Science.gov

Sample records for potential drug target

  1. TRP Channels as Potential Drug Targets.

    PubMed

    Moran, Magdalene M

    2017-09-25

    The transient receptor potential (TRP) superfamily of channels comprises a diverse group of cation channels. Four TRP channel subunits coassemble to form functional homo- or heterotetramers that pass sodium, calcium, or both in the inward direction. Modulating TRP channel activity provides an important way to impact cellular function by regulating both membrane excitability and intracellular calcium levels. The import of these channels is underscored by the number of genetic diseases caused when they are mutated: Skeletal, skin, sensory, ocular, cardiac, and neuronal disturbances all arise from aberrant TRP function. Not surprisingly, there has been significant pharmaceutical interest in targeting these fascinating channels. Compounds that modulate TRP vanilloid 1 (TRPV1), TRPV3, TRPV4, TRP ankyrin 1 (TRPA1), and TRP melastatin 8 (TRPM8) have all entered clinical trials. The goal of this review is to familiarize the readers with the rationale behind the pursuit of these channels in drug discovery and the status of those efforts. Expected final online publication date for the Annual Review of Pharmacology and Toxicology Volume 58 is January 6, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  2. ING Proteins as Potential Anticancer Drug Targets

    PubMed Central

    Unoki, M.; Kumamoto, K.; Harris, C.C.

    2009-01-01

    Recent emerging evidence suggests that ING family proteins play roles in carcinogenesis both as oncogenes and tumor suppressor genes depending on the family members and on cell status. Previous results from non-physiologic overexpression experiments showed that all five family members induce apoptosis or cell cycle arrest, thus it had been thought until very recently that all of the family members function as tumor suppressor genes. Therefore restoration of ING family proteins in cancer cells has been proposed as a treatment for cancers. However, ING2 knockdown experiments showed unexpected results: ING2 knockdown led to senescence in normal human fibroblast cells and suppressed cancer cell growth. ING2 is also overexpressed in colorectal cancer, and promotes cancer cell invasion through an MMP13 dependent pathway. Additionally, it was reported that ING2 has two isoforms, ING2a and ING2b. Although expression of ING2a predominates compared with ING2b, both isoforms confer resistance against cell cycle arrest or apoptosis to cancer cells, thus knockdown of both isoforms is critical to remove this resistance. Taken together, these results suggest that ING2 can function as an oncogene in some specific types of cancer cells, indicating restoration of this gene in cancer cells could cause cancer progression. Because knockdown of ING2 suppresses cancer cell invasion and induces apoptosis or cell cycle arrest, ING2 may be an anticancer drug target. In this brief review, we discuss possible clinical applications of ING2 with the latest knowledge of molecular targeted therapies. PMID:19442116

  3. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2016-06-01

    AWARD NUMBER: W81XWH-13-1-0429 TITLE: Using "Click Chemistry " to Identify Potential Drug Targets in Plasmodium PRINCIPAL INVESTIGATOR...29Mar2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0429 Using click chemistry to identify potential drug targets in Plasmodium 5b...Al-Tsp derivatives begins. Two classes of Tsp derivatives (Al-Tsp) are appropriate for click chemistry (Fig. 1). Class I derivatives carry a

  4. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  5. Cognitive 'Omics': Pattern-Based Validation of Potential Drug Targets.

    PubMed

    Gyertyán, István

    2017-02-01

    Despite the abundance of cognitive enhancer mechanisms identified in basic research, drugs approved for cognitive disorders are scarce and of limited efficacy. Although the so-called 'gold-standard' animal assays are well suited to the study of fundamental learning processes, they fail to predict clinical efficacy against complex and robust cognitive defects. Preclinical validation of potential drug targets requires new approaches with higher translational value. Here I propose a rodent cognitive test system that encompasses several learning paradigms each modeling a certain human cognitive domain. Cognitive deficits are brought about by several impairing methods and a particular mechanism of action is tested on each defective cognitive function. The outcome is a cognitive efficacy pattern that should then be matched to the cognitive deficit patterns of the clinical disorders. The best fit will highlight the clinical indication with the greatest chance for success.

  6. Cardiac calmodulin kinase: a potential target for drug design.

    PubMed

    Bányász, T; Szentandrássy, N; Tóth, A; Nánási, P P; Magyar, J; Chen-Izu, Y

    2011-01-01

    Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and

  7. Cardiac Calmodulin Kinase: A Potential Target for Drug Design

    PubMed Central

    Bányász, T.; Szentandrássy, N.; Tóth, A.; Nánási, P.P.; Magyar, J.; Chen-Izu, Y.

    2014-01-01

    Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as β-blockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and

  8. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  9. Potential drug targets for calcific aortic valve disease

    PubMed Central

    Hutcheson, Joshua D.; Aikawa, Elena; Merryman, W. David

    2014-01-01

    Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. We, therefore, discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets. PMID:24445487

  10. TRPV1 Channel: A Potential Drug Target for Treating Epilepsy

    PubMed Central

    Nazıroğlu, Mustafa

    2015-01-01

    Epilepsy has 2-3% incidence worldwide. However, present antiepileptic drugs provide only partial control of seizures. Calcium ion accumulation in hippocampal neurons has long been known as a major contributor to the etiology of epilepsy. TRPV1 is a calcium-permeable channel and mediator of epilepsy in the hippocampus. TRPV1 is expressed in epileptic brain areas such as CA1 area and dentate gyrus of the hippocampus. Here the author reviews the patent literature on novel molecules targeting TRPV1 that are currently being investigated in the laboratory and are candidates for future clinical evaluation in the management of epilepsy. A limited number of recent reports have implicated TRPV1 in the induction or treatment of epilepsy suggesting that this may be new area for potential drugs targeting this debilitating disease. Thus activation of TRPV1 by oxidative stress, resiniferatoxin, cannabinoid receptor (CB1) activators (i.e. anandamide) or capsaicin induced epileptic effects, and these effects could be reduced by appropriate inhibitors, including capsazepine (CPZ), 5'-iodoresiniferatoxin (IRTX), resolvins, and CB1 antagonists. It has been also reported that CPZ and IRTX reduced spontaneous excitatory synaptic transmission through modulation of glutaminergic systems and desensitization of TRPV1 channels in the hippocampus of rats. Immunocytochemical studies indicated that TRPV1 channel expression increased in the hippocampus of mice and patients with temporal lobe epilepsy Taken together, findings in the current literature support a role for calcium ion accumulation through TRPV1 channels in the etiology of epileptic seizures, indicating that inhibition of TRPV1 in the hippocampus may possibly be a novel target for prevention of epileptic seizures. PMID:26411767

  11. Alzheimer's associated inflammation, potential drug targets and future therapies.

    PubMed

    Stuchbury, G; Münch, G

    2005-03-01

    Alzheimer's disease is the most common cause of dementia in the elderly population. The most widely used treatment for Alzheimer's disease at present is acetylcholinesterase inhibitors, which aim to prolong cognitive function through increased synaptic activity, without providing neuroprotection. This treatment is only symptomatic and provides modest outcomes for patients. The recent elucidation of the inflammatory pathways involved in Alzheimer's disease however, has opened doors for better treatment and prevention by identification of areas of therapeutic intervention that target the cause of the disease rather than the symptoms. This review describes the inflammatory pathways that are thought to be present in Alzheimer's disease and some of the new therapies that have shown promise, via alteration or inhibition of these pathways. Some of the therapies included in this review, which have already demonstrated beneficial effects in the treatment of Alzheimer's disease, or have the potential to do so, are nonsteroidal anti-inflammatory drugs, statins, RAGE antagonists and antioxidants.

  12. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    PubMed

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  13. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    NASA Astrophysics Data System (ADS)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  14. TRPV1: A Potential Drug Target for Treating Various Diseases

    PubMed Central

    Brito, Rafael; Sheth, Sandeep; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically. PMID:24861977

  15. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2015-04-01

    mammalian cycle. Inhibiting this step can block malaria at an early step. However, few anti-malar ials target l iver infection by sporozo ites. Our...step of the Plasmodium mammalian cycle. Inhibiting this step can block malaria at an early step. However, few anti-malarials target liver infection...intrahepatic development 2. Keywords Plasmodium, sporozoites, liver infection, kinase, drugs, malaria 3. Accomplishments • What were the major

  16. Sirtuins as potential drug targets for metablic diseases

    USDA-ARS?s Scientific Manuscript database

    Recent studies of the sirtuin family of proteins, which possess NAD+/-dependent deacetylase and ADP ribosyltransferase activities, indicate that they regulate many biological functions, such as longevity and metabolism. These findings also suggest that sirtuins might serve as valuable drug targets f...

  17. TCGA bladder cancer study reveals potential drug targets

    Cancer.gov

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  18. TCGA Bladder Cancer Study Reveals Potential Drug Targets - TCGA

    Cancer.gov

    Investigators with the TCGA Research Network have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.

  19. Acylation in trypanosomatids: an essential process and potential drug target

    PubMed Central

    Goldston, Amanda M.; Sharma, Aabha I.; Paul, Kimberly S.; Engman, David M.

    2014-01-01

    Fatty acylation—the addition of fatty acid moieties such as myristate and palmitate to proteins—is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their cellular targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of trypanocidal drugs. PMID:24954795

  20. Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders.

    PubMed

    Kalueff, Allan V; Stewart, Adam Michael; Nguyen, Michael; Song, Cai; Gottesman, Irving I

    2015-12-03

    One of the main challenges in medicine is the lack of efficient drug therapies for common human disorders. For example, although depressed patients receive powerful antidepressants, many often remain resistant to psychopharmacotherapy. The growing recognition of complex interplay between the drug targets and the predictors of drug sensitivity requires an improved understanding of these two key aspects of drug action and their potentially shared molecular networks. Here, we apply the concept of endophenotypes and their interplay to drug action and sensitivity. Based on these analyses, we postulate that novel drugs may be developed by targeting specific molecular pathways that integrate drug targets with drug sensitivity predictors.

  1. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18

    PubMed Central

    Sehgal, Sheikh Arslan; Hassan, Mubashir; Rashid, Sajid

    2014-01-01

    Migraine, a complex debilitating neurological disorder is strongly associated with potassium channel subfamily K member 18 (KCNK18). Research has emphasized that high levels of KCNK18 may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like migraine. In the present study, a hybrid approach of molecular docking and virtual screening were followed by pharmacophore identification and structure modeling. Screening was performed using a two-dimensional similarity search against recommended migraine drugs, keeping in view the physicochemical properties of drugs. LigandScout tool was used for exploring pharmacophore properties and designing novel molecules. Here, we report the screening of four novel compounds that have showed maximum binding affinity against KCNK18, obtained through the ZINC database, and Drug and Drug-Like libraries. Docking studies revealed that Asp-46, Ile-324, Ile-44, Gly-118, Leu-338, Val-113, and Phe-41 are critical residues for receptor–ligand interaction. A virtual screening approach coupled with docking energies and druglikeness rules illustrated that ergotamine and PB-414901692 are potential inhibitor compounds for targeting KCNK18. We propose that selected compounds may be more potent than the previously listed drug analogs based on the binding energy values. Further analysis of these inhibitors through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful for designing novel therapeutic targets to cure migraine. PMID:24899801

  2. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans.

    PubMed

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan; Sun, Shujuan

    2015-10-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs.

  3. Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets.

    PubMed

    Jangra, Ashok; Sriram, Chandra Shaker; Pandey, Suryanarayan; Choubey, Priyansha; Rajput, Prabha; Saroha, Babita; Bezbaruah, Babul Kumar; Lahkar, Mangala

    2016-10-01

    Acute and chronic alcohol exposure evidently influences epigenetic changes, both transiently and permanently, and these changes in turn influence a variety of cells and organ systems throughout the body. Many of the alcohol-induced epigenetic modifications can contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. The persistence of behavioral changes demonstrates that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. The research activities over the past years have demonstrated a crucial role of epigenetic mechanisms in causing long lasting and transient changes in the expression of several genes in diverse tissues, including brain. This has stimulated recent research work that is aimed at characterizing the influence of epigenetic regulatory events in mediating the long lasting and transient effects of alcohol abuse on the brain in humans and animal models of alcohol addiction. In this study, we update our current understanding of the impact of alcohol exposure on epigenetic mechanisms in the brain and refurbish the knowledge of epigenetics in the direction of new drugs development.

  4. Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets

    PubMed Central

    Jangra, Ashok; Sriram, Chandra Shaker; Pandey, Suryanarayan; Choubey, Priyansha; Rajput, Prabha; Saroha, Babita; Bezbaruah, Babul Kumar; Lahkar, Mangala

    2016-01-01

    Acute and chronic alcohol exposure evidently influences epigenetic changes, both transiently and permanently, and these changes in turn influence a variety of cells and organ systems throughout the body. Many of the alcohol-induced epigenetic modifications can contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. The persistence of behavioral changes demonstrates that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. The research activities over the past years have demonstrated a crucial role of epigenetic mechanisms in causing long lasting and transient changes in the expression of several genes in diverse tissues, including brain. This has stimulated recent research work that is aimed at characterizing the influence of epigenetic regulatory events in mediating the long lasting and transient effects of alcohol abuse on the brain in humans and animal models of alcohol addiction. In this study, we update our current understanding of the impact of alcohol exposure on epigenetic mechanisms in the brain and refurbish the knowledge of epigenetics in the direction of new drugs development. PMID:27780992

  5. Natural antisense and noncoding RNA transcripts as potential drug targets.

    PubMed

    Wahlestedt, Claes

    2006-06-01

    Information on the complexity of mammalian RNA transcription has increased greatly in the past few years. Notably, thousands of sense transcripts (conventional protein-coding genes) have antisense transcript partners, most of which are noncoding. Interestingly, a number of antisense transcripts regulate the expression of their sense partners, either in a discordant (antisense knockdown results in sense-transcript elevation) or concordant (antisense knockdown results in concomitant sense-transcript reduction) manner. Two new pharmacological strategies based on the knockdown of antisense RNA transcripts by siRNA (or another RNA targeting principle) are proposed in this review. In the case of discordant regulation, knockdown of antisense transcript elevates the expression of the conventional (sense) gene, thereby conceivably mimicking agonist-activator action. In the case of concordant regulation, knockdown of antisense transcript, or concomitant knockdown of antisense and sense transcripts, results in an additive or even synergistic reduction of the conventional gene expression. Although both strategies have been demonstrated to be valid in cell culture, it remains to be seen whether they provide advantages in other contexts.

  6. IMP dehydrogenase from Pneumocystis carinii as a potential drug target.

    PubMed Central

    O'Gara, M J; Lee, C H; Weinberg, G A; Nott, J M; Queener, S F

    1997-01-01

    Mycophenolic acid, a specific inhibitor of IMP dehydrogenase (IMPDH; EC 1.1.1.205), is a potent inhibitor of Pneumocystis carinii growth in culture, suggesting that IMPDH may be a sensitive target for chemotherapy in this organism. The IMPDH gene was cloned as a first step to characterizing the enzyme and developing selective inhibitors. A 1.3-kb fragment containing a portion of the P. carinii IMPDH gene was amplified by PCR with two degenerate oligonucleotides based on conserved sequences in IMPDH from humans and four different microorganisms. Northern hybridization analysis showed the P. carinii IMPDH mRNA to be approximately 1.6 kb. The entire cDNA encoding P. carinii IMPDH was isolated and cloned. The deduced amino acid sequence of P. carinii IMPDH shared homology with bacterial (31 to 38%), protozoal (48 to 59%), mammalian (60 to 62%), and fungal (62%) IMPDH enzymes. The IMPDH cDNA was expressed by using a T7 expression system in an IMPDH-deficient strain of Escherichia coli (strain S phi 1101). E. coli S phi 1101 cells containing the P. carinii IMPDH gene were able to grow on medium lacking guanine, implying that the protein expressed in vivo was functional. Extracts of these E. coli cells contained IMPDH activity that had an apparent Km for IMP of 21.7 +/- 0.3 microM and an apparent Km for NAD of 314 +/- 84 microM (mean +/- standard error of the mean; n = 3), and the activity was inhibited by mycophenolic acid (50% inhibitory concentration, 24 microM; n = 2). PMID:8980752

  7. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions

    PubMed Central

    Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.

    2012-01-01

    Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162

  8. Modular Nanotransporters for Targeted Intracellular Delivery of Drugs: Folate Receptors as Potential Targets

    PubMed Central

    Slastnikova, Tatiana A.; Rosenkranz, Andrey A.; Zalutsky, Michael R.; Sobolev, Alexander S.

    2015-01-01

    The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells. PMID:25312738

  9. Two-component signal transduction as potential drug targets in pathogenic bacteria.

    PubMed

    Gotoh, Yasuhiro; Eguchi, Yoko; Watanabe, Takafumi; Okamoto, Sho; Doi, Akihiro; Utsumi, Ryutaro

    2010-04-01

    Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. PLP-dependent enzymes as potential drug targets for protozoan diseases.

    PubMed

    Kappes, Barbara; Tews, Ivo; Binter, Alexandra; Macheroux, Peter

    2011-11-01

    The chemical properties of the B(6) vitamers are uniquely suited for wide use as cofactors in essential reactions, such as decarboxylations and transaminations. This review addresses current efforts to explore vitamin B(6) dependent enzymatic reactions as drug targets. Several current targets are described that are found amongst these enzymes. The focus is set on diseases caused by protozoan parasites. Comparison across a range of these organisms allows insight into the distribution of potential targets, many of which may be of interest in the development of broad range anti-protozoan drugs. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.

  11. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    PubMed

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  12. Potential biological targets for bioassay development in drug discovery of Sturge-Weber syndrome.

    PubMed

    Mohammadipanah, Fatemeh; Salimi, Fatemeh

    2017-09-21

    Sturge-Weber Syndrome (SWS) is a neurocutaneous disease with clinical manifestations including ocular (glaucoma), cutaneous (port-wine birthmark), neurologic (seizures), and vascular problems. Molecular mechanisms of SWS pathogenesis are initiated by the somatic mutation in GNAQ. Therefore, no definite treatments exist for SWS and treatment options only mitigate the intensity of its clinical manifestations. Biological assay design for drug discovery against this syndrome demands comprehensive knowledge on mechanisms which are involved in its pathogenesis. By analysis of the interrelated molecular targets of SWS, some in vitro bioassay systems can be allotted for drug screening against its progression. Development of such platforms of bioassay can bring along the implementation of high-throughput screening of natural or synthetic compounds in drug discovery programs. Regarding the fact that study of molecular targets and their integration in biological assay design can facilitate the process of effective drug discovery; some potential biological targets and their respective biological assay for SWS drug discovery are propounded in this review. For this purpose, some biological targets for SWS drug discovery such as acetylcholinesterase, alkaline phosphatase, GABAergic receptors, Hypoxia-Inducible Factor (HIF)-1α and 2α are suggested. © 2017 John Wiley & Sons A/S.

  13. Sodium Dependent Multivitamin Transporter (SMVT): A Potential Target for Drug Delivery

    PubMed Central

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K.

    2015-01-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge, etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems. PMID:22420308

  14. Mito-methyl coumarin, a novel mitochondria-targeted drug with great antitumor potential was synthesized.

    PubMed

    Wang, Huanan; Xu, Wenqing

    2017-07-15

    Due to higher transmembrane potential of tumor cells, enhanced accumulation of cationic drugs in tumor mitochondria has been attributed to a higher (more negative inside) mitochondrial transmembrane potential compared with normal cells, emerging researchers are focus on developing mitochondria-targeted antitumor drugs. Coumarins showed great potential on antitumor, but mitochondria-targeted coumarin derivatives have not been reported. In the present study, we synthesized mitochondria-targeted-methyl coumarin (mito-methyl coumarin) through coupling 6-methyl coumarin to TPP. We confirmed that mito-methyl coumarin inhibited HeLa cells proliferation selectively, induced ROS generation, reduced mitochondrial membrane potential, promoted mitochondria Ca(2+) accumulation, decreased mitochondria mass and induced HeLa cells apoptosis, but methyl coumarin did not. These results demonstrate that we succeed in synthesizing a novel mitochondria-targeted drug, mito-methyl coumarin, which is effective in inhibiting HeLa cells proliferation and inducing HeLa cells apoptosis through promoting ROS generation and mitochondria Ca(2+) accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Odorranalectin Is a Small Peptide Lectin with Potential for Drug Delivery and Targeting

    PubMed Central

    Xu, Xueqing; Yang, Hailong; Wu, Bingxian; Wang, Yipeng; Zhu, Jianhua; Lai, Ren; Jiang, Xinguo; Lin, Donghai; Prescott, Mark C.; Rees, Huw H.

    2008-01-01

    Background Lectins are sugar-binding proteins that specifically recognize sugar complexes. Based on the specificity of protein–sugar interactions, different lectins could be used as carrier molecules to target drugs specifically to different cells which express different glycan arrays. In spite of lectin's interesting biological potential for drug targeting and delivery, a potential disadvantage of natural lectins may be large size molecules that results in immunogenicity and toxicity. Smaller peptides which can mimic the function of lectins are promising candidates for drug targeting. Principal Findings Small peptide with lectin-like behavior was screened from amphibian skin secretions and its structure and function were studied by NMR, NMR-titration, SPR and mutant analysis. A lectin-like peptide named odorranalectin was identified from skin secretions of Odorrana grahami. It was composed of 17 aa with a sequence of YASPKCFRYPNGVLACT. L-fucose could specifically inhibit the haemagglutination induced by odorranalectin. 125I-odorranalectin was stable in mice plasma. In experimental mouse models, odorranalectin was proved to mainly conjugate to liver, spleen and lung after i.v. administration. Odorranalectin showed extremely low toxicity and immunogenicity in mice. The small size and single disulfide bridge of odorranalectin make it easy to manipulate for developing as a drug targeting system. The cyclic peptide of odorranalectin disclosed by solution NMR study adopts a β-turn conformation stabilized by one intramolecular disulfide bond between Cys6-Cys16 and three hydrogen bonds between Phe7-Ala15, Tyr9-Val13, Tyr9-Gly12. Residues K5, C6, F7, C16 and T17 consist of the binding site of L-fucose on odorranalectin determined by NMR titration and mutant analysis. The structure of odorranalectin in bound form is more stable than in free form. Conclusion These findings identify the smallest lectin so far, and show the application potential of odorranalectin for drug

  16. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets

    PubMed Central

    Wever, Claudia M.; Farrington, Danielle; Dent, Joseph A.

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target. PMID:26393923

  17. GWAS and drug targets

    PubMed Central

    2014-01-01

    Background Genome wide association studies (GWAS) have revealed a large number of links between genome variation and complex disease. Among other benefits, it is expected that these insights will lead to new therapeutic strategies, particularly the identification of new drug targets. In this paper, we evaluate the power of GWAS studies to find drug targets by examining how many existing drug targets have been directly 'rediscovered' by this technique, and the extent to which GWAS results may be leveraged by network information to discover known and new drug targets. Results We find that only a very small fraction of drug targets are directly detected in the relevant GWAS studies. We investigate two possible explanations for this observation. First, we find evidence of negative selection acting on drug target genes as a consequence of strong coupling with the disease phenotype, so reducing the incidence of SNPs linked to the disease. Second, we find that GWAS genes are substantially longer on average than drug targets and than all genes, suggesting there is a length related bias in GWAS results. In spite of the low direct relationship between drug targets and GWAS reported genes, we found these two sets of genes are closely coupled in the human protein network. As a consequence, machine-learning methods are able to recover known drug targets based on network context and the set of GWAS reported genes for the same disease. We show the approach is potentially useful for identifying drug repurposing opportunities. Conclusions Although GWA studies do not directly identify most existing drug targets, there are several reasons to expect that new targets will nevertheless be discovered using these data. Initial results on drug repurposing studies using network analysis are encouraging and suggest directions for future development. PMID:25057111

  18. Clostridium-DT(DB): a comprehensive database for potential drug targets of Clostridium difficile.

    PubMed

    Jadhav, Ankush; Ezhilarasan, Vijayalakshmi; Prakash Sharma, Om; Pan, Archana

    2013-05-01

    Clostridium difficile is considered to be one of the most important causes of health care-associated infections currently. The prevalence and severity of C. difficile infection have increased significantly worldwide in the past decade which has led to the increased research interest. Here, using comparative genomics strategy coupled with bioinformatics tools we have identified potential drug targets in C. difficile and determined their three-dimensional structures in order to develop a database, named Clostridium-DT(DB). Currently, the database comprises the potential drug targets with their structural information from three strains of C. difficile, namely hypervirulent PCR-ribotype 027 strain R20291, PCR-ribotype 012 strain 630, and PCR-ribotype 027 strain CD196. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent.

    PubMed

    Zhang, Erlong; Luo, Shenglin; Tan, Xu; Shi, Chunmeng

    2014-01-01

    IR-780 iodide, a near-infrared fluorescent heptamethine dye, has been recently characterized to exhibit preferential accumulation property in the mitochondria of tumor cells. In this study, we investigated the possible mechanisms for its tumor selective activity and its potential as a drug delivery carrier. Results showed that the energy-dependent uptake of IR-780 iodide into the mitochondria of tumor cells was affected by glycolysis and plasma membrane potential. Moreover, OATP1B3 subtype of organic anion transporter peptides (OATPs) may play a dominant role in the transportation of IR-780 iodide into tumor cells, while cellular endocytosis, mitochondrial membrane potential and the ATP-binding cassette transporters did not show significant influence to its accumulation. We further evaluated the potential of IR-780 iodide as a drug delivery carrier by covalent conjugation of IR-780 with nitrogen mustard (IR-780NM). In vivo imaging showed that IR-780NM remained the tumor targeting property, indicating that IR-780 iodide could be potentially applied as a drug delivery agent for cancer targeted imaging and therapy.

  20. Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria.

    PubMed

    Vijayakumar, S; Manogar, P; Prabhu, S

    2016-10-01

    Cyanobacteria find several applications in pharmacology as potential candidates for drug design. The need for new compounds that can be used as drugs has always been on the rise in therapeutics. Cyanobacteria have been identified as promising targets of research in the quest for new pharmaceutical compounds as they can produce secondary metabolites with novel chemical structures. Cyanobacteria is now recognized as a vital source of bioactive molecules like Curacin A, Largazole and Apratoxin which have succeeded in reaching Phase II and Phase III into clinical trials. The discovery of several new clinical cannabinoid drugs in the past decade from diverse marine life should translate into a number of new drugs for cannabinoid in the years to come. Conventional cannabinoid drugs have high toxicity and as a result, they affect the efficacy of chemotherapy and patients' life very much. The present review focuses on how potential, safe and affordable drugs used for cannabinoid treatment could be developed from cyanobacteria. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy.

    PubMed

    Huang, Chi; Tang, Zhaomin; Zhou, Yangbo; Zhou, Xiaofeng; Jin, Yong; Li, Dan; Yang, Ying; Zhou, Shaobing

    2012-06-15

    The magnetic nanomicelles as a potential platform for dual targeted (folate-mediated and magnetic-guided) drug delivery were developed to enhance the efficiency and veracity of drug delivering to tumor site. The magnetic nanocarriers were synthesized based on superparamagnetic iron oxide nanoparticles (SPIONs), biocompatible Pluronic F127 and poly(dl-lactic acid) (F127-PLA) copolymer chemically conjugated with tumor-targeting ligand-folic acid (FA) via a facile chemical conjugation method. Doxorubicin hydrochloride (DOX·HCl) was selected as a model anticancer drug to investigate the in vitro drug release and antiproliferative effect of tumor cells in vitro and in vivo in the presence or absence of an external magnetic filed (MF) with strength of 0.1T. The Alamar blue assay exhibited that these magnetic nanomicelles possessed remarkable cell-specific targeting in vitro. Additionally this smart system enabling folate receptor-mediated uptake into tumor cells, showed strong responsiveness to MF. The primary in vivo tumor model study, which was carried out in VX2 tumor-bearing male New Zealand white rabbits, demonstrated that the nanomicelles could be guided into tumor site more efficiently by application of MF, and further represented significant therapeutic efficiency to solid tumor. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance.

    PubMed

    Bugde, Piyush; Biswas, Riya; Merien, Fabrice; Lu, Jun; Liu, Dong-Xu; Chen, Mingwei; Zhou, Shufeng; Li, Yan

    2017-05-01

    Most disseminated cancers remain fatal despite the availability of a variety of conventional and novel treatments including surgery, chemotherapy, radiotherapy, immunotherapy, and biologically targeted therapy. A major factor responsible for the failure of chemotherapy in the treatment of cancer is the development of multidrug resistance (MDR). The overexpression of various ABC transporters in cancer cells can efficiently remove the anticancer drug from the cell, thus causing the drug to lose its effect. Areas covered: In this review, we summarised the ongoing research related to the mechanism, function, and regulation of ABC transporters. We integrated our current knowledge at different levels from molecular biology to clinical trials. We also discussed potential therapeutic strategies of targeting ABC transporters to reverse MDR in cancer cells. Expert opinion: Involvement of various ABC transporters to cancer MDR lays the foundation for developing tailored therapies that can overcome MDR. An ideal MDR reversal agent should have broad-spectrum ABC-transporter inhibitory activity, be potent, have good pharmacokinetics, have no trans-stimulation effects, and have low or no toxicity. Alternatively, nanotechnology-based drug delivery systems containing both the cytotoxic drug and reversing agent may represent a useful approach to reversing MDR with minimal off-target toxicity.

  3. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting.

    PubMed

    Singh, Indu; Swami, Rajan; Pooja, Deep; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2016-01-01

    Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood-brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study. Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain. DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively. Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation. It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than

  4. Heat shock protein 90 as a potential drug target against surra.

    PubMed

    Rochani, Ankit K; Mithra, Chandan; Singh, Meetali; Tatu, Utpal

    2014-08-01

    Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.

  5. Identification of potential drug targets based on a computational biology algorithm for venous thromboembolism.

    PubMed

    Xie, Ruiqiang; Li, Lei; Chen, Lina; Li, Wan; Chen, Binbin; Jiang, Jing; Huang, Hao; Li, Yiran; He, Yuehan; Lv, Junjie; He, Weiming

    2017-02-01

    Venous thromboembolism (VTE) is a common, fatal and frequently recurrent disease. Changes in the activity of different coagulation factors serve as a pathophysiological basis for the recurrent risk of VTE. Systems biology approaches provide a better understanding of the pathological mechanisms responsible for recurrent VTE. In this study, a novel computational method was presented to identify the recurrent risk modules (RRMs) based on the integration of expression profiles and human signaling network, which hold promise for achieving new and deeper insights into the mechanisms responsible for VTE. The results revealed that the RRMs had good classification performance to discriminate patients with recurrent VTE. The functional annotation analysis demonstrated that the RRMs played a crucial role in the pathogenesis of VTE. Furthermore, a variety of approved drug targets in the RRM M5 were related to VTE. Thus, the M5 may be applied to select potential drug targets for combination therapy and the extended treatment of VTE.

  6. Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method.

    PubMed

    Hadizadeh, Morteza; Tabatabaiepour, Seyyede Nasim; Tabatabaiepour, Seyyede Zahra; Hosseini Nave, Hossein; Mohammadi, Mohsen; Sohrabi, Seyyed Mohsen

    2017-05-18

    The Enterobacteriaceae is a large family of Gram-negative, facultative anaerobic, non-spore forming rod-shaped bacteria that includes harmless and pathogenic organisms. The emergence and development of drug resistance in Enterobacteriaceae is complicating the treatment of serious infections. The aim of this study is to predict and characterize putative drug targets in Enterobacteriaceae family employing a homology-based computational method. The final putative drug targets were qualitatively characterized via cellular function prediction, subcellular localization prediction, broad-spectrum, and druggability analyses. Of 6,327 analyzed proteins, 35 proteins were selected as final putative drug targets in Enterobacteriaceae family. These putative drug targets were involved in different vital pathways like metabolism, biosynthesis of macromolecule, and cell division. Predicted drug targets were also localized in the cytoplasm and cytoplasmic membrane of the pathogen that acts as antimicrobial or vaccine targets. Of 35 drug targets, 5 targets were druggable and 30 targets were not druggable and were predicted as novel drug targets, which should be further evaluated to develop new antimicrobial. Thirteen drug targets were considered as broad-spectrum targets. It is expected that results of our study could facilitate the production of novel antibacterial for efficient treatment of infections caused by Enterobacteriaceae pathogens.

  7. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    PubMed Central

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  8. Integrative exploration of genomic profiles for triple negative breast cancer identifies potential drug targets

    PubMed Central

    Wang, Xiaosheng; Guda, Chittibabu

    2016-01-01

    Abstract Background: Triple negative breast cancer (TNBC) is high-risk due to its rapid drug resistance and recurrence, metastasis, and lack of targeted therapy. So far, no molecularly targeted therapeutic agents have been clinically approved for TNBC. It is imperative that we discover new targets for TNBC therapy. Objectives: A large volume of cancer genomics data are emerging and advancing breast cancer research. We may integrate different types of TNBC genomic data to discover molecular targets for TNBC therapy. Data sources: We used publicly available TNBC tumor tissue genomic data in the Cancer Genome Atlas database in this study. Methods: We integratively explored genomic profiles (gene expression, copy number, methylation, microRNA [miRNA], and gene mutation) in TNBC and identified hyperactivated genes that have higher expression, more copy numbers, lower methylation level, or are targets of miRNAs with lower expression in TNBC than in normal samples. We ranked the hyperactivated genes into different levels based on all the genomic evidence and performed functional analyses of the sets of genes identified. More importantly, we proposed potential molecular targets for TNBC therapy based on the hyperactivated genes. Results: Some of the genes we identified such as FGFR2, MAPK13, TP53, SRC family, MUC family, and BCL2 family have been suggested to be potential targets for TNBC treatment. Others such as CSF1R, EPHB3, TRIB1, and LAD1 could be promising new targets for TNBC treatment. By utilizing this integrative analysis of genomic profiles for TNBC, we hypothesized that some of the targeted treatment strategies for TNBC currently in development are more likely to be promising, such as poly (ADP-ribose) polymerase inhibitors, while the others are more likely to be discouraging, such as angiogenesis inhibitors. Limitations: The findings in this study need to be experimentally validated in the future. Conclusion: This is a systematic study that combined 5

  9. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets

    PubMed Central

    Tang, Xiao-long; Wang, Ying; Li, Da-li; Luo, Jian; Liu, Ming-yao

    2012-01-01

    The superfamily of G protein-coupled receptors (GPCRs) includes at least 800 seven-transmembrane receptors that participate in diverse physiological and pathological functions. GPCRs are the most successful targets of modern medicine, and approximately 36% of marketed pharmaceuticals target human GPCRs. However, the endogenous ligands of more than 140 GPCRs remain unidentified, leaving the natural functions of those GPCRs in doubt. These are the so-called orphan GPCRs, a great source of drug targets. This review focuses on the signaling transduction pathways of the adhesion GPCR family, the LGR subfamily, and the PSGR subfamily, and their potential functions in immunology, development, and cancers. In this review, we present the current approaches and difficulties of orphan GPCR deorphanization and characterization. PMID:22367282

  10. ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma

    PubMed Central

    Smit, Marjon A; Maddalo, Gianluca; Greig, Kylie; Raaijmakers, Linsey M; Possik, Patricia A; van Breukelen, Bas; Cappadona, Salvatore; Heck, Albert JR; Altelaar, AF Maarten; Peeper, Daniel S

    2014-01-01

    Treatment of BRAF mutant melanomas with specific BRAF inhibitors leads to tumor remission. However, most patients eventually relapse due to drug resistance. Therefore, we designed an integrated strategy using (phospho)proteomic and functional genomic platforms to identify drug targets whose inhibition sensitizes melanoma cells to BRAF inhibition. We found many proteins to be induced upon PLX4720 (BRAF inhibitor) treatment that are known to be involved in BRAF inhibitor resistance, including FOXD3 and ErbB3. Several proteins were down-regulated, including Rnd3, a negative regulator of ROCK1 kinase. For our genomic approach, we performed two parallel shRNA screens using a kinome library to identify genes whose inhibition sensitizes to BRAF or ERK inhibitor treatment. By integrating our functional genomic and (phospho)proteomic data, we identified ROCK1 as a potential drug target for BRAF mutant melanoma. ROCK1 silencing increased melanoma cell elimination when combined with BRAF or ERK inhibitor treatment. Translating this to a preclinical setting, a ROCK inhibitor showed augmented melanoma cell death upon BRAF or ERK inhibition in vitro. These data merit exploration of ROCK1 as a target in combination with current BRAF mutant melanoma therapies. PMID:25538140

  11. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    PubMed

    Lo Sciuto, Alessandra; Fernández-Piñar, Regina; Bertuccini, Lucia; Iosi, Francesca; Superti, Fabiana; Imperi, Francesco

    2014-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.

  12. Diacylglycerol Kinases as Emerging Potential Drug Targets for a Variety of Diseases: An Update

    PubMed Central

    Sakane, Fumio; Mizuno, Satoru; Komenoi, Suguru

    2016-01-01

    Ten mammalian diacylglycerol kinase (DGK) isozymes (α–κ) have been identified to date. Our previous review noted that several DGK isozymes can serve as potential drug targets for cancer, epilepsy, autoimmunity, cardiac hypertrophy, hypertension and type II diabetes (Sakane et al., 2008). Since then, recent genome-wide association studies have implied several new possible relationships between DGK isozymes and diseases. For example, DGKθ and DGKκ have been suggested to be associated with susceptibility to Parkinson's disease and hypospadias, respectively. In addition, the DGKη gene has been repeatedly identified as a bipolar disorder (BPD) susceptibility gene. Intriguingly, we found that DGKη-knockout mice showed lithium (BPD remedy)-sensitive mania-like behaviors, suggesting that DGKη is one of key enzymes of the etiology of BPD. Because DGKs are potential drug targets for a wide variety of diseases, the development of DGK isozyme-specific inhibitors/activators has been eagerly awaited. Recently, we have identified DGKα-selective inhibitors. Because DGKα has both pro-tumoral and anti-immunogenic properties, the DGKα-selective inhibitors would simultaneously have anti-tumoral and pro-immunogenic (anti-tumor immunogenic) effects. Although the ten DGK isozymes are highly similar to each other, our current results have encouraged us to identify and develop specific inhibitors/activators against every DGK isozyme that can be effective regulators and drugs against a wide variety of physiological events and diseases. PMID:27583247

  13. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment

    PubMed Central

    Schmidt, Frank M.; Kirkby, Kenneth C.; Lichtblau, Nicole

    2016-01-01

    Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration. PMID:26769225

  14. A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery.

    PubMed

    Ding, Guobin; Guo, Yi; Lv, Yanyun; Liu, Xiaofeng; Xu, Li; Zhang, Xuezhong

    2012-03-01

    A double-targeted magnetic nanocarrier based with potential applications in the delivery of hydrophobic drugs has been developed. It consists of magnetite (Fe(3)O(4)) nanoparticles encapsulated in self-assembled micelles of the amphiphilic copolymer MPEG-PLGA [methoxy poly (ethylene glycol)-poly (d,l-lactide-co-glycolide)], and was fabricated using the solvent-evaporation technique. The magnetic nanocarrier has a very stable core-shell structure and is superparamagnetic. Its cytotoxicity was evaluated using the MTT assay with three cell lines-HeLa, MCF-7, and HT1080; it exhibited no cytotoxicity against any tested line at concentrations of up to 400 μg/mL after incubation for 24 h. Its cellular uptake was studied by Prussian blue staining and by fluorescence microscopy after encapsulating a fluorescent probe (hydrophobic quantum dots) into the nanocarrier. Finally, the magnetic targeting property of the magnetic nanocarrier was confirmed by an in vitro test. Overall, the results obtained demonstrate the potential of the double-targeted nanocarrier for the intracellular delivery of hydrophobic drugs.

  15. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy

    PubMed Central

    Chan, Lai Yue; Craik, David J.; Daly, Norelle L.

    2016-01-01

    Peptide analogues derived from bioactive hormones such as somatostatin or certain growth factors have great potential as angiogenesis inhibitors for cancer applications. In an attempt to combat emerging drug resistance many FDA-approved anti-angiogenesis therapies are co-administered with cytotoxic drugs as a combination therapy to target multiple signaling pathways of cancers. However, cancer therapies often encounter limiting factors such as high toxicities and side effects. Here, we combined two anti-angiogenic epitopes that act on different pathways of angiogenesis into a single non-toxic cyclic peptide framework, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II), and subsequently assessed the anti-angiogenic activity of the novel compound. We hypothesized that the combination of these two epitopes would elicit a synergistic effect by targeting different angiogenesis pathways and result in improved potency, compared to that of a single epitope. This novel approach has resulted in the development of a potent, non-toxic, stable and cyclic analogue with nanomolar potency inhibition in in vitro endothelial cell migration and in vivo chorioallantoic membrane angiogenesis assays. This is the first report to use the MCoTI-II framework to develop a 2-in-1 anti-angiogenic peptide, which has the potential to be used as a form of combination therapy for targeting a wide range of cancers. PMID:27734947

  16. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy.

    PubMed

    Chan, Lai Yue; Craik, David J; Daly, Norelle L

    2016-10-13

    Peptide analogues derived from bioactive hormones such as somatostatin or certain growth factors have great potential as angiogenesis inhibitors for cancer applications. In an attempt to combat emerging drug resistance many FDA-approved anti-angiogenesis therapies are co-administered with cytotoxic drugs as a combination therapy to target multiple signaling pathways of cancers. However, cancer therapies often encounter limiting factors such as high toxicities and side effects. Here, we combined two anti-angiogenic epitopes that act on different pathways of angiogenesis into a single non-toxic cyclic peptide framework, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II), and subsequently assessed the anti-angiogenic activity of the novel compound. We hypothesized that the combination of these two epitopes would elicit a synergistic effect by targeting different angiogenesis pathways and result in improved potency, compared to that of a single epitope. This novel approach has resulted in the development of a potent, non-toxic, stable and cyclic analogue with nanomolar potency inhibition in in vitro endothelial cell migration and in vivo chorioallantoic membrane angiogenesis assays. This is the first report to use the MCoTI-II framework to develop a 2-in-1 anti-angiogenic peptide, which has the potential to be used as a form of combination therapy for targeting a wide range of cancers.

  17. Chemical validation of trypanothione synthetase: a potential drug target for human trypanosomiasis.

    PubMed

    Torrie, Leah S; Wyllie, Susan; Spinks, Daniel; Oza, Sandra L; Thompson, Stephen; Harrison, Justin R; Gilbert, Ian H; Wyatt, Paul G; Fairlamb, Alan H; Frearson, Julie A

    2009-12-25

    In the search for new therapeutics for the treatment of human African trypanosomiasis, many potential drug targets in Trypanosoma brucei have been validated by genetic means, but very few have been chemically validated. Trypanothione synthetase (TryS; EC 6.3.1.9; spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)) is one such target. To identify novel inhibitors of T. brucei TryS, we developed an in vitro enzyme assay, which was amenable to high throughput screening. The subsequent screen of a diverse compound library resulted in the identification of three novel series of TryS inhibitors. Further chemical exploration resulted in leads with nanomolar potency, which displayed mixed, uncompetitive, and allosteric-type inhibition with respect to spermidine, ATP, and glutathione, respectively. Representatives of all three series inhibited growth of bloodstream T. brucei in vitro. Exposure to one of our lead compounds (DDD86243; 2 x EC(50) for 72 h) decreased intracellular trypanothione levels to <10% of wild type. In addition, there was a corresponding 5-fold increase in the precursor metabolite, glutathione, providing strong evidence that DDD86243 was acting on target to inhibit TryS. This was confirmed with wild-type, TryS single knock-out, and TryS-overexpressing cell lines showing expected changes in potency to DDD86243. Taken together, these data provide initial chemical validation of TryS as a drug target in T. brucei.

  18. Conserved Fungal Genes as Potential Targets for Broad-Spectrum Antifungal Drug Discovery†

    PubMed Central

    Liu, Mengping; Healy, Matthew D.; Dougherty, Brian A.; Esposito, Kim M.; Maurice, Trina C.; Mazzucco, Charles E.; Bruccoleri, Robert E.; Davison, Daniel B.; Frosco, Marybeth; Barrett, John F.; Wang, Ying-Kai

    2006-01-01

    The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors. PMID:16607011

  19. The exploration of network motifs as potential drug targets from post-translational regulatory networks.

    PubMed

    Zhang, Xiao-Dong; Song, Jiangning; Bork, Peer; Zhao, Xing-Ming

    2016-02-08

    Phosphorylation and proteolysis are among the most common post-translational modifications (PTMs), and play critical roles in various biological processes. More recent discoveries imply that the crosstalks between these two PTMs are involved in many diseases. In this work, we construct a post-translational regulatory network (PTRN) consists of phosphorylation and proteolysis processes, which enables us to investigate the regulatory interplays between these two PTMs. With the PTRN, we identify some functional network motifs that are significantly enriched with drug targets, some of which are further found to contain multiple proteins targeted by combinatorial drugs. These findings imply that the network motifs may be used to predict targets when designing new drugs. Inspired by this, we propose a novel computational approach called NetTar for predicting drug targets using the identified network motifs. Benchmarking results on real data indicate that our approach can be used for accurate prediction of novel proteins targeted by known drugs.

  20. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Targets: A Network View.

    PubMed

    Rai, Sneha; Bhatnagar, Sonika

    2016-03-01

    The prevalence of acquired hyperlipidemia has increased due to sedentary life style and lipid-rich diet. In this work, a lipid-protein-protein interaction network (LPPIN) for acquired hyperlipidemia was prepared by incorporating differentially expressed genes in obese fatty liver as seed nodes, protein interactions from PathwayLinker, and lipid interactions from STITCH4.0. Cholesterol, diacylglycreol, phosphatidylinositol-bis-phosphate, and inositol triphosphate were identified as core lipids that influence the signaling pathways in the LPPIN. RACα serine/threonine-protein kinase (AKT1) was a highly essential central protein. The gastrin-CREB pathway was greatly enriched; all enriched pathways in the LPPIN showed crosstalk with the phosphatidylinositol-3-kinase-Akt pathway, correlating with the central role of AKT1 in the network. The disease clusters identified in the LPPIN were cardiovascular disease, cancer, Alzheimer's disease, and Type II diabetes. In this context, we note that the commercially approved drug targets for hyperlipidemia in each disease cluster may potentially be repurposed for treatment of the specific disease. We report here top 10 potential drug targets that may mediate progression from hyperlipidemia to the respective disease state. ToppGene Suite was employed to identify candidates followed by a) discarding high closeness centrality nodes, and b) selecting nodes with high bridging centrality. Three potential targets could be mapped to specific disease clusters in the LPPIN. Lipids associated with acquired hyperlipidemia and each disease cluster identified may be useful as prognostic fingerprints. These findings provide an integrative view of lipid-protein interactions leading to acquired hyperlipidemia and the associated diseases, and might prove useful in future translational pharmaceutical research.

  1. A Systematic In Silico Search for Target Similarity Identifies Several Approved Drugs with Potential Activity against the Plasmodium falciparum Apicoplast

    PubMed Central

    Bispo, Nadlla Alves; Culleton, Richard; Silva, Lourival Almeida; Cravo, Pedro

    2013-01-01

    Most of the drugs in use against Plasmodium falciparum share similar modes of action and, consequently, there is a need to identify alternative potential drug targets. Here, we focus on the apicoplast, a malarial plastid-like organelle of algal source which evolved through secondary endosymbiosis. We undertake a systematic in silico target-based identification approach for detecting drugs already approved for clinical use in humans that may be able to interfere with the P. falciparum apicoplast. The P. falciparum genome database GeneDB was used to compile a list of ≈600 proteins containing apicoplast signal peptides. Each of these proteins was treated as a potential drug target and its predicted sequence was used to interrogate three different freely available databases (Therapeutic Target Database, DrugBank and STITCH3.1) that provide synoptic data on drugs and their primary or putative drug targets. We were able to identify several drugs that are expected to interact with forty-seven (47) peptides predicted to be involved in the biology of the P. falciparum apicoplast. Fifteen (15) of these putative targets are predicted to have affinity to drugs that are already approved for clinical use but have never been evaluated against malaria parasites. We suggest that some of these drugs should be experimentally tested and/or serve as leads for engineering new antimalarials. PMID:23555651

  2. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  3. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse.

    PubMed

    Hauser, Sheketha R; Hedlund, Peter B; Roberts, Amanda J; Sari, Youssef; Bell, Richard L; Engleman, Eric A

    2014-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed-including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction.

  4. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target

    PubMed Central

    Dobb, Katharine S.; Kaye, Sarah J.; Beckmann, Nicola; Thain, John L.; Stateva, Lubomira; Birch, Mike; Oliver, Jason D.

    2015-01-01

    Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds. PMID:26606674

  5. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  6. Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa.

    PubMed

    Seeber, Frank

    2003-06-01

    Apicomplexan parasites are a large phylum of unicellular and obligate intracellular organisms of great medical importance. They include the human pathogens Plasmodium spp., the causative agent of malaria, and Toxoplasma gondii, an opportunistic parasite of immunosuppressed individuals and a common cause of congenital disease, together affecting several hundred million people worldwide. The search for new and effective drugs against these pathogens has been boosted during the last years by an unexpected finding. Through molecular and cell biological analysis it was realized that probably most members of this phylum harbor a plastid-like organelle, called the apicoplast, which probably is derived from the engulfment of a red alga in ancient times. Although the apicoplast itself contains a small circular genome, most of the proteome of this organelle is encoded in the nuclear genome, and the proteins are subsequently transported to the apicoplast. It is assumed to contain a number of unique metabolic pathways not found in the vertebrate host, making it an ideal "playground" for those interested in drug targets. Recent reports have shown that the rationale of this approach is valid and that new drugs which are urgently needed especially for plasmodial infections, might be developed in the near future based on these targets. Amongst them are three enzymes of the plant-like fatty acid synthesis machinery and enzymes of the non-mevalonat isoprenoid biosynthesis pathway. From their presence in the apicoplast it can be concluded that fatty acid and lipid biosynthesis seems to be a major function of the apicoplast. Another recently described apicoplast enzyme, ferredoxin-NADP(+)-reductase and its redox partner, ferredoxin, points to another interesting organelle-specific biosynthetic pathway, namely [Fe-S] cluster biosynthesis. In the present review, the fundamental aspects of the apicoplast as drug target will be described, together with the specific pathways and their

  7. Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer

    PubMed Central

    Schinagl, Alexander; Thiele, Michael; Douillard, Patrice; Völkel, Dirk; Kenner, Lukas; Kazemi, Zahra; Freissmuth, Michael; Scheiflinger, Friedrich; Kerschbaumer, Randolf J.

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, which was shown to be upregulated in cancers and to exhibit tumor promoting properties. Unlike other cytokines, MIF is ubiquitously present in the circulation and tissue of healthy subjects. We recently described a previously unrecognized, disease-related isoform of MIF, designated oxMIF, which is present in the circulation of patients with different inflammatory diseases. In this article, we report that oxMIF is also linked to different solid tumors as it is specifically expressed in tumor tissue from patients with colorectal, pancreatic, ovarian and lung cancer. Furthermore, oxMIF can be specifically targeted by a subset of phage display-derived fully human, monoclonal anti-MIF antibodies (mAbs) that were shown to neutralize pro-tumorigenic activities of MIF in vivo. We further demonstrate that anti-oxMIF mAbs sensitize human cancer cell lines (LNCaP, PC3, A2780 and A2780ADR) to the action of cytotoxic drugs (mitoxantrone, cisplatin and doxorubicin) in vitro and in an A2780 xenograft mouse model of ovarian cancer. We conclude that oxMIF is the disease related isoform of MIF in solid tumors and a potential new diagnostic marker and drug target in cancer. PMID:27636991

  8. Choroidal Proteins Involved in Cerebrospinal Fluid Production may be Potential Drug Targets for Alzheimer's Disease Therapy.

    PubMed

    Wostyn, Peter; Audenaert, Kurt; De Deyn, Peter Paul

    2011-02-23

    Alzheimer's disease is known to be the most common form of dementia in the elderly. It is clinically characterized by impairment of cognitive functions, as well as changes in personality, behavioral disturbances and an impaired ability to perform activities of daily living. To date, there are no effective ways to cure or reverse the disease. Genetic studies of early-onset familial Alzheimer's disease cases revealed causative mutations in the genes encoding β-amyloid precursor protein and the γ-secretase-complex components presenilin-1 and presenilin-2, supporting an important role of β-amyloid in the pathogenesis of Alzheimer's disease. Compromised function of the choroid plexus and defective cerebrospinal fluid production and turnover, with diminished clearance of β-amyloid, may play an important role in late-onset forms of Alzheimer's disease. If reduced cerebrospinal fluid turnover is a risk factor for Alzheimer's disease, then therapeutic strategies to improve cerebrospinal fluid flow are reasonable. However, the role of deficient cerebrospinal fluid dynamics in Alzheimer's disease and the relevance of choroidal proteins as potential therapeutic targets to enhance cerebrospinal fluid turnover have received relatively little research attention. In this paper, we discuss several choroidal proteins, such as Na(+)-K(+) ATPase, carbonic anhydrase, and aquaporin 1, that may be targets for pharmacological up-regulation of cerebrospinal fluid formation. The search for potentially beneficial drugs useful to ameliorate Alzheimer's disease by facilitating cerebrospinal fluid production and turnover may be an important area for future research. However, the ultimate utility of such modulators in the management of Alzheimer's disease remains to be determined. Here, we hypothesize that caffeine, the most commonly used psychoactive drug in the world, may be an attractive therapeutic candidate for treatment of Alzheimer's disease since long-term caffeine consumption may

  9. Drug design with Cdc7 kinase: a potential novel cancer therapy target

    PubMed Central

    Sawa, Masaaki; Masai, Hisao

    2008-01-01

    Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect of less than viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy. PMID:19920912

  10. Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy.

    PubMed

    Ojo, Kayode K; Gillespie, J Robert; Riechers, Aaron J; Napuli, Alberto J; Verlinde, Christophe L M J; Buckner, Frederick S; Gelb, Michael H; Domostoj, Mathias M; Wells, Susan J; Scheer, Alexander; Wells, Timothy N C; Van Voorhis, Wesley C

    2008-10-01

    Development of a safe, effective, and inexpensive therapy for African trypanosomiasis is an urgent priority. In this study, we evaluated the validity of Trypanosoma brucei glycogen synthase kinase 3 (GSK-3) as a potential drug target. Interference with the RNA of either of two GSK-3 homologues in bloodstream-form T. brucei parasites led to growth arrest and altered parasite morphology, demonstrating their requirement for cell survival. Since the growth arrest after RNA interference appeared to be more profound for T. brucei GSK-3 "short" (Tb10.161.3140) than for T. brucei GSK-3 "long" (Tb927.7.2420), we focused on T. brucei GSK-3 short for further studies. T. brucei GSK-3 short with an N-terminal maltose-binding protein fusion was cloned, expressed, and purified in a functional form. The potency of a GSK-3-focused inhibitor library against the recombinant enzyme of T. brucei GSK-3 short, as well as bloodstream-form parasites, was evaluated with the aim of determining if compounds that inhibit enzyme activity could also block the parasites' growth and proliferation. Among the compounds active against the cell, there was an excellent correlation between activity inhibiting the T. brucei GSK-3 short enzyme and the inhibition of T. brucei growth. Thus, there is reasonable genetic and chemical validation of GSK-3 short as a drug target for T. brucei. Finally, selective inhibition may be required for therapy targeting the GSK-3 enzyme, and a molecular model of the T. brucei GSK-3 short enzyme suggests that compounds that selectively inhibit T. brucei GSK-3 short over the human GSK-3 enzymes can be found.

  11. Potential chemotherapeutic targets for Japanese encephalitis: current status of antiviral drug development and future challenges.

    PubMed

    Ishikawa, Tomohiro; Konishi, Eiji

    2015-01-01

    Japanese encephalitis (JE) remains a public health threat in Asia. Although several vaccines have been licensed, ∼ 67,900 cases of the disease are estimated to occur annually, probably because the vaccine coverage is low. Therefore, effective antiviral drugs are required to control JE. However, no licensed anti-JE drugs are available, despite extensive efforts to develop them. We provide a general overview of JE and JE virus, including its transmission cycle, distribution, structure, replication machinery, immune evasion mechanisms and vaccines. The current situation in antiviral drug development is then reviewed and future perspectives are discussed. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent progress in our understanding of the viral replication machinery and immune evasion strategies has identified new targets for anti-JE drug development. To date, most candidate drugs have only been evaluated in single-drug formulations, and efficient drug delivery to the CNS has virtually not been considered. However, an effective anti-JE treatment is expected to be achieved with multiple-drug formulations and a targeted drug delivery system in the near future.

  12. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    PubMed

    Pizarro, Juan Carlos; Hills, Tanya; Senisterra, Guillermo; Wernimont, Amy K; Mackenzie, Claire; Norcross, Neil R; Ferguson, Michael A J; Wyatt, Paul G; Gilbert, Ian H; Hui, Raymond

    2013-01-01

    Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  13. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration

    PubMed Central

    Andreas, Kristin; Häupl, Thomas; Lübke, Carsten; Ringe, Jochen; Morawietz, Lars; Wachtel, Anja; Sittinger, Michael; Kaps, Christian

    2009-01-01

    Introduction Rheumatoid arthritis (RA) leads to progressive destruction of articular cartilage. This study aimed to disclose major mechanisms of antirheumatic drug action on human chondrocytes and to reveal marker and pharmacological target genes that are involved in cartilage dysfunction and regeneration. Methods An interactive in vitro cultivation system composed of human chondrocyte alginate cultures and conditioned supernatant of SV40 T-antigen immortalised human synovial fibroblasts was used. Chondrocyte alginate cultures were stimulated with supernatant of RA synovial fibroblasts, of healthy donor synovial fibroblasts, and of RA synovial fibroblasts that have been antirheumatically treated with disease-modifying antirheumatic drugs (DMARDs) (azathioprine, gold sodium thiomalate, chloroquine phosphate, and methotrexate), nonsteroidal anti-inflammatory drugs (NSAIDs) (piroxicam and diclofenac), or steroidal anti-inflammatory drugs (SAIDs) (methylprednisolone and prednisolone). Chondrocyte gene expression profile was analysed using microarrays. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed for validation of microarray data. Results Genome-wide expression analysis revealed 110 RA-related genes in human chondrocytes: expression of catabolic mediators (inflammation, cytokines/chemokines, and matrix degradation) was induced, and expression of anabolic mediators (matrix synthesis and proliferation/differentiation) was repressed. Potential marker genes to define and influence cartilage/chondrocyte integrity and regeneration were determined and include already established genes (COX-2, CXCR-4, IL-1RN, IL-6/8, MMP-10/12, and TLR-2) and novel genes (ADORA2A, BCL2-A1, CTGF, CXCR-7, CYR-61, HSD11B-1, IL-23A, MARCKS, MXRA-5, NDUFA4L2, NR4A3, SMS, STS, TNFAIP-2, and TXNIP). Antirheumatic treatment with SAIDs showed complete and strong reversion of RA-related gene expression in human chondrocytes, whereas

  14. Novel Insight from Computational Virtual Screening Depict the Binding Potential of Selected Phytotherapeutics Against Probable Drug Targets of Clostridium difficile.

    PubMed

    Kamath, Suman; Skariyachan, Sinosh

    2017-02-20

    This study explores computational screening and molecular docking approaches to screen novel herbal therapeutics against probable drug targets of Clostridium difficile. The essential genes were predicted by comparative genome analysis of C. difficile and best homologous organisms using BLAST search at database of essential genes (DEG). The functions of these genes in various metabolic pathways were predicted and some of these genes were considered as potential targets. Three major proteins were selected as putative targets, namely permease IIC component, ABC transporter and histidine kinase. The three-dimensional structures of these targets were predicted by molecular modelling. The herbal bioactive compounds were screened by computer-aided virtual screening and binding potentials against the drug targets were predicted by molecular docking. Quercetin present in Psidium guajava (binding energy of -9.1 kcal/mol), Ellagic acid found in Punica granatum and Psidium guajava (binding energy -9.0 kcal/mol) and Curcumin, present in Curcuma longa (binding energy -7.8 kcal/mol) demonstrated minimum binding energy and more number of interacting residues with the drug targets. Further, comparative study revealed that phytoligands demonstrated better binding affinities to the drug targets in comparison with usual ligands. Thus, this investigation explores the therapeutic probabilities of selected phytoligands against the putative drug targets of C. difficile.

  15. Molecular and Kinetic Characterization of Babesia microti Gray Strain Lactate Dehydrogenase as a Potential Drug Target

    PubMed Central

    Vudriko, Patrick; Masatani, Tatsunori; Cao, Shinuo; Terkawi, Mohamad Alla; Kamyingkird, Ketsarin; Mousa, Ahmed A; Adjou Moumouni, Paul F; Nishikawa, Yoshifumi; Xuan, Xuenan

    2014-01-01

    Babesia microti is an emerging zoonotic protozoan organism that causes “malaria-like” symptoms that can be fatal in immunocompromised people. Owing to lack of specific therapeutic regiment against the disease, we cloned and characterized B. microti lactate dehydrogenase (BmLDH) as a potential molecular drug receptor. The in vitro kinetic properties of BmLDH enzyme was evaluated using nicotinamide adenine dinucleotide (NAD+) as a co-factor and lactate as a substrate. Inhibitory assay was also done using gossypol as BmLDH inhibitor to determine the inhibitory concentration 50 (IC50). The result showed that the 0.99 kbp BmLDH gene codes for a barely soluble 36 kDa protein (332 amino acids) localized in both the cytoplasm and nucleus of the parasite. In vitro enzyme kinetic studies further revealed that BmLDH is an active enzyme with a high catalytic efficiency at optimal pH of 10.2. The Km values of NAD+ and lactate were 8.7 ± 0.57 mM and 99.9 ± 22.33 mM, respectively. The IC50 value for gossypol was 0.345 μM, while at 2.5 μM, gossypol caused 100% inhibition of BmLDH catalytic activity. These findings, therefore, provide initial evidence that BmLDH could be a potential drug target, although further in vivo studies are needed to validate the practical application of lactate dehydrogenase inhibitors against B. microti infection. PMID:25125971

  16. NPY signalling pathway in bone homeostasis: Y1 receptor as a potential drug target.

    PubMed

    Sousa, D M; Herzog, H; Lamghari, M

    2009-01-01

    Neuropeptide (NPY) is a neurotransmitter widely distributed in central and peripheral nervous system that has been implicated in several physiological processes through activation of five different Y receptors: Y1, Y2, Y4, Y5, and y6. NPY system has been extensively studied for the last decades due to its implications in a wide variety of physiological processes. For this purpose a diversity of sophisticated animal models and receptors agonists and antagonists has been developed to better understand its actions throughout body homeostasis. Consequently, NPY and its receptors have recently emerged as a potential regulator of bone homeostasis. This is supported by the demonstration of an increase of bone mass in mice lacking Y1 or Y2 receptor genes. Recent findings revealed Y1 receptor as a potential drug target candidate for prevention and treatment of bone loss. Indeed, it has been demonstrated that osteoblasts express Y1 receptor while no other Y receptor was detected in these cells, implicating Y1 receptor signalling in the local control of bone turnover. In this review, we have summarized the findings obtained from studies on NPY system in skeletogenesis focusing on Y1 receptor.

  17. Microbial Peptidyl-Prolyl cis/trans Isomerases (PPIases): Virulence Factors and Potential Alternative Drug Targets

    PubMed Central

    2014-01-01

    SUMMARY Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted. PMID:25184565

  18. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours.

    PubMed

    Russell-Jones, Gregory; McTavish, Kirsten; McEwan, John; Rice, John; Nowotnik, David

    2004-10-01

    Targeted chemotherapy for cancer treatment offers a great potential advantage in tumour treatment due to greater specificity of delivery which leads to increased dose of the cytotoxin delivered to the tumour relative to the rest of the body. In order to achieve such selective targeted delivery one needs to identify generic markers that are over-expressed on the surface of tumour cells but are not over-expressed on normal tissue. Work of several authors has shown that some cells, such as those of rapidly dividing, aggressive tumours, over-express surface receptors involved in the uptake of vitamin B(12) [B. Rachmilewitz, M. Rachmilewitz, B. Moshkowitz, J. Gross, J. Lab. Clin. Med. 78 (1971) 275-279; B. Rachmilewitz, A. Sulkes, M. Rachmilewitz, A. Fuks, Israel J. Med. Sci. 17 (1981) 874-879] or folate [P. Garin-Chesa, I. Campbell, P.E. Saigo, J.L. Lewis Jr., L.J. Old, W.J. Rettig, Am. J. Pathol. 142 (1993) 557-567; O.C. Boerman, C.C. van Niekerk, K. Makkink, T.G.J.M. Hanselaar, P. Kenemans, L.G. Poels, Int. J. Gynecol. Pathol. 10 (1991) 15-25; G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, Int. J. Cancer 74 (1997) 193-194; J.A. Reddy, D. Dean, M.D. Kennedy, P.S. Low, J. Pharm. Sci. 88 (1999) 1112-1118; J.A. Reddy, P.S. Low, Crit. Rev. Ther. Drug Carrier Syst. 15 (1998) 587-627; G.J. Russell-Jones, K. McTavish, J.F. McEwan, in: Proceedings of the 2nd International Symposium on Tumor Targeted Delivery Systems, 2002]. Furthermore the degree of over-expression has been found to correlate with the stage of tumour growth, with the highest levels found on stage IV carcinomas. Using fluorescently-labelled polymers to which are linked the targeting agents, vitamin B(12), folate or biotin, the relative uptake of these polymers into various types of tumour cell lines grown both in vitro and in vivo has been examined. These studies have shown that while some tumour types do NOT over-express receptors involved in vitamin uptake, most tumour types over

  19. Drug-Target Kinetics in Drug Discovery.

    PubMed

    Tonge, Peter J

    2017-07-14

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  20. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

    PubMed

    Mészáros, Bálint; Tóth, Judit; Vértessy, Beáta G; Dosztányi, Zsuzsanna; Simon, István

    2011-07-01

    Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

  1. Indolin-2-one compounds targeting thioredoxin reductase as potential anticancer drug leads

    PubMed Central

    Kaminska, Kamila K.; Bertrand, Helene C.; Tajima, Hisashi; Stafford, William C.; Cheng, Qing; Chen, Wan; Wells, Geoffrey; Arner, Elias S.J.; Chew, Eng-Hui

    2016-01-01

    Several compounds bearing the indolinone chemical scaffold are known to possess anticancer properties. For example, the tyrosine kinase inhibitor sunitinib is an arylideneindolin-2-one compound. The chemical versatility associated with structural modifications of indolinone compounds underlies the potential to discover additional derivatives possessing anticancer properties. Previously synthesized 3-(2-oxoethylidene)indolin-2-one compounds, also known as supercinnamaldehyde (SCA) compounds in reference to the parent compound 1 [1-methyl-3(2-oxopropylidene)indolin-2-one], bear a nitrogen-linked α,β-unsaturated carbonyl (Michael acceptor) moiety. Here we found that analogs bearing N-substituents, in particular compound 4 and 5 carrying an N-butyl and N-benzyl substituent, respectively, were strongly cytotoxic towards human HCT 116 colorectal and MCF-7 breast carcinoma cells. These compounds also displayed strong thioredoxin reductase (TrxR) inhibitory activity that was likely attributed to the electrophilicity of the Michael acceptor moiety. Their selectivity towards cellular TrxR inhibition over related antioxidant enzymes glutathione reductase (GR), thioredoxin (Trx) and glutathione peroxidase (GPx) was mediated through targeting of the selenocysteine (Sec) residue in the highly accessible C-terminal active site of TrxR. TrxR inhibition mediated by indolin-2-one compounds led to cellular Trx oxidation, increased oxidative stress and activation of apoptosis signal-regulating kinase 1 (ASK1). These events also led to activation of p38 and JNK mitogen-activated protein kinase (MAPK) signaling pathways, and cell death with apoptotic features of PARP cleavage and caspase 3 activation. In conclusion, these results suggest that indolin-2-one-based compounds specifically targeting TrxR may serve as novel drug leads for anticancer therapy. PMID:27244886

  2. A NEW RELEVANCE ESTIMATOR FOR THE COMPILATION AND VISUALIZATION OF DISEASE PATTERNS AND POTENTIAL DRUG TARGETS.

    PubMed

    VON Korff, Modest; Fink, Tobias; Sander, Thomas

    2016-01-01

    A new computational method is presented to extract disease patterns from heterogeneous and text-based data. For this study, 22 million PubMed records were mined for co-occurrences of gene name synonyms and disease MeSH terms. The resulting publication counts were transferred into a matrix Mdata. In this matrix, a disease was represented by a row and a gene by a column. Each field in the matrix represented the publication count for a co-occurring disease-gene pair. A second matrix with identical dimensions Mrelevance was derived from Mdata. To create Mrelevance the values from Mdata were normalized. The normalized values were multiplied by the column-wise calculated Gini coefficient. This multiplication resulted in a relevance estimator for every gene in relation to a disease. From Mrelevance the similarities between all row vectors were calculated. The resulting similarity matrix Srelevance related 5,000 diseases by the relevance estimators calculated for 15,000 genes. Three diseases were analyzed in detail for the validation of the disease patterns and the relevant genes. Cytoscape was used to visualize and to analyze Mrelevance and Srelevance together with the genes and diseases. Summarizing the results, it can be stated that the relevance estimator introduced here was able to detect valid disease patterns and to identify genes that encoded key proteins and potential targets for drug discovery projects.

  3. Isoprenoid precursor biosynthesis offers potential targets for drug discovery against diseases caused by apicomplexan parasites.

    PubMed

    Hunter, William N

    2011-01-01

    Two, simple, C5 compounds, dimethylally diphosphate and isopentenyl diphosphate, are the universal precursors of isoprenoids, a large family of natural products involved in numerous important biological processes. Two distinct biosynthetic pathways have evolved to supply these precursors. Humans use the mevalonate route whilst many species of bacteria including important pathogens, plant chloroplasts and apicomplexan parasites exploit the non-mevalonate pathway. The absence from humans, combined with genetic and chemical validation suggests that the non-mevalonate pathway holds the potential to support new drug discovery programmes targeting Gram-negative bacteria and the apicomplexan parasites responsible for causing serious human diseases, and also infections of veterinary importance. The non-mevalonate pathway relies on eight enzyme-catalyzed stages exploiting a range of cofactors and metal ions. A wealth of structural and mechanistic data, mainly derived from studies of bacterial enzymes, now exists for most components of the pathway and these will be described. Particular attention will be paid to how these data inform on the apicomplexan orthologues concentrating on the enzymes from Plasmodium spp. these cause malaria, one the most important parasitic diseases in the world today.

  4. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs.

    PubMed

    Santos, Robson A S; Ferreira, Anderson J; Pinheiro, Sérgio V B; Sampaio, Walkyria O; Touyz, Rhian; Campagnole-Santos, Maria José

    2005-08-01

    The identification of novel biochemical components of the renin-angiotensin system (RAS) has added a further layer of complexity to the classical concept of this cardiovascular regulatory system. It is now clear that there is a counter-regulatory arm within the RAS that is mainly formed by the angiotensin-converting enzyme 2-angiotensin (1-7)-receptor Mas axis. The functions of this axis are often opposite to those attributed to the major component of the RAS, angiotensin II. This review will highlight the current knowledge concerning the cardiovascular effects of angiotensin-(1-7) through a direct interaction with its receptor Mas or through an indirect interplay with the kallikrein-kinin system. In addition, there will be a discussion of its role in the beneficial effects of angiotensin-converting enzyme inhibitors and angio-tensin receptor type 1 (AT1) antagonists, and the potential of this peptide and its receptor as a novel targets for new cardiovascular drugs.

  5. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4

    PubMed Central

    Bachtell, Ryan; Hutchinson, Mark R.; Wang, Xiaohui; Rice, Kenner C.; Maier, Steven F; Watkins, Linda R.

    2017-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drug-primed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse. PMID:26022268

  6. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    PubMed Central

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  7. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

    PubMed Central

    Moynie, Lucille; Schnell, Robert; McMahon, Stephen A.; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W.; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N.; Naismith, James H.; Schneider, Gunter

    2013-01-01

    Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns. PMID:23295481

  8. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery.

    PubMed

    Moynie, Lucille; Schnell, Robert; McMahon, Stephen A; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N; Naismith, James H; Schneider, Gunter

    2013-01-01

    Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.

  9. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4.

    PubMed

    Bachtell, Ryan; Hutchinson, Mark R; Wang, Xiaohui; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2015-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drugprimed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse.

  10. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    PubMed

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways.

  11. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    PubMed Central

    Agrahari, Vivek

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed. PMID:28400793

  12. Temperature-sensitive polymer-coated magnetic nanoparticles as a potential drug delivery system for targeted therapy of thyroid cancer.

    PubMed

    Koppolu, Bhanuprasanth; Bhavsar, Zarna; Wadajkar, Aniket S; Nattama, Sivaniarvindpriya; Rahimi, Maham; Nwariaku, Fiemu; Nguyen, Kytai T

    2012-12-01

    The objective of this work was to develop and investigate temperature-sensitive poly(N-isopropylacrylamide-acrylamide-allylamine)-coated iron oxide magnetic nanoparticles (TPMNPs) as possible targeted drug carriers for treatments of advanced thyroid cancer (ATC). These nanoparticles were prepared by free radical polymerization of monomers on the surface of silane-coupled iron oxide nanoparticles. In vitro studies demonstrated that TPMNPs were cytocompatible and effectively taken up by cancer cells in a dose-dependent manner. An external magnetic field significantly increased nanoparticle uptake, especially when cells were exposed to physiological flow conditions. Drug loading and release studies using doxorubicin confirmed the temperature-responsive release of drugs from nanoparticles. In addition, doxorubicin-loaded nanoparticles significantly killed ATC cells when compared to free doxorubicin. The in vitro results indicate that TPMNPs have potential as targeted and controlled drug carriers for thyroid cancer treatment.

  13. Quantitative Chemical Proteomics Reveals New Potential Drug Targets in Head and Neck Cancer*

    PubMed Central

    Wu, Zhixiang; Doondeea, Jessica B.; Gholami, Amin Moghaddas; Janning, Melanie C.; Lemeer, Simone; Kramer, Karl; Eccles, Suzanne A.; Gollin, Susanne M.; Grenman, Reidar; Walch, Axel; Feller, Stephan M.; Kuster, Bernhard

    2011-01-01

    Tumors of the head and neck represent a molecularly diverse set of human cancers, but relatively few proteins have actually been shown to drive the disease at the molecular level. To identify new targets for individualized diagnosis or therapeutic intervention, we performed a kinase centric chemical proteomics screen and quantified 146 kinases across 34 head and neck squamous cell carcinoma (HNSCC) cell lines using intensity-based label-free mass spectrometry. Statistical analysis of the profiles revealed significant intercell line differences for 42 kinases (p < 0.05), and loss of function experiments using siRNA in high and low expressing cell lines identified kinases including EGFR, NEK9, LYN, JAK1, WEE1, and EPHA2 involved in cell survival and proliferation. EGFR inhibition by the small molecule inhibitors lapatinib, gefitinib, and erlotinib as well as siRNA led to strong reduction of viability in high but not low expressing lines, confirming EGFR as a drug target in 10–20% of HNSCC cell lines. Similarly, high, but not low EPHA2-expressing cells showed strongly reduced viability concomitant with down-regulation of AKT and ERK signaling following EPHA2 siRNA treatment or EPHA1-Fc ligand exposure, suggesting that EPHA2 is a novel drug target in HNSCC. This notion is underscored by immunohistochemical analyses showing that high EPHA2 expression is detected in a subset of HNSCC tissues and is associated with poor prognosis. Given that the approved pan-SRC family kinase inhibitor dasatinib is also a very potent inhibitor of EPHA2, our findings may lead to new therapeutic options for HNSCC patients. Importantly, the strategy employed in this study is generic and therefore also of more general utility for the identification of novel drug targets and molecular pathway markers in tumors. This may ultimately lead to a more rational approach to individualized cancer diagnosis and therapy. PMID:21955398

  14. Targeted screen for human UDP-glucuronosyltransferases inhibitors and the evaluation of potential drug-drug interactions with zafirlukast.

    PubMed

    Oda, Shingo; Fujiwara, Ryoichi; Kutsuno, Yuki; Fukami, Tatsuki; Itoh, Tomoo; Yokoi, Tsuyoshi; Nakajima, Miki

    2015-06-01

    Inhibition of drug metabolizing enzymes is a major mechanism in drug-drug interactions (DDIs). A number of cases of DDIs via inhibition of UDP-glucuronosyltranseferases (UGTs) have been reported, although the changes in pharmacokinetics are relatively small in comparison with drugs that are metabolized by cytochrome P450s. Most of the past studies have investigated hepatic UGTs, although recent studies have revealed a significant contribution of UGTs in the small intestine to drug clearance. To evaluate potential DDIs caused by inhibition of intestinal UGTs, we assessed inhibitory effects of 578 compounds, including drugs, xenobiotics, and endobiotics, on human UGT1A8 and UGT1A10, which are major contributors to intestinal glucuronidation. We identified 29 inhibitors by monitoring raloxifene glucuronidation with recombinant UGTs. All of the inhibitors potently inhibited UGT1A1 activity, as well. We found that zafirlukast is a potent general inhibitor of UGT1As and a moderate inhibitor of UGT2Bs because it monitors 4-methylumbelliferone glucuronidation by recombinant UGTs. However, zafirlukast did not potently inhibit diclofenac glucuronidation, suggesting that the inhibitory effects might be substrate specific. Inhibitory effects of zafirlukast on some UGT substrates were further investigated in human liver and human small intestine microsomes in order to evaluate potential DDIs. The R values (the ratios of intrinsic clearance with and without an inhibitor) revealed that zafirlukast has potential to cause clinical DDIs in the small intestine. Although we could not identify specific UGT1A8 and UGT1A10 inhibitors, zafirlukast was identified as a general inhibitor for UGTs in vitro. The present study suggests that the inhibition of UGT in the small intestine would be an underlying mechanism for DDIs.

  15. Glycosaminoglycans are potential pharmacological targets for classic DNA minor groove binder drugs berenil and pentamidine.

    PubMed

    Zsila, Ferenc

    2015-10-14

    It is shown that the antiprotozoal drugs berenil and pentamidine, conventional minor groove binders of DNA, form non-covalent complexes with polyanionic glycosaminoglycans. Induced circular dichroism (CD) spectra as well as UV hypochromism confirmed drug binding to the asymmetric template of heparin and chondroitin 6-sulfate. The biphasic nature of the CD signals refers to intermolecular chiral exciton coupling between the dicationic guest molecules forming a right- or a left-handed helical array along the GAG chains. Quantitative evaluation of the spectroscopic data measured in pH 7.0 buffer solution (80 mM NaCl) indicated a higher (Ka ∼ 10(6) M(-1) for berenil) and a lower (Ka ∼ 10(5) M(-1) for pentamidine) affinity heparin binding of these agents, similar to that reported for DNA. Drug-chondroitin sulfate complexes (Ka ∼ 10(4)-10(5) M(-1)) could be detected only at low ionic strength. These results imply that besides nucleic acids, GAGs may be another pharmacological targets for diarylamidine drugs.

  16. Proteomic and bioinformatic analysis of Trypanosoma cruzi chemotherapy and potential drug targets: new pieces for an old puzzle.

    PubMed

    Sadok Menna-Barreto, Rubem Figueiredo; Belloze, Kele Teixeira; Perales, Jonas; Silva-Jr, Floriano Paes

    2014-03-01

    Chagas disease is endemic in Latin America and is caused by the protozoan hemoflagellate parasite Trypanosoma cruzi. Nowadays, it has also been disseminated to non-endemic countries due to the ease of global mobility. The nitroheterocycle benznidazole is currently used to treat this neglected tropical disease, although this drug causes severe side effects and has limited efficacy during the chronic phase of the disease. Proteomics and bioinformatics have recently become powerful tools in the identification of new drug targets. In the last decade, proteomic profiles of different T. cruzi forms under distinct experimental conditions were assessed. These reports have pointed to many potential drug targets, with ergosterol biosynthesis-related proteins and redox system enzymes being the most promising candidates. Nevertheless, the majority of the compounds active against T. cruzi still have unclear mechanisms of action, and most proteomic efforts have studied epimastigotes (the non-clinically relevant insect form of the parasite). Additional analyses with the clinically relevant parasite forms should be performed to identify proteins that actually bind drugs active against T. cruzi. Nonetheless, due to the known technical hurdles in generating such experimental data, bioinformatic approaches that integrate currently available data to generate additional knowledge will also be useful. Here, we review T. cruzi proteomics and describe the main chemoproteomic methods and their application to the identification of trypanosomatid drug targets. Finally, we discuss the potential benefits of more extensively integrating all proteomic data with other molecular databases via bioinformatic analyses to develop novel, viable strategies for alternative treatments of Chagas disease.

  17. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis

    PubMed Central

    Ranade, Ranae M.; Zhang, Zhongsheng; Dranow, David M.; Myers, Janette B.; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E.; Davies, Douglas R.; Lorimer, Donald; Boyle, Stephen M.; Barrett, Lynn K.; Buckner, Frederick S.; Fan, Erkang; Van Voorhis, Wesley C.

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  18. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis.

    PubMed

    Ojo, Kayode K; Ranade, Ranae M; Zhang, Zhongsheng; Dranow, David M; Myers, Janette B; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E; Davies, Douglas R; Lorimer, Donald; Boyle, Stephen M; Barrett, Lynn K; Buckner, Frederick S; Fan, Erkang; Van Voorhis, Wesley C

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment.

  19. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: an in silico approach

    PubMed Central

    Mondal, Shakhinur Islam; Ferdous, Sabiha; Jewel, Nurnabi Azad; Akter, Arzuba; Mahmud, Zabed; Islam, Md Muzahidul; Afrin, Tanzila; Karim, Nurul

    2015-01-01

    Bacterial enteric infections resulting in diarrhea, dysentery, or enteric fever constitute a huge public health problem, with more than a billion episodes of disease annually in developing and developed countries. In this study, the deadly agent of hemorrhagic diarrhea and hemolytic uremic syndrome, Escherichia coli O157:H7 was investigated with extensive computational approaches aimed at identifying novel and broad-spectrum antibiotic targets. A systematic in silico workflow consisting of comparative genomics, metabolic pathways analysis, and additional drug prioritizing parameters was used to identify novel drug targets that were essential for the pathogen’s survival but absent in its human host. Comparative genomic analysis of Kyoto Encyclopedia of Genes and Genomes annotated metabolic pathways identified 350 putative target proteins in E. coli O157:H7 which showed no similarity to human proteins. Further bio-informatic approaches including prediction of subcellular localization, calculation of molecular weight, and web-based investigation of 3D structural characteristics greatly aided in filtering the potential drug targets from 350 to 120. Ultimately, 44 non-homologous essential proteins of E. coli O157:H7 were prioritized and proved to have the eligibility to become novel broad-spectrum antibiotic targets and DNA polymerase III alpha (dnaE) was the top-ranked among these targets. Moreover, druggability of each of the identified drug targets was evaluated by the DrugBank database. In addition, 3D structure of the dnaE was modeled and explored further for in silico docking with ligands having potential druggability. Finally, we confirmed that the compounds N-coeleneterazine and N-(1,4-dihydro-5H-tetrazol-5-ylidene)-9-oxo-9H-xanthene-2-sulfon-amide were the most suitable ligands of dnaE and hence proposed as the potential inhibitors of this target protein. The results of this study could facilitate the discovery and release of new and effective drugs against E

  20. Targeting drugs to mitochondria.

    PubMed

    Heller, Anne; Brockhoff, Gero; Goepferich, Achim

    2012-09-01

    Mitochondria are of an increasing interest in pharmaceutical and medical research since it has been reported that dysfunction of these organelles contributes to several diseases with a great diversity of clinical appearance. By the fact that mitochondria are located inside the cell and, in turn, origins of mitochondrial diseases or targets of drugs are located inside mitochondria, a drug molecule has to cross several barriers. This is a severe drawback for the selective accumulation of drug molecules in mitochondria. Therefore, targeting strategies such as direct drug modification or encapsulation into nanocarriers have to be applied to achieve an accumulation of drug molecules in these organelles. In this review, it will be demonstrated how properties and dysfunctions of mitochondria are generating a need for the development of mitochondria specific therapies. Furthermore, intracellular targets of mitochondrial diseases, strategies to utilize mitochondrial specificities and targeting approaches will be discussed. Finally, techniques to investigate mitochondrial characteristics and functionality are reviewed.

  1. Direct AKAP-mediated protein-protein interactions as potential drug targets.

    PubMed

    Hundsrucker, C; Klussmann, E

    2008-01-01

    A-kinase-anchoring proteins (AKAPs) are a diverse family of about 50 scaffolding proteins. They are defined by the presence of a structurally conserved protein kinase A (PKA)-binding domain. AKAPs tether PKA and other signalling proteins such as further protein kinases, protein phosphatases and phosphodiesterases by direct protein-protein interactions to cellular compartments. Thus, AKAPs form the basis of signalling modules that integrate cellular signalling processes and limit these to defined sites. Disruption of AKAP functions by gene targeting, knockdown approaches and, in particular, pharmacological disruption of defined AKAP-dependent protein-protein interactions has revealed key roles of AKAPs in numerous processes, including the regulation of cardiac myocyte contractility and vasopressin-mediated water reabsorption in the kidney. Dysregulation of such processes causes diseases, including cardiovascular and renal disorders. In this review, we discuss AKAP functions elucidated by gene targeting and knockdown approaches, but mainly focus on studies utilizing peptides for disruption of direct AKAP-mediated protein-protein interactions. The latter studies point to direct AKAP-mediated protein-protein interactions as targets for novel drugs.

  2. Giardia fatty acyl-CoA synthetases as potential drug targets

    PubMed Central

    Guo, Fengguang; Ortega-Pierres, Guadalupe; Argüello-García, Raúl; Zhang, Haili; Zhu, Guan

    2015-01-01

    Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis) is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids (FA) de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5) to activate FA scavenged from the host. ACS is an essential enzyme because FA need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference toward palmitic acid (C16:0) and myristic acid (C14:0), and allosteric or Michaelis–Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 μM, Ki = 0.18 μM for GiACS1, and IC50 = 2.28 μM, Ki = 0.23 μM for GiACS2, respectively) and the growth of G. intestinalis in vitro (IC50 = 0.8 μM). As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite. PMID:26257723

  3. The Metaboloepigenetic Dimension of Cancer Stem Cells: Evaluating the Market Potential for New Metabostemness-Targeting Oncology Drugs.

    PubMed

    Menendez, Javier A

    2015-01-01

    The current global portfolio of oncology drugs is unlikely to produce durable disease remission for millions of cancer patients worldwide. This is due, in part, to the existence of so-called cancer stem cells (CSCs), a particularly aggressive type of malignant cell that is capable of indefinite self-replication, is refractory to conventional treatments, and is skilled at spreading and colonizing distant organs. To date, no drugs from big-league Pharma companies are capable of killing CSCs. Why? Quite simply, a classic drug development approach based on mutated genes and pathological protein products cannot efficiently target the plastic, epigenetic proclivity of cancer tissues to generate CSCs. Recent studies have proposed that certain elite metabolites (oncometabolites) and other common metabolites can significantly influence the establishment and maintenance of epigenetic signatures of stemness and cancer. Consequently, cellular metabolism and the core epigenetic codes, DNA methylation and histone modification, can be better viewed as an integrated metaboloepigenetic dimension of CSCs, which we have recently termed cancer metabostemness. By targeting weaknesses in the bridge connecting metabolism and epigenetics, a new generation of metabostemnessspecific drugs can be generated for potent and long-lasting elimination of life-threatening CSCs. Here I evaluate the market potential of re-modeling the oncology drug pipeline by discovering and developing new metabolic approaches able to target the apparently undruggable epigenetic programs that dynamically regulate the plasticity of non-CSC and CSC cellular states.

  4. Predicting Drug-Target Interactions Using Drug-Drug Interactions

    PubMed Central

    Kim, Shinhyuk; Jin, Daeyong; Lee, Hyunju

    2013-01-01

    Computational methods for predicting drug-target interactions have become important in drug research because they can help to reduce the time, cost, and failure rates for developing new drugs. Recently, with the accumulation of drug-related data sets related to drug side effects and pharmacological data, it has became possible to predict potential drug-target interactions. In this study, we focus on drug-drug interactions (DDI), their adverse effects () and pharmacological information (), and investigate the relationship among chemical structures, side effects, and DDIs from several data sources. In this study, data from the STITCH database, from drugs.com, and drug-target pairs from ChEMBL and SIDER were first collected. Then, by applying two machine learning approaches, a support vector machine (SVM) and a kernel-based L1-norm regularized logistic regression (KL1LR), we showed that DDI is a promising feature in predicting drug-target interactions. Next, the accuracies of predicting drug-target interactions using DDI were compared to those obtained using the chemical structure and side effects based on the SVM and KL1LR approaches, showing that DDI was the data source contributing the most for predicting drug-target interactions. PMID:24278248

  5. Targeting Prefrontal Cortical Systems for Drug Development: Potential Therapies for Cognitive Disorders

    PubMed Central

    Arnsten, Amy F.T.; Wang, Min

    2016-01-01

    Medications to treat cognitive disorders are increasingly needed, yet researchers have had few successes in this challenging arena. Cognitive abilities in primates arise from highly evolved N-methyl-d-aspartate (NMDA) receptor circuits in layer III of the dorsolateral prefrontal cortex. These circuits have unique modulatory needs that can differ from the layer V neurons that predominate in rodents, but they offer multiple therapeutic targets. Cognitive improvement often requires low doses that enhance the pattern of information held in working memory, whereas higher doses can produce nonspecific changes that obscure information. Identifying appropriate doses for clinical trials may be helped by assessments in monkeys and by flexible, individualized dose designs. The use of guanfacine (Intuniv) for prefrontal cortical disorders was based on research in monkeys, supporting this approach. Coupling our knowledge of higher primate circuits with the powerful methods now available in drug design will help create effective treatments for cognitive disorders. PMID:26738476

  6. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis

    PubMed Central

    Staab-Weijnitz, Claudia A.; Fernandez, Isis E.; Knüppel, Larissa; Maul, Julia; Heinzelmann, Katharina; Juan-Guardela, Brenda M.; Hennen, Elisabeth; Preissler, Gerhard; Winter, Hauke; Neurohr, Claus; Hatz, Rudolf; Lindner, Michael; Behr, Jürgen; Kaminski, Naftali

    2015-01-01

    secretion by phLF. Conclusions: FKBP10 might be a novel drug target for IPF. PMID:26039104

  7. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani.

    PubMed

    Singh, Shalini; Vijaya Prabhu, Sitrarasu; Suryanarayanan, Venkatesan; Bhardwaj, Ruchika; Singh, Sanjeev Kumar; Dubey, Vikash Kumar

    2016-11-01

    Targeting CAAX prenyl proteases of Leishmania donovani can be a good approach towards developing a drug molecule against Leishmaniasis. We have modeled the structure of CAAX prenyl protease I and II of L. donovani, using homology modeling approach. The structures were further validated using Ramachandran plot and ProSA. Active site prediction has shown difference in the amino acid residues present at the active site of CAAX prenyl protease I and CAAX prenyl protease II. The electrostatic potential surface of the CAAX prenyl protease I and II has revealed that CAAX prenyl protease I has more electropositive and electronegative potentials as compared CAAX prenyl protease II suggesting significant difference in their activity. Molecular docking with known bisubstrate analog inhibitors of protein farnesyl transferase and peptidyl (acyloxy) methyl ketones reveals significant binding of these molecules with CAAX prenyl protease I, but comparatively less binding with CAAX prenyl protease II. New and potent inhibitors were also found using structure-based virtual screening. The best docked compounds obtained from virtual screening were subjected to induced fit docking to get best docked configurations. Prediction of drug-like characteristics has revealed that the best docked compounds are in line with Lipinski's rule. Moreover, best docked protein-ligand complexes of CAAX prenyl protease I and II are found to be stable throughout 20 ns simulation. Overall, the study has identified potent drug molecules targeting CAAX prenyl protease I and II of L. donovani whose drug candidature can be verified further using biochemical and cellular studies.

  8. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions

    PubMed Central

    Pintér, Erika; Pozsgai, Gábor; Hajna, Zsófia; Helyes, Zsuzsanna; Szolcsányi, János

    2014-01-01

    Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed. PMID:23432438

  9. The Response Regulator BfmR Is a Potential Drug Target for Acinetobacter baumannii

    PubMed Central

    Manohar, Akshay; Beanan, Janet M.; Olson, Ruth; MacDonald, Ulrike; Graham, Jessica

    2016-01-01

    ABSTRACT Identification and validation is the first phase of target-based antimicrobial development. BfmR (RstA), a response regulator in a two-component signal transduction system (TCS) in Acinetobacter baumannii, is an intriguing potential antimicrobial target. A unique characteristic of BfmR is that its inhibition would have the dual benefit of significantly decreasing in vivo survival and increasing sensitivity to selected antimicrobials. Studies on the clinically relevant strain AB307-0294 have shown BfmR to be essential in vivo. Here, we demonstrate that this phenotype in strains AB307-0294 and AB908 is mediated, in part, by enabling growth in human ascites fluid and serum. Further, BfmR conferred resistance to complement-mediated bactericidal activity that was independent of capsular polysaccharide. Importantly, BfmR also increased resistance to the clinically important antimicrobials meropenem and colistin. BfmR was highly conserved among A. baumannii strains. The crystal structure of the receiver domain of BfmR was determined, lending insight into putative ligand binding sites. This enabled an in silico ligand binding analysis and a blind docking strategy to assess use as a potential druggable target. Predicted binding hot spots exist at the homodimer interface and the phosphorylation site. These data support pursuing the next step in the development process, which includes determining the degree of inhibition needed to impact growth/survival and the development a BfmR activity assay amenable to high-throughput screening for the identification of inhibitors. Such agents would represent a new class of antimicrobials active against A. baumannii which could be active against other Gram-negative bacilli that possess a TCS with shared homology. IMPORTANCE Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and

  10. Utilizing Functional Genomics Screening to Identify Potentially Novel Drug Targets in Cancer Cell Spheroid Cultures

    PubMed Central

    Morrison, Eamonn; Wai, Patty; Leonidou, Andri; Bland, Philip; Khalique, Saira; Farnie, Gillian; Daley, Frances; Peck, Barrie; Natrajan, Rachael

    2016-01-01

    The identification of functional driver events in cancer is central to furthering our understanding of cancer biology and indispensable for the discovery of the next generation of novel drug targets. It is becoming apparent that more complex models of cancer are required to fully appreciate the contributing factors that drive tumorigenesis in vivo and increase the efficacy of novel therapies that make the transition from pre-clinical models to clinical trials. Here we present a methodology for generating uniform and reproducible tumor spheroids that can be subjected to siRNA functional screening. These spheroids display many characteristics that are found in solid tumors that are not present in traditional two-dimension culture. We show that several commonly used breast cancer cell lines are amenable to this protocol. Furthermore, we provide proof-of-principle data utilizing the breast cancer cell line BT474, confirming their dependency on amplification of the epidermal growth factor receptor HER2 and mutation of phosphatidylinositol-4,5-biphosphate 3-kinase (PIK3CA) when grown as tumor spheroids. Finally, we are able to further investigate and confirm the spatial impact of these dependencies using immunohistochemistry. PMID:28060271

  11. DYRK1A: a potential drug target for multiple Down syndrome neuropathologies.

    PubMed

    Becker, Walter; Soppa, Ulf; Tejedor, Francisco J

    2014-02-01

    Down syndrome (DS), the most common genetic cause of intellectual disability, is caused by the trisomy of chromosome 21. MNB/DYRK1A (Minibrain/dual specificity tyrosine phosphorylation-regulated kinase 1A) has possibly been the most extensively studied chromosome 21 gene during the last decade due to the remarkable correlation of its functions in the brain with important DS neuropathologies, such as neuronal deficits, dendrite atrophy, spine dysgenesis, precocious Alzheimer's-like neurodegeneration, and cognitive deficits. MNB/DYRK1A has become an attractive drug target because increasing evidence suggests that its overexpression may induce DS-like neurobiological alterations, and several small-molecule inhibitors of its protein kinase activity are available. Here, we summarize the functional complexity of MNB/DYRK1A from a DS-research perspective, paying particular attention to the capacity of different MNB/DYRK1A inhibitors to reverse the neurobiological alterations caused by the increased activity of MNB/DYRK1A in experimental models. Finally, we discuss the advantages and drawbacks of possible MNB/DYRK1A-based therapeutic strategies that result from the functional, molecular, and pharmacological complexity of MNB/DYRK1A.

  12. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  13. PPAR{alpha} is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    SciTech Connect

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio . E-mail: n.ishida@aist.go.jp

    2007-06-08

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPAR{alpha} ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erb{alpha} was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPAR{alpha} is involved in circadian clock control independently of the SCN and that PPAR{alpha} could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.

  14. Potential prostate cancer drug target: Bioactivation of androstanediol by conversion to dihydrotestosterone

    PubMed Central

    Mohler, James L.; Titus, Mark A.; Wilson, Elizabeth M.

    2011-01-01

    High affinity binding of dihydrotestosterone (DHT) to the androgen receptor (AR) initiates androgen-dependent gene activation required for normal male sex development in utero, and contributes to prostate cancer development and progression in men. Under normal physiological conditions, DHT is synthesized predominantly by 5α-reduction of testosterone, the major circulating androgen produced by the testis. During androgen deprivation therapy, intratumoral androgen production is sufficient for AR activation and prostate cancer growth even though circulating testicular androgen levels are low. Recent studies indicate that the metabolism of 5α-androstane-3α,17β-diol by 17β-hydroxysteroid dehydrogenase 6 in benign prostate and prostate cancer cells is a major biosynthetic pathway for intratumoral synthesis of DHT that binds AR and initiates transactivation to promote prostate cancer growth during androgen deprivation therapy. Drugs that target the so-called backdoor pathway of DHT synthesis provide an opportunity to enhance clinical response to LHRH agonists or antagonists, AR antagonists, inhibitors of 5α-reductase enzymes, finasteride or dutasteride, and steroid metabolism enzyme inhibitors, ketoconazole or the recently available abiraterone acetate. PMID:21705451

  15. microRNAs of parasitic helminths – Identification, characterization and potential as drug targets

    PubMed Central

    Britton, Collette; Winter, Alan D.; Gillan, Victoria; Devaney, Eileen

    2014-01-01

    microRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. They were first identified in the free-living nematode Caenorhabditis elegans, where the miRNAs lin-4 and let-7 were shown to be essential for regulating correct developmental progression. The sequence of let-7 was subsequently found to be conserved in higher organisms and changes in expression of let-7, as well as other miRNAs, are associated with certain cancers, indicating important regulatory roles. Some miRNAs have been shown to have essential functions, but the roles of many are currently unknown. With the increasing availability of genome sequence data, miRNAs have now been identified from a number of parasitic helminths, by deep sequencing of small RNA libraries and bioinformatic approaches. While some miRNAs are widely conserved in a range of organisms, others are helminth-specific and many are novel to each species. Here we review the potential roles of miRNAs in regulating helminth development, in interacting with the host environment and in development of drug resistance. Use of fluorescently-labeled small RNAs demonstrates uptake by parasites, at least in vitro. Therefore delivery of miRNA inhibitors or mimics has potential to alter miRNA activity, providing a useful tool for probing the roles of miRNAs and suggesting novel routes to therapeutics for parasite control. PMID:25057458

  16. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    PubMed Central

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N.; Sinha, Satyesh; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  17. Discovering potential drug-targets for personalized treatment of autoimmune disorders - what we learn from epidermolysis bullosa acquisita.

    PubMed

    Witte, Mareike; Koga, Hiroshi; Hashimoto, Takashi; Ludwig, Ralf J; Bieber, Katja

    2016-08-01

    Epidermolysis bullosa acquisita (EBA) is a chronic autoimmune bullous dermatosis (AIBD). Treatment of EBA is challenging and mostly relies on systemic immunosuppression. During the last decade, intensive research led to the identification of new potential therapeutic targets that interfere in different phases of disease progression. Therapeutic interventions acting upon these candidate drug targets in animal models of EBA, such as cytokine-modulating biologics and small molecules, have validated them as potential new therapeutic strategies for EBA patients. In this paper, we review the current treatments for EBA, describe the pathogenesis of the disease, and finally specify new drug candidates for the development of a more specific therapy with minimized side-effects for EBA and potentially other autoimmune diseases. We currently understand EBA as a disease that evolves from the interplay of many different signaling pathways. These signaling pathways, which are described in this review, provide new targets for EBA treatment. The ultimate goal of this research field is the development of specific, pathogenesis-based therapeutic strategies. Through identification of up- or downregulated pathways that dominate disease progression in individual patients, we expect therapy in EBA to become more and more precise and move towards a patient-based therapy.

  18. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    PubMed

    Wu, Bo; Novelli, Jacopo; Foster, Jeremy; Vaisvila, Romualdas; Conway, Leslie; Ingram, Jessica; Ganatra, Mehul; Rao, Anita U; Hamza, Iqbal; Slatko, Barton

    2009-07-14

    Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs. Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP), which targets ferrochelatase (FC, the last step). Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA) between Wolbachia and human 5'-aminolevulinic acid

  19. Nrf2: a potential therapeutic target for naturally occurring anticancer drugs?

    PubMed

    Catanzaro, Elena; Calcabrini, Cinzia; Turrini, Eleonora; Sestili, Piero; Fimognari, Carmela

    2017-08-01

    Nuclear factor (erythroid-derived-2)-like 2 is one of the most efficient cytoprotective rheostats against exogenous or endogenous oxidative insults. At present, the modulation of the Nrf2 pathway represents an interesting and highly explored strategy in the oncological area. Area covered: In this review, we present and discuss the different modulation of the Nrf2 pathway by some natural compounds with a well demonstrated anticancer activity, and critically analyze the challenges associated with the development of an Nrf2-based anticancer strategy. Expert opinion: Many natural compounds with a well-defined anticancer activity are able to modulate this pathway. Both Nrf2 inducers and inhibitors can be useful as anticancer strategy. However, since Nrf2 modulates many networks potentially involved in the detoxification process of anticancer drugs, its activation in cancer cells could lead to chemoresistance. The switch between a beneficial or detrimental role of Nrf2 in cancer cells essentially depends on the tight control of its activity, the specific conditions of tumor microenvironment, and cell type. In line with the paucity of clear data related to the mechanisms underpinning the role of Nrf2 in cancer development and chemoresistance, discovery and development of Nrf2-based strategies is one of the most critical and challenging assignments for fighting cancers.

  20. The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF

    PubMed Central

    Schuliga, Michael; Jaffar, Jade; Harris, Trudi; Knight, Darryl A; Westall, Glen; Stewart, Alastair G

    2017-01-01

    The role of urokinase plasminogen activator (uPA) in idiopathic pulmonary fibrosis (IPF) remains unclear. uPA-generated plasmin has potent fibrogenic actions involving protease activated receptor-1 (PAR-1) and interleukin-6 (IL-6). Here we characterize uPA distribution or levels in lung tissue and sera from IPF patients to establish the mechanism of its fibrogenic actions on lung fibroblasts (LFs). uPA immunoreactivity was detected in regions of fibrosis including fibroblasts of lung tissue from IPF patients (n = 7). Serum uPA levels and activity were also higher in IPF patients (n = 18) than controls (n = 18) (P < 0.05), being negatively correlated with lung function as measured by forced vital capacity (FVC) %predicted (P < 0.05). The culture supernatants of LFs from IPF patients, as compared to controls, showed an increase in plasmin activity after plasminogen incubation (5–15 μg/mL), corresponding with increased levels of uPA and IL-6 (n = 5–6, P < 0.05). Plasminogen-induced increases in plasmin activity and IL-6 levels were attenuated by reducing uPA and/or PAR-1 expression by RNAi. Plasmin(ogen)-induced mitogenesis was also attenuated by targeting uPA, PAR-1 or IL-6. Our data shows uPA is formed in active regions of fibrosis in IPF lung and contributes to LF plasmin generation, IL-6 production and proliferation. Urokinase is a potential target for the treatment of lung fibrosis. PMID:28139758

  1. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy.

    PubMed

    Mast, Natalia; Lin, Joseph B; Pikuleva, Irina A

    2015-09-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification.

  2. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy

    PubMed Central

    Mast, Natalia; Lin, Joseph B.

    2015-01-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. PMID:26082378

  3. Comparative protein modeling of methionine S-adenosyltransferase (MAT) enzyme from Mycobacterium tuberculosis: a potential target for antituberculosis drug discovery.

    PubMed

    Khedkar, Santosh A; Malde, Alpeshkumar K; Coutinho, Evans C

    2005-01-01

    Mycobacterium tuberculosis (Mtb) is a successful pathogen that overcomes the numerous challenges presented by the immune system of the host. In the last 40 years few anti-TB drugs have been developed, while the drug-resistance problem is increasing; there is thus a pressing need to develop new anti-TB drugs active against both the acute and chronic growth phases of the mycobacterium. Methionine S-adenosyltransferase (MAT) is an enzyme involved in the synthesis of S-adenosylmethionine (SAM), a methyl donor essential for mycolipid biosynthesis. As an anti-TB drug target, Mtb-MAT has been well validated. A homology model of MAT has been constructed using the X-ray structures of E. coli MAT (PDB code: 1MXA) and rat MAT (PDB code: 1QM4) as templates, by comparative protein modeling principles. The resulting model has the correct stereochemistry as gauged from the Ramachandran plot and good three-dimensional (3D) structure compatibility as assessed by the Profiles-3D score. The structurally and functionally important residues (active site) of Mtb-MAT have been identified using the E. coli and rat MAT crystal structures and the reported point mutation data. The homology model conserves the topological and active site features of the MAT family of proteins. The differences in the molecular electrostatic potentials (MEP) of Mtb and human MAT provide evidences that selective and specific Mtb-MAT inhibitors can be designed using the homology model, by the structure-based drug design approaches.

  4. Tau Oligomers as Potential Targets for Alzheimer’s Diagnosis and Novel Drugs

    PubMed Central

    Guzmán-Martinez, Leonardo; Farías, Gonzalo A.; Maccioni, Ricardo Benjamin

    2013-01-01

    A cumulative number of approaches have been carried out to elucidate the pathogenesis of Alzheimer’s disease (AD). Tangles formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. Most of recent studies share in common the observation that formation of tau oligomers and the subsequent pathological filaments arrays is a critical step in AD etiopathogenesis. Oligomeric tau species appear to be toxic for neuronal cells, and therefore appear as an appropriate target for the design of molecules that may control morphological and functional alterations leading to cognitive impairment. Thus, current therapeutic strategies are aimed at three major types of molecules: (1) inhibitors of protein kinases and phosphatases that modify tau and that may control neuronal degeneration, (2) methylene blue, and (3) natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. Only a few polyphenolic molecules have emerged to prevent tau aggregation. In this context, fulvic acid (FA), a humic substance, has potential protective activity cognitive impairment. In fact, formation of paired helical filaments in vitro, is inhibited by FA affecting the length of fibrils and their morphology. PMID:24191153

  5. Hippo signaling pathway in liver and pancreas: the potential drug target for tumor therapy.

    PubMed

    Kong, Delin; Zhao, Yicheng; Men, Tong; Teng, Chun-Bo

    2015-02-01

    Cell behaviors, including proliferation, differentiation and apoptosis, are intricately controlled during organ development and tissue regeneration. In the past 9 years, the Hippo signaling pathway has been delineated to play critical roles in organ size control, tissue regeneration and tumorigenesis through regulating cell behaviors. In mammals, the core modules of the Hippo signaling pathway include the MST1/2-LATS1/2 kinase cascade and the transcriptional co-activators YAP/TAZ. The activity of YAP/TAZ is suppressed by cytoplasmic retention due to phosphorylation in the canonical MST1/2-LATS1/2 kinase cascade-dependent manner or the non-canonical MST1/2- and/or LATS1/2-independent manner. Hippo signaling pathway, which can be activated or inactivated by cell polarity, contact inhibition, mechanical stretch and extracellular factors, has been demonstrated to be involved in development and tumorigenesis of liver and pancreas. In addition, we have summarized several small molecules currently available that can target Hippo-YAP pathway for potential treatment of hepatic and pancreatic cancers, providing clues for other YAP initiated cancers therapy as well.

  6. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets

    PubMed Central

    2016-01-01

    Background Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. Methods We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. Results The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins

  7. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.

    PubMed

    Uddin, Reaz; Sufian, Muhammad

    2016-01-01

    Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic

  8. Systemic analysis of genome-wide expression profiles identified potential therapeutic targets of demethylation drugs for glioblastoma.

    PubMed

    Ning, Tongbo; Cui, Hao; Sun, Feng; Zou, Jidian

    2017-09-05

    Glioblastoma represents one of the most aggressive malignant brain tumors with high morbidity and motility. Demethylation drugs have been developed for its treatment with little efficacy has been observed. The purpose of this study was to screen therapeutic targets of demethylation drugs or bioactive molecules for glioblastoma through systemic bioinformatics analysis. We firstly downloaded genome-wide expression profiles from the Gene Expression Omnibus (GEO) and conducted the primary analysis through R software, mainly including preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differential expression genes (DEGs). Secondly, functional enrichment analysis was conducted via the Database for Annotation, Visualization and Integrated Discovery (DAVID) to explore biological processes involved in the development of glioblastoma. Thirdly, we constructed protein-protein interaction (PPI) network of interested genes and conducted cross analysis for multi datasets to obtain potential therapeutic targets for glioblastoma. Finally, we further confirmed the therapeutic targets through real-time RT-PCR. As a result, biological processes that related to cancer development, amino metabolism, immune response and etc. were found to be significantly enriched in genes that differential expression in glioblastoma and regulated by 5'aza-dC. Besides, network and cross analysis identified ACAT2, UFC1 and CYB5R1 as novel therapeutic targets of demethylation drugs which also confirmed by real time RT-PCR. In conclusions, our study identified several biological processes and genes that involved in the development of glioblastoma and regulated by 5'aza-dC, which would be helpful for the treatment of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer.

    PubMed

    Krishnaiah, Yellela S R; Khan, Mansoor A

    2012-01-01

    Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC.

  10. Vitamin B12-mediated transport: a potential tool for tumor targeting of antineoplastic drugs and imaging agents.

    PubMed

    Gupta, Yashwant; Kohli, Dharm Veer; Jain, Sanjay K

    2008-01-01

    The uptake of vitamin B12 (cyanocobalamin, Cbl/VB12) in mammalian cells is mediated by specific, high-affinity receptors for the vitamin B12-binding protein, transcobalamin II, which is expressed on the plasma membrane. The receptor for vitamin B12 is overexpressed on a number of human tumors, including cancers of the ovary, kidney, uterus, testis, brain, colon, lung, and myelocytic blood cells. Furthermore, the affinity of cyanocobalamin conjugates for cell surface transcobalamin II receptors seems to be high enough so that vitamin B12 derivatization with the cytotoxic agent or carriers bearing cytotoxic drugs allows the selective delivery of diagnostic and therapeutic agents to cancer cells. Thus, conjugates of vitamin B12 enter receptor-expressing cancer cells via receptor-mediated endocytosis, and targeting may be accomplished by multiple mechanisms, depending on the drug-delivery strategy. This review summarizes the applications of vitamin B12 as a targeting ligand and highlights the various methods being developed for delivery of therapeutic and imaging agents to cancer cells in vitro and in vivo. This review reflects the potentiality of vitamin B12 for tumor targeting of chemotherapeutic and diagnostic agents.

  11. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets

    PubMed Central

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM. PMID:26436944

  12. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets.

    PubMed

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM.

  13. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    PubMed Central

    Qvit, Nir; Schechtman, Deborah; Pena, Darlene Aparecida; Berti, Denise Aparecida; Soares, Chrislaine Oliveira; Miao, Qianqian; Liang, Liying (Annie); Baron, Lauren A.; Teh-Poot, Christian; Martínez-Vega, Pedro; Ramirez-Sierra, Maria Jesus; Churchill, Eric; Cunningham, Anna D.; Malkovskiy, Andrey V.; Federspiel, Nancy A.; Gozzo, Fabio Cesar; Torrecilhas, Ana Claudia; Manso Alves, Maria Julia; Jardim, Armando; Momar, Ndao; Dumonteil, Eric; Mochly-Rosen, Daria

    2016-01-01

    Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosomareceptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. PMID:27054066

  14. Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target.

    PubMed

    Harwaldt, Petra; Rahlfs, Stefan; Becker, Katja

    2002-05-01

    Glutathione S-transferases (GSTs), which occur abundantly in most organisms, are essentially involved in the intracellular detoxification of numerous substances including chemotherapeutic agents, and thus play a major role in the development of drug resistance. A gene encoding a protein with sequence identity of up to 37% with known GSTs was identified on chromosome 14 of the malarial parasite Plasmodium falciparum. It was amplified using gametocyte cDNA and expressed in Escherichia coli as a hexahistidyl-tagged protein of 26 kDa subunit size. The homodimeric enzyme (PfGST) was found to catalyse the glutathione (GSH)-dependent modification of 1-chloro-2,4-dinitrobenzene and other typical GST substrates such as o-nitrophenyl acetate, ethacrynic acid, and cumene hydroperoxide. The Km value for GSH was 164+/-20 microM. PfGST was inhibited by cibacron blue (Ki=0.5 microM), S-hexylglutathione (Ki=35 microM), and protoporphyrin IX (Ki=10 microM). Hemin, a most toxic compound for parasitised erythrocytes, was found to be an uncompetitive ligand of PfGST with a Ki of 6.5 microM. Based on the activity of PfGST in extracts of P. falciparum, the enzyme represents 1 to 10% of cellular protein and might therefore serve as an efficient in vivo buffer for parasitotoxic hemin. Destabilising ligands of GST are thus expected to be synergistic with the antimalarial drug chloroquine, which itself was found to be a very weak inhibitor of PfGST (IC50>200 microM). X-ray quality crystals of PfGST (250x200x50 microm) will serve as starting point for structure-based drug design.

  15. Network-Based Approach to Identify Potential Targets and Drugs that Promote Neuroprotection and Neurorepair in Acute Ischemic Stroke

    PubMed Central

    Wang, Yiwei; Liu, Hailong; Lin, Yongzhong; Liu, Guangming; Chu, Hongwei; Zhao, Pengyao; Yang, Xiaohan; Zheng, Tiezheng; Fan, Ming; Zhou, Xuezhong; Meng, Jun; Sun, Changkai

    2017-01-01

    Acute ischemic stroke (AIS) accounts for more than 80% of the approximately 610,000 new stroke cases worldwide every year. Both ischemia and reperfusion can cause death, damage, and functional changes of affected nerve cells, and these alterations can result in high rates of disability and mortality. Therefore, therapies aimed at increasing neuroprotection and neurorepair would make significant contributions to AIS management. However, with regard to AIS therapies, there is currently a large gap between experimental achievements and practical clinical solutions (EC-GAP-AIS). Here, by integrating curated disease-gene associations and interactome network known to be related to AIS, we investigated the molecular network mechanisms of multi-module structures underlying AIS, which might be relevant to the time frame subtypes of AIS. In addition, the EC-GAP-AIS phenomenon was confirmed and elucidated by the shortest path lengths and the inconsistencies in the molecular functionalities and overlapping pathways between AIS-related genes and drug targets. Furthermore, we identified 23 potential targets (e.g. ADORA3, which is involved in the regulation of cellular reprogramming and the extracellular matrix) and 46 candidate drugs (e.g. felbamate, methylphenobarbital and memantine) that may have value for the treatment of AIS. PMID:28054643

  16. Nuclear Targeting with an Auger Electron Emitter Potentiates the Action of a Widely Used Antineoplastic Drug.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Raposinho, Paula; Bauwens, Matthias; Felber, Michael; Fox, Thomas; Shapiro, Adam B; Freudenberg, Robert; Fernandes, Célia; Gama, Sofia; Gasser, Gilles; Motthagy, Felix; Santos, Isabel R; Alberto, Roger

    2015-12-16

    We present the combination of the clinically well-proven chemotherapeutic agent, Doxorubicin, and (99m)Tc, an Auger and internal conversion electron emitter, into a dual-action agent for therapy. Chemical conjugation of Doxorubicin to (99m)Tc afforded a construct which autonomously ferries a radioactive payload into the cell nucleus. At this site, damage is exerted by dose deposition from Auger radiation. The (99m)Tc-conjugate exhibited a dose-dependent inhibition of survival in a selected panel of cancer cells and an in vivo study in healthy mice evidenced a biodistribution which is comparable to that of the parent drug. The homologous Rhenium conjugate was found to effectively bind to DNA, inhibited human Topoisomerase II, and exhibited cytotoxicity in vitro. The collective in vitro and in vivo data demonstrate that the presented metallo-conjugates closely mimic native Doxorubicin.

  17. Old Drug, New Target

    PubMed Central

    Andrews, William J.; Panova, Tatiana; Normand, Christophe; Gadal, Olivier; Tikhonova, Irina G.; Panov, Konstantin I.

    2013-01-01

    Transcription by RNA polymerase I (Pol-I) is the main driving force behind ribosome biogenesis, a fundamental cellular process that requires the coordinated transcription of all three nuclear polymerases. Increased Pol-I transcription and the concurrent increase in ribosome biogenesis has been linked to the high rates of proliferation in cancers. The ellipticine family contains a number of potent anticancer therapeutic agents, some having progressed to stage I and II clinical trials; however, the mechanism by which many of the compounds work remains unclear. It has long been thought that inhibition of Top2 is the main reason behind the drugs antiproliferative effects. Here we report that a number of the ellipticines, including 9-hydroxyellipticine, are potent and specific inhibitors of Pol-I transcription, with IC50 in vitro and in cells in the nanomolar range. Essentially, the drugs did not affect Pol-II and Pol-III transcription, demonstrating a high selectivity. We have shown that Pol-I inhibition occurs by a p53-, ATM/ATR-, and Top2-independent mechanism. We discovered that the drug influences the assembly and stability of preinitiation complexes by targeting the interaction between promoter recognition factor SL1 and the rRNA promoter. Our findings will have an impact on the design and development of novel therapeutic agents specifically targeting ribosome biogenesis. PMID:23293027

  18. Aquaporins as potential drug targets for Meniere's disease and its related diseases.

    PubMed

    Takeda, Taizo; Taguchi, Daizo

    2009-01-01

    The homeostasis of water in the inner ear is essential for maintaining function of hearing and equilibrium. Since the discovery of aquaporin water channels, it has become clear that these channels play a crucial role in inner ear fluid homeostasis. Indeed, proteins or mRNAs of AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7 and AQP9 are expressed in the inner ear. Many of them are expressed mainly in the stria vascularis and the endolymphatic sac, which are the main sites of secretion and/or absorption of endolymph. Vasopressin type2 receptor is also expressed there. Water homeostasis of the inner ear is regulated in part via the arginine vasopressin-AQP2 system in the same fashion as in the kidney, and endolymphatic hydrops, a morphological characteristic of Meniere's disease, is thought to be caused by mal-regulation of this system. Therefore, aquaporins appear to be important for the development of novel drug therapies for Meniere's disease and related disorders.

  19. Bladder cancer and urothelial impairment: the role of TRPV1 as potential drug target.

    PubMed

    Mistretta, Francesco; Buffi, Nicolò Maria; Lughezzani, Giovanni; Lista, Giuliana; Larcher, Alessandro; Fossati, Nicola; Abrate, Alberto; Dell'Oglio, Paolo; Montorsi, Francesco; Guazzoni, Giorgio; Lazzeri, Massimo

    2014-01-01

    Urothelium, in addition to its primary function of barrier, is now understood to act as a complex system of cell communication that exhibits specialized sensory properties in the regulation of physiological or pathological stimuli. Furthermore, it has been hypothesized that bladder inflammation and neoplastic cell growth, the two most representative pathological conditions of the lower urinary tract, may arise from a primary defective urothelial lining. Transient receptor potential vanilloid channel 1 (TRPV1), a receptor widely distributed in lower urinary tract structures and involved in the physiological micturition reflex, was described to have a pathophysiological role in inflammatory conditions and in the genesis and development of urothelial cancer. In our opinion new compounds, such as curcumin, the major component of turmeric Curcuma longa, reported to potentiate the effects of the chemotherapeutic agents used in the management of recurrent urothelial cancer in vitro and also identified as one of several compounds to own the vanillyl structure required to work like a TRPV1 agonist, could be thought as complementary in the clinical management of both the recurrences and the inflammatory effects caused by the endoscopic resection or intravesical chemotherapy administration or could be combined with adjuvant agents to potentiate their antitumoral effect.

  20. TRPM7 in cerebral ischemia and potential target for drug development in stroke

    PubMed Central

    Bae, Christine You-jin; Sun, Hong-shuo

    2011-01-01

    Searching for effective pharmacological agents for stroke treatment has largely been unsuccessful. Despite initial excitement, antagonists for glutamate receptors, the most studied receptor channels in ischemic stroke, have shown insufficient neuroprotective effects in clinical trials. Outside the traditional glutamate-mediated excitotoxicity, recent evidence suggests few non-glutamate mechanisms, which may also cause ionic imbalance and cell death in cerebral ischemia. Transient receptor potential melastatin 7 (TRPM7) is a Ca2+ permeable, non-selective cation channel that has recently gained attention as a potential cation influx pathway involved in ischemic events. Compelling new evidence from an in vivo study demonstrated that suppression of TRPM7 channels in adult rat brain in vivo using virally mediated gene silencing approach reduced delayed neuronal cell death and preserved neuronal functions in global cerebral ischemia. In this review, we will discuss the current understanding of the role of TRPM7 channels in physiology and pathophysiology as well as its therapeutic potential in stroke. PMID:21552293

  1. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  2. Minireview: Role Of Orphan Nuclear Receptors in Cancer and Potential as Drug Targets

    PubMed Central

    Jin, Un-Ho; Hedrick, Erik; Reeder, Alexandra; Lee, Syng-Ook

    2014-01-01

    orphan receptors and also for combined drug therapies. PMID:24295738

  3. SW43-DOX ± loading onto drug-eluting bead, a potential new targeted drug delivery platform for systemic and locoregional cancer treatment – An in vitro evaluation

    PubMed Central

    Ludwig, Johannes M.; Gai, Yongkang; Sun, Lingyi; Xiang, Guangya; Zeng, Dexing; Kim, Hyun S.

    2016-01-01

    Treatment of unresectable primary cancer and their distant metastases, with the liver representing one of the most frequent location, is still plagued by insufficient treatment success and poor survival rates. The Sigma-2 receptor is preferentially expressed on many tumor cells making it an appealing target for therapy. Thus, we developed a potential targeted drug conjugate consisting of the Sigma-2 receptor ligand SW43 and Doxorubicin (SW43-DOX) for systemic cancer therapy and for locoregional treatment of primary and secondary liver malignancies when loaded onto drug-eluting bead (DEB) which was compared in vitro to the treatment with Doxorubicin alone. SW43-DOX binds specifically to the Sigma-2 receptor expressed on hepatocellular (Hep G2, Hep 3B), pancreatic (Panc-1) and colorectal (HT-29) carcinoma cell lines with high affinity and subsequent early specific internalization. Free SW43-DOX showed superior concentration and time depended cancer toxicity than treatment with Doxorubicin alone. Action mechanisms analysis revealed an apoptotic cell death with increased caspase 3/7 activation and reactive oxygen species (ROS) production. Only ROS scavenging with α-Tocopherol, but not the caspase inhibition (Z-VAD-FMK), partly reverted the effect. SW43-DOX could successfully be loaded onto DEB and showed prolonged eluting kinetics compared to Doxorubicin. SW43-DOX loaded DEB vs. Doxorubicin loaded DEB showed a significantly greater time dependent toxicity in all cell lines. In conclusion, the novel conjugate SW43-DOX ± loading onto DEB is a promising drug delivery platform for targeted systemic and locoregional cancer therapy. PMID:27262893

  4. Targeted strategies in the treatment of primary gastric lymphomas: from rituximab to recent insights into potential new drugs.

    PubMed

    Merchionne, Francesca; Iacopino, Pasquale; Minoia, Carla; Iacobazzi, Angela; Rana, Antonio; Serrati, Simona; De Tullio, Giacoma; Loseto, Giacomo; Lapietra, Angela; Lucarelli, Annunziata; Guarini, Attilio

    2014-01-01

    Primary gastric non-Hodgkin's lymphomas (PG-NHL) are the most common extranodal lymphomas, representing between 47% and 74% of all gastrointestinal lymphoma cases. In Western countries two histological types, diffuse large B-cell (DLBC) NHL and mucosa-associated lymphoid tissue (MALT) NHL, are more frequently represented, accounting for the majority of gastric tumors after adenocarcinoma. For several years treatment of these PG lymphomas consisted of surgery, chemotherapy and radiotherapy, alone or in combination. In the last two decades however, advances in our understanding of their pathogenesis and biology have changed the treatment strategy, at least as regards the early stages of disease. In addition to making tumor regression possible through the eradication of Helicobacter pylori, which is considered the main pathogenic agent, this understanding has also provided a solid rationale to assess the efficacy of targeted therapy, namely of drugs which interfere with specific molecules expressed by tumor cells or are involved in key growth pathways of these lymphomas. In particular, rituximab, a monoclonal anti-CD20 antibody, radioimmunotherapy, the first-generation proteasome inhibitor bortezomib and lenalidomide have been evaluated. Despite significant antitumor activity in this subset of NHL and manageable toxicity, many questions still remain however about the optimal dose, the best administration schedule and their combination with conventional chemotherapy. This review focuses on the pathogenesis of PG-MALT and DLBC lymphomas, and discusses the results of clinical trials on the impact of new agents on prognosis and survival in these patients, considering also potential new therapautic targets.

  5. DNA Methylation-Targeted Drugs.

    PubMed

    Da Costa, Elodie M; McInnes, Gabrielle; Beaudry, Annie; Raynal, Noël J-M

    Targeting DNA hypermethylation, using nucleoside analogs, is an efficient approach to reprogram cancer cell epigenome leading to reduced proliferation, increased differentiation, recognition by the immune system, and ultimately cancer cell death. DNA methyltransferase inhibitors have been approved for the treatment of myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myelogenous leukemia. To improve clinical efficacy and overcome mechanisms of drug resistance, a second generation of DNA methyltransferase inhibitors has been designed and is currently in clinical trials. Although efficient in monotherapy against hematologic malignancies, the potential of DNA methyltransferase inhibitors to synergize with small molecules targeting chromatin or immunotherapy will provide additional opportunities for their future clinical application against leukemia and solid tumors.

  6. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats

    PubMed Central

    Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong

    2017-01-01

    Background and purpose Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. Experimental approach 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). Results In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. Conclusion/Implications The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal

  7. Hyperthermia-induced drug targeting.

    PubMed

    May, Jonathan P; Li, Shyh-Dar

    2013-04-01

    Specific delivery of a drug to a target site is a major goal of drug delivery research. Using temperature-sensitive liposomes (TSLs) is one way to achieve this; the liposome acts as a protective carrier, allowing increased drug to flow through the bloodstream by minimizing clearance and non-specific uptake. On reaching microvessels within a heated tumor, the drug is released and quickly penetrates. A major advance in the field is ThermoDox® (Celsion), demonstrating significant improvements to the drug release rates and drug uptake in heated tumors (∼ 41°C). Most recently, magnetic resonance-guided focused ultrasound (MRgFUS) has been combined with TSL drug delivery to provide localized chemotherapy with simultaneous quantification of drug release within the tumor. In this article the field of hyperthermia-induced drug delivery is discussed, with an emphasis on the development of TSLs and their combination with hyperthermia (both mild and ablative) in cancer therapy. State-of-the-art image-guided heating technologies used with this combination strategy will also be presented, with examples of real-time monitoring of drug delivery and prediction of efficacy. The specific delivery of drugs by combining hyperthermia with TSLs is showing great promise in the clinic and its potential will be even greater as the use of image-guided focused ultrasound becomes more widespread - a technique capable of penetrating deep within the body to heat a specific area with improved control. In conjunction with this, it is anticipated that multifunctional TSLs will be a major topic of study in this field.

  8. Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs.

    PubMed

    Arima, Hidetoshi; Motoyama, Keiichi; Higashi, Taishi

    2017-04-01

    Despite the recent approval of some gene medicines and nucleic acid drugs, further improvement of delivery techniques for these drugs is strongly required. Several delivery technologies for these drugs have been developed, in other words, viral and two types of nonviral (lipofection and polyfection) vectors. Among the polyfection system, the potential use of various cyclodextrin (CyD) derivatives and CyD-appended polymers as carriers for gene and nucleic acid drugs has been demonstrated. The polyamidoamine dendrimer (G3) conjugates with α-CyD (α-CDE (G3)) have been reported to possess noteworthy properties as DNA and nucleic acid drugs carriers. This review will focus on the attempts to develop such cell-specific drug carriers by preparing polyethylene glycol, galactose, lactose, mannose, fucose and folic acid-appended α-CDEs as tissue and cell-selective carriers of gene and nucleic acid drugs.

  9. Properties of Protein Drug Target Classes

    PubMed Central

    Bull, Simon C.; Doig, Andrew J.

    2015-01-01

    Accurate identification of drug targets is a crucial part of any drug development program. We mined the human proteome to discover properties of proteins that may be important in determining their suitability for pharmaceutical modulation. Data was gathered concerning each protein’s sequence, post-translational modifications, secondary structure, germline variants, expression profile and drug target status. The data was then analysed to determine features for which the target and non-target proteins had significantly different values. This analysis was repeated for subsets of the proteome consisting of all G-protein coupled receptors, ion channels, kinases and proteases, as well as proteins that are implicated in cancer. Machine learning was used to quantify the proteins in each dataset in terms of their potential to serve as a drug target. This was accomplished by first inducing a random forest that could distinguish between its targets and non-targets, and then using the random forest to quantify the drug target likeness of the non-targets. The properties that can best differentiate targets from non-targets were primarily those that are directly related to a protein’s sequence (e.g. secondary structure). Germline variants, expression levels and interactions between proteins had minimal discriminative power. Overall, the best indicators of drug target likeness were found to be the proteins’ hydrophobicities, in vivo half-lives, propensity for being membrane bound and the fraction of non-polar amino acids in their sequences. In terms of predicting potential targets, datasets of proteases, ion channels and cancer proteins were able to induce random forests that were highly capable of distinguishing between targets and non-targets. The non-target proteins predicted to be targets by these random forests comprise the set of the most suitable potential future drug targets, and should therefore be prioritised when building a drug development programme. PMID

  10. Preparation and characterization of folate-chitosan-gemcitabine core-shell nanoparticles for potential tumor-targeted drug delivery.

    PubMed

    Xu, Shi; Xu, Qian; Zhou, Jiahua; Wang, Junying; Zhang, Niping; Zhang, Ling

    2013-01-01

    For the purpose of achieving targeted chemotherapy of pancreatic cancer, we prepared core-shell nanoparticles by coaxial electrospray technology, with folate-chitosan as the polymeric coating material and gemcitabine as the encapsulated drug. The effects of various solution properties and processing parameters on nanoparticles formation were investigated. By optimizing the electrospray parameters, the diameter of the core-shell nanoparticles was in the range of 200-300 nm with drug loading and encapsulation efficiency of 3.91 +/- 0.12% and 85.37 +/- 4.9%. The drug release kinetics revealed a controlled initial burst release followed by a sustained release over a period of 72 h at pH 7.4 and pH 5.0, and at pH 5.0 the drug released more quickly. Moreover, the cellular uptake experiment confirmed that the folate conjugated core-shell nanoparticles had high pancreatic cancer (BXPC3) cells uptake efficiency. And the cell cytotoxicity test displayed that they had remarkable cytotoxicity towards BXPC3 cells. This study indicates that coaxial electrospray is a facile technique in producing core-shell nanoparticles encapsulating hydrophilic small molecule drugs, and clearly infers that the folate conjugated core-shell nanoparticles is very much effective to use as a pancreatic tumor-targeted delivery carrier for anticancer drugs.

  11. Nanoparticle Fullerene (C60) demonstrated stable binding with antibacterial potential towards probable targets of drug resistant Salmonella typhi - a computational perspective and in vitro investigation.

    PubMed

    Skariyachan, Sinosh; Parveen, Asma; Garka, Shruti

    2016-11-23

    Salmonella typhi, a Gram negative bacterium, has become multidrug resistant (MDR) to wide classes of antibacterials which necessitate an alarming precaution. This study focuses on the binding potential and therapeutic insight of Nano-Fullerene C60 towards virulent targets of Salmonella typhi by computational prediction and preliminary in vitro assays. The clinical isolates of Salmonella typhi were collected and antibiotic susceptibility profiles were assessed. The drug targets of pathogen were selected by rigorous literature survey and gene network analysis by various metabolic network resources. Based on this study, 20 targets were screened and the 3D structures of few drug targets were retrieved from PDB and others were computationally predicted. The structures of nanoleads such as Fullerene C60, ZnO and CuO were retrieved from drug databases. The binding potential of these nanoleads towards all selected targets were predicted by molecular docking. The best docked conformations were screened and concept was investigated by preliminary bioassays. This study revealed that most of the isolates of Salmonella typhi were found to be MDR (p < .05). The theoretical models of selected drug targets showed high stereochemical validity. The molecular docking studies suggested that Fullerene C60 showed better binding affinity towards the drug targets when compared to ZnO and CuO. The preliminary in vitro assays suggested that 100 μg/L Fullerene C60 posses significant inhibitory activities and absence of drug resistance to this nanoparticle. This study suggests that Fullerene C60 can be scaled up as probable lead molecules against the major drug targets of MDR Salmonella typhi.

  12. Secretome Prediction of Two M. tuberculosis Clinical Isolates Reveals Their High Antigenic Density and Potential Drug Targets

    PubMed Central

    Cornejo-Granados, Fernanda; Zatarain-Barrón, Zyanya L.; Cantu-Robles, Vito A.; Mendoza-Vargas, Alfredo; Molina-Romero, Camilo; Sánchez, Filiberto; Del Pozo-Yauner, Luis; Hernández-Pando, Rogelio; Ochoa-Leyva, Adrián

    2017-01-01

    druggability analysis of the secretomes, we found potential drug targets such as cytochrome P450, thiol peroxidase, the Ag85C, and Ribonucleoside Reductase in the secreted proteins that could be used as drug targets for novel treatments against Tuberculosis. PMID:28223967

  13. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    PubMed

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  14. Secretome Prediction of Two M. tuberculosis Clinical Isolates Reveals Their High Antigenic Density and Potential Drug Targets.

    PubMed

    Cornejo-Granados, Fernanda; Zatarain-Barrón, Zyanya L; Cantu-Robles, Vito A; Mendoza-Vargas, Alfredo; Molina-Romero, Camilo; Sánchez, Filiberto; Del Pozo-Yauner, Luis; Hernández-Pando, Rogelio; Ochoa-Leyva, Adrián

    2017-01-01

    analysis of the secretomes, we found potential drug targets such as cytochrome P450, thiol peroxidase, the Ag85C, and Ribonucleoside Reductase in the secreted proteins that could be used as drug targets for novel treatments against Tuberculosis.

  15. Other targeted drugs in melanoma

    PubMed Central

    Rodón, Jordi; Karachaliou, Niki; Sánchez, Jesús; Santarpia, Mariacarmela; Viteri, Santiago; Pilotto, Sara; Teixidó, Cristina; Riso, Aldo; Rosell, Rafael

    2015-01-01

    Targeted therapy drugs are developed against specific molecular alterations on cancer cells. Because they are “targeted” to the tumor, these therapies are more effective and better tolerated than conventional therapies such as chemotherapy. In the last decade, great advances have been made in understanding of melanoma biology and identification of molecular mechanisms involved in malignant transformation of cells. The identification of oncogenic mutated kinases involved in this process provides an opportunity for development of new target therapies. The dependence of melanoma on BRAF-mutant kinase has provided an opportunity for development of mutation-specific inhibitors with high activity and excellent tolerance that are now being used in clinical practice. This marked a new era in the treatment of metastatic melanoma and much research is now ongoing to identify other “druggable” kinases and transduction signaling networking. It is expected that in the near future the spectrum of target drugs for melanoma treatment will increase. Herein, we review the most relevant potential novel drugs for melanoma treatment based on preclinical data and the results of early clinical trials. PMID:26605312

  16. Systemic Analysis of Gene Expression Profiles Identifies ErbB3 as a Potential Drug Target in Pediatric Alveolar Rhabdomyosarcoma

    PubMed Central

    Nordberg, Janne; Mpindi, John Patrick; Iljin, Kristiina; Pulliainen, Arto Tapio; Kallajoki, Markku; Kallioniemi, Olli; Elenius, Klaus; Elenius, Varpu

    2012-01-01

    Pediatric sarcomas, including rhabdomyosarcomas, Ewing’s sarcoma, and osteosarcoma, are aggressive tumors with poor survival rates. To overcome problems associated with nonselectivity of the current therapeutic approaches, targeted therapeutics have been developed. Currently, an increasing number of such drugs are used for treating malignancies of adult patients but little is known about their effects in pediatric patients. We analyzed expression of 24 clinically approved target genes in a wide variety of pediatric normal and malignant tissues using a novel high-throughput systems biology approach. Analysis of the Genesapiens database of human transcriptomes demonstrated statistically significant up-regulation of VEGFC and EPHA2 in Ewing’s sarcoma, and ERBB3 in alveolar rhabdomyosarcomas. In silico data for ERBB3 was validated by demonstrating ErbB3 protein expression in pediatric rhabdomyosarcoma in vitro and in vivo. ERBB3 overexpression promoted whereas ERBB3-targeted siRNA suppressed rhabdomyosarcoma cell gowth, indicating a functional role for ErbB3 signaling in rhabdomyosarcoma. These data suggest that drugs targeting ErbB3, EphA2 or VEGF-C could be further tested as therapeutic targets for pediatric sarcomas. PMID:23227212

  17. Mechanisms of developing post-traumatic stress disorder: new targets for drug development and other potential interventions.

    PubMed

    Wimalawansa, Sunil J

    2014-01-01

    amygdala and hippocampus, which are characteristics of patients with PTSD. Considering these abnormalities, neuroendocrine system needs to be considered as a key target for new drug development for prevention and treatment of PTSD.

  18. The clinicopathological significance and drug target potential of FHIT in breast cancer, a meta-analysis and literature review.

    PubMed

    Su, Yunshu; Wang, Xiaoli; Li, Jun; Xu, Junming; Xu, Lijun

    2015-01-01

    FHIT is a bona fide tumor-suppressor gene and its loss contributes to tumorigenesis of epithelial cancers including breast cancer (BC). However, the association and clinicopathological significance between FHIT promoter hypermethylation and BC remains unclear. The purpose of this study is to conduct a meta-analysis and literature review to investigate the clinicopathological significance of FHIT methylation in BC. A detailed literature search was performed in PubMed, EMBASE, Web of Science, and Google Scholar databases. The data were extracted and assessed by two reviewers independently. Odds ratios with 95% corresponding confidence intervals were calculated. A total of seven relevant articles were available for meta-analysis, which included 985 patients. The frequency of FHIT hypermethylation was significantly increased in invasive ductal carcinoma compared to benign breast disease, the pooled odds ratio was 8.43, P<0.00001. The rate of FHIT hypermethylation was not significantly different between stage I/II and stage III/IV, odds ratio was 2.98, P=0.06. In addition, FHIT hypermethylation was not significantly associated with ER and PR status. FHIT hypermethylation was not significantly correlated with premenopausal and postmenopausal patients with invasive ductal carcinoma. In summary, our meta-analysis indicated that the frequency of FHIT hypermethylation was significantly increased in BC compared to benign breast disease. The rate of FHIT hypermethylation in advanced stages of BC was higher than in earlier stages; however, the difference was not statistically significant. Our data suggested that FHIT methylation could be a diagnostic biomarker of BC carcinogenesis. FHIT is a potential drug target for development of demethylation treatment for patients with BC.

  19. Clinicopathological significance and potential drug target of CDH1 in breast cancer: a meta-analysis and literature review.

    PubMed

    Huang, Ruixue; Ding, Ping; Yang, Fei

    2015-01-01

    CDH1, as a tumor suppressor gene, contributes sporadic breast cancer (BC) progression. However, the association between CDH1 hypermethylation and BC, and its clinicopathological significance remains unclear. We conducted a meta-analysis to investigate the relationship between the CDH1 methylation profile and the major clinicopathological features. A detailed literature was searched through the electronic databases PubMed, Web of Science™, and EMBASE™ for related research publications. The data were extracted and assessed by two reviewers independently. Odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated and summarized respectively. The frequency of CDH1 methylation was significantly higher in invasive ductal carcinoma than in normal breast tissues (OR =5.83, 95% CI 3.76-9.03, P<0.00001). CDH1 hypermethylation was significantly higher in estrogen receptor (ER)-negative BC than in ER-positive BC (OR =0.62, 95% CI 0.43-0.87, P=0.007). In addition, we found that the CDH1 was significantly methylated in HER2-negative BC than in HER2-positive BC (OR =0.26, 95% CI 0.15-0.44, P<0.00001). However, CDH1 methylation frequency was not associated with progesterone receptor (PR) status, or with grades, stages, or lymph node metastasis of BC patients. Our results indicate that CDH1 hypermethylation is a potential novel drug target for developing personalized therapy. CDH1 hypermethylation is strongly associated with ER-negative and HER2-negative BC, respectively, suggesting CDH1 methylation status could contribute to the development of novel therapeutic approaches for the treatment of ER-negative or HER2-negative BC with aggressive tumor biology.

  20. An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics.

    PubMed

    Chávez-Fumagalli, Miguel A; Schneider, Mônica S; Lage, Daniela P; Machado-de-Ávila, Ricardo A; Coelho, Eduardo A F

    2017-05-01

    Leishmaniasis is a parasitic disease caused by the protozoan of the Leishmania genus. While no human vaccine is available, drugs such as pentavalent antimonials, pentamidine and amphotericin B are used for treat the patients. However, the high toxicity of these pharmaceutics, the emergence of parasite resistance and/or their high cost have showed to the urgent need of identify new targets to be employed in the improvement of the treatment against leishmaniasis. In a recent immunoproteomics approach performed in the Leishmania infantum species, 104 antigenic proteins were recognized by antibodies in sera of visceral leishmaniasis (VL) dogs. Some of them were later showed to be effective diagnostic markers and/or vaccine candidates against the disease. Between these proteins, 24 considered as hypothetical were identified in the promastigote and amastigote-like extracts of the parasites. The present study aimed to use bioinformatics tools to select new drug targets between these hypothetical proteins. Their cellular localization was predicted to be seven membrane proteins, as well as eight cytoplasmic, three nuclear, one mitochondrial and five proteins remained unclassified. Their functions were predicted as being two transport proteins, as well as five with metabolic activity, three as cell signaling and fourteen proteins remained unclassified. Ten hypothetical proteins were well-annotated and compared to their homology regarding to human proteins. Two proteins, a calpain-like and clavaminate synthase-like proteins were selected by using Docking analysis as being possible drug targets. In this sense, the present study showed the employ of new strategies to select possible drug candidates, according their localization and biological function in Leishmania parasites, aiming to treat against VL. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Discoidin Domain Receptor 2 as a Potential Therapeutic Target for Development of Disease-Modifying Osteoarthritis Drugs.

    PubMed

    Manning, Lauren B; Li, Yefu; Chickmagalur, Nithya S; Li, Xiaolong; Xu, Lin

    2016-11-01

    Osteoarthritis (OA) is the most common form of arthritis disorders, but the identification of therapeutic targets to effectively prevent OA has been increasingly difficult. The goal of this investigation is to provide experimental evidence that discoidin domain receptor 2 (DDR2) may be an ideal target for the development of disease-modifying OA drugs. Ddr2 was conditionally deleted from articular cartilage of adult mouse knee joints. Aggrecan-CreERT2;floxed Ddr2 mice, which were generated by crossing Aggrecan-CreERT2 mice with floxed Ddr2 mice, then received tamoxifen injections at the age of 8 weeks. The mice were then subjected to destabilization of the medial meniscus (DMM) surgery. At 8 and 16 weeks after DMM, mice were euthanized for the collection of knee joints. In a separate experiment, Aggrecan-CreERT2;floxed Ddr2 mice were subjected to DMM at the age of 10 weeks. The mice then received tamoxifen injections at 8 weeks after DMM. The mice were euthanized for the collection of knee joints at 16 weeks after DMM. The progressive process of articular cartilage degeneration was significantly delayed in the knee joints of Ddr2-deficient mice in comparison to their control littermates. Articular cartilage damage in the knee joints of the mice was associated with increased expression profiles of both Ddr2 and matrix metalloproteinase 13. These findings suggest that DDR2 may be an ideal target for the development of disease-modifying OA drugs.

  2. Invasion and egress by the obligate intracellular parasite Toxoplasma gondii: potential targets for the development of new antiparasitic drugs.

    PubMed

    Lavine, M D; Arrizabalaga, G

    2007-01-01

    Intracellular protozoan parasites are a great threat to animal and human health. To successfully disseminate through an organism these parasites must be able to enter and exit host cells efficiently and rapidly. The inhibition of invasion or egress of obligate intracellular parasites is regarded as a goal for drug development since these processes are essential for their survival and likely to require proteins unique to the parasites. Thus, a more comprehensive knowledge of invasion and egress proteins will aid in the development of drugs and vaccines against these intracellular pathogens. In recent years, the study of a particular parasite, Toxoplasma gondii, has yielded valuable information on how invasion and egress are achieved by some protozoan parasites. Besides being a good model system for the study of parasite biology, Toxoplasma is an important human pathogen capable of causing devastating disease in both immunocompromised individuals and developing fetuses. The lack of effective, inexpensive and tolerable drugs against Toxoplasma makes the development of new therapies an imperative. The following review describes how the identification and in depth study, using proteomics, forward genetics and pharmacology of the Toxoplasma proteins involved in entering and exiting human cells provide an important starting point in identifying targets for drug discovery.

  3. Distinct prognostic values and potential drug targets of ALDH1 isoenzymes in non-small-cell lung cancer

    PubMed Central

    You, Qinghua; Guo, Huanchen; Xu, Dongxiang

    2015-01-01

    Increased aldehyde dehydrogenase 1 (ALDH1) activity has been found in the stem cell populations of leukemia and some solid tumors including non-small-cell lung cancer (NSCLC). However, which ALDH1’s isoenzymes are contributing to ALDH1 activity remains elusive. In addition, the prognostic value of individual ALDH1 isoenzyme is not clear. In the current study, we investigated the prognostic value of ALDH1 isoenzymes in NSCLC patients through the Kaplan–Meier plotter database, which contains updated gene expression data and survival information from a total of 1,926 NSCLC patients. High expression of ALDH1A1 mRNA was found to be correlated to a better overall survival (OS) in all NSCLC patients followed for 20 years (hazard ratio [HR] 0.88 [0.77–0.99], P=0.039). In addition, high expression of ALDH1A1 mRNA was also found to be correlated to better OS in adenocarcinoma (Ade) patients (HR 0.71 [0.57–0.9], P=0.0044) but not in squamous cell carcinoma (SCC) patients (HR 0.92 [0.72–1.16], P=0.48). High expression of ALDH1A2 and ALDH1B1 mRNA was found to be correlated to worser OS in all NSCLC patients, as well as in Ade, but not in SCC patients. High expression of both ALDH1A3 and ALDH1L1 mRNA was not found to be correlated to OS in all NSCLC patients. These results strongly support that ALDH1A1 mRNA in NSCLC is associated with better prognosis. In addition, our current study also supports that ALDH1A2 and ALDH1B1 might be major contributors to the ALDH1 activity in NSCLC, since high expression of ALDH1A2 and ALDH1B1 mRNA was found to be significantly correlated to worser OS in all NSCLC patients. Based on our study, ALDH1A2 and ALDH1B1 might be excellent potential drug targets for NSCLC patients. PMID:26366059

  4. Drug targeting through pilosebaceous route.

    PubMed

    Chourasia, Rashmi; Jain, Sanjay K

    2009-10-01

    Local skin targeting is of interest for the pharmaceutical and the cosmetic industry. A topically applied substance has basically three possibilities to penetrate into the skin: transcellular, intercellular, and follicular. The transfollicular path has been largely ignored because hair follicles constitute only 0.1% of the total skin. The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. Nonetheless, the hair follicle has great potential for skin treatment, owing to its deep extension into the dermis and thus provides much deeper penetration and absorption of compounds beneath the skin than seen with the transdermal route. In the case of skin diseases and of cosmetic products, delivery to sweat glands or to the pilosebaceous unit is essential for the effectiveness of the drug. Increased accumulation in the pilosebaceous unit could treat alopecia, acne and skin cancer more efficiently and improve the effect of cosmetic substances and nutrients. Therefore, we review herein various drug delivery systems, including liposomes, niosomes, microspheres, nanoparticles, nanoemulsions, lipid nanocarriers, gene therapy and discuss the results of recent researches. We also review the drugs which have been investigated for pilosebaceous delivery.

  5. Development of Bone Targeting Drugs

    PubMed Central

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J.; Mackenzie, William G.; Mason, Robert W.; Orii, Tadao; Tomatsu, Shunji

    2017-01-01

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca2+. The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments. PMID:28644392

  6. Multidrug transporters as drug targets.

    PubMed

    Liang, X-J; Aszalos, A

    2006-08-01

    Transport molecules can significantly affect the pharmacodynamics and pharmacokinetics of drugs. An important transport molecule, the 170 kDa P-glycoprotein (Pgp), is constitutively expressed at several organ sites in the human body. Pgp is expressed at the blood-brain barrier, in the kidneys, liver, intestines and in certain T cells. Other transporters such as the multidrug resistance protein 1 (MRP1) and MRP2 also contribute to drug distribution in the human body, although to a lesser extent than Pgp. These three transporters, and especially Pgp, are often targets of drugs. Pgp can be an intentional or unintentional target. It is directly targeted when one wants to block its function by a modifier drug so that another drug, also a substrate of Pgp, can penetrate the cell membrane, which would otherwise be impermeable. Unintentional targeting occurs when several drugs are administered to a patient and as a consequence, the physiological function of Pgp is blocked at different organ sites. Like Pgp, MRP1 also has the capacity to mediate transport of many drugs and other compounds. MRP1 has a protective role in preventing accumulation of toxic compounds and drugs in epithelial tissue covering the choroid plexus/cerebrospinal fluid compartment, oral epithelium, sertoli cells, intesticular tubules and urinary collecting duct cells. MRP2 primarily transports weakly basic drugs and bilirubin from the liver to bile. Most compounds that efficiently block Pgp have only low affinity for MRP1 and MRP2. There are only a few effective and specific MRP inhibitors available. Drug targeting of these transporters may play a role in cancer chemotherapy and in the pharmacokinetics of substrate drugs.

  7. The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target.

    PubMed

    Kunz, Stefan; Balmer, Vreni; Sterk, Geert Jan; Pollastri, Michael P; Leurs, Rob; Müller, Norbert; Hemphill, Andrew; Spycher, Cornelia

    2017-09-01

    Giardiasis is an intestinal infection correlated with poverty and poor drinking water quality, and treatment options are limited. According to the Center for Disease Control and Prevention, Giardia infections afflict nearly 33% of people in developing countries, and 2% of the adult population in the developed world. This study describes the single cyclic nucleotide-specific phosphodiesterase (PDE) of G. lamblia and assesses PDE inhibitors as a new generation of anti-giardial drugs. An extensive search of the Giardia genome database identified a single gene coding for a class I PDE, GlPDE. The predicted protein sequence was analyzed in-silico to characterize its domain structure and catalytic domain. Enzymatic activity of GlPDE was established by complementation of a PDE-deficient Saccharomyces cerevisiae strain, and enzyme kinetics were characterized in soluble yeast lysates. The potency of known PDE inhibitors was tested against the activity of recombinant GlPDE expressed in yeast and against proliferating Giardia trophozoites. Finally, the localization of epitope-tagged and ectopically expressed GlPDE in Giardia cells was investigated. Giardia encodes a class I PDE. Catalytically important residues are fully conserved between GlPDE and human PDEs, but sequence differences between their catalytic domains suggest that designing Giardia-specific inhibitors is feasible. Recombinant GlPDE hydrolyzes cAMP with a Km of 408 μM, and cGMP is not accepted as a substrate. A number of drugs exhibit a high degree of correlation between their potency against the recombinant enzyme and their inhibition of trophozoite proliferation in culture. Epitope-tagged GlPDE localizes as dots in a pattern reminiscent of mitosomes and to the perinuclear region in Giardia. Our data strongly suggest that inhibition of G. lamblia PDE activity leads to a profound inhibition of parasite proliferation and that GlPDE is a promising target for developing novel anti-giardial drugs.

  8. The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target

    PubMed Central

    Balmer, Vreni; Sterk, Geert Jan; Pollastri, Michael P.; Leurs, Rob; Müller, Norbert; Hemphill, Andrew; Spycher, Cornelia

    2017-01-01

    Background Giardiasis is an intestinal infection correlated with poverty and poor drinking water quality, and treatment options are limited. According to the Center for Disease Control and Prevention, Giardia infections afflict nearly 33% of people in developing countries, and 2% of the adult population in the developed world. This study describes the single cyclic nucleotide-specific phosphodiesterase (PDE) of G. lamblia and assesses PDE inhibitors as a new generation of anti-giardial drugs. Methods An extensive search of the Giardia genome database identified a single gene coding for a class I PDE, GlPDE. The predicted protein sequence was analyzed in-silico to characterize its domain structure and catalytic domain. Enzymatic activity of GlPDE was established by complementation of a PDE-deficient Saccharomyces cerevisiae strain, and enzyme kinetics were characterized in soluble yeast lysates. The potency of known PDE inhibitors was tested against the activity of recombinant GlPDE expressed in yeast and against proliferating Giardia trophozoites. Finally, the localization of epitope-tagged and ectopically expressed GlPDE in Giardia cells was investigated. Results Giardia encodes a class I PDE. Catalytically important residues are fully conserved between GlPDE and human PDEs, but sequence differences between their catalytic domains suggest that designing Giardia-specific inhibitors is feasible. Recombinant GlPDE hydrolyzes cAMP with a Km of 408 μM, and cGMP is not accepted as a substrate. A number of drugs exhibit a high degree of correlation between their potency against the recombinant enzyme and their inhibition of trophozoite proliferation in culture. Epitope-tagged GlPDE localizes as dots in a pattern reminiscent of mitosomes and to the perinuclear region in Giardia. Conclusions Our data strongly suggest that inhibition of G. lamblia PDE activity leads to a profound inhibition of parasite proliferation and that GlPDE is a promising target for developing novel

  9. Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2010-05-01

    Two Gadolinium nanostructured materials, Gd2(OH)5NO3 nanoparticles and Gd(OH)3 nanorods, were synthesized and extensively characterized by various techniques. In addition to the potential use of Gd2(OH)5NO3 in magnetic resonance imaging (MRI) and Neutron-capture therapy (NCT) application, it could also be used in targeted drug delivery. An antibiotic (nalidixic acid), two amino acids (aspartic and glutamic acid), a fatty acid and a surfactant (SDS) were intercalated in the nanoparticles. The surface of the nanoparticles was modified with folic acid in order to be capable of targeted delivery to folate receptor expressing sites, such as tumor human cells.

  10. Small molecules targeting glycogen synthase kinase 3 as potential drug candidates for the treatment of retinitis pigmentosa.

    PubMed

    Marchena, Miguel; Villarejo-Zori, Beatriz; Zaldivar-Diez, Josefa; Palomo, Valle; Gil, Carmen; Hernández-Sánchez, Catalina; Martínez, Ana; de la Rosa, Enrique J

    2017-12-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy that courses with progressive degeneration of retinal tissue and loss of vision. Currently, RP is an unpreventable, incurable condition. We propose glycogen synthase kinase 3 (GSK-3) inhibitors as potential leads for retinal cell neuroprotection, since the retina is also a part of the central nervous system and GSK-3 inhibitors are potent neuroprotectant agents. Using a chemical genetic approach, diverse small molecules with different potency and binding mode to GSK-3 have been used to validate and confirm GSK-3 as a pharmacological target for RP. Moreover, this medicinal chemistry approach has provided new leads for the future disease-modifying treatment of RP.

  11. Drug targeting using solid lipid nanoparticles.

    PubMed

    Rostami, Elham; Kashanian, Soheila; Azandaryani, Abbas H; Faramarzi, Hossain; Dolatabadi, Jafar Ezzati Nazhad; Omidfar, Kobra

    2014-07-01

    The present review aims to show the features of solid lipid nanoparticles (SLNs) which are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery and research. Because of some unique features of SLNs such as their unique size dependent properties it offers possibility to develop new therapeutics. A common denominator of all these SLN-based platforms is to deliver drugs into specific tissues or cells in a pathological setting with minimal adverse effects on bystander cells. SLNs are capable to incorporate drugs into nanocarriers which lead to a new prototype in drug delivery which maybe used for drug targeting. Hence solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence attracted wide attention of researchers. This review presents a broad treatment of targeted solid lipid nanoparticles discussing their types such as antibody SLN, magnetic SLN, pH sensitive SLN and cationic SLN.

  12. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design.

    PubMed

    Koh, Cho Yeow; Kim, Jessica E; Napoli, Alberto J; Verlinde, Christophe L M J; Fan, Erkang; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J

    2013-05-01

    Malaria, most commonly caused by the parasite Plasmodium falciparum, is a devastating disease that remains a large global health burden. Lack of vaccines and drug resistance necessitate the continual development of new drugs and exploration of new drug targets. Due to their essential role in protein synthesis, aminoacyl-tRNA synthetases are potential anti-malaria drug targets. Here we report the crystal structures of P. falciparum cytosolic tryptophanyl-tRNA synthetase (Pf-cTrpRS) in its ligand-free state and tryptophanyl-adenylate (WAMP)-bound state at 2.34 Å and 2.40 Å resolutions, respectively. Large conformational changes are observed when the ligand-free protein is bound to WAMP. Multiple residues, completely surrounding the active site pocket, collapse onto WAMP. Comparison of the structures to those of human cytosolic TrpRS (Hs-cTrpRS) provides information about the possibility of targeting Pf-cTrpRS for inhibitor development. There is a high degree of similarity between Pf-cTrpRS and Hs-cTrpRS within the active site. However, the large motion that Pf-cTrpRS undergoes during transitions between different functional states avails an opportunity to arrive at compounds which selectively perturb the motion, and may provide a starting point for the development of new anti-malaria therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ligand-Targeted Drug Delivery.

    PubMed

    Srinivasarao, Madduri; Low, Philip S

    2017-09-12

    Safety and efficacy constitute the major criteria governing regulatory approval of any new drug. The best method to maximize safety and efficacy is to deliver a proven therapeutic agent with a targeting ligand that exhibits little affinity for healthy cells but high affinity for pathologic cells. The probability of regulatory approval can conceivably be further enhanced by exploiting the same targeting ligand, conjugated to an imaging agent, to select patients whose diseased tissues display sufficient targeted receptors for therapeutic efficacy. The focus of this Review is to summarize criteria that must be met during design of ligand-targeted drugs (LTDs) to achieve the required therapeutic potency with minimal toxicity. Because most LTDs are composed of a targeting ligand (e.g., organic molecule, aptamer, protein scaffold, or antibody), spacer, cleavable linker, and therapeutic warhead, criteria for successful design of each component will be described. Moreover, because obstacles to successful drug design can differ among human pathologies, limitations to drug delivery imposed by the unique characteristics of different diseases will be considered. With the explosion of genomic and transcriptomic data providing an ever-expanding selection of disease-specific targets, and with tools for high-throughput chemistry offering an escalating diversity of warheads, opportunities for innovating safe and effective LTDs has never been greater.

  14. Structures of Wild-Type and Mutant Human Spermidine/Spermine N1-acetyltransferase, a Potential Therapeutic Drug Target

    SciTech Connect

    Bewley,M.; Graziano, V.; Jiang, J.; Matz, E.; Studier, F.; Pegg, A.; Coleman, C.; Flanagan, J.

    2006-01-01

    Spermidine/spermine N{sup 1}-acetyltransferase (SSAT) is a key enzyme in the control of polyamine levels in human cells, as acetylation of spermidine and spermine triggers export or degradation. Increased intracellular polyamine levels accompany several types of cancers as well as other human diseases, and compounds that affect the expression, activity, or stability of SSAT are being explored as potential therapeutic drugs. We have expressed human SSAT from the cloned cDNA in Escherichia coli and have determined high-resolution structures of wild-type and mutant SSAT, as the free dimer and in binary and ternary complexes with CoA, acetyl-CoA (AcCoA), spermine, and the inhibitor N{sup 1},N{sup 11}-bis-(ethyl)-norspermine (BE-3-3-3). These structures show details of binding sites for cofactor, substrates, and inhibitor and provide a framework to understand enzymatic activity, mutations, and the action of potential drugs. Two dimer conformations were observed: a symmetric form with two open surface channels capable of binding substrate or cofactor, and an asymmetric form in which only one of the surface channels appears capable of binding and acetylating polyamines. SSAT was found to self-acetylate lysine-26 in the presence of AcCoA and absence of substrate, a reaction apparently catalyzed by AcCoA bound in the second channel of the asymmetric dimer. These unexpected and intriguing complexities seem likely to have some as yet undefined role in regulating SSAT activity or stability as a part of polyamine homeostasis. Sequence signatures group SSAT with proteins that appear to have thialysine N{sup {var_epsilon}}-acetyltransferase activity.

  15. Analyses of the Binding between Water Soluble C60 Derivatives and Potential Drug Targets through a Molecular Docking Approach

    PubMed Central

    Liu, Junjun; Zhang, Houjin

    2016-01-01

    Fullerene C60, a unique sphere-shaped molecule consisting of carbon, has been proved to have inhibitory effects on many diseases. However, the applications of C60 in medicine have been severely hindered by its complete insolubility in water and low solubility in almost all organic solvents. In this study, the water-soluble C60 derivatives and the C60 binding protein’s structures were collected from the literature. The selected proteins fall into several groups, including acetylcholinesterase, glutamate racemase, inosine monophosphate dehydrogenase, lumazine synthase, human estrogen receptor alpha, dihydrofolate reductase and N-myristoyltransferase. The C60 derivatives were docked into the binding sites in the proteins. The binding affinities of the C60 derivatives were calculated. The bindings between proteins and their known inhibitors or native ligands were also characterized in the same way. The results show that C60 derivatives form good interactions with the binding sites of different protein targets. In many cases, the binding affinities of C60 derivatives are better than those of known inhibitors and native ligands. This study demonstrates the interaction patterns of C60 derivatives and their binding partners, which will have good impact on the fullerene-based drug discovery. PMID:26829126

  16. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    PubMed

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identifying Inhibitors of the Hsp90-Aha1 Protein Complex, a Potential Target to Drug Cystic Fibrosis, by Alpha Technology.

    PubMed

    Ihrig, Verena; Obermann, Wolfgang M J

    2017-01-01

    Deletion of a single phenylalanine residue at position 508 of the protein CFTR (cystic fibrosis transmembrane conductance regulator), a chloride channel in lung epithelium, is the most common cause for cystic fibrosis. As a consequence, folding of the CFTRΔF508 protein and delivery to the cell surface are compromised, resulting in degradation of the polypeptide. Accordingly, decreased surface presence of CFTRΔF508 causes impaired chloride ion conductivity and is associated with mucus accumulation, a hallmark of cystic fibrosis. Molecular chaperones such as Hsp90 and its co-chaperone partner Aha1 are thought to play a key role in targeting folding-deficient CFTRΔF508 for degradation. Thus, pharmacologic manipulation to inhibit Hsp90-Aha1 chaperone complex formation appears beneficial to inhibit proteolysis of CFTRΔF508 and rescue its residual chloride channel activity. Therefore, we have screened a collection of 14,400 druglike chemical compounds for inhibitors of the Hsp90-Aha1 complex by amplified luminescence proximity homogeneous assay (Alpha). We identified two druglike molecules that showed promising results when we tested their ability to restore chloride channel activity in culture cells expressing the mutant CFTRΔF508 protein. The two molecules were most effective in combination with the corrector VX-809 and may therefore serve as a lead compound that can be further developed into a drug to treat cystic fibrosis patients.

  18. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M.

    PubMed

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis.

  19. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405

  20. Multi-Target Drugs for Neglected Diseases.

    PubMed

    Scotti, Luciana; Filho, Francisco J B M; de Moura, Ricardo O; Ribeiro, Frederico F; Ishiki, Hamilton; da Silva, Marcelo S; Filho, José M B; Scotti, Marcus T

    2016-05-30

    Diseases perceived as neglected tropical infections are generally caused by parasites which reach poor, underserved populations (primarily infrastructure), cause serious damage to health, and many deaths. AIDS and tuberculosis, (although not classified as neglected by WHO), are discriminated against infections which cause great social damage. The drugs currently used to treat these diseases do not have the desired effectiveness, enable the emergence of resistant strains, and in most cases are difficult to obtain. Few pharmaceutical companies are investing in new drug research for neglected diseases, for lack of financial return. This review reports the major neglected diseases, AIDS, tuberculosis, their targets, and research on multi-target drugs. The studies for new drugs against these infections involve in silico methods, synthesis, structural determinations, analytical analysis and other experimental assays. A new single compound, forecasting possible pharmacodynamic and pharmacokinetic interactions becomes a simpler process; it is also believed that these drugs are safer and more efficient, since they act with synergism on different targets. It occurs but the emergence of new resistant strains and side effects. Multi-target drugs represent a new alternative to find new lead compounds. A ligand that targets two or more receivers may be seen as a potential drug, combating infection by different routes.

  1. Characterization of the gene encoding glyoxalase II from Leishmania donovani: a potential target for anti-parasite drugs

    PubMed Central

    Padmanabhan, Prasad K.; Mukherjee, Angana; Madhubala, Rentala

    2005-01-01

    The glyoxalase system is a ubiquitous detoxification pathway that protects against cellular damage caused by highly reactive oxoaldehydes such as methylglyoxal which is mainly formed as a by-product of glycolysis. The gene encoding GLOII (glyoxalase II) has been cloned from Leishmania donovani, a protozoan parasite that causes visceral leishmaniasis. DNA sequence analysis revealed an ORF (open reading frame) of ∼888 bp that encodes a putative 295-amino-acid protein with a calculated molecular mass of 32.5 kDa and a predicted pI of 6.0. The sequence identity between human GLOII and LdGLOII (L. donovani GLOII) is only 35%. The ORF is a single-copy gene on a 0.6-Mb chromosome. A ∼38 kDa protein was obtained by heterologous expression of LdGLOII in Escherichia coli, and homogeneous enzyme was obtained after affinity purification. Recombinant L. donovani GLOII showed a marked substrate specificity for trypanothione hemithioacetal over glutathione hemithioacetal. Antiserum against recombinant LdGLOII protein could detect a band of anticipated size ∼32 kDa in promastigote extracts. By overexpressing the GLOII gene in Leishmania donovani using Leishmania expression vector pspαhygroα, we detected elevated expression of GLOII RNA and protein. Overexpression of the GLOII gene will facilitate studies of gene function and its relevance as a chemotherapeutic target. This is the first report on the molecular characterization of glyoxalase II from Leishmania spp. The difference in the substrate specificity of the human and Leishmania donovani glyoxalase II enzyme could be exploited for structure-based drug design of selective inhibitors against the parasite. PMID:16159313

  2. Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs

    PubMed Central

    Levit, Anat; Yarnitzky, Talia; Wiener, Ayana; Meidan, Rina; Niv, Masha Y.

    2011-01-01

    Background and Motivation The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer. Methods and Results Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity

  3. Therapeutic potential of targeting the endocannabinoids: implications for the treatment of obesity, metabolic syndrome, drug abuse and smoking cessation.

    PubMed

    Tucci, S A; Halford, J C G; Harrold, J A; Kirkham, T C

    2006-01-01

    Rimonabant (SR141716, Acomplia) has been described as an antagonist/inverse agonist at the cannabinoid receptor type 1 (CB1). It has been widely used as a tool to evaluate the mechanisms by which cannabinoid agonists produce their pharmacological effects and to elucidate the respective physiological or pathophysiological roles of the CB1 receptor. It has become increasingly clear that rimonabant can exert its own intrinsic actions. These may be viewed as evidence of either the inverse agonist nature of rimonabant or of tonic activity of the endocannabinoid system. To date, data obtained from clinical trials (RIO North America, RIO Europe and RIO Lipid) indicate that rimonabant may have clinical benefits in relation to its anti-obesity properties and as a novel candidate for the treatment of metabolic and cardiovascular disorders associated with overweight and obesity. Other clinical trials, such as the STRATUS study, have also shown that rimonabant may be effective in smoking cessation, and that the drug has a reasonable safety profile. Recently, it has been shown that rimonabant prevents indomethacin-induced intestinal injury by decreasing the levels of pro-inflammatory cytokine tumour necrosis factor alpha (TNFalpha), thus indicating that CB1 receptor antagonists might exhibit potential anti-inflammatory activity in acute and chronic diseases.

  4. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Kumar, Konidala Kranthi; Kumar, Yellapu Nanda; Bhaskar, Matcha

    2015-01-01

    -ligand complex via a hydrogen bonding interaction by aromatic-π contacts, and the ADMET (absorption, distribution, metabolism, and excretion) analysis of best leads indicate nontoxic in nature with good potential for drug development. PMID:25848225

  5. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M.

    PubMed

    Pradeepkiran, Jangampalli Adi; Kumar, Konidala Kranthi; Kumar, Yellapu Nanda; Bhaskar, Matcha

    2015-01-01

    via a hydrogen bonding interaction by aromatic-π contacts, and the ADMET (absorption, distribution, metabolism, and excretion) analysis of best leads indicate nontoxic in nature with good potential for drug development.

  6. Chemotherapy plus targeted drugs in conversion therapy for potentially resectable colorectal liver metastases: a meta-analysis

    PubMed Central

    Wang, Lu; Sun, Yinan; Zhao, Ben; Zhang, Huixian; Yu, Qianqian; Yuan, Xianglin

    2016-01-01

    Objectives To evaluate the safety and efficiency of the conversion therapy : chemotherapy plus anti-epidermal growth factor Receptor (EGFR) or anti-vascular endothelial growth factor receptor (VEGFR) monoclonal antibodies (MoAbs) with different rat sarcoma (RAS) status in patients with potentially resectable colorectal liver metastases (CRLM). Methods Randomized controlled trials (RCTs) were identified and the association between RAS mutation and clinical outcome in CRLM patients treated with anti-EGFR or anti-VEGFR MoAbs was investigated. Searches were performed for data recorded between January 2005 and August 2015 in the Cochrane Library, MEDLINE, PubMed, and EMBASE. Objective response rates (ORR), conversion resection rates (CRR), R0 resection rates (R0R) and rate ratios (RR) were used to assess the strength of the association between different RAS status, MoAbs and conversion efficiency. Results In the conversion therapy, ORR and RR were associated with patients with wild type RAS and different MoAbs. Patients treated with MoAbs: anti-VEGFR or anti-EGFR drugs, resulted in higher ORR, (RR=1.53, 95% confidence interval [CI]: 1.27-1.84, P < 0.05). Furthermore, anti-EGFR regimens displayed higher ORR compared with anti-VEGFR regimens in CRLM patients, (RR=1.15, 95%CI: 1.04-1.26, P < 0.05). However, CRLM patients with mutant type RAS did not benefit from anti-EGFR therapy, (RR=0.91, 95%CI: 0.76-1.08, P<0.05) and wild type RAS patients displayed higher ORR with anti-EGFR therapy, (RR=1.56, 95%CI: 1.16-2.01, P <0.05). In addition, the patients achieved higher resection rates (RR=1.67, 95%CI: 1.00-2.81, P ≤ 0.05) and R0 resection (RR=1.85, 95%CI: 1.04-3.27, P < 0.05). Conclusion We noted that the addition of MoAbs (anti-EGFR or anti-VEGFR) to standard chemotherapy could improve conversion efficiency for patients with potentially resectable CRLM patients, and anti-EGFR therapies maybe more effective than anti-VEGFR therapies. RAS status is a potential predictive

  7. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer.

    PubMed

    Jabbarzadeh Kaboli, Parham; Rahmat, Asmah; Ismail, Patimah; Ling, King-Hwa

    2014-10-05

    Breast cancer is the most common cancer among women worldwide and novel therapeutic agents are needed to treat this disease. The plant-based alkaloid berberine has potential therapeutic applications for breast cancer, although a better understanding of the genes and cellular pathways regulated by this compound is needed to define the mechanism of its action in cancer treatment. In this review, the molecular targets of berberine in various cancers, particularly breast cancer, are discussed. Berberine was shown to be effective in inhibiting cell proliferation and promoting apoptosis in various cancerous cells. Some signaling pathways affected by berberine, including the MAP (mitogen-activated protein) kinase and Wnt/β-catenin pathways, are critical for reducing cellular migration and sensitivity to various growth factors. This review will discuss recent studies and consider the application of new prospective approaches based on microRNAs and other crucial regulators for use in future studies to define the action of berberine in cancer. The effects of berberine on cancer cell survival and proliferation are also outlined.

  8. 6SLN-lipo PGA specifically catches (coats) human influenza virus and synergizes neuraminidase-targeting drugs for human influenza therapeutic potential.

    PubMed

    Sriwilaijaroen, Nongluk; Suzuki, Katsuhiko; Takashita, Emi; Hiramatsu, Hiroaki; Kanie, Osamu; Suzuki, Yasuo

    2015-10-01

    The purpose of this study was to develop a new compound to overcome influenza epidemics and pandemics as well as drug resistance. We synthesized a new compound carrying: (i) Neu5Acα2-6Galβ1-4GlcNAc (6SLN) for targeting immutable haemagglutinins (HAs) unless switched from human-type receptor preference; (ii) an acyl chain (lipo) for locking the compound with the viral HA via hydrophobic interactions; and (iii) a flexible poly-α-L-glutamic acid (PGA) for enhancing the compound solubility and for coating the viral surface, precluding accessibility of the PGA-coated virus to the negatively charged sialic acid on the host cell surface. 6SLN-lipo PGA appears to subvert binding of pandemic H1 and seasonal H3 HAs to receptors, as assessed by using guinea pig erythrocytes, which is critical for virus entry into host cells for multiplication. It shows high potency with IC50 values in the range of 300-500 nM against multiplication of both influenza pandemic H1N1/2009 and seasonal H3N2/2004 viruses in cell culture. It acts in synergism with either of the two FDA-approved neuraminidase inhibitor (NAI) clinical drugs, zanamivir (Relenza(®)) and oseltamivir carboxylate (active form of Tamiflu(®)), and it has the potential to aid NAI drugs to achieve complete clearance of the virus from the culture. 6SLN-lipo PGA is a new potential candidate drug for influenza control and is an attractive candidate for use in combination with an NAI drug for minimized toxicity, delayed development of resistance, prevention and treatment with the potential for eradication of human influenza. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. CYP1B1 G199T Polymorphism Affects Prognosis of NSCLC Patients with the Potential to Be an Indicator and Target for Precise Drug Intervention

    PubMed Central

    Zhang, Shaofeng; Zhang, Qi; Zhao, Shilei

    2017-01-01

    CYP1B1 gene single nucleotide polymorphisms G119T, C432G, and A453G were tested among 164 NSCLC patients treated by Video-Assisted Thoracoscopic Surgery. After a follow-up period of 5 years, it was found that CYP1B1 G119T mutant genotypes were related to a higher risk of tumor recurrence and death after surgical resection. However, C432G and A453G genotypes had no influence on long-term prognosis of the study cohort. Thus, G199T alleles are supposed to be an auxiliary predictor for prognosis of NSCLC patients and a potential target for precise drug intervention, as well as a candidate for further anticancer drug research. PMID:28377924

  10. Malaria heat shock proteins: drug targets that chaperone other drug targets.

    PubMed

    Pesce, E-R; Cockburn, I L; Goble, J L; Stephens, L L; Blatch, G L

    2010-06-01

    Ongoing research into the chaperone systems of malaria parasites, and particularly of Plasmodium falciparum, suggests that heat shock proteins (Hsps) could potentially be an excellent class of drug targets. The P. falciparum genome encodes a vast range and large number of chaperones, including 43 Hsp40, six Hsp70, and three Hsp90 proteins (PfHsp40s, PfHsp70s and PfHsp90s), which are involved in a number of fundamental cellular processes including protein folding and assembly, protein translocation, signal transduction and the cellular stress response. Despite the fact that Hsps are relatively conserved across different species, PfHsps do exhibit a considerable number of unique structural and functional features. One PfHsp90 is thought to be sufficiently different to human Hsp90 to allow for selective targeting. PfHsp70s could potentially be used as drug targets in two ways: either by the specific inhibition of Hsp70s by small molecule modulators, as well as disruption of the interactions between Hsp70s and co-chaperones such as the Hsp70/Hsp90 organising protein (Hop) and Hsp40s. Of the many PfHsp40s present on the parasite, there are certain unique or essential members which are considered to have good potential as drug targets. This review critically evaluates the potential of Hsps as malaria drug targets, as well as the use of chaperones as aids in the heterologous expression of other potential malarial drug targets.

  11. Biocomputational strategies for microbial drug target identification.

    PubMed

    Sakharkar, Kishore R; Sakharkar, Meena K; Chow, Vincent T K

    2008-01-01

    The complete genome sequences of about 300 bacteria (mostly pathogenic) have been determined, and many more such projects are currently in progress. The detection of bacterial genes that are non-homologous to human genes and are essential for the survival of the pathogen represent a promising means of identifying novel drug targets. We present a subtractive genomics approach for the identification of putative drug targets in microbial genomes and demonstrate its execution using Pseudomonas aeruginosa as an example. The resultant analyses are in good agreement with the results of systematic gene deletion experiments. This strategy enables rapid potential drug target identification, thereby greatly facilitating the search for new antibiotics. It should be recognized that there are limitations to this computational approach for drug target identification. Distant gene relationships may be missed since the alignment scores are likely to have low statistical significance. In conclusion, the results of such a strategy underscore the utility of large genomic databases for in silico systematic drug target identification in the post-genomic era.

  12. Chemical signatures and new drug targets for gametocytocidal drug development

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Tanaka, Takeshi Q.; Magle, Crystal T.; Huang, Wenwei; Southall, Noel; Huang, Ruili; Dehdashti, Seameen J.; McKew, John C.; Williamson, Kim C.; Zheng, Wei

    2014-01-01

    Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 < 1 μM) from screening 5,215 known drugs and compounds. All these compounds were active against three strains of gametocytes with different drug sensitivities and geographical origins, 3D7, HB3 and Dd2. Cheminformatic analysis revealed chemical signatures for P. falciparum sexual and asexual stages indicative of druggability and suggesting potential targets. Torin 2, a top lead compound (IC50 = 8 nM against gametocytes in vitro), completely blocked oocyst formation in a mouse model of transmission. These results provide critical new leads and potential targets to expand the repertoire of malaria transmission-blocking reagents.

  13. Target Oriented Drugs against Leishmania

    DTIC Science & Technology

    1981-10-26

    leishmanlal excreted factor (EF) antibody in rabbit sera was developed. The assay, using Leishmania trop ica and Leishmania donovani promastigote EF...tropica LRC L137 L52 Leishmaniia donovani LRC L52 These strains were obtained from the WHO Leishmania Peference Centre collection maintained in the...FO 0 AD M FINAL REPORT0 (N TARGET ORIENTED DRUGS AGAINST LEISHMANIA I URI ZEHAVI, Ph.D. and JOSEPH EL-ON, Ph.D. Supported by U.S. ARMY MEDICAL

  14. Homodimeric enzymes as drug targets.

    PubMed

    Cardinale, D; Salo-Ahen, O M H; Ferrari, S; Ponterini, G; Cruciani, G; Carosati, E; Tochowicz, A M; Mangani, S; Wade, R C; Costi, M P

    2010-01-01

    Many enzymes and proteins are regulated by their quaternary structure and/or by their association in homo- and/or hetero-oligomer complexes. Thus, these protein-protein interactions can be good targets for blocking or modulating protein function therapeutically. The large number of oligomeric structures in the Protein Data Bank (http://www.rcsb.org/) reflects growing interest in proteins that function as multimeric complexes. In this review, we consider the particular case of homodimeric enzymes as drug targets. There is intense interest in drugs that inhibit dimerization of a functionally obligate homodimeric enzyme. Because amino acid conservation within enzyme interfaces is often low compared to conservation in active sites, it may be easier to achieve drugs that target protein interfaces selectively and specifically. Two main types of dimerization inhibitors have been developed: peptides or peptidomimetics based on sequences involved in protein-protein interactions, and small molecules that act at hot spots in protein-protein interfaces. Examples include inhibitors of HIV protease and HIV integrase. Studying the mechanisms of action and locating the binding sites of such inhibitors requires different techniques for different proteins. For some enzymes, ligand binding is only detectable in vivo or after unfolding of the complexes. Here, we review the structural features of dimeric enzymes and give examples of inhibition through interference in dimer stability. Several techniques for studying these complex phenomena will be presented.

  15. Drug Target Protein-Protein Interaction Networks: A Systematic Perspective.

    PubMed

    Feng, Yanghe; Wang, Qi; Wang, Tengjiao

    2017-01-01

    The identification and validation of drug targets are crucial in biomedical research and many studies have been conducted on analyzing drug target features for getting a better understanding on principles of their mechanisms. But most of them are based on either strong biological hypotheses or the chemical and physical properties of those targets separately. In this paper, we investigated three main ways to understand the functional biomolecules based on the topological features of drug targets. There are no significant differences between targets and common proteins in the protein-protein interactions network, indicating the drug targets are neither hub proteins which are dominant nor the bridge proteins. According to some special topological structures of the drug targets, there are significant differences between known targets and other proteins. Furthermore, the drug targets mainly belong to three typical communities based on their modularity. These topological features are helpful to understand how the drug targets work in the PPI network. Particularly, it is an alternative way to predict potential targets or extract nontargets to test a new drug target efficiently and economically. By this way, a drug target's homologue set containing 102 potential target proteins is predicted in the paper.

  16. Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis

    PubMed Central

    Li, Qing; Karim, Ahmad F.; Ding, Xuedong; Das, Biswajit; Dobrowolski, Curtis; Gibson, Richard M.; Quiñones-Mateu, Miguel E.; Karn, Jonathan; Rojas, Roxana E.

    2016-01-01

    Chemical regulation of macrophage function is one key strategy for developing host-directed adjuvant therapies for tuberculosis (TB). A critical step to develop these therapies is the identification and characterization of specific macrophage molecules and pathways with a high potential to serve as drug targets. Using a barcoded lentivirus-based pooled short-hairpin RNA (shRNA) library combined with next generation sequencing, we identified 205 silenced host genes highly enriched in mycobacteria-resistant macrophages. Twenty-one of these “hits” belonged to the oxidoreductase functional category. NAD(P)H:quinone oxidoreductase 1 (NQO1) was the top oxidoreductase “hit”. NQO1 expression was increased after mycobacterial infection, and NQO1 knockdown increased macrophage differentiation, NF-κB activation, and the secretion of pro-inflammatory cytokines TNF-α and IL-1β in response to infection. This suggests that mycobacteria hijacks NQO1 to down-regulate pro-inflammatory and anti-bacterial functions. The competitive inhibitor of NQO1 dicoumarol synergized with rifampin to promote intracellular killing of mycobacteria. Thus, NQO1 is a new host target in mycobacterial infection that could potentially be exploited to increase antibiotic efficacy in vivo. Our findings also suggest that pooled shRNA libraries could be valuable tools for genome-wide screening in the search for novel druggable host targets for adjunctive TB therapies. PMID:27297123

  17. Bacterial proteases, untapped antimicrobial drug targets.

    PubMed

    Culp, Elizabeth; Wright, Gerard D

    2017-04-01

    Bacterial proteases are an extensive collection of enzymes that have vital roles in cell viability, stress response and pathogenicity. Although their perturbation clearly offers the potential for antimicrobial drug development, both as traditional antibiotics and anti-virulence drugs, they are not yet the target of any clinically used therapeutics. Here we describe the potential for and recent progress in the development of compounds targeting bacterial proteases with a focus on AAA+ family proteolytic complexes and signal peptidases (SPs). Caseinolytic protease (ClpP) belongs to the AAA+ family of proteases, a group of multimeric barrel-shaped complexes whose activity is tightly regulated by associated AAA+ ATPases. The opportunity for chemical perturbation of these complexes is demonstrated by compounds targeting ClpP for inhibition, activation or perturbation of its associated ATPase. Meanwhile, SPs are also a proven antibiotic target. Responsible for the cleavage of targeting peptides during protein secretion, both type I and type II SPs have been successfully targeted by chemical inhibitors. As the threat of pan-antibiotic resistance continues to grow, these and other bacterial proteases offer an arsenal of novel antibiotic targets ripe for development.

  18. Transient kinetics of aminoglycoside phosphotransferase(3′)-IIIa reveals a potential drug target in the antibiotic resistance mechanism

    PubMed Central

    Lallemand, Perrine; Leban, Nadia; Kunzelmann, Simone; Chaloin, Laurent; Serpersu, Engin H.; Webb, Martin R.; Barman, Tom; Lionne, Corinne

    2012-01-01

    Aminoglycoside phosphotransferases are bacterial enzymes responsible for the inactivation of aminoglycoside antibiotics by O-phosphorylation. It is important to understand the mechanism of enzymes in order to find efficient drugs. Using rapid-mixing methods, we studied the transient kinetics of aminoglycoside phosphotransferase(3′)-IIIa. We show that an ADP-enzyme complex is the main steady state intermediate. This intermediate interacts strongly with kanamycin A to form an abortive complex that traps the enzyme in an inactive state. A good strategy to prevent the inactivation of aminoglycosides would be to develop uncompetitive inhibitors that interact with this key ADP-enzyme complex. PMID:23108046

  19. Transient kinetics of aminoglycoside phosphotransferase(3')-IIIa reveals a potential drug target in the antibiotic resistance mechanism.

    PubMed

    Lallemand, Perrine; Leban, Nadia; Kunzelmann, Simone; Chaloin, Laurent; Serpersu, Engin H; Webb, Martin R; Barman, Tom; Lionne, Corinne

    2012-11-30

    Aminoglycoside phosphotransferases are bacterial enzymes responsible for the inactivation of aminoglycoside antibiotics by O-phosphorylation. It is important to understand the mechanism of enzymes in order to find efficient drugs. Using rapid-mixing methods, we studied the transient kinetics of aminoglycoside phosphotransferase(3')-IIIa. We show that an ADP-enzyme complex is the main steady state intermediate. This intermediate interacts strongly with kanamycin A to form an abortive complex that traps the enzyme in an inactive state. A good strategy to prevent the inactivation of aminoglycosides would be to develop uncompetitive inhibitors that interact with this key ADP-enzyme complex.

  20. Antiarrhythmic potential of drugs targeting the cardiac ryanodine receptor Ca2+ release channel: case study of dantrolene.

    PubMed

    Acsai, Karoly; Nagy, Norbert; Marton, Zoltan; Oravecz, Kinga; Varro, Andras

    2015-01-01

    Driven by the limitations of the traditional antiarrhythmic pharmacology, current antiarrhythmic research is trying to identify new avenues for the development of specific and safe antiarrhythmic drugs. One of the most promising approaches in this field is the amelioration of the abnormal events in cellular Ca(2+) handling originating from the dysfunction of ryanodine receptor Ca(2+) release complex (RyR), which is an inevitable key factor in the pathology of myocardial dysfunction, remodeling and arrhythmogenesis. Accordingly, both in experimental and clinical situations, inhibition of abnormal activity of RyR, regardless of being the primary cause or a consequence during the pathogenesis appears to exert beneficial effect on disease outcome, including a marked antiarrhythmic defense. Considerable amount of our knowledge in this field originates from studies using dantrolene, a human drug with RyR stabilizing effect. Our review summarizes the cardiovascular pharmacology of dantrolene and the results of its use in experimental models of cardiac diseases, which emphasize a promising perspective for the possible antiarrhythmic application of RyR inhibition in the future.

  1. β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: stability, target-activated release and cytotoxicity.

    PubMed

    Shapira, Alina; Davidson, Irit; Avni, Noa; Assaraf, Yehuda G; Livney, Yoav D

    2012-02-01

    We studied a potential drug delivery system comprising the hydrophobic anticancer drug paclitaxel entrapped within β-casein (β-CN) nanoparticles and its cytotoxicity to human gastric carcinoma cells. Paclitaxel was entrapped by stirring its dimethyl sulfoxide (DMSO) solution into PBS containing β-CN. Cryo-TEM analysis revealed drug nanocrystals, the growth of which was blocked by β-CN. Entrapment efficiency was nearly 100%, and the nanovehicles formed were colloidally stable. Following encapsulation and simulated digestion with pepsin (2 hours at pH=2, 37 °C), paclitaxel retained its cytotoxic activity to human N-87 gastric cancer cells; the IC(50) value (32.5 ± 6.2 nM) was similar to that of non-encapsulated paclitaxel (25.4 ± 2.6 nM). Without prior simulated gastric digestion, β-CN-paclitaxel nanoparticles were non-cytotoxic, suggesting the lack of untoward toxicity to bucal and esophageal epithelia. We conclude that β-CN shows promise to be useful for target-activated oral delivery of hydrophobic chemotherapeutics in the treatment of gastric carcinoma, one of the leading causes of cancer mortality worldwide. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. A Systems-Pharmacology Analysis of Herbal Medicines Used in Health Improvement Treatment: Predicting Potential New Drugs and Targets

    PubMed Central

    Liu, Jianling; Pei, Mengjie; Zheng, Chunli; Li, Yan; Wang, Yonghua; Lu, Aiping; Yang, Ling

    2013-01-01

    For thousands of years, tonic herbs have been successfully used all around the world to improve health, energy, and vitality. However, their underlying mechanisms of action in molecular/systems levels are still a mystery. In this work, two sets of tonic herbs, so called Qi-enriching herbs (QEH) and Blood-tonifying herbs (BTH) in TCM, were selected to elucidate why they can restore proper balance and harmony inside body, organ and energy system. Firstly, a pattern recognition model based on artificial neural network and discriminant analysis for assessing the molecular difference between QEH and BTH was developed. It is indicated that QEH compounds have high lipophilicity while BTH compounds possess high chemical reactivity. Secondly, a systematic investigation integrating ADME (absorption, distribution, metabolism, and excretion) prediction, target fishing and network analysis was performed and validated on these herbs to obtain the compound-target associations for reconstructing the biologically-meaningful networks. The results suggest QEH enhance physical strength, immune system and normal well-being, acting as adjuvant therapy for chronic disorders while BTH stimulate hematopoiesis function in body. As an emerging approach, the systems pharmacology model might facilitate to understand the mechanisms of action of the tonic herbs, which brings about new development for complementary and alternative medicine. PMID:24369484

  3. UniDrug-Target: A Computational Tool to Identify Unique Drug Targets in Pathogenic Bacteria

    PubMed Central

    Chanumolu, Sree Krishna; Rout, Chittaranjan; Chauhan, Rajinder S.

    2012-01-01

    Background Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. Methods A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein's critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. Results The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. Conclusions

  4. DDTRP: Database of Drug Targets for Resistant Pathogens

    PubMed Central

    Sundaramurthi, Jagadish Chandrabose; Ramanandan, Prabhakaran; Brindha, Sridharan; Subhasree, Chelladurai Ramarathnam; Prasad, Abhimanyu; Kumaraswami, Vasanthapuram; Hanna, Luke Elizabeth

    2011-01-01

    Emergence of drug resistance is a major threat to public health. Many pathogens have developed resistance to most of the existing antibiotics, and multidrug-resistant and extensively drug resistant strains are extremely difficult to treat. This has resulted in an urgent need for novel drugs. We describe a database called ‘Database of Drug Targets for Resistant Pathogens’ (DDTRP). The database contains information on drugs with reported resistance, their respective targets, metabolic pathways involving these targets, and a list of potential alternate targets for seven pathogens. The database can be accessed freely at http://bmi.icmr.org.in/DDTRP. PMID:21938213

  5. Sphingosines Derived from Marine Sponge as Potential Multi-Target Drug Related to Disorders in Cancer Development

    PubMed Central

    Biegelmeyer, Renata; Schröder, Rafael; Rambo, Douglas F.; Dresch, Roger R.; Carraro, João L. F.; Mothes, Beatriz; Moreira, José Cláudio F.; da Frota Junior, Mário L. C.; Henriques, Amélia T.

    2015-01-01

    Haliclona tubifera, marine sponge species abundant in Brazilian coastline, presents only a few papers published in the literature. Recently, we have reported the isolation of two modified C18 sphingoid bases: (2R,3R,6R,7Z)-2-aminooctadec-7-ene-1,3,6-triol and and (2R,3R,6R)-2-aminooctadec-1,3,6-triol. In order to continue our research, in this work aimed at the biological investigation of fractions that led to the isolation of these compounds. We evaluated the cytotoxic effect of marine sponge H. tubifera fractions in glioma (U87) and neuroblastoma (SH-SY5Y) human cell lines. In addition, considering the link between cancer, imbalance of reactive oxygen species and coagulation disorders, we also investigated the in vitro effects on blood coagulation and their redox properties. We showed that the ethyl acetate (EtOAc) fraction, rich in sphingoid bases, had important cytotoxic effects in both cancer cell lines with an IC50 < 15 μg/mL and also can inhibit the production of peroxyl radicals. Interestingly, this fraction increased the recalcification time of human blood, showing anticoagulant properties. The present study indicates the sphingosines fraction as a promising source of chemical prototypes, especially multifunctional drugs in cancer therapy. PMID:26308014

  6. Homology Modeling of NAD+-Dependent DNA Ligase of the Wolbachia Endosymbiont of Brugia malayi and Its Drug Target Potential Using Dispiro-Cycloalkanones

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra K.; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran

    2015-01-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD+-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD+-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD+ cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates. PMID:25845868

  7. Homology modeling of NAD+-dependent DNA ligase of the Wolbachia endosymbiont of Brugia malayi and its drug target potential using dispiro-cycloalkanones.

    PubMed

    Shrivastava, Nidhi; Nag, Jeetendra K; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran; Misra-Bhattacharya, Shailja

    2015-07-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD(+)-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates.

  8. The C terminus of HspA--a potential target for native Ni(II) and Bi(III) anti-ulcer drugs.

    PubMed

    Rowinska-Zyrek, Magdalena; Witkowska, Danuta; Valensin, Daniela; Kamysz, Wojciech; Kozlowski, Henryk

    2010-07-07

    HspA, a protein crucial for nickel homeostasis in Helicobacter pylori (H. pylori), has a unique histidine- and cysteine-rich domain at the C terminus. In this work, we compared the coordination of nickel (the natural co-factor) and bismuth (inhibitor) to this domain (Ac-ACCHDHKKH-NH(2)) and to a reference peptide (Ac-CHCH-NH(2)). Potentiometric, CD, UV-Vis spectroscopic and NMR methods have shown that bismuth binds incomparably stronger than nickel; the same data shows the impact of histidines on such a binding. Our results are in good agreement with earlier biological data and suggest that HspA can be a potential target of the bismuth anti-ulcer drug against H. pylori.

  9. Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections

    PubMed Central

    Haag, Nichole; Velk, Kimberly; McCune, Tyler; Wu, Chun

    2015-01-01

    Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5. PMID:26388980

  10. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach.

    PubMed

    Ryan, Ali; Polycarpou, Elena; Lack, Nathan A; Evangelopoulos, Dimitrios; Sieg, Christian; Halman, Alice; Bhakta, Sanjib; Eleftheriadou, Olga; McHugh, Timothy D; Keany, Sebastian; Lowe, Edward D; Ballet, Romain; Abuhammad, Areej; Jacobs, William R; Ciulli, Alessio; Sim, Edith

    2017-07-01

    With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc. © 2017 The British Pharmacological Society.

  11. The Hippo signaling pathway: a potential therapeutic target is reversed by a Chinese patent drug in rats with diabetic retinopathy.

    PubMed

    Hao, Gai-Mei; Lv, Tian-Tian; Wu, Yan; Wang, Hong-Liang; Xing, Wei; Wang, Yong; Li, Chun; Zhang, Zi-Jian; Wang, Zheng-Lin; Wang, Wei; Han, Jing

    2017-04-04

    The Hippo signaling pathway is reported to be involved in angiogenesis, but the roles of the Hippo pathway in diabetic retinopathy have not been addressed. Fufang Xueshuantong Capsule has been used to treat diabetic retinopathy in China; however, the effect of Fufang Xueshuantong Capsule on the Hippo pathway has not been investigated. In this study, diabetes was induced in Sprague-Dawley rats with intraperitoneal injection of streptozotocin. Twenty weeks later, Fufang Xueshuantong Capsule was administered for 12 weeks. When the administration ended, the eyes were isolated for western blot and immunohistochemistry analyses. The levels of P- mammalian sterile 20-like (MST), large tumor suppressor homolog (Lats), P- yes-associated protein (YAP), transcriptional co-activator with PDZ binding motif (TAZ) and TEA domain family members (TEAD) were measured. Diabetic rats had a decreased P-MST level in the inner plexiform layer and reduced expression of P-YAP in the photoreceptor layers of their eyes. In addition, diabetic rats displayed remarkable increases in Lats, TAZ and TEAD in their retinas. Furthermore, Fufang Xueshuantong Capsule restored the changes in the Hippo pathway. The Hippo signaling pathway is important for the progression of diabetic retinopathy and will hopefully be a targeted therapeutic approach for the prevention of diabetic retinopathy.

  12. Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery.

    PubMed

    Goswami, Lalit N; Houston, Zachary H; Sarma, Saurav J; Jalisatgi, Satish S; Hawthorne, M Frederick

    2013-02-21

    Herein we describe the sequential synthesis of a variety of azide-alkyne click chemistry-compatible heterobifunctional oligo(ethylene glycol) (OEG) linkers for bioconjugation chemistry applications. Synthesis of these bioorthogonal linkers was accomplished through desymmetrization of OEGs by conversion of one of the hydroxyl groups to either an alkyne or azido functionality. The remaining distal hydroxyl group on the OEGs was activated by either a 4-nitrophenyl carbonate or a mesylate (-OMs) group. The -OMs functional group served as a useful precursor to form a variety of heterobifunctionalized OEG linkers containing different highly reactive end groups, e.g., iodo, -NH(2), -SH and maleimido, that were orthogonal to the alkyne or azido functional group. Also, the alkyne- and azide-terminated OEGs are useful for generating larger discrete poly(ethylene glycol) (PEG) linkers (e.g., PEG(16) and PEG(24)) by employing a Cu(I)-catalyzed 1,3-dipolar cycloaddition click reaction. The utility of these clickable heterobifunctional OEGs in bioconjugation chemistry was demonstrated by attachment of the integrin (α(v)β(3)) receptor targeting peptide, cyclo-(Arg-Gly-Asp-D-Phe-Lys) (cRGfKD) and to the fluorescent probe sulfo-rhodamine B. The synthetic methodology presented herein is suitable for the large scale production of several novel heterobifunctionalized OEGs from readily available and inexpensive starting materials.

  13. Mirvetuximab Soravtansine (IMGN853), a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, Potentiates the Activity of Standard of Care Therapeutics in Ovarian Cancer Models.

    PubMed

    Ponte, Jose F; Ab, Olga; Lanieri, Leanne; Lee, Jenny; Coccia, Jennifer; Bartle, Laura M; Themeles, Marian; Zhou, Yinghui; Pinkas, Jan; Ruiz-Soto, Rodrigo

    2016-12-01

    Elevated folate receptor alpha (FRα) expression is characteristic of epithelial ovarian cancer (EOC), thus establishing this receptor as a candidate target for the development of novel therapeutics to treat this disease. Mirvetuximab soravtansine (IMGN853) is an antibody-drug conjugate (ADC) that targets FRα for tumor-directed delivery of the maytansinoid DM4, a potent agent that induces mitotic arrest by suppressing microtubule dynamics. Here, combinations of IMGN853 with approved therapeutics were evaluated in preclinical models of EOC. Combinations of IMGN853 with carboplatin or doxorubicin resulted in synergistic antiproliferative effects in the IGROV-1 ovarian cancer cell line in vitro. IMGN853 potentiated the cytotoxic activity of carboplatin via growth arrest and augmented DNA damage; cell cycle perturbations were also observed in cells treated with the IMGN853/doxorubicin combination. These benefits translated into improved antitumor activity in patient-derived xenograft models in vivo in both the platinum-sensitive (IMGN853/carboplatin) and platinum-resistant (IMGN853/pegylated liposomal doxorubicin) settings. IMGN853 co-treatment also improved the in vivo efficacy of bevacizumab in platinum-resistant EOC models, with combination regimens causing significant regressions and complete responses in the majority of tumor-bearing mice. Histological analysis of OV-90 ovarian xenograft tumors revealed that concurrent administration of IMGN853 and bevacizumab caused rapid disruption of tumor microvasculature and extensive necrosis, underscoring the superior bioactivity profile of the combination regimen. Overall, these demonstrations of combinatorial benefit conferred by the addition of the first FRα-targeting ADC to established therapies provide a compelling framework for the potential application of IMGN853 in the treatment of patients with advanced ovarian cancer.

  14. Drug-targeting methodologies with applications: A review

    PubMed Central

    Kleinstreuer, Clement; Feng, Yu; Childress, Emily

    2014-01-01

    Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system. PMID:25516850

  15. Neuroinflammation: a potential therapeutic target.

    PubMed

    Craft, Jeffrey M; Watterson, D Martin; Van Eldik, Linda J

    2005-10-01

    The increased appreciation of the importance of glial cell-propagated inflammation (termed 'neuroinflammation') in the progression of pathophysiology for diverse neurodegenerative diseases, has heightened interest in the rapid discovery of neuroinflammation-targeted therapeutics. Efforts include searches among existing drugs approved for other uses, as well as development of novel synthetic compounds that selectively downregulate neuroinflammatory responses. The use of existing drugs to target neuroinflammation has largely met with failure due to lack of efficacy or untoward side effects. However, the de novo development of new classes of therapeutics based on targeting selective aspects of glia activation pathways and glia-mediated pathophysiologies, versus targeting pathways of quantitative importance in non-CNS inflammatory responses, is yielding promising results in preclinical animal models. The authors briefly review selected clinical and preclinical data that reflect the prevailing approaches targeting neuroinflammation as a pathophysiological process contributing to onset or progression of neurodegenerative diseases. The authors conclude with opinions based on recent experimental proofs of concept using preclinical animal models of pathophysiology. The focus is on Alzheimer's disease, but the concepts are transferrable to other neurodegenerative disorders with an inflammatory component.

  16. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the

  17. Targets for anti-metastatic drug development.

    PubMed

    Stock, Anna-Maria; Troost, Gabriele; Niggemann, Bernd; Zänker, Kurt S; Entschladen, Frank

    2013-01-01

    With a constant focus on the primary tumor, the current approaches in drug development in oncology yield dismal results. However over 90 percent of cancer deaths today are due to metastasis formation and yet there is no anti-metastatic drug on the market. Tumor cell migration is the essential prerequisite for invasion and metastasis formation. It is regulated by signal substances in terms of the grade of activity and in terms of direction (chemotaxis). The latter is important for the organotropism, the localization of metastasis in certain organs. Ligands to G protein-coupled receptors, mainly chemokines and neurotransmitters, as well as ligands to receptor kinases, mainly cytokines and growth factors, form the most important group of such regulators. We provide an overview of currently available agonists and antagonists to these receptors, which have a potential as anti-metastatic targets. Moreover we provide with the example of beta-blockers, how established drugs in other indications are possibly effective and can be co-opted as such anti-metastatics. The increasing knowledge of such regulators opens new opportunities to target cancer spreading and may put forth the development of antimetastatic drugs for oncological therapy.

  18. Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter.

    PubMed

    Gilbert, Ian H

    2014-01-01

    Target-based approaches for human African trypanosomiasis (HAT) and related parasites can be a valuable route for drug discovery for these diseases. However, care needs to be taken in selection of both the actual drug target and the chemical matter that is developed. In this article, potential criteria to aid target selection are described. Then the physiochemical properties of typical oral drugs are discussed and compared to those of known anti-parasitics.

  19. Stapled peptides for intracellular drug targets.

    PubMed

    Verdine, Gregory L; Hilinski, Gerard J

    2012-01-01

    Proteins that engage in intracellular interactions with other proteins are widely considered among the most biologically appealing yet chemically intractable targets for drug discovery. The critical interaction surfaces of these proteins typically lack the deep hydrophobic involutions that enable potent, selective targeting by small organic molecules, and their localization within the cell puts them beyond the reach of protein therapeutics. Considerable interest has therefore arisen in next-generation targeting molecules that combine the broad target recognition capabilities of protein therapeutics with the robust cell-penetrating ability of small molecules. One type that has shown promise in early-stage studies is hydrocarbon-stapled α-helical peptides, a novel class of synthetic miniproteins locked into their bioactive α-helical fold through the site-specific introduction of a chemical brace, an all-hydrocarbon staple. Stapling can greatly improve the pharmacologic performance of peptides, increasing their target affinity, proteolytic resistance, and serum half-life while conferring on them high levels of cell penetration through endocytic vesicle trafficking. Here, we discuss considerations crucial to the successful design and evaluation of potent stapled peptide interactions, our intention being to facilitate the broad application of this technology to intractable targets of both basic biologic interest and potential therapeutic value.

  20. Target based drug design - a reality in virtual sphere.

    PubMed

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  1. Deep-Learning-Based Drug-Target Interaction Prediction.

    PubMed

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  2. Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF, a potential drug target

    PubMed Central

    Narayanasamy, Prabagaran; Eoh, Hyungjin; Brennan, Patrick J.; Crick, Dean C.

    2010-01-01

    SUMMARY Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Since there is no ortholog of IspF in human cells IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening. PMID:20189102

  3. Yeast genetic interaction screen of human genes associated with amyotrophic lateral sclerosis: identification of MAP2K5 kinase as a potential drug target.

    PubMed

    Jo, Myungjin; Chung, Ah Young; Yachie, Nozomu; Seo, Minchul; Jeon, Hyejin; Nam, Youngpyo; Seo, Yeojin; Kim, Eunmi; Zhong, Quan; Vidal, Marc; Park, Hae Chul; Roth, Frederick P; Suk, Kyoungho

    2017-09-01

    To understand disease mechanisms, a large-scale analysis of human-yeast genetic interactions was performed. Of 1305 human disease genes assayed, 20 genes exhibited strong toxicity in yeast. Human-yeast genetic interactions were identified by en masse transformation of the human disease genes into a pool of 4653 homozygous diploid yeast deletion mutants with unique barcode sequences, followed by multiplexed barcode sequencing to identify yeast toxicity modifiers. Subsequent network analyses focusing on amyotrophic lateral sclerosis (ALS)-associated genes, such as optineurin (OPTN) and angiogenin (ANG), showed that the human orthologs of the yeast toxicity modifiers of these ALS genes are enriched for several biological processes, such as cell death, lipid metabolism, and molecular transport. When yeast genetic interaction partners held in common between human OPTN and ANG were validated in mammalian cells and zebrafish, MAP2K5 kinase emerged as a potential drug target for ALS therapy. The toxicity modifiers identified in this study may deepen our understanding of the pathogenic mechanisms of ALS and other devastating diseases. © 2017 Jo et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Drug target identification in protozoan parasites

    PubMed Central

    Müller, Joachim; Hemphill, Andrew

    2016-01-01

    Introduction Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Areas covered Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Expert opinion Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses. PMID:27238605

  5. Drug target identification in protozoan parasites.

    PubMed

    Müller, Joachim; Hemphill, Andrew

    2016-08-01

    Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.

  6. A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case

    PubMed Central

    2015-01-01

    Background Computational pharmacology can uniquely address some issues in the process of drug development by providing a macroscopic view and a deeper understanding of drug action. Specifically, network-assisted approach is promising for the inference of drug repurposing. However, the drug-target associations coming from different sources and various assays have much noise, leading to an inflation of the inference errors. To reduce the inference errors, it is necessary and critical to create a comprehensive and weighted data set of drug-target associations. Results In this study, we created a weighted and integrated drug-target interactome (WinDTome) to provide a comprehensive resource of drug-target associations for computational pharmacology. We first collected drug-target interactions from six commonly used drug-target centered data sources including DrugBank, KEGG, TTD, MATADOR, PDSP Ki Database, and BindingDB. Then, we employed the record linkage method to normalize drugs and targets to the unique identifiers by utilizing the public data sources including PubChem, Entrez Gene, and UniProt. To assess the reliability of the drug-target associations, we assigned two scores (Score_S and Score_R) to each drug-target association based on their data sources and publication references. Consequently, the WinDTome contains 546,196 drug-target associations among 303,018 compounds and 4,113 genes. To assess the application of the WinDTome, we designed a network-based approach for drug repurposing using mental disorder schizophrenia (SCZ) as a case. Starting from 41 known SCZ drugs and their targets, we inferred a total of 264 potential SCZ drugs through the associations of drug-target with Score_S higher than two in WinDTome and human protein-protein interactions. Among the 264 SCZ-related drugs, 39 drugs have been investigated in clinical trials for SCZ treatment and 74 drugs for the treatment of other mental disorders, respectively. Compared with the results using other

  7. Automated High Throughput Drug Target Crystallography

    SciTech Connect

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  8. Assessing drug target association using semantic linked data.

    PubMed

    Chen, Bin; Ding, Ying; Wild, David J

    2012-01-01

    The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug target pairs (for example drugs which change gene expression level) are also identified but not as strongly as direct pairs. We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured their similarity using a [Formula: see text] score matrix. The similarity network indicates that drugs from the same disease area tend to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web service is freely available at: http://chem2bio2rdf.org/slap.

  9. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  10. An eigenvalue transformation technique for predicting drug-target interaction.

    PubMed

    Kuang, Qifan; Xu, Xin; Li, Rong; Dong, Yongcheng; Li, Yan; Huang, Ziyan; Li, Yizhou; Li, Menglong

    2015-09-09

    The prediction of drug-target interactions is a key step in the drug discovery process, which serves to identify new drugs or novel targets for existing drugs. However, experimental methods for predicting drug-target interactions are expensive and time-consuming. Therefore, the in silico prediction of drug-target interactions has recently attracted increasing attention. In this study, we propose an eigenvalue transformation technique and apply this technique to two representative algorithms, the Regularized Least Squares classifier (RLS) and the semi-supervised link prediction classifier (SLP), that have been used to predict drug-target interaction. The results of computational experiments with these techniques show that algorithms including eigenvalue transformation achieved better performance on drug-target interaction prediction than did the original algorithms. These findings show that eigenvalue transformation is an efficient technique for improving the performance of methods for predicting drug-target interactions. We further show that, in theory, eigenvalue transformation can be viewed as a feature transformation on the kernel matrix. Accordingly, although we only apply this technique to two algorithms in the current study, eigenvalue transformation also has the potential to be applied to other algorithms based on kernels.

  11. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.

    PubMed

    Islam, Md Mahmudul; Hameed, H M Adnan; Mugweru, Julius; Chhotaray, Chiranjibi; Wang, Changwei; Tan, Yaoju; Liu, Jianxiong; Li, Xinjie; Tan, Shouyong; Ojima, Iwao; Yew, Wing Wai; Nuermberger, Eric; Lamichhane, Gyanu; Zhang, Tianyu

    2017-01-20

    Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  12. Therapeutic drug monitoring of targeted anticancer therapy.

    PubMed

    Decosterd, Laurent A; Widmer, Nicolas; Zaman, Khalil; Cardoso, Evelina; Buclin, Thierry; Csajka, Chantal

    2015-01-01

    New oral targeted anticancer therapies are revolutionizing cancer treatment by transforming previously deadly malignancies into chronically manageable conditions. Nevertheless, drug resistance, persistence of cancer stem cells, and adverse drug effects still limit their ability to stabilize or cure malignant diseases in the long term. Response to targeted anticancer therapy is influenced by tumor genetics and by variability in drug concentrations. However, despite a significant inter-patient pharmacokinetic variability, targeted anticancer drugs are essentially licensed at fixed doses. Their therapeutic use could however be optimized by individualization of their dosage, based on blood concentration measurements via the therapeutic drug monitoring (TDM). TDM can increase the probability of therapeutic responses to targeted anticancer therapies, and would help minimize the risk of major adverse reactions.

  13. Targeting Membrane Lipid a Potential Cancer Cure?

    PubMed

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Wai-Leng; Chuah, Lay-Hong; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing

    2017-01-01

    Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy.

  14. Tumor targeting using liposomal antineoplastic drugs

    PubMed Central

    Huwyler, Jörg; Drewe, Jürgen; Krähenbühl, Stephan

    2008-01-01

    During the last years, liposomes (microparticulate phospholipid vesicles) have been used with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumor drugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research. PMID:18488413

  15. Novel drugs targeting sphingolipid metabolism.

    PubMed

    Bhabak, Krishna P; Arenz, Christoph

    2013-01-01

    While the evidence for an involvement of sphingolipids (SLs) in a variety of diseases is rapidly increasing, the development of sphingolipid-related drugs is still in its infancy. In fact, the recently FDA-approved fingolimod or FTY-720 (see chapter by J. Pfeilschifter for more information) is the first drug on the market to interfere with sphingolipid signaling. The reasons for this lagging are manifold and within this chapter we try to name some of them. Ceramide is in the center of sphingolipid metabolism. We describe the most important and most recent inhibitors for enzymes controlling cellular ceramide levels.

  16. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    PubMed Central

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates. PMID:25960144

  17. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-05-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.

  18. Potentiating antilymphoma efficacy of chemotherapy using a liposome for integration of CD20 targeting, ultra-violet irradiation polymerizing, and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Li, Huafei; Zhao, He; Zhang, Weiwei; Chen, Yan; Yue, Zhanyi; Lu, Qiong; Wan, Yuxiang; Tian, Xiaoyu; Deng, Anmei

    2014-08-01

    Unlike most malignancies, chemotherapy but not surgery plays the most important role in treating non-Hodgkin lymphoma (NHL). Currently, liposomes have been widely used to encapsulate chemotherapeutic drugs in treating solid tumors. However, higher in vivo stability owns a much more important position for excellent antitumor efficacy in treating hematological malignancies. In this study, we finely fabricated a rituximab Fab fragment-decorated liposome based on 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), which can form intermolecular cross-linking through the diacetylenic group by ultra-violet (UV) irradiation. Our experimental results demonstrated that after the UV irradiation, the liposomes exhibit better serum stability and slower drug release with a decreased mean diameter of approximately 285 nm. The cellular uptake of adriamycin (ADR) by this Fab-navigated liposome was about four times of free drugs. Cytotoxicity assays against CD20+ lymphoma cells showed that the half maximal (50%) inhibitory concentration (IC50) of ADR-loaded immunoliposome was only one fourth of free ADR at the same condition. In vivo studies were evaluated in lymphoma-bearing SCID mice. With the high serum stability, finely regulated structure, active targeting strategy via antigen-antibody reaction and passive targeting strategy via enhanced permeability and retention (EPR) effect, our liposome exhibits durable and potent antitumor activities both in the disseminated and localized human NHL xeno-transplant models.

  19. Targeted drugs and nanomedicine: present and future.

    PubMed

    Debbage, Paul

    2009-01-01

    Packaging small-molecule drugs into nanoparticles improves their bio-availability, bio-compatibility and safety profiles. Multifunctional particles carrying large drug payloads for targeted transport, immune evasion and favourable drug release kinetics at the target site, require a certain minimum size usually 30-300 nm diameter, so are nanoparticles. Targeting particles to a disease site can signal the presence of the disease site, block a function there, or deliver a drug to it. Targeted nanocarriers must navigate through blood-tissue barriers, varying in strength between organs and highest in the brain, to reach target cells. They must enter target cells to contact cytoplasmic targets; specific endocytotic and transcytotic transport mechanisms can be used as trojan horses to ferry nanoparticles across cellular barriers. Specific ligands to cell surface receptors, antibodies and antibody fragments, and aptamers can all access such transport mechanisms to ferry nanoparticles to their targets. The pharmacokinetics and pharmacodynamics of the targeted drug-bearing particle depend critically on particle size, chemistry, surface charge and other parameters. Particle types for targeting include liposomes, polymer and protein nanoparticles, dendrimers, carbon-based nanoparticles e.g. fullerenes, and others. Immunotargeting by use of monoclonal antibodies, chimeric antibodies and humanized antibodies has now reached the stage of clinical application. High-quality targeting groups are emerging: antibody engineering enables generation of human/like antibody (fragments) and facilitates the search for clinically relevant biomarkers; conjugation of nanocarriers to specific ligands and to aptamers enables specific targeting with improved clinical efficacy. Future developments depend on identification of clinically relevant targets and on raising targeting efficiency of the multifunctional nanocarriers.

  20. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting

    PubMed Central

    Li, Binbin; Li, Qinghua; Mo, Jingxin; Dai, Honglian

    2017-01-01

    Cancer stem cells (CSCs) have been reported to play critical roles in tumor initiation, propagation, and regeneration of cancer. Nano-size vehicles are employed to deliver drugs to target the CSCs for cancer therapy. Polymeric nanoparticles have been considered as the most efficient vehicles for drug delivery due to their excellent pharmacokinetic properties. The CSCs specific antibodies or ligands can be conjugated onto the surface or interior of nanoparticles to successfully target and finally eliminate CSCs. In this review, we focus on the approaches of polymeric nanoparticles design for loading drug, and their potential application for CSCs targeting in cancer therapy. PMID:28261093

  1. Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery

    PubMed Central

    Scott, Latanya. M.; Lawrence, Harshani. R.; Sebti, Saïd. M.; Lawrence, Nicholas. J.; Wu, Jie.

    2010-01-01

    Protein tyrosine phosphatases (PTPs) are a diverse family of enzymes encoded by 107 genes in the human genome. Together with protein tyrosine kinases (PTKs), PTPs regulate various cellular activities essential for the initiation and maintenance of malignant phenotypes. While PTK inhibitors are now used routinely for cancer treatment, the PTP inhibitor development field is still in the discovery phase. In this article, the suitability of targeting PTPs for novel anticancer drug discovery is discussed. Examples are presented for PTPs that have been targeted for anticancer drug discovery as well as potential new PTP targets for novel anticancer drug discovery. PMID:20337577

  2. Predicting new molecular targets for known drugs

    PubMed Central

    Keiser, Michael J.; Setola, Vincent; Irwin, John J.; Laggner, Christian; Abbas, Atheir; Hufeisen, Sandra J.; Jensen, Niels H.; Kuijer, Michael B.; Matos, Roberto C.; Tran, Thuy B.; Whaley, Ryan; Glennon, Richard A.; Hert, Jérôme; Thomas, Kelan L.H.; Edwards, Douglas D.; Shoichet, Brian K.; Roth, Bryan L.

    2009-01-01

    Whereas drugs are intended to be selective, at least some bind to several physiologic targets, explaining both side effects and efficacy. As many drug-target combinations exist, it would be useful to explore possible interactions computationally. Here, we compared 3,665 FDA-approved and investigational drugs against hundreds of targets, defining each target by its ligands. Chemical similarities between drugs and ligand sets predicted thousands of unanticipated associations. Thirty were tested experimentally, including the antagonism of the β1 receptor by the transporter inhibitor Prozac, the inhibition of the 5-HT transporter by the ion channel drug Vadilex, and antagonism of the histamine H4 receptor by the enzyme inhibitor Rescriptor. Overall, 23 new drug-target associations were confirmed, five of which were potent (< 100 nM). The physiological relevance of one such, the drug DMT on serotonergic receptors, was confirmed in a knock-out mouse. The chemical similarity approach is systematic and comprehensive, and may suggest side-effects and new indications for many drugs. PMID:19881490

  3. Targeted drug-carrying bacteriophages as antibacterial nanomedicines.

    PubMed

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-06-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of approximately 20,000 compared to the free drug.

  4. Tumor Targeting Synergistic Drug Delivery by Self-Assembled Hybrid Nanovesicles to Overcome Drug Resistance.

    PubMed

    Gong, Meng-Qing; Wu, Cong; He, Xiao-Yan; Zong, Jing-Yi; Wu, Jin-Long; Zhuo, Ren-Xi; Cheng, Si-Xue

    2017-01-01

    To overcome multi-drug resistance (MDR) in tumor chemotherapy, a polymer/inorganic hybrid drug delivery platform with tumor targeting property and enhanced cell uptake efficiency was developed. To evaluate the applicability of our delivery platform for the delivery of different drug resistance inhibitors, two kinds of dual-drug pairs (doxorubicin/buthionine sulfoximine and doxorubicin/tariquidar, respectively) were loaded in heparin-biotin/heparin/protamine sulfate/calcium carbonate nanovesicles to realize simultaneous delivery of an anticancer drug and a drug resistance inhibitor into drug-resistant tumor cells. Prepared by self-assembly, the drug loaded hybrid nanovesicles with a mean size less than 210 nm and a negative zeta potential exhibit good stability in serum contained aqueous media. The in vitro cytotoxicity evaluation indicates that hybrid nanovesicles with tumor targeting biotin moieties have an enhanced tumor cell inhibitory effect. In addition, dual-drug loaded hybrid nanovesicles exhibit significantly stronger cell growth inhibition as compared with doxorubicin (DOX) mono-drug loaded nanovesicles due to the reduced intracellular glutathione (GSH) content by buthionine sulfoximine (BSO) or the P-glycoprotein (P-gp) inhibition by tariquidar (TQR). The tumor targeting nanovesicles prepared in this study, which can simultaneously deliver multiple drugs and effectively reverse drug resistance, have promising applications in drug delivery for tumor treatments. The polymer/inorganic hybrid drug delivery platform developed in this study has good applicability for the co-delivery of different anti-tumor drug/drug resistance inhibitor pairs to overcome MDR. Graphical Abstract A polymer/inorganic hybrid drug delivery platform with enhanced cell uptake was developed for tumor targeting synergistic drug delivery. The heparin-biotin/heparin/protamine sulfate/calcium carbonate nanovesicles prepared in this study can deliver an anticancer drug and a drug

  5. Target assessment for antiparasitic drug discovery.

    PubMed

    Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H

    2007-12-01

    Drug discovery is a high-risk, expensive and lengthy process taking at least 12 years and costing upwards of US$500 million per drug to reach the clinic. For neglected diseases, the drug discovery process is driven by medical need and guided by pre-defined target product profiles. Assessment and prioritisation of the most promising targets for entry into screening programmes is crucial for maximising the chances of success. Here, we describe criteria used in our drug discovery unit for target assessment and introduce the 'traffic-light' system as a prioritisation and management tool. We hope this brief review will stimulate basic scientists to acquire additional information necessary for drug discovery.

  6. The Cysteine Protease Cathepsin B Is a Key Drug Target and Cysteine Protease Inhibitors Are Potential Therapeutics for Traumatic Brain Injury

    PubMed Central

    Hook, Gregory R.; Yu, Jin; Sipes, Nancy; Pierschbacher, Michael D.; Hook, Vivian

    2014-01-01

    Abstract There are currently no effective therapeutic agents for traumatic brain injury (TBI), but drug treatments for TBI can be developed by validation of new drug targets and demonstration that compounds directed to such targets are efficacious in TBI animal models using a clinically relevant route of drug administration. The cysteine protease, cathepsin B, has been implicated in mediating TBI, but it has not been validated by gene knockout (KO) studies. Therefore, this investigation evaluated mice with deletion of the cathepsin B gene receiving controlled cortical impact TBI trauma. Results indicated that KO of the cathepsin B gene resulted in amelioration of TBI, shown by significant improvement in motor dysfunction, reduced brain lesion volume, greater neuronal density in brain, and lack of increased proapoptotic Bax levels. Notably, oral administration of the small-molecule cysteine protease inhibitor, E64d, immediately after TBI resulted in recovery of TBI-mediated motor dysfunction and reduced the increase in cathepsin B activity induced by TBI. E64d outcomes were as effective as cathepsin B gene deletion for improving TBI. E64d treatment was effective even when administered 8 h after injury, indicating a clinically plausible time period for acute therapeutic intervention. These data demonstrate that a cysteine protease inhibitor can be orally efficacious in a TBI animal model when administered at a clinically relevant time point post-trauma, and that E64d-mediated improvement of TBI is primarily the result of inhibition of cathepsin B activity. These results validate cathepsin B as a new TBI therapeutic target. PMID:24083575

  7. Drug target prediction using adverse event report systems: a pharmacogenomic approach.

    PubMed

    Takarabe, Masataka; Kotera, Masaaki; Nishimura, Yosuke; Goto, Susumu; Yamanishi, Yoshihiro

    2012-09-15

    Unexpected drug activities derived from off-targets are usually undesired and harmful; however, they can occasionally be beneficial for different therapeutic indications. There are many uncharacterized drugs whose target proteins (including the primary target and off-targets) remain unknown. The identification of all potential drug targets has become an important issue in drug repositioning to reuse known drugs for new therapeutic indications. We defined pharmacological similarity for all possible drugs using the US Food and Drug Administration's (FDA's) adverse event reporting system (AERS) and developed a new method to predict unknown drug-target interactions on a large scale from the integration of pharmacological similarity of drugs and genomic sequence similarity of target proteins in the framework of a pharmacogenomic approach. The proposed method was applicable to a large number of drugs and it was useful especially for predicting unknown drug-target interactions that could not be expected from drug chemical structures. We made a comprehensive prediction for potential off-targets of 1874 drugs with known targets and potential target profiles of 2519 drugs without known targets, which suggests many potential drug-target interactions that were not predicted by previous chemogenomic or pharmacogenomic approaches. Softwares are available upon request. yamanishi@bioreg.kyushu-u.ac.jp Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/aers/.

  8. Hsp70 Protein Complexes as Drug Targets

    PubMed Central

    Assimon, Victoria A.; Gillies, Anne T.; Rauch, Jennifer N.; Gestwicki, Jason E.

    2013-01-01

    Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to those goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology. PMID:22920901

  9. Hsp70 protein complexes as drug targets.

    PubMed

    Assimon, Victoria A; Gillies, Anne T; Rauch, Jennifer N; Gestwicki, Jason E

    2013-01-01

    Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70's interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, including roles in pro-folding, pro-degradation and pro-trafficking pathways. Thus, a promising strategy may be to block protein- protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to these goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology.

  10. An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37 Rv and their potential as new drug targets.

    PubMed

    Meena, Laxman S

    2015-01-01

    new drug targets.

  11. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1

    PubMed Central

    Rao, PSS; Midde, Narasimha M; Miller, Duane D.; Chauhan, Subhash; Kumar, Anil; Kumar, Santosh

    2015-01-01

    Diallyl sulfide (DAS) and other organosulfur compounds are chief constituents of garlic. These compounds have many health benefits, as they are very efficient in detoxifying natural agents. Therefore, these compounds may be useful for prevention/treatment of cancers. However, DAS has shown appreciable allergic reactions and toxicity, as they can also affect normal cells. Thus their use as in the prevention and treatment of cancer is limited. DAS is a selective inhibitor of cytochrome P450 2E1 (CYP2E1), which is known to metabolize many xenobiotics including alcohol and analgesic drugs in the liver. CYP2E1-mediated alcohol/drug metabolism produce reactive oxygen species and reactive metabolites, which damage DNA, protein, and lipid membranes, subsequently causing liver damage. Several groups have shown that DAS is not only capable of inhibiting alcohol- and drug-mediated cellular toxicities, but also HIV protein- and diabetes-mediated toxicities by selectively inhibiting CYP2E1 in various cell types. However, due to known DAS toxicities, its use as a treatment modality for alcohol/drug- and HIV/diabetes-mediated toxicity have only limited clinical relevance. Therefore, effort is being made to generate DAS analogs, which are potent and selective inhibitor of CYP2E1 and poor substrate of CYP2E1. This review summarizes current advances in the field of DAS, its anticancer properties, role as a CYP2E1 inhibitor, preventing agent of cellular toxicities from alcohol, analgesic drugs, xenobiotics, as well as, from diseases like HIV and diabetes. Finally, this review also provides insights toward developing novel DAS analogues for chemical intervention of many disease conditions by targeting CYP2E1 enzyme. PMID:26264202

  12. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-04

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  13. Gaussian interaction profile kernels for predicting drug-target interaction.

    PubMed

    van Laarhoven, Twan; Nabuurs, Sander B; Marchiori, Elena

    2011-11-01

    The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions. Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/. tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl. Supplementary data are available at Bioinformatics online.

  14. Identification of human drug targets using machine-learning algorithms.

    PubMed

    Kumari, Priyanka; Nath, Abhigyan; Chaube, Radha

    2015-01-01

    Identification of potential drug targets is a crucial task in the drug-discovery pipeline. Successful identification of candidate drug targets in entire genomes is very useful, and computational prediction methods can speed up this process. In the current work we have developed a sequence-based prediction method for the successful identification and discrimination of human drug target proteins, from human non-drug target proteins. The training features include sequence-based features, such as amino acid composition, amino acid property group composition, and dipeptide composition for generating predictive models. The classification of human drug target proteins presents a classic example of class imbalance. We have addressed this issue by using SMOTE (Synthetic Minority Over-sampling Technique) as a preprocessing step, for balancing the training data with a ratio of 1:1 between drug targets (minority samples) and non-drug targets (majority samples). Using ensemble classification learning method-Rotation Forest and ReliefF feature-selection technique for selecting the optimal subset of salient features, the best model with selected features can achieve 87.1% sensitivity, 83.6% specificity, and 85.3% accuracy, with 0.71 Matthews correlation coefficient (mcc) on a tenfold stratified cross-validation test. The subset of identified optimal features may help in assessing the compositional patterns in human drug targets. For further validation, using a rigorous leave-one-out cross-validation test, the model achieved 88.1% sensitivity, 83.0% specificity, 85.5% accuracy, and 0.712 mcc. The proposed method was tested on a second dataset, for which the current pipeline gave promising results. We suggest that the present approach can be applied successfully as a complementary tool to existing methods for novel drug target prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. DrugComboRanker: drug combination discovery based on target network analysis

    PubMed Central

    Huang, Lei; Li, Fuhai; Sheng, Jianting; Xia, Xiaofeng; Ma, Jinwen; Zhan, Ming; Wong, Stephen T.C.

    2014-01-01

    Motivation: Currently there are no curative anticancer drugs, and drug resistance is often acquired after drug treatment. One of the reasons is that cancers are complex diseases, regulated by multiple signaling pathways and cross talks among the pathways. It is expected that drug combinations can reduce drug resistance and improve patients’ outcomes. In clinical practice, the ideal and feasible drug combinations are combinations of existing Food and Drug Administration-approved drugs or bioactive compounds that are already used on patients or have entered clinical trials and passed safety tests. These drug combinations could directly be used on patients with less concern of toxic effects. However, there is so far no effective computational approach to search effective drug combinations from the enormous number of possibilities. Results: In this study, we propose a novel systematic computational tool DrugComboRanker to prioritize synergistic drug combinations and uncover their mechanisms of action. We first build a drug functional network based on their genomic profiles, and partition the network into numerous drug network communities by using a Bayesian non-negative matrix factorization approach. As drugs within overlapping community share common mechanisms of action, we next uncover potential targets of drugs by applying a recommendation system on drug communities. We meanwhile build disease-specific signaling networks based on patients’ genomic profiles and interactome data. We then identify drug combinations by searching drugs whose targets are enriched in the complementary signaling modules of the disease signaling network. The novel method was evaluated on lung adenocarcinoma and endocrine receptor positive breast cancer, and compared with other drug combination approaches. These case studies discovered a set of effective drug combinations top ranked in our prediction list, and mapped the drug targets on the disease signaling network to highlight the

  16. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    PubMed

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  17. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use--improves psoriasis in a human xenograft transplantation model.

    PubMed

    Stenderup, Karin; Rosada, Cecilia; Shanebeck, Kurt; Brady, William; Van Brunt, Michael P; King, Gordon; Marelli, Marcello; Slagle, Paul; Xu, Hengyu; Nairn, Natalie W; Johnson, Jeffrey; Wang, Aijun A; Li, Gary; Thornton, Kenneth C; Dam, Tomas N; Grabstein, Kenneth H

    2015-10-01

    Targeting more than one molecule in multifactorial diseases involving several disease mediators may provide improved therapeutic efficacy. Psoriasis is a multifactorial disease in which interleukin (IL)-6 and IL-23 are important disease mediators because they facilitate development of Th17 cells; widely accepted to be associated with psoriasis. To meet the need for new therapeutics, we aimed to create a clinically relevant bispecific drug, by combining the inhibitory properties of anti-IL-6 and anti-IL-23 antibodies, exhibiting high affinity, high stability and the ability to be produced in high yield. The bispecific molecule AZ17 was created by combining high affinity binding domains originating from monoclonal antibodies targeting human IL-6 and IL-23. To allow for high and efficient production, AZ17 was assembled by site-specific bioconjugation from two individual single chain fragment variables that were synthesized separately in Escherichia coli. To improve stability and extend pharmacokinetics, a flexible poly-ethylene glycol molecule was used as linker. In preclinical psoriasis models, AZ17 reduced IL-23-induced ear inflammation and improved psoriasis in a xenograft transplantation model where psoriasis skin is transplanted onto immune-deficient mice. The data presented here suggest AZ17 to be a promising drug candidate in psoriasis and other inflammatory diseases associated with Th17 cell development.

  18. Atypical GTPases as drug targets.

    PubMed

    Soundararajan, Meera; Eswaran, Jeyanthy

    2012-01-01

    The Ras GTPases are the founding members of large Ras superfamily, which constitutes more than 150 of these important class of enzymes. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. There are a number of GTPases that have been identified recently, which do not confine to this prototype termed as "atypical GTPases" but have proved to play a remarkable role in vital cellular functions. In this review, we provide an overview of the crucial physiological functions mediated by RGK and Centaurin class of multi domain atypical GTPases. Moreover, the recently available atypical GTPase structures of the two families, regulation, physiological functions and their critical roles in various diseases will be discussed. In summary, this review will highlight the emerging atypical GTPase family which allows us to understand novel regulatory mechanisms and thus providing new avenues for drug discovery programs.

  19. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  20. Targeted Delivery of Protein Drugs by Nanocarriers

    PubMed Central

    Solaro, Roberto; Chiellini, Federica; Battisti, Antonella

    2010-01-01

    Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  1. Molecular matchmaking between the popular weight-loss herb Hoodia gordonii and GPR119, a potential drug target for metabolic disorder

    PubMed Central

    Zhang, Shuyong; Ma, Yuyong; Li, Jing; Ma, Junjun; Yu, Biao; Xie, Xin

    2014-01-01

    African cactiform Hoodia gordonii (Asclepiadaceae) has been used for thousands of years by Xhomani Bushmen as an anorexant during hunting trips and has been proposed as a new agent for the management of body weight. However, its in vivo targets and molecular mechanisms remain elusive. GPR119, a G protein-coupled receptor highly expressed in pancreatic β cells and intestinal L cells, has been demonstrated to facilitate glucose-stimulated insulin secretion (GSIS) and represents a novel and attractive target for the therapy of metabolic disorders. Here, we disclose that Gordonoside F (a steroid glycoside isolated from H. gordonii), but not the widely known P57, activates specifically GPR119. Successful synthesis of Gordonoside F facilitates further characterization of this compound. Gordonoside F promotes GSIS both in vitro and in vivo and reduces food intake in mice. These effects are mediated by GPR119 because GPR119 knockout prevents the therapeutic effects of Gordonoside F. Interestingly, the appetite-suppressing effect of Hoodia extract was also partially blocked by GPR119 knockout. Our results demonstrate for the first time, to our knowledge, that GPR119 is a direct target and one of the major mechanisms underlying the therapeutic effect of the popular “weight loss” herb H. gordonii. Given the long history of safe application of this herb in weight control, it is foreseeable that the novel scaffold of Gordonoside F provides a promising opportunity to develop new drugs in treating metabolic diseases. PMID:25246581

  2. Giardiasis, drug resistance, and new target discovery.

    PubMed

    Tian, Hai-Feng; Chen, Bing; Wen, Jian-Fan

    2010-08-01

    Giardiasis is a worldwide parasitic disease caused by the protozoan Giardia lamblia in humans and other animals, especially live stocks. Here, we briefly review the current state of therapeutic availability for giardiasis, including chemical drugs and vaccines, and the dilemma in the prevention and treatment of this disease, including the emergence of drug resistance and the shortage of vaccine (especially for humans). Future efforts and progress in controlling giardiasis are expected in three aspects: clarification of the drug resistance mechanisms, development of efficient vaccines, and identification of more targets for new drugs and vaccines.

  3. Modulation of Ras/ERK and Phosphoinositide Signaling by Long-Chain n-3 PUFA in Breast Cancer and Their Potential Complementary Role in Combination with Targeted Drugs

    PubMed Central

    Serini, Simona; Calviello, Gabriella

    2017-01-01

    A potential complementary role of the dietary long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFA) in combination with innovative mono-targeted therapies has recently been proposed. These compounds are thought to act pleiotropically to prevent the development and progression of a variety of cancers, including breast cancer. We hereinafter critically analyze the reports investigating the ability of LCn-3 PUFA to modulate the Ras/ERK and the phosphoinositide survival signaling pathways often aberrantly activated in breast cancer and representing the main targets of innovative therapies. The in vitro or in vivo animal and human interventional studies published up to January 2017 investigating the effects of LCn-3 PUFA on these pathways in normal and cancerous breast cells or tissues were identified through a systematic search of literature in the PubMed database. We found that, in most cases, both the in vitro and in vivo studies demonstrated the ability of LCn-3 PUFA to inhibit the activation of these pro-survival pathways. Altogether, the analyzed results strongly suggest a potential role of LCn-3 PUFA as complementary agents in combination with mono-targeted therapies. Moreover, the results indicate the need for further in vitro and human interventional studies designed to unequivocally prove the potential adjuvant role of these fatty acids. PMID:28241486

  4. Topoisomerase as target for antibacterial and anticancer drug discovery.

    PubMed

    Kathiravan, Muthu K; Khilare, Madhavi M; Nikoomanesh, Kiana; Chothe, Aparna S; Jain, Kishor S

    2013-06-01

    DNA topoisomerases comprise a major aspect of basic cellular biology and are molecular targets for a variety of drugs like antibiotics, antibacterials and anticancer drugs. They act by inhibiting the topoisomerase molecule from relegating DNA strands after cleavage and convert the topoisomerases molecule into a DNA damaging agent. Though drugs of various categories acting through different mechanisms are available for the treatment, there are still problems associated with the currently available drugs. Therefore, Structural biologists, Structural chemists and Medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase and drug treating each class along with their structural requirement and activity. The emphasis has been laid in particular on the new potential heterocyles and the possible treatments as well as the current ongoing research status in the field of topoisomerase as dual targeting.

  5. Discovery of Anthelmintic Drug Targets and Drugs Using Chokepoints in Nematode Metabolic Pathways

    PubMed Central

    Taylor, Christina M.; Wang, Qi; Rosa, Bruce A.; Huang, Stanley Ching-Cheng; Powell, Kerrie; Schedl, Tim; Pearce, Edward J.; Abubucker, Sahar; Mitreva, Makedonka

    2013-01-01

    Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A “chokepoint reaction” is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery

  6. New Targets for Drug Treatment of Obesity.

    PubMed

    Valsamakis, Georgios; Konstantakou, Panagiota; Mastorakos, George

    2017-01-06

    Antiobesity medical management has shown unsatisfactory results to date in terms of efficacy, safety, and long-term maintenance of weight loss. This poor performance could be attributed to the complexity of appetite regulation mechanisms; the serious drug side effects; and, crucially, the lack of profile-matching treatment strategies and individualized, multidisciplinary follow-up. Nevertheless, antiobesity pharmacotherapy remains a challenging, exciting field of intensive scientific interest. According to the latest studies, the future of bariatric medicine lies in developing drugs acting at multiple levels of the brain-gut axis. Currently, research is focused on the generation of combination treatments based on gut hormones in a way that mimics changes underlying surgically induced weight loss, in addition to centrally acting agents; these aim to restore energy balance disruptions and enhance energy expenditure. Collectively, the pharmacological resolution of obesity could potentially be achieved with combination regimens targeting different molecules and levels of the energy homeostasis system, in parallel with matching patients' needs, resulting in a favorable metabolic profile.

  7. Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni

    PubMed Central

    Long, Thavy; Neitz, R. Jeffrey; Beasley, Rachel; Kalyanaraman, Chakrapani; Suzuki, Brian M.; Jacobson, Matthew P.; Dissous, Colette; McKerrow, James H.; Drewry, David H.; Zuercher, William J.; Singh, Rahul; Caffrey, Conor R.

    2016-01-01

    Background Schistosoma flatworm parasites cause schistosomiasis, a chronic and debilitating disease of poverty in developing countries. Praziquantel is employed for treatment and disease control. However, its efficacy spectrum is incomplete (less active or inactive against immature stages of the parasite) and there is a concern of drug resistance. Thus, there is a need to identify new drugs and drug targets. Methodology/Principal Findings We show that RNA interference (RNAi) of the Schistosoma mansoni ortholog of human polo-like kinase (huPLK)1 elicits a deleterious phenotypic alteration in post-infective larvae (schistosomula or somules). Phenotypic screening and analysis of schistosomula and adult S. mansoni with small molecule inhibitors of huPLK1 identified a number of potent anti-schistosomals. Among these was a GlaxoSmithKline (GSK) benzimidazole thiophene inhibitor that has completed Phase I clinical trials for treatment of solid tumor malignancies. We then obtained GSKs Published Kinase Inhibitor Sets (PKIS) 1 and 2, and phenotypically screened an expanded series of 38 benzimidazole thiophene PLK1 inhibitors. Computational analysis of controls and PLK1 inhibitor-treated populations of somules demonstrated a distinctive phenotype distribution. Using principal component analysis (PCA), the phenotypes exhibited by these populations were mapped, visualized and analyzed through projection to a low-dimensional space. The phenotype distribution was found to have a distinct shape and topology, which could be elicited using cluster analysis. A structure-activity relationship (SAR) was identified for the benzimidazole thiophenes that held for both somules and adult parasites. The most potent inhibitors produced marked phenotypic alterations at 1–2 μM within 1 h. Among these were compounds previously characterized as potent inhibitors of huPLK1 in cell assays. Conclusions/Significance The reverse genetic and chemical SAR data support a continued investigation of Sm

  8. Fluid mechanics aspects of magnetic drug targeting.

    PubMed

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.

  9. Finding Potential Therapeutic Targets against Shigella flexneri through Proteome Exploration

    PubMed Central

    Hossain, Mohammad Uzzal; Khan, Md. Arif; Hashem, Abu; Islam, Md. Monirul; Morshed, Mohammad Neaz; Keya, Chaman Ara; Salimullah, Md.

    2016-01-01

    Background: Shigella flexneri is a gram negative bacteria that causes the infectious disease “shigellosis.” S. flexneri is responsible for developing diarrhea, fever, and stomach cramps in human. Antibiotics are mostly given to patients infected with shigella. Resistance to antibiotics can hinder its treatment significantly. Upon identification of essential therapeutic targets, vaccine and drug could be effective therapy for the treatment of shigellosis. Methods: The study was designed for the identification and qualitative characterization for potential drug targets from S. flexneri by using the subtractive proteome analysis. A set of computational tools were used to identify essential proteins those are required for the survival of S. flexneri. Total proteome (13,503 proteins) of S. flexneri was retrieved from NCBI and further analyzed by subtractive channel analysis. After identification of the metabolic proteins we have also performed its qualitative characterization to pave the way for the identification of promising drug targets. Results: Subtractive analysis revealed that a list of 53 targets of S. flexneri were human non-homologous essential metabolic proteins that might be used for potential drug targets. We have also found that 11 drug targets are involved in unique pathway. Most of these proteins are cytoplasmic, can be used as broad spectrum drug targets, can interact with other proteins and show the druggable properties. The functionality and drug binding site analysis suggest a promising effective way to design the new drugs against S. flexneri. Conclusion: Among the 53 therapeutic targets identified through this study, 13 were found highly potential as drug targets based on their physicochemical properties whilst only one was found as vaccine target against S. flexneri. The outcome might also be used as module as well as circuit design in systems biology. PMID:27920755

  10. Chemical proteomics: terra incognita for novel drug target profiling

    PubMed Central

    Huang, Fuqiang; Zhang, Boya; Zhou, Shengtao; Zhao, Xia; Bian, Ce; Wei, Yuquan

    2012-01-01

    The growing demand for new therapeutic strategies in the medical and pharmaceutic fields has resulted in a pressing need for novel druggable targets. Paradoxically, however, the targets of certain drugs that are already widely used in clinical practice have largely not been annotated. Because the pharmacologic effects of a drug can only be appreciated when its interactions with cellular components are clearly delineated, an integrated deconvolution of drug-target interactions for each drug is necessary. The emerging field of chemical proteomics represents a powerful mass spectrometry (MS)-based affinity chromatography approach for identifying proteome-wide small molecule-protein interactions and mapping these interactions to signaling and metabolic pathways. This technique could comprehensively characterize drug targets, profile the toxicity of known drugs, and identify possible off-target activities. With the use of this technique, candidate drug molecules could be optimized, and predictable side effects might consequently be avoided. Herein, we provide a holistic overview of the major chemical proteomic approaches and highlight recent advances in this area as well as its potential applications in drug discovery. PMID:22640626

  11. Nanostructured porous Si-based nanoparticles for targeted drug delivery

    PubMed Central

    Shahbazi, Mohammad-Ali; Herranz, Barbara; Santos, Hélder A.

    2012-01-01

    One of the backbones in nanomedicine is to deliver drugs specifically to unhealthy cells. Drug nanocarriers can cross physiological barriers and access different tissues, which after proper surface biofunctionalization can enhance cell specificity for cancer therapy. Recent developments have highlighted the potential of mesoporous silica (PSiO2) and silicon (PSi) nanoparticles for targeted drug delivery. In this review, we outline and discuss the most recent advances on the applications and developments of cancer therapies by means of PSiO2 and PSi nanomaterials. Bio-engineering and fine tuning of anti-cancer drug vehicles, high flexibility and potential for sophisticated release mechanisms make these nanostructures promising candidates for “smart” cancer therapies. As a result of their physicochemical properties they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting. The main emphasis of this review will be on the in vitro and in vivo studies. PMID:23507894

  12. Targeting the latest hallmark of cancer: another attempt at 'magic bullet' drugs targeting cancers' metabolic phenotype.

    PubMed

    Cuperlovic-Culf, M; Culf, A S; Touaibia, M; Lefort, N

    2012-10-01

    The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The distinct metabolic phenotype of cancers provides an interesting avenue for treatment, potentially with minimal side effects. As many cancers show similar metabolic characteristics, drugs targeting the cancer metabolic phenotype are, perhaps optimistically, expected to be 'magic bullet' treatments. Over the last few years there have been a number of potential drugs developed to specifically target cancer metabolism. Several of these drugs are currently in clinical and preclinical trials. This review outlines examples of drugs developed for different targets of significance to cancer metabolism, with a focus on small molecule leads, chemical biology and clinical results for these drugs.

  13. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  14. New drugs targeting the cardiac ultra-rapid delayed-rectifier current (I Kur): rationale, pharmacology and evidence for potential therapeutic value.

    PubMed

    Ford, John W; Milnes, James T

    2008-08-01

    There is a clear unmet medical need for new pharmacologic therapies for the treatment of atrial fibrillation (AF) with improved efficacy and safety. This article reviews the development of new and novel Kv1.5/ultra-rapid delayed-rectifier current (I Kur) inhibitors and presents evidence that Kv1.5 modulation provides an atrial-selective mechanism for treating AF. Academia and industry have invested heavily in Kv1.5 (>500 scientific publications and >50 patents published since 1993); however, to realize the full value of this therapeutic drug target, clinical efficacy and safety data are required for a selective Kv1.5 modulator. The reward for demonstrating clinical efficacy and safety in a pivotal Phase 3 trial, on regulatory approval, is "first in class" status.

  15. The role of estrogen receptor {beta} (ER{beta}) in malignant diseases-A new potential target for antiproliferative drugs in prevention and treatment of cancer

    SciTech Connect

    Warner, Margaret; Gustafsson, Jan-Ake

    2010-05-21

    The discovery of ER{beta} in the middle of the 1990s represents a paradigm shift in our understanding of estrogen signaling. It has turned out that estrogen action is not mediated by one receptor, ER{alpha}, but by two balancing factors, ER{alpha} and ER{beta}, which are often antagonistic to one another. Excitingly, ER{beta} has been shown to be widespread in the body and to be involved in a multitude of physiological and pathophysiological events. This has led to a strong interest of the pharmaceutical industry to target ER{beta} by drugs against various diseases. In this review, focus is on the role of ER{beta} in malignant diseases where the anti proliferative activity of ER{beta} gives hope of new therapeutic approaches.

  16. Targeting Membrane Lipid a Potential Cancer Cure?

    PubMed Central

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Wai-Leng; Chuah, Lay-Hong; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing

    2017-01-01

    Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy. PMID:28167913

  17. Structural and functional characterization of the recombinant thioredoxin reductase from Candida albicans as a potential target for vaccine and drug design.

    PubMed

    Godoy, Janine Silva Ribeiro; Kioshima, Érika Seki; Abadio, Ana Karina Rodrigues; Felipe, Maria Sueli Soares; de Freitas, Sonia Maria; Svidzinski, Terezinha Inez Estivalet

    2016-05-01

    The thioredoxin system plays a critical role in maintaining the cytoplasm redox state, participating in functions that are important to the cellular viability of fungi. Although functional and structural information on targets in human pathogenic fungi has been scarcely described in the literature, such studies are essential for in silico drug design and biotechnological applications. Therefore, the aims of the present study were to produce recombinant proteins of the thioredoxin system from Candida albicans and evaluate their possible use as prophylactic or alternative therapies against the most important pathogenic fungus associated with nosocomial infections. We focused on biochemical and structural analyses of recombinant thioredoxin reductase from C. albicans with His-tag (CaTrxR-His) for further biotechnology applications. Heterologous CaTrxR-His was efficiently expressed in the soluble fraction of the Escherichia coli lysate. CaTrxR-His was obtained with a high level of purity and presented specific enzymatic activity. Conformational changes of the protein were observed at different pHs and temperatures, with higher thermal stability at pH 8.0. The CaTrxR-His vaccine was shown to effectively induce high levels of CaTrxR-specific immunoglobulin G antibodies in Balb/c mice and reduce the renal fungal burden of experimental disseminated candidiasis in mice. These data may greatly impact future development strategies for vaccine and drug designs against C. albicans infection.

  18. Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity

    PubMed Central

    Wang, Kejian; Sun, Jiazhi; Zhou, Shufeng; Wan, Chunling; Qin, Shengying; Li, Can; He, Lin; Yang, Lun

    2013-01-01

    Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap). Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1) some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2) in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects. PMID:24244130

  19. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    PubMed Central

    Tavanti, E; Sero, V; Vella, S; Fanelli, M; Michelacci, F; Landuzzi, L; Magagnoli, G; Versteeg, R; Picci, P; Hattinger, C M; Serra, M

    2013-01-01

    Background: Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Methods: Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell lines. In vitro efficacy of two Aurora kinases-targeting drugs (VX-680 and ZM447439) was evaluated on a panel of four drug-sensitive and six drug-resistant human osteosarcoma cell lines. Results: Human osteosarcoma cell lines proved to be highly sensitive to both drugs. A decreased drug sensitivity was observed in doxorubicin-resistant cell lines, most probably related to ABCB1/MDR1 overexpression. Both drugs variably induced hyperploidy and apoptosis in the majority of cell lines. VX-680 also reduced in vitro cell motility and soft-agar cloning efficiency. Drug association experiments showed that VX-680 positively interacts with all conventional drugs used in osteosarcoma chemotherapy, overcoming the cross-resistance observed in the single-drug treatments. Conclusion: Aurora kinase-A and -B represent new candidate therapeutic targets for osteosarcoma. In vitro analysis of the Aurora kinases inhibitors VX-680 and ZM447439 indicated in VX-680 a new promising drug of potential clinical usefulness in association with conventional osteosarcoma chemotherapeutic agents. PMID:24129234

  20. Nuclear receptors: emerging drug targets for parasitic diseases.

    PubMed

    Wang, Zhu; Schaffer, Nathaniel E; Kliewer, Steven A; Mangelsdorf, David J

    2017-02-06

    Parasitic worms infect billions of people worldwide. Current treatments rely on a small group of drugs that have been used for decades. A shortcoming of these drugs is their inability to target the intractable infectious stage of the parasite. As well-known therapeutic targets in mammals, nuclear receptors have begun to be studied in parasitic worms, where they are widely distributed and play key roles in governing metabolic and developmental transcriptional networks. One such nuclear receptor is DAF-12, which is required for normal nematode development, including the all-important infectious stage. Here we review the emerging literature that implicates DAF-12 and potentially other nuclear receptors as novel anthelmintic targets.

  1. Drug target prediction using adverse event report systems: a pharmacogenomic approach

    PubMed Central

    Takarabe, Masataka; Kotera, Masaaki; Nishimura, Yosuke; Goto, Susumu; Yamanishi, Yoshihiro

    2012-01-01

    Motivation: Unexpected drug activities derived from off-targets are usually undesired and harmful; however, they can occasionally be beneficial for different therapeutic indications. There are many uncharacterized drugs whose target proteins (including the primary target and off-targets) remain unknown. The identification of all potential drug targets has become an important issue in drug repositioning to reuse known drugs for new therapeutic indications. Results: We defined pharmacological similarity for all possible drugs using the US Food and Drug Administration's (FDA's) adverse event reporting system (AERS) and developed a new method to predict unknown drug–target interactions on a large scale from the integration of pharmacological similarity of drugs and genomic sequence similarity of target proteins in the framework of a pharmacogenomic approach. The proposed method was applicable to a large number of drugs and it was useful especially for predicting unknown drug–target interactions that could not be expected from drug chemical structures. We made a comprehensive prediction for potential off-targets of 1874 drugs with known targets and potential target profiles of 2519 drugs without known targets, which suggests many potential drug–target interactions that were not predicted by previous chemogenomic or pharmacogenomic approaches. Availability: Softwares are available upon request. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/aers/. PMID:22962489

  2. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  3. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development.

    PubMed

    Kunz, Meik; Liang, Chunguang; Nilla, Santosh; Cecil, Alexander; Dandekar, Thomas

    2016-01-01

    The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.Database URL:http://drumpid.bioapps.biozentrum.uni-wuerzburg.de.

  4. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development

    PubMed Central

    Kunz, Meik; Liang, Chunguang; Nilla, Santosh; Cecil, Alexander; Dandekar, Thomas

    2016-01-01

    The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure–activity relationships. Database URL: http://drumpid.bioapps.biozentrum.uni-wuerzburg.de PMID:27055828

  5. Protein-protein interactions as drug targets.

    PubMed

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-01-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.

  6. Computational Drug Target Screening through Protein Interaction Profiles

    PubMed Central

    Vilar, Santiago; Quezada, Elías; Uriarte, Eugenio; Costanzi, Stefano; Borges, Fernanda; Viña, Dolores; Hripcsak, George

    2016-01-01

    The development of computational methods to discover novel drug-target interactions on a large scale is of great interest. We propose a new method for virtual screening based on protein interaction profile similarity to discover new targets for molecules, including existing drugs. We calculated Target Interaction Profile Fingerprints (TIPFs) based on ChEMBL database to evaluate drug similarity and generated new putative compound-target candidates from the non-intersecting targets in each pair of compounds. A set of drugs was further studied in monoamine oxidase B (MAO-B) and cyclooxygenase-1 (COX-1) enzyme through molecular docking and experimental assays. The drug ethoxzolamide and the natural compound piperlongumine, present in Piper longum L, showed hMAO-B activity with IC50 values of 25 and 65 μM respectively. Five candidates, including lapatinib, SB-202190, RO-316233, GW786460X and indirubin-3′-monoxime were tested against human COX-1. Compounds SB-202190 and RO-316233 showed a IC50 in hCOX-1 of 24 and 25 μM respectively (similar range as potent inhibitors such as diclofenac and indomethacin in the same experimental conditions). Lapatinib and indirubin-3′-monoxime showed moderate hCOX-1 activity (19.5% and 28% of enzyme inhibition at 25 μM respectively). Our modeling constitutes a multi-target predictor for large scale virtual screening with potential in lead discovery, repositioning and drug safety. PMID:27845365

  7. Detecting drug targets with minimum side effects in metabolic networks.

    PubMed

    Li, Z; Wang, R-S; Zhang, X-S; Chen, L

    2009-11-01

    High-throughput techniques produce massive data on a genome-wide scale which facilitate pharmaceutical research. Drug target discovery is a crucial step in the drug discovery process and also plays a vital role in therapeutics. In this study, the problem of detecting drug targets was addressed, which finds a set of enzymes whose inhibition stops the production of a given set of target compounds and meanwhile minimally eliminates non-target compounds in the context of metabolic networks. The model aims to make the side effects of drugs as small as possible and thus has practical significance of potential pharmaceutical applications. Specifically, by exploiting special features of metabolic systems, a novel approach was proposed to exactly formulate this drug target detection problem as an integer linear programming model, which ensures that optimal solutions can be found efficiently without any heuristic manipulations. To verify the effectiveness of our approach, computational experiments on both Escherichia coli and Homo sapiens metabolic pathways were conducted. The results show that our approach can identify the optimal drug targets in an exact and efficient manner. In particular, it can be applied to large-scale networks including the whole metabolic networks from most organisms.

  8. IDMap: facilitating the detection of potential leads with therapeutic targets.

    PubMed

    Ha, Soyang; Seo, Young-Ju; Kwon, Min-Seok; Chang, Byung-Ha; Han, Cheol-Kyu; Yoon, Jeong-Hyeok

    2008-06-01

    Pharmaceutical industry has been striving to reduce the costs of drug development and increase productivity. Among the many different attempts, drug repositioning (retargeting existing drugs) comes into the spotlight because of its financial efficiency. We introduce IDMap which predicts novel relationships between targets and chemicals and thus is capable of repositioning the marketed drugs by using text mining and chemical structure information. Also capable of mapping commercial chemicals to possible drug targets and vice versa, IDMap creates convenient environments for identifying the potential lead and its targets, especially in the field of drug repositioning. IDMap executable and its user manual including color images are freely available to non-commercial users at http://www.equispharm.com/idmap

  9. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  10. Is hippocampal atrophy a future drug target?

    PubMed

    Dhikav, Vikas; Anand, Kuljeet Singh

    2007-01-01

    atrophy would be clinically useful in affecting disease, viz slowing its progression, reducing morbidity, complications or positively affecting the outcome of one or more of its clinically important aspects. If the answer to this is yes, we would have to know at what stage of the disease we use the drugs, dose, duration, follow-up and efficacy. The use of these drugs in the above mentioned conditions can not only test the potential of atrophy as a future drug target, but could also help in learning more about the hippocampus in both health and diseases.

  11. Open Challenges in Magnetic Drug Targeting

    PubMed Central

    Kulkarni, Sandip; Nacev, Aleksander; Muro, Silvia; Stepanov, Pavel Y.; Weinberg, Irving N.

    2014-01-01

    The principle of magnetic drug targeting, wherein therapy is attached to magnetically responsive carriers and magnetic fields are used to direct that therapy to disease locations, has been around for nearly two decades. Yet our ability to safely and effectively direct therapy to where it needs to go, for instance to deep tissue targets, remains limited. To date, magnetic targeting methods have not yet passed regulatory approval or reached clinical use. Below we outline key challenges to magnetic targeting, which include designing and selecting magnetic carriers for specific clinical indications, safely and effectively reaching targets behind tissue and anatomical barriers, real-time carrier imaging, and magnet design and control for deep and precise targeting. Addressing these challenges will require interactions across disciplines. Nanofabricators and chemists should work with biologists, mathematicians and engineers to better understand how carriers move through live tissues and how to optimize carrier and magnet designs to better direct therapy to disease targets. Clinicians should be involved early on and throughout the whole process to ensure the methods that are being developed meet a compelling clinical need and will be practical in a clinical setting. Our hope is that highlighting these challenges will help researchers translate magnetic drug targeting from a novel concept to a clinically-available treatment that can put therapy where it needs to go in human patients. PMID:25377422

  12. Analysis of adverse drug reactions using drug and drug target interactions and graph-based methods.

    PubMed

    Lin, Shih-Fang; Xiao, Ke-Ting; Huang, Yu-Ting; Chiu, Chung-Cheng; Soo, Von-Wun

    2010-01-01

    The purpose of this study was to integrate knowledge about drugs, drug targets, and topological methods. The goals were to build a system facilitating the study of adverse drug events, to make it easier to find possible explanations, and to group similar drug-drug interaction cases in the adverse drug reaction reports from the US Food and Drug Administration (FDA). We developed a system that analyses adverse drug reaction (ADR) cases reported by the FDA. The system contains four modules. First, we integrate drug and drug target databases that provide information related to adverse drug reactions. Second, we classify drug and drug targets according to anatomical therapeutic chemical classification (ATC) and drug target ontology (DTO). Third, we build drug target networks based on drug and drug target databases. Finally, we apply topological analysis to reveal drug interaction complexity for each ADR case reported by the FDA. We picked 1952 ADR cases from the years 2005-2006. Our dataset consisted of 1952 cases, of which 1471 cases involved ADR targets, 845 cases involved absorption, distribution, metabolism, and excretion (ADME) targets, and 507 cases involved some drugs acting on the same targets, namely, common targets (CTs). We then investigated the cases involving ADR targets, ADME targets, and CTs using the ATC system and DTO. In the cases that led to death, the average number of common targets (NCTs) was 0.879 and the average of average clustering coefficient (ACC) was 0.067. In cases that did not lead to death, the average NCTs was 0.551, and the average of ACC was 0.039. We implemented a system that can find possible explanations and cluster similar ADR cases reported by the FDA. We found that the average of ACC and the average NCTs in cases leading to death are higher than in cases not leading to death, suggesting that the interactions in cases leading to death are generally more complicated than in cases not leading to death. This indicates that our system

  13. The 1.9 A resolution structure of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase, a potential drug target.

    PubMed

    Henriksson, Lena M; Björkelid, Christofer; Mowbray, Sherry L; Unge, Torsten

    2006-07-01

    1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzes the NADPH-dependent rearrangement and reduction of 1-deoxy-D-xylulose 5-phosphate to form 2-C-methyl-D-erythritol 4-phosphate, as the second step of the deoxyxylulose 5-phosphate/methylerythritol 4-phosphate pathway found in many bacteria and plants. The end product, isopentenyl diphosphate, is the precursor of various isoprenoids vital to all living organisms. The pathway is not found in humans; the mevalonate pathway is instead used for the formation of isopentenyl diphosphate. This difference, combined with its essentiality, makes the reductoisomerase an excellent drug target in a number of pathogenic organisms. The structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Mycobacterium tuberculosis (Rv2870c) was solved by molecular replacement and refined to a resolution of 1.9 A. The enzyme exhibited an estimated kcat of 5.3 s-1 and Km and kcat/Km values of 7.2 microM and 7.4x10(5) M-1 s-1 for NADPH and 340 microM and 1.6x10(4) M-1 s-1 for 1-deoxy-D-xylulose 5-phosphate. In the structure, a sulfate is bound at the expected site of the phosphate moiety of the sugar substrate. The M. tuberculosis enzyme displays a similar fold to the previously published structures from Escherichia coli and Zymomonas mobilis. Comparisons offer suggestions for the design of specific drugs. Furthermore, the new structure represents an intermediate conformation between the open apo form and the closed holo form observed previously, giving insights into the conformational changes associated with catalysis.

  14. Potential Drug - Drug Interactions among Medications Prescribed to Hypertensive Patients

    PubMed Central

    Ganguly, Barna

    2014-01-01

    Context: Drug-drug interactions(DDIs) are significant but avoidable causes of iatrogenic morbidity and hospital admission. Aim: To detect potential drug-drug interactions among medications received by hypertensive patients. Materials and Methods: Patients of both sex and all adult age groups, who were attending medicine out -patient department (OPD) of a tertiary care teaching rural hospital since last six months and were being prescribed antihypertensive drug/s for essential hypertension, were selected for the study. Hypertensive patient with co-morbities diabetes mellitus, ischemic heart diseases, congestive heart failure, and chronic renal diseases were also included in the study. Potential drug drug interactions were checked with medscape drug interaction software. Results: With the help of medscape drug interaction software, 71.50% prescriptions were identified having atleast one drug-drug interaction. Total 918 DDIs were found in between 58 drug pairs. 55.23% DDIs were pharmacodynamic, 4.79% pharmacokinetic type of DDIs. 32.24% DDIs were found affecting serum potassium level. 95.42% DDIs were found significant type of DDIs. Drug drug interaction between atenolol & amlodipine was the most common DDI (136) followed by metoprolol and amlodine (88) in this study. Atenolol and amlodipine ( 25.92%) was the most common drugs to cause DDIs in our study. Conclusion: We detected a significant number of drug drug interaction in hypertensive patients. These interactions were between antihypertensive agents or between hypertensive and drug for co-morbid condition. PMID:25584241

  15. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics.

    PubMed

    Lin, Fan; Li, Zilin; Hua, Yunfen; Lim, Yoon Pin

    2016-01-01

    Most recently approved anti-cancer drugs by the US FDA are targeted therapeutic agents and this represents an important trend for future anticancer therapy. Unlike conventional chemotherapy that rarely considers individual differences, it is crucial for targeted therapies to identify the beneficial subgroup of patients for the treatment. Currently, genomics and transcriptomics are the major 'omic' analytics used in studies of drug response prediction. However, proteomic profiling excels both in its advantages of directly detecting an instantaneous dynamic of the whole proteome, which contains most current diagnostic markers and therapeutic targets. Moreover, proteomic profiling improves understanding of the mechanism for drug resistance and helps finding optimal combination therapy. This article reviews the recent success of applications of proteomic analytics in predicting the response to targeted anticancer therapeutics, and discusses the potential avenues and pitfalls of proteomic platforms and techniques used most in the field.

  16. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database.

    PubMed

    Barneh, Farnaz; Jafari, Mohieddin; Mirzaie, Mehdi

    2016-11-01

    Network pharmacology elucidates the relationship between drugs and targets. As the identified targets for each drug increases, the corresponding drug-target network (DTN) evolves from solely reflection of the pharmaceutical industry trend to a portrait of polypharmacology. The aim of this study was to evaluate the potentials of DrugBank database in advancing systems pharmacology. We constructed and analyzed DTN from drugs and targets associations in the DrugBank 4.0 database. Our results showed that in bipartite DTN, increased ratio of identified targets for drugs augmented density and connectivity of drugs and targets and decreased modular structure. To clear up the details in the network structure, the DTNs were projected into two networks namely, drug similarity network (DSN) and target similarity network (TSN). In DSN, various classes of Food and Drug Administration-approved drugs with distinct therapeutic categories were linked together based on shared targets. Projected TSN also showed complexity because of promiscuity of the drugs. By including investigational drugs that are currently being tested in clinical trials, the networks manifested more connectivity and pictured the upcoming pharmacological space in the future years. Diverse biological processes and protein-protein interactions were manipulated by new drugs, which can extend possible target combinations. We conclude that network-based organization of DrugBank 4.0 data not only reveals the potential for repurposing of existing drugs, also allows generating novel predictions about drugs off-targets, drug-drug interactions and their side effects. Our results also encourage further effort for high-throughput identification of targets to build networks that can be integrated into disease networks. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs.

    PubMed

    Tao, Lin; Zhu, Feng; Xu, Feng; Chen, Zhe; Jiang, Yu Yang; Chen, Yu Zong

    2015-12-01

    Recent investigations have suggested that anticancer therapeutics may be enhanced by co-targeting the primary anticancer target and the corresponding drug escape pathways. Whether this strategy confers statistically significant clinical advantage has not been systematically investigated. This question was probed by the evaluation of the clinical status and the multiple targets of 23 approved and 136 clinical trial multi-target anticancer drugs with particular focus on those co-targeting EGFR, HER2, Abl, VEGFR2, mTOR, PI3K, Alk, MEK, KIT, and DNA topoisomerase, and some of the 14, 7, 13, 20, 6, 5, 7, 2, 4 and 10 cancer drug escape pathways respectively. Most of the approved (73.9%) and phase III (75.0%), the majority of the Phase II (62.8%) and I (53.6%), and the minority of the discontinued (35.3%) multi-target drugs were found to co-target cancer drug escape pathways. This suggests that co-targeting anticancer targets and drug escape pathways confer significant clinical advantage and such strategy can be more extensively explored. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Existing drugs and their application in drug discovery targeting cancer stem cells.

    PubMed

    Lv, Junfang; Shim, Joong Sup

    2015-09-01

    Despite standard cancer therapies such as chemotherapy and targeted therapy have shown some efficacies, the cancer in many cases eventually relapses and metastasizes upon stopping the treatment. There is a small subpopulation of cancer cells within tumor, with specific characters similar to those found in stem cells. This group of cancer cells is known as tumor-initiating or cancer stem cells (CSCs), which have an ability to self-renew and give rise to cancer cell progeny. CSCs are related with drug resistance, metastasis and relapse of cancer, hence emerging as a crucial drug target for eliminating cancer. Rapid advancement of CSC biology has enabled researchers to isolate and culture CSCs in vitro, making the cells amenable to high-throughput drug screening. Recently, drug repositioning, which utilizes existing drugs to develop potential new indications, has been gaining popularity as an alternative approach for the drug discovery. As existing drugs have favorable bioavailability and safety profiles, drug repositioning is now actively exploited for prompt development of therapeutics for many serious diseases, such as cancer. In this review, we will introduce latest examples of attempted drug repositioning targeting CSCs and discuss potential use of the repositioned drugs for cancer therapy.

  19. Pharmacological Validation of Trypanosoma brucei Phosphodiesterases as Novel Drug Targets

    PubMed Central

    de Koning, Harry P.; Gould, Matthew K.; Sterk, Geert Jan; Tenor, Hermann; Kunz, Stefan; Luginbuehl, Edith; Seebeck, Thomas

    2012-01-01

    The development of drugs for neglected infectious diseases often uses parasite-specific enzymes as targets. We here demonstrate that parasite enzymes with highly conserved human homologs may represent a promising reservoir of new potential drug targets. The cyclic nucleotide-specific phosphodiesterases (PDEs) of Trypanosoma brucei, causative agent of the fatal human sleeping sickness, are essential for the parasite. The highly conserved human homologs are well-established drug targets. We here describe what is to our knowledge the first pharmacological validation of trypanosomal PDEs as drug targets. High-throughput screening of a proprietary compound library identified a number of potent hits. One compound, the tetrahydrophthalazinone compound A (Cpd A), was further characterized. It causes a dramatic increase of intracellular cyclic adenosine monophosphate (cAMP). Short-term cell viability is not affected, but cell proliferation is inhibited immediately, and cell death occurs within 3 days. Cpd A prevents cytokinesis, resulting in multinucleated, multiflagellated cells that eventually lyse. These observations pharmacologically validate the highly conserved trypanosomal PDEs as potential drug targets. PMID:22291195

  20. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Yang, Yinlong; An, Feifei; Liu, Zhuang; Zhang, Xiujuan; Zhang, Xiaohong

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines.

  1. Amphotericin B formulations and drug targeting.

    PubMed

    Torrado, J J; Espada, R; Ballesteros, M P; Torrado-Santiago, S

    2008-07-01

    Amphotericin B is a low-soluble polyene antibiotic which is able to self-aggregate. The aggregation state can modify its activity and pharmacokinetical characteristics. In spite of its high toxicity it is still widely employed for the treatment of systemic fungal infections and parasitic disease and different formulations are marketed. Some of these formulations, such as liposomal formulations, can be considered as classical examples of drug targeting. The pharmacokinetics, toxicity and activity are clearly dependent on the type of amphotericin B formulation. New drug delivery systems such as liposomes, nanospheres and microspheres can result in higher concentrations of AMB in the liver and spleen, but lower concentrations in kidney and lungs, so decreasing its toxicity. Moreover, the administration of these drug delivery systems can enhance the drug accessibility to organs and tissues (e.g., bone marrow) otherwise inaccessible to the free drug. During the last few years, new AMB formulations (AmBisome, Abelcet, and Amphotec) with an improved efficacy/toxicity ratio have been marketed. This review compares the different formulations of amphotericin B in terms of pharmacokinetics, toxicity and activity and discusses the possible drug targeting effect of some of these new formulations.

  2. Large-scale Direct Targeting for Drug Repositioning and Discovery

    PubMed Central

    Zheng, Chunli; Guo, Zihu; Huang, Chao; Wu, Ziyin; Li, Yan; Chen, Xuetong; Fu, Yingxue; Ru, Jinlong; Ali Shar, Piar; Wang, Yuan; Wang, Yonghua

    2015-01-01

    A system-level identification of drug-target direct interactions is vital to drug repositioning and discovery. However, the biological means on a large scale remains challenging and expensive even nowadays. The available computational models mainly focus on predicting indirect interactions or direct interactions on a small scale. To address these problems, in this work, a novel algorithm termed weighted ensemble similarity (WES) has been developed to identify drug direct targets based on a large-scale of 98,327 drug-target relationships. WES includes: (1) identifying the key ligand structural features that are highly-related to the pharmacological properties in a framework of ensemble; (2) determining a drug’s affiliation of a target by evaluation of the overall similarity (ensemble) rather than a single ligand judgment; and (3) integrating the standardized ensemble similarities (Z score) by Bayesian network and multi-variate kernel approach to make predictions. All these lead WES to predict drug direct targets with external and experimental test accuracies of 70% and 71%, respectively. This shows that the WES method provides a potential in silico model for drug repositioning and discovery. PMID:26155766

  3. Targeted Drug Delivery to Treat Pain and Cerebral Hypoxia

    PubMed Central

    Davis, Thomas P.

    2013-01-01

    Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion–transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia. PMID:23343976

  4. Giant Fullerenes for Target Specific Drug Delivery

    NASA Astrophysics Data System (ADS)

    Courtney, Robert; Kiefer, Boris

    2013-03-01

    Carbon nano-structures, such as giant fullerenes, have a great potential for biological and medical applications. Most of the previous research is dedicated to investigate the use of fullerenes as vehicles for carrying medication which is chemisorbed on the outside surface of the fullerenes. In contrast, using fullerenes as an enclosure was largely abandoned due to the high strength of the carbon-carbon bonds which has been perceived to prevent the rupturing of the fullerene to release their cargo. We performed atomistic computations based on classical force fields that will address this perception. Specifically we explore the physics and chemistry of OH functionalized carbon based giant fullerenes with diameters from 0.72 nm (60 atoms) to 5.7 nm (3840 atoms). The preliminary results show that OH functionalization on these fullerenes is not only viable but also provides a pH sensitive release mechanism. Furthermore our current results show that carbon-carbon bonds can be broken in low energy biological environments in the presence of a flow induced strain field. These insights may have implications for target specific drug delivery in general and cancer treatment in particular. We gratefully acknowledge support from BP-ENDURE (NIH R25GM097633).

  5. Obesity: Current and potential pharmacotherapeutics and targets.

    PubMed

    Narayanaswami, Vidya; Dwoskin, Linda P

    2017-02-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed. Copyright © 2016 Elsevier

  6. Targeted proteins for diabetes drug design

    NASA Astrophysics Data System (ADS)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  7. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening.

    PubMed

    Park, Yoon-Dong; Sun, Wei; Salas, Antonio; Antia, Avan; Carvajal, Cindy; Wang, Amy; Xu, Xin; Meng, Zhaojin; Zhou, Ming; Tawa, Gregory J; Dehdashti, Jean; Zheng, Wei; Henderson, Christina M; Zelazny, Adrian M; Williamson, Peter R

    2016-08-02

    Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. Cryptococcosis is a neglected fungal meningitis that causes approximately half a million deaths annually. The most effective antifungal agent, amphotericin B, was developed in the 1950s, and no effective medicine has been developed for this disease since that time. A key aspect of amphotericin B's effectiveness is thought to be because of its ability to kill the fungus (fungicidal activity), rather than just stop or slow its growth. The present study utilized a recently identified fungicidal agent, bithionol, to identify potential fungicidal drug targets that can be used in developing modern fungicidal agents. A combined protein and genetic analysis approach was used to identify a class of enzymes, dehydrogenases, that the fungus uses to maintain homeostasis with regard to sugar nutrients. Similarities in the drug target site were found that resulted in simultaneous inhibition and killing of the fungus by bithionol. These studies thus

  8. A Hidden Active Site in the Potential Drug Target Mycobacterium tuberculosis dUTPase Is Accessible through Small Amplitude Protein Conformational Changes.

    PubMed

    Lopata, Anna; Leveles, Ibolya; Bendes, Ábris Ádám; Viskolcz, Béla; Vértessy, Beáta G; Jójárt, Balázs; Tóth, Judit

    2016-12-16

    dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp(21) reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp(21) with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Crystal structure of Mycobacterium tuberculosis ketol-acid reductoisomerase at 1.0 Å resolution - a potential target for anti-tuberculosis drug discovery.

    PubMed

    Lv, You; Kandale, Ajit; Wun, Shun Jie; McGeary, Ross P; Williams, Simon J; Kobe, Bostjan; Sieber, Volker; Schembri, Mark A; Schenk, Gerhard; Guddat, Luke W

    2016-04-01

    The biosynthetic pathway for the branched-chain amino acids is present in plants, fungi and bacteria, but not in animals, making it an attractive target for herbicidal and antimicrobial drug discovery. Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) is the second enzyme in this pathway, converting in a Mg(2+) - and NADPH-dependent reaction either 2-acetolactate or 2-aceto-2-hydroxybutyrate to their corresponding 2,3-dihydroxy-3-alkylbutyrate products. Here, we have determined the crystal structure of Mycobacterium tuberculosis (Mt) KARI, a class I KARI, with two magnesium ions bound in the active site. X-ray data were obtained to 1.0 Å resolution and the final model has an Rfree of 0.163. The structure shows that the active site is solvent-accessible with the two metal ions separated by 4.7 Å. A comparison of this structure with that of Mg(2+) -free Pseudomonas aeruginosa KARI suggests that upon magnesium binding no movement of the N domain relative to the C domain occurs. However, upon formation of the Michaelis complex, as illustrated in the structure of Slackia exigua KARI in complex with NADH.Mg(2+) . N-hydroxy-N-isopropyloxamate (IpOHA, a transition state analog), domain movements and reduction of the metal-metal distance to 3.5 Å are observed. This inherent flexibility therefore appears to be critical for initiation of the KARI-catalyzed reaction. This study provides new insights into the complex structural rearrangements required for activity of KARIs, particularly those belonging to class I, and provides the framework for the rational design of Mt KARI inhibitors that can be tested as novel antituberculosis agents. Coordinates and structure factors for the Mt KARI.Mg(2+) complex are available in the Protein Data Bank under accession number 4YPO. © 2016 Federation of European Biochemical Societies.

  10. Target-Independent Prediction of Drug Synergies Using Only Drug Lipophilicity

    PubMed Central

    2015-01-01

    Physicochemical properties of compounds have been instrumental in selecting lead compounds with increased drug-likeness. However, the relationship between physicochemical properties of constituent drugs and the tendency to exhibit drug interaction has not been systematically studied. We assembled physicochemical descriptors for a set of antifungal compounds (“drugs”) previously examined for interaction. Analyzing the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we found that combinations of two lipophilic drugs had a greater tendency to show drug synergy. We developed a more refined decision tree model that successfully predicted drug synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our predictions achieved a precision of 63% and allowed successful prediction for 58% of synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a substantial fraction of synergistic drug interactions. We also generated and analyzed a large-scale synergistic human toxicity network, in which we observed that combinations of lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms. PMID:25026390

  11. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics.

    PubMed

    Winkler, Gian C; Barle, Ester Lovsin; Galati, Giuseppe; Kluwe, William M

    2014-10-01

    There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Canonical and new generation anticancer drugs also target energy metabolism.

    PubMed

    Rodríguez-Enríquez, Sara; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Marín-Hernández, Alvaro; Pacheco-Velázquez, Silvia C; López-Ramírez, Sayra Y; Rumjanek, Franklin D; Moreno-Sánchez, Rafael

    2014-07-01

    Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.

  13. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  14. [The new era of epithelium-targeted drug development].

    PubMed

    Shimizu, Yoshimi; Nagase, Shotaro; Yagi, Kiyohito; Kondoh, Masuo

    2014-01-01

    Epithelium plays pivotal roles in biological barrier separating the inside of body and the outside environment. Ninety percent of malignant tumors are derived from epithelium. Most pathological microorganisms invade into the body from mucosal epithelium. Thus, epithelium is potential targets for drug development. Claudins (CLs), a family of tetra-transmembrane protein consisting of over 20 members, are structural and functional components of tight junction-seals in epithelium. Modulation of CL-seals enhanced mucosal absorption of drugs. CLs are often over-expressed in malignant tumors. CL-4 expression is increased in the epithelial cells covering the mucosal immune tissues. Very recently, CLs are also expected to be targets for traumatic brain injury and regenerative therapy. In this review, we overview the past, the present and the future of CLs-targeted drug development.

  15. Putative Drugs and Targets for Bipolar Disorder

    PubMed Central

    Zarate, Carlos A.; Manji, Husseini K.

    2009-01-01

    Current pharmacotherapy for bipolar disorder (BPD) is generally unsatisfactory for a large number of patients. Even with adequate modern bipolar pharmacological therapies, many afflicted individuals continue to have persistent mood episode relapses, residual symptoms, functional impairment and psychosocial disability. Creating novel therapeutics for BPD is urgently needed. Promising drug targets and compounds for BPD worthy of further study involve the following systems: purinergic, dynorphin opioid neuropeptide, cholinergic (muscarinic and nicotinic), melatonin and serotonin (5-HT2C receptor), glutamatergic, hypothalamic-pituitary adrenal (HPA) axis have all been implicated. Intracellular pathways and targets worthy of further study include glycogen synthase kinase-3 protein, protein kinase C, arachidonic acid cascade. PMID:18704977

  16. TACC3 overexpression in cholangiocarcinoma correlates with poor prognosis and is a potential anti-cancer molecular drug target for HDAC inhibitors

    PubMed Central

    Wang, Jian-ming; Schemmer, Peter; Yang, Yan; Liu, Yan; Qian, Ya-wei; Qi, Wei-peng; Zhang, Jian; Shen, Qi; Yang, Tao

    2016-01-01

    Histone deacetylases (HDACs) have been implicated in multiple malignant tumors, and HDAC inhibitors (HDACIs) exert anti-cancer effects. However, the expression of HDACs and the anti-tumor mechanism of HDACIs in cholangiocarcinoma (CCA) have not yet been elucidated. In this study, we found that expression of HDACs 2, 3, and 8 were up-regulated in CCA tissues and those patients with high expression of HDAC2 and/or HDAC3 had a worse prognosis. In CCA cells, two HDACIs, trichostatin (TSA) and vorinostat (SAHA), suppressed proliferation and induced apoptosis and G2/M cycle arrest. Microarray analysis revealed that TACC3 mRNA was down-regulated in CCA cells treated with TSA. TACC3 was highly expressed in CCA tissues and predicted a poor prognosis in CCA patients. TACC3 knockdown induced G2/M cycle arrest and suppressed the invasion, metastasis, and proliferation of CCA cells, both in vitro and in vivo. TACC3 overexpression reversed the effects of its knockdown. These findings suggest TACC3 may be a useful prognostic biomarker for CCA and is a potential therapeutic target for HDACIs. PMID:27705912

  17. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data.

    PubMed

    Zhang, Wen; Chen, Yanlin; Liu, Feng; Luo, Fei; Tian, Gang; Li, Xiaohong

    2017-01-05

    Drug-drug interactions (DDIs) are one of the major concerns in drug discovery. Accurate prediction of potential DDIs can help to reduce unexpected interactions in the entire lifecycle of drugs, and are important for the drug safety surveillance. Since many DDIs are not detected or observed in clinical trials, this work is aimed to predict unobserved or undetected DDIs. In this paper, we collect a variety of drug data that may influence drug-drug interactions, i.e., drug substructure data, drug target data, drug enzyme data, drug transporter data, drug pathway data, drug indication data, drug side effect data, drug off side effect data and known drug-drug interactions. We adopt three representative methods: the neighbor recommender method, the random walk method and the matrix perturbation method to build prediction models based on different data. Thus, we evaluate the usefulness of different information sources for the DDI prediction. Further, we present flexible frames of integrating different models with suitable ensemble rules, including weighted average ensemble rule and classifier ensemble rule, and develop ensemble models to achieve better performances. The experiments demonstrate that different data sources provide diverse information, and the DDI network based on known DDIs is one of most important information for DDI prediction. The ensemble methods can produce better performances than individual methods, and outperform existing state-of-the-art methods. The datasets and source codes are available at https://github.com/zw9977129/drug-drug-interaction/ .

  18. Histone as future drug target for malaria.

    PubMed

    Rawat, D S; Lumb, V; Sharma, Y D; Pasha, S T; Singh, G

    2007-06-01

    Malaria continues to be a major cause of mortality and morbidity in tropical countries and affecting around 100 countries of the world. As per WHO estimates, 300-500 million are being infected and 1-3 million deaths annually due to malaria. With the emerging knowledge about genome sequence of all the three counterparts involved in the disease of malaria, the parasite Plasmodium, vector Anopheles and host Homo sapien have helped the scientists to understand interactions between them. Simultaneous advancement in technology further improves the prospects to discover new targets for vaccines and drugs. Though the malaria vaccine is still far away in this situation there is need to develop a potent and affordable drug(s). Histones are the key protein of chromatin and play an important role in DNA packaging, replication and gene expression. They also show frequent post-translation modifications. The specific combinations of these posttranslational modifications are thought to alter chromatin structure by forming epigenetic bar codes that specify either transient or heritable patterns of genome function. Chromatin regulators and upstream pathways are therefore seen as promising targets for development of therapeutic drugs.

  19. Tumour macrophages as potential targets of bisphosphonates

    PubMed Central

    2011-01-01

    bisphosphonates in model studies; In vitro, zoledronic acid causes increased apoptotic cell death; in vivo the drug has been shown to inhibit the production of pro-angiogenic factor MMP-9, as well as most recent evidence showing it can trigger the reversal of the TAMs phenotype from pro-tumoral M2 to tumoricidal M1. There is thus accumulating evidence supporting the hypothesis that effects on TAMs may contribute to the anti-tumour effect of bisphosphonates. This review will focus in detail on the role of tumour associated macrophages in breast cancer progression, the actions of bisphosphonates on macrophages in vitro and in tumour models in vivo and summarise the evidence supporting the potential for the targeting of tumour macrophages with bisphosphonates. PMID:22005011

  20. Leveraging human genetics to guide drug target discovery.

    PubMed

    Stitziel, Nathan O; Kathiresan, Sekar

    2017-07-01

    Identifying appropriate molecular targets is a critical step in drug development. Despite many advantages, the traditional tools of observational epidemiology and cellular or animal models of disease can be misleading in identifying causal pathways likely to lead to successful therapeutics. Here, we review some favorable aspects of human genetics studies that have the potential to accelerate drug target discovery. These include using genetic studies to identify pathways relevant to human disease, leveraging human genetics to discern causal relationships between biomarkers and disease, and studying genetic variation in humans to predict the potential efficacy and safety of inhibitory compounds aimed at molecular targets. We present some examples taken from studies of plasma lipids and coronary artery disease to highlight how human genetics can accelerate therapeutics development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  2. Endocrine receptors as targets for new drugs.

    PubMed

    Altman, Jennifer

    2006-01-01

    Increasingly detailed knowledge of cellular signalling pathways is providing a sound basis for the development of specific drugs aimed at selected components of the pathways. Many of these targets are receptors and the multitude of hormone receptors makes endocrine functions a rich proving ground for this research. This article reviews a recent meeting (Insights into Receptor Function and New Drug Development Targets; 5th Endocrinology Colloquium of the Fondation Ipsen, Paris, December 5, 2005) where progress in defining suitable targets for drug therapies in the endocrine system and in designing drugs for some of these targets was discussed. Although the family of G-protein-coupled receptors, ubiquitous in the endocrine system, was the central focus, comparisons with other receptor families were made. Many mutations affecting genes coding for receptors or other components of signalling pathways have been found in a wide range of endocrine disorders including obesity, parathyroid malfunction, disorders involving thyroid-stimulating hormone and follicle-stimulating hormone, and tumours in the anterior pituitary, as well as in many types of cancer. These are being used to dissect the normal control mechanisms as well as to provide information for the development of selective drugs. Recently identified mutations that affect the intracellular traffic in newly synthesised receptors open up possibilities of another dimension of cellular regulation of signalling. Both the discovery of hormones such as apelin and its pairing with an 'orphan' receptor, and the unexpected action of a drug against cannabinoid receptors point to further levels of complexity in cardiovascular regulation. Deeper understanding of the evolution of receptor families and of the molecular mechanisms of signal transduction is enabling the design of highly specific agonists and antagonists. Pharmacological intervention is not limited to the ligand-receptor interaction but can extend to inhibition of

  3. Pharmaceutical approaches to colon targeted drug delivery systems.

    PubMed

    Chourasia, M K; Jain, S K

    2003-01-01

    Although oral delivery has become a widely accepted route of administration of therapeutic drugs, the gastrointestinal tract presents several formidable barriers to drug delivery. Colonic drug delivery has gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon but also for its potential for the delivery of proteins and therapeutic peptides. To achieve successful colonic delivery, a drug needs to be protected from absorption and /or the environment of the upper gastrointestinal tract (GIT) and then be abruptly released into the proximal colon, which is considered the optimum site for colon-targeted delivery of drugs. Colon targeting is naturally of value for the topical treatment of diseases of colon such as Chron's diseases, ulcerative colitis, colorectal cancer and amebiasis. Peptides, proteins, oligonucleotides and vaccines pose potential candidature for colon targeted drug delivery. The various strategies for targeting orally administered drugs to the colon include covalent linkage of a drug with a carrier, coating with pH-sensitive polymers, formulation of timed released systems, exploitation of carriers that are degraded specifically by colonic bacteria, bioadhesive systems and osmotic controlled drug delivery systems. Various prodrugs (sulfasalazine, ipsalazine, balsalazine and olsalazine) have been developed that are aimed to deliver 5-amino salicylic acid (5-ASA) for localized chemotherapy of inflammatory bowl disease (IBD). Microbially degradable polymers especially azo crosslinked polymers have been investigated for use in targeting of drugs to colon. Certain plant polysaccharides such as amylose, inulin, pectin and guar gum remains unaffected in the presence of gastrointestinal enzymes and pave the way for the formulation of colon targeted drug delivery systems. The concept of using pH as a rigger to release a drug in the colon is based on the pH conditions that vary continuously

  4. Progress in brain targeting drug delivery system by nasal route.

    PubMed

    Khan, Abdur Rauf; Liu, Mengrui; Khan, Muhammad Wasim; Zhai, Guangxi

    2017-09-05

    The blood-brain barrier (BBB) restricts the transport of potential therapeutic moieties to the brain. Direct targeting the brain via olfactory and trigeminal neural pathways by passing the BBB has gained an important consideration for delivery of wide range of therapeutics to brain. Intranasal route of transportation directly delivers the drugs to brain without systemic absorption, thus avoiding the side effects and enhancing the efficacy of neurotherapeutics. Over the last several decades, different drug delivery systems (DDSs) have been studied for targeting the brain by the nasal route. Novel DDSs such as nanoparticles (NPs), liposomes and polymeric micelles have gained potential as useful tools for targeting the brain without toxicity in nasal mucosa and central nervous system (CNS). Complex geometry of the nasal cavity presented a big challenge to effective delivery of drugs beyond the nasal valve. Recently, pharmaceutical firms utilized latest and emerging nasal drug delivery technologies to overcome these barriers. This review aims to describe the latest development of brain targeted DDSs via nasal administration. Carbopol 934p (PubChem CID: 6581) Carboxy methylcellulose (PubChem CID: 24748) Penetratin (PubChem CID: 101111470) Poly lactic-co-glycolic acid (PubChem CID: 23111554) Tween 80 (PubChem CID: 5284448). Copyright © 2017. Published by Elsevier B.V.

  5. Drug Affinity Responsive Target Stability (DARTS) for Small Molecule Target Identification

    PubMed Central

    Hwang, Heejun; Schiestl, Robert; McBride, William; Loo, Joseph A.; Huang, Jing

    2015-01-01

    Drug Affinity Responsive Target Stability (DARTS) is a relatively quick and straightforward approach to identify potential protein targets for small molecules. It relies on the protection against proteolysis conferred on the target protein by interaction with a small molecule. The greatest advantage of this method is being able to use the native small molecule without having to immobilize or modify it (e.g. by incorporation of biotin, fluorescent, radioisotope, or photo-affinity labels). Here we describe in detail the protocol for performing unbiased DARTS with complex protein lysate to identify potential binding targets of small molecules and for using DARTS-Western blotting to test, screen, or validate potential small molecule targets. Although the ideas have mainly been developed from studying molecules in areas of biology that are currently of interest to us and our collaborators, the general principles should be applicable to the analysis of all molecules in nature. PMID:25618353

  6. Effect of functionalization on drug delivery potential of carbon nanotubes.

    PubMed

    Sharma, Sonam; Mehra, Neelesh Kumar; Jain, Keerti; Jain, Narendra Kumar

    2016-12-01

    The main aim of the present investigation was to explore the effect of functionalization on drug delivery potential of carbon nanotubes (CNTs) and to compare the in vitro and in vivo cancer targeting potential of doxorubicin HCL (DOX)-loaded ox-/multi-walled CNTs (MWCNTs), DOX-loaded PEG-MWCNTs and DOX-loaded FA-PEG-MWCNTs. The DOX/PEG-FA-MWCNTs showed enhanced cytotoxicity and were most preferentially taken up by the cancerous cells. The obtained results also support the extended resistance time and sustained release profile of drug-loaded surface-engineered MWCNTs. Overall, we concluded that the developed MWCNTs nanoformulations have higher cancer targeting potential.

  7. Functional and mechanistic analysis of telomerase: An antitumor drug target.

    PubMed

    Chen, Yinnan; Zhang, Yanmin

    2016-07-01

    The current research on anticancer drugs focuses on exploiting particular traits or hallmarks unique to cancer cells. Telomerase, a special reverse transcriptase, has been recognized as a common factor in most tumor cells, and in turn a distinctive characteristic with respect to non-malignant cells. This feature has made telomerase a preferred target for anticancer drug development and cancer therapy. This review aims to analyze the pharmacological function and mechanism and role of telomerase in oncogenesis; to provide fundamental knowledge for research on the structure, function, and working mechanism of telomerase; to expound the role that telomerase plays in the initiation and development of tumor and its relationship with tumor cell growth, proliferation, apoptosis, and related pathway molecules; and to display potential targets of antitumor drug for inhibiting the expression, reconstitution, and trafficking of the enzyme. We therefore summarize recent advances in potential telomerase inhibitors for antitumor including natural products, synthetic small molecules, peptides and proteins, which indicate that optimizing the delivery method and drug combination could be of help in a combinatorial drug treatment for tumor. More extensive understanding of the structure, biogenesis, and mechanism of telomerase will provide invaluable information for increasing the efficiency of rational antitumor drug design. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Clinical Potential of Senolytic Drugs.

    PubMed

    Kirkland, James L; Tchkonia, Tamara; Zhu, Yi; Niedernhofer, Laura J; Robbins, Paul D

    2017-09-04

    Senolytic drugs are agents that selectively induce apoptosis of senescent cells. These cells accumulate in many tissues with aging and at sites of pathology in multiple chronic diseases. In studies in animals, targeting senescent cells using genetic or pharmacological approaches delays, prevents, or alleviates multiple age-related phenotypes, chronic diseases, geriatric syndromes, and loss of physiological resilience. Among the chronic conditions successfully treated by depleting senescent cells in preclinical studies are frailty, cardiac dysfunction, vascular hyporeactivity and calcification, diabetes mellitus, liver steatosis, osteoporosis, vertebral disk degeneration, pulmonary fibrosis, and radiation-induced damage. Senolytic agents are being tested in proof-of-concept clinical trials. To do so, new clinical trial paradigms for testing senolytics and other agents that target fundamental aging mechanisms are being developed, because use of long-term endpoints such as lifespan or healthspan is not feasible. These strategies include testing effects on multimorbidity, accelerated aging-like conditions, diseases with localized accumulation of senescent cells, potentially fatal diseases associated with senescent cell accumulation, age-related loss of physiological resilience, and frailty. If senolytics or other interventions that target fundamental aging processes prove to be effective and safe in clinical trials, they could transform geriatric medicine by enabling prevention or treatment of multiple diseases and functional deficits in parallel, instead of one at a time. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  9. Parasitic diarrheal disease: drug development and targets

    PubMed Central

    Azam, Amir; Peerzada, Mudasir N.; Ahmad, Kamal

    2015-01-01

    Diarrhea is the manifestation of gastrointestinal infection and is one of the major causes of mortality and morbidity specifically among the children of less than 5 years age worldwide. Moreover, in recent years there has been a rise in the number of reports of intestinal infections continuously in the industrialized world. These are largely related to waterborne and food borne outbreaks. These occur by the pathogenesis of both prokaryotic and eukaryotic organisms like bacteria and parasites. The parasitic intestinal infection has remained mostly unexplored and under assessed in terms of therapeutic development. The lack of new drugs and the risk of resistance have led us to carry out this review on drug development for parasitic diarrheal diseases. The major focus has been depicted on commercially available drugs, currently synthesized active heterocyclic compounds and unique drug targets, that are vital for the existence and growth of the parasites and can be further exploited for the search of therapeutically active anti-parasitic agents. PMID:26617574

  10. New drugs and treatment targets in psoriasis.

    PubMed

    Kofoed, Kristian; Skov, Lone; Zachariae, Claus

    2015-02-01

    In recent years, the increased understanding of the pathophysiology of psoriasis has resulted in several new treatments. The success of ustekinumab proved the importance of the IL-23/T helper cell 17 axis in psoriatic diseases. Several new biologics targeting this axis will reach the clinic in the next years. Biologics are costly, require injections, and some patients experience tacaphylaxis, thus, the development of orally available, small-molecule inhibitors is desirable. Among small-molecules under investigation are A3 adenosine receptor agonists, Janus kinase inhibitors, and phosphodiesterase inhibitors. We review published clinical trials, and conference abstracts presented during the last years, concerned with new drugs under development for the treatment of psoriasis. In conclusion, our psoriasis armamentarium will be filled with several new effective therapeutic options the coming years. We need to be aware of the limitations of drug safety data when selecting new novel treatments. Monitoring and clinical registries are still important tools.

  11. A smart multifunctional drug delivery nanoplatform for targeting cancer cells

    NASA Astrophysics Data System (ADS)

    Hoop, M.; Mushtaq, F.; Hurter, C.; Chen, X.-Z.; Nelson, B. J.; Pané, S.

    2016-06-01

    Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of most tumors. Approximately a 2.5 times higher drug release from Ni nanotubes at pH = 6 is achieved compared to that at pH = 7.4. The outside of the Ni tube is coated with gold. A fluorescein isothiocyanate (FITC) labeled thiol-ssDNA, a biological marker, was conjugated on its surface by thiol-gold click chemistry, which enables traceability. The Ni nanotube allows the propulsion of the device by means of external magnetic fields. As the proposed nanoarchitecture integrates different functional building blocks, our drug delivery nanoplatform can be employed for carrying molecular drug conjugates and for performing targeted combinatorial therapies, which can provide an alternative and supplementary solution to current drug delivery technologies.Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of

  12. DRUG TARGET PREDICTIONS BASED ON HETEROGENEOUS GRAPH INFERENCE

    PubMed Central

    Wang, Wenhui; Yang, Sen; Li, JING

    2013-01-01

    A key issue in drug development is to understand the hidden relationships among drugs and targets. Computational methods for novel drug target predictions can greatly reduce time and costs compared with experimental methods. In this paper, we propose a network based computational approach for novel drug and target association predictions. More specifically, a heterogeneous drug-target graph, which incorporates known drug-target interactions as well as drug-drug and target-target similarities, is first constructed. Based on this graph, a novel graph-based inference method is introduced. Compared with two state-of-the-art methods, large-scale cross-validation results indicate that the proposed method can greatly improve novel target predictions. PMID:23424111

  13. Mycobacterial DNA Replication as a Target for Antituberculosis Drug Discovery.

    PubMed

    Płocinska, Renata; Korycka-Machala, Malgorzata; Plocinski, Przemyslaw; Dziadek, Jaroslaw

    2017-06-16

    Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is a leading infectious disease organism, causing millions of deaths each year. This serious pathogen has been greatly spread worldwide and recent years have observed an increase in the number of multi-drug resistant and totally drug resistant M. tuberculosis strains (WHO report, 2014). The danger of tuberculosis becoming an incurable disease has emphasized the need for the discovery of a new generation of antimicrobial agents. The development of novel alternative medical strategies, new drugs and the search for optimal drug targets are top priority areas of tuberculosis research. Key characteristics of mycobacteria include: slow growth, the ability to transform into a metabolically silent - latent state, intrinsic drug resistance and the relatively rapid development of acquired drug resistance. These factors make finding an ideal antituberculosis drug enormously challenging, even if it is designed to treat drug sensitive tuberculosis strains. A vast majority of canonical antibiotics including antituberculosis agents target bacterial cell wall biosynthesis or DNA/RNA processing. Novel therapeutic approaches are being tested to target mycobacterial cell division, twocomponent regulatory factors, lipid synthesis and the transition between the latent and actively growing states. This review discusses the choice of cellular targets for an antituberculosis therapy, describes putative drug targets evaluated in the recent literature and summarizes potential candidates under clinical and pre-clinical development. We focus on the key cellular process of DNA replication, as a prominent target for future antituberculosis therapy. We describe two main pathways: the biosynthesis of nucleic acids precursors - the nucleotides, and the synthesis of DNA molecules. We summarize data regarding replication associated proteins that are critical for nucleotide synthesis, initiation, unwinding and

  14. GABA transporters as targets for new drugs.

    PubMed

    Sałat, Kinga; Kulig, Katarzyna

    2011-02-01

    GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tone that counterbalances neuronal excitation. The identification and subsequent development of GABA-transport inhibitors has shown the important role that GABA transporters play in the control of the CNS. To date, four GABA transporters have been cloned (GAT1-4). Compounds that inhibit GABA uptake are targets for epilepsy treatment. Currently, they are also being investigated for other possible indications such as the treatment of psychosis, general anxiety and sleep disorders, drug addiction, acute and chronic pain. These and other issues are discussed in this article.

  15. Drug Targets in Mycobacterial Sulfur Metabolism

    PubMed Central

    Bhave, Devayani P.; Muse, Wilson B.; Carroll, Kate S.

    2011-01-01

    The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress in the development of inhibitors of sulfur metabolism enzymes. PMID:17970225

  16. Enzyme Tunnels and Gates As Relevant Targets in Drug Design.

    PubMed

    Marques, Sergio M; Daniel, Lukas; Buryska, Tomas; Prokop, Zbynek; Brezovsky, Jan; Damborsky, Jiri

    2017-09-01

    Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs. © 2016 Wiley Periodicals, Inc.

  17. The tuberculosis drug discovery and development pipeline and emerging drug targets.

    PubMed

    Mdluli, Khisimuzi; Kaneko, Takushi; Upton, Anna

    2015-01-29

    The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal.

  18. Increasing the Structural Coverage of Tuberculosis Drug Targets

    PubMed Central

    Baugh, Loren; Phan, Isabelle; Begley, Darren W.; Clifton, Matthew C.; Armour, Brianna; Dranow, David M.; Taylor, Brandy M.; Muruthi, Marvin M.; Abendroth, Jan; Fairman, James W.; Fox, David; Dieterich, Shellie H.; Staker, Bart L.; Gardberg, Anna S.; Choi, Ryan; Hewitt, Stephen N.; Napuli, Alberto J.; Myers, Janette; Barrett, Lynn K.; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Tran, Ngoc; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Lorimer, Don; Buchko, Garry W.; Stacy, Robin; Stewart, Lance J.; Edwards, Thomas E.; Van Voorhis, Wesley C.; Myler, Peter J.

    2015-01-01

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus “homolog-rescue” strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD <1Å, >85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases. PMID:25613812

  19. Increasing the structural coverage of tuberculosis drug targets

    DOE PAGES

    Baugh, Loren; Phan, Isabelle; Begley, Darren W.; ...

    2014-12-19

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus “homolog-rescue” strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. We found that of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structuresmore » would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD <1 Å, >85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.« less

  20. Increasing the structural coverage of tuberculosis drug targets

    SciTech Connect

    Baugh, Loren; Phan, Isabelle; Begley, Darren W.; Clifton, Matthew C.; Armour, Brianna; Dranow, David M.; Taylor, Brandy M.; Muruthi, Marvin M.; Abendroth, Jan; Fairman, James W.; Fox, David; Dieterich, Shellie H.; Staker, Bart L.; Gardberg, Anna S.; Choi, Ryan; Hewitt, Stephen N.; Napuli, Alberto J.; Myers, Janette; Barrett, Lynn K.; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Tran, Ngoc; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Lorimer, Don; Buchko, Garry W.; Stacy, Robin; Stewart, Lance J.; Edwards, Thomas E.; Van Voorhis, Wesley C.; Myler, Peter J.

    2014-12-19

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus “homolog-rescue” strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. We found that of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD <1 Å, >85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.

  1. Molecular Characteristics of Multicorn, a New Large Proteolytic Assembly and Potential Anti-Cancer Drug Target, in Human Breast Cancer Cells

    DTIC Science & Technology

    2005-05-01

    highly complex posttranslational modifications of TPPII. Task 3: months 6 - 18; expressing the gene(s) in Schizosaccharomyces pombe or mammalian...trends of increasing dead cell count and decreasing number of viable cells for different doses of the drugs remained the same as for the 48 hours...with AAF-CMAC were briefly washed with cold 50% ethanol , dried in air and wet-mounted on slides with PBS containing 0.3 mg/ml of PI. Synthesis of AAF

  2. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    PubMed Central

    Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  3. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.

    PubMed

    Swedberg, Michael D B

    2016-01-01

    Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit

  4. P2X Receptors as Drug Targets

    PubMed Central

    Jarvis, Michael F.

    2013-01-01

    The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets. PMID:23253448

  5. NSAIDs: Old Drugs Reveal New Anticancer Targets.

    PubMed

    Piazza, Gary A; Keeton, Adam B; Tinsley, Heather N; Whitt, Jason D; Gary, Bernard D; Mathew, Bini; Singh, Raj; Grizzle, William E; Reynolds, Robert C

    2010-05-25

    There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX) inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  6. Magnetic Drug Targeting in Arterial Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Puri, Ishwar; Vlachos, Pavlos

    2006-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to effectively deliver medicinal drugs via functionalized magnetic particles to target sites during the treatment of diseases. In this paper we investigate the interaction of coronary and pulsatile flows laden with superparamagnetic microparticles in a vessel under the influence of a magnetic field induced by a 1 Tesla permanent magnet. Coronary and peripheral pulsatile flows were examined across a range of conditions that are representative of those found within the cardiovascular system. The flow in the model was measured using TRDPIV (Time Resolved Digital Particle Image Velocimetry) and data was acquired with sampling up to 1 kHz. The data obtained from the experiment indicates that for the range of flows studied, the behavior of the ferrofluid mass is physically abundant. The ferrofluid mass deforms in response to the pulsatility of the flow, generating wavy structures that ultimately shed portions of the ferrofluid downstream in a fashion similar to a Kelvin-Helmholtz shear layer. This experiment is the first to address the fluid dynamics of the interactions between the flow and the ferrofluid mass over the range of biological conditions.

  7. Zika Virus Protease: An Antiviral Drug Target.

    PubMed

    Kang, CongBao; Keller, Thomas H; Luo, Dahai

    2017-10-01

    The recent outbreak of Zika virus (ZIKV) infection has caused global concern due to its link to severe damage to the brain development of foetuses and neuronal complications in adult patients. A worldwide research effort has been undertaken to identify effective and safe treatment and vaccination options. Among the proposed viral and host components, the viral NS2B-NS3 protease represents an attractive drug target due to its essential role in the virus life cycle. Here, we outline recent progress in studies on the Zika protease. Biochemical, biophysical, and structural studies on different protease constructs provide new insight into the structure and activity of the protease. The unlinked construct displays higher enzymatic activity and better mimics the native state of the enzyme and therefore is better suited for drug discovery. Furthermore, the structure of the free enzyme adopts a closed conformation and a preformed active site. The availability of a lead fragment hit and peptide inhibitors, as well as the attainability of soakable crystals, suggest that the unlinked construct is a promising tool for drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Predicting drug-target interactions using probabilistic matrix factorization.

    PubMed

    Cobanoglu, Murat Can; Liu, Chang; Hu, Feizhuo; Oltvai, Zoltán N; Bahar, Ivet

    2013-12-23

    Quantitative analysis of known drug-target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent variables show phenotypic similarity even in the absence of 3D shape similarity. Benchmarking computations show that the method outperforms those recently introduced provided that the input data set of known interactions is sufficiently large--which is the case for enzymes and ion channels, but not for G-protein coupled receptors (GPCRs) and nuclear receptors. Runs performed on DrugBank after hiding 70% of known interactions show that, on average, 88 of the top 100 predictions hit the hidden interactions. De novo predictions permit us to identify new potential interactions. Drug-target pairs implicated in neurobiological disorders are overrepresented among de novo predictions.

  9. [Site-specific drug delivery systems. I. Colon targeted delivery].

    PubMed

    Szente, Virág; Zelkó, Romána

    2007-01-01

    Colon specific drug delivery has gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon like Chron's disease, ulcerative colitis, irritable bowel syndrome, cancer or infections, but also for the potential it holds for the systemic delivery of proteins (e.g. insulin) and therapeutic peptides. These systems enable the protection of healthy tissues from the side effects of drugs and the drug intake of targeted cells, as well. The formulation of colon specific drug delivery systems is of great impact in the case of diseases having circadian rhythm (midnight gerd). Such circadian rhythm release drug delivery systems are designed to provide a plasma concentration--time profile, which varies according to physiological need at different times during the dosing period, i.e., mimicking the circadian rhythm and severity/manifestation of gastric acid secretion (and/or midnight gerd). In general four primary approaches have been proposed for colon targeted delivery namely pH-dependent systems, time dependent systems, colonic microflora activated systems and prodrugs.

  10. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  11. Molecular dynamics simulations and statistical coupling analysis of GPI12 in L. major: functional co-evolution and conservedness reveals potential drug-target sites.

    PubMed

    Singh, Shailza; Mandlik, Vineetha; Shinde, Sonali

    2015-03-01

    GPI12 represents an important enzyme in the GPI biosynthetic pathway of several parasites like 'Leishmania'. GPI activity is generally regulated through either the hindrance in GPI complex assembly formation or the modulation of the lipophosphoglycan (LPG) flux to either reduce or enhance the pathogenicity in an organism. Of the various GPI molecules known, GPI12 is an important enzyme in the GPI biosynthetic pathway which can be exploited as a target due to the substrate specificity difference in parasites and humans. In the present study, the functional importance of the co-evolving residues of the GPI12 protein of Leishmania has been highlighted using the GPI proteins belonging to the GlcNAC-deacetylase family. Exploring the active site of the GPI12 protein and designing inhibitors against the functional residues provide ways and means to change the efficiency of deacetylation activity of the enzyme. The activity of de-N-acetylase is low in the absence of metal ions like zinc. Hence we designed eight small molecules in order to modulate the activity of GPI12. Compound 8 was found to be an appropriate choice to target the agonist (GPI12) active site thereby targeting the residues which were essential in the Zn binding and chelation activity. Inhibition of these sites offered a strong constraint to block the protein activity and in turn GPI biosynthesis.

  12. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    DTIC Science & Technology

    2014-10-01

    both oncolysis and induction of specific tumor-targeted immune responses in the host (4). Because viral oncolysis has a potential to induce tumor...intervention using viral delivery of cDNA from the same cell population. We hypothesize that the delivery of a tumor antigen library 5 derived from a...infection (MOIs) of VSV expressing green fluorescent protein (GFP) and analyzed by flow cytometry and plaque assay for VSV replication and induction

  13. Cancer stem cells and drug resistance: the potential of nanomedicine

    PubMed Central

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  14. Heat shock proteins, cell survival and drug resistance: the mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy.

    PubMed

    Landriscina, Matteo; Amoroso, Maria Rosaria; Piscazzi, Annamaria; Esposito, Franca

    2010-05-01

    Protein homeostasis is a highly complex network of molecular interactions governing the health and life span of the organism. Molecular chaperones, mainly heat shock proteins (HSP) and other stress-inducible proteins abundantly expressed in multiple compartments of the cell, are major modulators of protein homeostasis. TRAP1 is a mitochondrial HSP involved in protection against oxidant-induced DNA damage and apoptosis. It was recently described as a component of a mitochondrial pathway selectively up-regulated in tumor cells which antagonizes the proapoptotic activity of cyclophilin D, a mitochondrial permeability transition pore regulator, and is responsible for the maintenance of mitochondrial integrity, thus favoring cell survival. Interestingly, novel TRAP1 antagonists cause sudden collapse of mitochondrial function and selective tumor cell death, suggesting that this pathway may represent a novel molecular target to improve anticancer therapy. Preliminary data suggest that TRAP1 may be a valuable biomarker in ovarian cancers: in fact, TRAP1 levels are significantly higher in cisplatin-resistant ovarian tumors and ovarian carcinoma cell lines. While major advances have been made in understanding the genetics and molecular biology of cancer, given the considerable heterogeneity of ovarian cancer, the introduction of novel targeted therapies and the consequent selection of treatments based on the molecular profile of each tumor may have a major impact on the management of this malignancy and might contribute to building a new era of personalized medicine. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Bacterial Transcription as a Target for Antibacterial Drug Development.

    PubMed

    Ma, Cong; Yang, Xiao; Lewis, Peter J

    2016-03-01

    Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Bacterial Transcription as a Target for Antibacterial Drug Development

    PubMed Central

    Ma, Cong; Yang, Xiao

    2016-01-01

    SUMMARY Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. PMID:26764017

  17. Intracranial Self-Stimulation to Evaluate Abuse Potential of Drugs

    PubMed Central

    Miller, Laurence L.

    2014-01-01

    Intracranial self-stimulation (ICSS) is a behavioral procedure in which operant responding is maintained by pulses of electrical brain stimulation. In research to study abuse-related drug effects, ICSS relies on electrode placements that target the medial forebrain bundle at the level of the lateral hypothalamus, and experimental sessions manipulate frequency or amplitude of stimulation to engender a wide range of baseline response rates or response probabilities. Under these conditions, drug-induced increases in low rates/probabilities of responding maintained by low frequencies/amplitudes of stimulation are interpreted as an abuse-related effect. Conversely, drug-induced decreases in high rates/probabilities of responding maintained by high frequencies/amplitudes of stimulation can be interpreted as an abuse-limiting effect. Overall abuse potential can be inferred from the relative expression of abuse-related and abuse-limiting effects. The sensitivity and selectivity of ICSS to detect abuse potential of many classes of abused drugs is similar to the sensitivity and selectivity of drug self-administration procedures. Moreover, similar to progressive-ratio drug self-administration procedures, ICSS data can be used to rank the relative abuse potential of different drugs. Strengths of ICSS in comparison with drug self-administration include 1) potential for simultaneous evaluation of both abuse-related and abuse-limiting effects, 2) flexibility for use with various routes of drug administration or drug vehicles, 3) utility for studies in drug-naive subjects as well as in subjects with controlled levels of prior drug exposure, and 4) utility for studies of drug time course. Taken together, these considerations suggest that ICSS can make significant contributions to the practice of abuse potential testing. PMID:24973197

  18. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.

    PubMed

    Sawada, Ryusuke; Iwata, Hiroaki; Mizutani, Sayaka; Yamanishi, Yoshihiro

    2015-12-28

    Drug repositioning, or the identification of new indications for known drugs, is a useful strategy for drug discovery. In this study, we developed novel computational methods to predict potential drug targets and new drug indications for systematic drug repositioning using large-scale chemical-protein interactome data. We explored the target space of drugs (including primary targets and off-targets) based on chemical structure similarity and phenotypic effect similarity by making optimal use of millions of compound-protein interactions. On the basis of the target profiles of drugs, we constructed statistical models to predict new drug indications for a wide range of diseases with various molecular features. The proposed method outperformed previous methods in terms of interpretability, applicability, and accuracy. Finally, we conducted a comprehensive prediction of the drug-target-disease association network for 8270 drugs and 1401 diseases and showed biologically meaningful examples of newly predicted drug targets and drug indications. The predictive model is useful to understand the mechanisms of the predicted drug indications.

  19. [Monogenic hypercholesterolemias: new genes, new drug targets].

    PubMed

    Mandel'shtam, M Iu; Vasil'ev, V B

    2008-10-01

    This review is focused on recent data on structure and functions of PCSK9 proprotein convertase, a newly identified participant in cholesterol metabolism in mammalian organisms, including humans. Proprotein convertase acts as a molecular chaperone for the low density lipoprotein (LDL) receptor, targeting it to the lysosomal degradation pathway. Various mutations increasing the PCSK9 affinity toward the LDL receptor cause autosomal dominant hypercholesterolemia. In contrast, loss-of-function mutations in PCSK9 gene decrease the blood plasma cholesterol level, thus acting as a protection factor against atherosclerosis and coronary heart disease. It is supposed that pharmacological agents inhibiting the interaction between PCSK9 and LDL receptor may substantially amplify the benefits of drugs--statins and cholesterol absorption blockers--in the treatment of all types of hypercholesterolemia, including its widespread multigenic and multifactorial forms.

  20. Potential of metabolomics in preclinical and clinical drug development.

    PubMed

    Kumar, Baldeep; Prakash, Ajay; Ruhela, Rakesh Kumar; Medhi, Bikash

    2014-12-01

    Metabolomics is an upcoming technology system which involves detailed experimental analysis of metabolic profiles. Due to its diverse applications in preclinical and clinical research, it became an useful tool for the drug discovery and drug development process. This review covers the brief outline about the instrumentation and interpretation of metabolic profiles. The applications of metabolomics have a considerable scope in the pharmaceutical industry, almost at each step from drug discovery to clinical development. These include finding drug target, potential safety and efficacy biomarkers and mechanisms of drug action, the validation of preclinical experimental models against human disease profiles, and the discovery of clinical safety and efficacy biomarkers. As we all know, nowadays the drug discovery and development process is a very expensive, and risky business. Failures at any stage of drug discovery and development process cost millions of dollars to the companies. Some of these failures or the associated risks could be prevented or minimized if there were better ways of drug screening, drug toxicity profiling and monitoring adverse drug reactions. Metabolomics potentially offers an effective route to address all the issues associated with the drug discovery and development. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities.

    PubMed

    Edson, Katheryne Z; Rettie, Allan E

    2013-01-01

    The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20- hydroxyeicosatetraenoic acid, or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases.

  2. Potential drug therapies for the treatment of fibromyalgia.

    PubMed

    Lawson, Kim

    2016-09-01

    Fibromyalgia (FM) is a common, complex chronic widespread pain condition is characterized by fatigue, sleep disturbance and cognitive dysfunction. Treatment of FM is difficult, requiring both pharmacological and non-pharmacological approaches, with an empiric approach to drug therapy focused toward individual symptoms, particularly pain. The effectiveness of current medications is limited with many patients discontinuing use. A systemic database search has identified 26 molecular entities as potential emerging drug therapies. Advances in the understanding of the pathophysiology of FM provides clues to targets for new medications. Investigation of bioamine modulation and α2δ ligands and novel targets such as dopamine receptors, NMDA receptors, cannabinoid receptors, melatonin receptors and potassium channels has identified potential drug therapies. Modest improvement of health status in patients with FM has been observed with drugs targeting a diverse range of molecular mechanisms. No single drug, however, offered substantial efficacy against all the symptoms characteristic of FM. Identification of new and improved therapies for FM needs to address the heterogeneity of the condition, which suggests existence of patient subgroups, the relationship of central and peripheral aspects of the pathophysiology and a requirement of combination therapy with drugs targeting multiple molecular mechanisms.

  3. [Development of molecular targeting drugs for the treatment of cancer-therapeutic potential and issues to be addressed in global development].

    PubMed

    Akaza, H; Aiba, K; Isonishi, S; Ogawa, O; Shibuya, M; Sone, S; Tsuruo, T; Noguchi, S; Hinotsu, S; Kono, S; Mikami, O; Blackledge, G; Vose, B; Stribling, D

    2000-10-01

    A survey of cancer treatment in a sample of hospitals > 100 beds conducted in 1998 compared with experience in the US showed that good progress has been achieved in Japan in the screening and early treatment of gastric cancer, and that the prognosis for breast cancer is better than in the West. Although in the past, the cytotoxic therapies available to physicians in Japan vs the West have been different, recent acceleration of regulatory review will result in a convergence of treatment paradigms and some improvement in acute response in many tumour types. However, world wide there is a need for new improved therapies in all cancers evaluated. Particular needs are in the management of NSCLC, advanced disease and cancers which form micrometastases. The eventual hope is that cancer can be turned from a lethal disease into a chronic disease where patients maintain a good QOL. Apart from anti hormonal therapies, the usual approach has been to kill the cancerous cells. However, the new approaches to intervening in the growth and migration of cancerous cells or the host tissue response by molecular targeting offer the promise of achieving a step change in therapy. Although EGF tyrosine Kinase inhibitors such as ZD 1839 have been shown to cause a conventional tumour response in NSCLC, many of these new approaches are unlikely to show a short term response even if they have the capacity to affect tumour development and increase disease free survival. Some compounds will require combination therapy with a conventional cytotoxic or radiotherapy to show their full benefit. For conventional cytotoxics, the usual approach to development has been to select the maximum tolerated dose and then evaluate the efficacy in advanced disease. However, for the new approaches which will not have such severe dose limiting toxicities, it will be necessary to select a surrogate marker of the intended biological effect to select the optimal biological dose (OBD) and dose regimen in phase I

  4. Targeting caveolae for vesicular drug transport.

    PubMed

    Gumbleton, Mark; Hollins, Andrew J; Omidi, Yadollah; Campbell, Lee; Taylor, Glyn

    2003-02-21

    Caveolae are morphologically evident as omega-shaped invaginations of the plasma membrane with a diameter of 50-100 nm. They may also exist in a variety of other forms including flattened domains indistinguishable from the plasma membrane itself. At least in some cell types caveolae undertake transport functions including that of the endocytic and transcytotic movement of macromolecules, and indeed microbes and microbial toxins. Opportunities exist for basic and applied investigators working within the pharmaceutical sciences to exploit caveolae membrane interactions with the aim to develop of novel cellular or transcellular drug delivery strategies. This overview article will provide: pertinent information on the biology of the caveolae membrane system; review the various caveolae isolation methods; highlight some of the literature evidence showing that caveolae are functional with regard to macromolecule transport; discuss the role that caveolae could fulfill in the pulmonary absorption of therapeutic proteins from alveolar airspace to capillary blood following inhalational drug delivery, and finally review some very recent work showing proof-of-principle that caveolae domains can be targeted in a tissue-specific manner with highly selective ligands.

  5. Rhamnogalacturonan-I Based Microcapsules for Targeted Drug Release

    PubMed Central

    Kusic, Anja; De Gobba, Cristian; Larsen, Flemming H.; Sassene, Philip; Zhou, Qi; van de Weert, Marco; Mullertz, Anette; Jørgensen, Bodil; Ulvskov, Peter

    2016-01-01

    Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract. PMID:27992455

  6. Rhamnogalacturonan-I Based Microcapsules for Targeted Drug Release.

    PubMed

    Svagan, Anna J; Kusic, Anja; De Gobba, Cristian; Larsen, Flemming H; Sassene, Philip; Zhou, Qi; van de Weert, Marco; Mullertz, Anette; Jørgensen, Bodil; Ulvskov, Peter

    2016-01-01

    Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract.

  7. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  8. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs.

    PubMed

    Yun, Ke-Li; Wang, Zhen Yu

    2017-07-01

    Radiation damage can occur in nuclear power plant workers when physical protections fail, which results in nuclear leakage through the protective layers. Alternatively, workers may be unable to use physical protection in time (in the case of a sudden nuclear weapons attack). In addition, patients who receive local radiotherapy and are not allowed to adopt local physical protection may experience radiation damage. Thus, protection against chemical radiation has become indispensable. In view of the side effects caused by synthetic radioprotective agents (such as amisfostine), searching for radioprotective agents from plant sources is an alternative strategy. Radiation damage can cause multiple signalling pathway disturbances, leading to multiple organ injuries. Changes in these signalling pathways can lead to apoptosis, necrosis, and autophagy, as well as organ fibrosis, atrophy, and inflammation. Through literature searches, we determined that most targets for treating radiation injury are mechanistically opposite those of anti-tumour agents. This is likely attributable to the idea that anti-tumour agents promote cell necrosis or apoptosis, whereas the goal of anti-radiation agents is to promote cell survival or autophagy. This observation has important theoretical and practical significance when searching and developing new radioprotective agents derived from plant extracts. Further, it has important guiding value for meeting military needs and serving the public. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. The Research Progress of Targeted Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  10. Theoretical study of zeatin - A plant hormone and potential drug for neural diseases - On the basis of DFT, MP2 and target docking

    NASA Astrophysics Data System (ADS)

    Liu, Xueping; Bereźniak, Tomasz; Panek, Jarosław Jan; Jezierska-Mazzarello, Aneta

    2013-02-01

    Zeatin, a cytokinin of the adenine family, originally isolated from Zea mays L., exhibits also bioeffects towards human cells: it is a potent acetylcholinesterase inhibitor and can potentially inhibit amyloid β-protein formation. The role of zeatin in neural disease treatment is yet to be established. This computational study describes a hierarchy of interactions between zeatin and a receptor, a protein from the nodulin family. DFT in hybrid and dispersion-corrected form as well as MP2 approaches were used to derive interaction energies. Docking procedure was employed to investigate the role of selected interaction for anchoring the ligand.

  11. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  12. Targeted Protein Degradation: from Chemical Biology to Drug Discovery.

    PubMed

    Cromm, Philipp M; Crews, Craig M

    2017-09-21

    Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can hamper compound efficacy. Nucleic acid-based strategies that control protein function by affecting expression have emerged as an alternative. However, metabolic stability and broad bioavailability represent development hurdles that remain to be overcome for these approaches. More recently, utilizing the cell's own protein destruction machinery for selective degradation of essential drivers of human disorders has opened up a new and exciting area of drug discovery. Small-molecule-induced proteolysis of selected substrates offers the potential of reaching beyond the limitations of the current pharmaceutical paradigm to expand the druggable target space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Voltage-gated Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Wulff, Heike; Castle, Neil A.; Pardo, Luis A.

    2009-01-01

    The human genome contains 40 voltage-gated potassium channels (KV) which are involved in diverse physiological processes ranging from repolarization of neuronal or cardiac action potentials, over regulating calcium signaling and cell volume, to driving cellular proliferation and migration. KV channels offer tremendous opportunities for the development of new drugs for cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This review first discusses pharmacological strategies for targeting KV channels with venom peptides, antibodies and small molecules and then highlights recent progress in the preclinical and clinical development of drugs targeting KV1.x, KV7.x (KCNQ), KV10.1 (EAG1) and KV11.1 (hERG) channels. PMID:19949402

  14. Network-assisted investigation of antipsychotic drugs and their targets.

    PubMed

    Sun, Jingchun; Xu, Hua; Zhao, Zhongming

    2012-05-01

    Antipsychotic drugs are tranquilizing psychiatric medications primarily used in the treatment of schizophrenia and similar severe mental disorders. So far, most of these drugs have been discovered without knowing much on the molecular mechanisms of their actions. The available large amount of pharmacogenetics, pharmacometabolomics, and pharmacoproteomics data for many drugs makes it possible to systematically explore the molecular mechanisms underlying drug actions. In this study, we applied a unique network-based approach to investigate antipsychotic drugs and their targets. We first retrieved 43 antipsychotic drugs, 42 unique target genes, and 46 adverse drug interactions from the DrugBank database and then generated a drug-gene network and a drug-drug interaction network. Through drug-gene network analysis, we found that seven atypical antipsychotic drugs tended to form two clusters that could be defined by drugs with different target receptor profiles. In the drug-drug interaction network, we found that three drugs (zuclopenthixol, ziprasidone, and thiothixene) tended to have more adverse drug interactions than others, while clozapine had fewer adverse drug interactions. This investigation indicated that these antipsychotics might have different molecular mechanisms underlying the drug actions. This pilot network-assisted investigation of antipsychotics demonstrates that network-based analysis is useful for uncovering the molecular actions of antipsychotics.

  15. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo.

    PubMed

    Das, Jayeeta; Das, Sreemanti; Paul, Avijit; Samadder, Asmita; Bhattacharyya, Soumya Sundar; Khuda-Bukhsh, Anisur Rahman

    2014-03-21

    Activation of signal transducer and activator of transcription3 (STAT3) is a hallmark of several types of cancer. Failure to inhibit STAT3 expression by injection of siRNA for STAT3 directly to Balb/c mice led us to adopt alternative means. We formulated nanoparticle-based encapsulation of siRNA (NsiRNA) with polyethylenimine (PEI) and poly(lactide-co-glycolide) (PLGA) and characterized them. The siRNA treated and NsiRNA-treated cells were subjected separately to different assay systems. We also checked if NsiRNA could cross the blood brain barrier (BBB). Cell viability reduced dramatically in A549 cells after NsiRNA administration (23.89% at 24 h), thereby implicating considerable silencing of STAT3 by NsiRNA, but not after siRNA administration. Compared to controls, a significant decrease in expression of IL-6 and the angiogenic factor (VEGF) and increase in Caspase 3 activity was observed with corresponding regression in tumor growth in mice treated with NsiRNA. NsiRNA induced apoptosis of cells and arrested cells at G1/G0 stage, both in vitro and in vivo. Apoptosis was also verified by Annexin-V-FITC/Propidium-iodide staining. NsiRNA could cross blood brain barrier. Overall results revealed PEI-PLGA to be a promising carrier for delivery of siRNA targeting STAT3 expression, which can be utilized as an effective strategy for cancer therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Fatty acid biosynthesis as a drug target in apicomplexan parasites.

    PubMed

    Goodman, C D; McFadden, G I

    2007-01-01

    Apicomplexan parasitic diseases impose devastating impacts on much of the world's population. The increasing prevalence of drug resistant parasites and the growing number of immuno-compromised individuals are exacerbating the problem to the point that the need for novel, inexpensive drugs is greater now than ever. Discovery of a prokaryotic, Type II fatty acid synthesis (FAS) pathway associated with the plastid-like organelle (apicoplast) of Plasmodium and Toxoplasma has provided a wealth of novel drug targets. Since this pathway is both essential and fundamentally different from the cytosolic Type I pathway of the human host, apicoplast FAS has tremendous potential for the development of parasite-specific inhibitors. Many components of this pathway are already the target for existing antibiotics and herbicides, which should significantly reduce the time and cost of drug development. Continuing interest--both in the pharmaceutical and herbicide industries--in fatty acid synthesis inhibitors proffers an ongoing stream of potential new anti-parasitic compounds. It has now emerged that not all apicomplexan parasites have retained the Type II fatty acid biosynthesis pathway. No fatty acid biosynthesis enzymes are encoded in the genome of Theileria annulata or T. parva, suggesting that fatty acid synthesis is lacking in these parasites. The human intestinal parasite Cryptosporidium parvum appears to have lost the apicoplast entirely; instead relying on an unusual cytosolic Type I FAS. Nevertheless, newly developed anti-cancer and anti-obesity drugs targeting human Type I FAS may yet prove efficacious against Cryptosporidium and other apicomplexans that rely on this Type I FAS pathway.

  17. The opioid receptors as targets for drug abuse medication.

    PubMed

    Noble, Florence; Lenoir, Magalie; Marie, Nicolas

    2015-08-01

    The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.

  18. The opioid receptors as targets for drug abuse medication

    PubMed Central

    Noble, Florence; Lenoir, Magalie; Marie, Nicolas

    2015-01-01

    The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse. PMID:25988826

  19. Evaluation of Giardia lamblia thioredoxin reductase as drug activating enzyme and as drug target.

    PubMed

    Leitsch, David; Müller, Joachim; Müller, Norbert

    2016-12-01

    The antioxidative enzyme thioredoxin reductase (TrxR) has been suggested to be a drug target in several pathogens, including the protist parasite Giardia lamblia. TrxR is also believed to catalyse the reduction of nitro drugs, e.g. metronidazole and furazolidone, a reaction required to render these compounds toxic to G. lamblia and other microaerophiles/anaerobes. It was the objective of this study to assess the potential of TrxR as a drug target in G. lamblia and to find direct evidence for the role of this enzyme in the activation of metronidazole and other nitro drugs. TrxR was overexpressed approximately 10-fold in G. lamblia WB C6 cells by placing the trxR gene behind the arginine deiminase (ADI) promoter on a plasmid. Likewise, a mutant TrxR with a defective disulphide reductase catalytic site was strongly expressed in another G. lamblia WB C6 cell line. Susceptibilities to five antigiardial drugs, i.e. metronidazole, furazolidone, nitazoxanide, albendazole and auranofin were determined in both transfectant cell lines and compared to wildtype. Further, the impact of all five drugs on TrxR activity in vivo was measured. Overexpression of TrxR rendered G. lamblia WB C6 more susceptible to metronidazole and furazolidone but not to nitazoxanide, albendazole, and auranofin. Of all five drugs tested, only auranofin had an appreciably negative effect on TrxR activity in vivo, albeit to a much smaller extent than expected. Overexpression of TrxR and mutant TrxR had hardly any impact on growth of G. lamblia WB C6, although the enzyme also exerts a strong NADPH oxidase activity which is a source of oxidative stress. Our results constitute first direct evidence for the notion that TrxR is an activator of metronidazole and furazolidone but rather question that it is a relevant drug target of presently used antigiardial drugs.

  20. Identifying mechanism-of-action targets for drugs and probes

    PubMed Central

    Gregori-Puigjané, Elisabet; Setola, Vincent; Hert, Jérôme; Crews, Brenda A.; Irwin, John J.; Lounkine, Eugen; Marnett, Lawrence; Roth, Bryan L.; Shoichet, Brian K.

    2012-01-01

    Notwithstanding their key roles in therapy and as biological probes, 7% of approved drugs are purported to have no known primary target, and up to 18% lack a well-defined mechanism of action. Using a chemoinformatics approach, we sought to “de-orphanize” drugs that lack primary targets. Surprisingly, targets could be easily predicted for many: Whereas these targets were not known to us nor to the common databases, most could be confirmed by literature search, leaving only 13 Food and Drug Administration—approved drugs with unknown targets; the number of drugs without molecular targets likely is far fewer than reported. The number of worldwide drugs without reasonable molecular targets similarly dropped, from 352 (25%) to 44 (4%). Nevertheless, there remained at least seven drugs for which reasonable mechanism-of-action targets were unknown but could be predicted, including the antitussives clemastine, cloperastine, and nepinalone; the antiemetic benzquinamide; the muscle relaxant cyclobenzaprine; the analgesic nefopam; and the immunomodulator lobenzarit. For each, predicted targets were confirmed experimentally, with affinities within their physiological concentration ranges. Turning this question on its head, we next asked which drugs were specific enough to act as chemical probes. Over 100 drugs met the standard criteria for probes, and 40 did so by more stringent criteria. A chemical information approach to drug-target association can guide therapeutic development and reveal applications to probe biology, a focus of much current interest. PMID:22711801

  1. Aquaporins: important but elusive drug targets

    PubMed Central

    Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.

    2014-01-01

    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825

  2. Two-stage flux balance analysis of metabolic networks for drug target identification

    PubMed Central

    2011-01-01

    Background Efficient identification of drug targets is one of major challenges for drug discovery and drug development. Traditional approaches to drug target identification include literature search-based target prioritization and in vitro binding assays which are both time-consuming and labor intensive. Computational integration of different knowledge sources is a more effective alternative. Wealth of omics data generated from genomic, proteomic and metabolomic techniques changes the way researchers view drug targets and provides unprecedent opportunities for drug target identification. Results In this paper, we develop a method based on flux balance analysis (FBA) of metabolic networks to identify potential drug targets. This method consists of two linear programming (LP) models, which first finds the steady optimal fluxes of reactions and the mass flows of metabolites in the pathologic state and then determines the fluxes and mass flows in the medication state with the minimal side effect caused by the medication. Drug targets are identified by comparing the fluxes of reactions in both states and examining the change of reaction fluxes. We give an illustrative example to show that the drug target identification problem can be solved effectively by our method, then apply it to a hyperuricemia-related purine metabolic pathway. Known drug targets for hyperuricemia are correctly identified by our two-stage FBA method, and the side effects of these targets are also taken into account. A number of other promising drug targets are found to be both effective and safe. Conclusions Our method is an efficient procedure for drug target identification through flux balance analysis of large-scale metabolic networks. It can generate testable predictions, provide insights into drug action mechanisms and guide experimental design of drug discovery. PMID:21689470

  3. Carbon nanotubes: a potential concept for drug delivery applications.

    PubMed

    Kumar, Rakesh; Dhanawat, Meenakshi; Kumar, Sudhir; Singh, Brahma N; Pandit, Jayant K; Sinha, Vivek R

    2014-04-01

    The unique properties of carbon nanotubes (CNTs) make them a highly interesting and demandable nanocarrier in the field of nanoscience. CNTs facilitate efficient delivery of therapeutics like drugs, proteins, genes, nucleic acids, vitamins and lot more. Even though highly beneficial, the biocompatibility of CNTs is a major issue in their questioning their potential application in targeting drug delivery. Studies confirmed subdued toxicity of CNTs following slight modifications like functionalization, controlled dimensions, purification etc. A well-established mechanism for cellular internalization is an insistent need to attain a more efficient and targeted delivery. Recent patents have been thoroughly discussed in the text below.

  4. The Human Kinome Targeted by FDA Approved Multi-Target Drugs and Combination Products: A Comparative Study from the Drug-Target Interaction Network Perspective.

    PubMed

    Li, Ying Hong; Wang, Pan Pan; Li, Xiao Xu; Yu, Chun Yan; Yang, Hong; Zhou, Jin; Xue, Wei Wei; Tan, Jun; Zhu, Feng

    2016-01-01

    The human kinome is one of the most productive classes of drug target, and there is emerging necessity for treating complex diseases by means of polypharmacology (multi-target drugs and combination products). However, the advantages of the multi-target drugs and the combination products are still under debate. A comparative analysis between FDA approved multi-target drugs and combination products, targeting the human kinome, was conducted by mapping targets onto the phylogenetic tree of the human kinome. The approach of network medicine illustrating the drug-target interactions was applied to identify popular targets of multi-target drugs and combination products. As identified, the multi-target drugs tended to inhibit target pairs in the human kinome, especially the receptor tyrosine kinase family, while the combination products were able to against targets of distant homology relationship. This finding asked for choosing the combination products as a better solution for designing drugs aiming at targets of distant homology relationship. Moreover, sub-networks of drug-target interactions in specific disease were generated, and mechanisms shared by multi-target drugs and combination products were identified. In conclusion, this study performed an analysis between approved multi-target drugs and combination products against the human kinome, which could assist the discovery of next generation polypharmacology.

  5. The Human Kinome Targeted by FDA Approved Multi-Target Drugs and Combination Products: A Comparative Study from the Drug-Target Interaction Network Perspective

    PubMed Central

    Yu, Chun Yan; Yang, Hong; Zhou, Jin; Xue, Wei Wei; Tan, Jun; Zhu, Feng

    2016-01-01

    The human kinome is one of the most productive classes of drug target, and there is emerging necessity for treating complex diseases by means of polypharmacology (multi-target drugs and combination products). However, the advantages of the multi-target drugs and the combination products are still under debate. A comparative analysis between FDA approved multi-target drugs and combination products, targeting the human kinome, was conducted by mapping targets onto the phylogenetic tree of the human kinome. The approach of network medicine illustrating the drug-target interactions was applied to identify popular targets of multi-target drugs and combination products. As identified, the multi-target drugs tended to inhibit target pairs in the human kinome, especially the receptor tyrosine kinase family, while the combination products were able to against targets of distant homology relationship. This finding asked for choosing the combination products as a better solution for designing drugs aiming at targets of distant homology relationship. Moreover, sub-networks of drug-target interactions in specific disease were generated, and mechanisms shared by multi-target drugs and combination products were identified. In conclusion, this study performed an analysis between approved multi-target drugs and combination products against the human kinome, which could assist the discovery of next generation polypharmacology. PMID:27828998

  6. An Efficient Targeted Drug Delivery through Apotransferrin Loaded Nanoparticles

    PubMed Central

    Kishore, Golla; Kondapi, Anand Kumar

    2009-01-01

    Background Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. Methodology/Principal Findings Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25–50 ηm, which increase to 60–80 ηm upon direct loading of drug (direct-nano), and showed further increase in dimension (75–95 ηm) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression

  7. Drug Target Validation Methods in Malaria - Protein Interference Assay (PIA) as a Tool for Highly Specific Drug Target Validation.

    PubMed

    Meissner, Kamila A; Lunev, Sergey; Wang, Yuan-Ze; Linzke, Marleen; de Assis Batista, Fernando; Wrenger, Carsten; Groves, Matthew R

    2017-01-01

    The validation of drug targets in malaria and other human diseases remains a highly difficult and laborious process. In the vast majority of cases, highly specific small molecule tools to inhibit a proteins function in vivo are simply not available. Additionally, the use of genetic tools in the analysis of malarial pathways is challenging. These issues result in difficulties in specifically modulating a hypothetical drug target's function in vivo. The current "toolbox" of various methods and techniques to identify a protein's function in vivo remains very limited and there is a pressing need for expansion. New approaches are urgently required to support target validation in the drug discovery process. Oligomerisation is the natural assembly of multiple copies of a single protein into one object and this self-assembly is present in more than half of all protein structures. Thus, oligomerisation plays a central role in the generation of functional biomolecules. A key feature of oligomerisation is that the oligomeric interfaces between the individual parts of the final assembly are highly specific. However, these interfaces have not yet been systematically explored or exploited to dissect biochemical pathways in vivo. This mini review will describe the current state of the antimalarial toolset as well as the potentially druggable malarial pathways. A specific focus is drawn to the initial efforts to exploit oligomerisation surfaces in drug target validation. As alternative to the conventional methods, Protein Interference Assay (PIA) can be used for specific distortion of the target protein function and pathway assessment in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  9. Target Essentiality and Centrality Characterize Drug Side Effects

    PubMed Central

    Yu, Haiyuan

    2013-01-01

    To investigate factors contributing to drug side effects, we systematically examine relationships between 4,199 side effects associated with 996 drugs and their 647 human protein targets. We find that it is the number of essential targets, not the number of total targets, that determines the side effects of corresponding drugs. Furthermore, within the context of a three-dimensional interaction network with atomic-resolution interaction interfaces, we find that drugs causing more side effects are also characterized by high degree and betweenness of their targets and highly shared interaction interfaces on these targets. Our findings suggest that both essentiality and centrality of a drug target are key factors contributing to side effects and should be taken into consideration in rational drug design. PMID:23874169

  10. Core as a Novel Viral Target for Hepatitis C Drugs

    PubMed Central

    Strosberg, Arthur Donny; Kota, Smitha; Takahashi, Virginia; Snyder, John K.; Mousseau, Guillaume

    2010-01-01

    Hepatitis C virus (HCV) infects over 130 million people worldwide and is a major cause of liver disease. No vaccine is available. Novel specific drugs for HCV are urgently required, since the standard-of-care treatment of pegylated interferon combined with ribavirin is poorly tolerated and cures less than half of the treated patients. Promising, effective direct-acting drugs currently in the clinic have been described for three of the ten potential HCV target proteins: NS3/NS4A protease, NS5B polymerase and NS5A, a regulatory phosphoprotein. We here present core, the viral capsid protein, as another attractive, non-enzymatic target, against which a new class of anti-HCV drugs can be raised. Core plays a major role in the virion’s formation, and interacts with several cellular proteins, some of which are involved in host defense mechanisms against the virus. This most conserved of all HCV proteins requires oligomerization to function as the organizer of viral particle assembly. Using core dimerization as the basis of transfer-of-energy screening assays, peptides and small molecules were identified which not only inhibit core-core interaction, but also block viral production in cell culture. Initial chemical optimization resulted in compounds active in single digit micromolar concentrations. Core inhibitors could be used in combination with other HCV drugs in order to provide novel treatments of Hepatitis C. PMID:21994704

  11. Toxoplasma histone acetylation remodelers as novel drug targets

    PubMed Central

    Vanagas, Laura; Jeffers, Victoria; Bogado, Silvina S; Dalmasso, Maria C; Sullivan, William J; Angel, Sergio O

    2013-01-01

    Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite. PMID:23199404

  12. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance.

    PubMed

    Gao, Yan; Shen, Jacson K; Milane, Lara; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.

  13. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    NASA Astrophysics Data System (ADS)

    Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-04-01

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.

  14. Antibodies and associates: Partners in targeted drug delivery.

    PubMed

    Kennedy, Patrick J; Oliveira, Carla; Granja, Pedro L; Sarmento, Bruno

    2017-09-01

    Monoclonal antibodies (mAbs) are well established in the clinic due to their specificity and affinity to a diverse array of biochemical targets. More recently, mAbs are being exploited as targeting agents in modern drug delivery systems, aiming to bypass normal host tissue and to accumulate a therapeutic agent to a specific tissue or cell for enhanced pharmacology. At sizes ranging from ~10-100nm, antibody-based bioconjugates have opened up a whole new realm of clinical possibilities with several platforms emerging on the market. Antibody-drug conjugates combine the killing power of cytotoxic agents with mAb specificity and have great potential to treat cancer and beyond. Partnering a mAb with a biologic (protein/peptide, oligonucleotide (ON) or another mAb) is also gaining clinical traction. For example, many bispecific mAbs target and recruit immune effector cells to a tumor, while ON-based therapeutics against intracellular (regulatory) RNAs may be safely delivered into specific cells with mAb support. Finally, nanoparticles (NPs) offer significant drug delivery advantages including controlled release, large and diverse payloads, intracellular delivery and multi-functionality. Coupling mAbs to the surface of NPs can add further targeting capacity, and yet, therapeutic mAbs can also be encapsulated to take advantage of the above NP qualities. Here, we present an updated overview of the different aspects required for the successful development and engineering of antibody bioconjugates in current and emerging drug delivery technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. MMPs: a novel drug target for schizophrenia.

    PubMed

    Chopra, Kanwaljit; Baveja, Ankita; Kuhad, Anurag

    2015-01-01

    Schizophrenia, a multifactorial disorder, is associated with dopaminergic hyperactivity, dysregulated glutamatergic neurotransmission, neuroinflammation and extracellular matrix (ECM) disturbances. MMPs, a group of structurally related proteolytic enzymes, are responsible for remodeling of ECM that maintains synaptic functions and blood-brain barrier (BBB) patency. Overstimulation of MMPs by neuroinflammation triggers ECM abnormalities that directly or indirectly alter neuronal functions like synaptic plasticity and damage to BBB. MMP-mediated ECM abnormality plays a central role in the pathogenesis of schizophrenia. The current review discusses the mechanistic involvement of MMPs in the pathogenesis of schizophrenia and briefly gives an overview on the recent studies on various MMP modulators. Overexpression of MMPs and imbalance between MMP versus tissue inhibitors of metalloproteinase are associated with various ECM disturbances in the schizophrenic brain. Therefore, MMPs can be projected as potential therapeutic target for treatment and/or prevention of positive, negative and cognitive symptoms of schizophrenia. From past decade, scientific community is focusing on broad spectrum MMP modulators as potential therapeutic moieties for prevention of plethora of neurological, cardiovascular and pulmonary diseases. In future, specific MMP modulators should be tailored to regulate ECM integrity and explored for their pharmacotherapeutic potential in schizophrenia.

  16. Weighted feature value based Drug Target Protein prediction.

    PubMed

    Hyun, Bo-ra; Jung, Hwiesung; Jang, Woo-Hyuk; Jung, Suk Hoon; Han, Dong-Soo

    2008-01-01

    Drug discovery is a long process in which only a few successful new therapeutic discoveries are made and identification of drug target candidate proteins requires considerable time and efforts. However, the accumulation of information on drugs has made it possible to devise new computational methods for classifying drug target candidates. In this paper, we devise a Drug Target Protein (DT-P) classification method by the summation of weighted features which is extracted from known DT-P. The method is validated using Bayesian decision theory and SVM, and it was revealed to achieve high specificity of 89.5% with 88% accuracy.

  17. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions using Drug Structure and Protein Sequence Information.

    PubMed

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei

    2016-11-14

    Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drug-target interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-the-art Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development.

  18. An immuno-chemo-proteomics method for drug target deconvolution.

    PubMed

    Saxena, Chaitanya; Zhen, Eugene; Higgs, Richard E; Hale, John E

    2008-08-01

    Chemical proteomics is an emerging technique for drug target deconvolution and profiling the toxicity of known drugs. With the use of this technique, the specificity of a small molecule inhibitor toward its potential targets can be characterized and information thus obtained can be used in optimizing lead compounds. Most commonly, small molecules are immobilized on solid supports and used as affinity chromatography resins to bind targets. However, it is difficult to evaluate the effect of immobilization on the affinity of the compounds to their targets. Here, we describe the development and application of a soluble probe where a small molecule was coupled with a peptide epitope which was used to affinity isolate binding proteins from cell lysate. The soluble probe allowed direct verification that the compound after coupling with peptide epitope retained its binding characteristics. The PKC-alpha inhibitor Bisindolylmaleimide-III was coupled with a peptide containing the FLAG epitope. Following incubation with cellular lysates, the compound and associated proteins were affinity isolated using anti-FLAG antibody beads. Using this approach, we identified the known Bisindolylmaleimide-III targets, PKC-alpha, GSK3-beta, CaMKII, adenosine kinase, CDK2, and quinine reductase type 2, as well as previously unidentified targets PKAC-alpha, prohibitin, VDAC and heme binding proteins. This method was directly compared to the solid-phase method (small molecule was immobilized to a solid support) providing an orthogonal strategy to aid in target deconvolution and help to eliminate false positives originating from nonspecific binding of the proteins to the matrix.

  19. Bacterial DNA replication enzymes as targets for antibacterial drug discovery.

    PubMed

    Sanyal, Gautam; Doig, Peter

    2012-04-01

    The bacterial replisome is composed of a large number of enzymes, which work in exquisite coordination to accomplish chromosomal replication. Effective inhibition inside the bacterial cell of any of the 'essential' enzymes of the DNA replication pathway should be detrimental to cell survival. This review covers DNA replication enzymes that have been shown to have a potential for delivering antibacterial compounds or drug candidates including: type II topoisomerases, a clinically validated target family, and DNA ligase, which has yielded inhibitors with in vivo efficacy. A few of the 'replisome' enzymes that are structurally and functionally well characterized and have been subjects of antibacterial discovery efforts are also discussed. Identification of several essential genes in the bacterial replication pathway raised hopes that targeting these gene products would lead to novel antibacterials. However, none of these novel, single gene targets have delivered antibacterial drug candidates into clinical trials. This lack of productivity may be due to the target properties and inhibitor identification approaches employed. For DNA primase, DNA helicase and other replisome targets, with the exception of DNA ligase, the exploitation of structure for lead generation has not been tested to the same extent that it has for DNA gyrase. Utilization of structural information should be considered to augment HTS efforts and initiate fragment-based lead generation. The complex protein-protein interactions involved in regulation of replication may explain why biochemical approaches have been less productive for some replisome targets than more independently functioning targets such as DNA ligase or DNA gyrase. © 2012 Informa UK, Ltd.

  20. Drug target prioritization by perturbed gene expression and network information

    PubMed Central

    Isik, Zerrin; Baldow, Christoph; Cannistraci, Carlo Vittorio; Schroeder, Michael

    2015-01-01

    Drugs bind to their target proteins, which interact with downstream effectors and ultimately perturb the transcriptome of a cancer cell. These perturbations reveal information about their source, i.e., drugs’ targets. Here, we investigate whether these perturbations and protein interaction networks can uncover drug targets and key pathways. We performed the first systematic analysis of over 500 drugs from the Connectivity Map. First, we show that the gene expression of drug targets is usually not significantly affected by the drug perturbation. Hence, expression changes after drug treatment on their own are not sufficient to identify drug targets. However, ranking of candidate drug targets by network topological measures prioritizes the targets. We introduce a novel measure, local radiality, which combines perturbed genes and functional interaction network information. The new measure outperforms other methods in target prioritization and proposes cancer-specific pathways from drugs to affected genes for the first time. Local radiality identifies more diverse targets with fewer neighbors and possibly less side effects. PMID:26615774

  1. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    PubMed Central

    Mukherjee, Avinaba; Sadhukhan, Gobinda Chandra

    2016-01-01

    Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance. PMID

  2. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The

  3. Sequencing: Targeting Insurgents and Drugs in Colombia

    DTIC Science & Technology

    2007-03-01

    examines the overall effectiveness of two distinctly different strategies for dealing with the dual threat of drugs and terrorism in Colombia: President...Drug Trade, Coca, Counter-narcotics, FARC, FARC-EP, Revolutionary Armed Forces of Colombia, Government of Colombia, Insurgency, Terrorism , Plan...threat of drugs and terrorism in Colombia: President Pastrana’s “drugs first” strategy and President Uribe’s unified campaign against both guerrillas

  4. Potential Therapeutic Targets in Uterine Sarcomas

    PubMed Central

    Cuppens, Tine; Tuyaerts, Sandra; Amant, Frédéric

    2015-01-01

    Uterine sarcomas are rare tumors accounting for 3,4% of all uterine cancers. Even after radical hysterectomy, most patients relapse or present with distant metastases. The very limited clinical benefit of adjuvant cytotoxic treatments is reflected by high mortality rates, emphasizing the need for new treatment strategies. This review summarizes rising potential targets in four distinct subtypes of uterine sarcomas: leiomyosarcoma, low-grade and high-grade endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Based on clinical reports, promising approaches for uterine leiomyosarcoma patients include inhibition of VEGF and mTOR signaling, preferably in combination with other targeted or cytotoxic compounds. Currently, the only targeted therapy approved in leiomyosarcoma patients is pazopanib, a multitargeted inhibitor blocking VEGFR, PDGFR, FGFR, and c-KIT. Additionally, preclinical evidence suggests effect of the inhibition of histone deacetylases, tyrosine kinase receptors, and the mitotic checkpoint protein aurora kinase A. In low-grade endometrial stromal sarcomas, antihormonal therapies including aromatase inhibitors and progestins have proven activity. Other potential targets are PDGFR, VEGFR, and histone deacetylases. In high-grade ESS that carry the YWHAE/FAM22A/B fusion gene, the generated 14-3-3 oncoprotein is a putative target, next to c-KIT and the Wnt pathway. The observation of heterogeneity within uterine sarcoma subtypes warrants a personalized treatment approach. PMID:26576131

  5. tcTKB: an integrated cardiovascular toxicity knowledge base for targeted cancer drugs

    PubMed Central

    Xu, Rong; Wang, QuanQiu

    2015-01-01

    Targeted cancer drugs are often associated with unexpectedly high cardiovascular (CV) adverse events. Systematic approaches to studying CV events associated with targeted anticancer drugs have high potential for elucidating the complex pathways underlying targeted anti-cancer drugs. In this study, we built tcTKB, a comprehensive CV toxicity knowledge base for targeted cancer drugs, by extracting drug-CV pairs from five large-scale and complementary data sources. The data sources include FDA drug labels (44,979 labels), the FDA Adverse Event Reporting System (FAERS) (4,285,097 records), the Canada Vigilance Adverse Reaction Online Database (CVAROD) (1,107,752 records), published biomedical literature (21,354,075 records), and published full-text articles from the Journal of Oncology (JCO) (13,855 articles). tcTKB contains 14,351 drug-CV pairs for 45 targeted anticancer drugs and 1,842 CV events. We demonstrate that CV events positively correlate with drug target genes and drug metabolism genes, demonstrating that tcTKB in combination with other data resources, could facilitate our understanding of targeted anticancer drugs and their associated CV toxicities. PMID:26958275

  6. Drug-target interaction prediction: databases, web servers and computational models.

    PubMed

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xiaotian; Zhang, Xu; Dai, Feng; Yin, Jian; Zhang, Yongdong

    2016-07-01

    Identification of drug-target interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drug-target interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drug-target associations on a large scale. In this review, databases and web servers involved in drug-target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drug-target interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drug-target interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drug-target interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. How specific are "target-specific" drugs? Celecoxib as a case in point.

    PubMed

    Sadée, Wolfgang; Bohn, Laura

    2006-08-01

    With the push to develop the next blockbuster drugs, continued surveillance of current bestsellers may not be given the full attention due. Upon wide-spread use, unexpected adverse effects begin to emerge. Although touted as highly specific, many of the newly developed drugs are likely to have secondary molecular targets-a potential cause of adverse effects. A molecular pharmacology approach that screens for multiple drug targets may shed light on the mechanisms that underlie both desired and adverse side-effects.

  8. A survey of yeast genomic assays for drug and target discovery

    PubMed Central

    Smith, Andrew M.; Ammar, Ron; Nislow, Corey; Giaever, Guri

    2010-01-01

    Over the past decade, the development and application of chemical genomic assays using the model organism Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of known drugs and novel small molecules in vivo. These assays identify drug target candidates, genes involved in buffering drug target pathways and also help to define the general cellular response to small molecules. In this review, we examine current yeast chemical genomic assays and summarize the potential applications of each approach. PMID:20546776

  9. Systems biology-embedded target validation: improving efficacy in drug discovery.

    PubMed

    Vandamme, Drieke; Minke, Benedikt A; Fitzmaurice, William; Kholodenko, Boris N; Kolch, Walter

    2014-01-01

    The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment.

  10. TRPV1: A Target for Rational Drug Design

    PubMed Central

    Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX). Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures. PMID:27563913

  11. Oncogenic potential of bifunctional bioreductive drugs.

    PubMed

    Hei, T K; Liu, S X; Hall, E J

    1996-07-01

    Potential oncogenicity must be a factor of concern in the design and development of novel bioreductive drugs. In the present studies, the cytotoxicity and oncogenic transforming potential of a series of heterocyclic mono-N-oxides, designed to be used as bioreductive drugs, were examined using the mouse C3H 10T1/2 cell system. Exponential phase cultures of 10T1/2 cells were treated with graded doses of the bioreductive drugs for a 4 h period, either in air or hypoxia, at 37 degrees C. After treatment, cultures were replated for both survival and transformation assays. The fused pyrazine mono-N-oxide RB 90740 and its N-deoxy analogue, RB 92816, demonstrated a dose-dependent cytotoxicity and oncogenic transforming potency under aerobic conditions. Similarly, the indoloquinone E09 and the structurally related mitomycin C demonstrated dose dependence in both toxicity and oncogenic transforming potential. The most cytotoxic aromatic-N-oxides tested, RB 92816, also demonstrated the highest oncogenic transformation incidence. In hypoxia, the bioreductive metabolites of RB 90740 were substantially more cytotoxic and induced a higher oncogenic transformation yield than the drug in air. These data are consistent with the structure-activity relationship for bioreductive drugs in that heterocyclic-N-oxides with reactive side chains such as RB 92816 are cytotoxic and potentially carcinogenic.

  12. Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Chu, Hsiao Mei Annie

    2011-12-01

    Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and

  13. Drug Target Mining and Analysis of the Chinese Tree Shrew for Pharmacological Testing

    PubMed Central

    Liu, Jie; Lee, Wen-hui; Zhang, Yun

    2014-01-01

    The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research. PMID:25105297

  14. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    PubMed

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  15. Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma

    PubMed Central

    Hanes, Robert; Grad, Iwona; Lorenz, Susanne; Stratford, Eva W.; Munthe, Else; Reddy, Chilamakuri Chandra Sekhar; Meza-Zepeda, Leonardo A.; Myklebost, Ola

    2016-01-01

    Sarcomas are rare cancers with limited treatment options. Patients are generally treated by chemotherapy and/or radiotherapy in combination with surgery, and would benefit from new personalized approaches. In this study we demonstrate the potential of combining personal genomic characterization of patient tumors to identify targetable mutations with in vitro testing of specific drugs in patient-derived cell lines. We have analyzed three metastases from a patient with high-grade metastatic dedifferentiated liposarcoma (DDLPS) by exome and transcriptome sequencing as well as DNA copy number analysis. Genomic aberrations of several potentially targetable genes, including amplification of KITLG and FRS2, in addition to amplification of CDK4 and MDM2, characteristic of this disease, were identified. We evaluated the efficacy of drugs targeting these aberrations or the corresponding signaling pathways in a cell line derived from the patient. Interestingly, the pan-FGFR inhibitor NVP-BGJ398, which targets FGFR upstream of FRS2, strongly inhibited cell proliferation in vitro and induced an accumulation of cells into the G0 phase of the cell cycle. This study indicates that FGFR inhibitors have therapeutic potential in the treatment of DDLPS with amplified FRS2. PMID:27409346

  16. Metalloproteinases: potential therapeutic targets for rheumatoid arthritis.

    PubMed

    Itoh, Yoshifumi

    2015-01-01

    In different inflammatory diseases, many metalloproteinases are over expressed and thought to promote progression of the disease. Understanding roles of these enzymes in disease progression as well as in normal homeostasis is crucial to identify target enzymes for the disease. Rheumatoid arthritis (RA) is one of the autoimmune inflammatory diseases in which around 1-2 % of the world populations are suffered from. Roles of metalloproteinases are well documented in RA, but so far none of them is proposed to be a target enzyme. However, there are at least three enzymes that can potentially be molecular targets to inhibit progression of RA. Understanding roles of these enzymes in more detail and developing highly selective inhibitors to these enzymes would be essential for novel antimetalloproteinase therapies in future.

  17. Aquaporins as targets for drug discovery.

    PubMed

    Frigeri, Antonio; Nicchia, Grazia Paola; Svelto, Maria

    2007-01-01

    The intracellular hydric balance is an essential process of mammalian cells. The water movement across cell membranes is driven by osmotic and hydrostatic forces and the speed of this process is dependent on the presence of specific aquaporin water channels. Since the molecular identification of the first water channel, AQP1, by Peter Agre's group, 13 homologous members have been found in mammals with varying degree of homology. The fundamental importance of these proteins in all living cells is suggested by their genetic conservation in eukaryotic organisms through plants to mammals. A number of recent studies have revealed the importance of mammalian AQPs in both physiology and pathophysiology and have suggested that pharmacological modulation of aquaporins expression and activity may provide new tools for the treatment of variety of human disorders, such as brain edema, glaucoma, tumour growth, congestive heart failure and obesity in which water and small solute transport may be involved. This review will highlight the physiological role and the pathological involvement of AQPs in mammals and the potential use of some recent therapeutic approaches, such as RNAi and immunotherapy, for AQP-related diseases. Furthermore, strategies that can be developed for the discovery of selective AQP-drugs will be introduced and discussed.

  18. Protein kinases as targets for antiparasitic chemotherapy drugs.

    PubMed

    Canduri, Fernanda; Perez, Patrícia Cardoso; Caceres, Rafael A; de Azevedo, Walter F

    2007-03-01

    Parasitic protozoa infecting humans have a great impact on public health, especially in the developing countries. In many instances, the parasites have developed resistance against available chemotherapeutic agents, making the search for alternative drugs a priority. In line with the current interest in Protein Kinase (PK) inhibitors as potential drugs against a variety of diseases, the possibility that PKs may represent targets for novel anti-parasitic agents is being explored. Research into parasite PKs has benefited greatly from genome and EST sequencing projects, with the genomes from a few species fully sequenced (notably that from the malaria parasite Plasmodium falciparum) and several more under way, the structural features that are important to design specific inhibitors against these PKs will be reviewed in the present work.

  19. Drug targets for rational design against emerging coronaviruses.

    PubMed

    Zhao, Qi; Weber, Erin; Yang, Haitao

    2013-04-01

    The recent, fatal outbreak of the novel coronavirus strain in the Middle East highlights the real threat posed by this unique virus family. Neither pharmaceutical cures nor preventive vaccines are clinically available to fight against coronavirus associated syndromes, not to mention a lack of symptom soothing drugs. Development of treatment options is complicated by the unpredictable, recurring instances of cross-species viral transmission. The vastly distributing virus reservoir and the rapid rate of host-species exchange of coronavirus demands wide spectrum potency in an ideal therapeutic. Through summarizing the available information and progress in coronavirus research, this review provides a systematic assessment of the potential wide-spectrum features on the most popular drug targets including viral proteases, spike protein, RNA polymerases and editing enzymes as well as host-virus interaction pathways associated with coronaviruses.

  20. Candidate Drug Targets for Prevention or Modification of Epilepsy

    PubMed Central

    Varvel, Nicholas H.; Jiang, Jianxiong; Dingledine, Raymond

    2015-01-01

    Epilepsy is a prevalent neurological disorder afflicting nearly 50 million people worldwide. The disorder is characterized clinically by recurrent spontaneous seizures attributed to abnormal synchrony of brain neurons. Despite advances in the treatment of epilepsy, nearly one-third of patients are resistant to current therapies, and the underlying mechanisms whereby a healthy brain becomes epileptic remain unresolved. Therefore, researchers have a major impetus to identify and exploit new drug targets. Here we distinguish between epileptic effectors, or proteins that set the seizure threshold, and epileptogenic mediators, which control the expression or functional state of the effector proteins. Under this framework, we then discuss attempts to regulate the mediators to control epilepsy. Further insights into the complex processes that render the brain susceptible to seizures and the identification of novel mediators of these processes will lead the way to the development of drugs to modify disease outcome and, potentially, to prevent epileptogenesis. PMID:25196047

  1. Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides

    PubMed Central

    Wei, Siau Jia; Chee, Sharon; Yurlova, Larisa; Lane, David; Verma, Chandra; Brown, Christopher; Ghadessy, Farid

    2016-01-01

    Cancer drugs often fail due to the emergence of clinical resistance. This can manifest through mutations in target proteins that selectively exclude drug binding whilst retaining aberrant function. A priori knowledge of resistance-inducing mutations is therefore important for both drug design and clinical surveillance. Stapled peptides represent a novel class of antagonists capable of inhibiting therapeutically relevant protein-protein interactions. Here, we address the important question of potential resistance to stapled peptide inhibitors. HDM2 is the critical negative regulator of p53, and is often overexpressed in cancers that retain wild-type p53 function. Interrogation of a large collection of randomly mutated HDM2 proteins failed to identify point mutations that could selectively abrogate binding by a stapled peptide inhibitor (PM2). In contrast, the same interrogation methodology has previously uncovered point mutations that selectively inhibit binding by Nutlin, the prototypical small molecule inhibitor of HDM2. Our results demonstrate both the high level of structural p53 mimicry employed by PM2 to engage HDM2, and the potential resilience of stapled peptide antagonists to mutations in target proteins. This inherent feature could reduce clinical resistance should this class of drugs enter the clinic. PMID:27057630

  2. Validating Aurora B as an anti-cancer drug target.

    PubMed

    Girdler, Fiona; Gascoigne, Karen E; Eyers, Patrick A; Hartmuth, Sonya; Crafter, Claire; Foote, Kevin M; Keen, Nicholas J; Taylor, Stephen S

    2006-09-01

    The Aurora kinases, a family of mitotic regulators, have received much attention as potential targets for novel anti-cancer therapeutics. Several Aurora kinase inhibitors have been described including ZM447439, which prevents chromosome alignment, spindle checkpoint function and cytokinesis. Subsequently, ZM447439-treated cells exit mitosis without dividing and lose viability. Because ZM447439 inhibits both Aurora A and B, we set out to determine which phenotypes are due to inhibition of which kinase. Using molecular genetic approaches, we show that inhibition of Aurora B kinase activity phenocopies ZM447439. Furthermore, a novel ZM compound, which is 100 times more selective for Aurora B over Aurora A in vitro, induces identical phenotypes. Importantly, inhibition of Aurora B kinase activity induces a penetrant anti-proliferative phenotype, indicating that Aurora B is an attractive anti-cancer drug target. Using molecular genetic and chemical-genetic approaches, we also probe the role of Aurora A kinase activity. We show that simultaneous repression of Aurora A plus induction of a catalytic mutant induces a monopolar phenotype. Consistently, another novel ZM-related inhibitor, which is 20 times as potent against Aurora A compared with ZM447439, induces a monopolar phenotype. Expression of a drug-resistant Aurora A mutant reverts this phenotype, demonstrating that Aurora A kinase activity is required for spindle bipolarity in human cells. Because small molecule-mediated inhibition of Aurora A and Aurora B yields distinct phenotypes, our observations indicate that the Auroras may present two avenues for anti-cancer drug discovery.

  3. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    PubMed Central

    Park, Yoon-Dong; Sun, Wei; Salas, Antonio; Antia, Avan; Carvajal, Cindy; Wang, Amy; Xu, Xin; Meng, Zhaojin; Zhou, Ming; Tawa, Gregory J.; Dehdashti, Jean; Zheng, Wei; Henderson, Christina M.; Zelazny, Adrian M.

    2016-01-01

    ABSTRACT Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. PMID:27486194

  4. Drug-target residence time--a case for G protein-coupled receptors.

    PubMed

    Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H

    2014-07-01

    A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.

  5. Inhibition of bacterial ribosome assembly: a suitable drug target?

    PubMed

    Maguire, Bruce A

    2009-03-01

    The assembly of bacterial ribosomes is viewed with increasing interest as a potential target for new antibiotics. The in vivo synthesis and assembly of ribosomes are briefly reviewed here, highlighting the many ways in which assembly can be perturbed. The process is compared with the model in vitro process from which much of our knowledge is derived. The coordinate synthesis of the ribosomal components is essential for their ordered and efficient assembly; antibiotics interfere with this coordination and therefore affect assembly. It has also been claimed that the binding of antibiotics to nascent ribosomes prevents their assembly. These two contrasting models of antibiotic action are compared and evaluated. Finally, the suitability and tractability of assembly as a drug target are assessed.

  6. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

    PubMed Central

    Zhang, Gao; Frederick, Dennie T.; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C.; Schuchter, Lynn M.; Gangadhar, Tara C.; Amaravadi, Ravi K.; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A.; Wargo, Jennifer A.; Avadhani, Narayan G.; Lu, Yiling; Mills, Gordon B.; Altieri, Dario C.; Flaherty, Keith T.

    2016-01-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  7. Hsp21 Potentiates Antifungal Drug Tolerance in Candida albicans

    PubMed Central

    Mayer, François L.; Wilson, Duncan; Hube, Bernhard

    2013-01-01

    Systemic infections of humans with the fungal pathogen Candida albicans are associated with a high mortality rate. Currently, efficient treatment of these infections is hampered by the relatively low number of available antifungal drugs. We recently identified the small heat shock protein Hsp21 in C. albicans and demonstrated its fundamental role for environmental stress adaptation and fungal virulence. Hsp21 was found in several pathogenic Candida species but not in humans. This prompted us to investigate the effects of a broad range of different antifungal drugs on an Hsp21-null C. albicans mutant strain. Our results indicate that combinatorial therapy targeting Hsp21, together with specific antifungal drug targets, has strong synergistic potential. In addition, we demonstrate that Hsp21 is required for tolerance to ethanol-induced stress and induction of filamentation in response to pharmacological inhibition of Hsp90. These findings might pave the way for the development of new treatment strategies against Candida infections. PMID:23533680

  8. Toward more realistic drug-target interaction predictions.

    PubMed

    Pahikkala, Tapio; Airola, Antti; Pietilä, Sami; Shakyawar, Sushil; Szwajda, Agnieszka; Tang, Jing; Aittokallio, Tero

    2015-03-01

    A number of supervised machine learning models have recently been introduced for the prediction of drug-target interactions based on chemical structure and genomic sequence information. Although these models could offer improved means for many network pharmacology applications, such as repositioning of drugs for new therapeutic uses, the prediction models are often being constructed and evaluated under overly simplified settings that do not reflect the real-life problem in practical applications. Using quantitative drug-target bioactivity assays for kinase inhibitors, as well as a popular benchmarking data set of binary drug-target interactions for enzyme, ion channel, nuclear receptor and G protein-coupled receptor targets, we illustrate here the effects of four factors that may lead to dramatic differences in the prediction results: (i) problem formulation (standard binary classification or more realistic regression formulation), (ii) evaluation data set (drug and target families in the application use case), (iii) evaluation procedure (simple or nested cross-validation) and (iv) experimental setting (whether training and test sets share common drugs and targets, only drugs or targets or neither). Each of these factors should be taken into consideration to avoid reporting overoptimistic drug-target interaction prediction results. We also suggest guidelines on how to make the supervised drug-target interaction prediction studies more realistic in terms of such model formulations and evaluation setups that better address the inherent complexity of the prediction task in the practical applications, as well as novel benchmarking data sets that capture the continuous nature of the drug-target interactions for kinase inhibitors. © The Author 2014. Published by Oxford University Press.

  9. New drugs in psychiatry: focus on new pharmacological targets

    PubMed Central

    Caraci, Filippo; Leggio, Gian Marco; Salomone, Salvatore; Drago, Filippo

    2017-01-01

    The approval of psychotropic drugs with novel mechanisms of action has been rare in recent years. To address this issue, further analysis of the pathophysiology of neuropsychiatric disorders is essential for identifying new pharmacological targets for psychotropic medications. In this report, we detail drug candidates being examined as treatments for psychiatric disorders. Particular emphasis is placed on agents with novel mechanisms of action that are being tested as therapies for depression, schizophrenia, or Alzheimer’s disease. All of the compounds considered were recently approved for human use or are in advanced clinical trials. Drugs included here are new antipsychotic medications endowed with a preferential affinity at dopamine D3 receptor (cariprazine) or at glutamatergic or cannabinoid receptors, as well as vortioxetine, a drug approved for managing the cognitive deficits associated with major depression. New mechanistic approaches for the treatment of depression include intravenous ketamine or esketamine or intranasal esketamine. As for Alzheimer’s disease, the possible value of passive immunotherapy with agents such as aducanumab is considered to be a potential disease-modifying approach that could slow or halt the progressive decline associated with this devastating disorder. PMID:28408985

  10. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.

    PubMed

    Fang, Chia-Lang; Al-Suwayeh, Saleh A; Fang, Jia-You

    2013-01-01

    Nanostructured lipid carriers (NLCs) are drug-delivery systems composed of both solid and liquid lipids as a core matrix. It was shown that NLCs reveal some advantages for drug therapy over conventional carriers, including increased solubility, the ability to enhance storage stability, improved permeability and bioavailability, reduced adverse effect, prolonged half-life, and tissue-targeted delivery. NLCs have attracted increasing attention in recent years. This review describes recent developments in drug delivery using NLCs strategies. The structures, preparation techniques, and physicochemical characterization of NLCs are systematically elucidated in this review. The potential of NLCs to be used for different administration routes is highlighted. Special attention is paid to parenteral injection and topical delivery since these are the most common routes for investigating NLCs. Relevant issues for the introduction of NLCs to market, including pharmaceutical and cosmetic applications, are discussed. The related patents of NLCs for drug delivery are also reviewed. Finally, the future development and current obstacles needing to be resolved are elucidated.

  11. DNA helicases as targets for anti-cancer drugs.

    PubMed

    Sharma, Sudha; Doherty, Kevin M; Brosh, Robert M

    2005-05-01

    DNA helicases have essential roles in nucleic acid metabolism by facilitating cellular processes including replication, recombination, DNA repair, and transcription. The vital roles of helicases in these pathways are reflected by their emerging importance in the maintenance of genomic stability. Recently, a number of human diseases with cancer predisposition have been shown to be genetically linked to a specific helicase defect. This has led researchers to further investigate the roles of helicases in cancer biology, and to study the efficacy of targeting human DNA helicases for anti-cancer drug treatment. Helicase-specific inhibition in malignant cells may compromise the high proliferation rates of cancerous tissues. The role of RecQ helicases in response to replicational stress suggests a molecular target for selectively eliminating malignant tumor cells by a cancer chemotherapeutic agent. Alternate DNA secondary structures such as G-quadruplexes that may form in regulatory regions of oncogenes or G-rich telomere sequences are potential targets for cancer therapy since these sequence-specific structures are proposed to affect gene expression and telomerase activation, respectively. Small molecule inhibitors of G-quadruplex helicases may be used to regulate cell cycle progression by modulating promotor activation or disrupting telomere maintenance, important processes of cellular transformation. The design of small molecules which deter helicase function at telomeres may provide a molecular target since telomerase activity is necessary for the proliferation of numerous immortal cells. Although evidence suggests that helicases are specifically inhibited by certain DNA binding compounds, another area of promise in anti-cancer therapy is siRNA technology. Specific knockdown of helicase expression can be utilized as a means to sensitize oncogenic proliferating cell lines. This review will address these topics in detail and summarize the current avenues of research in

  12. Application of RNAi to Genomic Drug Target Validation in Schistosomes

    PubMed Central

    Guidi, Alessandra; Mansour, Nuha R.; Paveley, Ross A.; Carruthers, Ian M.; Besnard, Jérémy; Hopkins, Andrew L.; Gilbert, Ian H.; Bickle, Quentin D.

    2015-01-01

    Concerns over the possibility of resistance developing to praziquantel (PZQ), has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi) in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2) (Sm-Calm), that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310) (Sm-aPKC) resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600) and p38-MAPK, Sm-MAPK p38 (Smp_133020) resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC). For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability, these

  13. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  14. Identification of drug candidates and repurposing opportunities through compound-target interaction networks.

    PubMed

    Cichonska, Anna; Rousu, Juho; Aittokallio, Tero

    2015-12-01

    System-wide identification of both on- and off-targets of chemical probes provides improved understanding of their therapeutic potential and possible adverse effects, thereby accelerating and de-risking drug discovery process. Given the high costs of experimental profiling of the complete target space of drug-like compounds, computational models offer systematic means for guiding these mapping efforts. These models suggest the most potent interactions for further experimental or pre-clinical evaluation both in cell line models and in patient-derived material. The authors focus here on network-based machine learning models and their use in the prediction of novel compound-target interactions both in target-based and phenotype-based drug discovery applications. While currently being used mainly in complementing the experimentally mapped compound-target networks for drug repurposing applications, such as extending the target space of already approved drugs, these network pharmacology approaches may also suggest completely unexpected and novel investigational probes for drug development. Although the studies reviewed here have already demonstrated that network-centric modeling approaches have the potential to identify candidate compounds and selective targets in disease networks, many challenges still remain. In particular, these challenges include how to incorporate the cellular context and genetic background into the disease networks to enable more stratified and selective target predictions, as well as how to make the prediction models more realistic for the practical drug discovery and therapeutic applications.

  15. Targeted drug induces responses in aggressive lymphomas

    Cancer.gov

    Preliminary results from clinical trials in a subtype of lymphoma show that for a number of patients whose disease was not cured by other treatments, the drug ibrutinib can provide significant anti-cancer responses with modest side effects.

  16. Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space.

    PubMed

    Peón, Antonio; Naulaerts, Stefan; Ballester, Pedro J

    2017-06-19

    Many computational methods to predict the macromolecular targets of small organic molecules have been presented to date. Despite progress, target prediction methods still have important limitations. For example, the most accurate methods implicitly restrict their predictions to a relatively small number of targets, are not systematically validated on drugs (whose targets are harder to predict than those of non-drug molecules) and often lack a reliability score associated with each predicted target. Here we present a systematic validation of ligand-centric target prediction methods on a set of clinical drugs. These methods exploit a knowledge-base covering 887,435 known ligand-target associations between 504,755 molecules and 4,167 targets. Based on this dataset, we provide a new estimate of the polypharmacology of drugs, which on average have 11.5 targets below IC50 10 µM. The average performance achieved across clinical drugs is remarkable (0.348 precision and 0.423 recall, with large drug-dependent variability), especially given the unusually large coverage of the target space. Furthermore, we show how a sparse ligand-target bioactivity matrix to retrospectively validate target prediction methods could underestimate prospective performance. Lastly, we present and validate a first-in-kind score capable of accurately predicting the reliability of target predictions.

  17. Drug efflux pump deficiency and drug target resistance masking in growing bacteria

    PubMed Central

    Fange, David; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    Recent experiments have shown that drug efflux pump deficiency not only increases the susceptibility of pathogens to antibiotics, but also seems to “mask” the effects of mutations, that decrease the affinities of drugs to their intracellular targets, on