in RA development. Up-regulation or down-regulation of the six LncRNAs might contribute to the molecular mechanism underlying RA. To sum up, our study provides potential targets for treatment of RA and novel profound understanding of the pathogenesis of RA. Copyright © 2016. Published by Elsevier B.V.

  3. Molecular pathology of acute kidney injury in a choline-deficient model and fish oil protective effect.

    PubMed

    Denninghoff, Valeria; Ossani, Georgina; Uceda, Ana; Rugnone, Matias; Fernández, Elmer; Fresno, Cristóbal; González, German; Díaz, Maria Luisa; Avagnina, Alejandra; Elsner, Boris; Monserrat, Alberto

    2014-04-01

    The aim of this work was to investigate the potential protective effects of fish oil on the basis of kidney transcriptomic data on a nutritional experimental model. Male weanling Wistar rats were divided into four groups and fed choline-deficient (CD) and choline-supplemented (CS) diets with vegetable oil (VO) and menhaden oil (MO): CSVO, CDVO, CSMO and CDMO. Animals were killed after receiving the diets for 6 days. Total RNA was purified from the right kidney and hybridized to Affymetrix GeneChip Rat Gene 1.0 ST Array. Differentially expressed genes were analyzed. All CSVO, CSMO and CDMO rats showed no renal alterations, while all CDVO rats showed renal cortical necrosis. A thorough analysis of the differential expression between groups CSMO and CDMO was carried out. There were no differential genes for p < 0.01. The analysis of the differential expression between groups CSVO and CSMO revealed 32 genes, 11 were over-expressed and 21 were under-expressed in CSMO rats. This work was part of a large set of experiments and was used in a hypothesis-generating manner. The comprehensive analysis of genetic expression allowed confirming that menhaden oil has a protective effect on this nutritional experimental model and identifying 32 genes that could be responsible for that protection, including Gstp1. These results reveal that gene changes could play a role in renal injury.

  4. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  5. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    PubMed

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.

  6. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less

  7. Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro.

    PubMed

    Rubenwolf, Peter C; Georgopoulos, Nikolaos T; Clements, Lisa A; Feather, Sally; Holland, Philip; Thomas, David F M; Southgate, Jennifer

    2009-12-01

    Urothelium is generally considered to be impermeable to water and constituents of urine. The possibility that human urothelium expresses aquaporin (AQP) water channels as the basis for water and solute transport has not previously been investigated. To investigate the expression of AQP water channels by human urothelium in situ, in proliferating urothelial cell cultures and in differentiated tissue constructs. AQP expression by human urothelium in situ and cultured urothelial cells was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunolabelling. Expression screening was carried out on samples of freshly isolated urothelia from multiple surgical (bladder and ureteric) specimens and on proliferating and differentiated normal human urothelial (NHU) cells in culture. Urothelial tissue constructs were established and investigated for expression of urothelial differentiation markers and AQPs. Qualitative study. Transcripts for AQP3, AQP4, AQP7, AQP9, and AQP11 were expressed consistently by freshly isolated urothelia as well as by cultured NHU cells. AQP0, AQP1, AQP2, AQP5, AQP6, AQP8, AQP10, and AQP12 were not expressed. Immunochemistry confirmed expression of AQP3, AQP4, AQP7, and AQP9 at the protein level. AQP3 was shown to be intensely expressed at cell borders in the basal and intermediate layers in both urothelium in situ and differentiated tissue constructs in vitro. This is the first study to demonstrate that AQPs are expressed by human urothelium, suggesting a potential role in transurothelial water and solute transport. Our findings challenge the traditional concept of the urinary tract as an impermeable transit and storage unit and provide a versatile platform for further investigations into the biological and clinical relevance of AQPs in human urothelium.

  8. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    PubMed

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  9. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Differential Connectivity in Colorectal Cancer Gene Expression Network

    PubMed

    Izadi, Fereshteh

    2018-05-30

    Colorectal cancer (CRC) is one of the challenging types of cancers; thus, exploring effective biomarkers related to colorectal could lead to significant progresses toward the treatment of this disease. In the present study, CRC gene expression datasets have been reanalyzed. Mutual differentially expressed genes across 294 normal mucosa and adjacent tumoral samples were then utilized in order to build two independent transcriptional regulatory networks. By analyzing the networks topologically, genes with differential global connectivity related to cancer state were determined for which the potential transcriptional regulators including transcription factors were identified. The majority of differentially connected genes (DCGs) were up-regulated in colorectal transcriptome experiments. Moreover, a number of these genes have been experimentally validated as cancer or CRC-associated genes. The DCGs, including GART, TGFB1, ITGA2, SLC16A5, SOX9, and MMP7, were investigated across 12 cancer types. Functional enrichment analysis followed by detailed data mining exhibited that these candidate genes could be related to CRC by mediating in metastatic cascade in addition to shared pathways with 12 cancer types by triggering the inflammatory events Our study uncovered correlated alterations in gene expression related to CRC susceptibility and progression that the potent candidate biomarkers could provide a link to disease.

  11. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-07-22

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  12. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Zhao, Zhenqiang; Ma, Yanlin; Chen, Zhibin; Liu, Qian; Li, Qi; Kong, Deyan; Yuan, Kunxiong; Hu, Lan; Wang, Tan; Chen, Xiaowu; Peng, Yanan; Jiang, Weimin; Yu, Yanhong; Liu, Xinfeng

    2016-01-01

    Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons. PMID:28066186

  13. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Anand S.; Kaushal, Sharmeela; Mishra, Rangnath

    2006-07-28

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, andmore » direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes ({alpha}-globin, {beta}H-1 globin, {beta}-major globin, {epsilon} -globin, and {zeta}-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, {epsilon}-globin, {gamma}-globin, {beta}H1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells.« less

  14. FOXO1 opposition of CD8+ T cell effector programming confers early memory properties and phenotypic diversity.

    PubMed

    Delpoux, Arnaud; Lai, Chen-Yen; Hedrick, Stephen M; Doedens, Andrew L

    2017-10-17

    The factors and steps controlling postinfection CD8 + T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8 + T cells. We determined the early postinfection TCF7 high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7 high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1 pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.

  15. Integrated analysis of long non-coding RNAs in human gastric cancer: An in silico study.

    PubMed

    Han, Weiwei; Zhang, Zhenyu; He, Bangshun; Xu, Yijun; Zhang, Jun; Cao, Weijun

    2017-01-01

    Accumulating evidence highlights the important role of long non-coding RNAs (lncRNAs) in a large number of biological processes. However, the knowledge of genome scale expression of lncRNAs and their potential biological function in gastric cancer is still lacking. Using RNA-seq data from 420 gastric cancer patients in The Cancer Genome Atlas (TCGA), we identified 1,294 lncRNAs differentially expressed in gastric cancer compared with adjacent normal tissues. We also found 247 lncRNAs differentially expressed between intestinal subtype and diffuse subtype. Survival analysis revealed 33 lncRNAs independently associated with patient overall survival, of which 6 lncRNAs were validated in the internal validation set. There were 181 differentially expressed lncRNAs located in the recurrent somatic copy number alterations (SCNAs) regions and their correlations between copy number and RNA expression level were also analyzed. In addition, we inferred the function of lncRNAs by construction of a co-expression network for mRNAs and lncRNAs. Together, this study presented an integrative analysis of lncRNAs in gastric cancer and provided a valuable resource for further functional research of lncRNAs in gastric cancer.

  16. Isolation and characterization of multipotent human periodontal ligament stem cells.

    PubMed

    Gay, I C; Chen, S; MacDougall, M

    2007-08-01

    Periodontal ligament (PDL) repair is thought to involve mesenchymal progenitor cells capable of forming fibroblasts, osteoblasts and cementoblasts. However, full characterization of PDL stem cell (SC) populations has not been achieved. To isolate and characterize PDLSC and assess their capability to differentiate into bone, cartilage and adipose tissue. Human PDL cells were stained for STRO-1, FACS sorted and expanded in culture. Human bone marrow SC (BMSC) served as a positive control. PDLSC and BMSC were cultured using standard conditions conducive for osteogenic, chondrogenic and adipogenic differentiation. Osteogenic induction was assayed using alizarine red S staining and expression of alkaline phosphatase (ALP) and bone sialoprotein (BSP). Adipogenic induction was assayed using Oil Red O staining and the expression of PPAR gamma 2 (early) and LPL (late) adipogenic markers. Chondrogenic induction was assayed by collagen type II expression and toluidine blue staining. Human PDL tissue contains about 27% STRO-1 positive cells with 3% strongly positive. In osteogenic cultures ALP was observed by day-7 in BMSC and day-14 in PDLSC. BSP expression was detectable by day-7; with more intense staining in PDLSC cultures. In adipogenic cultures both cell populations showed positive Oil Red O staining by day-25 with PPAR gamma 2 and LPL expression. By day-21, both BMSC and PDLSC chondrogenic induced cultures expressed collagen type II and glycosaminoglycans. The PDL contains SC that have the potential to differentiate into osteoblasts, chondrocytes and adipocytes, comparable with previously characterized BMSC. This adult PDLSC population can be utilized for potential therapeutic procedures related to PDL regeneration.

  17. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications.

    PubMed Central

    Xu, X. C.; el-Naggar, A. K.; Lotan, R.

    1995-01-01

    Carcinoma of the thyroid gland, the most frequently diagnosed endocrine malignancy, is often associated with early regional metastases. With the exception of papillary carcinoma, distinguishing benign from malignant thyroid neoplasms in the absence of metastatic disease is difficult. Recently, the vertebrate lectins galectin-1 and galectin-3 have been implicated in the regulation of cellular growth, differentiation, and malignant transformation of a variety of tissues. To determine whether these galectins have a role in thyroid neoplasia, we analyzed 32 specimens from thyroid malignancies (16 papillary, 7 follicular, 8 medullary carcinomas, and 1 metastasis to lymph node), 10 benign thyroid adenomas, 1 nodular goiter, and 33 specimens from adjacent normal thyroid tissue for the expression of galectin-1 and galectin-3 with immunohistochemical and immunoblotting techniques utilizing anti-galectin antibodies. All thyroid malignancies of epithelial origin (ie, papillary and follicular carcinomas) and a metastatic lymph node from a papillary carcinoma expressed high levels of both galectin-1 and galectin-3. The medullary thyroid carcinomas, which are of parafollicular C cell origin, showed a weaker and variable expression of these galectins. In contrast, neither benign thyroid adenomas nor adjacent normal thyroid tissue expressed galectin-1 or galectin-3. These results suggest that galectin-1 and galectin-3 may be associated with malignant transformation of thyroid epithelium and may potentially serve as markers for distinguishing benign thyroid adenomas from differentiated thyroid carcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7677193

  18. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy.

    PubMed

    Han, Jae Woong; Gurunathan, Sangiliyandi; Choi, Yun-Jung; Kim, Jin-Hoi

    2017-01-01

    Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. AgNPs were synthesized and characterized using various analytical techniques such as UV-visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem cells could also help in developing new strategies for cancer stem cell (CSC) therapies. The findings of this study could significantly contribute to the nanomedicine because this study is the first of its kind, and our results will lead to new strategies for cancer and CSC therapies.

  19. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth

    PubMed Central

    Vora, Bianca; Wang, Aolin; Kosti, Idit; Huang, Hongtai; Paranjpe, Ishan; Woodruff, Tracey J.; MacKenzie, Tippi; Sirota, Marina

    2018-01-01

    Preterm birth (PTB) is the leading cause of newborn deaths around the world. Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there remains an unmet need of detecting and preventing sPTB. Although the dysregulation of the immune system has been implicated in various studies, small sizes and irreproducibility of results have limited identification of its role. Here, we present a cross-study meta-analysis to evaluate genome-wide differential gene expression signals in sPTB. A comprehensive search of the NIH genomic database for studies related to sPTB with maternal whole blood samples resulted in data from three separate studies consisting of 339 samples. After aggregating and normalizing these transcriptomic datasets and performing a meta-analysis, we identified 210 genes that were differentially expressed in sPTB relative to term birth. These genes were enriched in immune-related pathways, showing upregulation of innate immunity and downregulation of adaptive immunity in women who delivered preterm. An additional analysis found several of these differentially expressed at mid-gestation, suggesting their potential to be clinically relevant biomarkers. Furthermore, a complementary analysis identified 473 genes differentially expressed in preterm cord blood samples. However, these genes demonstrated downregulation of the innate immune system, a stark contrast to findings using maternal blood samples. These immune-related findings were further confirmed by cell deconvolution as well as upstream transcription and cytokine regulation analyses. Overall, this study identified a strong immune signature related to sPTB as well as several potential biomarkers that could be translated to clinical use.

  20. The search for biomarkers of human embryo developmental potential in IVF: a comprehensive proteomic approach.

    PubMed

    Nyalwidhe, Julius; Burch, Tanya; Bocca, Silvina; Cazares, Lisa; Green-Mitchell, Shamina; Cooke, Marissa; Birdsall, Paige; Basu, Gaurav; Semmes, O John; Oehninger, Sergio

    2013-04-01

    The objective of these studies was to identify differentially expressed peptides/proteins in the culture media of embryos grown during in vitro fertilization (IVF) treatment to establish their value as biomarkers predictive of implantation potential and live birth. Micro-droplets of embryo culture media from IVF patients (conditioned) and control media maintained under identical culture conditions were collected and frozen at -80°C on Days 2-3 of in vitro development prior to analysis. The embryos were transferred on Day 3. The peptides were affinity purified based on their physico-chemical properties and profiled by mass spectrometry for differential expression. The identified proteins were further characterized by western blot and ELISA, and absolute quantification was achieved by multiple reaction monitoring (MRM). We identified up to 14 differentially regulated peptides after capture using paramagnetic beads with different affinities. These differentially expressed peptides were used to generate genetic algorithms (GAs) with a recognition capability of 71-84% for embryo transfer cycles resulting in pregnancy and 75-89% for those with failed implantation. Several peptides were further identified as fragments of Apolipoprotein A-1, which showed consistent and significantly reduced expression in the embryo media samples from embryo transfer cycles resulting in viable pregnancies. Western blot and ELISA, as well as quantitative MRM results, were confirmatory. These results demonstrated that peptide/protein profiles from the culture medium during early human in vitro development can discriminate embryos with highest and lowest implantation competence following uterine transfer. Further prospective studies are needed to establish validated thresholds for clinical application.

  1. Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors

    PubMed Central

    Mo, Irene Fung Ying; Yip, Kevin Hak Kong; Chan, Wing Keung; Law, Helen Ka Wai; Lau, Yu Lung; Chan, Godfrey Chi Fung

    2008-01-01

    Background Human mesenchymal stromal cells (MSCs, also known as mesenchymal stem cells) are multipotent cells with potential therapeutic value. Owing to their osteogenic capability, MSCs may be clinically applied for facilitating osseointegration in dental implants or orthopedic repair of bony defect. However, whether wound infection or oral microflora may interfere with the growth and osteogenic differentiation of human MSCs remains unknown. This study investigated whether proliferation and osteogenic differentiation of MSCs would be affected by potent gram-positive and gram-negative derived bacterial toxins commonly found in human settings. Results We selected lipopolysaccharide (LPS) from Escherichia coli and lipoteichoic acid (LTA) from Streptococcus pyogenes as our toxins of choice. Our findings showed both LPS and LTA did not affect MSC proliferation, but prolonged LPS challenge upregulated the osteogenic differentiation of MSCs, as assessed by alkaline phosphatase activity and calcium deposition. Because toll-like receptors (TLRs), in particularly TLR4 and TLR2, are important for the cellular responsiveness to LPS and LTA respectively, we evaluated their expression profiles serially from MSCs to osteoblasts by quantitative PCR. We found that during osteogenic differentiation, MSC-derived osteoprogenitors gradually expressed TLR2 and TLR4 by Day 12. But under prolonged incubation with LPS, MSC-derived osteoprogenitors had reduced TLR2 and TLR4 gene expression. This peculiar response to LPS suggests a possible adaptive mechanism when MSCs are subjected to continuous exposure with bacteria. Conclusion In conclusion, our findings support the potential of using human MSCs as a biological graft, even under a bacterial toxin-rich environment. PMID:18799018

  2. Endometrial Cancer Side-Population Cells Show Prominent Migration and Have a Potential to Differentiate into the Mesenchymal Cell Lineage

    PubMed Central

    Kato, Kiyoko; Takao, Tomoka; Kuboyama, Ayumi; Tanaka, Yoshihiro; Ohgami, Tatsuhiro; Yamaguchi, Shinichiro; Adachi, Sawako; Yoneda, Tomoko; Ueoka, Yousuke; Kato, Keiji; Hayashi, Shinichi; Asanoma, Kazuo; Wake, Norio

    2010-01-01

    Cancer stem-like cell subpopulations, referred to as “side-population” (SP) cells, have been identified in several tumors based on their ability to efflux the fluorescent dye Hoechst 33342. Although SP cells have been identified in the normal human endometrium and endometrial cancer, little is known about their characteristics. In this study, we isolated and characterized the SP cells in human endometrial cancer cells and in rat endometrial cells expressing oncogenic human K-Ras protein. These SP cells showed i) reduction in the expression levels of differentiation markers; ii) long-term proliferative capacity of the cell cultures; iii) self-renewal capacity in vitro; iv) enhancement of migration, lamellipodia, and, uropodia formation; and v) enhanced tumorigenicity. In nude mice, SP cells formed large, invasive tumors, which were composed of both tumor cells and stromal-like cells with enriched extracellular matrix. The expression levels of vimentin, α-smooth muscle actin, and collagen III were enhanced in SP tumors compared with the levels in non-SP tumors. In addition, analysis of microdissected samples and fluorescence in situ hybridization of Hec1-SP-tumors showed that the stromal-like cells with enriched extracellular matrix contained human DNA, confirming that the stromal-like cells were derived from the inoculated cells. Moreober, in a Matrigel assay, SP cells differentiated into α-smooth muscle actin-expressing cells. These findings demonstrate that SP cells have cancer stem-like cell features, including the potential to differentiate into the mesenchymal cell lineage. PMID:20008133

  3. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    PubMed Central

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  4. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases.

    PubMed

    Gstir, Ronald; Schafferer, Simon; Scheideler, Marcel; Misslinger, Matthias; Griehl, Matthias; Daschil, Nina; Humpel, Christian; Obermair, Gerald J; Schmuckermair, Claudia; Striessnig, Joerg; Flucher, Bernhard E; Hüttenhofer, Alexander

    2014-12-01

    We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs. © 2014 Gstir et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes

    PubMed Central

    Zhao, Xiangshan; Malhotra, Gautam K.; Band, Hamid; Band, Vimla

    2011-01-01

    Introduction: Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. Materials and Methods: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. Results: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Conclusions: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers. PMID:22279424

  6. A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes.

    PubMed

    Zhao, Xiangshan; Malhotra, Gautam K; Band, Hamid; Band, Vimla

    2011-01-01

    Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.

  7. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy.

    PubMed

    Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo

    2018-03-12

    The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  8. Expression of P-aPKC-iota, E-cadherin, and beta-catenin related to invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Du, Guang-Sheng; Wang, Jian-Ming; Lu, Jin-Xi; Li, Qiang; Ma, Chao-Qun; Du, Ji-Tao; Zou, Sheng-Quan

    2009-06-01

    Atypical protein kinase C iota (aPKC-iota) and its associated intracellular molecules, E-cadherin and beta-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-iota, P-aPKC-iota (activated aPKC-iota), E-cadherin, and beta-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed. Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-iota, P-aPKC-iota, E-cadherin, and beta-catenin were analyzed with relation to the clinicopathological data. The gene and protein expression of aPKC-iota are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-iota in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell-cell contact. E-cadherin was reduced and accumulation of cytoplasm beta-catenin was increased in HCC. The expression of aPKC-iota was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC. Accumulation of cytoplasm aPKC-iota may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-iota, E-cadherin, and beta-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.

  9. Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents.

    PubMed

    Rebelatto, Carmen K; Aguiar, Alessandra M; Senegaglia, Alexandra C; Aita, Carlos M; Hansen, Paula; Barchiki, Fabiane; Kuligovski, Crisciele; Olandoski, Márcia; Moutinho, José A; Dallagiovanna, Bruno; Goldenberg, Samuel; Brofman, Paulo S; Nakao, Lia S; Correa, Alejandro

    2009-01-16

    Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels.

  10. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  11. Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis

    PubMed Central

    Wu, Yuhsin V.; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O’Connor, Rachael; Geha, Rula C.; Somberg, C. Joy; Antonescu, Cristina; Singer, Samuel

    2012-01-01

    Well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n=84), WDLS (n=79), and normal fat (n=23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS compared to both WDLS and normal fat (15.2 fold and 27.8 fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for dedifferentiated liposarcomas. PMID:22170698

  12. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence

    PubMed Central

    Winiecka-Klimek, Marta; Smolarz, Maciej; Walczak, Maciej P.; Zieba, Jolanta; Hulas-Bigoszewska, Krystyna; Kmieciak, Blazej; Piaskowski, Sylwester; Rieske, Piotr; Grzela, Dawid P.; Stoczynska-Fidelus, Ewelina

    2015-01-01

    Tumorigenic potential of induced pluripotent stem cells (iPSCs) infiltrating population of induced neural stem cells (iNSCs) generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc) obtained with different methods—direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like) or SOX2 and c-MYC (SMiNSc-like) and induced pluripotent stem cells differentiation to ebiNSc—in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU) incorporation and senescence-associated beta-galactosidase (SA-β-gal) assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or reprogrammed only into neuronal progenitors, mainly because of the inaccuracies of currently available protocols. PMID:26535892

  13. Enhanced differentiation potential of human amniotic mesenchymal stromal cells by using three-dimensional culturing.

    PubMed

    Lin, Xue; Li, Hao Yu; Chen, Lian Feng; Liu, Bo Jiang; Yao, Yian; Zhu, Wen Ling

    2013-06-01

    The therapeutic potential of human amniotic mesenchymal stromal cells (hAMSCs) remains limited because of their differentiation towards mesenchymal stem cells (MSCs) following adherence. The aim of this study was to develop a three-dimensional (3-D) culture system that would permit hAMSCs to differentiate into cardiomyocyte-like cells. hAMSCs were isolated from human amnions of full-term births collected after Cesarean section. Immunocytochemistry, immunofluorescence and flow cytometry analyses were undertaken to examine hAMSC marker expression for differentiation status after adherence. Membrane currents were determined by patch clamp analysis of hAMSCs grown with or without cardiac lysates. Freshly isolated hAMSCs were positive for human embryonic stem-cell-related markers but their marker profile significantly shifted towards that of MSCs following adherence. hAMSCs cultured in the 3-D culture system in the presence of cardiac lysate expressed cardiomyocyte-specific markers, in contrast to those maintained in standard adherent cultures or those in 3-D cultures without cardiac lysate. hAMSCs cultured in 3-D with cardiac lysate displayed a cardiomyocyte-like phenotype as observed by membrane currents, including a calcium-activated potassium current, a delayed rectifier potassium current and a Ca(2+)-resistant transient outward K(+) current. Thus, although adherence limits the potential of hAMSCs to differentiate into cardiomyocyte-like cells, the 3-D culture of hAMSCs represents a more effective method of their culture for use in regenerative medicine.

  14. Substrate-Specific Differential Gene Expression and RNA editing in the Brown Rot Fungus Fomitopsis pinicola.

    PubMed

    Wu, Baojun; Gaskell, Jill; Held, Benjamin W; Toapanta, Cristina; Vuong, Thu; Ahrendt, Steven; Lipzen, Anna; Zhang, Jiwei; Schilling, Jonathan S; Master, Emma; Grigoriev, Igor V; Blanchette, Robert A; Cullen, Dan; Hibbett, David S

    2018-06-08

    Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at five days) or solid wood wafers (sampled at ten and thirty days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and timepoints. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and timepoints. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (post-transcriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates. Copyright © 2018 American Society for Microbiology.

  15. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression

    PubMed Central

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807

  16. Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study.

    PubMed

    Alharbi, Suzan; Elsafadi, Mona; Mobarak, Mohammed; Alrwili, Ali; Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Al-Qudsi, Fatma; Karim, Saleh; Al-Nabaheen, May; Aldahmash, Abdullah; Mahmood, Amer

    2014-04-01

    The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.

  17. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Mullany, Lila E; Wolff, Roger K

    2015-01-01

    Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA) was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS) was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance). Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene), Lutein/Zeaxanthine (5 genes), and Vitamin E (4 genes) were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations.

  18. MicroRNA-7a regulates Müller glia differentiation by attenuating Notch3 expression.

    PubMed

    Baba, Yukihiro; Aihara, Yuko; Watanabe, Sumiko

    2015-09-01

    miRNA-7a plays critical roles in various biological aspects in health and disease. We aimed to reveal roles of miR-7a in mouse retinal development by loss- and gain-of-function analyses of miR-7a. Plasmids encoding miR-7a or miR-7a-decoy (anti-sense miR-7a) were introduced into mouse retina at P0, and the retina was cultured as explant. Then, proliferation of retinal progenitors and differentiation of retinal subtypes were examined by immunostaining. miR-7a had no apparent effect on the proliferation of retinal progenitor cells. However, the expression of Müller glia marker, cyclin D3, was reduced by miR-7a overexpression and up-regulated by miR-7a decoy, suggesting that miR-7a negatively regulates differentiation of Müller glia. Targets of miR-7a, which were predicted by using a public program miRNA.org, and Notch3 was suggested to be one of candidate genes of miR-7a target. Notch3 3' UTR appeared to contain complementary sequence to the seed sequence of miR-7a. A reporter assay in NIH3T3 cells using a plasmid containing multiple repeats of potential target sequence of 3' Notch UTR showed that miR-7a suppress expression of reporter EGFP through 3'UTR region. Expression of sh-Notch3 and over-expression of NICD3 in retina suggested that miR-7a regulates Müller glia differentiation through attenuation of Notch3 expression. Taken together, we revealed that the miR-7a regulates the differentiation of Müller glia through the suppression of Notch3 expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo.

    PubMed

    Lee, Song; Lee, Chan Mi; Kim, Song Cheol

    2016-11-11

    Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation.

  20. Transcriptional and post-transcriptional down-regulation of cyclin D1 contributes to C6 glioma cell differentiation induced by forskolin.

    PubMed

    He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei

    2011-09-01

    Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.

  1. Global isoform-specific transcript alterations and deregulated networks in clear cell renal cell carcinoma

    PubMed Central

    Hamilton, Michael J.; Girke, Thomas; Martinez, Ernest

    2018-01-01

    Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.

  2. Metastatic potential of melanoma cells is not affected by electrochemotherapy.

    PubMed

    Todorovic, Vesna; Sersa, Gregor; Mlakar, Vid; Glavac, Damjan; Flisar, Karel; Cemazar, Maja

    2011-06-01

    Electrochemotherapy is a local treatment combining chemotherapy and application of electric pulses to the tumour. Electrochemotherapy with bleomycin and cisplatin has shown its effectiveness in controlling local tumour growth in the treatment of malignant melanoma. However, the effect of electrochemotherapy on the metastatic potential of tumour cells is not known. Prevention of metastasis is an important aspect of successful treatment; however, it is known that metastasis can be induced by different treatment modalities. Therefore, the aim of this study was to evaluate the effect of electrochemotherapy with cisplatin on the metastatic potential of human malignant melanoma cells. Cells treated by electrochemotherapy with cisplatin were tested for their ability to migrate and invade through Matrigel-coated porous membrane. In addition, RNA was isolated from cells after treatment and differentially expressed genes were investigated by microarray analysis to evaluate the effect of electrochemotherapy with cisplatin on gene expression. There were no significant changes observed in cell migration and invasion of melanoma cells after electrochemotherapy. In addition, there were no changes observed in cell adhesion on Matrigel. Gene expression analysis showed that a very low number of genes were differentially expressed after electrochemotherapy with cisplatin. Two genes, LAMB3 and CD63 involved in cell migration, were both downregulated after electrochemotherapy with cisplatin and the expression of metastasis promoting genes was not increased after electrochemotherapy. Our data suggest that electrochemotherapy does not increase the metastatic behaviour of human melanoma cells.

  3. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells.

    PubMed

    Jeong, Sin-Gu; Cho, Goang-Won

    2015-05-15

    Cellular senescence is characterized by functional decline induced by cumulative damage to DNA, proteins, lipids, and carbohydrates. Previous studies have reported that replicative senescence is caused by excessive amounts of reactive oxygen species (ROS) produced as a result of aerobic energy metabolism. In this study, we established human bone marrow mesenchymal stromal cells (hBM-MSCs) in replicative senescence after culture over a long term to investigate the relationship between ROS levels and stem cell potential and to determine whether differentiation potential can be restored by antioxidant treatment. Intracellular ROS levels were increased in hBM-MSCs; this was accompanied by a decrease in the expression of the antioxidant enzymes catalase and superoxide dismutase (SOD)1 and 2 and of phosphorylated forkhead box O1 (p-FOXO1) as well as an increase in the expression of p53 and p16, along with a reduction in differentiation potential. When the antioxidant ascorbic acid was used to eliminate excess ROS, the levels of antioxidant enzymes (catalase, SOD1 and 2, p-FOXO1, and p53) were partly restored. Moreover, differentiation into adipocytes and osteocytes was higher in hBM-MSCs treated with ascorbic acid than in the untreated control cells. These results suggest that the decline in differentiation potential caused by increased endogenous ROS production during in vitro expansion can be reversed by treatment with antioxidants such as ascorbic acid. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation

    DOE PAGES

    Pelaez, Nicolas; Gavalda-Miralles, Arnau; Wang, Bao; ...

    2015-11-19

    Yan is an ETS-domain transcription factor responsible for maintaining Drosophila eye cells in a multipotent state. Yan is at the core of a regulatory network that determines the time and place in which cells transit from multipotency to one of several differentiated lineages. Using a fluorescent reporter for Yan expression, we observed a biphasic distribution of Yan in multipotent cells, with a rapid inductive phase and slow decay phase. Transitions to various differentiated states occurred over the course of this dynamic process, suggesting that Yan expression level does not strongly determine cell potential. Consistent with this conclusion, perturbing Yan expressionmore » by varying gene dosage had no effect on cell fate transitions. However, we observed that as cells transited to differentiation, Yan expression became highly heterogeneous and this heterogeneity was transient. Signals received via the EGF Receptor were necessary for the transience in Yan noise since genetic loss caused sustained noise. As a result, since these signals are essential for eye cells to differentiate, we suggest that dynamic heterogeneity of Yan is a necessary element of the transition process, and cell states are stabilized through noise reduction.« less

  5. Time-dependent regulation of morphological changes and cartilage differentiation markers in the mouse pubic symphysis during pregnancy and postpartum recovery.

    PubMed

    Castelucci, Bianca Gazieri; Consonni, Sílvio Roberto; Rosa, Viviane Souza; Sensiate, Lucimara Aparecida; Delatti, Paula Cristina Rugno; Alvares, Lúcia Elvira; Joazeiro, Paulo Pinto

    2018-01-01

    Animal models commonly serve as a bridge between in vitro experiments and clinical applications; however, few physiological processes in adult animals are sufficient to serve as proof-of-concept models for cartilage regeneration. Intriguingly, some rodents, such as young adult mice, undergo physiological connective tissue modifications to birth canal elements such as the pubic symphysis during pregnancy; therefore, we investigated whether the differential expression of cartilage differentiation markers is associated with cartilaginous tissue morphological modifications during these changes. Our results showed that osteochondral progenitor cells expressing Runx2, Sox9, Col2a1 and Dcx at the non-pregnant pubic symphysis proliferated and differentiated throughout pregnancy, giving rise to a complex osteoligamentous junction that attached the interpubic ligament to the pubic bones until labour occurred. After delivery, the recovery of pubic symphysis cartilaginous tissues was improved by the time-dependent expression of these chondrocytic lineage markers at the osteoligamentous junction. This process potentially recapitulates embryologic chondrocytic differentiation to successfully recover hyaline cartilaginous pads at 10 days postpartum. Therefore, we propose that this physiological phenomenon represents a proof-of-concept model for investigating the mechanisms involved in cartilage restoration in adult animals.

  6. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation.

    PubMed

    Kulterer, Birgit; Friedl, Gerald; Jandrositz, Anita; Sanchez-Cabo, Fatima; Prokesch, Andreas; Paar, Christine; Scheideler, Marcel; Windhager, Reinhard; Preisegger, Karl-Heinz; Trajanoski, Zlatko

    2007-03-12

    Human mesenchymal stem cells (MSC) with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-beta2 and BMPs. With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  7. Silver Nanoparticles: Two-Faced Neuronal Differentiation-Inducing Material in Neuroblastoma (SH-SY5Y) Cells.

    PubMed

    Abdal Dayem, Ahmed; Lee, Soo Bin; Choi, Hye Yeon; Cho, Ssang-Goo

    2018-05-15

    We have previously demonstrated the potential of biologically synthesized silver nanoparticles (AgNP) in the induction of neuronal differentiation of human neuroblastoma, SH-SY5Y cells; we aimed herein to unveil its molecular mechanism in comparison to the well-known neuronal differentiation-inducing agent, all-trans-retinoic acid (RA). AgNP-treated SH-SY5Y cells showed significantly higher reactive oxygen species (ROS) generation, stronger mitochondrial membrane depolarization, lower dual-specificity phosphatase expression, higher extracellular-signal-regulated kinase (ERK) phosphorylation, lower AKT phosphorylation, and lower expression of the genes encoding the antioxidant enzymes than RA-treated cells. Notably, pretreatment with N -acetyl-l-cysteine significantly abolished AgNP-induced neuronal differentiation, but not in that induced by RA. ERK inhibition, but not AKT inhibition, suppresses neurite growth that is induced by AgNP. Taken together, our results uncover the pivotal contribution of ROS in the AgNP-induced neuronal differentiation mechanism, which is different from that of RA. However, the negative consequence of AgNP-induced neurite growth may be high ROS generation and the downregulation of the expression of the genes encoding the antioxidant enzymes, which prompts the future consideration and an in-depth study of the application of AgNP-differentiated cells in neurodegenerative disease therapy.

  8. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair

    PubMed Central

    Luo, Lihua; Wang, Xiaoyan; Key, Brian; Lee, Bae Hoon

    2018-01-01

    This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases. PMID:29853908

  9. Differentially Expressed Plasma MicroRNAs and the Potential Regulatory Function of Let-7b in Chronic Thromboembolic Pulmonary Hypertension

    PubMed Central

    Guo, Lijuan; Yang, Yuanhua; Liu, Jie; Wang, Lei; Li, Jifeng; Wang, Ying; Liu, Yan; Gu, Song; Gan, Huili; Cai, Jun; Yuan, Jason X.-J.; Wang, Jun; Wang, Chen

    2014-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a progressive disease characterized by misguided thrombolysis and remodeling of pulmonary arteries. MicroRNAs are small non-coding RNAs involved in multiple cell processes and functions. During CTEPH, circulating microRNA profile endued with characteristics of diseased cells could be identified as a biomarker, and might help in recognition of pathogenesis. Thus, in this study, we compared the differentially expressed microRNAs in plasma of CTEPH patients and healthy controls and investigated their potential functions. Microarray was used to identify microRNA expression profile and qRT-PCR for validation. The targets of differentially expressed microRNAs were identified in silico, and the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes pathway database were used for functional investigation of target gene profile. Targets of let-7b were validated by fluorescence reporter assay. Protein expression of target genes was determined by ELISA or western blotting. Cell migration was evaluated by wound healing assay. The results showed that 1) thirty five microRNAs were differentially expressed in CTEPH patients, among which, a signature of 17 microRNAs, which was shown to be related to the disease pathogenesis by in silico analysis, gave diagnostic efficacy of both sensitivity and specificity >0.9. 2) Let-7b, one of the down-regulated anti-oncogenic microRNAs in the signature, was validated to decrease to about 0.25 fold in CTEPH patients. 3) ET-1 and TGFBR1 were direct targets of let-7b. Altering let-7b level influenced ET-1 and TGFBR1 expression in pulmonary arterial endothelial cells (PAECs) as well as the migration of PAECs and pulmonary arterial smooth muscle cells (PASMCs). These results suggested that CTEPH patients had aberrant microRNA signature which might provide some clue for pathogenesis study and biomarker screening. Reduced let-7b might be involved in the pathogenesis of CTEPH by affecting ET-1 expression and the function of PAECs and PASMCs. PMID:24978044

  10. Characterization of microRNAs in Mud Crab Scylla paramamosain under Vibrio parahaemolyticus Infection

    PubMed Central

    Li, Chuanbiao; Zhang, Zhao; Zhou, Lizhen; Wang, Shijia; Wang, Shuqi; Zhang, Yueling; Wen, Xiaobo

    2013-01-01

    Background Infection of bacterial Vibrio parahaemolyticus is common in mud crab farms. However, the mechanisms of the crab’s response to pathogenic V. parahaemolyticus infection are not fully understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs that function as regulators of gene expression and play essential roles in various biological processes. To understand the underlying mechanisms of the molecular immune response of the crab to the pathogens, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs in S . paramamosain under V. parahaemolyticus infection. Methodology/Principal Findings Two mixed RNA pools of 7 tissues (intestine, heart, liver, gill, brain, muscle and blood) were obtained from V. parahaemolyticus infected crabs and the control groups, respectively. By aligning the sequencing data with known miRNAs, we characterized 421 miRNA families, and 133 conserved miRNA families in mud crab S . paramamosain were either identical or very similar to existing miRNAs in miRBase. Stem-loop qRT-PCRs were used to scan the expression levels of four randomly chosen differentially expressed miRNAs and tissue distribution. Eight novel potential miRNAs were confirmed by qRT-PCR analysis and the precursors of these novel miRNAs were verified by PCR amplification, cloning and sequencing in S . paramamosain . 161 miRNAs (106 of which up-regulated and 55 down-regulated) were significantly differentially expressed during the challenge and the potential targets of these differentially expressed miRNAs were predicted. Furthermore, we demonstrated evolutionary conservation of mud crab miRNAs in the animal evolution process. Conclusions/Significance In this study, a large number of miRNAs were identified in S . paramamosain when challenged with V. parahaemolyticus, some of which were differentially expressed. The results show that miRNAs might play some important roles in regulating gene expression in mud crab under V. parahaemolyticus infection, providing a basis for further investigation of miRNA-modulating networks in innate immunity of mud crab. PMID:24023678

  11. Filling gaps in PPAR-alpha signaling through comparative nutrigenomics analysis

    PubMed Central

    2009-01-01

    Background The application of high-throughput genomic tools in nutrition research is a widespread practice. However, it is becoming increasingly clear that the outcome of individual expression studies is insufficient for the comprehensive understanding of such a complex field. Currently, the availability of the large amounts of expression data in public repositories has opened up new challenges on microarray data analyses. We have focused on PPARα, a ligand-activated transcription factor functioning as fatty acid sensor controlling the gene expression regulation of a large set of genes in various metabolic organs such as liver, small intestine or heart. The function of PPARα is strictly connected to the function of its target genes and, although many of these have already been identified, major elements of its physiological function remain to be uncovered. To further investigate the function of PPARα, we have applied a cross-species meta-analysis approach to integrate sixteen microarray datasets studying high fat diet and PPARα signal perturbations in different organisms. Results We identified 164 genes (MDEGs) that were differentially expressed in a constant way in response to a high fat diet or to perturbations in PPARs signalling. In particular, we found five genes in yeast which were highly conserved and homologous of PPARα targets in mammals, potential candidates to be used as models for the equivalent mammalian genes. Moreover, a screening of the MDEGs for all known transcription factor binding sites and the comparison with a human genome-wide screening of Peroxisome Proliferating Response Elements (PPRE), enabled us to identify, 20 new potential candidate genes that show, both binding site, both change in expression in the condition studied. Lastly, we found a non random localization of the differentially expressed genes in the genome. Conclusion The results presented are potentially of great interest to resume the currently available expression data, exploiting the power of in silico analysis filtered by evolutionary conservation. The analysis enabled us to indicate potential gene candidates that could fill in the gaps with regards to the signalling of PPARα and, moreover, the non-random localization of the differentially expressed genes in the genome, suggest that epigenetic mechanisms are of importance in the regulation of the transcription operated by PPARα. PMID:20003344

  12. MicroRNA profiling in the dentate gyrus in epileptic rats: The role of miR-187-3p.

    PubMed

    Zhang, Suya; Kou, Yubin; Hu, Chunmei; Han, Yan

    2017-06-01

    This study aimed to explore the role of aberrant miRNA expression in epilepsy and to identify more potential genes associated with epileptogenesis.The miRNA expression profile of GSE49850, which included 20 samples from the rat epileptic dentate gyrus at 7, 14, 30, and 90 days after electrical stimulation and 20 additional samples from sham time-matched controls, was downloaded from the Gene Expression Omnibus database. The significantly differentially expressed miRNAs were identified in stimulated samples at each time point compared to time-matched controls, respectively. The target genes of consistently differentially expressed miRNAs were screened from miRDB and microRNA.org databases, followed by Gene Ontology (GO) and pathway enrichment analysis and regulatory network construction. The overlapping target genes for consistently differentially expressed miRNAs were also identified from these 2 databases. Furthermore, the potential binding sites of miRNAs and their target genes were analyzed.Rno-miR-187-3p was consistently downregulated in stimulated groups compared with time-matched controls. The predicted target genes of rno-miR-187-3p were enriched in different GO terms and pathways. In addition, 7 overlapping target genes of rno-miR-187-3p were identified, including NFS1, PAQR4, CAND1, DCLK1, PRKAR2A, AKAP3, and KCNK10. These 7 overlapping target genes were determined to have a different number of matched binding sites with rno-miR-187-3p.Our study suggests that miR-187-3p may play an important role in epilepsy development and progression via regulating numerous target genes, such as NFS1, CAND1, DCLK1, AKAP3, and KCNK10. Determining the underlying mechanism of the role of miR-187-3p in epilepsy may make it a potential therapeutic option.

  13. Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale.

    PubMed

    Thiel, Johannes; Riewe, David; Rutten, Twan; Melzer, Michael; Friedel, Swetlana; Bollenbeck, Felix; Weschke, Winfriede; Weber, Hans

    2012-08-01

    Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    PubMed

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  15. Global miRNA expression profile reveals novel molecular players in aneurysmal subarachnoid haemorrhage.

    PubMed

    Lopes, Katia de Paiva; Vinasco-Sandoval, Tatiana; Vialle, Ricardo Assunção; Paschoal, Fernando Mendes; Bastos, Vanessa Albuquerque P Aviz; Bor-Seng-Shu, Edson; Teixeira, Manoel Jacobsen; Yamada, Elizabeth Sumi; Pinto, Pablo; Vidal, Amanda Ferreira; Ribeiro-Dos-Santos, Arthur; Moreira, Fabiano; Santos, Sidney; Paschoal, Eric Homero Albuquerque; Ribeiro-Dos-Santos, Ândrea

    2018-06-08

    The molecular mechanisms behind aneurysmal subarachnoid haemorrhage (aSAH) are still poorly understood. Expression patterns of miRNAs may help elucidate the post-transcriptional gene expression in aSAH. Here, we evaluate the global miRNAs expression profile (miRnome) of patients with aSAH to identify potential biomarkers. We collected 33 peripheral blood samples (27 patients with cerebral aneurysm, collected 7 to 10 days after the haemorrhage, when usually is the cerebral vasospasm risk peak, and six controls). Then, were performed small RNA sequencing using an Illumina Next Generation Sequencing (NGS) platform. Differential expression analysis identified eight differentially expressed miRNAs. Among them, three were identified being up-regulated, and five down-regulated. miR-486-5p was the most abundant expressed and is associated with poor neurological admission status. In silico miRNA gene target prediction showed 148 genes associated with at least two differentially expressed miRNAs. Among these, THBS1 and VEGFA, known to be related to thrombospondin and vascular endothelial growth factor. Moreover, MYC gene was found to be regulated by four miRNAs, suggesting an important role in aneurysmal subarachnoid haemorrhage. Additionally, 15 novel miRNAs were predicted being expressed only in aSAH, suggesting possible involvement in aneurysm pathogenesis. These findings may help the identification of novel biomarkers of clinical interest.

  16. Differential expression of decorin and biglycan genes during mouse tooth development

    NASA Technical Reports Server (NTRS)

    Matsuura, T.; Duarte, W. R.; Cheng, H.; Uzawa, K.; Yamauchi, M.

    2001-01-01

    Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.

  17. Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

    PubMed

    Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E

    2015-09-20

    Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells.

    PubMed

    Porciuncula, Angelo; Kumar, Anujith; Rodriguez, Saray; Atari, Maher; Araña, Miriam; Martin, Franz; Soria, Bernat; Prosper, Felipe; Verfaillie, Catherine; Barajas, Miguel

    2016-12-01

    Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP + population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. Induction of intermediate mesoderm by retinoic acid receptor signaling from differentiating mouse embryonic stem cells.

    PubMed

    Oeda, Shiho; Hayashi, Yohei; Chan, Techuan; Takasato, Minoru; Aihara, Yuko; Okabayashi, Koji; Ohnuma, Kiyoshi; Asashima, Makoto

    2013-01-01

    Renal lineages including kidney are derived from intermediate mesoderm, which are differentiated from a subset of caudal undifferentiated mesoderm. The inductive mechanisms of mammalian intermediate mesoderm and renal lineages are still poorly understood. Mouse embryonic stem cells (mESCs) can be a good in vitro model to reconstitute the developmental pathway of renal lineages and to analyze the mechanisms of the sequential differentiation. We examined the effects of Activin A and retinoic acid (RA) on the induction of intermediate mesoderm from mESCs under defined, serum-free, adherent, monolayer culture conditions. We measured the expression level of intermediate mesodermal marker genes and examined the developmental potential of the differentiated cells into kidney using an ex vivo transplantation assay. Adding Activin A followed by RA to mESC cultures induced the expression of marker genes and proteins for intermediate mesoderm, odd-skipped related 1 (Osr1) and Wilm’s Tumor 1 (Wt1). These differentiated cells integrated into laminin-positive tubular cells and Pax2-positive renal cells in cultured embryonic kidney explants. We demonstrated that intermediate mesodermal marker expression was also induced by RA receptor (RAR) agonist, but not by retinoid X receptor (RXR) agonists. Furthermore, the expression of these markers was decreased by RAR antagonists. We directed the differentiation of mESCs into intermediate mesoderm using Activin A and RA and revealed the role of RAR signaling in this differentiation. These methods and findings will improve our understanding of renal lineage development and could contribute to the regenerative medicine of kidney.

  20. Genome-wide dynamics of alternative polyadenylation in rice

    PubMed Central

    Fu, Haihui; Yang, Dewei; Su, Wenyue; Ma, Liuyin; Shen, Yingjia; Ji, Guoli; Ye, Xinfu; Wu, Xiaohui

    2016-01-01

    Alternative polyadenylation (APA), in which a transcript uses one of the poly(A) sites to define its 3′-end, is a common regulatory mechanism in eukaryotic gene expression. However, the potential of APA in determining crop agronomic traits remains elusive. This study systematically tallied poly(A) sites of 14 different rice tissues and developmental stages using the poly(A) tag sequencing (PAT-seq) approach. The results indicate significant involvement of APA in developmental and quantitative trait loci (QTL) gene expression. About 48% of all expressed genes use APA to generate transcriptomic and proteomic diversity. Some genes switch APA sites, allowing differentially expressed genes to use alternate 3′ UTRs. Interestingly, APA in mature pollen is distinct where differential expression levels of a set of poly(A) factors and different distributions of APA sites are found, indicating a unique mRNA 3′-end formation regulation during gametophyte development. Equally interesting, statistical analyses showed that QTL tends to use APA for regulation of gene expression of many agronomic traits, suggesting a potential important role of APA in rice production. These results provide thus far the most comprehensive and high-resolution resource for advanced analysis of APA in crops and shed light on how APA is associated with trait formation in eukaryotes. PMID:27733415

  1. Donor-Matched Comparison of Chondrogenic Potential of Equine Bone Marrow- and Synovial Fluid-Derived Mesenchymal Stem Cells: Implications for Cartilage Tissue Regeneration

    PubMed Central

    Zayed, Mohammed; Caniglia, Christopher; Misk, Nabil; Dhar, Madhu S.

    2017-01-01

    Mesenchymal stem cells (MSCs) have been demonstrated to be useful for cartilage tissue regeneration. Bone marrow (BM) and synovial fluid (SF) are promising sources for MSCs to be used in cartilage regeneration. In order to improve the clinical outcomes, it is recommended that prior to clinical use, the cellular properties and, specifically, their chondrogenic potential must be investigated. The purpose of this study is to compare and better understand the in vitro chondrogenic potential of equine bone marrow-derived mesenchymal stem cells (BMMSCs) and synovial fluid-derived mesenchymal stem cells (SFMSCs) populated from the same equine donor. BM- and SF-derived MSCs cultures were generated from five equine donors, and the MSCs were evaluated in vitro for their morphology, proliferation, trilineage differentiation, and immunophenotyping. Differences in their chondrogenic potentials were further evaluated quantitatively using glycosaminoglycan (GAG) content and via immunofluorescence of chondrogenic differentiation protein markers, SRY-type HMG box9, Aggrecan, and collagen II. The BMMSCs and SFMSCs were similar in cellular morphology, viability, and immunophenotype, but, varied in their chondrogenic potential, and expression of the key chondrogenic proteins. The SFMSCs exhibited a significant increase in GAG content compared to the BMMSCs (P < 0.0001) in three donors, suggesting increased levels of chondrogenesis. The expression of the key chondrogenic proteins correlated positively with the GAG content, suggesting that the differentiation process is dependent on the expression of the target proteins in these three donors. Our findings suggest that even though SFMSCs were hypothesized to be more chondrogenic relative to BMMSCs, there was considerable donor-to-donor variation in the primary cultures of MSCs which can significantly affect their downstream application. PMID:28149840

  2. Potential Role of Rebamipide in Osteoclast Differentiation and Mandibular Condylar Cartilage Homeostasis.

    PubMed

    Izawa, Takashi; Hutami, Islamy Rahma; Tanaka, Eiji

    2018-04-20

    Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease that involves changes in subchondral bone and progressive degradation of cartilage. Currently, rebamipide, a gastroprotective drug, is administered to protect gastric mucosa and accelerate ulcer healing. Recent studies have shown that rebamipide also attenuates cartilage degeneration by suppressing oxidative damage and inducing homeostasis of the extracellular matrix of articular chondrocytes. Regarding the latter, reduced expression of cathepsin K, NFATc1, c-Src, and integrin β3, and increased expression of nuclear factor-kappa B, have been found to be mediated by the transcription factor, receptor activator of nuclear factor kappa-B ligand (RANKL). Treatment with rebamipide was also found to activate, mitogen-activated protein kinases such as p38, ERK, and JNK to reduce osteoclast differentiation. Taken together, these results strongly indicate that rebamipide mediates inhibitory effects on cartilage degradation and osteoclastogenesis in TMJ-OA. Here, we highlight recent evidence regarding the potential for rebamipide to affect osteoclast differentiation and TMJ-OA pathogenesis. We also discuss the potential role of rebamipide to serve as a new strategy for the treatment of TMJ-OA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    PubMed

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  4. Identification of a novel long noncoding RNA that promotes osteoblast differentiation.

    PubMed

    Nardocci, Gino; Carrasco, Margarita E; Acevedo, Elvis; Hodar, Christian; Meneses, Claudio; Montecino, Martín

    2018-05-28

    Long noncoding RNAs (lncRNAs) are a heterogeneous class of transcripts, longer than 200 nucleotides, 5'-capped, polyadenylated, and poorly conserved among mammalian species. Several studies have shown the contribution of lncRNAs to different cellular processes, including regulation of the chromatin structure, control of messenger RNA translation, regulation of gene transcription, regulation of embryonic pluripotency, and differentiation. Although limited numbers of functional lncRNAs have been identified so far, the immense regulatory potential of these RNAs is already evident, indicating that a functional characterization of lncRNAs is needed. In this study, mouse preosteoblastic cells were induced to differentiate into osteoblasts. At 3 sequential differentiation stages, total RNA was isolated and libraries were constructed for Illumina sequencing. The resulting sequences were aligned and transcript abundances were determined. New lncRNA candidates that displayed differential expression patterns during osteoblast differentiation were identified by combining bioinformatics and reverse transcription polymerase chain reaction analyses. Among these, lncRNA-1 that exhibited increased expression during osteogenesis and was downregulated during myogenesis. Importantly, knockdown of lncRNA-1 expression in primary mouse preosteoblasts was found to inhibit osteogenic differentiation, reflected by a reduced transcription of the Runx2/p57 and Sp7 bone master genes. Together, our results indicate that lncRNA-1 represents a new regulatory RNA that plays a relevant role during the early stages of osteogenesis. © 2018 Wiley Periodicals, Inc.

  5. Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage

    PubMed Central

    Raju, Ravali; Chau, David; Cho, Dong Seong; Park, Yonsil; Verfaillie, Catherine M.

    2017-01-01

    The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 109–1010 cells, because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage, to allow for at least an eightfold increase in cell number, with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array, and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition, our transcriptome, protein and functional studies, including albumin secretion, drug-induced CYP450 expression and urea production, all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications. PMID:27806669

  6. Shotgun Proteomic Analysis of Plasma from Dairy Cattle Suffering from Footrot: Characterization of Potential Disease-Associated Factors

    PubMed Central

    Sun, Dongbo; Zhang, Hong; Guo, Donghua; Sun, Anguo; Wang, Hongbin

    2013-01-01

    The plasma proteome of healthy dairy cattle and those with footrot was investigated using a shotgun LC-MS/MS approach. In total, 648 proteins were identified in healthy plasma samples, of which 234 were non-redundant proteins and 123 were high-confidence proteins; 712 proteins were identified from footrot plasma samples, of which 272 were non-redundant proteins and 138 were high-confidence proteins. The high-confidence proteins showed significant differences between healthy and footrot plasma samples in molecular weight, isoelectric points and the Gene Ontology categories. 22 proteins were found that may differentiate between the two sets of plasma proteins, of which 16 potential differential expression (PDE) proteins from footrot plasma involved in immunoglobulins, innate immune recognition molecules, acute phase proteins, regulatory proteins, and cell adhesion and cytoskeletal proteins; 6 PDE proteins from healthy plasma involved in regulatory proteins, cytoskeletal proteins and coagulation factors. Of these PDE proteins, haptoglobin, SERPINA10 protein, afamin precursor, haptoglobin precursor, apolipoprotein D, predicted peptidoglycan recognition protein L (PGRP-L) and keratan sulfate proteoglycan (KS-PG) were suggested to be potential footrot-associated factors. The PDE proteins PGRP-L and KS-PG were highlighted as potential biomarkers of footrot in cattle. The resulting protein lists and potential differentially expressed proteins may provide valuable information to increase understanding of plasma protein profiles in cattle and to assist studies of footrot-associated factors. PMID:23418487

  7. The caspase-1 inhibitor CARD18 is specifically expressed during late differentiation of keratinocytes and its expression is lost in lichen planus.

    PubMed

    Qin, Haihong; Jin, Jiang; Fischer, Heinz; Mildner, Michael; Gschwandtner, Maria; Mlitz, Veronika; Eckhart, Leopold; Tschachler, Erwin

    2017-08-01

    CARD18 contains a caspase recruitment domain (CARD) via which it binds to caspase-1 and thereby inhibits caspase-1-mediated activation of the pro-inflammatory cytokine interleukin (IL)-1β. To determine the expression profile and the role of CARD18 during differentiation of keratinocytes and to compare the expression of CARD18 in normal skin and in inflammatory skin diseases. Human keratinocytes were induced to differentiate in monolayer and in 3D skin equivalent cultures. In some experiments, CARD18-specific siRNAs were used to knock down expression of CARD18. CARD18 mRNA levels were determined by quantitative real-time PCR, and CARD18 protein was detected by Western blot and immunofluorescence analyses. In situ expression was analyzed in skin biopsies obtained from healthy donors and patients with psoriasis and lichen planus. CARD18 mRNA was expressed in the epidermis at more than 100-fold higher levels than in any other human tissue. Within the epidermis, CARD18 was specifically expressed in the granular layer. In vitro CARD18 was strongly upregulated at both mRNA and protein levels in keratinocytes undergoing terminal differentiation. In skin equivalent cultures the expression of CARD18 was efficiently suppressed by siRNAs without impairing stratum corneum formation. Epidermal expression of CARD18 was increased after ultraviolet (UV)B irradiation of skin explants. In skin biopsies of patients with psoriasis no consistent regulation of CARD18 expression was observed, however, in lesional epidermis of patients with lichen planus, CARD18 expression was either greatly diminished or entirely absent whereas in non-lesional areas expression was comparable to normal skin. Our results identify CARD18 as a differentiation-associated keratinocyte protein that is altered in abundance by UV stress. Its downregulation in lichen planus indicates a potential role in inflammatory reactions of the epidermis in this disease. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  8. Proteomic Analysis of Apis cerana and Apis mellifera Larvae Fed with Heterospecific Royal Jelly and by CSBV Challenge

    PubMed Central

    Huang, Xiu; Han, Richou

    2014-01-01

    Chinese honeybee Apis cerana (Ac) is one of the major Asian honeybee species for local apiculture. However, Ac is frequently damaged by Chinese sacbrood virus (CSBV), whereas Apis mellifera (Am) is usually resistant to it. Heterospecific royal jelly (RJ) breeding in two honeybee species may result in morphological and genetic modification. Nevertheless, knowledge on the resistant mechanism of Am to this deadly disease is still unknown. In the present study, heterospecific RJ breeding was conducted to determine the effects of food change on the larval mortality after CSBV infection at early larval stage. 2-DE and MALDI-TOF/TOF MS proteomic technology was employed to unravel the molecular event of the bees under heterospecific RJ breeding and CSBV challenge. The change of Ac larval food from RJC to RJM could enhance the bee resistance to CSBV. The mortality rate of Ac larvae after CSBV infection was much higher when the larvae were fed with RJC compared with the larvae fed with RJM. There were 101 proteins with altered expressions after heterospecific RJ breeding and viral infection. In Ac larvae, 6 differential expression proteins were identified from heterospecific RJ breeding only, 21 differential expression proteins from CSBV challenge only and 7 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. In Am larvae, 17 differential expression proteins were identified from heterospecific RJ breeding only, 26 differential expression proteins from CSBV challenge only and 24 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. The RJM may protect Ac larvae from CSBV infection, probably by activating the genes in energy metabolism pathways, antioxidation and ubiquitin-proteasome system. The present results, for the first time, comprehensively descript the molecular events of the viral infection of Ac and Am after heterospecific RJ breeding and are potentially useful for establishing CSBV resistant populations of Ac for apiculture. PMID:25102167

  9. In Vivo Exposure to Inorganic Arsenic Alters Differentiation-Specific Gene Expression of Adipose-Derived Mesenchymal Stem/Stromal Cells in C57BL/6J Mouse Model

    PubMed Central

    Shearer, Joseph J.; Figueiredo Neto, Manoel; Umbaugh, C. Samuel; Figueiredo, Marxa L.

    2017-01-01

    Abstract The number of mesenchymal stem cell (MSC) therapeutic modalities has grown in recent years. Adipose-derived mesenchymal stem/stromal cells (ASCs) can be isolated and expanded relatively easily as compared with their bone-marrow counterparts, making them a particularly promising source of MSCs. And although the biological mechanisms surrounding ASCs are actively being investigated, little is known about the effects that in vivo environmental exposures might have on their ability to properly differentiate. Therefore, we hypothesized that ASCs isolated from mice exposed to inorganic arsenic (iAs) would have an altered response towards adipogenic, osteogenic, and/or chondrogenic differentiation. To test this hypothesis, C57BL/6J male mice were provided drinking water containing 0, 300, or 1000 ppb iAs. ASCs were then isolated and differentiated, which was assessed by immunocytochemistry and real-time quantitative PCR (RT-qPCR). Our results showed that total urinary arsenic equilibrated within 1 week of exposure to iAs and was maintained throughout the study. ASCs isolated from each exposure group maintained differentiation capabilities for each lineage. The magnitude of differentiation-specific gene expression, however, appeared to be concentration dependent. For osteogenesis and chondrogenesis, differentiation-specific gene expression decreased, whereas adipogenesis showed a biphasic response with an initial decrease followed by an increase in adipogenic-related gene expression following iAs exposure. These results suggest that the level in which differentiation-specific genes are induced within these stromal cells might be sensitive to environmental contaminants. These findings highlight the need to take into account potential environmental exposures prior to selecting stromal cell donors, so ASCs can achieve optimal efficiency in regenerative therapy applications. PMID:28206643

  10. Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow.

    PubMed

    Kumar, B Mohana; Maeng, Geun-Ho; Lee, Yeon-Mi; Kim, Tae-Ho; Lee, Jeong-Hyeon; Jeon, Byeong-Gyun; Ock, Sun-A; Yoo, Jae-Gyu; Rho, Gyu-Jin

    2012-10-01

    The present study investigated the potential of minipig bone marrow-mesenchymal stem cells (BM-MSCs) to differentiate in vitro into neuron- and cardiomyocyte-like cells. Isolated BM-MSCs exhibited a fibroblast-like morphology, expressed CD29, CD44 and CD90, and differentiated into osteocytes, adipocytes and chondrocytes. Upon induction in two different neuronal specific media, most of BM-MSCs acquired the distinctive morphological features and positively stained for nestin, neurofilament-M (NF-M), neuronal nuclei (NeuN), β-tubulin, galactocerebroside (Gal-C) and glial fibrillary acidic protein (GFAP). Expression of nestin, GFAP and NF-M was further demonstrated by RT-PCR and RT-qPCR. Following cardiomyogenic induction, MSCs exhibited a stick-like morphology with extended cytoplasmic processes, and formed cluster-like structures. The expression of cardiac specific markers α-smooth muscle actin, cardiac troponin T, desmin and α-cardiac actin was positive for immunofluorescence staining, and further confirmed by RT-PCR and RT-qPCR. In conclusion, our results showed the in vitro differentiation ability of porcine BM-MSCs into neuron-like and cardiomyocyte-like cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulatedmore » kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.« less

  12. Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers.

    PubMed

    Wicik, Z; Gajewska, M; Majewska, A; Walkiewicz, D; Osińska, E; Motyl, T

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that participate in the regulation of gene expression. Their role during mammary gland development is still largely unknown. In this study, we performed a microarray analysis to identify miRNAs associated with high mammogenic potential of the bovine mammary gland. We identified 54 significantly differentially expressed miRNAs between the mammary tissue of dairy (Holstein-Friesian, HF) and beef (Limousin, LM) postpubertal heifers. Fifty-two miRNAs had higher expression in the mammary tissue of LM heifers. The expression of the top candidate miRNAs (bta-miR-10b, bta-miR-29b, bta-miR-101, bta-miR-375, bta-miR-2285t, bta-miR-146b, bta-let7b, bta-miR-107, bta-miR-1434-3p) identified in the microarray experiment was additionally evaluated by qPCR. Enrichment analyses for targeted genes revealed that the major differences between miRNA expression in the mammary gland of HF versus LM were associated with the regulation of signalling pathways that are crucial for mammary gland development, such as TGF-beta, insulin, WNT and inflammatory pathways. Moreover, a number of genes potentially targeted by significantly differentially expressed miRNAs were associated with the activity of mammary stem cells. These data indicate that the high developmental potential of the mammary gland in dairy cattle, leading to high milk productivity, depends also on a specific miRNA expression pattern. © 2015 Blackwell Verlag GmbH.

  13. Identification of a role for the nuclear receptor EAR-2 in the maintenance of clonogenic status within the leukemia cell hierarchy

    PubMed Central

    Ichim, CV; Atkins, HL; Iscove, NN; Wells, RA

    2016-01-01

    Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy. PMID:21637284

  14. Liver-enriched transcription factors are critical for the expression of hepatocyte marker genes in mES-derived hepatocyte-lineage cells.

    PubMed

    Kheolamai, Pakpoom; Dickson, Alan J

    2009-04-23

    Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.

  15. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl4 -induced hepatic injury.

    PubMed

    Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran

    2017-01-01

    Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl 4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP + mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl 4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl 4 -induced liver fibrosis was achieved. © 2016 International Federation for Cell Biology.

  16. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells.

    PubMed

    Hong, Seung Hyun; Gang, Eun Ji; Jeong, Ju Ah; Ahn, Chiyoung; Hwang, Soo Han; Yang, Il Ho; Park, Hwon Kyum; Han, Hoon; Kim, Hoeon

    2005-05-20

    In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.

  17. Hematopoietic-to-mesenchymal transition of adipose tissue macrophages is regulated by integrin β1 and fabricated fibrin matrices

    PubMed Central

    Majka, Susan M.; Kohrt, Wendy M.; Miller, Heidi L.; Sullivan, Timothy M.; Klemm, Dwight J.

    2017-01-01

    ABSTRACT Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function. PMID:28441086

  18. Human mesenchymal stem cells - current trends and future prospective

    PubMed Central

    Ullah, Imran; Subbarao, Raghavendra Baregundi; Rho, Gyu Jin

    2015-01-01

    Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials. PMID:25797907

  19. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.

    PubMed

    Bihmidine, Saadia; Julius, Benjamin T; Dweikat, Ismail; Braun, David M

    2016-01-01

    Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accumulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work determined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression accounted for the carbohydrate partitioning differences. Recently, 2 additional classes of sucrose transport proteins, Tonoplast Sugar Transporters (TSTs) and SWEETs, were identified; thus, we examined whether their expression tracked sucrose accumulation in sweet sorghum stems. We determined 2 TSTs were differentially expressed in sweet vs. grain sorghum stems, likely underlying the massive difference in sucrose accumulation. A model illustrating potential roles for different classes of sugar transport proteins in sorghum sugar partitioning is discussed.

  20. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology.

    PubMed

    Bharadwaj, Shantaram; Liu, Guihua; Shi, Yingai; Wu, Rongpei; Yang, Bin; He, Tongchuan; Fan, Yuxin; Lu, Xinyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Rohozinski, Jan; Zhang, Yuanyuan

    2013-09-01

    We sought to biologically characterize and identify a subpopulation of urine-derived stem cells (USCs) with the capacity for multipotent differentiation. We demonstrated that single USCs can expand to a large population with 60-70 population doublings. Nine of 15 individual USC clones expressed detectable levels of telomerase and have long telomeres. These cells expressed pericyte and mesenchymal stem cell markers. Upon induction with appropriate media in vitro, USCs differentiated into bladder-associated cell types, including functional urothelial and smooth muscle cell lineages. When the differentiated USCs were seeded onto a scaffold and subcutaneously implanted into nude mice, multilayered tissue-like structures formed consisting of urothelium and smooth muscle. Additionally, USCs were able to differentiate into endothelial, osteogenic, chondrogenic, adipogenic, skeletal myogenic, and neurogenic lineages but did not form teratomas during the 1-month study despite telomerase activity. USCs may be useful in cell-based therapies and tissue engineering applications, including urogenital reconstruction. © AlphaMed Press.

  1. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    PubMed

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO's increasing number of differentiated neurons in OHSC. In conclusion, CO's increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO's effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies.

  2. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death

    PubMed Central

    Almeida, Ana S.; Soares, Nuno L.; Vieira, Melissa; Gramsbergen, Jan Bert

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO’s improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO’s increasing number of differentiated neurons in OHSC. In conclusion, CO’s increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO’s effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies. PMID:27144388

  3. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    PubMed

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly correlated with BMI (r = 0.56, P = 0.04), and hub genes of KCNN1 and AQP10 were differentially expressed. We identified significant genes and specific modules potentially related to BMI based on the gene expression profile data of monozygotic twins. The findings may help further elucidate the underlying mechanisms of obesity development and provide novel insights to research potential gene biomarkers and signaling pathways for obesity treatment. Further analysis and validation of the findings reported here are important and necessary when more sample size is acquired.

  4. Decreased expression of glutathione S-transferase pi correlates with poorly differentiated grade in patients with oral squamous cell carcinoma.

    PubMed

    Ma, Hai-long; Yu, Cong; Liu, Ying; Tan, Yi-ran; Qiao, Jin-ke; Yang, Xi; Wang, Li-zhen; Li, Jiang; Chen, Qiong; Chen, Fu-xiang; Zhang, Zhi-yuan; Zhong, Lai-ping

    2015-03-01

    Glutathione S transferase pi (GSTP1) is a member of phase II detoxification enzymes as a major regulator of cell signaling in response to stress, hypoxia, growth factors, and other stimuli. The clinical role of GSTP1 in cancer is still unclear. The aim of this study was to investigate the serum GSTP1 level in patients with oral squamous cell carcinoma (OSCC) and the GSTP1 expression in tissue samples from patients with OSCC and OSCC lines. One hundred and sixty-six patients with OSCC and 120 normal persons were used to screen potential serum peptide biomarkers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Serum GSTP1 concentration was detected in 18 patients with OSCC and 18 normal persons using ELISA. Immunohistochemistry was used to detect GSTP1 expression in tissue samples from twenty-eight OSCC patients. Western blot and real-time PCR were used to detect GSTP1 expression in nine OSCC lines. Decreased GSTP1 concentration was found in the patients with OSCC compared with the normal persons by MALDI-TOF-MS, which was then confirmed by ELISA (P = 0.019). Decreased GSTP1 mRNA level and protein expression were also found in the OSCC lines. Decreased GSTP1 expression was found correlating with pathological differentiation grade in the tissue samples from OSCC patients, a lower GSTP1 expression indicating a poorer pathological differentiation grade (P = 0.041). These results suggest that decreased GSTP1 expression in patients with OSCC and a lower GSTP1 expression indicating a poorer pathological differentiation grade in OSCC tissue samples. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Prx1 and 3.2 kb Col1a1 promoters target distinct bone cell populations in transgenic mice

    PubMed Central

    Ouyang, Zhufeng; Chen, Zhijun; Ishikawa, Masakazu; Yue, Xiuzhen; Kawanami, Aya; Leahy, Patrick; Greenfield, Edward M.; Murakami, Shunichi

    2014-01-01

    Bones consist of a number of cell types including osteoblasts and their precursor cells at various stages of differentiation. To analyze cellular organization within the bone, we generated Col1a1CreER-DsRed transgenic mice that express, in osteoblasts, CreER and DsRed under the control of a mouse 3.2 kb Col1a1 promoter. We further crossed Col1a1CreER-DsRed mice with Prx1CreER-GFP mice that express CreER and GFP in osteochondro progenitor cells under the control of a 2.4 kb Prx1 promoter. Since the 3.2 kb Col1a1 promoter becomes active in osteoblasts at early stages of differentiation, and Prx1CreER-GFP-expressing periosteal cells show endogenous Col1a1 expression, we expected to find a cell population in which both the 2.4 kb Prx1 promoter and the 3.2 kb Col1a1 promoter are active. However, our histological and flow cytometric analyses demonstrated that these transgenes are expressed in distinct cell populations. In the periosteum of long bones, Col1a1CreER-DsRed is expressed in the innermost layer directly lining the bone surface, while Prx1CreER-GFP-expressing cells are localized immediately outside of the Col1a1CreER-DsRed-expressing osteoblasts. In the calvaria, Prx1CreER-GFP-expressing cells are also localized in the cranial suture mesenchyme. Our experiments further showed that Col1a1CreER-DsRed-expressing cells lack chondrogenic potential, while the Prx1CreER-GFP-expressing cells show both chondrogenic and osteogenic potential. Our results indicate that Col1a1CreER-DsRed-expressing cells are committed osteoblasts, while Prx1CreER-GFP-expressing cells are osteochondro progenitor cells. The Prx1CreER-GFP and Col1a1CreER-DsRed transgenes will offer novel approaches for analyzing lineage commitment and early stages of osteoblast differentiation under physiologic and pathologic conditions. PMID:24513582

  6. Circulating Plasma Levels of MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma

    PubMed Central

    Kemeny, Nancy; Kingham, T. Peter; Allen, Peter J.; D’Angelica, Michael I.; DeMatteo, Ronald P.; Betel, Doron; Klimstra, David; Jarnagin, William R.; Ventura, Andrea

    2016-01-01

    Background MicroRNAs (miRNAs) are potential biomarkers in various malignancies. We aim to characterize miRNA expression in intrahepatic cholangiocarcinoma (ICC) and identify circulating plasma miRNAs with potential diagnostic and prognostic utility. Methods Using deep-sequencing techniques, miRNA expression between tumor samples and non-neoplastic liver parenchyma were compared. Overexpressed miRNAs were measured in plasma from an independent cohort of patients with cholangiocarcinoma using RT-qPCR and compared with that healthy volunteers. The discriminatory ability of the evaluated plasma miRNAs between patients and controls was evaluated with receiving operating characteristic (ROC) curves. Results Small RNAs from 12 ICC and 11 tumor-free liver samples were evaluated. Unsupervised hierarchical clustering using the miRNA expression data showed clear grouping of ICC vs. non-neoplastic liver parenchyma. We identified 134 down-regulated and 128 upregulated miRNAs. Based on overexpression and high fold-change, miR21, miR200b, miR221, and miR34c were measured in plasma from an independent cohort of patients with ICC (n = 25) and healthy controls (n = 7). Significant overexpression of miR-21 and miR-221 was found in plasma from ICC patients. Furthermore, circulating miR-21 demonstrated a high discriminatory ability between patients with ICC and healthy controls (AUC: 0.94). Conclusion Among the differentially expressed miRNAs in ICC, miR-21 and miR-221 are overexpressed and detectable in the circulation. Plasma expression levels of these miRNAs, particularly miR-21, accurately differentiates patients with ICC from healthy controls and could potentially serve as adjuncts in diagnosis. Prospective validation and comparison with other hepatobiliary malignancies is required to establish their potential role as diagnostic and prognostic biomarkers. PMID:27685844

  7. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects.

    PubMed

    Eischen-Loges, Maria; Oliveira, Karla M C; Bhavsar, Mit B; Barker, John H; Leppik, Liudmila

    2018-01-01

    Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES's demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1 , Osteopontin , Osterix and Calmodulin . We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.

  8. ERα inhibited myocardin-induced differentiation in uterine fibroids.

    PubMed

    Liao, Xing-Hua; Li, Jun-Yan; Dong, Xiu-Mei; Wang, Xiuhong; Xiang, Yuan; Li, Hui; Yu, Cheng-Xi; Li, Jia-Peng; Yuan, Bai-Yin; Zhou, Jun; Zhang, Tong-Cun

    2017-01-01

    Uterine fibroids, also known as uterine leiomyomas, are a benign tumor of the human uterus and the commonest estrogen-dependent benign tumor found in women. Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. The role of myocardin and its relationship with ERα in uterine fibroids have barely been addressed. We noticed that the expression of myocardin was markedly reduced in human uterine fibroid tissue compared with corresponding normal or adjacent myometrium tissue. Here we reported that myocardin induced the transcription and expression of differentiation markers SM22α and alpha smooth muscle actin (α-SMA) in rat primary uterine smooth muscle cells (USMCs) and this effect was inhibited by ERα. Notably, we showed that, ERα induced expression of proliferation markers PCNA and ki-67 in rat primary USMCs. We also found ERα interacted with myocardin and formed complex to bind to CArG box and inhibit the SM22α promoter activity. Furthermore, ERα inhibited the transcription and expression of myocardin, and reduced the levels of transcription and expression of downstream target SM22α, a SMC differentiation marker. Our data thus provided important and novel insights into how ERα and myocardin interact to control the cell differentiation and proliferation of USMCs. Thus, it may provide potential therapeutic target for uterine fibroids. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Changes in Global Transcriptional Profiling of Women Following Obesity Surgery Bypass.

    PubMed

    Pinhel, Marcela Augusta de Souza; Noronha, Natalia Yumi; Nicoletti, Carolina Ferreira; de Oliveira, Bruno Affonso Parente; Cortes-Oliveira, Cristiana; Pinhanelli, Vitor Caressato; Salgado Junior, Wilson; Machry, Ana Julia; da Silva Junior, Wilson Araújo; Souza, Dorotéia Rossi Silva; Marchini, Júlio Sérgio; Nonino, Carla Barbosa

    2018-01-01

    Differential gene expression in peripheral blood mononuclear cells (PBMCs) after Roux-en-Y gastric bypass (RYGB) is poorly characterized. Markers of these processes may provide a deeper understanding of the mechanisms that underlie these events. The main goal of this study was to identify changes in PBMC gene expression in women with obesity before and 6 months after RYGB-induced weight loss. The ribonucleic acid (RNA) of PBMCs from 13 obese women was analyzed before and 6 months after RYGB; the RNA of PBMCs from nine healthy women served as control. The gene expression levels were determined by microarray analysis. Significant differences in gene expression were validated by real-time quantitative polymerase chain reaction (RT-qPCR). Microarray analysis for comparison of the pre- and postoperative periods showed that 1366 genes were differentially expressed genes (DEGs). The main pathways were related to gene transcription; lipid, energy, and glycide metabolism; inflammatory and immunological response; cell differentiation; oxidative stress regulation; response to endogenous and exogenous stimuli; substrate oxidation; mTOR signaling pathway; interferon signaling; mitogen-activated protein kinases (MAPK), cAMP response element binding protein (CREB1), heat shock factor 1 (HSF1), and sterol regulatory element binding protein 1c (SREBP-1c) gene expression; adipocyte differentiation; and methylation. Six months after bariatric surgery and significant weight loss, many molecular pathways involved in obesity and metabolic diseases change. These findings are an important tool to identify potential targets for therapeutic intervention and clinical practice of nutritional genomics in obesity.

  10. Screening differentially expressed genes in an amphipod (Hyalella azteca) exposed to fungicide vinclozolin by suppression subtractive hybridization.

    PubMed

    Wu, Yun H; Wu, Tsung M; Hong, Chwan Y; Wang, Yei S; Yen, Jui H

    2014-01-01

    Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger-containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism.

  11. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less

  12. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    PubMed

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  13. Expression of Antisense Long Noncoding RNAs as Potential Regulators in Rainbow Trout with Different Tolerance to Plant-Based Diets.

    PubMed

    Abernathy, Jason; Overturf, Ken

    2018-01-04

    Reformulation of aquafeeds in salmonid diets to include more plant proteins is critical for sustainable aquaculture. However, increasing plant proteins can lead to stunted growth and enteritis. Toward an understanding of the regulatory mechanisms behind plant protein utilization, directional RNA sequencing of liver tissues from a rainbow trout strain selected for growth on an all plant-protein diet and a control strain, both fed a plant diet for 12 weeks, were utilized to construct long noncoding RNAs. Antisense long noncoding RNAs were selected for differential expression and functional analyses since they have been shown to have regulatory actions within a genome. A total of 142 unique antisense long noncoding RNAs were differentially expressed between strains, 60 of which could be mapped to a gene. Genes underlying these noncoding RNAs are indicated in lipid metabolism and immunity. Six noncoding transcripts were also found to overlap with differentially expressed protein-coding genes, all of which were co-expressed. Associating variation in regulatory elements between rainbow trout strains with differing tolerance to plant-protein diets will assist in future studies toward increased gains throughout carnivorous aquaculture.

  14. Identification of differentially expressed lncRNAs involved in transient regeneration of the neonatal C57BL/6J mouse heart by next-generation high-throughput RNA sequencing.

    PubMed

    Chen, Yu-Mei; Li, Hua; Fan, Yi; Zhang, Qi-Jun; Li, Xing; Wu, Li-Jie; Chen, Zi-Jie; Zhu, Chun; Qian, Ling-Mei

    2017-04-25

    Previous studies have shown that mammalian cardiac tissue has a regenerative capacity. Remarkably, neonatal mice can regenerate their cardiac tissue for up to 6 days after birth, but this capacity is lost by day 7. In this study, we aimed to explore the expression pattern of long noncoding RNA (lncRNA) during this period and examine the mechanisms underlying this process. We found that 685 lncRNAs and 1833 mRNAs were differentially expressed at P1 and P7 by the next-generation high-throughput RNA sequencing. The coding genes associated with differentially expressed lncRNAs were mainly involved in metabolic processes and cell proliferation, and also were potentially associated with several key regeneration signalling pathways, including PI3K-Akt, MAPK, Hippo and Wnt. In addition, we identified some correlated targets of highly-dysregulated lncRNAs such as Igfbp3, Trnp1, Itgb6, and Pim3 by the coding-noncoding gene co-expression network. These data may offer a reference resource for further investigation about the mechanisms by which lncRNAs regulate cardiac regeneration.

  15. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Anamika; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078; Liu Jing

    2010-10-15

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clusteringmore » while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NF{Kappa}B, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.« less

  16. RNA Sequencing and Bioinformatics Analysis Implicate the Regulatory Role of a Long Noncoding RNA-mRNA Network in Hepatic Stellate Cell Activation.

    PubMed

    Guo, Can-Jie; Xiao, Xiao; Sheng, Li; Chen, Lili; Zhong, Wei; Li, Hai; Hua, Jing; Ma, Xiong

    2017-01-01

    To analyze the long noncoding (lncRNA)-mRNA expression network and potential roles in rat hepatic stellate cells (HSCs) during activation. LncRNA expression was analyzed in quiescent and culture-activated HSCs by RNA sequencing, and differentially expressed lncRNAs verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) were subjected to bioinformatics analysis. In vivo analyses of differential lncRNA-mRNA expression were performed on a rat model of liver fibrosis. We identified upregulation of 12 lncRNAs and 155 mRNAs and downregulation of 12 lncRNAs and 374 mRNAs in activated HSCs. Additionally, we identified the differential expression of upregulated lncRNAs (NONRATT012636.2, NONRATT016788.2, and NONRATT021402.2) and downregulated lncRNAs (NONRATT007863.2, NONRATT019720.2, and NONRATT024061.2) in activated HSCs relative to levels observed in quiescent HSCs, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that changes in lncRNAs associated with HSC activation revealed 11 significantly enriched pathways according to their predicted targets. Moreover, based on the predicted co-expression network, the relative dynamic levels of NONRATT013819.2 and lysyl oxidase (Lox) were compared during HSC activation both in vitro and in vivo. Our results confirmed the upregulation of lncRNA NONRATT013819.2 and Lox mRNA associated with the extracellular matrix (ECM)-related signaling pathway in HSCs and fibrotic livers. Our results detailing a dysregulated lncRNA-mRNA network might provide new treatment strategies for hepatic fibrosis based on findings indicating potentially critical roles for NONRATT013819.2 and Lox in ECM remodeling during HSC activation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Transcriptomics analysis of lungs and peripheral blood of crystalline silica-exposed rats

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R.; Chapman, Rebecca; Young, Shih-Houng; Richardson, Diana; Cumpston, Jared; McKinney, Walter; Chen, Bean T.; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m3, 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity. PMID:22861000

  18. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.

    PubMed

    Coram, Tristan E; Pang, Edwin C K

    2006-11-01

    Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes, grasspea (Lathyrus sativus L.) expressed sequence tags (ESTs) and lentil (Lens culinaris Med.) resistance gene analogues, the ascochyta blight (Ascochyta rabiei (Pass.) L.) resistance response was studied in four chickpea genotypes, including resistant, moderately resistant, susceptible and wild relative (Cicer echinospermum L.) genotypes. The experimental system minimized environmental effects and was conducted in reference design, in which samples from mock-inoculated controls acted as reference against post-inoculation samples. Robust data quality was achieved through the use of three biological replicates (including a dye swap), the inclusion of negative controls and strict selection criteria for differentially expressed genes, including a fold change cut-off determined by self-self hybridizations, Student's t-test and multiple testing correction (P < 0.05). Microarray observations were also validated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The time course expression patterns of 756 microarray features resulted in the differential expression of 97 genes in at least one genotype at one time point. k-means clustering grouped the genes into clusters of similar observations for each genotype, and comparisons between A. rabiei-resistant and A. rabiei-susceptible genotypes revealed potential gene 'signatures' predictive of effective A. rabiei resistance. These genes included several pathogenesis-related proteins, SNAKIN2 antimicrobial peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein, Ca-binding protein and several unknown proteins. The potential involvement of these genes and their pathways of induction are discussed. This study represents the first large-scale gene expression profiling in chickpea, and future work will focus on the functional validation of the genes of interest.

  19. An approximate theoretical treatment of ion transfer processes at asymmetric microscopic and nanoscopic liquid-liquid interfaces: Single and double potential pulse techniques

    NASA Astrophysics Data System (ADS)

    Molina, A.; Laborda, E.; Compton, R. G.

    2014-03-01

    Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.

  20. Lactic Acid is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation Via pH-Dependent Activation of Transforming Growth Factor-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kottman, R. M.; Kulkarni, Ajit A.; Smolnycki, Katie A.

    2012-10-15

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods:We used metabolomic analysis to examine cellular metabolism in lung tissuefrom patients with IPFanddeterminedthe effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-b activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue weremore » determined by nuclear magnetic resonance spectroscopy; a-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-b. TGF-b induced expression of LDH5 via hypoxia-inducible factor 1a (HIF1a). Importantly, overexpression of both HIF1a and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low dose TGF-b to induce differentiation. Furthermore, inhibition of both HIF1a and LDH5 inhibited TGF-b–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pHdependent activation of TGF-b. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.« less

  1. Lactic Acid Is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation via pH-Dependent Activation of Transforming Growth Factor-β

    PubMed Central

    Kottmann, Robert Matthew; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.

    2012-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods: We used metabolomic analysis to examine cellular metabolism in lung tissue from patients with IPF and determined the effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-β activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; α-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-β. TGF-β induced expression of LDH5 via hypoxia-inducible factor 1α (HIF1α). Importantly, overexpression of both HIF1α and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low-dose TGF-β to induce differentiation. Furthermore, inhibition of both HIF1α and LDH5 inhibited TGF-β–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pH-dependent activation of TGF-β. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders. PMID:22923663

  2. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system

    PubMed Central

    Kutleša, Snježana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B.; Jurecic, Roland

    2011-01-01

    Objective Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. Materials and Methods EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. Results The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Tα, RAG-1, and T-cell receptor – Vβ genes; and 3) produced interferon-γ in response to T-cell receptor stimulation. Conclusions These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation. PMID:19447159

  3. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system.

    PubMed

    Kutlesa, Snjezana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B; Jurecic, Roland

    2009-08-01

    Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Talpha, RAG-1, and T-cell receptor-Vbeta genes; and 3) produced interferon-gamma in response to T-cell receptor stimulation. These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation.

  4. Functional expression and pharmaceutical efficacy of cardiac-specific ion channels in human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Kim, Han Sol; Yoon, Jung Won; Li, Hongliang; Jeong, Geun Ok; Park, Jin Ju; Shin, Sung Eun; Jang, Il Ho; Kim, Jae Ho; Park, Won Sun

    2017-10-23

    Cardiomyocytes differentiated from human pluripotent stem cells provide promising tools for screening of cardiotoxic drugs. For evaluation of human pluripotent stem cell-derived cardiomyocytes for cardiotoxicity test, in the present study, human embryonic stem cells (hESCs) were differentiated to cardiomyocytes, followed by metabolic selection to enrich the differentiated cardiomyocytes. The highly purified hESC-derived cardiomyocytes (hESC-CMs) expressed several cardiomyocyte-specific markers including cTnT, MLC2a, and α-SA, but not pluripotency markers, such as OCT4 and NANOG. Patch clamp technique and RT-PCR revealed the expression of cardiomyocyte-specific Na + , Ca 2+ , and K + channels and cardiac action potential in hESC-CMs. To explore the potential use of hESC-CMs as functional cardiomyocytes for drug discovery and cardiotoxicity screening, we examined the effects of bisindolylmaleimide (BIM) (I), which inhibits native cardiac Ca 2+ channels, on the Ca 2+ channel activity of hESC-CMs. We observed a similar response for the BIM (I)-induced modulation of Ca 2+ channels between hESC-CMs and native cardiomyocytes through L-type Ca 2+ channel current. These results suggest that hESC-CMs can be useful for evaluation of pharmaceutical efficacy and safety of novel drug candidate in cardiac research.

  5. Recellularization of Rat Liver Scaffolds by Human Liver Stem Cells

    PubMed Central

    Navarro-Tableros, Victor; Herrera Sanchez, Maria Beatriz; Figliolini, Federico; Romagnoli, Renato; Tetta, Ciro

    2015-01-01

    In the present study, rat liver acellular scaffolds were used as biological support to guide the differentiation of human liver stem-like cells (HLSC) to hepatocytes. Once recellularized, the scaffolds were maintained for 21 days in different culture conditions to evaluate hepatocyte differentiation. HLSC lost the embryonic markers (alpha-fetoprotein, nestin, nanog, sox2, Musashi1, Oct 3/4, and pax2), increased the expression of albumin, and acquired the expression of lactate dehydrogenase and three subtypes of cytochrome P450. The presence of urea nitrogen in the culture medium confirmed their metabolic activity. In addition, cells attached to tubular remnant matrix structures expressed cytokeratin 19, CD31, and vimentin. The rat extracellular matrix (ECM) provides not only a favorable environment for differentiation of HLSC in functional hepatocytes (hepatocyte like) but also promoted the generation of some epithelial-like and endothelial-like cells. When fibroblast growth factor–epidermal growth factor or HLSC-derived conditioned medium was added to the perfusate, an improvement of survival rate was observed. The conditioned medium from HLSC potentiated also the metabolic activity of hepatocyte-like cells repopulating the acellular liver. In conclusion, HLSC have the potential, in association with the natural ECM, to generate in vitro a functional “humanized liver-like tissue.” PMID:25794768

  6. MicroRNA network changes in the brain stem underlie the development of hypertension.

    PubMed

    DeCicco, Danielle; Zhu, Haisun; Brureau, Anthony; Schwaber, James S; Vadigepalli, Rajanikanth

    2015-09-01

    Hypertension is a major chronic disease whose molecular mechanisms remain poorly understood. We compared neuroanatomical patterns of microRNAs in the brain stem of the spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY, control). We quantified 419 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral medulla (RVLM), from SHR and WKY rats, during three main stages of hypertension development. Changes in microRNA expression were stage- and region-dependent, with a majority of SHR vs. WKY differential expression occurring at the hypertension onset stage in NTS versus at the prehypertension stage in RVLM. Our analysis identified 24 microRNAs showing time-dependent differential expression in SHR compared with WKY in at least one brain region. We predicted potential gene regulatory targets corresponding to catecholaminergic processes, neuroinflammation, and neuromodulation using the miRWALK and RNA22 databases, and we tested those bioinformatics predictions using high-throughput quantitative PCR to evaluate correlations of differential expression between the microRNAs and their predicted gene targets. We found a novel regulatory network motif consisting of microRNAs likely downregulating a negative regulator of prohypertensive processes such as angiotensin II signaling and leukotriene-based inflammation. Our results provide new evidence on the dynamics of microRNA expression in the development of hypertension and predictions of microRNA-mediated regulatory networks playing a region-dependent role in potentially altering brain-stem cardiovascular control circuit function leading to the development of hypertension. Copyright © 2015 the American Physiological Society.

  7. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize

    PubMed Central

    Li, Zhao; Hu, Guanghui; Liu, Xiangfeng; Zhou, Yao; Li, Yu; Zhang, Xu; Yuan, Xiaohui; Zhang, Qian; Yang, Deguang; Wang, Tianyu; Zhang, Zhiwu

    2016-01-01

    Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels—highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential. PMID:27774095

  8. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation[S

    PubMed Central

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren; Sundekilde, Ulrik; Hansen, Jacob B.; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten

    2014-01-01

    Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation. PMID:25312885

  9. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells.

    PubMed

    Pogozhykh, Denys; Pogozhykh, Olena; Prokopyuk, Volodymyr; Kuleshova, Larisa; Goltsev, Anatoliy; Blasczyk, Rainer; Mueller, Thomas

    2017-03-11

    Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation with constant end temperatures or with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Interestingly, transgene expression was not compromised in any of the studied samples. Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, differentiation potential and transgene expression are not compromised during studied storage conditions, while variation in gene regulation is observed.

  10. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.

    PubMed

    Alì, Greta; Borrelli, Nicla; Riccardo, Giannini; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Boldrini, Laura; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-11-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.

  11. Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis.

    PubMed

    Wu, Yuhsin V; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O'Connor, Rachael; Geha, Rula C; Joy Somberg, C; Antonescu, Cristina; Singer, Samuel

    2012-04-01

    Well-differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n = 84), WDLS (n = 79), and normal fat (n = 23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS when compared to both WDLS and normal fat (15.2- and 27.8-fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBPα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for DDLS. Copyright © 2011 Wiley Periodicals, Inc.

  12. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood.

    PubMed

    Mohanty, Niharika; Gulati, Baldev R; Kumar, Rajesh; Gera, Sandeep; Kumar, Pawan; Somasundaram, Rajesh K; Kumar, Sandeep

    2014-06-01

    Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36 ± 1.28%, 93.40 ± 0.70%, 73.23 ± 1.29% and 46.75 ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respect vely in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.

  13. Differential proteome analysis of the cell differentiation regulated by BCC, CRH, CXCR4, GnRH, GPCR, IL1 signaling pathways in Chinese fire-bellied newt limb regeneration.

    PubMed

    Geng, Xiaofang; Xu, Tiantian; Niu, Zhipeng; Zhou, Xiaochun; Zhao, Lijun; Xie, Zhaohui; Xue, Deming; Zhang, Fuchun; Xu, Cunshuan

    2014-01-01

    Following amputation, the newt has the remarkable ability to regenerate its limb, and this process involves dedifferentiation, proliferation and differentiation. To investigate the potential proteome during a dynamic network of Chinese fire-bellied newt limb regeneration (CNLR), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrum (MS) were applied to examine changes in the proteome that occurred at 11 time points after amputation. Meanwhile, several proteins were selected to validate their expression levels by Western blot. The results revealed that 1476 proteins had significantly changed as compared to the control group. Gene Ontology annotation and protein network analysis by Ingenuity Pathway Analysis 9.0 (IPA) software suggested that the differentially expressed proteins were involved in 33 kinds of physiological activities including signal transduction, cell proliferation, cell differentiation, etc. Among these proteins, 407 proteins participated in cell differentiation with 212 proteins in the differentiation of skin cell, myocyte, neurocyte, chondrocyte and osteocyte, and 37 proteins participated in signaling pathways of BCC, CRH, CXCR4, GnRH, GPCR and IL1 which regulated cell differentiation and redifferentiation. On the other hand, the signal transduction activity and cell differentiation activity were analyzed by IPA based on the changes in the expression of these proteins. The results showed that BCC, CRH, CXCR4, GnRH, GPCR and IL1 signaling pathways played an important role in regulating the differentiation of skin cell, myocyte, neurocyte, chondrocyte and osteocyte during CNLR. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression ofmore » surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.« less

  15. Isolation, in vitro culture and identification of a new type of mesenchymal stem cell derived from fetal bovine lung tissues.

    PubMed

    Hu, Pengfei; Pu, Yabin; Li, Xiayun; Zhu, Zhiqiang; Zhao, Yuhua; Guan, Weijun; Ma, Yuehui

    2015-09-01

    Lung‑derived mesenchymal stem cells (LMSCs) are considered to be important in lung tissue repair and regenerative processes. However, the biological characteristics and differentiation potential of LMSCs remain to be elucidated. In the present study, fetal lung‑derived mesenchymal stem cells (FLMSCs) were isolated from fetal bovine lung tissues by collagenase digestion. The in vitro culture conditions were optimized and stabilized and the self‑renewal ability and differentiation potential were evaluated. The results demonstrated that the FLMSCs were morphologically consistent with fibroblasts, were able to be cultured and passaged for at least 33 passages and the cell morphology and proliferative ability were stable during the first 10 passages. In addition, FLMSCs were found to express CD29, CD44, CD73 and CD166, however, they did not express hematopoietic cell specific markers, including CD34, CD45 and BOLA‑DRα. The growth kinetics of FLMSCs consisted of a lag phase, a logarithmic phase and a plateau phase, and as the passages increased, the proliferative ability of cells gradually decreased. The majority of FLMSCs were in G0/G1 phase. Following osteogenic induction, FLMSCs were positive for the expression of osteopontin and collagen type I α2. Following neurogenic differentiation, the cells were morphologically consistent with neuronal cells and positive for microtubule‑associated protein 2 and nestin expression. It was concluded that the isolated FLMSCs exhibited typical characteristics of mesenchymal stem cells and that the culture conditions were suitable for their proliferation and the maintenance of stemness. The present study illustrated the potential application of lung tissue as an adult stem cell source for regenerative therapies.

  16. Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection.

    PubMed

    Zhang, Peter G Y; Yeung, Joanna; Gupta, Ishita; Ramirez, Miguel; Ha, Thomas; Swanson, Douglas J; Nagao-Sato, Sayaka; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; de Hoon, Michiel; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Goldowitz, Dan

    2018-06-01

    Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.

  17. Increased adipogenicity of cells from regenerating skeletal muscle.

    PubMed

    Yamanouchi, Keitaro; Yada, Erica; Ishiguro, Naomi; Hosoyama, Tohru; Nishihara, Masugi

    2006-09-10

    Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.

  18. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.

    PubMed

    Brown, Aaron C; Adams, Derek; de Caestecker, Mark; Yang, Xuehui; Friesel, Robert; Oxburgh, Leif

    2011-12-01

    Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.

  19. Human Embryonic Stem Cell-Derived Cardiomyocytes Self-Arrange with Areas of Different Subtypes During Differentiation.

    PubMed

    Vestergaard, Maj Linea; Grubb, Søren; Koefoed, Karen; Anderson-Jenkins, Zoe; Grunnet-Lauridsen, Kristina; Calloe, Kirstine; Clausen, Christian; Christensen, Søren Tvorup; Møllgård, Kjeld; Andersen, Claus Yding

    2017-11-01

    The derivation of functional cardiomyocytes (CMs) from human embryonic stem cells (hESCs) represents a unique way of studying human cardiogenesis, including the development of CM subtypes. In this study, we investigated the development and organization of hESC-derived cardiomyocytes (hESC-CMs) and examined how the expression levels of CM subtypes correspond to human in vivo cardiogenesis. Beating clusters were used to determine cardiac differentiation, which was evaluated by the expression of cardiac genes GATA4 and TNNT2 and subcellular localization of GATA4 and NKX2.5. Sharp electrode recordings to determine action potentials (APs) further revealed spatial organization of intracluster CM subtypes (ie, complex clusters). Nodal-, atrial-, and ventricular-like AP morphologies were detected within distinct regions of complex clusters. The ability of different CM subtypes to self-organize was documented by immunohistochemical analyses and a differential spatial expression of β-III tubulin, myosin light chain 2v (MLC-2V), and α-smooth muscle actin (α-SMA). Furthermore, all hESC-CM subtypes formed expressed primary cilia, which are known to coordinate cellular signaling pathways during cardiomyogenesis and heart development. This study expands the foundation for studying regulatory pathways for spatial and temporal CM differentiation during human cardiogenesis.

  20. Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis

    PubMed Central

    Kumar, Mukesh; Belcaid, Mahdi; Nerurkar, Vivek R.

    2016-01-01

    Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics. PMID:27211830

  1. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga.

    PubMed

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-02-07

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.

  2. Determination of multidrug resistance mechanisms in Clostridium perfringens type A isolates using RNA sequencing and 2D-electrophoresis.

    PubMed

    Ma, Yu-Hua; Ye, Gui-Sheng

    2018-06-11

    In this study, we screened differentially expressed genes in a multidrug-resistant isolate strain of Clostridium perfringens by RNA sequencing. We also separated and identified differentially expressed proteins (DEPs) in the isolate strain by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The RNA sequencing results showed that, compared with the control strain, 1128 genes were differentially expressed in the isolate strain, and these included 227 up-regulated genes and 901 down-regulated genes. Bioinformatics analysis identified the following genes and gene categories that are potentially involved in multidrug resistance (MDR) in the isolate strain: drug transport, drug response, hydrolase activity, transmembrane transporter, transferase activity, amidase transmembrane transporter, efflux transmembrane transporter, bacterial chemotaxis, ABC transporter, and others. The results of the 2-DE showed that 70 proteins were differentially expressed in the isolate strain, 45 of which were up-regulated and 25 down-regulated. Twenty-seven DEPs were identified by MS and these included the following protein categories: ribosome, antimicrobial peptide resistance, and ABC transporter, all of which may be involved in MDR in the isolate strain of C. perfringens. The results provide reference data for further investigations on the drug resistant molecular mechanisms of C. perfringens.

  3. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    PubMed Central

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-01-01

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation. PMID:26204837

  4. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.

    PubMed

    Sakai, Shinji; Ohi, Hiromi; Hotta, Tomoki; Kamei, Hidenori; Taya, Masahito

    2018-02-01

    Bioprinting has a great potential to fabricate three-dimensional (3D) functional tissues and organs. In particular, the technique enables fabrication of 3D constructs containing stem cells while maintaining cell proliferation and differentiation abilities, which is believed to be promising in the fields of tissue engineering and regenerative medicine. We aimed to demonstrate the utility of the bioprinting technique to create hydrogel constructs consisting of hyaluronic acid (HA) and gelatin derivatives through irradiation by visible light to fabricate 3D constructs containing human adipose stem cells (hADSCs). The hydrogel was obtained from a solution of HA and gelatin derivatives possessing phenolic hydroxyl moieties in the presence of ruthenium(II) tris-bipyridyl dication and sodium ammonium persulfate. hADSCs enclosed in the bioprinted hydrogel construct elongated and proliferated in the hydrogel. In addition, their differentiation potential was confirmed by examining the expression of pluripotency marker genes and cell surface marker proteins, and differentiation to adipocytes in adipogenic differentiation medium. Our results demonstrate the great potential of the bioprinting method and the resultant hADSC-laden HA/gelatin constructs for applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.

  5. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type. PMID:22280838

  6. Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    PubMed Central

    2014-01-01

    Background Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease. PMID:24450868

  7. Differential expression of IGFBPs in Laron syndrome-derived lymphoblastoid cell lines: Potential correlation with reduced cancer incidence.

    PubMed

    Somri, Lina; Sarfstein, Rive; Lapkina-Gendler, Lena; Nagaraj, Karthik; Laron, Zvi; Bach, Leon A; Werner, Haim

    2018-04-01

    Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is a growth disorder that results from mutation of the GH-receptor (GHR) gene leading to congenital insulin-like growth factor-1 (IGF-1) deficiency. Recent epidemiological studies have shown that LS patients are protected from cancer development. Genome-wide profiling identified genes and signaling pathways that are differentially represented in LS patients, and that may contribute to cancer protection. The present study was aimed at evaluating the hypothesis that IGF binding proteins (IGFBPs) are differentially expressed in LS, most probably as a result of low circulating levels of IGF-1. Furthermore, we postulated that IGFBPs might be differentially regulated by oxidative stress in this condition and, therefore, may contribute to cancer evasion. Our results show that IGFBP-3, which is predominantly protective, was highly expressed in LS-derived lymphoblastoid cells in comparison to control cells from the same ethnic group. On the other hand, levels of IGFBP-2, -4, -5, and -6 were diminished in LS patients, as demonstrated by RQ-PCR, Western immunoblots and confocal immunofluorescence. In addition, our data provide evidence for a pattern of IGFBP response to H 2 O 2 treatment that might be associated with distinct expression of apoptosis markers (BCL2, pro-caspase-9, pro-caspase-3) in LS. In summary, differential expression of specific IGFBPs in LS might be correlated with cellular mechanisms underlying cancer protection and, probably, additional phenotypes due to congenital IGF-1 deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway

    PubMed Central

    Lin, Fei-xiang; Du, Shi-xin; Liu, De-zhong; Hu, Qin-xiao; Yu, Guo-yong; Wu, Chu-cheng; Zheng, Gui-zhou; Xie, Da; Li, Xue-dong; Chang, Bo

    2016-01-01

    Naringin is an active compound extracted from Rhizoma Drynariae, and studies have revealed that naringin can promote proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs). In this study, we explored whether naringin could promote osteogenic differentiation of BMSCs by upregulating Foxc2 expression via the Indian hedgehog (IHH) signaling pathway. BMSCs were cultured in basal medium, basal medium with naringin, osteogenic induction medium, osteogenic induction medium with naringin and osteogenic induction medium with naringin in the presence of the IHH inhibitor cyclopamine (CPE). We examined cell proliferation by using a WST-8 assay, and differentiation by Alizarin Red S staining (for mineralization) and alkaline phosphatase (ALP) activity. In addition, we detected core-binding factor α1 (Cbfα1), osteocalcin (OCN), bone sialoprotein (BSP), peroxisome proliferation-activated receptor gamma 2 (PPARγ2) and Foxc2 expression by using RT-PCR. We also determined Foxc2 and IHH protein levels by western blotting. Naringin increased the mineralization of BMSCs, as shown by Alizarin red S assays, and induced ALP activity. In addition, naringin significantly increased the mRNA levels of Foxc2, Cbfα1, OCN, and BSP, while decreasing PPARγ2 mRNA levels. Furthermore, the IHH inhibitor CPE inhibited the osteogenesis-potentiating effects of naringin. Naringin increased Foxc2 and stimulated the activation of IHH, as evidenced by increased expression of proteins that were inhibited by CPE. Our findings indicate that naringin promotes osteogenic differentiation of BMSCs by up-regulating Foxc2 expression via the IHH signaling pathway. PMID:27904711

  9. MDA-9/Syntenin regulates differentiation and angiogenesis programs in head and neck squamous cell carcinoma.

    PubMed

    Oyesanya, Regina A; Bhatia, Shilpa; Menezes, Mitchell E; Dumur, Catherine I; Singh, Karan P; Bae, Sejong; Troyer, Dean A; Wells, Robert B; Sauter, Edward R; Sidransky, David; Fisher, Paul B; Semmes, Oliver J; Dasgupta, Santanu

    2014-01-01

    Little is known about the molecular pathways regulating poor differentiation and invasion of head and neck squamous cell carcinoma (HNSCC). In the present study, we aimed to determine the role of MDA-9/Syntenin, a metastasis associated molecule in HNSCC tumorigenesis. Elevated MDA-9/Syntenin expression was evident in 67% (54/81) primary HNSCC tumors (p=0.001-0.002) and 69% (9/13) pre-neoplastic tissues (p=0.02-0.03). MDA-9/Syntenin overexpression was associated with the stage (p=0.001), grade (p=0.001) and lymph node metastasis (p=0.0001). Silencing of MDA-9/Syntenin in 3 poorly differentiated HNSCC cell lines induced squamous epithelial cell differentiation, disrupted angiogenesis and reduced tumor growth in vitro and in vivo. We confirmed SPRR1B and VEGFR1 as the key molecular targets of MDA-9/Syntenin on influencing HNSCC differentiation and angiogenesis respectively. MDA-9/Syntenin disrupted SPRR1B expression interacting through its PDZ1 domain and altered VEGFR1 expression in vitro and in vivo. VEGFR1 co-localized with MDA-9/Syntenin in HNSCC cell lines and primary tumor. Downregulation of growth regulatory molecules CyclinD1, CDK4, STAT3, PI3K and CTNNB1 was also evident in the MDA-9/Syntenin depleted cells, which was reversed following over-expression of MDA-9/Syntenin in immortalized oral epithelial cells. Our results suggest that early induction of MDA-9/Syntenin expression influences HNSCC progression and should be further evaluated for potential biomarker development.

  10. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway.

    PubMed

    Lin, Fei-Xiang; Du, Shi-Xin; Liu, De-Zhong; Hu, Qin-Xiao; Yu, Guo-Yong; Wu, Chu-Cheng; Zheng, Gui-Zhou; Xie, Da; Li, Xue-Dong; Chang, Bo

    2016-01-01

    Naringin is an active compound extracted from Rhizoma Drynariae, and studies have revealed that naringin can promote proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs). In this study, we explored whether naringin could promote osteogenic differentiation of BMSCs by upregulating Foxc2 expression via the Indian hedgehog (IHH) signaling pathway. BMSCs were cultured in basal medium, basal medium with naringin, osteogenic induction medium, osteogenic induction medium with naringin and osteogenic induction medium with naringin in the presence of the IHH inhibitor cyclopamine (CPE). We examined cell proliferation by using a WST-8 assay, and differentiation by Alizarin Red S staining (for mineralization) and alkaline phosphatase (ALP) activity. In addition, we detected core-binding factor α1 (Cbfα1), osteocalcin (OCN), bone sialoprotein (BSP), peroxisome proliferation-activated receptor gamma 2 (PPARγ2) and Foxc2 expression by using RT-PCR. We also determined Foxc2 and IHH protein levels by western blotting. Naringin increased the mineralization of BMSCs, as shown by Alizarin red S assays, and induced ALP activity. In addition, naringin significantly increased the mRNA levels of Foxc2, Cbfα1, OCN, and BSP, while decreasing PPARγ2 mRNA levels. Furthermore, the IHH inhibitor CPE inhibited the osteogenesis-potentiating effects of naringin. Naringin increased Foxc2 and stimulated the activation of IHH, as evidenced by increased expression of proteins that were inhibited by CPE. Our findings indicate that naringin promotes osteogenic differentiation of BMSCs by up-regulating Foxc2 expression via the IHH signaling pathway.

  11. MDA-9/Syntenin regulates differentiation and angiogenesis programs in head and neck squamous cell carcinoma

    PubMed Central

    Dumur, Catherine I.; Singh, Karan P; Bae, Sejong; Troyer, Dean A.; Wells, Robert B.; Sauter, Edward R.; Sidransky, David; Fisher, Paul B.; Semmes, Oliver J.; Dasgupta, Santanu

    2014-01-01

    Little is known about the molecular pathways regulating poor differentiation and invasion of head and neck squamous cell carcinoma (HNSCC). In the present study, we aimed to determine the role of MDA-9/Syntenin, a metastasis associated molecule in HNSCC tumorigenesis. Elevated MDA-9/Syntenin expression was evident in 67% (54/81) primary HNSCC tumors (p=0.001-0.002) and 69% (9/13) pre-neoplastic tissues (p=0.02-0.03). MDA-9/Syntenin overexpression was associated with the stage (p=0.001), grade (p=0.001) and lymph node metastasis (p=0.0001). Silencing of MDA-9/Syntenin in 3 poorly differentiated HNSCC cell lines induced squamous epithelial cell differentiation, disrupted angiogenesis and reduced tumor growth in vitro and in vivo. We confirmed SPRR1B and VEGFR1 as the key molecular targets of MDA-9/Syntenin on influencing HNSCC differentiation and angiogenesis respectively. MDA-9/Syntenin disrupted SPRR1B expression interacting through its PDZ1 domain and altered VEGFR1 expression in vitro and in vivo. VEGFR1 co-localized with MDA-9/Syntenin in HNSCC cell lines and primary tumor. Downregulation of growth regulatory molecules CyclinD1, CDK4, STAT3, PI3K and CTNNB1 was also evident in the MDA-9/Syntenin depleted cells, which was reversed following over-expression of MDA-9/Syntenin in immortalized oral epithelial cells. Our results suggest that early induction of MDA-9/Syntenin expression influences HNSCC progression and should be further evaluated for potential biomarker development. PMID:25593999

  12. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells.

    PubMed

    Ma, Xian-Yong; Wang, Jian-Hui; Wang, Jing-Lan; Ma, Charles X; Wang, Xiao-Chun; Liu, Feng-Song

    2015-09-03

    The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a highly conserved long non-coding RNA (lncRNA) gene. Previous studies showed that Malat1 is abundantly expressed in many tissues and involves in promoting tumor growth and metastasis by modulating gene expression and target protein activities. However, little is known about the biological function and regulation mechanism of Malat1 in normal cell proliferation. In this study we conformed that Malat1 is highly conserved across vast evolutionary distances amongst 20 species of mammals in terms of sequence, and found that mouse Malat1 expresses in tissues of liver, kidney, lung, heart, testis, spleen and brain, but not in skeletal muscle. After treating erythroid myeloid lymphoid (EML) cells with All-trans Retinoic Acid (ATRA), we investigated the expression and regulation of Malat1 during hematopoietic differentiation, the results showed that ATRA significantly down regulates Malat1 expression during the differentiation of EML cells. Mouse LRH (Lin-Rhodamine(low) Hoechst(low)) cells that represent the early-stage progenitor cells show a high level of Malat1 expression, while LRB (Lin - Hoechst(Low) Rhodamine(Bright)) cells that represent the late-stage progenitor cells had no detectable expression of Malat1. Knockdown experiment showed that depletion of Malat1 inhibits the EML cell proliferation. Along with the down regulation of Malat1, the tumor suppressor gene p53 was up regulated during the differentiation. Interestingly, we found two p53 binding motifs with help of bioinformatic tools, and the following chromatin immunoprecipitation (ChIP) test conformed that p53 acts as a transcription repressor that binds to Malat1's promoter. Furthermore, we testified that p53 over expression in EML cells causes down regulation of Malat1. In summary, this study indicates Malat1 plays a critical role in maintaining the proliferation potential of early-stage hematopoietic cells. In addition to its biological function, the study also uncovers the regulation pattern of Malat1 expression mediated by p53 in hematopoietic differentiation. Our research shed a light on exploring the Malat1 biological role including therapeutic significance to inhibit the proliferation potential of malignant cells.

  13. Effects of organophosphates on the regulation of mesenchymal stem cell proliferation and differentiation.

    PubMed

    Prugh, Amber M; Cole, Stephanie D; Glaros, Trevor; Angelini, Daniel J

    2017-03-25

    Mesenchymal stem cells (MSCs) are multipotent cells located within various adult tissues. Recent literature has reported that human bone marrow-derived MSCs express active acetylcholinesterase (AChE) and that disruption of AChE activity by organophosphate (OP) chemicals decreases the ability of MSCs to differentiate into osteoblasts. The potential role of AChE in regulating MSC proliferation and differentiation is currently unknown. In the present study, we demonstrate that MSCs exposed to OPs have both decreased AChE activity and abundance. In addition, exposure to these OPs induced cellular death while decreasing cellular proliferation. Exposures to these compounds also reduced the adipogenic/osteogenic differentiation potentials of the MSCs. To elucidate the possible role of AChE in MSCs signaling following OP exposure, we captured potential AChE binding partners by performing polyhistidine (His 8 )-tagged AChE pulldowns, followed by protein identification using liquid chromatography mass spectrometry (LC-MS). Using this method, we determined that the focal adhesion protein, vinculin, is a potential binding partner with AChE in MSCs and these initial findings were confirmed with follow-up co-immunoprecipitation experiments. Identifying AChE binding partners helps to determine potential pathways associated with MSC proliferation and differentiation, and this understanding could lead to the development of future MSC-based tissue repair therapies. Published by Elsevier B.V.

  14. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates

    PubMed Central

    Peng, Hao; Yang, Yifan; Zhe, Shandian; Wang, Jian; Gribskov, Michael; Qi, Yuan

    2017-01-01

    Abstract Motivation High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy. Results We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature. Availability and implementation The software is available at https://github.com/hao-peng/DEIsoM Contact pengh@alumni.purdue.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28595376

  15. Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells.

    PubMed

    Dias, Isabelle; Salviano, Ísis; Mencalha, André; de Carvalho, Simone Nunes; Thole, Alessandra Alves; Carvalho, Laís; Cortez, Erika; Stumbo, Ana Carolina

    2018-04-17

    Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.

  16. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3more » in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated inhibition of PPARγ expression may contribute to inhibition of adipocyte differentiation during cellular stress including ER stress.« less

  17. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.

    PubMed

    Maldonado, Maricela; Luu, Rebeccah J; Ramos, Michael E P; Nam, Jin

    2016-09-01

    Robust control of human induced pluripotent stem cell (hIPSC) differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK) inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36h. Simultaneously, epithelial-to-mesenchymal (EMT) transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632. Copyright © 2016 Helmholtz Zentrum München. Published by Elsevier B.V. All rights reserved.

  18. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue?

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Rodriguez-Juarez, Rocio; Woycicki, Rafal; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Terahertz (THz) radiation lies between the infrared and microwave regions of the electromagnetic spectrum and is non-ionizing. We show that exposure of artificial human skin tissue to intense, picosecond-duration THz pulses affects expression levels of numerous genes associated with non-melanoma skin cancers, psoriasis and atopic dermatitis. Genes affected by intense THz pulses include nearly half of the epidermal differentiation complex (EDC) members. EDC genes, which are mapped to the chromosomal human region 1q21, encode for proteins that partake in epidermal differentiation and are often overexpressed in conditions such as psoriasis and skin cancer. In nearly all the genes differentially expressed by exposure to intense THz pulses, the induced changes in transcription levels are opposite to disease-related changes. The ability of intense THz pulses to cause concerted favorable changes in the expression of multiple genes implicated in inflammatory skin diseases and skin cancers suggests potential therapeutic applications of intense THz pulses. PMID:23917523

  19. Effects of Pulsed 2.856 GHz Microwave Exposure on BM-MSCs Isolated from C57BL/6 Mice

    PubMed Central

    Wang, Changzhen; Wang, Xiaoyan; Zhou, Hongmei; Dong, Guofu; Guan, Xue; Wang, Lifeng; Xu, Xinping; Wang, Shuiming; Chen, Peng; Peng, Ruiyun; Hu, Xiangjun

    2015-01-01

    The increasing use of microwave devices over recent years has meant the bioeffects of microwave exposure have been widely investigated and reported. However the exact biological fate of bone marrow MSCs (BM-MSCs) after microwave radiation remains unknown. In this study, the potential cytotoxicity on MSC proliferation, apoptosis, cell cycle, and in vitro differentiation were assayed following 2.856 GHz microwave exposure at a specific absorption rate (SAR) of 4 W/kg. Importantly, our findings indicated no significant changes in cell viability, cell division and apoptosis after microwave treatment. Furthermore, we detected no significant effects on the differentiation ability of these cells in vitro, with the exception of reduction in mRNA expression levels of osteopontin (OPN) and osteocalcin (OCN). These findings suggest that microwave treatment at a SAR of 4 W/kg has undefined adverse effects on BM-MSCs. However, the reduced-expression of proteins related to osteogenic differentiation suggests that microwave can the influence at the mRNA expression genetic level. PMID:25658708

  20. Maintenance of human adipose derived stem cell (hASC) differentiation capabilities using a 3D culture.

    PubMed

    Lin, Ching-Yu; Huang, Chi-Hui; Wu, Yuan-Kun; Cheng, Nai-Chen; Yu, Jiashing

    2014-07-01

    In this study, 3D culture system for human adipose-derived stem cell (hASC) using a BioLevitator as the bioreactor for microcarrier-based cultures was established. During the culturing period, hASCs preferred to grow in crevices between microcarriers and a high viability was maintained even when reaching confluency. Adipogenic or osteogenic differential medium was used to induce hASCs and differential potentials of these cells were compared between 2D and 3D environments via RT-PCR and staining quantifications. CEBP/α gene expression was significant higher in 3D condition at day 21 (P < 0.05). Staining quantification indicates that cells cultured in 3D condition have significant better differentiation potential from day 14 to 21 for both adipogenic and osteogenic lineages (P < 0.01).

  1. Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding

    PubMed Central

    Payne, Adrienne C.; Clarkson, Graham J.J.; Rothwell, Steve; Taylor, Gail

    2015-01-01

    Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called ‘Boldrewood’) and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop. PMID:26504575

  2. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis.

    PubMed

    Li, Rui-Fang; Chen, Gang; Ren, Jian-Gang; Zhang, Wei; Wu, Zhong-Xing; Liu, Bing; Zhao, Yi; Zhao, Yi-Fang

    2014-12-01

    Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases. © The Author(s) 2014.

  3. Development, Characterization, and Pluripotency Analysis of Buffalo (Bubalus bubalis) Embryonic Stem Cell Lines Derived from In Vitro–Fertilized, Hand-Guided Cloned, and Parthenogenetic Embryos

    PubMed Central

    Shah, Syed Mohmad; Saini, Neha; Ashraf, Syma; Zandi, Mohammad; Manik, Radhey Sham; Singla, Suresh Kumar; Palta, Prabhat

    2015-01-01

    Abstract We present the derivation, characterization, and pluripotency analysis of three buffalo embryonic stem cell (buESC) lines, from in vitro–fertilized, somatic cell nuclear–transferred, and parthenogenetic blastocysts. These cell lines were developed for later differentiation into germ lineage cells and elucidation of the signaling pathways involved. The cell lines were established from inner cell masses (ICMs) that were isolated manually from the in vitro–produced blastocysts. Most of the ICMs (45–55%) resulted in formation of primary colonies that were subcultured after 8–10 days, leading subsequently to the formation of three buESC lines, one from each blastocyst type. All the cell lines expressed stem cell markers, such as Alkaline Phosphatase, OCT4, NANOG, SSEA1, SSEA4, TRA-1-60, TRA-1-81, SOX2, REX1, CD-90, STAT3, and TELOMERASE. They differentiated into all three germ layers as determined by ectodermal, mesodermal, and endodermal RNA and protein markers. All of the cell lines showed equal expression of pluripotency markers as well as equivalent differentiation potential into all the three germ layers. The static suspension culture–derived embryoid bodies (EBs) showed greater expression of all the three germ layer markers as compared to hanging drop culture–derived EBs. When analyzed for germ layer marker expression, EBs derived from 15% fetal bovine serum (FBS)-based spontaneous differentiation medium showed greater differentiation across all the three germ layers as compared to those derived from Knock-Out Serum Replacement (KoSR)-based differentiation medium. PMID:26168169

  4. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  5. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-09-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. PMID:23844832

  7. Protein expression profiling in head fragments during planarian regeneration after amputation.

    PubMed

    Chen, Xiaoguang; Xu, Cunshuan

    2015-04-01

    Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2-3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (≥3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca(2+) binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca(2+) signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca(2+) signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various cell types. Taken together, our study demonstrated that proteomic analysis approach used by us is a powerful tool in understanding molecular process related to head regeneration of planarian.

  8. Immunophenotypic and Molecular Analysis of Human Dental Pulp Stem Cells Potential for Neurogenic Differentiation

    PubMed Central

    Fatima, Nikhat; Khan, Aleem A.; Vishwakarma, Sandeep K.

    2017-01-01

    Background: Growing evidence shows that dental pulp (DP) tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Aims: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs) in vitro. Settings and Design: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH) and non-ADH (NADH) neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical Analysis Used: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. Results: Immunophenotypic analysis of DPSCs revealed >80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71), and >30% for chemotactic factor (CXCR3). These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. Conclusions: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications. PMID:28566856

  9. Chondrogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Chitosan Film Culture

    PubMed Central

    Lu, Tsai-Jung; Chiu, Fang-Yao; Chiu, Hsiao-Ying; Chang, Ming-Chau; Hung, Shih-Chieh

    2017-01-01

    Articular cartilage has a very limited capacity for self-repair, and mesenchymal stem cells (MSCs) have the potential to treat cartilage defects and osteoarthritis. However, in-depth mechanistic studies regarding their applications are required. Here we demonstrated the use of chitosan film culture for promoting chondrogenic differentiation of MSCs. We found that MSCs formed spheres 2 days after seeding on dishes coated with chitosan. When MSCs were induced in a chondrogenic induction medium on chitosan films, the size of the spheres continuously increased for up to 21 days. Alcian blue staining and immunohistochemistry demonstrated the expression of chondrogenic proteins, including aggrecan, type II collagen, and type X collagen at 14 and 21 days of differentiation. Importantly, chitosan, with a medium molecular weight (size: 190–310 kDa), was more suitable than other sizes for inducing chondrogenic differentiation of MSCs in terms of sphere size and expression of chondrogenic proteins and endochondral markers. We identified that the mechanistic target of rapamycin (mTOR) signaling and its downstream S6 kinase (S6K)/S6 were activated in chitosan film culture compared to that of monolayer culture. The activation of mTOR/S6K was continuously upregulated from days 2 to 7 of differentiation. Furthermore, we found that mTOR/S6K signaling was required for chondrogenic differentiation of MSCs in chitosan film culture through rapamycin treatment and mTOR knockdown. In conclusion, we showed the suitability of chitosan film culture for promoting chondrogenic differentiation of MSCs and its potential in the development of new strategies in cartilage tissue engineering. PMID:27737727

  10. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    PubMed

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  11. Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel)

    PubMed Central

    Li, Ran; Zhang, Meng-Yi; Liu, Yu-Wei; Zhang, Zheng; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets. PMID:28665301

  12. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats

    PubMed Central

    Li, Gengyun; Deng, Ying; Geng, Yupeng; Zhou, Chengchuan; Wang, Yuguo; Zhang, Wenju; Song, Zhiping; Gao, Lexuan; Yang, Ji

    2017-01-01

    Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5′ RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance. PMID:29259617

  13. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    PubMed

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations.

    PubMed

    Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin

    2014-01-01

    The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.

  15. A Systematic Analysis on mRNA and MicroRNA Expression in Runting and Stunting Chickens

    PubMed Central

    Xu, Haiping; Xu, Zhenqiang; Ma, Jinge; Li, Bixiao; Lin, Shudai; Nie, Qinghua; Luo, Qingbin; Zhang, Xiquan

    2015-01-01

    Runting and stunting syndrome (RSS), which is characterized by lower body weight, widely occurs in broilers. Some RSS chickens simply exhibit slow growth without pathological changes. An increasing number of studies indicate that broiler strains differ in susceptibility to infectious diseases, most likely due to their genetic differences. The objective of this study was to detect the differentially expressed miRNAs and mRNAs in RSS and normal chickens. By integrating miRNA with mRNA expression profiling, potential molecular mechanisms involved in RSS could be further explored. Twenty-two known miRNAs and 1,159 genes were differentially expressed in RSS chickens compared with normal chickens (P < 0.05). qPCR validation results displayed similar patterns. The differentially expressed genes were primarily involved in energy metabolism pathways. The antisense transcripts were extensively expressed in chicken liver albeit with reduced abundance. Dual-luciferase reporter assay indicated that gga-miR-30b/c directly target CARS through binding to its 3′UTR. The miR-30b/c: CARS regulation mainly occurred in liver. In thigh muscle and the hypothalamus, miR-30b/c are expressed at higher levels in RSS chickens compared with normal chickens from 2 to 6 w of age, and notably significant differences are observed at 4 w of age. PMID:26010155

  16. Potential miRNA regulators of differential HPG axis gene expression between low egg producing and high egg producing turkey hens

    USDA-ARS?s Scientific Manuscript database

    Expression differences exist in key genes of the hypothalamo-pituitary-gonadal (HPG) axis in low egg producing hens (LEPH) and high egg producing hens (HEPH); however, regulation of these differences is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that play a role in post-transcriptional re...

  17. PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression.

    PubMed

    E, Yaoyao; Yuan, Jun; Yang, Fang; Wang, Lei; Ma, Jinghua; Li, Jing; Pu, Xiaowei; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-12-01

    Paenibacillus polymyxa (SQR-21) is not only a plant growth-promoting rhizobacteria, but also an effective biocontrol agent against Fusarium wilt disease of watermelon. For the better understanding and clarifying the potential mechanisms of SQR-21 to improve watermelon growth and disease resistance, a split-root methodology in hydroponic and LC-MS technology with the label free method was used to analyze the key root proteins involved in watermelon metabolism and disease resistance after the inoculation of SQR-21. Out of 623 identified proteins, 119 proteins were differentially expressed when treatment (SQR-21 inoculation) and control (no bacterial inoculation) were compared. Among those, 57 and 62 proteins were up-regulated and down-regulated, respectively. These differentially expressed proteins were identified to be involved in signal transduction (ADP-ribosylation factor, phospholipase D), transport (aspartate amino-transferase), carbohydratemetabolic (glucose-6-phosphate dehydrogenase, UDP-glucose pyrophosphorylase), defense and response to stress (glutathione S-transferase, Ubiquitin-activating enzyme E1), and oxidation-reduction process (thioredoxin peroxidase, ascorbate peroxidase). The results of this study indicated that SQR-21 inoculation on the watermelon roots benefits plant by inducing the expression of several proteins involved in growth, photosynthesis, and other metabolic and physiological activities.

  18. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy

    PubMed Central

    Han, Jae Woong; Gurunathan, Sangiliyandi; Choi, Yun-Jung; Kim, Jin-Hoi

    2017-01-01

    Background Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem cells could also help in developing new strategies for cancer stem cell (CSC) therapies. The findings of this study could significantly contribute to the nanomedicine because this study is the first of its kind, and our results will lead to new strategies for cancer and CSC therapies. PMID:29066898

  19. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway.

    PubMed

    Gao, Yao; Cao, Yan; Cui, Xianwei; Wang, Xingyun; Zhou, Yahui; Huang, Fangyan; Wang, Xing; Wen, Juan; Xie, Kaipeng; Xu, Pengfei; Guo, Xirong; You, Lianghui; Ji, Chenbo

    2018-05-10

    Recent discoveries of functional brown adipocytes in mammals illuminates their therapeutic potential for combating obesity and its associated diseases. However, on account of the limited amount and activity in adult humans of brown adipocyte depots, identification of miRNAs and characterization their regulatory roles in human brown adipogenesis are urgently needed. This study focused on the role of microRNA (miR)-199a-3p in human brown adipocyte differentiation and thermogenic capacity. A decreased expression pattern of miR-199a-3p was consistently observed during the differentiation course of brown adipocytes in mice and humans. Conversely, its level was induced during the differentiation course of human white pre-adipocytes derived from visceral fat. miR-199a-3p expression was relatively abundant in interscapular BAT (iBAT) and differentially regulated in the activated and aging BAT in mice. Additionally, miR-199a-3p expression level in human brown adipocytes was observed decreased upon thermogenic activation and increased by aging-related stimuli. Using primary pre-adipocytes, miR-199a-3p over-expression was capable of attenuating lipid accumulation and adipogenic gene expression as well as impairing brown adipocytes' metabolic characteristics as revealed by decreased mitochondrial DNA content and respiration. Suppression of miR-199a-3p by a locked nucleic acid (LNA) modified-anti-miR led to increased differentiation and thermogenesis in human brown adipocytes. By combining target prediction and examination, we identified mechanistic target of rapamycin kinase (mTOR) as a direct target of miR-199a-3p that affected brown adipogenesis and thermogenesis. Our results point to a novel role for miR-199a-3p and its downstream effector mTOR in human brown adipocyte differentiation and maintenance of thermogenic characteristics, which can be manipulated as therapeutic targets against obesity and its related metabolic disorders. Copyright © 2018. Published by Elsevier B.V.

  20. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.

    PubMed

    Marrelli, M; Paduano, F; Tatullo, M

    2015-06-01

    It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell-based therapies to treat neurologic diseases. © International & American Associations for Dental Research 2015.

  1. Ikaros gene expression and leukemia.

    PubMed

    Tonnelle, Cécile; Calmels, Boris; Maroc, Christine; Gabert, Jean; Chabannon, Christian

    2002-01-01

    The Ikaros (Ik) protein, or LyF1, was initially described as a protein binding to regulatory sequences of a number of genes expressed in murine lymphoid cells. Ikaros is a critical regulator of normal hematopoietic stem cell differentiation, as evidenced by dramatic defects in the lymphoid compartments, in homozygous animals with gene inactivation. Because differential splicing produces multiple isoforms with potentially different functions, Ikaros provides a unique model to study how post-transcriptional mechanisms may be involved in neoplastic processes. Indeed, several groups including ours have underlined evidences that expression of different Ikaros isoforms vary among different types of leukemias. The predominance of short isoforms in certain subsets is intriguing. Here, additional observations reinforced the hypothesis that Ikaros expression may be deregulated in human leukemias. Whether this is a cause or a consequence of the leukemic process remains speculative. Other human diseases however, provide examples of abnormal post-transcriptional regulations that have been further characterized.

  2. Analysis of microRNA and gene expression profiling in triazole fungicide-treated HepG2 cell line.

    PubMed

    An, Yu Ri; Kim, Seung Jun; Oh, Moon-Ju; Kim, Hyun-Mi; Shim, Il-Seob; Kim, Pil-Je; Choi, Kyunghee; Hwang, Seung Yong

    2013-01-07

    MicroRNA (miRNA) plays an important role in various diseases and in cellular and molecular responses to toxicants. In the present study, we investigated differential expression of miRNAs in response to three triazole fungicides (myclobutanil, propiconazole, and triadimefon). The human hepatoma cell line (HepG2) was treated with the above triazoles for 3 h or 48 h. miRNA-based microarray experiments were carried out using the Agilent human miRNA v13 array. At early exposure (3h), six miRNAs were differentially expressed and at late exposure (48 h), three miRNAs were significantly expressed. Overall, this study provides an array of potential biomarkers for the above triazole fungicides. Furthermore, these miRNAs induced by triazoles could be the foundation for the development of a miRNA-based toxic biomarker library that can predict environmental toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales

    PubMed Central

    Margres, Mark J.; Wray, Kenneth P.; Seavy, Margaret; McGivern, James J.; Herrera, Nathanael D.; Rokyta, Darin R.

    2016-01-01

    Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation. PMID:26546003

  4. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5).

    PubMed

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-12-23

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17-24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5 , which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism.

  5. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5)

    PubMed Central

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-01-01

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17–24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism. PMID:28025541

  6. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIβ pathway.

    PubMed

    Yan, Yong-Xin; Zhao, Jun-Xia; Han, Shuo; Zhou, Na-Jing; Jia, Zhi-Qiang; Yao, Sheng-Jie; Cao, Cui-Li; Wang, Yan-Ling; Xu, Yan-Nan; Zhao, Juan; Yan, Yun-Li; Cui, Hui-Xian

    2015-12-01

    Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Previously, we have shown that TMP induces human SH-SY5Y neuroblastoma cell differentiation toward the neuronal phenotype by targeting topoisomeraseIIβ (TopoIIβ), a protein implicated in neural development. In the present study, we aimed to elucidate whether the transcriptional factors specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), in addition to the upstream signaling pathways ERK1/2 and PI3K/Akt, are involved in modulating TopoIIβ expression in the neuronal differentiation process. We demonstrated that SH-SY5Y cells treated with TMP (80μM) terminally differentiated into neurons, characterized by increased neuronal markers, tubulin βIII and microtubule associated protein 2 (MAP2), and increased neurite outgrowth, with no negative effect on cell survival. TMP also increased the expression of TopoIIβ, which was accompanied by increased expression of Sp1 in the differentiated neuron-like cells, whereas NF-Y protein levels remained unchanged following the differentiation progression. We also found that the phosphorylation level of Akt, but not ERK1/2, was significantly increased as a result of TMP stimulation. Furthermore, as established by chromatin immunoprecipitation (ChIP) assay, activation of the PI3K/Akt pathway increased Sp1 binding to the promoter of the TopoIIβ gene. Blockage of PI3K/Akt was shown to lead to subsequent inhibition of TopoIIβ expression and neuronal differentiation. Collectively, the results indicate that the PI3K/Akt/Sp1/TopoIIβ signaling pathway is necessary for TMP-induced neuronal differentiation. Our findings offer mechanistic insights into understanding the upstream regulation of TopoIIβ in neuronal differentiation, and suggest potential applications of TMP both in neuroscience research and clinical practice to treat relevant diseases of the nervous system. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Resveratrol Ameliorates the Maturation Process of β-Cell-Like Cells Obtained from an Optimized Differentiation Protocol of Human Embryonic Stem Cells

    PubMed Central

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  8. Gene expression profiling in whole blood of patients with coronary artery disease

    PubMed Central

    Taurino, Chiara; Miller, William H.; McBride, Martin W.; McClure, John D.; Khanin, Raya; Moreno, María U.; Dymott, Jane A.; Delles, Christian; Dominiczak, Anna F.

    2010-01-01

    Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease. PMID:20528768

  9. Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution

    PubMed Central

    Moretti, Stefano; van Leeuwen, Danitsja; Gmuender, Hans; Bonassi, Stefano; van Delft, Joost; Kleinjans, Jos; Patrone, Fioravante; Merlo, Domenico Franco

    2008-01-01

    Background In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. Results In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. Conclusion CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways. PMID:18764936

  10. Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.

    PubMed

    Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen

    2012-02-10

    MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Generation of Human Adult Mesenchymal Stromal/Stem Cells Expressing Defined Xenogenic Vascular Endothelial Growth Factor Levels by Optimized Transduction and Flow Cytometry Purification

    PubMed Central

    Helmrich, Uta; Marsano, Anna; Melly, Ludovic; Wolff, Thomas; Christ, Liliane; Heberer, Michael; Scherberich, Arnaud; Martin, Ivan

    2012-01-01

    Adult mesenchymal stromal/stem cells (MSCs) are a valuable source of multipotent progenitors for tissue engineering and regenerative medicine, but may require to be genetically modified to widen their efficacy in therapeutic applications. For example, overexpression of the angiogenic factor vascular endothelial growth factor (VEGF) at controlled levels is an attractive strategy to overcome the crucial bottleneck of graft vascularization and to avoid aberrant vascular growth. Since the regenerative potential of MSCs is rapidly lost during in vitro expansion, we sought to develop an optimized technique to achieve high-efficiency retroviral vector transduction of MSCs derived from both adipose tissue (adipose stromal cells, ASCs) or bone marrow (BMSCs) and rapidly select cells expressing desired levels of VEGF with minimal in vitro expansion. The proliferative peak of freshly isolated human ASCs and BMSCs was reached 4 and 6 days after plating, respectively. By performing retroviral vector transduction at this time point, >90% efficiency was routinely achieved before the first passage. MSCs were transduced with vectors expressing rat VEGF164 quantitatively linked to a syngenic cell surface marker (truncated rat CD8). Retroviral transduction and VEGF expression did not affect MSC phenotype nor impair their in vitro proliferation and differentiation potential. Transgene expression was also maintained during in vitro differentiation. Furthermore, three subpopulations of transduced BMSCs homogeneously producing specific low, medium, and high VEGF doses could be prospectively isolated by flow cytometry based on the intensity of their CD8 expression already at the first passage. In conclusion, this optimized platform allowed the generation of populations of genetically modified MSCs, expressing specific levels of a therapeutic transgene, already at the first passage, thereby minimizing in vitro expansion and loss of regenerative potential. PMID:22070632

  12. Event-Related Potentials of Bottom-Up and Top-Down Processing of Emotional Faces

    PubMed Central

    Moradi, Afsane; Mehrinejad, Seyed Abolghasem; Ghadiri, Mohammad; Rezaei, Farzin

    2017-01-01

    Introduction: Emotional stimulus is processed automatically in a bottom-up way or can be processed voluntarily in a top-down way. Imaging studies have indicated that bottom-up and top-down processing are mediated through different neural systems. However, temporal differentiation of top-down versus bottom-up processing of facial emotional expressions has remained to be clarified. The present study aimed to explore the time course of these processes as indexed by the emotion-specific P100 and late positive potential (LPP) event-related potential (ERP) components in a group of healthy women. Methods: Fourteen female students of Alzahra University, Tehran, Iran aged 18–30 years, voluntarily participated in the study. The subjects completed 2 overt and covert emotional tasks during ERP acquisition. Results: The results indicated that fearful expressions significantly produced greater P100 amplitude compared to other expressions. Moreover, the P100 findings showed an interaction between emotion and processing conditions. Further analysis indicated that within the overt condition, fearful expressions elicited more P100 amplitude compared to other emotional expressions. Also, overt conditions created significantly more LPP latencies and amplitudes compared to covert conditions. Conclusion: Based on the results, early perceptual processing of fearful face expressions is enhanced in top-down way compared to bottom-up way. It also suggests that P100 may reflect an attentional bias toward fearful emotions. However, no such differentiation was observed within later processing stages of face expressions, as indexed by the ERP LPP component, in a top-down versus bottom-up way. Overall, this study provides a basis for further exploring of bottom-up and top-down processes underlying emotion and may be typically helpful for investigating the temporal characteristics associated with impaired emotional processing in psychiatric disorders. PMID:28446947

  13. Effects of hypoxia and hyperoxia on the differential expression of VEGF-A isoforms and receptors in Idiopathic Pulmonary Fibrosis (IPF).

    PubMed

    Barratt, Shaney L; Blythe, Thomas; Ourradi, Khadija; Jarrett, Caroline; Welsh, Gavin I; Bates, David O; Millar, Ann B

    2018-01-15

    Dysregulation of VEGF-A bioavailability has been implicated in the development of lung injury/fibrosis, exemplified by Idiopathic Pulmonary Fibrosis (IPF). VEGF-A is a target of the hypoxic response via its translational regulation by HIF-1α. The role of hypoxia and hyperoxia in the development and progression of IPF has not been explored. In normal lung (NF) and IPF-derived fibroblasts (FF) VEGF-A xxx a protein expression was upregulated by hypoxia, mediated through activation of VEGF-A xxx a gene transcription. VEGF-A receptors and co-receptors were differentially expressed by hypoxia and hyperoxia. Our data supports a potential role for hypoxia, hyperoxia and VEGF-A xxx a isoforms as drivers of fibrogenesis.

  14. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblastsmore » from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.« less

  15. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes.

    PubMed

    Barbagallo, Ignazio; Li Volti, Giovanni; Galvano, Fabio; Tettamanti, Guido; Pluchinotta, Francesca R; Bergante, Sonia; Vanella, Luca

    2017-05-01

    Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue. Impact statement In the present manuscript, we evaluated the differentiative potential of mesenchymal stem cells (MSCs) in adipocytes obtained from healthy and diabetic patients. This finding could be of great potential interest for the field of obesity in order to exploit such results to further understand the pathophysiological processes underlying metabolic syndrome. In particular, inflammation in diabetic patients causes a dysfunction in MSCs differentiation and a decrease in adipocytes turnover leading to insulin resistance.

  16. Isolation and hepatocyte differentiation of mesenchymal stem cells from porcine bone marrow--"surgical waste" as a novel MSC source.

    PubMed

    Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B

    2013-06-01

    Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Adenocarcinoma Prostate With Neuroendocrine Differentiation: Potential Utility of 18F-FDG PET/CT and 68Ga-DOTANOC PET/CT Over 68Ga-PSMA PET/CT.

    PubMed

    Parida, Girish Kumar; Tripathy, Sarthak; Datta Gupta, Shreya; Singhal, Abhinav; Kumar, Rakesh; Bal, Chandrasekhar; Shamim, Shamim Ahmed

    2018-04-01

    Ga-PSMA PET/CT is the upcoming imaging modality for staging, restaging and response assessment of prostate cancer. However, due to neuroendocrine differentiation in some of patients with prostate cancer, they express somatostatin receptors instead of prostate specific membrane antigen. This can be exploited and other modalities like Ga-DOTANOC PET/CT and F-FDG PET/CT should be used in such cases for guiding management. We hereby discuss a similar case of 67-year-old man of adenocarcinoma prostate with neuroendocrine differentiation, which shows the potential pitfall of Ga-PSMA PET/CT imaging and benefit of Ga-DOTANOC PET/CT and F-FDG PET/CT in such cases.

  18. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients.

    PubMed

    Huang, Xin; Hao, Cuifang; Bao, Hongchu; Wang, Meimei; Dai, Huangguan

    2016-01-01

    To describe the long noncoding RNA (lncRNA) profiles in cumulus cells isolated from polycystic ovary syndrome (PCOS) patients by employing a microarray and in-depth bioinformatics analysis. This information will help us understand the occurrence and development of PCOS. In this study, we used a microarray to describe lncRNA profiles in cumulus cells isolated from ten patients (five PCOS and five normal women). Several differentially expressed lncRNAs were chosen to validate the microarray results by quantitative RT-PCR (qRT-PCR). Then, the differentially expressed lncRNAs were classified into three subgroups (HOX loci lncRNA, enhancer-like lncRNA, and lincRNA) to deduce their potential features. Furthermore, a lncRNA/mRNA co-expression network was constructed by using the Cytoscape software (V2.8.3, http://www.cytoscape.org/ ). We observed that 623 lncRNAs and 260 messenger RNAs (mRNAs) were significantly up- or down-regulated (≥2-fold change), and these differences could be used to discriminate cumulus cells of PCOS from those of normal patients. Five differentially expressed lncRNAs (XLOC_011402, ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) were selected to validate the microarray results using quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Further analysis indicated that many differentially expressed lncRNAs were transcribed from chromosome 2 and may act as enhancers to regulate their neighboring protein-coding genes. Forty-three lncRNAs and 29 mRNAs were used to construct the coding-non-coding gene co-expression network. Most pairs positively correlated, and one mRNA correlated with one or more lncRNAs. Our study is the first to determine genome-wide lncRNA expression patterns in cumulus cells isolated from PCOS patients by microarray. The results show that clusters of lncRNAs were aberrantly expressed in cumulus cells of PCOS patients compared with those of normal women, which revealed that lncRNAs differentially expressed in PCOS and normal women may contribute to the occurrence of PCOS and affect oocyte development.

  19. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development.

    PubMed

    Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B

    2016-03-31

    Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.

  20. Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An In Vitro Study

    PubMed Central

    Mattia, S.; Castoldi, F.; Barbero, A.; Bonasia, D. E.; Bruzzone, M.; Dettoni, F.; Scurati, R.

    2017-01-01

    Umbilical cord (UC) may represent an attractive cell source for allogeneic mesenchymal stem cell (MSC) therapy. The aim of this in vitro study is to investigate the chondrogenic and osteogenic potential of UC-MSCs grown onto tridimensional scaffolds, to identify a possible clinical relevance for an allogeneic use in cartilage and bone reconstructive surgery. Chondrogenic differentiation on scaffolds was confirmed at 4 weeks by the expression of sox-9 and type II collagen; low oxygen tension improved the expression of these chondrogenic markers. A similar trend was observed in pellet culture in terms of matrix (proteoglycan) production. Osteogenic differentiation on bone-graft-substitute was also confirmed after 30 days of culture by the expression of osteocalcin and RunX-2. Cells grown in the hypertrophic medium showed at 5 weeks safranin o-positive stain and an increased CbFa1 expression, confirming the ability of these cells to undergo hypertrophy. These results suggest that the UC-MSCs isolated from minced umbilical cords may represent a valuable allogeneic cell population, which might have a potential for orthopaedic tissue engineering such as the on-demand cell delivery using chondrogenic, osteogenic, and endochondral scaffold. This study may have a clinical relevance as a future hypothetical option for allogeneic single-stage cartilage repair and bone regeneration. PMID:29358953

Top