Sample records for potential driving force

  1. The Energetics of Motivated Cognition: A Force-Field Analysis

    ERIC Educational Resources Information Center

    Kruglanski, Arie W.; Belanger, Jocelyn J.; Chen, Xiaoyan; Kopetz, Catalina; Pierro, Antonio; Mannetti, Lucia

    2012-01-01

    A force-field theory of motivated cognition is presented and applied to a broad variety of phenomena in social judgment and self-regulation. Purposeful cognitive activity is assumed to be propelled by a "driving force" and opposed by a "restraining force". "Potential" driving force represents the maximal amount of energy an individual is prepared…

  2. Friction phenomena and phase transition in the underdamped two-dimensional Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Duan, Wen-Shan; Chen, Jian-Min; Yang, Lei; Tekić, Jasmina; Shao, Zhi-Gang; Wang, Cang-Long

    2010-11-01

    Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.

  3. Towards understanding what contributes to forming an opinion

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Song, Jia; Huo, Jie; Hao, Rui; Wang, Xu-Ming

    Opinion evolution mechanism can be captured by physical modeling. In this paper, a kinetic equation is established by defining a generalized displacement(cognitive level), a driving force and the related factors such as generalized potential, information quantity and attitude. It has been shown that the details of opinion evolution depend on the type of the driving force, self-dominated driving or environment-dominated driving. In the former case, the participants can have their attitudes changed in the process of competition between the self-driving force and environment-driving force. In the latter case, all of the participants are pulled by the environment. Some regularities behind the dynamics of opinion are also revealed, for instance, the information entropy decays with time in a special way, etc. The results may help us to get some deep understanding for the formation of a public opinion.

  4. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    PubMed Central

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2018-01-01

    We compare forces resisting DNA packaging in bacteriophage phi29 inferred from optical tweezers studies with forces driving DNA ejection inferred from osmotic pressure studies. Ejection forces from 0–80% filling are consistent with a model that assumes a repulsive DNA-DNA interaction potential derived from DNA condensation studies and predicts an inverse spool DNA conformation. Forces resisting packaging from ~80–100% filling are also consistent with this model. However, that electron microscopy does not reveal a spool conformation suggests that this model overestimates bending rigidity and underestimates repulsion. Below 80% filling, inferred ejection forces are higher than those resisting packaging. Although unexpected, this suggests that most force that builds during packaging is available to drive DNA ejection. PMID:28618627

  5. Hydraulic Limits on Maximum Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water potential compare well with measured peak transpiration and minimum water potentials across plant types and biomes, suggesting that plant water transport system and stomatal regulation co-evolved to meet peak atmospheric demands, thus sustaining carbon uptake while avoiding tissue damage even in such harsh conditions.

  6. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  7. Transport properties of elastically coupled fractional Brownian motors

    NASA Astrophysics Data System (ADS)

    Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan

    2015-11-01

    Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

  8. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    PubMed

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  9. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  10. Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.

  11. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    PubMed

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  12. Protein folding: complex potential for the driving force in a two-dimensional space of collective variables.

    PubMed

    Chekmarev, Sergei F

    2013-10-14

    Using the Helmholtz decomposition of the vector field of folding fluxes in a two-dimensional space of collective variables, a potential of the driving force for protein folding is introduced. The potential has two components. One component is responsible for the source and sink of the folding flows, which represent respectively, the unfolded states and the native state of the protein, and the other, which accounts for the flow vorticity inherently generated at the periphery of the flow field, is responsible for the canalization of the flow between the source and sink. The theoretical consideration is illustrated by calculations for a model β-hairpin protein.

  13. Training toddlers seated on mobile robots to drive indoors amidst obstacles.

    PubMed

    Chen, Xi; Ragonesi, Christina; Galloway, James C; Agrawal, Sunil K

    2011-06-01

    Mobility is a causal factor in development. Children with mobility impairments may rely upon power mobility for independence and thus require advanced driving skills to function independently. Our previous studies show that while infants can learn to drive directly to a goal using conventional joysticks in several months of training, they are unable in this timeframe to acquire the advanced skill to avoid obstacles while driving. Without adequate driving training, children are unable to explore the environment safely, the consequences of which may in turn increase their risk for developmental delay. The goal of this research therefore is to train children seated on mobile robots to purposefully and safely drive indoors. In this paper, we present results where ten typically-developing toddlers are trained to drive a robot within an obstacle course. We also report a case study with a toddler with spina-bifida who cannot independently walk. Using algorithms based on artificial potential fields to avoid obstacles, we create force field on the joystick that trains the children to navigate while avoiding obstacles. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. Our results suggest that the use of a force-feedback joystick may yield faster learning than the use of a conventional joystick.

  14. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  15. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  16. Associations between motor unit action potential parameters and surface EMG features.

    PubMed

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.

  17. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji

    2014-08-14

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, anmore » approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.« less

  18. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  19. Chemical Potentials and Activities: An Electrochemical Introduction.

    ERIC Educational Resources Information Center

    Wetzel, T. L.; And Others

    1986-01-01

    Describes a laboratory experiment which explores the effects of adding inert salts to electrolytic cells and demonstrates the difference between concentration and chemical activity. Examines chemical potentials as the driving force of reactions. Provides five examples of cell potential and concentration change. (JM)

  20. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.

    PubMed

    Tyzio, Roman; Minlebaev, Marat; Rheims, Sylvain; Ivanov, Anton; Jorquera, Isabelle; Holmes, Gregory L; Zilberter, Yuri; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2008-05-01

    During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.

  1. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D.

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  2. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  3. Current kinematics and dynamics of Africa and the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.

    2014-06-01

    Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.

  4. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2015-12-28

    In this work, we numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additionalmore » contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. Finally, at higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.« less

  5. Modeling Interactions Between Flexible Flapping Wing Spars, Mechanisms, and Drive Motors

    DTIC Science & Technology

    2011-09-01

    of dynamical equations is presented that allow micro air vehicle (MAV) or- nithopter designers to match drive motors to loads produced by flexible...aeroelastic systems is presented. One potential use for such a model is to serve as the basis for a vehicle design tool that matches drive motors to loads...friction. ∗Senior Aerospace Engineer, Control Design and Analysis Branch, 2210 Eighth Street, Ste. 21, Air Force Research Labora- tory, WPAFB, OH 45433

  6. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce

    PubMed Central

    Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-01-01

    Background Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. Objective We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). Methods The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. Results The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were rlng=0.71 and rlat=0.83, respectively, while the corresponding acceleration measurements between Android and DAS were rlng=0.95 and rlat=0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. Conclusions The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. PMID:29674309

  7. Clogging and transport of driven particles in asymmetric funnel arrays

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-06-01

    We numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle–particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrant pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth 1D flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. The clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.

  8. Estimation of the neural drive to the muscle from surface electromyograms

    NASA Astrophysics Data System (ADS)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  9. Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Lai, Li; Peng, Hao; Tu, Zhe; Zhong, Suchuan

    2018-01-01

    The dynamics of many soft condensed matter and biological systems is affected by space limitations, which produce some peculiar effects on the systems' stochastic resonance (SR) behavior. In this study, we propose a model where SR can be observed: a confined overdamped harmonic oscillator that is subjected to a sinusoidal driving force and is under the influence of a multiplicative white noise. The output response of the system is a periodic signal with harmonic frequencies that are odd multiples of the driving frequency. We verify the amplitude resonances at the driving frequencies and superharmonic frequencies that are equal to three, five, and seven times the driving frequency, using a numerical method based on the stochastic Taylor expansion. The synergistic effect of the multiplicative white noise, constant boundaries, and periodic driving force that can induce a SR in the output amplitude at the driving and superharmonic frequencies is found. The SR phenomenon found in this paper is sensitive to the driving amplitude and frequency, inherent potential parameter, and boundary width, thus leading to various resonance conditions. Therefore, the mechanism found could be beneficial for the characterization of these confined systems and could constitute an important tool for controlling their basic properties.

  10. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents

    PubMed Central

    Clarke, Stephen G.; Scarnati, Matthew S.

    2016-01-01

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759

  11. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.

    PubMed

    Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G

    2016-11-09

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.

  12. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    PubMed

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Micromechanical analysis of volumetric growth in the context of open systems thermodynamics and configurational mechanics. Application to tumor growth

    NASA Astrophysics Data System (ADS)

    Ganghoffer, J. F.; Boubaker, M. B.

    2017-03-01

    We adopt in this paper the physically and micromechanically motivated point of view that growth (resp. resorption) occurs as the expansion (resp. contraction) of initially small tissue elements distributed within a host surrounding matrix, due to the interfacial motion of their boundary. The interface motion is controlled by the availability of nutrients and mechanical driving forces resulting from the internal stresses that built in during the growth. A general extremum principle of the zero potential for open systems witnessing a change of their mass due to the diffusion of nutrients is constructed, considering the framework of open systems thermodynamics. We postulate that the shape of the tissue element evolves in such a way as to minimize the zero potential among all possible admissible shapes of the growing tissue elements. The resulting driving force for the motion of the interface sets a surface growth models at the scale of the growing tissue elements, and is conjugated to a driving force identified as the interfacial jump of the normal component of an energy momentum tensor, in line with Hadamard's structure theorem. The balance laws associated with volumetric growth at the mesoscopic level result as the averaging of surface growth mechanisms occurring at the microscopic scale of the growing tissue elements. The average kinematics has been formulated in terms of the effective growth velocity gradient and elastic rate of deformation tensor, both functions of time. This formalism is exemplified by the simulation of the avascular growth of multicell spheroids in the presence of diffusion of nutrients, showing the respective influence of mechanical and chemical driving forces in relation to generation of internal stresses.

  14. The application of multilayer elastic beam in MEMS safe and arming system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guozhong, E-mail: liguozhong-bit@bit.edu.cn; Shi, Gengchen; Sui, Li

    In this paper, a new approach for a multilayer elastic beam to provide a driving force and driving distance for a MEMS safe and arming system is presented. In particular this is applied where a monolayer elastic beam cannot provide adequate driving force and driving distance at the same time in limited space. Compared with thicker elastic beams, the bilayer elastic beam can provide twice the driving force of a monolayer beam to guarantee the MEMS safe and arming systems work reliably without decreasing the driving distance. In this paper, the theoretical analysis, numerical simulation and experimental verification of themore » multilayer elastic beam is presented. The numerical simulation and experimental results show that the bilayer elastic provides 1.8–2 times the driving force of a monolayer, and a method that improves driving force without reducing the driving distance.« less

  15. Characteristics of secondary migration driving force of tight oil and its geologic effect: a case study of Jurassic in Central Sichuan Basin

    NASA Astrophysics Data System (ADS)

    Pang, Zhenglian; Tao, Shizhen; Zhang, Bin; Wu, Songtao; Yang, Jiajing; Chen, Ruiyin

    2017-04-01

    As the rising of its production, tight oil is becoming more and more important. Much research has been done about it. Some articles mention that buoyancy is ineffective for tight oil secondary migration, and abnormal pressure is the alternative. Others believe that overpressure caused hydrocarbon generation is the very force. Though opinions have been given, there are two inadequacies. Firstly, the points are lack of sufficient evidences. Mostly, they are only one or two sentences in the papers. Secondly, geologic effect of the change of driving force hasn't been discussed. In this context, analog experiments, physical property testing, mercury injection, and oil/source comparison were utilized to study 3 issues: origin and value of tight oil secondary migration resistance, values and effectiveness of different potential driving forces, and geologic effect of tight oil secondary migration driving force. Firstly, resistance values of tight reservoir were detected by analog experiments. The value of tight limestone is 15.8MPa, while tight sandstone is 10.7MPa. Tiny size of pores and throats in tight reservoir is the main reason causing huge resistances. Over 90% of pores and throats in tight reservoir are smaller than 1μm. They form huge capillary force when oil migrating through them. Secondly, maximum of buoyancy in study area was confirmed, 0.09MPa, too small to overcome the resistances. Meanwhile, production data suggests that tight oil distribution pattern is not controlled by buoyancy. Conversely, analog experiment proves that overpressure caused by hydrocarbon generation can reach 38MPa, large enough to be the driving force. This idea is also supported by positive correlation between output and source rock formation pressure. Thirdly, is the geologic effect of tight oil secondary migration resistance and driving force. Tight oil can migrate only as non-darcy flow due to huge resistances according to percolation experiments. It needs to overcome the starting pressure gradient. As a result, it migrated a much shorter distance compared with conventional petroleum, coincident with the result of oil/source comparison. The effect of driving force is that boundary of tight oil profitable area is controlled by source rock. This boundary in the study area is the line of hydrocarbon generating strength of 40×104t/km2. By confirming controlling factors of tight oil formation and their evaluation index, it is of great significance during tight oil exploration.

  16. Influence of electric field on interwell tunneling rate in quasi two dimensional organic quantum wells

    NASA Astrophysics Data System (ADS)

    Donovan, K. J.; Elliott, J. E.; Jeong, I. S.; Scott, K.; Wilson, E. G.

    2000-11-01

    The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is demonstrated to be dependent upon the applied electrostatic potential difference between the layers. This dependence is explored in light of the Marcus theory of charge transfer. That theory was developed to describe redox reactions where the driving force is supplied by a chemical potential difference between two chemically different parts of a more complex system. In the current work the electrostatic potential replaces the chemical potential as the driving potential. The field dependence of the exciton dissociation probability is also determined.

  17. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    PubMed Central

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  18. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    PubMed Central

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  19. Glenohumeral contact force during flat and topspin tennis forehand drives.

    PubMed

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  20. AST: Activity-Security-Trust driven modeling of time varying networks.

    PubMed

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-18

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  1. Effect of ionization on the oxidation kinetics of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong

    2018-03-01

    Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.

  2. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0 % to 80 % filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ˜80 % to 100 % filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ˜80 % filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  3. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection.

    PubMed

    Keller, Nicholas; Berndsen, Zachary T; Jardine, Paul J; Smith, Douglas E

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  4. Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.

    PubMed

    Wiggermann, Neal

    2017-01-01

    Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p < 0.05) lower for all tasks, and below psychophysical limits. Powered drive reduced peak forces between 38% (maneuvering into elevator) and 94% (descending ramp). Powered drive also reduced stopping distance by 55%. When maneuvering, the integral of hand force was 34% lower with powered drive, but average forces during straight-line pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce.

    PubMed

    Freidlin, Raisa Z; Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-04-19

    Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were r lng =0.71 and r lat =0.83, respectively, while the corresponding acceleration measurements between Android and DAS were r lng =0.95 and r lat =0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. ©Raisa Z Freidlin, Amisha D Dave, Benjamin G Espey, Sean T Stanley, Marcial A Garmendia, Randall Pursley, Johnathon P Ehsani, Bruce G Simons-Morton, Thomas J Pohida. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 19.04.2018.

  6. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE PAGES

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2018-05-03

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  7. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  8. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  9. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The generation of an electrical membrane potential (''), the major constituent of the proton motive force (pmf) is crucial for the ATP synthesis, bacterial growth and motility. The pmf drives the rotation of flagella and is vital for the microaerophilic human pathogen Campylobacter jejuni to coloniz...

  10. Relative importance of driving force and electrostatic interactions in the reduction of multihaem cytochromes by small molecules.

    PubMed

    Quintas, Pedro O; Cepeda, Andreia P; Borges, Nuno; Catarino, Teresa; Turner, David L

    2013-06-01

    Multihaem cytochromes are essential to the energetics of organisms capable of bioremediation and energy production. The haems in several of these cytochromes have been discriminated thermodynamically and their individual rates of reduction by small electron donors were characterized. The kinetic characterization of individual haems used the Marcus theory of electron transfer and assumed that the rates of reduction of each haem by sodium dithionite depend only on the driving force, while electrostatic interactions were neglected. To determine the relative importance of these factors in controlling the rates, we studied the effect of ionic strength on the redox potential and the rate of reduction by dithionite of native Methylophilus methylotrophus cytochrome c″ and three mutants at different pH values. We found that the main factor determining the rate is the driving force and that Marcus theory describes this satisfactorily. This validates the method of the simultaneous fitting of kinetic and thermodynamic data in multihaem cytochromes and opens the way for further investigation into the mechanisms of these proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A future without health? Health dimension in global scenario studies.

    PubMed Central

    Martens, Pim; Huynen, Maud

    2003-01-01

    This paper reviews the health dimension and sociocultural, economic, and ecological determinants of health in existing global scenario studies. Not even half of the 31 scenarios reviewed gave a good description of future health developments and the different scenario studies did not handle health in a consistent way. Most of the global driving forces of health are addressed adequately in the selected scenarios, however, and it therefore would have been possible to describe the future developments in health as an outcome of these multiple driving forces. To provide examples on how future health can be incorporated in existing scenarios, we linked the sociocultural, economic, and environmental developments described in three sets of scenarios (special report on emission scenarios (SRES), global environmental outlook-3 (GEO3), and world water scenarios (WWS)) to three potential, but imaginary, health futures ("age of emerging infectious diseases", "age of medical technology", and "age of sustained health"). This paper provides useful insights into how to deal with future health in scenarios and shows that a comprehensive picture of future health evolves when all important driving forces and pressures are taken into account. PMID:14997242

  12. Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.

    PubMed

    Kong, Xian; Jiang, Jian; Lu, Diannan; Liu, Zheng; Wu, Jianzhong

    2014-09-04

    Ion transport through nanochannels depends on various external driving forces as well as the structural and hydrodynamic inhomogeneity of the confined fluid inside of the pore. Conventional models of electrokinetic transport neglect the discrete nature of ionic species and electrostatic correlations important at the boundary and often lead to inconsistent predictions of the surface potential and the surface charge density. Here, we demonstrate that the electrokinetic phenomena can be successfully described by the classical density functional theory in conjunction with the Navier-Stokes equation for the fluid flow. The new theoretical procedure predicts ion conductivity in various pH-regulated nanochannels under different driving forces, in excellent agreement with experimental data.

  13. AST: Activity-Security-Trust driven modeling of time varying networks

    PubMed Central

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  14. Driving force of stacking-fault formation in SiC p-i-n diodes.

    PubMed

    Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K

    2004-04-30

    The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.

  15. Quasi-One-Dimensional Particle-in-Cell Simulation of Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.

    2015-01-01

    A method for the quasi-one-dimensional simulation of magnetic nozzles is presented and simulations of a magnetic nozzle are performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration are investigated. Magnetic field forces acting on the electrons are found to be responsible for the formation of potential structures which accelerate ions. The effects of the plasma density variation alone are found to only weakly affect ion acceleration. Strongly diverging magnetic fields drive more rapid potential drops.

  16. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime

    NASA Astrophysics Data System (ADS)

    Casado-Pascual, Jesús

    2018-03-01

    The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.

  17. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-01-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.

  18. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  19. Human health and the water environment: using the DPSEEA framework to identify the driving forces of disease.

    PubMed

    Gentry-Shields, Jennifer; Bartram, Jamie

    2014-01-15

    There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.

  20. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    NASA Astrophysics Data System (ADS)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  1. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  2. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    PubMed

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Intramolecular energy transfer and the driving mechanisms for large-amplitude collective motions of clusters

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2009-04-01

    This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to molecular reactions in which a system changes its overall mass distribution in a significant way.

  4. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  5. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  6. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  7. Physical driving force of actomyosin motility based on the hydration effect.

    PubMed

    Suzuki, Makoto; Mogami, George; Ohsugi, Hideyuki; Watanabe, Takahiro; Matubayasi, Nobuyuki

    2017-12-01

    We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force. © 2017 Wiley Periodicals, Inc.

  8. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  9. Apparatus and method for producing an artificial gravitational field

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason (Inventor)

    1993-01-01

    An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.

  10. The driving forces of land change in the Northern Piedmont of the United States

    USGS Publications Warehouse

    Auch, Roger F.; Napton, Darrell E.; Kambly, Steven; Moreland, Thomas R.; Sayler, Kristi L.

    2012-01-01

    Driving forces facilitate or inhibit land-use/land-cover change. Human driving forces include political, economic, cultural, and social attributes that often change across time and space. Remotely sensed imagery provides regional land-change data for the Northern Piedmont, an ecoregion of the United States that continued to urbanize after 1970 through conversion of agricultural and forest land covers to developed uses. Eight major driving forces facilitated most of the land conversion; other drivers inhibited or slowed change. A synergistic web of drivers may be more important in understanding land change than individual drivers by themselves.

  11. Quantitative attribution of major driving forces on soil organic carbon dynamics

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Tan, Zhengxi

    2015-01-01

    Soil organic carbon (SOC) storage plays a major role in the global carbon cycle and is affected by many factors including land use/management changes (e.g., biofuel production-oriented changes). However, the contributions of various factors to SOC changes are not well understood and quantified. This study was designed to investigate the impacts of changing farming practices, initial SOC levels, and biological enhancement of grain production on SOC dynamics and to attribute the relative contributions of major driving forces (CO2 enrichment and farming practices) using a fractional factorial modeling design. The case study at a crop site in Iowa in the United States demonstrated that the traditional corn-soybean (CS) rotation could still accumulate SOC over this century (from 4.2 to 6.8 kg C/m2) under the current condition; whereas the continuous-corn (CC) system might have a higher SOC sequestration potential than CS. In either case, however, residue removal could reduce the sink potential substantially. Long-term simulation results also suggested that the equilibrium SOC level may vary greatly (∼5.7 to ∼11 kg C/m2) depending on cropping systems and management practices, and projected growth enhancement could make the magnitudes higher (∼7.8 to ∼13 kg C/m2). Importantly, the factorial design analysis indicated that residue management had the most significant impact (contributing 49.4%) on SOC changes, followed by CO2 Enrichment (37%), Tillage (6.2%), the combination of CO2Enrichment-Residue removal (5.8%), and Fertilization (1.6%). In brief, this study is valuable for understanding the major forces driving SOC dynamics of agroecosystems and informative for decision-makers when seeking the enhancement of SOC sequestration potential and sustainability of biofuel production, especially in the Corn Belt region of the United States.

  12. Driving forces behind the Chinese public's demand for improved environmental safety.

    PubMed

    Wen, Ting; Wang, Jigan; Ma, Zongwei; Bi, Jun

    2017-12-15

    Over the past decades, the public demand for improved environmental safety keeps increasing in China. This study aims to assess the driving forces behind the increasing public demand for improved environmental safety using a provincial and multi-year (1995, 2000, 2005, 2010, and 2014) panel data and the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The potential driving forces investigated included population size, income levels, degrees of urbanization, and educational levels. Results show that population size and educational level are positively (P<0.01) associated with public demand for improved environmental safety. No significant impact on demand was found due to the degree of urbanization. For the impact due to income level, an inverted U-shaped curve effect with the turning point of ~140,000 CNY GDP per capita is indicated. Since per capita GDP of 2015 in China was approximately 50,000 CNY and far from the turning point, the public demand for improved environmental safety will continue rising in the near future. To meet the increasing public demand for improved environmental safety, proactive and risk prevention based environmental management systems coupled with effective environmental risk communication should be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effects of elevated CO2 on cereal crop natural defenses and the potential implications for mycotoxin risk

    USDA-ARS?s Scientific Manuscript database

    Wheat and corn are an essential part of the world’s grain supply, but climate change has the potential to increase grain susceptibility to toxin producing fungal pathogens. While rising atmospheric [CO2] is a driving force of climate change, our understanding of how elevated [CO2] will effect grain ...

  14. Parametric modulation of thermomagnetic convection in magnetic fluids.

    PubMed

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  15. Potential of mean force between two hydrophobic solutes in water.

    PubMed

    Southall, Noel T; Dill, Ken A

    2002-12-10

    We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory. Copyright 2002 Elsevier Science B.V.

  16. Shoulder muscle forces during driving: Sudden steering can load the rotator cuff beyond its repair limit

    PubMed Central

    Pandis, Petros; Prinold, Joe A.I.; Bull, Anthony M.J.

    2015-01-01

    Background Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. Methods A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. Findings Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). Interpretation These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations. PMID:26139549

  17. Abnormal grain growth in iron-silicon

    NASA Astrophysics Data System (ADS)

    Bennett, Tricia A.

    Abnormal grain growth (AGG) was studied in an Fe-1%Si alloy using automated Electron Backscattered Diffraction (EBSD) to determine the driving force for this phenomenon. Experiments were performed with the knowledge that there are several possible driving forces and, the intent to determine the true driving force by elimination of the other potential candidates. These potential candidates include surface energy anisotropy, anisotropic grain boundary properties and the stored energy of deformation. In this work, surface energy and grain boundary anisotropies as well as the stored energy of deformation were investigated as the possible driving forces for AGG. Accordingly, industrially processed samples that were temper rolled to 1.5% and 8% were annealed in air for various times followed by quenching in water. The results obtained were compared to those from heat treatments performed in wet 15%H2-85%N2 at a US Steel facility. In addition, for a more complete study of the effect of surface energy anisotropies on AGG, the 1.5% temper-rolled material was heat-treated in other atmospheres such as 5%H2-95%Ar, 98%H2-2%He, 98%H2-2%H 2S, and 98%H2-2%N2 for 1 hour followed by quenching in water. The character of the grain boundaries in the materials was also examined for each set of experiments conducted, while the influence of stored energy was evaluated by examining intragranular orientation gradients. AGG occurred regardless of annealing atmosphere though the most rapid progression was observed in samples annealed in air. In general, grains of varying orientations grew abnormally. One consistently observed trend in all the detailed studies was that the matrix grains remained essentially static and either did not grow or only grew very slowly. On the other hand, the abnormally large grains (ALG), on average, were approximately 10 times the size of the matrix. Analysis of the grain boundary character of the interfaces between abnormal grains and the matrix showed no significant variation from the overall population of boundaries. This suggested that grain boundary character was not a factor in controlling AGG. When the effect of stored energy differences was considered, it was observed that grains that experienced AGG had low orientation gradients. Based on these results and cross comparison of all classes of experiments performed, it was determined that stored energy differences were the main driving force for AGG in this Fe-1%Si alloy.

  18. A linear stepping endovascular intervention robot with variable stiffness and force sensing.

    PubMed

    He, Chengbin; Wang, Shuxin; Zuo, Siyang

    2018-05-01

    Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  20. Conservation laws shape dissipation

    NASA Astrophysics Data System (ADS)

    Rao, Riccardo; Esposito, Massimiliano

    2018-02-01

    Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs—we define a procedure to identify the conservative and the minimal set of nonconservative contributions in the entropy production. The former is expressed as the difference between changes caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the minimal set of flux-force contributions controlling the dissipative flows across the system. When the system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying the complete set of conserved quantities and can be viewed as the extension of the theory of generalized Gibbs ensembles to nonequilibrium situations.

  1. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2016-09-13

    Here we numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinalmore » to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. Lastly, we map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.« less

  2. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2016-09-01

    We numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinal to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. We map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.

  3. Climate change and corn susceptibility to mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Maize is an essential part of the world’s grain supply, but climate change has the potential to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce food security and safety. While rising atmospheric [CO2] is a driving force of climate change, our understanding of how elevated ...

  4. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-07-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.

  5. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

    PubMed Central

    Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind

    2012-01-01

    Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531

  6. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  7. Transmission of scrapie prions to primate after an extended silent incubation period

    USDA-ARS?s Scientific Manuscript database

    Classical bovine spongiform encephalopathy (c-BSE) is an animal prion disease that also causes variant Creutzfeldt-Jakob disease in humans. Over the past decades, c-BSE's zoonotic potential has been the driving force in establishing extensive protective measures for animal and human health. In compl...

  8. Rethinking the Formula: Suggestions for Improving Basic Course Texts.

    ERIC Educational Resources Information Center

    Robie, Harry

    There are three arguments against the usefulness of present basic course textbooks in speech communication. First, there are certain inherent forces that will always drive textbook publishers toward the production of textbooks unsuitable for the basic course: "mentioning" (mentioning every principle ever heard of by potential users of…

  9. Rallying Potential among the North Vietnamese Armed Forces

    DTIC Science & Technology

    1970-12-01

    overwhelmingly important. Thus, though everyone complains about the mosquitoes and very few about the tigers , it is the fear of tigers that drives... Asthma Stomachache Other disease Rheumatism Not sick captured?) 26. What did you think of most when you were sick? 27. Did you think about rallying

  10. Results-Based Interaction Design

    ERIC Educational Resources Information Center

    Weiss, Meredith

    2008-01-01

    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  11. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    PubMed

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  12. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.

    PubMed

    Jian, Yongjun; Li, Fengqin; Liu, Yongbo; Chang, Long; Liu, Quansheng; Yang, Liangui

    2017-08-01

    In order to conduct extensive investigation of energy harvesting capabilities of nanofluidic devices, we provide analytical solutions for streaming potential and electrokinetic energy conversion (EKEC) efficiency through taking the combined consequences of soft nanochannel, a rigid nanochannel whose surface is covered by charged polyelectrolyte layer, and viscoelastic rheology into account. The viscoelasticity of the fluid is considered by employing the Maxwell constitutive model when the forcing frequency of an oscillatory driving pressure flow matches with the inverse of the relaxation time scale of a typical viscoelastic fluid. We compare the streaming potential and EKEC efficiency with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. Within the present selected parameter ranges, it is shown that the different peaks of maximal streaming potential and EKEC efficiency for the rigid nanochannel are larger than those for the soft nanochannel when forcing frequencies of the driving pressure gradient are close to resonating frequencies. However, more enhanced streaming potential and EKEC efficiency for a soft nanochannel can be found in most of the regions away from these resonant frequencies. Moreover, the influence of several dimensionless parameters on EKEC efficiency is discussed in detail. Finally, within the given parametric regions, the maximum efficiency at some resonant frequency obtained in present analysis is about 25%. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Low-Frequency Oscillations and Control of the Motor Output

    PubMed Central

    Lodha, Neha; Christou, Evangelos A.

    2017-01-01

    A less precise force output impairs our ability to perform movements, learn new motor tasks, and use tools. Here we show that low-frequency oscillations in force are detrimental to force precision. We summarize the recent evidence that low-frequency oscillations in force output represent oscillations of the spinal motor neuron pool from the voluntary drive, and can be modulated by shifting power to higher frequencies. Further, force oscillations below 0.5 Hz impair force precision with increased voluntary drive, aging, and neurological disease. We argue that the low-frequency oscillations are (1) embedded in the descending drive as shown by the activation of multiple spinal motor neurons, (2) are altered with force intensity and brain pathology, and (3) can be modulated by visual feedback and motor training to enhance force precision. Thus, low-frequency oscillations in force provide insight into how the human brain regulates force precision. PMID:28261107

  14. External solution driving forces for isotonic fluid absorption in proximal tubules.

    PubMed

    Andreoli, T E; Schafer, J A

    1979-02-01

    We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.

  15. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  16. Brownian dynamics study of ion transport in the vestibule of membrane channels.

    PubMed

    Li, S C; Hoyles, M; Kuyucak, S; Chung, S H

    1998-01-01

    Brownian dynamics simulations have been carried out to study the transport of ions in a vestibular geometry, which offers a more realistic shape for membrane channels than cylindrical tubes. Specifically, we consider a torus-shaped channel, for which the analytical solution of Poisson's equation is possible. The system is composed of the toroidal channel, with length and radius of the constricted region of 80 A and 4 A, respectively, and two reservoirs containing 50 sodium ions and 50 chloride ions. The positions of each of these ions executing Brownian motion under the influence of a stochastic force and a systematic electric force are determined at discrete time steps of 50 fs for up to 2.5 ns. All of the systematic forces acting on an ion due to the other ions, an external electric field, fixed charges in the channel protein, and the image charges induced at the water-protein boundary are explicitly included in the calculations. We find that the repulsive dielectric force arising from the induced surface charges plays a dominant role in channel dynamics. It expels an ion from the vestibule when it is deliberately put in it. Even in the presence of an applied electric potential of 100 mV, an ion cannot overcome this repulsive force and permeate the channel. Only when dipoles of a favorable orientation are placed along the sides of the transmembrane segment can an ion traverse the channel under the influence of a membrane potential. When the strength of the dipoles is further increased, an ion becomes detained in a potential well, and the driving force provided by the applied field is not sufficient to drive the ion out of the well. The trajectory of an ion navigating across the channel mostly remains close to the central axis of the pore lumen. Finally, we discuss the implications of these findings for the transport of ions across the membrane.

  17. A guide for statewide impaired-driving task forces.

    DOT National Transportation Integrated Search

    2009-09-01

    The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morante, S., E-mail: morante@roma2.infn.it; Rossi, G.C., E-mail: rossig@roma2.infn.it; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  19. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    PubMed Central

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  20. Chaotic dynamics and control of deterministic ratchets.

    PubMed

    Family, Fereydoon; Larrondo, H A; Zarlenga, D G; Arizmendi, C M

    2005-11-30

    Deterministic ratchets, in the inertial and also in the overdamped limit, have a very complex dynamics, including chaotic motion. This deterministically induced chaos mimics, to some extent, the role of noise, changing, on the other hand, some of the basic properties of thermal ratchets; for example, inertial ratchets can exhibit multiple reversals in the current direction. The direction depends on the amount of friction and inertia, which makes it especially interesting for technological applications such as biological particle separation. We overview in this work different strategies to control the current of inertial ratchets. The control parameters analysed are the strength and frequency of the periodic external force, the strength of the quenched noise that models a non-perfectly-periodic potential, and the mass of the particles. Control mechanisms are associated with the fractal nature of the basins of attraction of the mean velocity attractors. The control of the overdamped motion of noninteracting particles in a rocking periodic asymmetric potential is also reviewed. The analysis is focused on synchronization of the motion of the particles with the external sinusoidal driving force. Two cases are considered: a perfect lattice without disorder and a lattice with noncorrelated quenched noise. The amplitude of the driving force and the strength of the quenched noise are used as control parameters.

  1. Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression

    PubMed Central

    Rangel, Roberto; Lee, Song-Choon; Hon-Kim Ban, Kenneth; Guzman-Rojas, Liliana; Mann, Michael B.; Newberg, Justin Y.; McNoe, Leslie A.; Selvanesan, Luxmanan; Ward, Jerrold M.; Rust, Alistair G.; Chin, Kuan-Yew; Black, Michael A.; Jenkins, Nancy A.; Copeland, Neal G.

    2016-01-01

    Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1. Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC. PMID:27849608

  2. An introductory handbook for state task forces to combat drunk driving.

    DOT National Transportation Integrated Search

    1983-01-01

    In June 1982 Governor Robb created a task force to identify and assess efforts under way in Virginia to address the problem of drunken driving and to make recommendations. This booklet was prepared to assist the task force in its deliberations.

  3. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP [Investigating the scale dependence of SCM simulated precipitation and cloud by using gridded forcing data at SGP

    DOE PAGES

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-05

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  4. Inflation Due to Quantum Potential

    NASA Astrophysics Data System (ADS)

    Eingorn, Maxim V.; Rusov, Vitaliy D.

    2015-08-01

    In the framework of a cosmological model of the Universe filled with a nonrelativistic particle soup, we easily reproduce inflation due to the quantum potential. The lightest particles in the soup serve as a driving force of this simple, natural and promising mechanism. It is explicitly demonstrated that the appropriate choice of their mass and fraction leads to reasonable numbers of e-folds. Thus, the direct introduction of the quantum potential into cosmology of the earliest Universe gives ample opportunities of successful reconsideration of the modern inflationary theory.

  5. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  6. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  7. General scaling relations for locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Slonaker, James; Motley, D. Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken

    2017-05-01

    Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.

  8. Axial force and efficiency tests of fixed center variable speed belt drive

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1981-01-01

    An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.

  9. Driving forces for adsorption of amphiphilic peptides to the air-water interface.

    PubMed

    Engin, Ozge; Villa, Alessandra; Sayar, Mehmet; Hess, Berk

    2010-09-02

    We have studied the partitioning of amphiphilic peptides at the air-water interface. The free energy of adsorption from bulk to interface was calculated by determining the potential of mean force via atomistic molecular dynamics simulations. To this end a method is introduced to restrain or constrain the center of mass of a group of molecules in a periodic system. The model amphiphilic peptides are composed of alternating valine and asparagine residues. The decomposition of the free energy difference between the bulk and interface is studied for different peptide block lengths. Our analysis revealed that for short amphiphilic peptides the surface driving force dominantly stems from the dehydration of hydrophobic side chains. The only opposing force is associated with the loss of orientational freedom of the peptide at the interface. For the peptides studied, the free energy difference scales linearly with the size of the molecule, since the peptides mainly adopt extended conformations both in bulk and at the interface. The free energy difference depends strongly on the water model, which can be rationalized through the hydration thermodynamics of hydrophobic solutes. Finally, we measured the reduction of the surface tension associated with complete coverage of the interface with peptides.

  10. Phase locking route behind complex periodic windows in a forced oscillator

    NASA Astrophysics Data System (ADS)

    Jan, Hengtai; Tsai, Kuo-Ting; Kuo, Li-wei

    2013-09-01

    Chaotic systems have complex reactions against an external driving force; even in cases with low-dimension oscillators, the routes to synchronization are diverse. We proposed a stroboscope-based method for analyzing driven chaotic systems in their phase space. According to two statistic quantities generated from time series, we could realize the system state and the driving behavior simultaneously. We demonstrated our method in a driven bi-stable system, which showed complex period windows under a proper driving force. With increasing periodic driving force, a route from interior periodic oscillation to phase synchronization through the chaos state could be found. Periodic windows could also be identified and the circumstances under which they occurred distinguished. Statistical results were supported by conditional Lyapunov exponent analysis to show the power in analyzing the unknown time series.

  11. What are the driving forces for water lifting in the xylem conduit?

    PubMed

    Zimmermann, Ulrich; Schneider, Heike; Wegner, Lars H; Wagner, Hans-Jürgen; Szimtenings, Michael; Haase, Axel; Bentrup, Friedrich-Wilhelm

    2002-03-01

    After Renner had shown convincingly in 1925 that the transpirational water loss generates tensions larger than 0.1 MPa (i.e. negative pressures) in the xylem of cut leafy twigs the Cohesion Theory proposed by Böhm, Askenasy, Dixon and Joly at the end of the 19th century was immediately accepted by plant physiologists. Introduction of the pressure chamber technique by Scholander et al. in 1965 enforced the general belief that tension is the only driving force for water lifting although substantial criticism regarding the technique and/or the Cohesion Theory was published by several authors. As typical for scientific disciplines, the advent of minimal- and non-invasive techniques in the last decade as well as the development of a new, reliable method for xylem sap sampling have challenged this view. Today, xylem pressure gradients, potentials, ion concentrations and volume flows as well as cell turgor pressure gradients can be monitored online in intact transpiring higher plants, and within a given physiological context by using the pressure probe technique and high-resolution NMR imaging techniques, respectively. Application of the pressure probe technique to transpiring plants has shown that negative absolute pressures (down to - 0.6 MPa) and pressure gradients can exist temporarily in the xylem conduit, but that the magnitude and (occasionally) direction of gradients contrasts frequently the belief that tension is the only driving force. This seems to be particularly the case for plants faced with problems of height, drought, freezing and salinity as well as with cavitation of the tensile water. Reviewing the current data base shows that other forces come into operation when exclusively tension fails to lift water against gravity due to environmental conditions. Possible candidates are longitudinal cellular and xylem osmotic pressure gradients, axial potential gradients in the vessels as well as gel- and gas bubble-supported interfacial gradients. The multiforce theory overcomes the problem of the Cohesion Theory that life on earth depends on water being in a highly metastable state.

  12. Easter microplate dynamics

    NASA Astrophysics Data System (ADS)

    Neves, M. C.; Searle, R. C.; Bott, M. H. P.

    2003-04-01

    We use two-dimensional elastic finite element analysis, supplemented by strength estimates, to investigate the driving mechanism of the Easter microplate. Modeled stresses are compared with the stress indicators compiled from earthquake focal mechanisms and structural observations. The objective is to constrain the tectonic forces that govern the Easter microplate rotation and to test the microplate driving hypothesis proposed by [1993]. We infer that the mantle basal drag cannot drive the microplate rotation but opposes it, and that the asthenospheric viscosity is no more than about 1 × 1018 Pa s. At most, the basal drag comprises 20% of the force resisting microplate rotation. The outward pull of the main plates can drive the rotation by shear drag applied along the northern and southern boundaries of the microplate. However, we propose an additional driving force which arises from the strong variation of the ridge resistance force along the east and west rifts, so that the main driving torques come from the pull of the major plates acting across the narrowing and slowing rifts. This requires the strength to increase substantially toward the rift tips due to thickening of the brittle lithosphere as the spreading rate slows.

  13. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    ERIC Educational Resources Information Center

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  14. Lyapunov stability analysis for the generalized Kapitza pendulum

    NASA Astrophysics Data System (ADS)

    Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.

    2017-12-01

    In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.

  15. Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility.

    PubMed

    Speer, David; Eichhorn, Ralf; Evstigneev, Mykhaylo; Reimann, Peter

    2012-06-01

    We consider two coupled particles moving along a periodic substrate potential with negligible inertia effects (overdamped limit). Even when the particles are identical and the substrate spatially symmetric, a sinusoidal external driving of appropriate amplitude and frequency may lead to spontaneous symmetry breaking in the form of a permanent directed motion of the dimer. Thermal noise restores ergodicity and thus zero net velocity, but entails arbitrarily fast diffusion of the dimer for sufficiently weak noise. Moreover, upon application of a static bias force, the dimer exhibits a motion opposite to that force (absolute negative mobility). The key requirement for all these effects is a nonconvex interaction potential of the two particles.

  16. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  17. Position and force control of a vehicle with two or more steerable drive wheels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Unseren, M.A.

    1992-10-01

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less

  18. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    PubMed

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  19. Application of laser ranging and VLBI data to a study of plate tectonic driving forces. [finite element method

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.

  20. Surface acoustic wave solid-state rotational micromotor

    NASA Astrophysics Data System (ADS)

    Shilton, Richie J.; Langelier, Sean M.; Friend, James R.; Yeo, Leslie Y.

    2012-01-01

    Surface acoustic waves (SAWs) are used to drive a 1 mm diameter rotor at speeds exceeding 9000 rpm and torque of nearly 5 nNm. Unlike recent high-speed SAW rotary motors, however, the present design does not require a fluid coupling layer but interestingly exploits adhesive stiction as an internal preload, a force usually undesirable at these scales; with additional preloads, smaller rotors can be propelled to 15 000 rpm. This solid-state motor has no moving parts except for the rotor and is sufficiently simple to allow integration into miniaturized drive systems for potential use in microfluidic diagnostics, optical switching and microrobotics.

  1. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  2. Probing the strongly driven spin-boson model in a superconducting quantum circuit.

    PubMed

    Magazzù, L; Forn-Díaz, P; Belyansky, R; Orgiazzi, J-L; Yurtalan, M A; Otto, M R; Lupascu, A; Wilson, C M; Grifoni, M

    2018-04-11

    Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators. A fundamental question to date is to what extent intense coherent driving impacts a strongly dissipative system. Here we investigate experimentally and theoretically a superconducting qubit strongly coupled to an electromagnetic environment and subjected to a coherent drive. This setup realizes the driven Ohmic spin-boson model. We show that the drive reinforces environmental suppression of quantum coherence, and that a coherent-to-incoherent transition can be achieved by tuning the drive amplitude. An out-of-equilibrium detailed balance relation is demonstrated. These results advance fundamental understanding of open quantum systems and bear potential for the design of entangled light-matter states.

  3. Exciplex formation in blended spin-cast films of fluorene-linked dyes and bisphthalimide quenchers.

    PubMed

    Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2013-05-16

    Spin-cast films of dyes (donor-π-donor, donor-π-acceptor, and acceptor-π-acceptor type, where the donor is Ph2N-, the acceptor is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) blended with nonconjugated bisphthalimides were prepared. Upon visible-light excitation of the dyes, quenching of the excited state occurs by exciplex formation between dye and bisphthalimide molecules or, in some cases, by excimer formation or aggregation-induced emission between two dye molecules. The extent of exciplex formation is dependent on the driving force, which can be calculated using the energy difference between the lowest unoccupied molecular orbitals (LUMOs) of the dyes and bisphthalimides. The results show that complete exciplex formation occurs when this driving force is greater than 0.57 eV whereas partial exciplex formation occurs when the driving force is between 0.28 and 0.57 eV. The exciplex emission energies can also be predicted by calculating the difference between the LUMO level of the bisphthalimide and the highest occupied molecular orbital (HOMO) of the dye. These calculated values, which were obtained from the electrochemically determined energy levels, showed good agreement with the observed emission energies. The exciplex lifetimes were found to be significantly longer than the lifetimes of the lone dyes. These exciplexes formed from nonlinked donors and acceptors in the solid state might have potential uses in nonlinear photonics.

  4. Direct Visualization of Barrier Crossing Dynamics in a Driven Optical Matter System.

    PubMed

    Figliozzi, Patrick; Peterson, Curtis W; Rice, Stuart A; Scherer, Norbert F

    2018-04-25

    A major impediment to a more complete understanding of barrier crossing and other single-molecule processes is the inability to directly visualize the trajectories and dynamics of atoms and molecules in reactions. Rather, the kinetics are inferred from ensemble measurements or the position of a transducer ( e. g., an AFM cantilever) as a surrogate variable. Direct visualization is highly desirable. Here, we achieve the direct measurement of barrier crossing trajectories by using optical microscopy to observe position and orientation changes of pairs of Ag nanoparticles, i. e. passing events, in an optical ring trap. A two-step mechanism similar to a bimolecular exchange reaction or the Michaelis-Menten scheme is revealed by analysis that combines detailed knowledge of each trajectory, a statistically significant number of repetitions of the passing events, and the driving force dependence of the process. We find that while the total event rate increases with driving force, this increase is due to an increase in the rate of encounters. There is no drive force dependence on the rate of barrier crossing because the key motion for the process involves a random (thermal) radial fluctuation of one particle allowing the other to pass. This simple experiment can readily be extended to study more complex barrier crossing processes by replacing the spherical metal nanoparticles with anisotropic ones or by creating more intricate optical trapping potentials.

  5. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    DTIC Science & Technology

    2016-08-29

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  6. On the Horizon. The Environmental Scanning Newsletter for Leaders in Higher Education, 1992-1993.

    ERIC Educational Resources Information Center

    Morrison, James L., Ed.

    1993-01-01

    This document consists of the preview issue and first five issues of a new newsletter designed to alert members of the higher education community to driving forces and potential developments in the macroenvironment that constitute threats or opportunities to colleges and universities. It reports news from the social, technological, economic,…

  7. Space Shuttle main engine powerhead structural modeling, stress and fatigue life analysis. Volume 2: Dynamics of blades and nozzles SSME HPFTP and HPOTP

    NASA Technical Reports Server (NTRS)

    Hammett, J. C.; Hayes, C. H.; Price, J. M.; Robinson, J. K.; Teal, G. A.; Thomson, J. M.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    Normal modes of the blades and nozzles of the HPFTP and HPOTP are defined and potential driving forces for the blades are identified. The computer models used in blade analyses are described, with results. Similar information is given for the nozzles.

  8. What Do We Know about the Russian Schoolteacher?

    ERIC Educational Resources Information Center

    Zabaturina, I. Iu.; Kovaleva, N. V.

    2011-01-01

    The main driving force of all transformations in general education is the schoolteacher. It is not by chance that one of the key areas in the initiative "Our New School" has to do with the development of the teacher potential. What is involved are the tasks of raising the qualifications of teachers and school management, strengthening…

  9. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  10. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  11. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek…

  12. Effects of a Finger Tapping Fatiguing Task on M1-Intracortical Inhibition and Central Drive to the Muscle.

    PubMed

    Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo

    2018-06-19

    The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.

  13. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  14. Information driving force and its application in agent-based modeling

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  15. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    NASA Astrophysics Data System (ADS)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  16. Combination spindle-drive system for high precision machining

    DOEpatents

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  17. Metal band drives in spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Maus, Daryl

    1993-01-01

    Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.

  18. WORKING AND CARING: THE SIMULTANEOUS DECISION OF LABOR FORCE PARTICIPATION AND INFORMAL ELDERLY AND CHILD SUPPORT ACT IVITIES IN MEXICO*

    PubMed Central

    van Gameren, Edwin; Velandia Naranjo, Durfari

    2016-01-01

    We analyze factors determining women’s decisions to participate in the labor market and provide elderly care and nonfinancial support to their (grand)children. We use data from the Mexican Health and Aging Study, a survey of people aged 50 and over, applying a three-equation, reduced-form SUR model. Results suggest that care needs are the driving force behind caregiving activities. Traditional roles also appear to be relevant in the labor force participation decision: women with a closer labor market connection when they were young are more likely to work. Simulations of demographic changes illustrate potential effects for future caregiving and participation rates. PMID:26924883

  19. Mechanics of the animate.

    PubMed Central

    Killeen, P R

    1992-01-01

    Behavior is treated as basic physics. Dimensions are identified and their transformations from physical specification to axes in behavioral space are suggested. Responses are treated as action patterns arrayed along a continuum of activation energy. Behavior is seen as movement along a trajectory through this behavior space. Incentives or reinforcers are attractors in behavior space, at the centers of basins of lowered potential. Trajectories impinging on such basins may be captured; repeated capture will warp the trajectory toward a geodesic, a process called conditioning. Conditioning is enhanced by contiguity, the proximity between the measured behavior and the incentive at the end of the trajectory, and by contingency, the depth of the trajectory below the average level of the potential energy landscape. Motivation is seen as the potential of an organism for motion under the forces impinging on it. Degree of motivation is characterized by the depth of the potential field, with low motivation corresponding to a flat field and a flat gradient of activation energy. Drives are the forces of incentives propagated through behavior space. Different laws for the attenuation of drive with behavioral distance are discussed, as is the dynamics of action. The basic postulate of behavior mechanics is incentive-tracking in behavior space, the energy for which is provided by decreases in potential. The relation of temporal gradients to response differentiation and temporal discrimination is analyzed. Various two-body problems are sketched to illustrate the application of these ideas to association, choice, scalar timing, self-control, and freedom. PMID:1602272

  20. Weber electrodynamics, part I. general theory, steady current effects

    NASA Astrophysics Data System (ADS)

    Wesley, J. P.

    1990-10-01

    The original Weber action at a distance theory, valid for slowly varying effects, is extended to time-retarded fields, valid for rapidly varying effects including radiation. A new law for the force on a charge moving in this field is derived (replacing the Lorentz force which violates Newton's third law). The limitations of the Maxwell theory are discussed. The Weber theory, in addition to predicting all of the usual electrodynamic results, predicts the following crucial results for slowly varying effects (where Maxwell theory fails): 1) the force on Ampere's bridge in agreement with the measurements of Moyssides and Pappas, 2) the tension required to rupture current carrying wires as observed by Graneau, 3) the force to drive the Graneau-Hering submarine, 4) the force to drive the mercury in Hering's pump, and 5) the force to drive the oscillations in a current carrying mercury wedge as observed by Phipps.

  1. Crash and risky driving involvement among novice adolescent drivers and their parents.

    PubMed

    Simons-Morton, Bruce G; Ouimet, Marie Claude; Zhang, Zhiwei; Klauer, Sheila E; Lee, Suzanne E; Wang, Jing; Albert, Paul S; Dingus, Thomas A

    2011-12-01

    We compared rates of risky driving among novice adolescent and adult drivers over the first 18 months of adolescents' licensure. Data-recording systems installed in participants' vehicles provided information on driving performance of 42 newly licensed adolescent drivers and their parents. We analyzed crashes and near crashes and elevated g-force event rates by Poisson regression with random effects. During the study period, adolescents were involved in 279 crashes or near crashes (1 involving injury); parents had 34 such accidents. The incidence rate ratio (IRR) comparing adolescent and parent crash and near-crash rates was 3.91. Among adolescent drivers, elevated rates of g-force events correlated with crashes and near crashes (r = 0.60; P < .001). The IRR comparing incident rates of risky driving among adolescents and parents was 5.08. Adolescents' rates of crashes and near crashes declined with time (with a significant uptick in the last quarter), but elevated g-force event rates did not decline. Elevated g-force events among adolescents may have contributed to crash and near-crash rates that remained much higher than adult levels after 18 months of driving.

  2. Experimental modeling of the effect of hurricane wind forces on driving behavior and vehicle performance.

    PubMed

    Rodriguez, Jose M; Codjoe, Julius; Osman, Osama; Ishak, Sherif; Wolshon, Brian

    2015-01-01

    While traffic planning is important for developing a hurricane evacuation plan, vehicle performance on the roads during extreme weather conditions is critical to the success of the planning process. This novel study investigates the effect of gusty hurricane wind forces on the driving behavior and vehicle performance. The study explores how the parameters of a driving simulator could be modified to reproduce wind loadings experienced by three vehicle types (passenger car, ambulance, and bus) during gusty hurricane winds, through manipulation of appropriate software. Thirty participants were then tested on the modified driving simulator under five wind conditions (ranging from normal to hurricane category 4). The driving performance measures used were heading error and lateral displacement. The results showed that higher wind forces resulted in more varied and greater heading error and lateral displacement. The ambulance had the greatest heading errors and lateral displacements, which were attributed to its large lateral surface area and light weight. Two mathematical models were developed to estimate the heading error and lateral displacements for each of the vehicle types for a given change in lateral wind force. Through a questionnaire, participants felt the different characteristics while driving each vehicle type. The findings of this study demonstrate the valuable use of a driving simulator to model the behavior of different vehicle types and to develop mathematical models to estimate and quantify driving behavior and vehicle performance under hurricane wind conditions.

  3. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers

    PubMed Central

    Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He

    2018-01-01

    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 Vrms. The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 Vrms. The proposed motor showed great potential for linear driving of large thrust force and high power density. PMID:29518963

  4. Narrative approach in understanding the drivers for resilience of military combat medics.

    PubMed

    Russell, Cristel Antonia; Gibbons, S W; Abraham, P A; Howe, E R; Deuster, P; Russell, D W

    2017-12-10

    Qualitative insights may demonstrate how combat medics (CM) deal with stressors and identify how resilience can potentially develop. Yet, qualitative research is scant in comparison to the many quantitative studies of health outcomes associated with military service. Semistructured qualitative interviews were used to collect personal narratives of US Army CMs who had previously served in Iraq or Afghanistan. Thematic analysis revealed three key driving forces for how resilience develops in the context of combat and war. The first was patriotism, which captures loyalty and full commitment to the military and its missions. The second was commitment to their family, reflecting the balance of responsibility to family of origin with the obligation one feels towards their military family. The last driving force was faith, or the drive to reach towards the transcendent to provide a moral compass and develop empathy in the face of difficult situations. An individual's commitment to country, military family and faith strengthens their resilience, and this can be used to inform future research efforts as well as current clinical practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers.

    PubMed

    Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He

    2018-03-07

    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.

  6. Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)

    DTIC Science & Technology

    2016-05-18

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  7. State transition of a non-Ohmic damping system in a corrugated plane.

    PubMed

    Lü, Kun; Bao, Jing-Dong

    2007-12-01

    Anomalous transport of a particle subjected to non-Ohmic damping of the power delta in a tilted periodic potential is investigated via Monte Carlo simulation of the generalized Langevin equation. It is found that the system exhibits two relative motion modes: the locked state and the running state. In an environment of sub-Ohmic damping (0=2D_(eff)(delta){t(delta_eff} . Our result shows that the effective power index delta_(eff) can be enhanced and is a nonmonotonic function of the temperature and the driving force. The mixture of the two motion modes also leads to a breakdown of the hysteresis loop of the mobility.

  8. Modeling of Passive Forces of Machine Tool Covers

    NASA Astrophysics Data System (ADS)

    Kolar, Petr; Hudec, Jan; Sulitka, Matej

    The passive forces acting against the drive force are phenomena that influence dynamical properties and precision of linear axes equipped with feed drives. Covers are one of important sources of passive forces in machine tools. The paper describes virtual evaluation of cover passive forces using the cover complex model. The model is able to compute interaction between flexible cover segments and sealing wiper. The result is deformation of cover segments and wipers which is used together with measured friction coefficient for computation of cover total passive force. This resulting passive force is dependent on cover position. Comparison of computational results and measurement on the real cover is presented in the paper.

  9. Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, Lung-Ming; Tsai, Chien-Hsiung

    2007-01-01

    In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.

  10. Synchronization of a self-sustained cold-atom oscillator

    NASA Astrophysics Data System (ADS)

    Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.

    2018-04-01

    Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.

  11. Extracting the driving force from ozone data using slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, Geli; Yang, Peicai; Zhou, Xiuji

    2016-05-01

    Slow feature analysis (SFA) is a recommended technique for extracting slowly varying features from a quickly varying signal. In this work, we apply SFA to total ozone data from Arosa, Switzerland. The results show that the signal of volcanic eruptions can be found in the driving force, and wavelet analysis of this driving force shows that there are two main dominant scales, which may be connected with the effect of climate mode such as North Atlantic Oscillation (NAO) and solar activity. The findings of this study represent a contribution to our understanding of the causality from observed climate data.

  12. European Community Respiratory Health Survey calibration project of dosimeter driving pressures.

    PubMed

    Ward, R J; Ward, C; Johns, D P; Skoric, B; Abramson, M; Walters, E H

    2002-02-01

    Two potential sources of systematic variation in output from Mefar dosimeters, the system used in the European Community Respiratory Health Survey (ECRHS) study have been evaluated: individual nebulizer characteristics and dosimeter driving pressure. Output variation from 366 new nebulizers produced in two batches for the second ECRHS were evaluated, using a solute tracer method, at a fixed driving pressure. The relationship between dosimeter driving pressure was then characterized and between-centre variation in dosimeter driving pressure was evaluated in an Internet-based survey. A systematic difference between nebulizers manufactured in the two batches was identified. Batch one had a mean+/-SD output of 7.0+/-0.8 mg x s(-1) and batch two, 6.3+/-0.7 mg x s(-1) (p<0.005). There was a wide range of driving pressures generated by Mefar dosimeters as set, ranging between 70-245 kPa, with most outside the quoted manufacturer's specification of 180+/-5%. Nebulizer output was confirmed as linearly related to dosimeter driving pressure (coefficient of determination (R2)=0.99, output=0.0377 x driving pressure-0.4151). The range in driving pressures observed was estimated as consistent with a variation of about one doubling in the provocative dose causing a 20% fall in forced expiratory volume in one second. Systematic variation has been identified that constitutes potentially significant confounders for between-centre comparisons of airway responsiveness in the European Community Respiratory Health Survey, with the dosimeter driving pressure representing the most serious issue. This work confirms the need for appropriate quality control of both nebulizer output and dosimeter driving pressure, in laboratories undertaking field measurements of airway responsiveness. In particular, appropriate data on driving pressures need to be collected and factored into between-centre comparisons. Comprehensive collection of such data to optimize quality control is practicable and has been instigated by the organizing committee for the European Community Respiratory Health Survey II.

  13. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.

    PubMed

    Berman, Yonatan; Ben-Jacob, Eshel; Zhang, Xin; Shapira, Yoash

    2016-01-01

    Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.

  14. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces

    PubMed Central

    Berman, Yonatan; Zhang, Xin; Shapira, Yoash

    2016-01-01

    Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress. PMID:27031230

  15. Regioselective electrochemical reduction of 2,4-dichlorobiphenyl - Distinct standard reduction potentials for carbon-chlorine bonds using convolution potential sweep voltammetry

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.; Boyarskiy, V. P.; Boyarskaya, I. A.

    2010-04-01

    The reductive cleavage of carbon-chlorine bonds in 2,4-dichlorobiphenyl (PCB-7) is investigated using the convolution potential sweep voltammetry and quantum chemical calculations. The potential dependence of the logarithmic rate constant is non-linear which indicates the validity of Marcus-Hush theory of quadratic activation-driving force relationship. The ortho-chlorine of the 2,4-dichlorobiphenyl gets reduced first as inferred from the quantum chemical calculations and bulk electrolysis. The standard reduction potentials pertaining to the ortho-chlorine of 2,4-dichlorobiphenyl and that corresponding to para chlorine of the 4-chlorobiphenyl have been estimated.

  16. Singularities of Floquet scattering and tunneling

    NASA Astrophysics Data System (ADS)

    Landa, H.

    2018-04-01

    We study quasibound states and scattering with short-range potentials in three dimensions, subject to an axial periodic driving. We find that poles of the scattering S matrix can cross the real energy axis as a function of the drive amplitude, making the S matrix nonanalytic at a singular point. For the corresponding quasibound states that can tunnel out of (or get captured within) a potential well, this results in a discontinuous jump in both the angular momentum and energy of emitted (absorbed) waves. We also analyze elastic and inelastic scattering of slow particles in the time-dependent potential. For a drive amplitude at the singular point, there is a total absorption of incoming low-energy (s wave) particles and their conversion to high-energy outgoing (mostly p ) waves. We examine the relation of such Floquet singularities, lacking in an effective time-independent approximation, with well-known "spectral singularities" (or "exceptional points"). These results are based on an analytic approach for obtaining eigensolutions of time-dependent periodic Hamiltonians with mixed cylindrical and spherical symmetry, and apply broadly to particles interacting via power-law forces and subject to periodic fields, e.g., co-trapped ions and atoms.

  17. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale

    NASA Astrophysics Data System (ADS)

    Tang, Sai; Wang, Jincheng; Li, Junjie; Wang, Zhijun; Guo, Yaolin; Guo, Can; Zhou, Yaohe

    2017-06-01

    Through phase-field-crystal (PFC) simulations, we investigated, on the atomic scale, the crucial role played by interface energy anisotropy and growth driving force during the morphological evolution of a dendrite tip at low growth driving force. In the layer-by-layer growth manner, the interface energy anisotropy drives the forefront of the dendrite tip to evolve to be highly similar to the corner of the corresponding equilibrium crystal from the aspects of atom configuration and morphology, and thus affects greatly the formation and growth of a steady-state dendrite tip. Meanwhile, the driving force substantially influences the part behind the forefront of the dendrite tip, rather than the forefront itself. However, as the driving force increases enough to change the layer-by-layer growth to the multilayer growth, the morphology of the dendrite tip's forefront is completely altered. Parabolic fitting of the dendrite tip reveals that an increase in the influence of interface energy anisotropy makes dendrite tips deviate increasingly from a parabolic shape. By quantifying the deviations under various interface energy anisotropies and growth driving forces, it is suggested that a perfect parabola is an asymptotic limit for the shape of the dendrite tips. Furthermore, the atomic scale description of the dendrite tip obtained in the PFC simulation is compatible with the mesoscopic results obtained in the phase-field simulation in terms of the dendrite tip's morphology and the stability criterion constant.

  18. Surface Buoyancy Fluxes and the Strength of the Subpolar Gyre

    NASA Astrophysics Data System (ADS)

    Hogg, A. M.; Gayen, B.

    2017-12-01

    Midlatitude ocean gyres have long been considered to be driven by the mechanical wind stress on the ocean's surface (strictly speaking, the potential vorticity input from wind stress curl). However, surface buoyancy forcing (i.e. heating/cooling or freshening/salinification) also modifies the potential vorticity at the surface. Here, we present a simple argument to demonstrate that ocean gyres may (in principle) be driven by surface buoyancy forcing. This argument is derived in two ways: A Direct Numerical Simulation, driven purely by buoyancy forcing, which generates strong nonlinear gyers in the absence of wind stress; and A series of idealised eddy-resolving numerical ocean model simulations, in which wind stress and buoyancy flux are varied independently and together, are used to understand the relative importance of these two types of forcing. In these simulations, basin-scale gyres and western boundary currents with realistic magnitudes, remain even in the absence of mechanical forcing by surface wind stress. These results support the notion that surface buoyancy forcing can reorganise the potential vorticity in the ocean in such a way as to drive basin-scale gyres. The role of buoyancy is stronger in the subpolar gyre than in the subtropical gyre. We infer that surface buoyancy fluxes are likely to play a contributing role in governing the strength, variability and predictability of the North Atlantic subpolar gyre.

  19. Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation

    PubMed Central

    Kasprowicz, Eric M; Davidson, Lance A; Keller, Raymond

    2018-01-01

    Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 μN during gastrulation and over 4 μN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 μN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms. PMID:29533180

  20. Nature of Driving Force for Protein Folding: A Result From Analyzing the Statistical Potential

    NASA Astrophysics Data System (ADS)

    Li, Hao; Tang, Chao; Wingreen, Ned S.

    1997-07-01

    In a statistical approach to protein structure analysis, Miyazawa and Jernigan derived a 20×20 matrix of inter-residue contact energies between different types of amino acids. Using the method of eigenvalue decomposition, we find that the Miyazawa-Jernigan matrix can be accurately reconstructed from its first two principal component vectors as Mij = C0+C1\\(qi+qj\\)+C2qiqj, with constant C's, and 20 q values associated with the 20 amino acids. This regularity is due to hydrophobic interactions and a force of demixing, the latter obeying Hildebrand's solubility theory of simple liquids.

  1. 7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. Looking southeast along rear of building. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  2. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    ERIC Educational Resources Information Center

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-01-01

    The self-motion of an ester boat is investigated depending on the physicochemical properties of the surface-active substance. The results show that the ester boat moves towards the higher surface tension generating as the driving force.

  3. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    NASA Astrophysics Data System (ADS)

    Rekker, A.; Mankin, R.

    2015-10-01

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  4. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential.

    PubMed

    Glaser, T A; Mukkada, A J

    1992-03-01

    Amastigotes of Leishmania donovani develop and multiply within the acidic phagolysosomes of mammalian macrophages. Isolated amastigotes are acidophilic; they catabolize substrates and synthesize macromolecules optimally at pH 5.5. Substrate transport in amastigotes has not been characterized. Here we show that amastigotes exhibit an uphill transport of proline (active transport) with an acid pH optimum (pH 5.5). It is dependent upon metabolic energy and is driven by proton motive force. Agents which selectively disturb the component forces of proton motive force, such as carbonyl cyanide chlorophenylhydrazone, nigericin and valinomycin, inhibit proline transport. Transport is sensitive to dicyclohexylcarbodiimide and insensitive to ouabain, demonstrating the involvement of a proton ATPase in the maintenance of proton motive force. It is suggested that the plasma membrane pH gradient probably makes the greatest contribution to proton motive force that drives substrate transport in the amastigote stage.

  5. Propulsion Mechanism of Catalytic Microjet Engines

    PubMed Central

    Fomin, Vladimir M.; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G.

    2014-01-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μm/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets. PMID:25177214

  6. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  7. Visual force feedback in laparoscopic training.

    PubMed

    Horeman, Tim; Rodrigues, Sharon P; van den Dobbelsteen, John J; Jansen, Frank-Willem; Dankelman, Jenny

    2012-01-01

    To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand-eye coordination. Training methods that focus on applying the right amount of force are not yet available. The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needle-driving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). The force-sensing training system provides us with the unique possibility to objectively assess tissue-handling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.

  8. 40 CFR 1066.210 - Dynamometers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to recreate the mechanical inertia and frictional forces that a vehicle exerts on road surfaces... drive axles may share a single drive roll. Use good engineering judgment to ensure that the dynamometer... engineering judgment. (3) The load applied by the dynamometer simulates forces acting on the vehicle during...

  9. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihly, Rachelle; Mistry, Kevin S.; Ferguson, Andrew J.

    2016-04-25

    Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the firstmore » time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.« less

  10. Flow enhancement of deformable self-driven objects by countercurrent

    NASA Astrophysics Data System (ADS)

    Mashiko, Takashi; Fujiwara, Takashi

    2016-10-01

    We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The objects belonging to the group A (B) have drift coefficient D =DA (DB), where a positive (negative) value of D denotes the rightward (leftward) driving force. For co-current flows (DA ,DB > 0), the result is rather intuitive: the net flow of one group (QA) increases if the driving force of the other group is stronger than its own driving force (i.e., DB >DA), and decreases otherwise (DB

  11. Recurrence plots revisited

    NASA Astrophysics Data System (ADS)

    Casdagli, M. C.

    1997-09-01

    We show that recurrence plots (RPs) give detailed characterizations of time series generated by dynamical systems driven by slowly varying external forces. For deterministic systems we show that RPs of the time series can be used to reconstruct the RP of the driving force if it varies sufficiently slowly. If the driving force is one-dimensional, its functional form can then be inferred up to an invertible coordinate transformation. The same results hold for stochastic systems if the RP of the time series is suitably averaged and transformed. These results are used to investigate the nonlinear prediction of time series generated by dynamical systems driven by slowly varying external forces. We also consider the problem of detecting a small change in the driving force, and propose a surrogate data technique for assessing statistical significance. Numerically simulated time series and a time series of respiration rates recorded from a subject with sleep apnea are used as illustrative examples.

  12. How the interior viscosity structure of a terrestrial planet controls plate driving forces and plate tectonics

    NASA Astrophysics Data System (ADS)

    Hoeink, T.; Lenardic, A.; Jellinek, M.; Richards, M. A.

    2011-12-01

    One of the fundamental unresolved problems in Earth and planetary science is the generation of plate tectonics from mantle convection. Important achievements can be made when considering rheological properties in the context of mantle convection dynamics. Among these milestones are (1) a deeper understanding of the balance of forces that drive and resist plate motion and (2) the dynamic generation of narrow plate boundaries (that lead to a piecewise continuous surface velocity distribution). Extending classic plate-tectonic theory we predict a plate driving force due to viscous coupling at the base of the plate from fast flow in the asthenosphere. Flow in the asthenosphere is due to shear-driven contributions from an overriding plate and due to additional pressure-driven contributions. We use scaling analysis to show that the extent to which this additional plate-driving force contributes to plate motions depends on the lateral dimension of plates and on the relative viscosities and thicknesses of lithosphere and asthenosphere. Whereas slab-pull forces always govern the motions of plates with a lateral extent greater than the mantle depth, asthenosphere-drive forces can be relatively more important for smaller (shorter wavelength) plates, large relative asthenosphere viscosities or large asthenosphere thicknesses. Published plate velocities, tomographic images and age-binned mean shear wave velocity anomaly data allow us to estimate the relative contributions of slab-pull and asthenosphere-drive forces driving the motions of the Atlantic and Pacific plates. At the global scale of terrestrial planets, we use 3D spherical shell simulations of mantle convection with temperature-, depth- and stress dependent rheology to demonstrate that a thin low-viscosity layer (asthenosphere) governs convective stresses imparted to the lithosphere. We find, consistent with theoretical predictions, that convective stresses increase for thinner asthenospheres. This result might eliminate the need for special weakening mechanisms to generate plate tectonics from mantle convection. Our results elucidate the role of the asthenosphere for plate tectonics on Earth, and also provide insights into the differences in tectonic styles between Earth and Venus.

  13. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  14. Interspecific variation of warning calls in piranhas: a comparative analysis.

    PubMed

    Mélotte, Geoffrey; Vigouroux, Régis; Michel, Christian; Parmentier, Eric

    2016-10-26

    Fish sounds are known to be species-specific, possessing unique temporal and spectral features. We have recorded and compared sounds in eight piranha species to evaluate the potential role of acoustic communication as a driving force in clade diversification. All piranha species showed the same kind of sound-producing mechanism: sonic muscles originate on vertebrae and attach to a tendon surrounding the bladder ventrally. Contractions of the sound-producing muscles force swimbladder vibration and dictate the fundamental frequency. It results the calling features of the eight piranha species logically share many common characteristics. In all the species, the calls are harmonic sounds composed of multiple continuous cycles. However, the sounds of Serrasalmus elongatus (higher number of cycles and high fundamental frequency) and S. manueli (long cycle periods and low fundamental frequency) are clearly distinguishable from the other species. The sonic mechanism being largely conserved throughout piranha evolution, acoustic communication can hardly be considered as the main driving force in the diversification process. However, sounds of some species are clearly distinguishable despite the short space for variations supporting the need for specific communication. Behavioural studies are needed to clearly understand the eventual role of the calls during spawning events.

  15. Interspecific variation of warning calls in piranhas: a comparative analysis

    PubMed Central

    Mélotte, Geoffrey; Vigouroux, Régis; Michel, Christian; Parmentier, Eric

    2016-01-01

    Fish sounds are known to be species-specific, possessing unique temporal and spectral features. We have recorded and compared sounds in eight piranha species to evaluate the potential role of acoustic communication as a driving force in clade diversification. All piranha species showed the same kind of sound-producing mechanism: sonic muscles originate on vertebrae and attach to a tendon surrounding the bladder ventrally. Contractions of the sound-producing muscles force swimbladder vibration and dictate the fundamental frequency. It results the calling features of the eight piranha species logically share many common characteristics. In all the species, the calls are harmonic sounds composed of multiple continuous cycles. However, the sounds of Serrasalmus elongatus (higher number of cycles and high fundamental frequency) and S. manueli (long cycle periods and low fundamental frequency) are clearly distinguishable from the other species. The sonic mechanism being largely conserved throughout piranha evolution, acoustic communication can hardly be considered as the main driving force in the diversification process. However, sounds of some species are clearly distinguishable despite the short space for variations supporting the need for specific communication. Behavioural studies are needed to clearly understand the eventual role of the calls during spawning events. PMID:27782184

  16. Flow analysis of new type propulsion system for UV’s

    NASA Astrophysics Data System (ADS)

    Eimanis, M.; Auzins, J.

    2017-10-01

    This paper presents an original design of an autonomous underwater vehicle where thrust force is created by the helicoidal shape of the hull rather than screw propellers. Propulsion force is created by counter-rotating bow and stern parts. The middle part of the vehicle has the function of a cargo compartment containing all control mechanisms and communications. It’s made of elastic material, containing a Cardan-joint mechanism, which allows changing the direction of vehicle, actuated by bending drives. A bending drive velocity control algorithm for the automatic control of vehicle movement direction is proposed. The dynamics of AUV are simulated using multibody simulation software MSC Adams. For the simulation of water resistance forces and torques the surrogate polynomial metamodels are created on the basis of computer experiments with CFD software. For flow interaction with model geometry the simplified vehicle model is submerged in fluid medium using special CFD software, with the same idea used in wind tunnel experiments. The simulation results are compared with measurements of the AUV prototype, created at Institute of Mechanics of Riga Technical University. Experiments with the prototype showed good agreement with simulation results and confirmed the effectiveness and the future potential of the proposed principle.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Unseren, M.A.

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less

  18. Atomistic and Coarse-Grained Modeling of the Adsorption of Graphene Nanoflakes at the Oil-Water Interface.

    PubMed

    Ardham, Vikram Reddy; Leroy, Frédéric

    2018-03-01

    The high interfacial tension between two immiscible liquids can provide the necessary driving force for the self-assembly of nanoparticles at the interface. Particularly, the interface between water and oily liquids (hydrocarbon chains) has been exploited to prepare networks of highly interconnected graphene sheets of only a few layers thickness, which are well suited for industrial applications. Studying such complex systems through particle-based simulations could greatly enhance the understanding of the various driving forces in action and could possibly give more control over the self-assembly process. However, the interaction potentials used in particle-based simulations are typically derived by reproducing bulk properties and are therefore not suitable for describing systems dominated by interfaces. To address this issue, we introduce a methodology to derive solid-liquid interaction potentials that yield an accurate representation of the balance between interfacial interactions at atomistic and coarse-grained resolutions. Our approach is validated through its ability to lead to the adsorption of graphene nanoflakes at the interface between water and n-hexane. The development of accurate coarse-grained potentials that our approach enables will allow us to perform large-scale simulations to study the assembly of graphene nanoparticles at the interface between immiscible liquids. Our methodology is illustrated through a simulation of many graphene nanoflakes adsorbing at the interface.

  19. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off.

    PubMed

    Manzoni, Stefano; Vico, Giulia; Katul, Gabriel; Palmroth, Sari; Jackson, Robert B; Porporato, Amilcare

    2013-04-01

    Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)). The presence of this maximum raises the question as to whether plants regulate transpiration through stomata to function near E(max). To address this question, we calculated E(max) across plant functional types and climates using a hydraulic model and a global database of plant hydraulic traits. The predicted E(max) compared well with measured peak transpiration across plant sizes and growth conditions (R = 0.86, P < 0.001) and was relatively conserved among plant types (for a given plant size), while increasing across climates following the atmospheric evaporative demand. The fact that E(max) was roughly conserved across plant types and scales with the product of xylem saturated conductivity and water potential at 50% cavitation was used here to explain the safety-efficiency trade-off in plant xylem. Stomatal conductance allows maximum transpiration rates despite partial cavitation in the xylem thereby suggesting coordination between stomatal regulation and xylem hydraulic characteristics. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds

    Treesearch

    Lindsay M. Grayson; Robert A. Progar; Sharon M. Hood

    2017-01-01

    Fire is a driving force in the North American landscape and predicting post-fire tree mortality is vital to land management. Post-fire tree mortality can have substantial economic and social impacts, and natural resource managers need reliable predictive methods to anticipate potential mortality following fire events. Current fire mortality models are limited to a few...

  1. Driving-forces model on individual behavior in scenarios considering moving threat agents

    NASA Astrophysics Data System (ADS)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  2. Backbone hydration determines the folding signature of amino acid residues.

    PubMed

    Bignucolo, Olivier; Leung, Hoi Tik Alvin; Grzesiek, Stephan; Bernèche, Simon

    2015-04-08

    The relation between the sequence of a protein and its three-dimensional structure remains largely unknown. A lasting dream is to elucidate the side-chain-dependent driving forces that govern the folding process. Different structural data suggest that aromatic amino acids play a particular role in the stabilization of protein structures. To better understand the underlying mechanism, we studied peptides of the sequence EGAAXAASS (X = Gly, Ile, Tyr, Trp) through comparison of molecular dynamics (MD) trajectories and NMR residual dipolar coupling (RDC) measurements. The RDC data for aromatic substitutions provide evidence for a kink in the peptide backbone. Analysis of the MD simulations shows that the formation of internal hydrogen bonds underlying a helical turn is key to reproduce the experimental RDC values. The simulations further reveal that the driving force leading to such helical-turn conformations arises from the lack of hydration of the peptide chain on either side of the bulky aromatic side chain, which can potentially act as a nucleation point initiating the folding process.

  3. A locomotion mechanism with external magnetic guidance for active capsule endoscope.

    PubMed

    Wang, Xiaona; Meng, Max Q H; Chen, Xijun

    2010-01-01

    Gastrointestinal (GI) disorder is one of the most common diseases in human body. The swallowable wireless capsule endoscopy has been proved to be a convenient, painless and effective way to examine the whole GI tract. However, lack of motion control makes the movement of the capsule substantially random, resulting in missing diagnosis. In this paper, a locomotion mechanism is developed for the next-generation active capsule endoscope. An internal actuator integrated on-board the capsule is designed to provide driving force and improve the dexterity. A small permanent magnet enclosed inside the capsule interacts with an external magnetic field to control the capsule's orientation and offer extra driving force. This mechanism avoids sophisticated and bulky control system and reduces power consumption inside the capsule. Ex-vivo experimental results showed that it can make a controllable movement inside the porcine large intestine. The mechanism also has the potential to be a platform for further development, such as devices of operations, spraying medicine, biopsy etc.

  4. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol.

    PubMed

    Xie, Yong; Guo, Shengming; Ji, Yinglu; Guo, Chuanfei; Liu, Xinfeng; Chen, Ziyu; Wu, Xiaochun; Liu, Qian

    2011-09-20

    The self-assembly of anisotropic gold nanorods (GNRs) into ordered phases remains a challenge. Herein, we demonstrated the fabrication of symmetric circular- or semicircular-like self-assembled superlattices composed of multilayers of standing GNRs by fine-tuning the repulsive interactions among GNRs. The repulsive force is tailored from electrostatic interaction to steric force by replacing the surface coating of cetyltrimethylammonium bromide (CTAB) (ζ potential of 20-50 mV) with an OH-terminated hexa(ethylene glycol) alkanethiol (here termed as EG(6)OH, ζ potential of -10 mV). The assembly mechanism is discussed via theoretical analyses of the major interactions, and an effective balance between the repulsive steric and attractive depletion interactions is the main driving force for the self-assembly. The real-time observations of solution assembly (UV-vis-NIR absorption spectroscopy) supports the mechanism that we suggested. The superlattices obtained here not only enrich the categories of the self-assembled structures but more importantly deepen the insight of the self-assembly process and pave the way for various potential applications. © 2011 American Chemical Society

  5. Active mechanics in living oocytes reveal molecular-scale force kinetics

    NASA Astrophysics Data System (ADS)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  6. Effect of Calcium on the Oxidative Phosphorylation Cascade in Skeletal Muscle Mitochondria

    PubMed Central

    Glancy, Brian; Willis, Wayne T; Chess, David J; Balaban, Robert S

    2014-01-01

    Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca2+ on the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose response effect of Ca2+ on the maximum velocity of oxidative phosphorylation (VmaxO) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces (extramitochondrial phosphorylation potential (ΔGATP), membrane potential, and redox states of NADH and cytochromes bH, bL, c1, c, and a,a3) were compared with flux (oxygen consumption) at 37°C. 840 nM Ca2+ generated a ∼2 fold increase in VmaxO with no change in ADP affinity (∼43 μM). Force-flow analysis revealed that Ca2+ activation of VmaxO was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca2+ increased the conductance of Complex IV (2.3-fold), Complexes I+III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca2+ activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca2+ in maintaining cellular energy homeostasis. PMID:23547908

  7. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity

    NASA Astrophysics Data System (ADS)

    Thomas, Leif N.

    2008-08-01

    A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.

  8. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  9. A Note on Diffusive Mass Transport.

    ERIC Educational Resources Information Center

    Haynes, Henry W., Jr.

    1986-01-01

    Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)

  10. Understanding the recent changes in the Southern Ocean carbon cycle: A multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Manizza, M.; Kahru, M.; Menemenlis, D.; Nevison, C. D.; Mitchell, B. G.; Keeling, R. F.

    2016-12-01

    The Southern Ocean represents a key area of the global ocean for the uptake of the CO2 originating from fossil fuels emissions. In these waters, cold temperatures combined with high rates of biological production drive the carbon uptake that accounts for about one-third of the global ocean uptake.Recent studies showed that changes in the Southern Annular Mode (SAM) index, mainly a proxy of the intensity of westerly winds, had a significant impact on the temporal variability of the CO2 uptake in the Southern Ocean. In order to shed light on this problem we propose to use both satellite-derived estimates of ocean productivity and carbon export in combinations of ocean physical and biogeochemical state estimates focusing on the 2006-2013 period. While the estimates of carbon fixation and export based on remote sensing will provide key information on the spatial and temporal variations of the biological carbon pump, the ocean state estimates will provide additional information on physical and carbon cycle processes, including the air-sea CO2 fluxes of the Southern Ocean in the 2006-2013 period where model solutions have been optimized.These physical estimates will be used to force an ocean biogeochemical model (ECCO2-Darwin) that will compute the CO2 uptake for each year. The physical model, forced with optimized atmospheric forcing, aims to realistically simulate interannual ocean climate variability that drives changes in both physical and biogeochemical processes ultimately impacting the carbon uptake of the Southern Ocean, and potentially responding to the SAM index variations.Although in this study great emphasis is given to the role of physical climate variations at driving the CO2 uptake of these polar waters, we will integrate model results with estimates from remote sensing techniques to better understand role of the biological carbon pump and its variability potentially responding to the SAM index changes.

  11. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.

    PubMed

    Duffy, M C; Blitzer, B L; Boyer, J L

    1983-10-01

    To determine directly the driving forces for bile acid entry into the hepatocyte, the uptake of [3H]taurocholic acid into rat liver plasma membrane vesicles was studied. The membrane preparation contained predominantly right-side-out vesicles, and was highly enriched in plasma membrane marker enzymes. The uptake of taurocholate at equilibrium was inversely related to medium osmolarity, indicating transport into an osmotically sensitive space. In the presence of an inwardly directed sodium gradient (NaCl or sodium gluconate), the initial rate of uptake was rapid and taurocholate was transiently accumulated at a concentration twice that at equilibrium (overshoot). Other inwardly directed cation gradients (K+, Li+, choline+) or the presence of sodium in the absence of a gradient (Na+ equilibrated) resulted in a slower initial uptake rate and did not sustain an overshoot. Bile acids inhibited sodium-dependent taurocholate uptake, whereas bromsulphthalein inhibited both sodium-dependent and sodium-independent uptake and D-glucose had no effect on uptake. Uptake was temperature dependent, with maximal overshoots occurring at 25 degrees C. Imposition of a proton gradient across the vesicle (pHo less than pHi) in the absence of a sodium gradient failed to enhance taurocholate uptake, indicating that double ion exchange (Na+-H+, OH- -anion) is unlikely. Creation of a negative intravesicular potential by altering accompanying anions or by valinomycin-induced K+-diffusion potentials did not enhance taurocholate uptake, suggesting an electroneutral transport mechanism. The kinetics of taurocholate uptake demonstrated saturability with a Michaelis constant at 52 microM and maximum velocity of 4.5 nmol X mg-1 X protein X min-1. These studies provide definitive evidence for a sodium gradient-dependent, carrier-mediated, electrically neutral transport mechanism for hepatic taurocholate uptake. These findings are consistent with a model for bile secretion in which the basolateral enzyme Na+,K+-ATPase provides the driving force for "uphill" bile acid transport by establishing a trans-membrane sodium gradient.

  12. Disentangling the Roles of Atmospheric and Oceanic Forcing on the Last Deglaciation of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Keisling, B. A.; Deconto, R. M.

    2017-12-01

    Today the Greenland Ice Sheet loses mass via both oceanic and atmospheric processes. However, the relative importance of these mass balance components is debated, especially their potential impact on ongoing and future mass imbalance. Discerning the impact of oceanic versus atmospheric forcing during past periods of mass loss provides potential insight into the future behavior of the ice sheet. Here we present an ensemble of Greenland Ice Sheet simulations of the last deglaciation, designed to assess separately the roles of the ocean and the atmosphere in driving mass loss over the last twenty thousand years. We use twenty-eight different ocean forcing scenarios along with a cutting-edge reconstruction of time-evolving atmospheric conditions based on climate model output and δ15N-based temperature reconstructions to generate a range of ice-sheet responses during the deglaciation. We then compare the simulated timing of ice-retreat in individual catchments with estimates based on both 10Be (exposure) and 14C (minimum-limiting) dates. These experiments allow us to identify the ocean forcing scenario that best match the data on a local-to-regional (i.e., 100-1000 km) scales, providing an assessment of the relative importance of ocean and atmospheric forcing components around the periphery of Greenland. We use these simulations to quantify the importance of the three major mass balance terms (calving, oceanic melting, and surface melting) and assess the uncertainty of the relative influence of these factors during the most recent periods of major ice loss. Our results show that mass balance components around different sectors of the ice sheet respond differently to forcing, with oceanic components driving the majority of retreat in south and east Greenland and atmospheric forcing dominating in west and north Greenland In addition, we target three areas at high spatial resolution ( 1 km) around Greenland currently undergoing substantial change (Jakobshavn, Petermann, and Nioghalvfjerdsfjord/Zakariae) to directly compare simulated deglacial retreat rates with those implied by submarine and subaerial moraine systems.

  13. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive.

    PubMed

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Joon Sohn, Won; Loeb, Gerald E; Sanger, Terence D; Valero-Cuevas, Francisco J

    2017-04-01

    We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function-and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.

  14. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive

    NASA Astrophysics Data System (ADS)

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Sohn, Won Joon; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-04-01

    Objective. We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Main results. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function—and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.

  15. Teen drivers' awareness of vehicle instrumentation in naturalistic research.

    PubMed

    Ehsani, J P; Haynie, D; Ouimet, M C; Zhu, C; Guillaume, C; Klauer, S G; Dingus, T; Simons-Morton, B G

    2017-12-01

    Naturalistic driving methods require the installation of instruments and cameras in vehicles to record driving behavior. A critical, yet unexamined issue in naturalistic driving research is the extent to which the vehicle instruments and cameras used for naturalistic methods change human behavior. We sought to describe the degree to which teenage participants' self-reported awareness of vehicle instrumentation changes over time, and whether that awareness was associated with driving behaviors. Forty-two newly-licensed teenage drivers participated in an 18-month naturalistic driving study. Data on driving behaviors including crash/near-crashes and elevated gravitational force (g-force) events rates were collected over the study period. At the end of the study, participants were asked to rate the extent to which they were aware of instruments in the vehicle at four time points. They were also asked to describe their own and their passengers' perceptions of the instrumentation in the vehicle during an in-depth interview. The number of critical event button presses was used as a secondary measure of camera awareness. The association between self-reported awareness of the instrumentation and objectively measured driving behaviors was tested using correlations and linear mixed models. Most participants' reported that their awareness of vehicle instrumentation declined across the duration of the 18-month study. Their awareness increased in response to their passengers' concerns about the cameras or if they were involved in a crash. The number of the critical event button presses was initially high and declined rapidly. There was no correlation between driver's awareness of instrumentation and their crash and near-crash rate or elevated g-force events rate. Awareness was not associated with crash and near-crash rates or elevated g-force event rates, consistent with having no effect on this measure of driving performance. Naturalistic driving studies are likely to yield valid measurements of driving behavior. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  16. Neuromorphic Meets Neuromechanics, Part II: The Role of Fusimotor Drive

    PubMed Central

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Joon Sohn, Won; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-01-01

    Objective We studied the fundamentals of muscle afferentation by building a neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bidirectional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Results We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function — and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons. PMID:28094764

  17. The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world

    PubMed Central

    Ball, Rowena; Brindley, John

    2015-01-01

    It is now accepted that primordial non-cellular RNA communities must have been subject to a periodic drive in order to replicate and prosper. We have proposed the oxidation of thiosulfate by hydrogen peroxide as this drive. This reaction system behaves as (i) a thermochemical and (ii) a pH oscillator, and in this work, we unify (i) and (ii) for the first time. We report thermally self-consistent, dynamical simulations in which the system transitions smoothly from nearly isothermal pH to fully developed thermo-pH oscillatory regimes. We use this oscillator to drive simulated replication of a 39-bp RNA species. Production of replicated duplex under thermo-pH drive was significantly enhanced compared with that under purely thermochemical drive, effectively allowing longer strands to replicate. Longer strands are fitter, with more potential to evolve enzyme activity and resist degradation. We affirm that concern over the alleged toxicity of hydrogen peroxide to life is largely misplaced in the current context, we survey its occurrence in the solar system to motivate its inclusion as a biosignature in the search for life on other worlds and highlight that pH oscillations in a spatially extended, bounded system manifest as the fundamental driving force of life: a proton gradient. PMID:26202683

  18. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu

    2015-04-07

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less

  19. On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study

    NASA Astrophysics Data System (ADS)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2018-04-01

    The geodynamics of the Mediterranean comprises a transitional setting in which slab rollback and plate convergence compete to shape the region. In the central Mediterranean, where the balance of driving and resisting forces changes continuously and rapidly since the Miocene, both kinematic and seismo-tectonic observations display a strong variation in deformation style and, therefore possibly, lithospheric forces. We aim to understand the current kinematics in southern Italy and Sicily in terms of lithospheric forces that cause them. The strong regional variation of geodetic velocities appears to prohibit such simple explanation. We use mechanical models to quantify the deformation resulting from large-scale Africa-Eurasia convergence, ESE retreat of the Calabrian subduction zone, pull by the Aegean slab, and regional variations in gravitational potential energy (topography). A key model element is the resistance to slip on major regional fault zones. We show that geodetic velocities, seismicity and sense of slip on regional faults can be understood to result from lithospheric forces. Our most important new finding is that regional variations in resistive tractions are required to fit the observations, with notably very low tractions on the Calabrian subduction contact, and a buildup towards a significant earthquake in the Calabrian fore-arc. We also find that the Calabrian net slab pull force is strongly reduced (compared to the value possible in view of the slab's dimensions) and that trench suction tractions are negligible. Such very small contributions to the present-day force balance in the south-central Mediterranean suggest that the Calabrian arc is now further transitioning towards a setting dominated by Africa-Eurasia plate convergence, whereas during the past 30 Myrs slab retreat continually was the dominant factor.

  20. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    NASA Astrophysics Data System (ADS)

    Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang

    2015-04-01

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.

  1. Investigation of Preparation and Mechanisms of a Dispersed Particle Gel Formed from a Polymer Gel at Room Temperature

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang

    2013-01-01

    A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817

  2. Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction

    PubMed Central

    Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao

    2015-01-01

    Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490

  3. Sliding states of a soft-colloid cluster crystal: Cluster versus single-particle hopping

    NASA Astrophysics Data System (ADS)

    Rossini, Mirko; Consonni, Lorenzo; Stenco, Andrea; Reatto, Luciano; Manini, Nicola

    2018-05-01

    We study a two-dimensional model for interacting colloidal particles which displays spontaneous clustering. Within this model we investigate the competition between the pinning to a periodic corrugation potential and a sideways constant pulling force which would promote a sliding state. For a few sample particle densities and amplitudes of the periodic corrugation potential we investigate the depinning from the statically pinned to the dynamically sliding regime. This sliding state exhibits the competition between a dynamics where entire clusters are pulled from a minimum to the next and a dynamics where single colloids or smaller groups leave a cluster and move across the corrugation energy barrier to join the next cluster downstream in the force direction. Both kinds of sliding states can occur either coherently across the entire sample or asynchronously: the two regimes result in different average mobilities. Finite temperature tends to destroy separate sliding regimes, generating a smoother dependence of the mobility on the driving force.

  4. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    All seaward flank movement occurs along a detachment fault, or décollement, that forms within the mixture of pelagic clays and volcaniclastic deposits on the old seafloor and pushes up a bench of debris along the distal margin of the flank. The offshore uplift that builds this bench is generated by décollement slip that terminates upward into the overburden along thrust faults. Finite strain and finite strength models for volcano growth on a low-friction décollement reproduce this bench structure, as well as much of the morphology and patterns of faulting observed on the actively growing volcanoes of Mauna Loa and Kīlauea. These models show how stress is stored within growing volcano flanks, but not how rapid, potentially seismic slip is triggered along their décollements. The imbalance of forces that triggers large, rapid seaward displacement of the flank after decades of creep may result either from driving forces that change rapidly, such as magma pressure gradients; from resisting forces that rapidly diminish with slip, such as those arising from coupling of pore pressure and dilatancy within décollement sediment; or, from some interplay between driving and resisting forces that produces flank motion. Our understanding of the processes of flank motion is limited by available data, though recent studies have increased our ability to quantitatively address flank instability and associated hazards.

  5. A new measure of molecular attractions between nanoparticles near kT adhesion energy

    NASA Astrophysics Data System (ADS)

    Kendall, Kevin; Dhir, Aman; Du, Shangfeng

    2009-07-01

    The weak molecular attractions of nanoparticles are important because they drive self-assembly mechanisms, allow processing in dispersions e.g. of pigments, catalysts or device structures, influence disease through the attraction of viruses to cells and also cause potential toxic effects through nanoparticle interference with biomolecules and organs. The problem is to understand these small forces which pull nanoparticles into intimate contact; forces which are comparable with 3kT/2z the thermal impact force experienced by an average Brownian particle hitting a linear repulsive potential of range z. Here we describe a new method for measuring the atomic attractions of nanoparticles based on the observation of aggregates produced by these small forces. The method is based on the tracking of individual monosize nanoparticles whose diameter can be calculated from the Stokes-Einstein analysis of the tracks in aqueous suspensions. Then the doublet aggregates are distinguished because they move slower and are also very much brighter than the dispersed nanoparticles. By finding the ratio of doublets to singlets, the adhesive energy between the particles can be calculated from known statistical thermodynamic theory using assumptions about the shape of the interaction potential. In this way, very small adhesion energies of 2kT have been measured, smaller than those seen previously by atomic force microscopy (AFM) and scanning tunneling microscopy (STM).

  6. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria

    PubMed Central

    Geisinger, Edward

    2017-01-01

    Abstract Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. PMID:28375515

  7. Line length dependence of threshold current density and driving force in eutectic SnPb and SnAgCu solder electromigration

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang

    2008-04-01

    The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.

  8. Nature of Driving Force for Protein Folding-- A Result From Analyzing the Statistical Potential

    NASA Astrophysics Data System (ADS)

    Li, Hao; Tang, Chao; Wingreen, Ned S.

    1998-03-01

    In a statistical approach to protein structure analysis, Miyazawa and Jernigan (MJ) derived a 20× 20 matrix of inter-residue contact energies between different types of amino acids. Using the method of eigenvalue decomposition, we find that the MJ matrix can be accurately reconstructed from its first two principal component vectors as M_ij=C_0+C_1(q_i+q_j)+C2 qi q_j, with constant C's, and 20 q values associated with the 20 amino acids. This regularity is due to hydrophobic interactions and a force of demixing, the latter obeying Hildebrand's solubility theory of simple liquids.

  9. High reliability linear drive device for artificial hearts

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Zhao, Wenxiang; Liu, Guohai; Shen, Yue; Wang, Fangqun

    2012-04-01

    In this paper, a new high reliability linear drive device, termed as stator-permanent-magnet tubular oscillating actuator (SPM-TOA), is proposed for artificial hearts (AHs). The key is to incorporate the concept of two independent phases into this linear AH device, hence achieving high reliability operation. The fault-tolerant teeth are employed to provide the desired decoupling phases in magnetic circuit. Also, as the magnets and the coils are located in the stator, the proposed SPM-TOA takes the definite advantages of robust mover and direct-drive capability. By using the time-stepping finite element method, the electromagnetic characteristics of the proposed SPM-TOA are analyzed, including magnetic field distributions, flux linkages, back- electromotive forces (back-EMFs) self- and mutual inductances, as well as cogging and thrust forces. The results confirm that the proposed SPM-TOA meets the dimension, weight, and force requirements of the AH drive device.

  10. Improved motors for utility applications: Volume 6, Squirrel-cage rotor analysis: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, J.W.; McCoy, R.M.

    1986-11-01

    An analysis of squirrel cage induction motor rotors was undertaken in response to an Industry Assessment Study finding 10% of motor failures to be rotor related. The analysis focuses on evaluating rotor design life. The evaluation combines state-of-the-art electromagnetic, thermal, and structural solution techniques into an integrated analysis and presents a simple summary. Finite element techniques are central tools in the analysis. The analysis is applied to a specific forced draft fan drive design. Fans as a category of application have a higher failure rate than other categories of power station auxiliary motor applications. Forced-draft fan drives are one ofmore » the major fan drives which accelerate a relatively high value of rotor load inertia. Various starting and operating conditions are studied for this forced-draft fan drive motor including a representative application duty cycle.« less

  11. Haptic device for telerobotic surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt; Salisbury, Jr., J. Kenneth

    A haptic device for telerobotic surgery, including a base; a linkage system having first and second linkage members coupled to the base; a motor that provides a motor force; a transmission including first and second driving pulleys arranged such that their faces form an angle and their axes form a plane, first and second idler pulleys offset from the plane and arranged between the first and second driving pulleys such that their axes divide the angle between the first and second driving pulleys, and a cable that traverses the first and second driving pulleys and the set of idler pulleysmore » and transfers the motor force to the linkage system; an end effector coupled to distal ends of the first and second linkage members and maneuverable relative to the base; and a controller that modulates the motor force to simulate a body part at a point portion of the end effector.« less

  12. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  13. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, John H., E-mail: john.h.cantrell@nasa.gov; Cantrell, Sean A., E-mail: scantrell@nlsanalytics.com

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force “stiffness,” the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model withmore » frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.« less

  14. Skill Needs and Human Resources Development in the Emerging Field of Nanotechnology

    ERIC Educational Resources Information Center

    Yawson, Robert Mayfield

    2010-01-01

    Strong societal requirements and consumer acceptance are the driving force of nanotechnology development. The necessity for qualified experts and strong demand on education in the multi-, trans- and interdisciplinary field of nanotechnology is a logical consequence of this driving force. There is the need for a comprehensive national…

  15. Cellular responses to endogenous electrochemical gradients in morphological development

    NASA Technical Reports Server (NTRS)

    Desrosiers, M. F.

    1996-01-01

    Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.

  16. Remote detection of stress corrosion cracking: Surface composition and crack detection

    NASA Astrophysics Data System (ADS)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  17. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. An allosterically regulated reversible mechanical molecular switch: A de novo protein maquette functions as a redox/ionic strength sensor coupling chemical binding energy or charge interactions to conformational change

    NASA Astrophysics Data System (ADS)

    Grosset, Anne Marie

    2000-10-01

    Switch-like structural rearrangements of subunits due to charge-interactions are common in the basic biological action of proteins that couple and transfer chemical and ionic signals, sensing and regulation, mechanical force and electrochemical free energy. A simple synthetic protein model (maquette) has been designed to better understand the engineering of natural switches. Basic thermodynamic principles define the two key elements required for biological or chemical function of a switch. First, there must be two well-defined states. In this case, the two conformational states must have an energetic difference (DeltaDeltaG°) that is spanned by the applied driving force. Second, there must be an external stimulus, which preferentially interacts with one of the two states. The external stimulus provides the driving force that shifts the equilibrium from the first state to the second state (≥10:1 shifting towards ≤1:10). The energetic difference between the states must be the same order of magnitude as the driving force. In this synthetic protein, the two conformational states correspond to parallel (syn) and antiparallel (anti) assembly of the two identical helix-ss-helix subunits that bind heme close to the di-sulfide loop region. Charge interactions between two ferric hemes bound to histidines provide a driving force on the order of 2 kcal/mol (corresponding in the syn-topology to the 75--100 mV split in the heme redox potentials, or the 25--80 times weaker binding for the second ferric heme). The tetra-alpha-helix bundle has been modified to have a DeltaG around 1.8--2.5 kcal/mol (a 50--80 fold difference in the anti/syn ratio). Therefore, oxidation and reduction of the heme, or the binding of a second charged ferric heme can reversibly switch between syn- and anti-topologies, providing a sensitive detector of redox state or heme concentration. External solution conditions (e.g. ionic composition) can act on the protein remotely from the primary internal switch action and confer a secondary level of allosteric regulation. Bifunctional ligands can link subunits to shift topology. Scanning redox potentiometry can monitor the kinetics of topological change. Point amino acid substitutions and computer repacking of the hydrophobic core can modulate both the kinetics and the energetics.

  19. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    PubMed

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  20. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores.

    PubMed

    Elosegui-Artola, Alberto; Andreu, Ion; Beedle, Amy E M; Lezamiz, Ainhoa; Uroz, Marina; Kosmalska, Anita J; Oria, Roger; Kechagia, Jenny Z; Rico-Lastres, Palma; Le Roux, Anabel-Lise; Shanahan, Catherine M; Trepat, Xavier; Navajas, Daniel; Garcia-Manyes, Sergi; Roca-Cusachs, Pere

    2017-11-30

    YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ratchet baryogenesis and an analogy with the forced pendulum

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko

    2018-06-01

    A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.

  2. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  3. Polymer translocation under time-dependent driving forces: resonant activation induced by attractive polymer-pore interactions.

    PubMed

    Ikonen, Timo; Shin, Jaeoh; Sung, Wokyung; Ala-Nissila, Tapio

    2012-05-28

    We study the driven translocation of polymers under time-dependent driving forces using N-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation time, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.

  4. Training Toddlers Seated on Mobile Robots to Steer Using Force-Feedback Joystick.

    PubMed

    Agrawal, S K; Xi Chen; Ragonesi, C; Galloway, J C

    2012-01-01

    The broader goal of our research is to train infants with special needs to safely and purposefully drive a mobile robot to explore the environment. The hypothesis is that these impaired infants will benefit from mobility in their early years and attain childhood milestones, similar to their healthy peers. In this paper, we present an algorithm and training method using a force-feedback joystick with an "assist-as-needed" paradigm for driving training. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. We show results with a group study on typically developing toddlers that such a haptic guidance algorithm is superior to training with a conventional joystick. We also provide a case study on two special needs children, under three years old, who learn to make sharp turns during driving, when trained over a five-day period with the force-feedback joystick using the algorithm.

  5. Fluoride and apatite formation in vivo and in vitro.

    PubMed

    Aoba, Takaaki; Shimazu, Yoshihito; Taya, Yuji; Soeno, Yuuichi; Sato, Kaori; Miake, Yasuo

    2003-01-01

    In recent years, the biomineralization process has attracted much interest from academics and industries for potential technological application. The rule in biomineralization is to have a variety of interfaces and surfaces which can act as nucleators. The ultimate step in any biomineralization process, i.e. the deposition of mineral, must conform to the driving forces operating on the system. A new paradigm in the assessment of the driving force for biomineralization is that a variety of ions existing in the mineralizing milieu are not a bystander, but are instead an active player that directly regulates the precipitation process and nature of biogenic apatites. Thus, the most putative stoichiometric model of a biomineral is (Ca)(5-x)(Mg)q(Na)u(HPO4)v(CO3)w(PO4)(3-y)(OH,F)(1-z). Fluoride participates in many aspects of calcium phosphate formation in vivo and has enormous effects on its process and on the nature and properties of the final products. In the development of biogenic apatites, fluoride ion in the mineralizing media is supposed to accelerate the hydrolysis of acidic precursor(s) and increase the growth rates by augmenting the driving force for precipitation. Inhibitory activities of ions and molecules are related to their adsorption onto the apatite surfaces. From theoretical and practical points of view, it is of paramount importance to elucidate and predict the effect and outcome of fluoride (accelerator) and inhibitors of biological relevance, because of their use in combination for healthcare in dentistry and medicine, e.g. prevention of dental caries and calculus deposition and in the formulation of antiosteoporosis treatments.

  6. Characterization of Intercalated Graphite Fibers for Microelectromechanical Systems (MEMS) Applications

    DTIC Science & Technology

    2007-03-01

    electric charge to drive movement, eg. a micromirror . These two actuator types have different characteristics and apply dif- ferent forces. The thermal...actuators include micromirrors , comb drives, cantilevers and scratch drives. A scratch drive actuator uses an applied square wave voltage to operate, as

  7. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss

    PubMed Central

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Guo, Xue; Xiao, Yunhua; Ma, Liyuan; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Zhang, Yuguang

    2017-01-01

    ABSTRACT Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillus thermosulfidooxidans. Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT. Furthermore, genome streamlining may be a critical force in driving the evolution of microbial genomes. Taken together, this study provides insights into the importance of both HGT and gene loss in the evolution and diversification of bacterial genomes. PMID:28115381

  8. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss.

    PubMed

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Guo, Xue; Xiao, Yunhua; Ma, Liyuan; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Zhang, Yuguang; Yin, Huaqun

    2017-04-01

    Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillus thermosulfidooxidans Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT. Furthermore, genome streamlining may be a critical force in driving the evolution of microbial genomes. Taken together, this study provides insights into the importance of both HGT and gene loss in the evolution and diversification of bacterial genomes. Copyright © 2017 American Society for Microbiology.

  9. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    PubMed

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  10. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion

    PubMed Central

    Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-01-01

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified. PMID:29677124

  11. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  12. Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force

    NASA Astrophysics Data System (ADS)

    Lu, Jinsheng; Yang, Hangbo; Zhou, Lina; Yang, Yuanqing; Luo, Si; Li, Qiang; Qiu, Min

    2017-01-01

    Optical force, coming from momentum exchange during light-matter interactions, has been widely utilized to manipulate microscopic objects, though mostly in vacuum or in liquids. By contrast, due to the light-induced thermal effect, photophoretic force provides an alternative and effective way to transport light-absorbing particles in ambient gases. However, in most cases these forces work independently. Here, by employing the synergy of optical force and photophoretic force, we propose and experimentally demonstrate a configuration which can drive a micron-size metallic plate moving back and forth on a tapered fiber with supercontinuum light in ambient air. Optical pulling and oscillation of the metallic plate are experimentally realized. The results might open exhilarating possibilities in applications of optical driving and energy conversion.

  13. Dynamics and control of instrumented harmonic drives

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1995-01-01

    Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.

  14. The nature of the laning transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Glanz, T.; Löwen, H.

    2012-11-01

    If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.

  15. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less

  16. Human grasp assist device and method of use

    NASA Technical Reports Server (NTRS)

    Linn, Douglas Martin (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor)

    2012-01-01

    A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.

  17. Dynamo Induced by Time-periodic Force

    NASA Astrophysics Data System (ADS)

    Wei, Xing

    2018-03-01

    To understand the dynamo driven by time-dependent flow, e.g., turbulence, we investigate numerically the dynamo induced by time-periodic force in rotating magnetohydrodynamic flow and focus on the effect of force frequency on the dynamo action. It is found that the dynamo action depends on the force frequency. When the force frequency is near resonance the force can drive dynamo, but when it is far away from resonance dynamo fails. In the frequency range near resonance to support dynamo, the force frequency at resonance induces a weak magnetic field and magnetic energy increases as the force frequency deviates from the resonant frequency. This is opposite to the intuition that a strong flow at resonance will induce a strong field. It is because magnetic field nonlinearly couples with fluid flow in the self-sustained dynamo and changes the resonance of driving force and inertial wave.

  18. 78 FR 42758 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive...-PW-229 engines for the Hellenic Air Force F-16 aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive Turbine Modules, Augmentor Duct and Nozzle Modules, and...

  19. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    PubMed

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  20. Regional Quality Assurance Activity in Higher Education in Southeast Asia: Its Characteristics and Driving Forces

    ERIC Educational Resources Information Center

    Umemiya, Naoki

    2008-01-01

    This article analyses the characteristics and driving forces of regional quality assurance activity in Southeast Asia, which has been actively promoted in recent years by the ASEAN University Network, an organisation for higher education under the auspices of the Association of Southeast Asian Nations (ASEAN). There are now more collaborative…

  1. Understanding Resonance Graphs Using Easy Java Simulations (EJS) and Why We Use EJS

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel

    2015-01-01

    This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of…

  2. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  3. Molecular simulations of lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick Jean-Marie; Venturoli, Maddalena; Smit, Berend

    2008-08-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the lipid-mediated interactions between two intrinsic membrane proteins, we developed a mesoscopic model of a lipid bilayer with embedded proteins, which we studied with dissipative particle dynamics. Our calculations of the potential of mean force between transmembrane proteins show that hydrophobic forces drive long-range protein-protein interactions and that the nature of these interactions depends on the length of the protein hydrophobic segment, on the three-dimensional structure of the protein and on the properties of the lipid bilayer. To understand the nature of the computed potentials of mean force, the concept of hydrophilic shielding is introduced. The observed protein interactions are interpreted as resulting from the dynamic reorganization of the system to maintain an optimal hydrophilic shielding of the protein and lipid hydrophobic parts, within the constraint of the flexibility of the components. Our results could lead to a better understanding of several membrane processes in which protein interactions are involved.

  4. Modified stimulated Raman scattering of a laser induced by trapped electrons in a plasma

    NASA Astrophysics Data System (ADS)

    Baliyan, Sweta; Rafat, Mohd.; Ahmad, Nafis; Sajal, Vivek

    2017-10-01

    The plasma wave, generated in stimulated Raman scattering process by an intense laser in the plasmas, traps a significant number of electrons in its potential energy minima. These electrons travel with the phase velocity of plasma wave and oscillate with bounce frequency. When the bounce frequency of electrons becomes equal to the growth rate of Raman process, resonance takes place. Now, Raman scattering gets modified by parametrically exciting a trapped electron mode and an electromagnetic sideband. The ponderomotive force due to the pump and sideband drives the plasma wave, whereas the density perturbation due to the trapped electron mode couples with the oscillating velocity of electrons due to the laser to produce a nonlinear current, driving the sideband.

  5. Energy level alignment in TiO2/metal sulfide/polymer interfaces for solar cell applications.

    PubMed

    Lindblad, Rebecka; Cappel, Ute B; O'Mahony, Flannan T F; Siegbahn, Hans; Johansson, Erik M J; Haque, Saif A; Rensmo, Håkan

    2014-08-28

    Semiconductor sensitized solar cell interfaces have been studied with photoelectron spectroscopy to understand the interfacial electronic structures. In particular, the experimental energy level alignment has been determined for complete TiO2/metal sulfide/polymer interfaces. For the metal sulfides CdS, Sb2S3 and Bi2S3 deposited from single source metal xanthate precursors, it was shown that both driving forces for electron injection into TiO2 and hole transfer to the polymer decrease for narrower bandgaps. The energy level alignment results were used in the discussion of the function of solar cells with the same metal sulfides as light absorbers. For example Sb2S3 showed the most favourable energy level alignment with 0.3 eV driving force for electron injection and 0.4 eV driving force for hole transfer and also the most efficient solar cells due to high photocurrent generation. The energy level alignment of the TiO2/Bi2S3 interface on the other hand showed no driving force for electron injection to TiO2, and the performance of the corresponding solar cell was very low.

  6. Eye regression in blind Astyanax cavefish may facilitate the evolution of an adaptive behavior and its sensory receptors.

    PubMed

    Borowsky, Richard

    2013-07-11

    The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects.

  7. Formation and structure of Al-Zr metallic glasses studied by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Zhao, S. Z.; Dai, Y.; Cui, Y. Y.; Liu, B. X.

    2011-06-01

    Based on the recently constructed n-body potential, both molecular dynamics and Monte Carlo simulations revealed that the Al-Zr amorphous alloy or metallic glass can be obtained within the composition range of 24-66 at. % Zr. The revealed composition range could be considered the intrinsic glass-forming range and it quantitatively indicates the glass-forming ability of the Al-Zr system. The underlying physics of the finding is that, within the composition range, the amorphous alloys are energetically favored to form. In addition, it is proposed that the energy difference between a solid solution and the amorphous phase could serve as the driving force of the crystalline to amorphous transition and the driving force should be sufficiently large for amorphization to take place. The minimum driving forces for fcc Al-based and hcp Zr-based Al-Zr solid solutions to amorphize are calculated to be about -0.05 and -0.03 eV/atom, respectively, whereas the maximum driving force is found to be -0.23 eV/atom at the alloy stoichiometry of Al60Zr40. A thermodynamics parameter γ¯, defined as the ratio of the driving force to the formation energy of the solid solution, is further proposed to indicate the glass-forming ability of an Al-Zr alloy. Thermodynamics calculations show that the glass-forming ability of the Al56Zr44 alloy is the largest, implying that the Al56Zr44 amorphous alloy is more ready to form than other alloys in the Al-Zr system. Besides, Voronoi analysis found that there exists a strong correlation between the coordinate number and structure. Amorphization could result in increase of coordinate numbers and about 1.5% volume-expansion. The volume-expansion induced by amorphization can be attributed to two factors, i.e., the total bond number of the Al-Zr amorphous phase is greater than that of the corresponding solid solution, and the averaged bond length of the Al-Zr amorphous phase is longer than that of the corresponding solid solution. For the Al-Zr alloys, especially for the Al-Zr amorphous phase, there exists a negative chemical micro-inhomogeneity in the alloys, suggesting that metallic bonds prefer to be formed between the atoms of dissimilar species. Finally, it is found that there is a weak correspondence between the bond-angle distributions of Al-Zr amorphous alloys and the solid solutions. It is further suggested that the configuration of Al-Zr amorphous alloys embodies some hybrid imprint of bcc, fcc, and hcp structures. More interestingly, the short-range order is also observed in the bond-angle distributions.

  8. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    PubMed

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.

  9. Interfacial solvation thermodynamics

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2016-10-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.

  10. Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Tsai, M. C.

    2008-04-01

    In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.

  11. Nonlinear Magnus-induced dynamics and Shapiro spikes for ac and dc driven skyrmions on periodic quasi-one-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Reichhardt, Cynthia J. Olson

    We numerically examine skyrmions interacting with a periodic quasi-one-dimensional substrate. When we drive the skyrmions perpendicular to the substrate periodicity direction, a rich variety of nonlinear Magnus-induced effects arise, in contrast to an overdamped system that shows only a linear velocity-force curve for this geometry. The skyrmion velocity-force curve is strongly nonlinear and we observe a Magnus-induced speed-up effect when the pinning causes the Magnus velocity response to align with the dissipative response. At higher applied drives these components decouple, resulting in strong negative differential conductivity. For skyrmions under combined ac and dc driving, we find a new class of phase locking phenomena in which the velocity-force curves contain a series of what we call Shapiro spikes, distinct from the Shapiro steps observed in overdamped systems. There are also regimes in which the skyrmion moves in the direction opposite to the applied dc drive to give negative mobility.

  12. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  13. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.

    PubMed

    Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen

    2017-02-15

    This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.

  14. Analysis of driving force and exciting voltage for a bi-material infrared resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Dacheng

    2018-01-01

    For a designed sensor with bi-material resonator which is used to detect infrared (IR) radiation by means of tracking the change in resonance frequency of the resonator with temperature attributed to the IR radiation from targets, in accordance with electromagnetic theory, the relationship between the electrical driving force exerted on the resonator and the exciting voltage applied across two electrodes of the capacitor in the sensor is presented. According to vibration theory, the dependence of the driving force on the exciting voltage is analyzed. The result of analysis is used to guide the vibration mode and frequency-amplitude response simulations of the resonator. The simulation value is approximately equal to the measured value, which demonstrates that the analysis result is effective and practicable.

  15. Driving force for hydrophobic interaction at different length scales.

    PubMed

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  16. Consensus statement of the European Heart Rhythm Association: updated recommendations for driving by patients with implantable cardioverter defibrillators.

    PubMed

    Vijgen, Johan; Botto, Gianluca; Camm, John; Hoijer, Carl-Johan; Jung, Werner; Le Heuzey, Jean-Yves; Lubinski, Andrzej; Norekvål, Tone M; Santomauro, Maurizio; Schalij, Martin; Schmid, Jean-Paul; Vardas, Panos

    2010-03-01

    Patients with an implantable cardioverter defibrillator (ICD) have an ongoing risk of sudden incapacitation that might cause harm to others while driving a car. Driving restrictions vary across different countries in Europe. The most recent recommendations for driving of ICD patients in Europe were published in 1997 and focused mainly on patients implanted for secondary prevention. In recent years there has been a vast increase in the number of patients with an ICD and in the percentage of patients implanted for primary prevention. The EHRA task force on ICD and driving was formed to reassess the risk of driving for ICD patients based on the literature available. The recommendations are summarized in the following table and are further explained in the document, (Table see text). Driving restrictions are perceived as difficult for patients and their families, and have an immediate consequence for their lifestyle. To increase the adherence to the driving restrictions, adequate discharge of education and follow-up of patients and family are pivotal. The task force members hope this document may serve as an instrument for European and national regulatory authorities to formulate uniform driving regulations. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Consensus statement of the European Heart Rhythm Association: updated recommendations for driving by patients with implantable cardioverter defibrillators.

    PubMed

    Vijgen, Johan; Botto, Gianluca; Camm, John; Hoijer, Carl-Johan; Jung, Werner; Le Heuzey, Jean-Yves; Lubinski, Andrzej; Norekvål, Tone M; Santomauro, Maurizio; Schalij, Martin; Schmid, Jean-Paul; Vardas, Panos

    2009-08-01

    Patients with an implantable cardioverter defibrillator (ICD) have an ongoing risk of sudden incapacitation that might cause harm to others while driving a car. Driving restrictions vary across different countries in Europe. The most recent recommendations for driving of ICD patients in Europe were published in 1997 and focused mainly on patients implanted for secondary prevention. In recent years there has been a vast increase in the number of patients with an ICD and in the percentage of patients implanted for primary prevention. The EHRA task force on ICD and driving was formed to reassess the risk of driving for ICD patients based on the literature available. The recommendations are summarized in the following table and are further explained in the document. [table: see text] Driving restrictions are perceived as difficult for patients and their families, and have an immediate consequence for their lifestyle. To increase the adherence to the driving restrictions, adequate discharge of education and follow-up of patients and family are pivotal. The task force members hope this document may serve as an instrument for European and national regulatory authorities to formulate uniform driving regulations.

  18. Motor potential profile and a robust method for extracting it from time series of motor positions.

    PubMed

    Wang, Hongyun

    2006-10-21

    Molecular motors are small, and, as a result, motor operation is dominated by high-viscous friction and large thermal fluctuations from the surrounding fluid environment. The small size has hindered, in many ways, the studies of physical mechanisms of molecular motors. For a macroscopic motor, it is possible to observe/record experimentally the internal operation details of the motor. This is not yet possible for molecular motors. The chemical reaction in a molecular motor has many occupancy states, each having a different effect on the motor motion. The overall effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The potential profile reveals how the motor force changes with position in a motor step, which may lead to insights into how the chemical reaction is coupled to force generation. In this article, we propose a mathematical formulation and a robust method for constructing motor potential profiles from time series of motor positions measured in single molecule experiments. Numerical examples based on simulated data are shown to demonstrate the method. Interestingly, it is the small size of molecular motors (negligible inertia) that makes it possible to recover the potential profile from time series of motor positions. For a macroscopic motor, the variation of driving force within a cycle is smoothed out by the large inertia.

  19. Mechanical Rectification of Oscillatory Motion for High Torque Microactuators

    NASA Astrophysics Data System (ADS)

    You, Liang; Tabib-Azar, Massood

    2004-03-01

    High-torque and scalable rotational micromotors were designed, microfabricated using a 3 mask LPCVD polysilicon process, and characterized. Oscillatory motions generated by comb-drive actuators were rectified by a rotor with fins. The actuator periodically deforms the fins generating forces with tangential and normal components in the rotor. Tangential forces generate rotation. In comparison to the electrostatic side-drive micromotor (torque pN-m), the measured torques for these micromotors were much larger and reached 4.5 µN-m at 200Vpp applied to the comb-drive at 1 KHz. Both the comb-drive and the finned rotor are second-order resonant structures that, when coupled, result in interesting dynamic that manifests itself as different excitation (forward, reverse, stepping, and chaotic) modes of the rotor.

  20. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  1. The electromigration force in metallic bulk

    NASA Astrophysics Data System (ADS)

    Lodder, A.; Dekker, J. P.

    1998-01-01

    The voltage induced driving force on a migrating atom in a metallic system is discussed in the perspective of the Hellmann-Feynman force concept, local screening concepts and the linear-response approach. Since the force operator is well defined in quantum mechanics it appears to be only confusing to refer to the Hellmann-Feynman theorem in the context of electromigration. Local screening concepts are shown to be mainly of historical value. The physics involved is completely represented in ab initio local density treatments of dilute alloys and the implementation does not require additional precautions about screening, being typical for jellium treatments. The linear-response approach is shown to be a reliable guide in deciding about the two contributions to the driving force, the direct force and the wind force. Results are given for the wind valence for electromigration in a number of FCC and BCC metals, calculated using an ab initio KKR-Green's function description of a dilute alloy.

  2. Self Assembled Particles

    NASA Technical Reports Server (NTRS)

    Palacci, Jeremie (Inventor); Pine, David J. (Inventor); Chaikin, Paul Michael (Inventor); Sacanna, Stefano (Inventor)

    2017-01-01

    A self-assembling structure using non-equilibrium driving forces leading to 'living crystals' and other maniputable particles with a complex dynamics. The dynamic self-assembly assembly results from a competition between self-propulsion of particles and an attractive interaction between the particles. As a result of non-equilibrium driving forces, the crystals form, grow, collide, anneal, repair themselves and spontaneously self-destruct, thereby enabling reconfiguration and assembly to achieve a desired property.

  3. Controlled nanopatterning of a polymerized ionic liquid in a strong electric field

    DOE PAGES

    Bocharova, Vera; Agapov, Alexander L.; Tselev, Alexander; ...

    2014-12-17

    Nanolithography has become a driving force in advancements of the modern day's electronics, allowing for miniaturization of devices and a steady increase of the calculation, power, and storage densities. Among various nanofabrication approaches, scanning probe techniques, including atomic force microscopy (AFM), are versatile tools for creating nanoscale patterns utilizing a range of physical stimuli such as force, heat, or electric field confined to the nanoscale. In this study, the potential of using the electric field localized at the apex of an AFM tip to induce and control changes in the mechanical properties of an ion containing polymer—a polymerized ionic liquidmore » (PolyIL)—on a very localized scale is explored. In particular, it is demonstrated that by means of AFM, one can form topographical features on the surface of PolyIL-based thin films with a significantly lower electric potential and power consumption as compared to nonconductive polymer materials. Lastly,, by tuning the applied voltage and ambient air humidity, control over dimensions of the formed structures is reproducibly achieved.« less

  4. Laboratory Evidence That Line-Tied Toroidal Magnetic Fields Can Suppress Loss-of-Equilibrium Flux Rope Eruptions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.

    2014-12-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  5. Instantly Basing Locust Swarms: New Options for Future Air Operations

    DTIC Science & Technology

    2012-06-01

    force’s fighting potential.”51 Moreover, JP 3-0 specifically emphasizes “Securing and protecting forces, bases, JSAs [Joint Storage Areas], and LOCs ...Smith and Leo Marx (Cambridge, MA: The MIT Press, 1994), 101-113. 64 Hughes, “Technological Momentum,”108. 65 John Law, "Technology and Heterogeneous...Technology Drive History?, edited by Merritt Roe Smith and Leo Marx, 101-113. Cambridge, MA: The MIT Press, 1994. Jean, Grace V. "Remotely Piloted

  6. Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force

    NASA Astrophysics Data System (ADS)

    Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki

    2012-07-01

    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.

  7. Driving reconnection in sheared magnetic configurations with forced fluctuations

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  8. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.

    PubMed

    Koh, Keng Huat; Sreekumar, M; Ponnambalam, S G

    2014-06-25

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F - V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  9. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator

    PubMed Central

    Koh, Keng Huat; Sreekumar, M.; Ponnambalam, S. G.

    2014-01-01

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications. PMID:28788114

  10. Electron flow in multicenter enzymes: theory, applications, and consequences on the natural design of redox chains.

    PubMed

    Léger, Christophe; Lederer, Florence; Guigliarelli, Bruno; Bertrand, Patrick

    2006-01-11

    In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".

  11. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.

  12. Secondary electroosmotic flow in microchannels with nonuniform and asymmetric Zeta potential

    NASA Astrophysics Data System (ADS)

    Zhang, Jinbai; He, Guowei; Liu, Feng

    2004-11-01

    Microfluidics has a broad range of applications in biotechnology, such as sample injection, drug delivering, solution mixing, and separations. All of these techniques require handling fluids in the low Reynolds number (Re) regime. Electroosmotic flow (EOF) or electroosmocitcs is the bulk movement of liquid relative to a stationary surface due to an externally applied electronic field. It is an alternative to pressure-driven flows with convenient implementation The driving force for EOF is dependent on the zeta potential. Previous reseraches focus on the nonuniform Zeta potential. In the present work, we consider nonuniform and asymmetric Zeta potential. The effects of asymmetric Zeta potential on the EOF are investigated analytically and simulated numerically. It is demonstrated that the nonuniform and asymmetric Zeta potential can generate more flow patterns for microfluidic control compared to symmetric Zeta potential.

  13. [Landscape pattern change and its driving forces in Xixi National Wetland Park since 1993].

    PubMed

    Cheng, Qian; Wu, Xiuju

    2006-09-01

    Under the support of GIS technology and the TM images of Xixi National Wetland Park, this paper studied the past ten years' landscape pattern change and its driving forces of Xixi Wetland. The results showed that the landscape diversity index increased from 1.7854 in 1993 to 1.8438 in 2001 and 2.2096 in 2003, and the landscape fragmentation index increased from 0.0036 in 1993 to 0.0042 in 2001, and 0.0047 in 2003, suggesting that the landscape fragmentation was increased with time. Human activity was the main driving force, while the exploitation of real estate was the main internal factor of the landscape pattern change of Xixi wetland. In addition, social and economic development level had a strong effect on the overall diversity of the landscape.

  14. One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Relative Motion Experiments

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.

    Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.

  15. Kolmogorov Turbulence Defeated by Anderson Localization for a Bose-Einstein Condensate in a Sinai-Oscillator Trap

    NASA Astrophysics Data System (ADS)

    Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L.

    2017-08-01

    We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochromatic driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the center vicinity corresponding to the first experiments of condensate formation by Ketterle and co-workers in 1995. We allow that the external driving allows us to model the regime of weak wave turbulence with the Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak driving and weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization that leads to localization of energy on low energy modes. This is in a drastic contrast to the random phase approximation leading to energy flow to high modes. A critical threshold is determined above which the turbulent flow to high energies becomes possible. We argue that this phenomenon can be studied with ultracold atoms in magneto-optical traps.

  16. Kolmogorov Turbulence Defeated by Anderson Localization for a Bose-Einstein Condensate in a Sinai-Oscillator Trap.

    PubMed

    Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L

    2017-08-04

    We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochromatic driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the center vicinity corresponding to the first experiments of condensate formation by Ketterle and co-workers in 1995. We allow that the external driving allows us to model the regime of weak wave turbulence with the Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak driving and weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization that leads to localization of energy on low energy modes. This is in a drastic contrast to the random phase approximation leading to energy flow to high modes. A critical threshold is determined above which the turbulent flow to high energies becomes possible. We argue that this phenomenon can be studied with ultracold atoms in magneto-optical traps.

  17. A Simple Hydraulic Analog Model of Oxidative Phosphorylation.

    PubMed

    Willis, Wayne T; Jackman, Matthew R; Messer, Jeffrey I; Kuzmiak-Glancy, Sarah; Glancy, Brian

    2016-06-01

    Mitochondrial oxidative phosphorylation is the primary source of cellular energy transduction in mammals. This energy conversion involves dozens of enzymatic reactions, energetic intermediates, and the dynamic interactions among them. With the goal of providing greater insight into the complex thermodynamics and kinetics ("thermokinetics") of mitochondrial energy transduction, a simple hydraulic analog model of oxidative phosphorylation is presented. In the hydraulic model, water tanks represent the forward and back "pressures" exerted by thermodynamic driving forces: the matrix redox potential (ΔGredox), the electrochemical potential for protons across the mitochondrial inner membrane (ΔGH), and the free energy of adenosine 5'-triphosphate (ATP) (ΔGATP). Net water flow proceeds from tanks with higher water pressure to tanks with lower pressure through "enzyme pipes" whose diameters represent the conductances (effective activities) of the proteins that catalyze the energy transfer. These enzyme pipes include the reactions of dehydrogenase enzymes, the electron transport chain (ETC), and the combined action of ATP synthase plus the ATP-adenosine 5'-diphosphate exchanger that spans the inner membrane. In addition, reactive oxygen species production is included in the model as a leak that is driven out of the ETC pipe by high pressure (high ΔGredox) and a proton leak dependent on the ΔGH for both its driving force and the conductance of the leak pathway. Model water pressures and flows are shown to simulate thermodynamic forces and metabolic fluxes that have been experimentally observed in mammalian skeletal muscle in response to acute exercise, chronic endurance training, and reduced substrate availability, as well as account for the thermokinetic behavior of mitochondria from fast- and slow-twitch skeletal muscle and the metabolic capacitance of the creatine kinase reaction.

  18. The mean Evershed flow

    NASA Astrophysics Data System (ADS)

    Hu, W.-R.

    1984-09-01

    The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.

  19. Buoyancy forcing and the MOC: insights from experiments, simulations and global models

    NASA Astrophysics Data System (ADS)

    White, B. L.; Passaggia, P. Y.; Zemskova, V.

    2017-12-01

    The driving forces behind the Meridional Overturning Circulation (MOC) have been widely debated, with wind-driven upwelling, surface buoyancy fluxes due to heating/cooling/freshwater input, and vertical diffusion due to turbulent mixing all thought to play significant roles. To explore the specific role of buoyancy forcing we present results from experiments and simulations of Horizontal Convection (HC), where a circulation is driven by differential buoyancy forcing applied along a horizontal surface. We interpret these results using energy budgets based on the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. We first describe HC experiments driven by the diffusion of salt in water across membranes localized at the surface, at Schmidt numbers {Sc}≈ 610 and Rayleigh numbers in the range 1012 < Ra=Δ b L3/(ν κ ) < 1017, where ν is the kinematic viscosity of water, κ is the diffusion coefficient of salt, L=[.5,2,5]m is the length of the different tanks and Δ b=g(ρ salt}-ρ {fresh}/ρ_{fresh is the reduced gravity difference. We show that the scaling follows a Nu ˜ Ra1/4 type scaling recently theorized by Shishkina et; al. (2016). We then present numerical results for rotating horizontal convection with a zonally re-entrant channel to represent the Southern Ocean branch of the MOC. While the zonal wind stress profile is important to the spatial pattern of the circulation, perhaps surprisingly, the energy budget shows only a weak dependence on the magnitude of the wind input, suggesting that surface APE generation by buoyancy forcing is dominant in driving the overturning circulation.

  20. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    PubMed

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  1. Hydrogels Based on Ag+ -Modulated Assembly of 5'-Adenosine Monophosphate for Enriching Biomolecules.

    PubMed

    Hu, Yuanyuan; Xie, Dong; Wu, Yang; Lin, Nangui; Song, Aixin; Hao, Jingcheng

    2017-11-07

    Supramolecular hydrogels obtained by combining 5'-adenosine monophosphate (AMP) with Ag + were fabricated in this work. Their gelation capability was enhanced by increasing the concentration of Ag + or decreasing the pH. The gels are very sensitive to light, which endows them with potential applications as visible-light photosensitive materials. Coordination between the nucleobase of AMP and Ag + , as well as π-π stacking of nucleobases, are considered to be the main driving forces for self-assembly. The hydrogels successfully achieved the encapsulation and enrichment of biomolecules. Hydrogen bonding between the amino group of guest molecules and silver nanoparticles along the nanofibers drives the enrichment and is considered to be a crucial interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analyte preconcentration in nanofluidic channels with nonuniform zeta potential

    NASA Astrophysics Data System (ADS)

    Eden, A.; McCallum, C.; Storey, B. D.; Pennathur, S.; Meinhart, C. D.

    2017-12-01

    It is well known that charged analytes in the presence of nonuniform electric fields concentrate at locations where the relevant driving forces balance, and a wide range of ionic stacking and focusing methods are commonly employed to leverage these physical mechanisms in order to improve signal levels in biosensing applications. In particular, nanofluidic channels with spatially varying conductivity distributions have been shown to provide increased preconcentration of charged analytes due to the existence of a finite electric double layer (EDL), in which electrostatic attraction and repulsion from charged surfaces produce nonuniform transverse ion distributions. In this work, we use numerical simulations to show that one can achieve greater levels of sample accumulation by using field-effect control via wall-embedded electrodes to tailor the surface potential heterogeneity in a nanochannel with overlapped EDLs. In addition to previously demonstrated stacking and focusing mechanisms, we find that the coupling between two-dimensional ion distributions and the axial electric field under overlapped EDL conditions can generate an ion concentration polarization interface in the middle of the channel. Under an applied electric field, this interface can be used to concentrate sample ions between two stationary regions of different surface potential and charge density. Our numerical model uses the Poisson-Nernst-Planck system of equations coupled with the Stokes equation to demonstrate the phenomenon, and we discuss in detail the driving forces behind the predicted sample enhancement. The numerical velocity and salt concentration profiles exhibit good agreement with analytical results from a simplified one-dimensional area-averaged model for several limiting cases, and we show predicted amplification ratios of up to 105.

  3. Back pain in a large Canadian police force.

    PubMed

    Brown, J J; Wells, G A; Trottier, A J; Bonneau, J; Ferris, B

    1998-04-01

    A survey of a random sample of 1002 members of the Royal Canadian Mounted Police to determine their experience with low back pain. To determine the prevalence of low back pain among Royal Canadian Mounted Police members and to assess the validity of the perception that the patrol car seat and the duty belt are causing a higher rate of low back pain among members of the Royal Canadian Mounted Police than in the general population. Low back pain is a common problem throughout the industrialized world, with reported 1-year prevalence rates between 25% and 62%. Prevalence of low back pain among people who drive motor vehicles for a significant part of the day appears higher than in the general population. Among police officers, 1-year prevalence rates of between 44% and 62% have been reported. A computerized database of 14,897 serving regular members was used to identify a sample of officers on active duty. A low back pain questionnaire was mailed to each selected member, eliciting information regarding their experience with low back pain, their exposure to known and putative risk factors, and their opinions about the contribution of these potential risk factors. The respondents to the questionnaire remained anonymous. The response rate was 80%. The prevalence of "chronic or recurring low back pain since joining the force" was 54.9%, which is comparable with the lifetime prevalence reported for the general population. Of those who reported having back problems, only 8.5% had such problems before joining the force. Seventy-six percent who had low back pain reported having a problem within the last year, giving an overall 1-year prevalence of 41.8%, which is comparable with that for the general population. The a priori assumption that driving or wearing a duty belt contributed to the problem was shared by most police officers surveyed. However, only about half of the members who replied drove for more than half the working day or wore the duty belt. These members had the same prevalence of low back pain as those who did not drive or wear the duty belt. The prevalence of low back pain in this police force is comparable with that in the general population, and driving a patrol car or wearing the duty belt does not appear to influence the prevalence rate in this population.

  4. Understanding the drivers of Amazonian evapotranspiration (ET) change in response to increased CO2.

    NASA Astrophysics Data System (ADS)

    Halladay, Kate; Good, Peter

    2016-04-01

    Earth system models allow us to examine the complex interactions and feedbacks between land surface, vegetation and atmosphere. A more thorough understanding of these interactions is essential in reducing uncertainty surrounding the potential impacts of climate and environmental change on the hydrological cycle and the future state and extent of the Amazon rainforest. With HadGEM2-ES simulations from CMIP5 in which CO2 is increased at 1% per year starting from pre-industrial concentrations and reaching 4 times that after 140 years, we separate the various drivers and processes controlling ET in western Amazonia. The design of these simulations allows for radiative and physiological forcings to be examined separately and in combination, and the degree to which the combination of forcings is additive or non-linear. We consider ET as a product of the moisture gradient between the surface and the boundary layer and a conductance term, which includes terms limiting the evaporation from stomata and from the canopy. We find that aside from the direct effects of radiative and physiological forcing, there are a number of other processes occurring: 1) reductions in ET alter the surface energy budget leading to increases in moisture gradient which drive increases in ET, 2) additional reductions in stomatal conductance when surface temperatures exceed optimum temperature for photosynthesis, leading to greater decreases in ET between 2 and 4 times pre-industrial CO2, 3) negative correlation between moisture gradient and conductance terms leads to additional decreases in ET, 4) decreases in canopy water content increases the importance of stomatal conductance which also drives decreases in ET. A combination of these processes leads to non-linear decreases in ET between 2 and 4 times pre-industrial CO2 when both radiative and physiological forcings are operating. These results indicate a major role physiological forcing in the hydrological cycle of Amazonia, highlight the potential for differences in offline and models in terms of the hydrological cycle and land surface feedbacks, and the need to reduce uncertainty in the modelling the response of stomatal conductance to high temperatures.

  5. Measurements of the driving forces of bio-motors using the fluctuation theorem

    PubMed Central

    Hayashi, Kumiko; Tanigawara, Mizue; Kishikawa, Jun-ichi

    2012-01-01

    The fluctuation theorem (FT), which is a recent achievement in non-equilibrium statistical mechanics, has been suggested to be useful for measuring the driving forces of motor proteins. As an example of this application, we performed single-molecule experiments on F1-ATPase, which is a rotary motor protein, in which we measured its rotary torque by taking advantage of FT. Because fluctuation is inherent nature in biological small systems and because FT is a non-destructive force measurement method using fluctuation, it will be applied to a wide range of biological small systems in future. PMID:27857609

  6. A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.

    2008-08-01

    Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.

  7. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE PAGES

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  8. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Fisch, N. J.

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  9. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  10. Kinematics and dynamics of Nubia-Somalia divergence along the East African rift

    NASA Astrophysics Data System (ADS)

    Stamps, Dorothy Sarah

    Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.

  11. Negative differential mobility and trapping in active matter systems

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. O.

    2018-01-01

    Using simulations, we examine the average velocity as a function of applied drift force for active matter particles moving through a random obstacle array. We find that for low drift force, there is an initial flow regime where the mobility increases linearly with drive, while for higher drift forces a regime of negative differential mobility appears in which the velocity decreases with increasing drive due to the trapping of active particles behind obstacles. A fully clogged regime exists at very high drift forces when all the particles are permanently trapped behind obstacles. We find for increasing activity that the overall mobility is nonmonotonic, with an enhancement of the mobility for small levels of activity and a decrease in mobility for large activity levels. We show how these effects evolve as a function of disk and obstacle density, active run length, drift force, and motor force.

  12. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    NASA Astrophysics Data System (ADS)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  13. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.).

    PubMed

    Knipfer, Thorsten; Fricke, Wieland

    2011-01-01

    Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about -0.15 MPa.

  14. Apparent cooperativity of amino acid transport in Halobacterium halobium - Effect of electrical potential

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1978-01-01

    Active serine accumulation in cell envelope vesicles from Halobacterium halobium proceeds by co-transport with Na(+) and can be induced by either transmembrane electrical potential or transmembrane Na(+) concentration difference. It was shown earlier that in the former case the initial transport rate is a fourth-power function of the magnitude of the electrochemical potential difference of sodium ions, and in the latter, a second-power function. A possible interpretation of this finding is cooperativity of sodium-transporting sites in the transport carrier. When both kinds of driving force are imposed simultaneously on the vesicles, fourth-power dependence on the total potential difference of sodium ions is obtained, suggesting that the transport carrier is regulated by the electrical potential. Heat treatment of the vesicles at 48 C partially inactivates transport and abolishes this effect of the electrical potential.

  15. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  16. Analysis on design and performance of a solar rotary house

    NASA Astrophysics Data System (ADS)

    Fan, Xuhong; Zhang, Zhaochang; Yang, Fan; Cao, Lilin; Xu, Jing; Yuan, Mingyang

    2017-04-01

    A solar rotary house is designed, composed of rotating main structure, fixed cylinder, rotating drive system, solar photovoltaic system and so on, to achieve 360° rotation. Thus it can change the dark and humid situation of the traditional fixed house shade. Its bearing capacity, driving force and safety are analyzed. Rotary driving force and living energy are provided by solar photovoltaic system on roofs and walls. The Phonenics, Ecotect simulation analysis conclude that the rotating house indoor has better natural ventilation effect, more uniform lighting, better the sunshine time compared with traditional houses, becoming a green, energy-saving, comfortable building model.

  17. Effect of a gluteal activation warm-up on explosive exercise performance.

    PubMed

    Parr, Matt; Price, Phil Db; Cleather, Daniel J

    2017-01-01

    To evaluate the effect of a gluteal activation warm-up on the performance of an explosive exercise (the high hang pull (HHP)). Seventeen professional rugby union players performed one set of three HHPs (with 80% of their one repetition maximum load) following both a control and activation warm-up. Peak electrical activity of the gluteus maximus and medius was quantified using electromyography (EMG). In addition, the kinematics and kinetics of nine players was also recorded using force plate and motion capture technology. These data were analysed using a previously described musculoskeletal model of the right lower limb in order to provide estimates of the muscular force expressed during the movement. The mean peak EMG activity of the gluteus maximus was significantly lower following the activation warm-up as compared with the control (p<0.05, effect size d=0.30). There were no significant differences in the mean peak estimated forces in gluteus maximus and medius, the quadriceps or hamstrings (p=0.053), although there was a trend towards increased force in gluteus maximus and hamstrings following the activation warm-up. There were no differences between the ground reaction forces following the two warm-ups. This study suggests that a gluteal activation warm-up may facilitate recruitment of the gluteal musculature by potentiating the glutes in such a way that a smaller neural drive evokes the same or greater force production during movement. This could in turn potentially improve movement quality.

  18. Speed challenge: a case for hardware implementation in soft-computing

    NASA Technical Reports Server (NTRS)

    Daud, T.; Stoica, A.; Duong, T.; Keymeulen, D.; Zebulum, R.; Thomas, T.; Thakoor, A.

    2000-01-01

    For over a decade, JPL has been actively involved in soft computing research on theory, architecture, applications, and electronics hardware. The driving force in all our research activities, in addition to the potential enabling technology promise, has been creation of a niche that imparts orders of magnitude speed advantage by implementation in parallel processing hardware with algorithms made especially suitable for hardware implementation. We review our work on neural networks, fuzzy logic, and evolvable hardware with selected application examples requiring real time response capabilities.

  19. Self-disseminating vaccines for emerging infectious diseases.

    PubMed

    Murphy, Aisling A; Redwood, Alec J; Jarvis, Michael A

    2016-01-01

    Modern human activity fueled by economic development is profoundly altering our relationship with microorganisms. This altered interaction with microbes is believed to be the major driving force behind the increased rate of emerging infectious diseases from animals. The spate of recent infectious disease outbreaks, including Ebola virus disease and Middle East respiratory syndrome, emphasize the need for development of new innovative tools to manage these emerging diseases. Disseminating vaccines are one such novel approach to potentially interrupt animal to human (zoonotic) transmission of these pathogens.

  20. Induction of Stemlike Cells with Fibrogenic Properties by Carbon Nanotubes and Its Role in Fibrogenesis

    PubMed Central

    2015-01-01

    We developed a three-dimensional fibroblastic nodule model for fibrogenicity testing of nanomaterials and investigated the role of fibroblast stemlike cells (FSCs) in the fibrogenic process. We showed that carbon nanotubes (CNTs) induced fibroblastic nodule formation in primary human lung fibroblast cultures resembling the fibroblastic foci in clinical fibrosis and promoted FSCs that are highly fibrogenic and a potential driving force of fibrogenesis. This study provides a predictive 3D model and mechanistic insight on CNT fibrogenesis. PMID:24873662

  1. Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics

    NASA Astrophysics Data System (ADS)

    Buchoff, Michael; Hammer, Jim

    2015-11-01

    One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Solid Rocket Testing at AFRL (Briefing Charts)

    DTIC Science & Technology

    2016-10-21

    Force Research Laboratory (AFMC) AFRL /RQRO 8 Draco Drive Edwards AFB, CA 93524-7135 Air Force Research Laboratory (AFMC) AFRL /RQR 5 Pollux Drive...19b. TELEPHONE NUMBER (Include area code) 10/21/2016 Briefing Charts 01 October 2016 - 31 October 2016 Solid Rocket Testing at AFRL Robert Antypas Air ...Space Dominance MOJAVE BORONHWY 58 LANCASTER H IG H W A Y 14 RESERVATION BOUNDARY 0 5 10SCALE IN MILES HWY 395 EDWARDS

  3. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    PubMed

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.

  4. Forces Driving Chaperone Action

    PubMed Central

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C. A.

    2016-01-01

    SUMMARY It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client’s affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  5. Ball Screw Actuator Including a Stop with an Integral Guide

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  6. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host-Guest Recognition or Hydrophilic-Hydrophobic Interaction?

    PubMed

    Bai, Yang; Fan, Xiao-dong; Yao, Hao; Yang, Zhen; Liu, Ting-ting; Zhang, Hai-tao; Zhang, Wan-bin; Tian, Wei

    2015-09-03

    Tuning of the morphology and size of supramolecular self-assemblies is of theoretical and practical significance. To date, supramolecular driving forces in different solvents remain unclear. In this study, we first synthesized an amphiphilic β-cyclodextrin (β-CD) dimer that consists of one hydrophobic ibuprofen (Ibu) and two hydrophilic β-CD moieties (i.e., Ibu-CD2). Ibu-CD2 possesses double supramolecular driving forces, namely, the host-guest recognition and hydrophilic-hydrophobic interaction. The host-guest interaction of Ibu-CD2 induced the formation of branched supramolecular polymers (SPs) in pure water, whereas the hydrophilic-hydrophobic interaction generated spherical or irregular micelles in water/organic mixtures. The SP size increased with the increase in Ibu-CD2 concentration in pure water. By contrast, the size of micelles decreased with the increase in volume ratio of water in mixtures.

  7. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trendsmore » and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.« less

  8. Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment

    NASA Astrophysics Data System (ADS)

    Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor

    2015-11-01

    Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.

  9. Ethical Problems in the Practice of Organization Development.

    ERIC Educational Resources Information Center

    Wooten, Kevin C.; White, Louis P.

    1983-01-01

    This article discusses forces that affect the professional ethics of organizational development (OD). Both driving forces and restraining forces have influenced the current status of OD ethics. These forces have operated since the emergence of OD itself, and their fluctuating intensity results in the dynamic nature of the OD profession. (SSH)

  10. On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces

    NASA Astrophysics Data System (ADS)

    Goldobin, D. S.

    2017-12-01

    We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.

  11. Mechano-adaptation of the stem cell nucleus.

    PubMed

    Heo, Su-Jin; Cosgrove, Brian D; Dai, Eric N; Mauck, Robert L

    2018-01-01

    Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.

  12. Mechano-adaptation of the stem cell nucleus

    PubMed Central

    Heo, Su-Jin; Cosgrove, Brian D.; Dai, Eric N.; Mauck, Robert L.

    2018-01-01

    ABSTRACT Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this “mechano-adaptation” are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation. PMID:29099288

  13. Single-Cell Force Spectroscopy of Probiotic Bacteria

    PubMed Central

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.

    2013-01-01

    Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831

  14. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    PubMed

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  15. Collaborative development of land use change scenarios for analysing hydro-meteorological risk

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Glade, Thomas

    2015-04-01

    Simulating future land use changes remains a difficult task, due to uncontrollable and uncertain driving forces of change. Scenario development emerged as a tool to address these limitations. Scenarios offer the exploration of possible futures and environmental consequences, and enable the analysis of possible decisions. Therefore, there is increasing interest of both decision makers and researchers to apply scenarios when studying future land use changes and their consequences. The uncertainties related to generating land use change scenarios are among others defined by the accuracy of data, identification and quantification of driving forces, and the relation between expected future changes and the corresponding spatial pattern. To address the issue of data and intangible driving forces, several studies have applied collaborative, participatory techniques when developing future scenarios. The involvement of stakeholders can lead to incorporating a broader spectrum of professional values and experience. Moreover, stakeholders can help to provide missing data, improve detail, uncover mistakes, and offer alternatives. Thus, collaborative scenarios can be considered as more reliable and relevant. Collaborative scenario development has been applied to study a variety of issues in environmental sciences on different spatial and temporal scales. Still, these participatory approaches are rarely spatially explicit, making them difficult to apply when analysing changes to hydro-meteorological risk on a local scale. Spatial explicitness is needed to identify potentially critical areas of land use change, leading to locations where the risk might increase. In order to allocate collaboratively developed scenarios of land change, we combined participatory modeling with geosimulation in a multi-step scenario generation framework. We propose a framework able to develop scenarios that are plausible, can overcome data inaccessibility, address intangible and external driving forces of land change, and is transferable to other case study areas with different land use change processes and consequences. The framework starts with the involvement of stakeholders where driving forces of land use change are being studied by performing interviews and group discussions. In order to bridge the gap between qualitative methods and conventional geospatial techniques, we applied cognitive mapping and the Drivers-Pressures-State-Impact and Response framework (DPSIR) to develop a conceptual land use change model. This was later transformed into a spatially explicit land use change model based on remote sensing data, GIS and cellular automata spatial allocation. The methodology was developed and applied in a study area in the eastern Italian Alps, where the uncertainties regarding future urban expansion are high. Later, we transferred it to a study area in the Romanian Carpathians, where the identified prevailing process of land use change is deforestation. Both areas are subject to hydro-meteorological risk, posing a need for the analysis of the possible future spatial pattern and locations of land use change. The resulting scenarios enabled us, to point at identifying hot-spots of land use change, serving as a possible input for a risk assessment.

  16. Land use change and its driving forces toward mutual conversion in Zhangjiakou City, a farming-pastoral ecotone in Northern China.

    PubMed

    Liu, Chao; Xu, Yueqing; Sun, Piling; Huang, An; Zheng, Weiran

    2017-09-14

    Land use/cover change (LUCC), a local environmental issue of global importance, and its driving forces have been crucial issues in geography and environmental research. Previous studies primarily focused on major driving factors in various land use types, with few explorations of differences between driving forces of mutual land use type conversions, especially in fragile eco-environments. In this study, Zhangjiakou City, in a farming-pastoral ecotone in Northern China, was taken as an example to analyze land use change between 1989 and 2015, and explore the driving forces of mutual land use type conversions using canonical correlation analysis. Satellite images and government statistics, including social-economic and natural data, were used as sources. Arable land, forestland, and grassland formed the main land use structure. From 1989 to 2015 forestland, orchard land, and construction land significantly increased, while arable land, grassland, unused land, and water areas decreased. Conversions from grassland to forestland; from arable land to orchard land, forestland and construction land; and from unused land to grassland and forestland were the primary land use changes. Among these, the conversion from grassland to forestland had the highest ranking. Average annual precipitation and per capita net income of rural residents positively affected the conversion of arable land to forestland and unused land to grassland. GDP, total population, and urbanization rate contributed most significantly to converting arable land to construction land; total retail sales of social consumer goods, average annual temperature, and GDP had important positive influences in converting arable land to orchard land.

  17. Self-determined mechanisms in complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin

    2008-03-01

    Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.

  18. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng

    2012-06-01

    This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.

  19. Response characteristic of high-speed on/off valve with double voltage driving circuit

    NASA Astrophysics Data System (ADS)

    Li, P. X.; Su, M.; Zhang, D. B.

    2017-07-01

    High-speed on/off valve, an important part of turbocharging system, its quick response has a direct impact on the turbocharger pressure cycle. The methods of improving the response characteristic of high speed on/off valve include increasing the magnetic force of armature and the voltage, decreasing the mass and current of coil. The less coil number of turns, the solenoid force is smaller. The special armature structure and the magnetic material will raise cost. In this paper a new scheme of double voltage driving circuit is investigated, in which the original driving circuit of high-speed on/off valve is replaced by double voltage driving circuit. The detailed theoretical analysis and simulations were carried out on the double voltage driving circuit, it showed that the switching time and delay time of the valve respectively are 3.3ms, 5.3ms, 1.9ms and 1.8ms. When it is driven by the double voltage driving circuit, the switching time and delay time of this valve are reduced, optimizing its response characteristic. By the comparison related factors (such as duty cycle or working frequency) about influences on response characteristic, the superior of double voltage driving circuit has been further confirmed.

  20. 14. Main entrance to Gwing from Apollo Drive, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Main entrance to G-wing from Apollo Drive, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  1. A look at ligand binding thermodynamics in drug discovery.

    PubMed

    Claveria-Gimeno, Rafael; Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian

    2017-04-01

    Drug discovery is a challenging endeavor requiring the interplay of many different research areas. Gathering information on ligand binding thermodynamics may help considerably in reducing the risk within a high uncertainty scenario, allowing early rejection of flawed compounds and pushing forward optimal candidates. In particular, the free energy, the enthalpy, and the entropy of binding provide fundamental information on the intermolecular forces driving such interaction. Areas covered: The authors review the current status and recent developments in the application of ligand binding thermodynamics in drug discovery. The thermodynamic binding profile (Gibbs energy, enthalpy, and entropy of binding) can be used for lead selection and optimization (binding enthalpy, selectivity, and adaptability). Expert opinion: Binding thermodynamics provides fundamental information on the forces driving the formation of the drug-target complex. It has been widely accepted that binding thermodynamics may be used as a decision criterion along the ligand optimization process in drug discovery and development. In particular, the binding enthalpy may be used as a guide when selecting and optimizing compounds over a set of potential candidates. However, this has been recently called into question by arguing certain difficulties and in the light of certain experimental examples.

  2. Visualizing driving forces of spatially extended systems using the recurrence plot framework

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2017-12-01

    The increasing availability of highly resolved spatio-temporal data leads to new opportunities as well as challenges in many scientific disciplines such as climatology, ecology or epidemiology. This allows more detailed insights into the investigated spatially extended systems. However, this development needs advanced techniques of data analysis which go beyond standard linear tools since the more precise consideration often reveals nonlinear phenomena, for example threshold effects. One of these tools is the recurrence plot approach which has been successfully applied to the description of complex systems. Using this technique's power of visualization, we propose the analysis of the local minima of the underlying distance matrix in order to display driving forces of spatially extended systems. The potential of this novel idea is demonstrated by the analysis of the chlorophyll concentration and the sea surface temperature in the Southern California Bight. We are able not only to confirm the influence of El Niño events on the phytoplankton growth in this region but also to confirm two discussed regime shifts in the California current system. This new finding underlines the power of the proposed approach and promises new insights into other complex systems.

  3. Mechanistic insights into energy conservation by flavin-based electron bifurcation.

    PubMed

    Lubner, Carolyn E; Jennings, David P; Mulder, David W; Schut, Gerrit J; Zadvornyy, Oleg A; Hoben, John P; Tokmina-Lukaszewska, Monika; Berry, Luke; Nguyen, Diep M; Lipscomb, Gina L; Bothner, Brian; Jones, Anne K; Miller, Anne-Frances; King, Paul W; Adams, Michael W W; Peters, John W

    2017-06-01

    The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. The unprecedented range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.

  4. Quantized transport for a skyrmion moving on a two-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-03-01

    We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular ( ) and parallel ( ) to the external drive direction: / =n /m , where n and m are integers. The skyrmion passes through a series of directional locking phases in which the motion is locked to certain symmetry directions of the substrate for fixed intervals of the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions into and out of these locked phases take the form of pronounced cusps in the skyrmion velocity versus force curves, as well as regions of negative differential mobility in which the net skyrmion velocity decreases with increasing external driving force. The number of steps in the transport curve increases when the relative strength of the Magnus term is increased. We also observe an overshoot phenomena in the directional locking, where the skyrmion motion can lock to a Hall angle greater than the clean limit value and then jump back to the lower value at higher drives. The skyrmion-substrate interactions can also produce a skyrmion acceleration effect in which, due to the nondissipative dynamics, the skyrmion velocity exceeds the value expected to be produced by the external drive. We find that these effects are robust for different types of periodic substrates. Using a simple model for a skyrmion interacting with a single pinning site, we can capture the behavior of the change in the Hall angle with increasing external drive. When the skyrmion moves through the pinning site, its trajectory exhibits a side step phenomenon since the Magnus term induces a curvature in the skyrmion orbit. As the drive increases, this curvature is reduced and the side step effect is also reduced. Increasing the strength of the Magnus term reduces the range of impact parameters over which the skyrmion can be captured by a pinning site, which is one of the reasons that strong Magnus force effects reduce the pinning in skyrmion systems.

  5. The effect of competition on heart rate during kart driving: A field study.

    PubMed

    Matsumura, Kenta; Yamakoshi, Takehiro; Yamakoshi, Yasuhiro; Rolfe, Peter

    2011-09-09

    Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength.

  6. The effect of competition on heart rate during kart driving: A field study

    PubMed Central

    2011-01-01

    Background Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. Findings The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). Conclusions The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength. PMID:21906298

  7. Domain Wall Evolution in Phase Transforming Oxides

    DTIC Science & Technology

    2015-01-14

    configumtions under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between -1...configurations under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between...Extensive domain wall motion and deaging resistance in morphotropic 0.55Bi(Ni1/2Ti1/2)O3–0.45PbTiO3 polycrystalline ferroelectrics, Applied Physics Letters

  8. Application of Laser Ranging and VLBI Data to a Study of Plate Tectonic Driving Forces

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The conditions under which changes in plate driving or resistive forces associated with plate boundary earthquakes are measurable with laser ranging or very long base interferometry were investigated. Aspects of plate forces that can be characterized by such measurements were identified. Analytic solutions for two dimensional stress diffusion in a viscoelastic plate following earthquake faulting on a finite fault, finite element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting, and quantitative constraints from modeling of global intraplate stress on the magnitude of deviatoric stress in the lithosphere are among the topics discussed.

  9. Theoretical analysis of the formation driving force and decreased sensitivity for CL-20 cocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Jun-Hong; Shi, Liang-Wei; Zhang, Chao-Yang; Li, Hong-Zhen; Chen, Min-Bo; Chen, Wei-Ming

    2016-07-01

    Methods that analyze the driving force in the formation of the new energetic cocrystal are proposed in this paper. Various intermolecular interactions in the 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,9.03,11]dodecane (CL-20) cocrystals are compared with those in pure CL-20 and coformer crystals by atom in molecule (AIM) and Hirshfeld surface methods under the supramolecular cluster model. The driving force in the formation of the CL-20 cocrystals is analyzed. The main driving force in the formation of the cocrystal CL-20/HMX comes from the O···H interactions, that in the formation of the cocrystal CL-20/TNT from the O···H and C···O interactions, and that in the formation of the cocrystal CL-20/BTF from the N···H and N···O interactions. Other interactions in the CL-20 cocrystals only contribute to their stabilization. At the same time, the reasons for the decreased impact sensitivity of the CL-20 cocrystals are also analyzed. They are the strengthening of the intermolecular interactions, the reducing of the free space, and the changing of the surrounding of CL-20 molecule in the CL-20 cocrystals in comparison with those in the pure CL-20 crystal.

  10. [Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China].

    PubMed

    Shen, Lu; Tian, Mei-rong; Gao, Ji-xi; Qian, Jin-ping

    2016-01-01

    Soil erosion is an important ecological and environmental problem in Hunshandake Desert, and the sand-fixing function determines the degree of ecological security in the entire region. In order to clarify the situation of windbreak and sand fixation in Hunshandake area, and to guide the prevention and treatment of desertification on regional scale, based on the meteorological and remote sensing data, this paper quantitatively analyzed the temporal and spatial pattern of windbreak and sand fixation ability between 2000-2010 by the revised wind erosion equation (RWEQ) model, meanwhile, the driving forces for each county ( or banner) in the functional zone were analyzed with the method of principal component analysis. The results showed that there was a fluctuation of the sand fixing capacity in Hunshandake over time, generally rendering a decline trend. The coniferous forest and grassland had strong windbreak and sand fixation capacity in unit area among the various land categories. In terms of spatial distribution, the windbreak and sand fixation function in western and southeastern region was weak and needed to be strengthened with ecological restoration efforts. Through the study of the social driving forces of each administrative region in the function zone, there were 3 main social driving forces of soil erosion in the administrative functions: the intensity of input-output, the level of economic development and the level of agriculture-husbandry development.

  11. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  12. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes.

    PubMed

    Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang

    2014-01-01

    We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.

  13. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  14. 8. Drainage ditch from the corner of Apollo Drive and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Drainage ditch from the corner of Apollo Drive and SAC Boulevard looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  15. 17. View of Mercury Avenue from Apollo Drive, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View of Mercury Avenue from Apollo Drive, looking north at E-wing - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  16. Toward Greater Cooperation? FM 100-5 and AFDD 1

    DTIC Science & Technology

    1997-05-22

    complementary with respect to technological superiority, information dominance , and asymmetric force application. Both the Army and the Air Force are...Force have the same understanding of technology superiority, information dominance and asymmetric force application. Differences in emphasis on the...for military operations while the Air Force views technology as the driving factor for military capability. Both services understand that information

  17. A two degrees-of-freedom piezoelectric single-crystal micromotor

    NASA Astrophysics Data System (ADS)

    Chen, Zhijiang; Li, Xiaotian; Liu, Guoxi; Dong, Shuxiang

    2014-12-01

    A two degrees-of-freedom (DOF) ultrasonic micromotor made of piezoelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal square-bar (dimensions 2 × 2 × 9 mm3) was developed. The PIN-PMN-PT square-bar stator can generate standing wave elliptical motions in two orthogonal vertical planes by combining the first longitudinal and second bending vibration modes, enabling it to drive a slider in two orthogonal directions. The relatively large driving forces of 0.25 N and motion speed of 35 mm/s were obtained under a voltage of 80 Vpp at its resonance frequency of 87.5 kHz. The proposed micromotor has potential for applications in micro robots, cell manipulators, and digital cameras as a two-DOF actuator.

  18. Contact position sensor using constant contact force control system

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay (Inventor)

    1995-01-01

    A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).

  19. Head tilt during driving.

    PubMed

    Zikovitz, D C; Harris, L R

    1999-05-01

    In order to distinguish between the use of visual and gravito-inertial force reference frames, the head tilt of drivers and passengers were measured as they went around corners at various speeds. The visual curvature of the corners were thus dissociated from the magnitude of the centripetal forces (0.30-0.77 g). Drivers' head tilts were highly correlated with the visually-available estimate of the curvature of the road (r2=0.86) but not with the centripetal force (r2<0.1). Passengers' head tilts were inversely correlated with the lateral forces (r2=0.3-0.7) and seem to reflect a passive sway. The strong correlation of the tilt of drivers' heads with a visual aspect of the road ahead, supports the use of a predominantly visual reference frame for the driving task.

  20. Driving morphological changes in magnetic nanoparticle structures through the application of acoustic waves and magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Ann; Miansari, Morteza; Friend, James

    The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves (SAW), together with the many applications of magnetic nanoparticles-whether individual or in arrays-underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are currently difficult to produce yet offer many advantages over individual nanoparticles in suspension. Making use of the scale of the structures formed, 10-9 to 10-5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change from loosely connected chains to loops of 10 -100 particles. Adding the acoustic field drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. Clear morphology transitions are present and depend on the relative amplitude of the incident Brownian, Bjerknes, and magnetic forces. UCSD: Frontiers of Innovation Scholars Program (U-1024).

  1. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.)

    PubMed Central

    Knipfer, Thorsten; Fricke, Wieland

    2011-01-01

    Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about –0.15 MPa. PMID:20974734

  2. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    PubMed

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  3. Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.

    PubMed

    Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi

    2015-01-01

    EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.

  4. Numerical Simulation of Permeation from Deposited Droplets: Model Expansion

    DTIC Science & Technology

    1992-04-01

    This is primarily due to the low vapor pressures of chemical agent simulants, which minimize the driving forces for diffusion through the gas-phase...was presented at the November 1990 CRDEC Scientific Conference on Chemical Defense Research (4]. Previous work in this area also includes a substantial...most of the overall chemical poten- tial driving force is dissipated in the gas, not the membrane phase). 1.0 l 0.9-0 A 0 0.8 - 0.7 C 0.6,, 0.00 0.25

  5. Aquatic toxicology: fact or fiction?

    PubMed Central

    Macek, K J

    1980-01-01

    A brief history of the development of the field of aquatic toxicology is provided. In order to provide a perspective on the state-of-the-art in aquatic toxicology relative to classical toxicology, the two fields are compared from the standpoint of the type of scientist practicing each field, the respective objectives of each, the forces which drive the activity in each field, and the major advantages and disadvantages accruing to the practitioner of aquatic toxicology as a result of the differences in objectives and driving forces. PMID:6993200

  6. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    PubMed

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.

  7. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  8. Design optimization of dual-axis driving mechanism for satellite antenna with two planar revolute clearance joints

    NASA Astrophysics Data System (ADS)

    Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang

    2018-03-01

    In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.

  9. Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)?

    PubMed Central

    Suku, Shimi; Knipfer, Thorsten; Fricke, Wieland

    2014-01-01

    Background and Aims As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake. Methods Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9–13, 14–18, 19–23 and 24–28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lpr). Osmotic Lp of individual seminal and adventitious roots and osmotic Lpr of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lpr of the root system was derived from analyses of transpiring plants. Key Results Although osmotic and hydrostatic Lp and Lpr values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lpr of entire root systems and hydrostatic Lpr of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages. Conclusions Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative development. PMID:24287810

  10. Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)?

    PubMed

    Suku, Shimi; Knipfer, Thorsten; Fricke, Wieland

    2014-02-01

    As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake. Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9-13, 14-18, 19-23 and 24-28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lp(r)). Osmotic Lp of individual seminal and adventitious roots and osmotic Lp(r) of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lp(r) of the root system was derived from analyses of transpiring plants. Although osmotic and hydrostatic Lp and Lp(r) values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lp(r) of entire root systems and hydrostatic Lp(r) of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages. Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative development.

  11. Cross-shaped torsional spring

    DOEpatents

    Williamson, Matthew M.; Pratt, Gill A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  12. Spatial multibody modeling and vehicle dynamics analysis of advanced vehicle technologies

    NASA Astrophysics Data System (ADS)

    Letherwood, Michael D.; Gunter, David D.; Gorsich, David J.; Udvare, Thomas B.

    2004-08-01

    The US Army vision, announced in October of 1999, encompasses people, readiness, and transformation. The goal of the Army vision is to transition the entire Army into a force that is strategically responsive and dominant at every point of the spectrum of operations. The transformation component will be accomplished in three ways: the Objective Force, the Legacy (current) Force, and the Interim Force. The objective force is not platform driven, but rather the focus is on achieving capabilities that will operate as a "system of systems." As part of the Objective Force, the US Army plans to begin production of the Future Combat System (FCS) in FY08 and field the first unit by FY10 as currently defined in the FCS solicitation(1). As part of the FCS program, the Future Tactical Truck System (FTTS) encompasses all US Army tactical wheeled vehicles and its initial efforts will focus only on the heavy class. The National Automotive Center (NAC) is using modeling and simulation to demonstrate the feasibility and operational potential of advanced commercial and military technologies with application to new and existing tactical vehicles and to describe potential future vehicle capabilities. This document will present the results of computer-based, vehicle dynamics performance assessments of FTTS concepts with such features as hybrid power sources, active suspensions, skid steering, and in-hub electric drive motors. Fully three-dimensional FTTS models are being created using commercially available modeling and simulation methodologies such as ADAMS and DADS and limited vehicle dynamics validation studies are will be performed.

  13. 92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ASH REMOVAL DOORS. NOTE STOKER LINE SHAFT DRIVE UNDER CEILING. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  14. 77 FR 67343 - Procurement List; Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Metropolitan Airport (RMMA), Air Traffic Control Tower (ATCT) & Base Building, 11001 Control Tower Drive...: Department of the Air Force (5700)/Eielson Air Force Base (FA 5004), Eielson AFB, AK. [[Page 67344

  15. The Air Force Research Laboratory’s In-Space Propulsion Program

    DTIC Science & Technology

    2015-02-01

    Air Force Research Laboratory (AFMC) AFRL /RQRS 1 Ara...MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RQR 5 Pollux Drive 11. SPONSOR/MONITOR’S REPORT Edwards AFB CA 93524-7048 NUMBER(S) AFRL ...illustrate the rationale behind AFRL’s technology development strategy. INTRODUCTION The Air Force Research Laboratory ( AFRL ) is the technology

  16. Heightened eating drive and visual food stimuli attenuate central nociceptive processing

    PubMed Central

    Li, Xiaoyun; Fallon, Nicholas B.; Giesbrecht, Timo; Thomas, Anna; Harrold, Joanne A.; Halford, Jason C. G.; Stancak, Andrej

    2014-01-01

    Hunger and pain are basic drives that compete for a behavioral response when experienced together. To investigate the cortical processes underlying hunger-pain interactions, we manipulated participants' hunger and presented photographs of appetizing food or inedible objects in combination with painful laser stimuli. Fourteen healthy participants completed two EEG sessions: one after an overnight fast, the other following a large breakfast. Spatio-temporal patterns of cortical activation underlying the hunger-pain competition were explored with 128-channel EEG recordings and source dipole analysis of laser-evoked potentials (LEPs). We found that initial pain ratings were temporarily reduced when participants were hungry compared with fed. Source activity in parahippocampal gyrus was weaker when participants were hungry, and activations of operculo-insular cortex, anterior cingulate cortex, parahippocampal gyrus, and cerebellum were smaller in the context of appetitive food photographs than in that of inedible object photographs. Cortical processing of noxious stimuli in pain-related brain structures is reduced and pain temporarily attenuated when people are hungry or passively viewing food photographs, suggesting a possible interaction between the opposing motivational forces of the eating drive and pain. PMID:25475348

  17. NEWS ARTICLES

    Science.gov Websites

    CENTCOM: Search CENTCOM CENTCOM Home ABOUT US COMMAND NARRATIVE LEADERSHIP COMPONENT COMMANDS HISTORY , security forces May 14, 2018 Syrian Democratic Forces fire in self-defense May 11, 2018 Military Strikes against Daesh terrorists in Iraq and Syria May 04, 2018 Syrian Democratic Forces announce drive to reclaim

  18. Nonlinear dynamics of a magnetically driven Duffing-type spring-magnet oscillator in the static magnetic field of a coil

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2012-11-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet-coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels.

  19. Probing the stereoselective interaction of ofloxacin enantiomers with corresponding monoclonal antibodies by multiple spectrometry

    NASA Astrophysics Data System (ADS)

    Mu, Hongtao; Xu, Zhenlin; Liu, Yingju; Sun, Yuanming; Wang, Baoling; Sun, Xiulan; Wang, Zhanhui; Eremin, Sergei; Zherdev, Anatoly V.; Dzantiev, Boris B.; Lei, Hongtao

    2018-04-01

    Although stereoselective antibody has immense potential in chiral compounds detection and separation, the interaction traits between stereoselective antibody and the corresponding antigenic enantiomers are not yet fully exploited. In this study, the stereospecific interactions between ofloxacin isomers and corresponding monoclonal antibodies (McAb-WR1 and McAb-MS1) were investigated using time-resolved fluorescence, steady-state fluorescence, and circular dichroism (CD) spectroscopic methods. The chiral recognition discrepancies of antibodies with ofloxacin isomers were reflected through binding constant, number of binding sites, driving forces and conformational changes. The major interacting forces of McAb-WR1 and McAb-MS1 chiral interaction systems were hydrophobic force and van der Waals forces joined up with hydrogen bonds, respectively. Synchronous fluorescence spectra and CD spectra results showed that the disturbing of tyrosine and tryptophan micro-environments were so slightly that no obvious secondary structure changes were found during the chiral hapten binding. Clarification of stereospecific interaction of antibody will facilitate the application of immunoassay to analyze chiral contaminants in food and other areas.

  20. Movement of Cations through Cuticles of Citrus aurantium and Acer saccharum1

    PubMed Central

    Tyree, Melvin T.; Tabor, Christopher A.; Wescott, Charles R.

    1990-01-01

    We examined some biophysical mechanisms of ion migration across leaf cuticles enzymatically isolated from Acer saccharum L. and Citrus aurantium L. leaves. Diffusion potential measurements were used to calculate the permeabilities of Cl-, Li+, Na+, and Cs+ ions all as a ratio with respect to the permeability of K+ in cuticles. In 2 millimolar ionic strength solutions the permeability sequence from high to low was K = Cs > Na > Li » Cl. When the outer and inner surfaces of cuticles were bathed in artificial precipitation and artificial apoplast, respectively, diffusion potentials ranging from −52 to −91 millivolts were measured (inside negative). The Goldman equation predicted that the measured potentials were enough to increase the driving force on the accumulation of heavy metals by a factor of 4 to 7. Other ions migrate with forces 3 to 10 times less than predicted by the Goldman equation for concentration differences alone. Our analysis showed that Ca2+, and perhaps Mg2+, might even be accumulated against concentration gradients under some circumstances. Their uptake was apparently driven by the diffusion potentials created by the outward migration of monovalent salts. We feel that future models predicting leaching of nutrients from trees during acid rain events must be modified to account for the probable influence of diffusion potentials on ion migration. PMID:16667677

  1. Kinesthetic coupling between operator and remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Salisbury, J. K., Jr.

    1980-01-01

    A universal force-reflecting hand controller has been developed which allows the establishment of a kinesthetic coupling between the operator and a remote manipulator. The six-degree-of-freedom controller was designed to generate forces and torques on its three positional and three rotational axes in order to permit the operator to accurately feel the forces encountered by the manipulator and be as transparent to operate as possible. The universal controller has been used in an application involving a six-degree-of-freedom mechanical arm equipped with a six-dimensional force-torque sensor at its base. In this application, the hand controller acts as a position control input device to the arm, while forces and torques sensed at the base of the mechanical hand back drive the hand controller. The positional control relation and the back driving of the controller according to inputs experienced by the force-torque sensor are established through complex mathematical transformations performed by a minicomputer. The hand controller is intended as a development tool for investigating force-reflecting master-slave manipulator control technology.

  2. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.

    PubMed

    Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David

    2014-08-01

    In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.

  3. 15. Threequarter view of Gwing from intersection of Apollo Drive ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Three-quarter view of G-wing from intersection of Apollo Drive and Mercury Avenue, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  4. Optimization of spent fuel pool weir gate driving mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang

    2018-04-01

    Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.

  5. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1991-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  6. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  7. Exercise tricycle for paraplegics.

    PubMed

    Gföhler, M; Loicht, M; Lugner, P

    1998-01-01

    The work describes a tricycle that can be used by paraplegics without assistance. Paraplegics can get on and off the tricycle independently, using hydraulic adjustment of the saddle height. The two rear wheels can be swivelled with adjustable hydraulic damping, which avoids the stability problems of a standard tricycle when riding around bends. The principal driving power is assumed to be provided by functional electrical stimulation of the femoral muscles. A hub motor is integrated in the front wheel to increase the radius of action, as additional drive for cycling up gradients and in case muscle force is not sufficient. The desired drive power is adjusted by a throttle grip on the handlebar. The percentage of motor power can also be adjusted. The force applied to the pedal, the absolute angular position of the crank, and the angular velocity of the front wheel are continuously measured by a force measurement pedal and a goniometer. Based on this information, the motor and the functional electrical stimulation of the legs are controlled.

  8. Self-gravity and dissipation in polar rings

    NASA Technical Reports Server (NTRS)

    Dubinski, John; Christodoulou, Dimitris M.

    1994-01-01

    Studies of inclined rings inside galaxy potentials have mostly considered the influence of self-gravity and viscous dissipation separately. In this study, we construct models of highly inclined ('polar') rings in an external potential including both self-gravity and dissipation due to a drag force. We do not include pressure forces and thus ignore shock heating that dominates the evolution of gaseous rings inside strongly nonspherical potentials. We adopt an oblate spheroidal scale-free logarithmic potential with axis ratio q = 0.85 and an initial inclination of 80 deg for the self-gravitating rings. We find that stellar (dissipationless) rings suffer from mass loss during their evolution. Mass loss also drives a secular change of the mean inclination toward the poles of the potential. As much as half of the ring mass escapes in the process and forms an inner and an outer shell of precessing orbits. If the remaining mass is more than approximately 0.02 of the enclosed galaxy mass, rings remain bound and do not fall apart from differential precession. The rings precess at a constant rate for more than a precession period tau(sub p) finding the configuration predicted by Sparke in 1986 which warps at larger radii toward the poles of the potential. We model shear viscosity with a velocity-dependent drag force and find that nuclear inflow dominates over self-gravity if the characteristic viscous inflow time scale tau(sub vi) is shorter than approximately 25(tau(sub p)). Rings with (tau(sub vi))/(tau(sub p)) less than or approximately equal to 25 collapse toward the nucleus of the potential within one precession period independent of the amount of self-gravity. Our results imply that stars and gas in real polar rings exhibit markedly different dynamical evolutions.

  9. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-10-20

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  10. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  11. Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-06-08

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  12. Properties of piezoresistive silicon nano-scale cantilevers with applications to BioNEMS

    NASA Astrophysics Data System (ADS)

    Arlett, Jessica Lynn

    Over the last decade a great deal of interest has been raised in applications of Microelectromechanical Sensors [MEMS] for the detection of biological molecules and to the study of their forces of interaction. Experiments in these areas have included Force Spectroscopy (Chemical Force Microscopy), MEMS patch clamp technology, and surface stress sensors. All of these technologies suffer from limitations on temporal response and involve devices with active surface areas that are large compared to molecular dimensions. Biofunctionalized nanoelectromechanical systems (BioNEMS) have the potential to overcome both of these hurdles, offering important new prospects for single-molecule force assays that are amenable to large scale integration. Results are presented here on the characterization of piezoresistive silicon cantilevers with applications to BioNEMS devices. The cantilevers were characterized by studying their response in gaseous ambients under a number of drive conditions including magnetic, piezoelectric, and thermal actuation, in addition to passive detection of the thermomechanical response. The measurements were performed at liquid helium temperature, at room temperature, and over a range of pressures (atmospheric pressure to 30mT). Theoretical studies have been performed on the response of these devices to Brownian fluctuations in fluid, on the feasibility of these devices as surface stress sensors, and on improvements in device design as compared to piezoresistive surface stress sensors currently discussed in the literature. The devices were encapsulated in microfluidics and measurements were performed to show the noise floor in fluid. The piezoresistive response of the device in fluid was shown through the use of pulsatory fluidic drive. As a proof of concept, biodetection experiments are presented for biotin labeled beads. The biofunctionalization for the latter experiment was performed entirely within the microfluidics. A discussion of how these experiments can be extended to other cells, spores, and molecules is presented.

  13. Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces

    NASA Astrophysics Data System (ADS)

    Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica

    2017-06-01

    Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.

  14. INCREASED VOLUNTARY DRIVE IS ASSOCIATED WITH CHANGES IN COMMON OSCILLATIONS FROM 13 TO 60 HZ OF INTERFERENCE BUT NOT RECTIFIED ELECTROMYOGRAPHY

    PubMed Central

    NETO, OSMAR P.; BAWEJA, HARSIMRAN S.; CHRISTOU, EVANGELOS A.

    2013-01-01

    The purpose of this study was to compare the capability of interference and rectified electromyography (EMG) to detect changes in the beta (13–30-HZ) and Piper (30–60-HZ) bands when voluntary force is increased. Twenty adults exerted a constant force abduction of the index finger at 15% and 50% of maximum. The common oscillations at various frequency bands (0–500 HZ) were estimated from the first dorsal interosseous muscle using cross wavelets of interference and rectified EMG. For the interference EMG signals, normalized power significantly (P < 0.01) increased with force in the beta (9.0 ± 0.9 vs. 15.5 ± 2.1%) and Piper (13.6 ± 0.9 vs. 21 ± 1.7%) bands. For rectified EMG signals, however, the beta and Piper bands remained unchanged (P > 0.4). Although rectified EMG is used in many clinical studies to identify changes in the oscillatory drive to the muscle, our findings suggest that only interference EMG can accurately capture the increase in oscillatory drive from 13 to 60 HZ with voluntary force. PMID:20589885

  15. Nonlinear resonances and antiresonances of a forced sonic vacuum

    DOE PAGES

    Pozharskiy, D.; Zhang, Y.; Williams, M. O.; ...

    2015-12-23

    We consider a harmonically driven acoustic medium in the form of a (finite length) highly nonlinear granular crystal with an amplitude- and frequency-dependent boundary drive. Despite the absence of a linear spectrum in the system, we identify resonant periodic propagation whereby the crystal responds at integer multiples of the drive period and observe that this can lead to local maxima of transmitted force at its fixed boundary. In addition, we identify and discuss minima of the transmitted force (“antiresonances”) between these resonances. Representative one-parameter complex bifurcation diagrams involve period doublings and Neimark-Sacker bifurcations as well as multiple isolas (e.g., ofmore » period-3, -4, or -5 solutions entrained by the forcing). We combine them in a more detailed, two-parameter bifurcation diagram describing the stability of such responses to both frequency and amplitude variations of the drive. This picture supports a notion of a (purely) “nonlinear spectrum” in a system which allows no sound wave propagation (due to zero sound speed: the so-called sonic vacuum). As a result, we rationalize this behavior in terms of purely nonlinear building blocks: apparent traveling and standing nonlinear waves.« less

  16. Is the 2nd Law of Thermodynamics Conditioned? Separating Heat and Cold by a Magnetic Body Force and the Principle for a Non-Carnot Engine

    NASA Astrophysics Data System (ADS)

    Luo, Weili

    2017-11-01

    A new type of heat engine has been proposed in 2005 that defies fundamental thermodynamic law: A specifically designed magnetic body force can reverse heat flow from high temperature to low temperature. This mechanism can drive heat to higher temperature, rendering the possibility to re-use the ``waste heat''. As the result, the efficiency is much higher than that of the Carnot Engine. In a recent paper a realization of this proposed mechanism is reported: by using a specific configuration of temperature and magnetic field gradients, we observed that magnetic body force suppresses the gravito-thermal convective heat when the gradients of temperature and field are anti-parallel to each other. This driving force stops the heat flow of approaching to thermal equilibrium in the system, causing the temperature difference across the sample to increase with applied fields. In this work, I will discuss the driving mechanism for this phenomenon and its application in the proposed engine. This remarkable result suggests that the 2nd law of thermodynamics maybe conditioned and needs to be re-examined.

  17. Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Chang, S.-Y.; Booth, S. G.; Uehara, A.; Mosselmans, J. F. W.; Cibin, G.; Pham, V.-T.; Nataf, L.; Dryfe, R. A. W.; Schroeder, S. L. M.

    2016-05-01

    Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited.

  18. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  19. Mechanistic insights into energy conservation by flavin-based electron bifurcation

    DOE PAGES

    Lubner, Carolyn E.; Jennings, David P.; Mulder, David W.; ...

    2017-04-10

    The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. As a result, the unprecedentedmore » range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.« less

  20. Mechanistic insights into energy conservation by flavin-based electron bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubner, Carolyn E.; Jennings, David P.; Mulder, David W.

    The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. As a result, the unprecedentedmore » range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.« less

  1. Study of scratch drive actuator force characteristics

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Brown, J. Gordon; Uttamchandani, Deepak

    2002-11-01

    Microactuators are one of the key components in MEMS technology, and various designs have been realized through different fabrication processes. One type of microactuator commonly used is the scratch drive actuator (SDA) that is frequently fabricated by surface micromachining processes. An experimental investigation has been conducted on the force characteristics of SDAs fabricated using the JDSU Microsystems MUMPs process. One-, two-, three- and four-plate SDAs connected to box-springs have been designed and fabricated for these experiments using MUMPs run 44. The spring constant for the box-springs has been calculated by FEM using ANSYS software. The product of the spring constant and spring extension is used to measure the forces produced by these SDAs. It is estimated that the forces produced exceed 250 μN from a one-plate SDA and 850 μN from a four-plate SDA.

  2. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    PubMed

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  3. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Nuclear Treaty... meetings. SUMMARY: The Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification will... Applications International Corporation, 4001 North Fairfax Drive, Suite 300, Arlington, VA. FOR FURTHER...

  4. Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics

    NASA Astrophysics Data System (ADS)

    Kurzweil, Yair; Head-Gordon, Martin

    2009-07-01

    We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.

  5. Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzweil, Yair; Head-Gordon, Martin

    2009-07-15

    We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchangemore » (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.« less

  6. Optical Kapitza pendulum

    NASA Astrophysics Data System (ADS)

    Jones, Philip H.; Smart, Thomas J.; Richards, Christopher J.; Cubero, David

    2016-09-01

    The Kapitza pendulum is the paradigm for the phenomenon of dynamical stabilization, whereby an otherwise unstable system achieves a stability that is induced by fast modulation of a control parameter. In the classic, macroscopic Kapitza pendulum, a rigid pendulum is stabilized in the upright, inverted pendulum using a particle confined in a ring-shaped optical trap, subject to a drag force via fluid flow and driven via oscillating the potential in a direction parallel to the fluid flow. In the regime of vanishing Reynold's number with high-frequency driving the inverted pendulum is no longer stable, but new equilibrium positions appear that depend on the amplitude of driving. As the driving frequency is decreased a yet different behavior emerges where stability of the pendulum depends also on the details of the pendulum hydrodynamics. We present a theory for the observed induced stability of the overdamped pendulum based on the separation of timescales in the pendulum motion as formulated by Kapitza, but with the addition of a viscous drag. Excellent agreement is found between the predicted behavior from the analytical theory and the experimental results across the range of pendulum driving frequencies. We complement these results with Brownian motion simulations, and we characterize the stabilized pendulum by both time- and frequency-domain analyses of the pendulum Brownian motion.

  7. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    PubMed

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Electromagnetic brake/clutch device

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1994-01-01

    An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

  9. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  10. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  11. Robust global ocean cooling trend for the pre-industrial Common Era

    NASA Astrophysics Data System (ADS)

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-09-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  12. Robust global ocean cooling trend for the pre-industrial Common Era

    USGS Publications Warehouse

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-01-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  13. Contact control for advanced applications of light weight arms

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.; Kwon, Dong-Soo

    1991-01-01

    Many applications of robotic and teleoperated manipulator arms require operation in contact and non-contact regimes. This paper deals with both regimes and the transition between them with special attention given to problems of flexibility in the links and drives. This is referred to as contact control. Inverse dynamics is used to plan the tip motion of the flexible link so that the free motion can stop very near the contact surface without collision due to overshoot. Contact must occur at a very low speed since the high frequency impact forces are too sudden to be affected by any feedback generated torques applied to a joint at the other end of the link. The effect of approach velocity and surface properties are discussed. Force tracking is implemented by commands to the deflection states of the link and the contact force. This enables a natural transition between tip position and tip force control that is not possible when the arm is treated as rigid. The effect of feedback gain, force trajectory, and desired final force are of particular interest and are studied. Experimental results are presented on a one link arm and the system performance in the overall contact task is analyzed. Extension to multi-link cases with potential applications are discussed.

  14. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.

  15. Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field

    NASA Astrophysics Data System (ADS)

    Van de Put, Maarten L.; Sorée, Bart; Magnus, Wim

    2017-12-01

    The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non-locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time-evolution of a one-dimensional resonant tunneling diode driven out of equilibrium.

  16. Battles between an insurgent army and an advanced army - focus on strategy

    NASA Astrophysics Data System (ADS)

    Sen, Surajit; Shanahan, Linda

    2008-03-01

    Detailed and aggregate analyses of the outcome of past battles focusing on rates of troop losses or on the ratios of forces on each side is at the heart of present knowledge about battles. Here we present non-equilibrium statistical mechanics based studies of possible outcomes of well matched strategic battles by a ``blue'' army against insurgency based attacks by well matched opponents in a ``red'' army in red territory. We assume that the red army attacks with randomly varying force levels to potentially confuse and drive the blue's strategies. The temporal evolution of the model battles incorporate randomness in the deployment of the reds and hence possess attendant history dependence. Our results reveal that while unpredictable events play a major role in battles, a balance between risk of exposure in a battlefield and the use of short range intelligence is needed in determining whether one side can decimate the other, and hence force a battle to end.

  17. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  18. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.

    2014-01-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864

  19. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    PubMed

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  20. 6. Interior, rear offices: operations assistant office looking north toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior, rear offices: operations assistant office looking north toward security operations officer's office. - Ellsworth Air Force Base, Rushmore Air Force Station, Security Central Control Building, Quesada Drive, Blackhawk, Meade County, SD

  1. --No Title--

    Science.gov Websites

    when his car went into a ravine due to high waters. 8/8/2013 MO Jane McDonald 69 F Road Driving Brush Road Driving Appears victim tried to drive through high water on a road, but stalled. Got out to try the flooded area of a street when his car was swept away by the forceful current off of the road and

  2. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation.

    PubMed

    Sanjeev, Airy; Sahu, Ravi Kumar; Mattaparthi, Venkata Satish Kumar

    2017-11-01

    Self-association of α-synuclein (αS) into pathogenic oligomeric species and subsequent formation of highly ordered amyloid fibrils is linked to the Parkinson's disease. So most of the recent studies are now focused on the development of potential therapeutic strategies against this debilitating disease. β-synuclein (βS), a presynaptic protein that co-localizes with αS has been recently reported to act as an inhibitor of αS self-assembly. But the specificity of molecular interaction, nature and location between αS/βS is not known despite the potential importance of βS as an inhibitor of αS. We used molecular dynamics and potential of mean force (PMF) to study association of αS/βS and αS/αS. The calculated PMF indicates that contact wells are significantly deeper and presence of a minimum at αS/βS separation of 13.5 Å with a free energy barrier of 40 kcal/mol. We observed the dissociation energy barrier to be two times higher for the hetero-dimer (αS/βS) than the homo-dimer (αS/αS). We also carried out umbrella samplings involving two degrees of freedom (one being the distance between the monomeric units and the other angle between the long axes of the two monomeric chains) and observed similar PMF profile. We noticed relatively stronger range of transient interactions between the monomeric units in hetero-dimer (αS/βS) than homo-dimer (αS/αS). So our findings suggest that αS readily combines with βS to form hetero-dimer than combining with itself in forming homo-dimer. Hence we see predominant transient interactions between αS and βS can be used to drive inhibition of αS aggregation.

  3. Color constrasts in advertising: facade colors of food and drink consumption venues

    NASA Astrophysics Data System (ADS)

    Hutchings, John

    2002-06-01

    The building facade has a visually defined impact and there are numerous forces driving the choice of colors used. Commercial premises such as pubs, restaurants and bars are normally but not always clearly marked as such. Although we human beings can have the option of free choice in the colors we use around the home there are numerous positive driving forces dictating those we use in business life. Many of these factors have been identified. They depend on the type of population these venues serve, their geography and their traditions.

  4. The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Owocki, Stanley P.

    1995-01-01

    We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.

  5. Effects of work zone configurations and traffic density on performance variables and subjective workload.

    PubMed

    Shakouri, Mahmoud; Ikuma, Laura H; Aghazadeh, Fereydoun; Punniaraj, Karthy; Ishak, Sherif

    2014-10-01

    This paper investigates the effect of changing work zone configurations and traffic density on performance variables and subjective workload. Data regarding travel time, average speed, maximum percent braking force and location of lane changes were collected by using a full size driving simulator. The NASA-TLX was used to measure self-reported workload ratings during the driving task. Conventional lane merge (CLM) and joint lane merge (JLM) were modeled in a driving simulator, and thirty participants (seven female and 23 male), navigated through the two configurations with two levels of traffic density. The mean maximum braking forces was 34% lower in the JLM configuration, and drivers going through the JLM configuration remained in the closed lane longer. However, no significant differences in speed were found between the two merge configurations. The analysis of self-reported workload ratings show that participants reported 15.3% lower total workload when driving through the JLM. In conclusion, the implemented changes in the JLM make it a more favorable merge configuration in both high and low traffic densities in terms of optimizing traffic flow by increasing the time and distance cars use both lanes, and in terms of improving safety due to lower braking forces and lower reported workload. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers

    NASA Astrophysics Data System (ADS)

    Je, Soong-Geun; Yoo, Sang-Cheol; Kim, Joo-Sung; Park, Yong-Keun; Park, Min-Ho; Moon, Joon; Min, Byoung-Chul; Choe, Sug-Bong

    2017-04-01

    Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit torque in atomically thin Co films. Moreover, the direction of the present force is found to be the opposite of the prediction of the standard spin-transfer torque, resulting in the domain wall motion along the current direction. The symmetry of the force and its peculiar dependence on the domain wall structure suggest that the present force is, most likely, attributed to considerable enhancement of a negative nonadiabatic spin-transfer torque in ultranarrow domain walls. Careful measurements of the giant magnetoresistance manifest a negative spin polarization in the atomically thin Co films which might be responsible for the negative spin-transfer torque.

  7. The interplay of stiffness and force anisotropies drives embryo elongation

    PubMed Central

    Vuong-Brender, Thanh Thi Kim; Ben Amar, Martine; Pontabry, Julien; Labouesse, Michel

    2017-01-01

    The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognized, whereas the importance of tissue material properties, in particular stiffness, has received much less attention. Using Caenorhabditis elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin-II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical in driving embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo. DOI: http://dx.doi.org/10.7554/eLife.23866.001 PMID:28181905

  8. Domain management OSSs: bridging the gap between legacy and standards-based network management systems

    NASA Astrophysics Data System (ADS)

    Lemley, Todd A.

    1996-11-01

    The rapid change in the telecommunications environment is forcing carriers to re-assess not only their service offering, but also their network management philosophy. The competitive carrier environment has taken away the luxury of throwing technology at a problem by using legacy and proprietary systems and architectures. A more flexible management environment is necessary to effectively gain, and maintain operating margins in the new market era. Competitive forces are driving change which gives carriers more choices than those that are available in legacy and standards-based solutions alone. However, creating an operational support system (OSS) with this gap between legacy and standards has become as dynamic as the services which it supports. A philosophy which helps to integrate the legacy and standards systems is domain management. Domain management relates to a specific service or market 'domain,'and its associated operational support requirements. It supports a companies definition of its business model, which drives the definition of each domain. It also attempts to maximize current investment while injecting new technology available in a practical approach. The following paragraphs offer an overview of legacy systems, standards-based philosophy, and the potential of domain management to help bridge the gap between the two types of systems.

  9. Land Change Trends in the Great Plains: Linkages to Climate Variability and Socioeconomic Drivers

    NASA Astrophysics Data System (ADS)

    Drummond, M. A.

    2009-12-01

    Land use and land cover change have complex linkages to climate variability and change, socioeconomic driving forces, and land management challenges. To assess these land change dynamics and their driving forces in the Great Plains, we compare and contrast contemporary land conversion across seventeen ecoregions using Landsat remote sensing data and statistical analysis. Large area change analysis in agricultural regions is often hampered by the potential for substantial change detection error and the tendency for land conversions to occur in relatively small patches at the local level. To facilitate a regional scale analysis, a statistical sampling design of randomly selected 10-km by 10-km blocks is used in order to efficiently identify the types and rates of land conversions for four time periods between 1972 and 2000, stratified by relatively homogenous ecoregions. Results show a range of rates and processes of land change that vary by ecoregion contingent on the prevailing interactions between socioeconomic and environmental factors such as climate variability, water availability, and land quality. Ecoregions have differential climate and biophysical advantages for agricultural production and other land use change. Human actions further strengthen or dampen the characteristics of change through farm policy, technological advances, economic opportunities, population and demographic shifts, and surface and groundwater irrigation.

  10. Novel design and fabrication of a microcentrifuge for biomedical and biochemical applications

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Xu, Bai; Castracane, James

    2003-01-01

    In this paper, modeling and simulation of a novel micro-centrifuge for biomedical and biochemical applications is described. The micro-centrifuge that we designed can work not only as a shaker but also as a detector of cell growth, which has great potential applications in bioanalysis. The initial design contains four channels for mixing or collecting of samples by centrifugal force. The rotor, the key component of this device, is actuated using electrostatic force. There are four electrodes on the substrate to actuate the micro-centrifuge rotation around the X-axis (lateral in plane) and the Y-axis (vertical in plane) respectively, and eight pairs of comb drives are used to actuate the micro-centrifuge rotation around the Z-axis (perpendicular to the XY plane). The multiple axis actuation design makes it very flexible to control the micro-centrifuge. Because of its small feature size, the cost of the reagent used for the micro-centrifuge will be greatly reduced. An array of micro-centrifuges will be designed to achieve a fast cycling time. A Finite Element Analysis (FEA) has been completed to analyze the static and dynamic performance of the micro-centrifuge, such as the natural frequencies, tilt angle, and driving voltage. A novel fabrication process using SOI technology has been proposed which is now being developed.

  11. The Effect on Teenage Risky Driving of Feedback From a Safety Monitoring System: A Randomized Controlled Trial

    PubMed Central

    Bingham, C. Raymond; Ouimet, Marie Claude; Pradhan, Anuj; Chen, Rusan; Barretto, Andrea; Shope, Jean

    2012-01-01

    Purpose Teenage risky driving may be due to teenagers not knowing what is risky, preferring risk, or the lack of consequences. Elevated gravitational-force (g-force) events, caused mainly by hard braking and sharp turns, provide a valid measure of risky driving and are the target of interventions using in-vehicle data recording and feedback devices. The effect of two forms of feedback about risky driving events to teenagers only or to teenagers and their parents was tested in a randomized controlled trial. Methods Ninety parent-teen dyads were randomized to one of two groups: (1) immediate feedback to teens (Lights Only); or (2) immediate feedback to teens plus family access to event videos and ranking of the teen relative to other teenage drivers (Lights Plus). Participants’ vehicles were instrumented with data recording devices and events exceeding 0.5 g were assessed for two weeks of baseline and 13 weeks of feedback. Results Growth analysis with random slopes yielded a significant decrease in event rates for the Lights Plus group (slope = −.11, p < 0.01), but no change for the Lights Only group (slope = 0.05, p = 0.67) across the 15 weeks. A large effect size of 1.67 favored the Lights Plus group. Conclusions Provision of feedback with possible consequences associated with parents being informed reduced risky driving, while immediate feedback only to teenagers did not. Implications and Contribution Reducing elevated g-force events due to hard stops and sharp turns could reduce crash rates among novice teenage drivers. Using materials from the DriveCam For Families Program we found that feedback to both teens and parents significantly reduced rates, while feedback only to teens did not. PMID:23375825

  12. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  13. Intro & Basic R&D Overview for NRC RAP Administrator

    DTIC Science & Technology

    2011-07-13

    Air Force Research Laboratory (AFMC) AFRL /RZS 5 Pollux Drive Edwards AFB CA...NUMBER (include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Air Force Research Laboratory Edwards Air Force ...BOUNDARY 0 5 10 SCALE IN MILES HWY 395 ROSAMOND BLVD. MERCURY BLVD. R O C K ET S IT E R O A D EDWARDS AIR FORCE BASE Air Force Research

  14. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    NASA Astrophysics Data System (ADS)

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  15. Cross-shaped torsional spring

    DOEpatents

    Williamson, M.M.; Pratt, G.A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  16. SCM-Forcing Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shaocheng; Tang, Shuaiqi; Zhang, Yunyan

    2016-07-01

    Single-Column Model (SCM) Forcing Data are derived from the ARM facility observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al., 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the SCMs and Cloud Resolving Models (CRMs) and validating model simulations.

  17. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, M.J.

    1994-01-01

    Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  18. Structural and Thermal Behavior of Meglumine-Based Supra-Amphiphiles in Bulk and Assembled in Water.

    PubMed

    Ferreira, Leonardo M B; Kurokawa, Suzy S S; Alonso, Jovan D; Cassimiro, Douglas Lopes; Souza, Ana Luiza Ribeiro de; Fonseca, Mariana; Sarmento, Victor Hugo V; Regasini, Luis Octávio; Ribeiro, Clóvis Augusto

    2016-11-15

    Supra-amphiphiles are a new class of building blocks that are fabricated by means of noncovalent forces. In this work, we studied the formation of supra-amphiphiles by combining hydrophilic meglumine (MEG) with hydrophobic maleated castor oils (MACO). Spectroscopic analysis demonstrated that ionic interactions are the main driving force in the fabrication of these materials. Subsequently, supra-amphiphile/water systems were examined for their structure and water behavior by polarized optical microscopy (POM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). Micellar and lamellar liquid crystalline phases were observed. Finally, we observed that the supra-amphiphiles produced using an excess of MEG retain a large amount of water. As bound water plays an important role in biointerfacial interactions, we anticipate that these materials will display a pronounced potential for biomedical applications.

  19. Border Forces and Friction Control Epithelial Closure Dynamics

    PubMed Central

    Cochet-Escartin, Olivier; Ranft, Jonas; Silberzan, Pascal; Marcq, Philippe

    2014-01-01

    We study the closure dynamics of a large number of well-controlled circular apertures within an epithelial monolayer, where the collective cell migration responsible for epithelization is triggered by the removal of a spatial constraint rather than by scratching. Based on experimental observations, we propose a physical model that takes into account border forces, friction with the substrate, and tissue rheology. Border protrusive activity drives epithelization despite the presence of a contractile actomyosin cable at the periphery of the wound. The closure dynamics is quantified by an epithelization coefficient, defined as the ratio of protrusive stress to tissue-substrate friction, that allows classification of different phenotypes. The same analysis demonstrates a distinct signature for human cells bearing the oncogenic RasV12 mutation, demonstrating the potential of the approach to quantitatively characterize metastatic transformations. PMID:24411238

  20. Entropic Approach to Brownian Movement.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    A diffusional driving force, called the radial force, which is responsible for the increase with time of the scalar separation between a fixed point and a particle undergoing three-dimensional Brownian motion, is derived using Boltzmann's equation. (Author/HM)

  1. Mechanisms driving variability in the ocean forcing of Pine Island Glacier

    PubMed Central

    Webber, Benjamin G. M.; Heywood, Karen J.; Stevens, David P.; Dutrieux, Pierre; Abrahamsen, E. Povl; Jenkins, Adrian; Jacobs, Stanley S.; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan

    2017-01-01

    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS. PMID:28211473

  2. Analytical investigation of the faster-is-slower effect with a simplified phenomenological model

    NASA Astrophysics Data System (ADS)

    Suzuno, K.; Tomoeda, A.; Ueyama, D.

    2013-11-01

    We investigate the mechanism of the phenomenon called the “faster-is-slower”effect in pedestrian flow studies analytically with a simplified phenomenological model. It is well known that the flow rate is maximized at a certain strength of the driving force in simulations using the social force model when we consider the discharge of self-driven particles through a bottleneck. In this study, we propose a phenomenological and analytical model based on a mechanics-based modeling to reveal the mechanism of the phenomenon. We show that our reduced system, with only a few degrees of freedom, still has similar properties to the original many-particle system and that the effect comes from the competition between the driving force and the nonlinear friction from the model. Moreover, we predict the parameter dependences on the effect from our model qualitatively, and they are confirmed numerically by using the social force model.

  3. Novel Straight Road Driving Control of Power Assisted Wheelchair Based on Disturbance Estimation of Right and Left Wheels

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.

  4. Alcohol control in Virginia : planning documents for use by agencies of the Commonwealth.

    DOT National Transportation Integrated Search

    1982-01-01

    The Governor's Task Force to Combat Drunk Driving was created to confront the problem of drunken driving in Virginia, and to ascertain Virginia's current efforts to address this problem so that these efforts could be assessed and appropriate changes ...

  5. Does the S.D.E.P. increase performance?

    NASA Astrophysics Data System (ADS)

    Syltebo, Andy

    2003-05-01

    Through the guidance of the program, "Physical Systems," at The Evergreen State College in Olympia Washington, Andy Syltebo will be investigating how the Surface Drive Enhancement Project will affect the performance of a planing hull powered by surface drive propulsion. A radio controlled model boat of the forementioned design is the prototype vehicle used for experimentation and analysis. The idea of this project revolves around harnessing the energy in the water of a rooster tail ejected from the wake of a surface drive propeller of a boat with a planing hull design. The Surface Drive Enhancement Project (S.D.E.P. for short) is an angled set of adjustable platforms placed in the path of the rooster tail. Theoretically, it experiences the normal force of the water on its surface which, through conservation of momentum, distributes a force on the boat, with which the S.D.E.P. is attached, in both the upwards and forwards directions. This design will be tested and documented to see if it increases forward velocity without sacrificing handling characteristics.

  6. Design and analysis of a new high frequency double-servo direct drive rotary valve

    NASA Astrophysics Data System (ADS)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  7. Soliton motion in a parametrically ac-driven damped Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, K.O.; Malomed, B.A.; Bishop, A.R.

    We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a soliton in a Toda lattice with friction, while an unstaggered driving force cannot. A physical context of the model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac driving force is generated by a standing acoustic wave excited on the surface. Simulations demonstrate that the state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually relaxes back to the equilibrium state that existed before the passage of themore » soliton. The perturbation theory predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two counterpropagating solitons is also simulated, demonstrating that the collisions are, effectively, fully elastic. {copyright} {ital 1998} {ital The American Physical Society}« less

  8. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    NASA Astrophysics Data System (ADS)

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis for the Zhuhai Government in building National Forest City. Keywords: forest and greenbelt; remote sensing; dynamic monitoring; driving force; vegetation coverage

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packetmore » in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.« less

  10. Vortex dynamics in type-II superconductors under strong pinning conditions

    NASA Astrophysics Data System (ADS)

    Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.

    2017-10-01

    We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.

  11. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems.

    PubMed

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  12. Roles of urea and TMAO on the interaction between extended non-polar peptides

    NASA Astrophysics Data System (ADS)

    Su, Zhaoqian; Dias, Cristiano

    Urea and trimethylamine n-oxide (TMAO) are small molecules known to destabilize and stabilize, respectively, the structure of proteins when added to aqueous solution. To unravel the molecular mechanisms of these cosolvents on protein structure we perform explicit all-atom molecular dynamics simulations of extended poly-alanine and polyleucine dimers. We use an umbrella sampling protocol to compute the potential of mean force (PMF) of dimers at different concentrations of urea and TMAO. We find that the large non-polar side chain of leucine is affected by urea whereas backbone atoms and alanine's side chain are not. Urea is found to occupy positions between leucine's side chains that are not accessible to water. This accounts for extra Lennard-Jones bonds between urea and side chains that favors the unfolded state. These bonds compete with urea-solvent interactions that favor the folded state. The sum of these two energetic terms provide the enthalpic driving force for unfolding. We show here that this enthalpy correlate with the potential of mean force of poly-leucine dimers. Moreover, the framework developed here is general and may be used to provide insights into effects of other small molecules on protein interactions. The effect of the TMAO will be in the presentation. Department of Physics, University Heights, Newark, New Jersey, 07102-1982.

  13. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review.

    PubMed

    Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam

    2014-03-03

    Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Calibration and energy measurement of optically levitated nanoparticle sensors

    NASA Astrophysics Data System (ADS)

    Hebestreit, Erik; Frimmer, Martin; Reimann, René; Dellago, Christoph; Ricci, Francesco; Novotny, Lukas

    2018-03-01

    Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the optimal measurement time required to determine the said temperature.

  15. Digital Breast Tomosynthesis and the Challenges of Implementing an Emerging Breast Cancer Screening Technology Into Clinical Practice.

    PubMed

    Lee, Christoph I; Lehman, Constance D

    2016-11-01

    Emerging imaging technologies, including digital breast tomosynthesis, have the potential to transform breast cancer screening. However, the rapid adoption of these new technologies outpaces the evidence of their clinical and cost-effectiveness. The authors describe the forces driving the rapid diffusion of tomosynthesis into clinical practice, comparing it with the rapid diffusion of digital mammography shortly after its introduction. They outline the potential positive and negative effects that adoption can have on imaging workflow and describe the practice management challenges when incorporating tomosynthesis. The authors also provide recommendations for collecting evidence supporting the development of policies and best practices. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Stride length: the impact on propulsion and bracing ground reaction force in overhand throwing.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L

    2018-03-26

    Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior-posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs' braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.

  17. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    PubMed Central

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  18. Do Young Drivers Become Safer After Being Involved in a Collision?

    PubMed Central

    O’Brien, Fearghal; Bible, Joe; Liu, Danping; Simons-Morton, Bruce G.

    2017-01-01

    As drivers age, their risk of being involved in a car collision decreases. The present study investigated if this trend is due, in part, to some risky drivers having a collision early in their driving lives and subsequently reducing their risky driving after that negative experience. Accelerometers and video cameras were installed in the vehicles of 16- to 17-year-old drivers (N = 254), allowing coders to measure the number of g-force events (i.e., events in which a threshold acceleration level was exceeded) per 1,000 miles and the number of collisions. Among the 41 participants who experienced a severe collision, the rate of g-force events dropped significantly in the 1st month after the collision, remained unchanged for the 2nd month, and increased significantly in the 3rd month. There were no changes in the rate of g-force events at comparable time points for the drivers not involved in a collision. Being involved in a collision led to a decrease in risky driving, but this may have been a temporary effect. PMID:28406372

  19. Electrophysiology of sodium-coupled transport in proximal renal tubules.

    PubMed

    Lang, F; Messner, G; Rehwald, W

    1986-06-01

    Effects of sodium-coupled transport on intracellular electrolytes and electrical properties of proximal renal tubule cells are described in this review. Simultaneous with addition of substrate for sodium-coupled transport to luminal perfusates, both cell membranes depolarize. The luminal cell membrane depolarizes due to opening of sodium-cotransport pathways. The depolarization of the peritubular cell membrane during sodium-coupled transport is primarily due to a circular current reentering the lumen via the paracellular pathway. The depolarization leads to a transient decrease of basolateral potassium conductance that in turn amplifies the depolarization. However, within 5-10 min of continued exposure to substrate, potassium conductance increases again, and peritubular cell membrane repolarizes. During depolarization the driving force of peritubular bicarbonate exit is reduced. As a result net alkalinization of the cell prevails despite an increase of intracellular sodium activity, which reduces the driving force for the sodium-hydrogen ion exchanger and would thus have been expected to acidify the cell. No evidence is obtained for regulatory inhibition of sodium-coupled transport by intracellular sodium or calcium. Rather, luminal cotransport is altered by the change of driving forces.

  20. Spontaneous Ion Depletion and Accumulation Phenomena Induced by Imbibition through Permselective Medium

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Jung, Yeonsu; Park, Sungmin; Kim, Ho-Young; Kim, Sung Jae

    2016-11-01

    Generally, an ion depletion region near a permselective medium is induced by predominant ion flux through the medium. External electric field or hydraulic pressure has been reported as the driving forces. Among these driving forces, an imbibition through the nanoporous medium was chosen as the mechanism to spontaneously generate the ion depletion region. The water-absorbing process leads to the predominant ion flux so that the spontaneous formation of the ion depletion zone is expected even if there are no additional driving forces except for the inherent capillary action. In this presentation, we derived the analytical solutions using perturbation method and asymptotic analysis for the spontaneous phenomenon. Using the analysis, we found that there is also spontaneous accumulation regime depending on the mobility of dissolved electrolytic species. Therefore, the rigorous analysis of the spontaneous ion depletion and accumulation phenomena would provide a key perspective for the control of ion transportation in nanofluidic system such as desalinator, preconcentrator, and energy harvesting device, etc. Samsung Research Funding Center of Samsung Electronics (SRFC-MA1301-02) and BK21 plus program of Creative Research Engineer Development IT, Seoul National University.

  1. Proposed low-temperature solar engine

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.; Kearns, G. B.

    1976-01-01

    Engine, proposed for conversion of Sun's heat to motion without need for heat pumps and associated equipment, uses expansion and contraction of aluminum rod to drive tow out-of-phase windlasses. Linear displacement of 0.076 cm in rod will exert sufficient force to drive pumps, generators, and compressors.

  2. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  3. Computational tools for calculating alternative muscle force patterns during motion: a comparison of possible solutions.

    PubMed

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco; Taddei, Fulvia

    2013-08-09

    Comparing the available electromyography (EMG) and the related uncertainties with the space of muscle forces potentially driving the same motion can provide insights into understanding human motion in healthy and pathological neuromotor conditions. However, it is not clear how effective the available computational tools are in completely sample the possible muscle forces. In this study, we compared the effectiveness of Metabolica and the Null-Space algorithm at generating a comprehensive spectrum of possible muscle forces for a representative motion frame. The hip force peak during a selected walking trial was identified using a lower-limb musculoskeletal model. The joint moments, the muscle lever arms, and the muscle force constraints extracted from the model constituted the indeterminate equilibrium equation at the joints. Two spectra, each containing 200,000 muscle force samples, were calculated using Metabolica and the Null-Space algorithm. The full hip force range was calculated using optimization and compared with the hip force ranges derived from the Metabolica and the Null-Space spectra. The Metabolica spectrum spanned a much larger force range than the NS spectrum, reaching 811N difference for the gluteus maximus intermediate bundle. The Metabolica hip force range exhibited a 0.3-0.4 BW error on the upper and lower boundaries of the full hip force range (3.4-11.3 BW), whereas the full range was imposed in the NS spectrum. The results suggest that Metabolica is well suited for exhaustively sample the spectrum of possible muscle recruitment strategy. Future studies will investigate the muscle force range in healthy and pathological neuromotor conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  5. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications.

    PubMed

    Khan, Imtiaz; Ibrar, Aliya; Abbas, Naeem; Saeed, Aamer

    2014-04-09

    Drug development has been a principal driving force in the rapid maturation of the field of medicinal chemistry during the past several decades. During this period, the intriguing and challenging molecular architectures of nitrogen-containing heterocycles with potential bioactive properties have received significant attention from researchers engaged in the areas of natural product synthesis and heterocyclic methodology, and constituted a continuous stimulus for development in bio(organic) chemistry. In this perspective, the current review article is an effort to summarize recent developments in the environmentally benign synthetic methods providing access to quinazoline and quinazolinone scaffolds with promising biological potential. This article also aims to discuss potential future directions on the development of more potent and specific analogues for various biological targets. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  7. Laser dazzling impacts on car driver performance

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Sandberg, Stig; Hörberg, Ulf; Persson, Rolf; Berglund, Folke; Karslsson, Kjell; Öhgren, Johan; Yu, Zhaohua; Söderberg, Per

    2013-10-01

    A growing problem for the Police and Security Forces has been to prevent potentially hostile individuals to pass a checkpoint, without using lethatl violence. Therefore the question has been if there is a laser or any other strong light source that could be used as a warning and dazzling device, without lethal or long term effects. To investigate the possibilities a field trial has been performed at a motor-racing track. A green CW laser with an irradiance on the eye of maximum 0.5 MPE, as defined by ICNIRP [1] and the ANZI standard [2], was used as a dazzle source. Ten drivers have been driving with dipped headlights through a course of three lines with orange cones. In every line there has been only one gate wide enough to pass without hitting the cones. The time through the course, the choice of gates and the number of cones hit have been measured. For every second trial drive through the track, the driver was exposed to the laser dazzler. The background illuminances ranged from a thousand lux in daylight to about ten millilux in darkness. The protective effect of the sun-visor of the car was investigated. The drives visual system was carefully examined before and after experimental driving and a few weeks after the experimental driving to verify that no pathological effects, that could potentially be induced by the laser exposure, pre-existed or occurred after the laser exposure. An analysis of variance for a within subjects design has been used for evaluation. It was found that green laser light can have an obvious warning effect in daylight. Dazzling does reduce the drivers ability to make judgments and manouver the car in twilight and darkness. A sun-visor can reduce the glare and give the driver an improved control, but that perception can be unjustified. No damage to the visual system was observed.

  8. An Optimization of the Maintenance Assets Distribution Network in the Argentine Air Force

    DTIC Science & Technology

    2015-03-26

    Air Force (2010). Manual de Conduccion Logistica . Buenos Aires: HQ Argentine Air Force. Argentine Air Force (2012). El vuelo del condor: 1912-2012...recommendation was made to consider organic or private transportation and reduce transportation time in order to improve responsiveness and drive down...determine overall transportation demand and capacity required for a defined level of service, and to evaluate the tradeoffs between costs and service

  9. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, H. C.; Chun, K.

    2009-03-01

    Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.

  10. Room Temperature Operable Autonomously Moving Bio-Microrobot Powered by Insect Dorsal Vessel Tissue

    PubMed Central

    Akiyama, Yoshitake; Hoshino, Takayuki; Iwabuchi, Kikuo; Morishima, Keisuke

    2012-01-01

    Living muscle tissues and cells have been attracting attention as potential actuator candidates. In particular, insect dorsal vessel tissue (DVT) seems to be well suited for a bio-actuator since it is capable of contracting autonomously and the tissue itself and its cells are more environmentally robust under culturing conditions compared with mammalian tissues and cells. Here we demonstrate an autonomously moving polypod microrobot (PMR) powered by DVT excised from an inchworm. We fabricated a prototype of the PMR by assembling a whole DVT onto an inverted two-row micropillar array. The prototype moved autonomously at a velocity of 3.5×10−2 µm/s, and the contracting force of the whole DVT was calculated as 20 µN. Based on the results obtained by the prototype, we then designed and fabricated an actual PMR. We were able to increase the velocity significantly for the actual PMR which could move autonomously at a velocity of 3.5 µm/s. These results indicate that insect DVT has sufficient potential as the driving force for a bio-microrobot that can be utilized in microspaces. PMID:22808004

  11. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  12. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  13. Safe disposal of cytotoxic waste: an evaluation of an air-tight system.

    PubMed

    Craig, Gemma; Wadey, Charlotte

    2017-09-07

    A 3-month evaluation was undertaken at the Kent Oncology Centre's chemotherapy day unit (CDU) to trial an air-tight sealing disposal system for cytotoxic waste management. Research has identified the potential risk to staff who handle waste products that are hazardous to health. Staff safety was a driving force behind a trial of a new way of working. This article provides an overview of the evaluation of the Pactosafe system in one clinical area, examining reviews by oncology healthcare workers, the practicalities in the clinical setting, training, cost effectiveness and the environmental benefits.

  14. Product line management in oncology: a Canadian experience.

    PubMed

    Wodinsky, H B; Egan, D; Markel, F

    1988-01-01

    More competition for finite resources and increasing regulation have led many hospitals to consider a strategic reorganization. Recently, one common reorganization strategy has been"product line management." Product line management can be broadly defined in terms of centralized program management, planning, and marketing strategies. In Canada, while strategic driving forces may be different, a product line management alternative has arisen in one of the most potentially complex product lines, cancer services. This article compares and contrasts the theoretical model for product line management development, with special reference to cancer services, to the experience of one Canadian medical center and cancer center.

  15. Merging genomes with geochemistry in hydrothermal ecosystems.

    PubMed

    Reysenbach, Anna-Louise; Shock, Everett

    2002-05-10

    Thermophilic microbial inhabitants of active seafloor and continental hot springs populate the deepest branches of the universal phylogenetic tree, making hydrothermal ecosystems the most ancient continuously inhabited ecosystems on Earth. Geochemical consequences of hot water-rock interactions render these environments habitable and supply a diverse array of energy sources. Clues to the strategies for how life thrives in these dynamic ecosystems are beginning to be elucidated through a confluence of biogeochemistry, microbiology, ecology, molecular biology, and genomics. These efforts have the potential to reveal how ecosystems originate, the extent of the subsurface biosphere, and the driving forces of evolution.

  16. Simulation of parameters of hydraulic drive with volumetric type controller

    NASA Astrophysics Data System (ADS)

    Mulyukin, V. L.; Boldyrev, A. V.; Karelin, D. L.; Belousov, A. M.

    2017-09-01

    The article presents a mathematical model of volumetric type hydraulic drive controller that allows to calculate the parameters of forward and reverse motion. According to the results of simulation static characteristics of rod’s speed and the force of the hydraulic cylinder rod were built and the influence of the angle of swash plate of the controller at the characteristics profile is shown. The results analysis showed that the proposed controller allows steplessly adjust the speed□ц of hydraulic cylinder’s rod motion and the force developed on the rod without the use of flow throttling.

  17. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  18. Dynamic model of the force driving kinesin to move along microtubule-Simulation with a model system

    NASA Astrophysics Data System (ADS)

    Chou, Y. C.; Hsiao, Yi-Feng; To, Kiwing

    2015-09-01

    A dynamic model for the motility of kinesin, including stochastic-force generation and step formation is proposed. The force driving the motion of kinesin motor is generated by the impulse from the collision between the randomly moving long-chain stalk and the ratchet-shaped outer surface of microtubule. Most of the dynamical and statistical features of the motility of kinesin are reproduced in a simulation system, with (a) ratchet structures similar to the outer surface of microtubule, (b) a bead chain connected to two heads, similarly to the stalk of the real kinesin motor, and (c) the interaction between the heads of the simulated kinesin and microtubule. We also propose an experiment to discriminate between the conventional hand-over-hand model and the dynamic model.

  19. Micro-Macro Coupling in Plasma Self-Organization Processes during Island Coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Weigang; Lapenta, Giovanni; Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven

    The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopicmore » drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force.« less

  20. An analysis of the effects of temperatures and circulations on the strength of the low-level jet in the Turkana Channel in East Africa

    NASA Astrophysics Data System (ADS)

    Hartman, Adam T.

    2018-05-01

    The Turkana Low-Level Jet (LLJ) was discovered in the early 1980s, yet there are still questions about the primary forcing mechanisms that drive and sustain the jet throughout the year. A few studies have addressed these questions, but most focus on numerical simulations of mechanical forcing mechanisms, such as orography, channeling flow, and monsoon background flow. No studies have shown the effects of thermal forcing from differential heating in the regions in and around the Turkana Channel. This paper uses National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in order to analyze and find relationships between temperature gradients and the strength of the Turkana LLJ. In addition to temperature, potential temperature, divergence, wind magnitude, wind fields, and vertical motion are also examined. This analysis attempts to show that thermal forcing is one of the most important factors, if not the primary factor, in the initiation and maintenance of the jet and propose that more research and model simulations should be implemented to determine the contributions from thermal forcing.

  1. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way, we were able to simulate root growth and root water uptake in soil with macropores. The model was parametrized using experimental results of studies by Hirth et al. (2005) and Stirzaker et al. (1996). It proved to be capable of reproducing observed root growth responses to structured soil both at the single root and the plant root system scale. This new approach enables us to investigate how plant roots use macropores to gain access to water and nutrient reservoirs in deeper, highly dense soil layers. Acknowledgements: Funding by German Research Foundation within the Research Unit 888 is gratefully acknowledged. The James Hutton Institute receives funding from the Scottish Government.

  2. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  3. Heightened eating drive and visual food stimuli attenuate central nociceptive processing.

    PubMed

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Giesbrecht, Timo; Thomas, Anna; Harrold, Joanne A; Halford, Jason C G; Stancak, Andrej

    2015-03-01

    Hunger and pain are basic drives that compete for a behavioral response when experienced together. To investigate the cortical processes underlying hunger-pain interactions, we manipulated participants' hunger and presented photographs of appetizing food or inedible objects in combination with painful laser stimuli. Fourteen healthy participants completed two EEG sessions: one after an overnight fast, the other following a large breakfast. Spatio-temporal patterns of cortical activation underlying the hunger-pain competition were explored with 128-channel EEG recordings and source dipole analysis of laser-evoked potentials (LEPs). We found that initial pain ratings were temporarily reduced when participants were hungry compared with fed. Source activity in parahippocampal gyrus was weaker when participants were hungry, and activations of operculo-insular cortex, anterior cingulate cortex, parahippocampal gyrus, and cerebellum were smaller in the context of appetitive food photographs than in that of inedible object photographs. Cortical processing of noxious stimuli in pain-related brain structures is reduced and pain temporarily attenuated when people are hungry or passively viewing food photographs, suggesting a possible interaction between the opposing motivational forces of the eating drive and pain. Copyright © 2015 the American Physiological Society.

  4. Drive Control of an Electric Vehicle by a Non-linear Controller

    NASA Astrophysics Data System (ADS)

    Mubin, Marizan; Ouchi, Shigeto; Anabuki, Masatoshi; Hirata, Hiroshi

    The driving force of automobiles is transmitted by the frictional force between the tires and the road surface. This frictional force is a function of the weight of the car-body and the friction coefficient μ between the tires and the road surface. The friction coefficient μ is also a function of the following parameters: the slip ratio λ determined by the car-body speed and the wheel speed, and the condition of the road surface. Slippage of automobiles which causes much damage often occurs during accelerating and braking. In this paper, we propose a new drive control system which has an effect on acceleration and braking. In the drive control system, a non-linear controller designed by using a Lyapunov function is used. This non-linear controller has two functions: first one is μ control which moves the car-body, another one is λ control. The controller is designed in order that μ and λ work at noslip and with slip respectively. As another controller, a disturbance observer is used for estimating the car-body speed which is difficult to be measured. Then, this lead to the proof of the stability condition of the combined system which consists of two controllers: the non-linear controller and the disturbance observer. Finally, the effectiveness of this control system is proved by a very satisfactory simulation and experimental results for two cases.

  5. MRCK-1 drives apical constriction in C. elegans by linking developmental patterning to force generation

    PubMed Central

    Marston, Daniel J.; Higgins, Christopher D.; Peters, Kimberly A.; Cupp, Timothy D.; Dickinson, Daniel J.; Pani, Ariel M.; Moore, Regan P.; Cox, Amanda H.; Kiehart, Daniel P.; Goldstein, Bob

    2016-01-01

    Summary Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis. PMID:27451898

  6. Contradictory Evidence on Wave Forcing of Tropical Upwelling in the Brewer-Dobson Circulation - A Suggested Resolution

    NASA Technical Reports Server (NTRS)

    Zhou, Tiehan; Geller, Marvin A.; Lin, Wuyin

    2011-01-01

    ERA-40 data are analyzed to demonstrate that wave forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer-Dobson circulation. It is shown that subtropical wave forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient waves are taken into account, and that tropical wave forcing exerts its influence on tropical upwelling via its body force on the zonal mean flow.

  7. Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations.

    PubMed

    Keil, Lorenz; Hartmann, Michael; Lanzmich, Simon; Braun, Dieter

    2016-07-27

    How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients - down to 100 K over one metre - can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.

  8. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  9. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  10. Modeling of second-harmonic generation of circumferential guided wave propagation in a composite circular tube

    NASA Astrophysics Data System (ADS)

    Li, Mingliang; Deng, Mingxi; Gao, Guangjian; Xiang, Yanxun

    2018-05-01

    This paper investigated modeling of second-harmonic generation (SHG) of circumferential guided wave (CGW) propagation in a composite circular tube, and then analyzed the influences of interfacial properties on the SHG effect of primary CGW. Here the effect of SHG of primary CGW propagation is treated as a second-order perturbation to its linear wave response. Due to the convective nonlinearity and the inherent elastic nonlinearity of material, there are second-order bulk driving forces and surface/interface driving stresses in the interior and at the surface/interface of a composite circular tube, when a primary CGW mode propagates along its circumference. Based on the approach of modal expansion analysis for waveguide excitation, the said second-order driving forces/stresses are regarded as the excitation sources to generate a series of double-frequency CGW modes that constitute the second-harmonic field of the primary CGW propagation. It is found that the modal expansion coefficient of each double-frequency CGW mode is closely related to the interfacial stiffness constants that are used to describe the interfacial properties between the inner and outer circular parts of the composite tube. Furthermore, changes in the interfacial stiffness constants essentially influence the dispersion relation of CGW propagation. This will remarkably affect the efficiency of cumulative SHG of primary CGW propagation. Some finite element simulations have been implemented of response characteristics of cumulative SHG to the interfacial properties. Both the theoretical analyses and numerical simulations indicate that the effect of cumulative SHG is found to be much more sensitive to changes in the interfacial properties than primary CGW propagation. The potential of using the effect of cumulative SHG by primary CGW propagation to characterize a minor change in the interfacial properties is considered.

  11. Air Force Health Study. An Epidemiologic Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. Volume 1

    DTIC Science & Technology

    1991-03-01

    found to be significantly associated with coordination and a central nervous system index, but cranial nerve function and peripheral nerve status...AD-A237 516 Air Force Health Study A An Epidemiologic In vestigation of Health Effects in Air Force Personnel Following Exposure to Herbicides SAIC...Smeda SCIENCE APPLICATIONS EPIDEMIOLOGY RESEARCH DIVISION INTERNATIONAL CORPORATION ARMSTRONG LABORATORY 8400 Westpark Drive HUMAN SYSTEMS DIVISION

  12. An Army Force Structure for the Future

    DTIC Science & Technology

    1992-03-31

    realization: deterring aggression; ensuring access to foreign markets , energy, mineral resources, the oceans, and space; maintaining stable regional...establish the optimum organisational mix for independent and highly flexible operational-level activity." 7 Two factors are driving this structural change...armored forces; and optimizing the force mix of the three. However, before describing the specific changes needed to shape the future Army, a delineation

  13. Thermophoretic transport of water nanodroplets confined in carbon nanotubes: The role of friction

    NASA Astrophysics Data System (ADS)

    Oyarzua, Elton; Walther, Jens H.; Zambrano, Harvey A.

    2017-11-01

    The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted. The results indicate that the thermophoretic motion of a nanodroplet displays two kinetic regimes: an initial regime characterized by a decreasing acceleration and afterwards a terminal regime with constant velocity. During the initial regime, the magnitude of the friction force increases linearly with the droplet velocity whereas the thermophoretic force has a constant magnitude defined by the magnitude of the thermal gradient and the droplet size. Subsequently, in the terminal regime, the droplet moves at constant velocity due to a dynamic balance between the thermophoretic force and the retarding friction force. We acknowledge partial support from CONICYT (Chile) under scholarship No. 21140427.

  14. Development of a shear force measurement dummy for seat comfort.

    PubMed

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  15. Hand-handle interface force and torque measurement system for pneumatic assembly tool operations: suggested enhancement to ISO 6544.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2007-05-01

    A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.

  16. Trapping of drops by wetting defects

    PubMed Central

    't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935

  17. The fossil record of evolution: Data on diversification and extinction

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J., Jr.

    1986-01-01

    Synoptic studies of the fossil record of complex life on Earth indicate increasingly that extinction, and especially mass extinction, were extremely important driving forces in the history of life. Analysis of a new compilation of geologic ranges for 25,000 genera of marine animals suggests that extinction events were much more frequent in occurrence and variable in magnitude than previously suspected. At least 30 well documented and potential mass extinctions were identified in the dataset. The most recent event, distributed over 260 to 0 ma. exhibit a stationary periodicity of 26.1 + or - 1 ma, implicating a cosmological forcing mechanism. Earlier events, especially in the 575 to 450 ma interval, are more frequent, possibly indicating either a breakdown of periodicity in the more distant past; and as yet undemonstrated diminution of the period length; or frequent aperiodic terrestrial perturbations of a less stable biota superimposed upon the cosmological periodicity.

  18. Modular Chemical Process Intensification: A Review.

    PubMed

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  19. Joint Task Force on Undergraduate Physics Programs: Implications for physics programs and why you should care

    NASA Astrophysics Data System (ADS)

    Hodapp, Theodore

    2016-03-01

    The content of undergraduate physics programs has not changed appreciably in 50 years, however, the jobs our students take have changed dramatically. Preparing students for careers they are likely to encounter requires physics programs to rethink and in some cases retool to provide an education that will not only educate an individual in the habits of mind and keen sense of how to solve complex technical problems, but also what related skills they will need to be effective in those careers. Do you teach your student how to read or create a budget? How about dealing with a low-performing member of an R&D team? This talk will explore driving forces behind this report, potential implications for physics departments, and practical steps faculty members can take to continue to consider improvements in experiences for our students. This work is supported in part by the National Science Foundation (NSF-1540570).

  20. Modular Chemical Process Intensification: A Review

    DOE PAGES

    Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...

    2016-06-24

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less

  1. Design and analysis of the Gemini chain system in dual clutch transmission of automobile

    NASA Astrophysics Data System (ADS)

    Cheng, Yabing; Guo, Haitao; Fu, Zhenming; Wan, Nen; Li, Lei; Wang, Yang

    2015-01-01

    Chain drive system is widely used in the conditions of high-speed, overload, variable speed and load. Many studies are focused on the meshing theory and wear characteristics of chain drive system, but system design, analysis, and noise characteristics of the chain drive system are weak. System design and noise characteristic are studied for a new type Gemini chain of dual-clutch automatic transmission. Based on the meshing theory of silent chain, the design parameters of the Gemini chain system are calculated and the mathematical models and dynamic analysis models of the Gemini chain system are established. Dynamic characteristics of the Gemini chain system is simulated and the contact force of plate and pin, plate and sprockets, the chain tension forces, the transmission error and the stress of plates and pins are analyzed. According to the simulation results of the Gemini chain system, the noise experiment about system is carried out. The noise values are tested at different speed and load and spectral characteristics are analyzed. The results of simulation and experimental show that the contact forces of plate and pin, plate and sprockets are smaller than the allowable stress values, the chain tension force is less than ultimate tension and transmission error is limited in 1.2%. The noise values can meet the requirements of industrial design, and it is proved that the design and analysis method of the Gemini chain system is scientific and feasible. The design and test system is built from analysis to test of Gemini chain system. This research presented will provide a corresponding theoretical guidance for the design and dynamic characteristics and noise characteristics of chain drive system.

  2. Driving force analysis of proton tunnelling across a reactivity series for an enzyme-substrate complex.

    PubMed

    Hothi, Parvinder; Hay, Sam; Roujeinikova, Anna; Sutcliffe, Michael J; Lee, Michael; Leys, David; Cullis, Paul M; Scrutton, Nigel S

    2008-11-24

    Quantitative structure-activity relationships are widely used to probe C-H bond breakage by quinoprotein enzymes. However, we showed recently that p-substituted benzylamines are poor reactivity probes for the quinoprotein aromatic amine dehydrogenase (AADH) because of a requirement for structural change in the enzyme-substrate complex prior to C-H bond breakage. This rearrangement is partially rate limiting, which leads to deflated kinetic isotope effects for p-substituted benzylamines. Here we report reactivity (driving force) studies of AADH with p-substituted phenylethylamines for which the kinetic isotope effect (approximately 16) accompanying C-H/C-(2)H bond breakage is elevated above the semi-classical limit. We show bond breakage occurs by quantum tunnelling and that within the context of the environmentally coupled framework for H-tunnelling the presence of the p-substituent places greater demand on the apparent need for fast promoting motions. The crystal structure of AADH soaked with phenylethylamine or methoxyphenylethylamine indicates that the structural change identified with p-substituted benzylamines should not limit the reaction with p-substituted phenylethylamines. This is consistent with the elevated kinetic isotope effects measured with p-substituted phenylethylamines. We find a good correlation in the rate constant for proton transfer with bond dissociation energy for the reactive C-H bond, consistent with a rate that is limited by a Marcus-like tunnelling mechanism. As the driving force becomes larger, the rate of proton transfer increases while the Marcus activation energy becomes smaller. This is the first experimental report of the driving force perturbation of H-tunnelling in enzymes using a series of related substrates. Our study provides further support for proton tunnelling in AADH.

  3. Left and right ventricular hemodynamic forces in healthy volunteers and elite athletes assessed with 4D flow magnetic resonance imaging.

    PubMed

    Arvidsson, Per M; Töger, Johannes; Carlsson, Marcus; Steding-Ehrenborg, Katarina; Pedrizzetti, Gianni; Heiberg, Einar; Arheden, Håkan

    2017-02-01

    Intracardiac blood flow is driven by hemodynamic forces that are exchanged between the blood and myocardium. Previous studies have been limited to 2D measurements or investigated only left ventricular (LV) forces. Right ventricular (RV) forces and their mechanistic contribution to asymmetric redirection of flow in the RV have not been measured. We therefore aimed to quantify 3D hemodynamic forces in both ventricles in a cohort of healthy subjects, using magnetic resonance imaging 4D flow measurements. Twenty five controls, 14 elite endurance athletes, and 2 patients with LV dyssynchrony were included. 4D flow data were used as input for the Navier-Stokes equations to compute hemodynamic forces over the entire cardiac cycle. Hemodynamic forces were found in a qualitatively consistent pattern in all healthy subjects, with variations in amplitude. LV forces were mainly aligned along the apical-basal longitudinal axis, with an additional component aimed toward the aortic valve during systole. Conversely, RV forces were found in both longitudinal and short-axis planes, with a systolic force component driving a slingshot-like acceleration that explains the mechanism behind the redirection of blood flow toward the pulmonary valve. No differences were found between controls and athletes when indexing forces to ventricular volumes, indicating that cardiac force expenditures are tuned to accelerate blood similarly in small and large hearts. Patients' forces differed from controls in both timing and amplitude. Normal cardiac pumping is associated with specific force patterns for both ventricles, and deviation from these forces may be a sensitive marker of ventricular dysfunction. Reference values are provided for future studies. NEW & NOTEWORTHY Biventricular hemodynamic forces were quantified for the first time in healthy controls and elite athletes (n = 39). Hemodynamic forces constitute a slingshot-like mechanism in the right ventricle, redirecting blood flow toward the pulmonary circulation. Force patterns were similar between healthy subjects and athletes, indicating potential utility as a cardiac function biomarker. Copyright © 2017 the American Physiological Society.

  4. Bilateral Deficit in Explosive Force Production Is Not Caused by Changes in Agonist Neural Drive

    PubMed Central

    Buckthorpe, Matthew W.; Pain, Matthew T. G.; Folland, Jonathan P.

    2013-01-01

    Bilateral deficit (BLD) describes the phenomenon of a reduction in performance during synchronous bilateral (BL) movements when compared to the sum of identical unilateral (UL) movements. Despite a large body of research investigating BLD of maximal voluntary force (MVF) there exist a paucity of research examining the BLD for explosive strength. Therefore, this study investigated the BLD in voluntary and electrically-evoked explosive isometric contractions of the knee extensors and assessed agonist and antagonist neuromuscular activation and measurement artefacts as potential mechanisms. Thirteen healthy untrained males performed a series of maximum and explosive voluntary contractions bilaterally (BL) and unilaterally (UL). UL and BL evoked twitch and octet contractions were also elicited. Two separate load cells were used to measure MVF and explosive force at 50, 100 and 150 ms after force onset. Surface EMG amplitude was measured from three superficial agonists and an antagonist. Rate of force development (RFD) and EMG were reported over consecutive 50 ms periods (0–50, 50–100 and 100–150 ms). Performance during UL contractions was compared to combined BL performance to measure BLD. Single limb performance during the BL contractions was assessed and potential measurement artefacts, including synchronisation of force onset from the two limbs, controlled for. MVF showed no BLD (P = 0.551), but there was a BLD for explosive force at 100 ms (11.2%, P = 0.007). There was a BLD in RFD 50–100 ms (14.9%, P = 0.004), but not for the other periods. Interestingly, there was a BLD in evoked force measures (6.3–9.0%, P<0.001). There was no difference in agonist or antagonist EMG for any condition (P≥0.233). Measurement artefacts contributed minimally to the observed BLD. The BLD in volitional explosive force found here could not be explained by measurement issues, or agonist and antagonist neuromuscular activation. The BLD in voluntary and evoked explosive force might indicate insufficient stabiliser muscle activation during BL explosive contractions. PMID:23472091

  5. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  6. Hydrodynamic Forces on Composite Structures

    DTIC Science & Technology

    2014-06-01

    and placed under a vacuum of 10 mmHg overnight. The vacuum set up over the composite sample is shown in Figure 13, the hose in upper left leads to...pulley system, one of which drives the carriage via a braided steel cable. Although the pulley connection between the motor and the drive axle may...slip this system contains a tensioner device. More likely, the braided steel cable is slipping against the drive pulley which has a quarter-inch

  7. Transfer system

    DOEpatents

    Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  8. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

    This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

  9. Differences in net primary production and biogeochemistry between contrasting floodplain forests

    Treesearch

    Erik B. Schilling; B. Graeme Lockaby

    2000-01-01

    A firm understanding of the driving forces controlling variation among wetland forests continues to elude scientists and land managers—specifically the biogeochemical processes controlling vegetation production. Within contrasting wetland forests, insight into the biogeochemical processes driving productivity levels may befound by examining the degree to which nitrogen...

  10. Making Curiosity Accessible: Lynne Cutler--Oakland Public Library

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    Lynne Cutler's driving force is the intense curiosity that led her to audit 24 additional courses while studying librarianship. It is what drives her to make Oakland Public Library's services available to those with disabilities, so that everyone can have "access to all the things in life I treasure, like books, words, music, art,…

  11. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... installation and at various heights under the edge of the door and located in line with the driving point of... installation, the bottom edge of the door under the driving force of the operator is to be against the floor... that represents the most severe operating condition. Any accessories having an effect on the intended...

  12. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  13. The Strategic Development of the Trinidad and Tobago Defence Force

    DTIC Science & Technology

    2009-06-12

    and ecommerce . In combination, these driving forces of change led to an explosion in world trade, an exponential increase in business...the troops into rural communities and assisted villagers in community structural improvements and socialized with them. This was designed to win

  14. Exploring the Mechanisms of Differentiation, Dedifferentiation, Reprogramming and Transdifferentiation

    PubMed Central

    Xu, Li; Zhang, Kun; Wang, Jin

    2014-01-01

    We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good agreements with the experiments. It provides a general framework to explore the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation. PMID:25133589

  15. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world.

    PubMed

    Galán, Juan-Carlos; González-Candelas, Fernando; Rolain, Jean-Marc; Cantón, Rafael

    2013-01-01

    Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem.

  16. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world

    PubMed Central

    Galán, Juan-Carlos; González-Candelas, Fernando; Rolain, Jean-Marc; Cantón, Rafael

    2013-01-01

    Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem. PMID:23404545

  17. The role of biotic forces in driving macroevolution: beyond the Red Queen

    PubMed Central

    Voje, Kjetil L.; Holen, Øistein H.; Liow, Lee Hsiang; Stenseth, Nils Chr.

    2015-01-01

    A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution. PMID:25948685

  18. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  19. What drives innovation in renewable energy technology? Evidence based on patent counts

    NASA Astrophysics Data System (ADS)

    McCormick, Jesse

    America's future economic growth and international competitiveness depend on our capacity to innovate, particularly in emerging global markets. This paper analyzes the forces that drive innovation in one such market, renewable energy technologies, utilizing the theory of induced technological innovation. Specifically, this paper operationalizes the determinants of innovation to consist of: 1) private market forces, 2) public policy that influences price and market size, and 3) public policy that catalyzes R&D investment. Analysis is conducted using a negative binomial regression to determine which of the three foundational determinants has the greatest impact on renewable energy innovation. In so doing this paper builds off of work conducted by Johnstone et al. (2010). Innovation is measured using European Patent Office data on a panel of 24 countries spanning the period from 1978-2005. The implications of this study are straightforward; policies, not market forces, are responsible for driving innovation in renewable energy technologies. Market-oriented policies are effective for mature technologies, particularly hydro, and to a lesser extent wind and solar power. R&D-oriented policy is effective for a broader technology set. In short, the United States needs a comprehensive policy environment to support renewable energy innovation; market forces alone will not provide the pace and breadth of innovations needed. That environment can and should be strategically targeted, however, to effectively allocate scare resources.

  20. Observation and simulation of an optically driven micromotor

    NASA Astrophysics Data System (ADS)

    Metzger, N. K.; Mazilu, M.; Kelemen, L.; Ormos, P.; Dholakia, K.

    2011-04-01

    In the realm of low Reynolds number flow there is a need to find methods to pump, move and mix minute amounts of analyte. Interestingly, micro-devices performing such actuation can be initiated by means of the light-matter interaction. Light induced forces and torques are exerted on such micro-objects, which are then driven by the optical gradient or scattering force. Here, different driving geometries can be realized to harness the light induced force. For example, the scattering force enables micro-gears to be operated in a tangential setup where the micromotor rotors are in line with an optical waveguide. The operational geometry we investigate has the advantage that it reduces the complexity of the driving of such a device in a microfluidic environment by delivering the actuating light by means of a waveguide or fiber optic. In this paper we explore the case of a micromotor being driven by a fiber optically delivered light beam. We experimentally investigate how the driving light interacts with and diffracts from the motor, utilizing two-photon imaging. The micromotor rotation rate dependence on the light field parameters is explored. Additionally, a theoretical model based on the paraxial approximation is used to simulate the torque and predict the rotation rate of such a device and compare it with experiment. The results presented show that our model can be used to optimize the micromotor performance and some example motor designs are evaluated.

Top