Implications of agricultural transitions and urbanization for ecosystem services.
Cumming, Graeme S; Buerkert, Andreas; Hoffmann, Ellen M; Schlecht, Eva; von Cramon-Taubadel, Stephan; Tscharntke, Teja
2014-11-06
Historically, farmers and hunter-gatherers relied directly on ecosystem services, which they both exploited and enjoyed. Urban populations still rely on ecosystems, but prioritize non-ecosystem services (socioeconomic). Population growth and densification increase the scale and change the nature of both ecosystem- and non-ecosystem-service supply and demand, weakening direct feedbacks between ecosystems and societies and potentially pushing social-ecological systems into traps that can lead to collapse. The interacting and mutually reinforcing processes of technological change, population growth and urbanization contribute to over-exploitation of ecosystems through complex feedbacks that have important implications for sustainable resource use.
USDA-ARS?s Scientific Manuscript database
Emergence of desired ecosystem goods and services from rangelands as a societal benefit and a potential income source for land managers has implications regarding the management of plant communities traditionally used primarily for livestock production. Contemporary decision-making on rangelands in ...
Riparian ecosystems are important elements in landscapes that often provide a disproportionate range of ecosystem services and conservation benefits. Their protection and restoration have been one of the top environmental management priorities across the US over the last several...
USDA-ARS?s Scientific Manuscript database
Variability among farms across an agricultural landscape may reveal diverse biophysical contexts and experiences that show innovations and insights to improve nitrogen (N) cycling and yields, and thus the potential for multiple ecosystem services. In order to assess potential tradeoffs between yield...
E.S. Euskirchen; A.D. McGuire; F.S. III Chapin; S. Yi; C.C. Thompson
2009-01-01
Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in...
Long-term Ecosystem Experiments, Data Assimilation, and Meta-Analysis
NASA Astrophysics Data System (ADS)
Hungate, B. A.; Van Groenigen, K. J.; Osenberg, C. W.; van Gestel, N.
2015-12-01
Land ecosystems affect climate and the atmosphere, and climate and atmospheric change affects ecosystems. Syntheses of ecosystem experiments investigating their responses to environmental change holds promise for understanding how to model these interactions, and thereby gain insight into Earth's future biosphere, atmosphere, and climate. Long-term experiments examining ecosystem responses are thought to be especially important in this effort, for their potential to reveal cumulative and progressive effects, subtle effects initially undetectable experimentally, but manifest more clearly over time, often with stronger implications for modeled responses than the more dramatic, short-term experimental responses. Here, we present new analyses of long-term experiments manipulating temperature, CO2 concentration, and precipitation, testing the general hypothesis that there are common temporal patterns of responses that reveal general biogeochemical characterizing ecosystem responses to these environmental changes. For example, we show that increased carbon input with elevated CO2 stimulates emissions of nitrous oxide and methane, important greenhouse gases, and that effects show no signs of diminishing over the duration of experiments that have documented responses. At the same time, we show that the temporal resolution for this response is limited, pointing to a potential limitation in the ability of experiments to address clearly long-term hypotheses. We also show that warming tends to have limited cumulative effects on total soil carbon stocks in long-term experiments, and explore the mechanisms underlying this response. Finally, we discuss the implications of these findings for models used to simulate long-term ecosystem responses to these environmental forcings, as well as the implications of these findings for the next generation of terrestrial ecosystem experiments.
Paul Selmants; Creighton Litton; Christian P. Giardina; Greg P. Asner
2014-01-01
Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem...
Population Abundance and Ecosystem Service Provision: The Case of Birds
Gaston, Kevin J; Cox, Daniel T C; Canavelli, Sonia B; García, Daniel; Hughes, Baz; Maas, Bea; Martínez, Daniel; Ogada, Darcy; Inger, Richard
2018-01-01
Abstract Although there is a diversity of concerns about recent persistent declines in the abundances of many species, the implications for the associated delivery of ecosystem services to people are surprisingly poorly understood. In principle, there are a broad range of potential functional relationships between the abundance of a species or group of species and the magnitude of ecosystem-service provision. Here, we identify the forms these relationships are most likely to take. Focusing on the case of birds, we review the empirical evidence for these functional relationships, with examples of supporting, regulating, and cultural services. Positive relationships between abundance and ecosystem-service provision are the norm (although seldom linear), we found no evidence for hump-shaped relationships, and negative ones were limited to cultural services that value rarity. Given the magnitude of abundance declines among many previously common species, it is likely that there have been substantial losses of ecosystem services, providing important implications for the identification of potential tipping points in relation to defaunation resilience, biodiversity conservation, and human well-being. PMID:29686433
Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.
Boulton, Chris A; Lenton, Timothy M
2015-09-15
Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.
Effects of multiple interacting disturbances and salvage logging on forest carbon stocks
John B. Bradford; Shawn Fraver; Amy M. Milo; Anthony W. D' Amato; Brian J. Palik
2012-01-01
Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkle, Ross; Benscoter, Brian; Comas, Xavier
2015-04-07
Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regionalmore » carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.« less
Animal pee in the sea: consumer-mediated nutrient dynamics in the world's changing oceans.
Allgeier, Jacob E; Burkepile, Deron E; Layman, Craig A
2017-06-01
Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top-down changes for biogeochemical cycles via consumer-mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom-up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity-ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems. © 2017 John Wiley & Sons Ltd.
Acid sulfate soils and human health--a Millennium Ecosystem Assessment.
Ljung, Karin; Maley, Fiona; Cook, Angus; Weinstein, Philip
2009-11-01
Acid sulfate soils have been described as the "nastiest soils on earth" because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.
Soil organic nitrogen mineralization across a global latitudinal gradient
D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy
2009-01-01
Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...
Effects of multiple interacting disturbances and salvage logging on forest carbon stocks
Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.
2012-01-01
Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.
Kramer, Daniel B; Stevens, Kara; Williams, Nicholas E; Sistla, Seeta A; Roddy, Adam B; Urquhart, Gerald R
2017-01-01
Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ping; Omani, Nina; Chaubey, Indrajeet
Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify thesemore » services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index (SPI), standardized soil water content index (SSWI), and standardized streamflow index (SSI). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI12 than SPI12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to extreme climate conditions in order to protect and restore freshwater provisioning and food provisioning services in the UMRB.« less
Li, Ping; Omani, Nina; Chaubey, Indrajeet; Wei, Xiaomei
2017-05-08
Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify these services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index ( SPI ), standardized soil water content index ( SSWI ), and standardized streamflow index ( SSI ). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI 12 than SPI 12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to extreme climate conditions in order to protect and restore freshwater provisioning and food provisioning services in the UMRB.
Li, Ping; Omani, Nina; Chaubey, Indrajeet; Wei, Xiaomei
2017-01-01
Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify these services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index (SPI), standardized soil water content index (SSWI), and standardized streamflow index (SSI). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI12 than SPI12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to extreme climate conditions in order to protect and restore freshwater provisioning and food provisioning services in the UMRB. PMID:28481311
Li, Ping; Omani, Nina; Chaubey, Indrajeet; ...
2017-05-08
Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify thesemore » services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index (SPI), standardized soil water content index (SSWI), and standardized streamflow index (SSI). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI12 than SPI12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to extreme climate conditions in order to protect and restore freshwater provisioning and food provisioning services in the UMRB.« less
Dynamical implications of bi-directional resource exchange within a meta-ecosystem.
Messan, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel C; Kang, Yun
2018-05-05
The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018 Elsevier Inc. All rights reserved.
Xiao, Yang; Xiao, Qiang
2018-03-29
Because natural ecosystems and ecosystem services (ES) are both critical to the well-being of humankind, it is important to understand their relationships and congruence for conservation planning. Spatial conservation planning is required to set focused preservation priorities and to assess future ecological implications. This study uses the combined measures of ES models and ES potential to estimate and analyze all four groups of ecosystem services to generate opportunities to maximize ecosystem services. Subsequently, we identify the key areas of conservation priorities as future forestation and conservation hotspot zones to improve the ecological management in Chongqing City, located in the upper reaches of the Three Gorges Reservoir Area, China. Results show that ecosystem services potential is extremely obvious. Compared to ecosystem services from 2000, we determined that soil conservation could be increased by 59.11%, carbon sequestration by 129.51%, water flow regulation by 83.42%, and water purification by 84.42%. According to our prioritization results, approximately 48% of area converted to forests exhibited high improvements in all ecosystem services (categorized as hotspot-1, hotspot-2, and hotspot-3). The hotspots identified in this study can be used as an excellent surrogate for evaluation ecological engineering benefits and can be effectively applied in improving ecological management planning.
Scott G. Zolkos; Patrick Jantz; Tina Cormier; Louis R. Iverson; Daniel W. McKenney; Scott J. Goetz
2015-01-01
The degree to which tree species will shift in response to climate change is uncertain yet critical to understand for assessing ecosystem vulnerability. We analyze results from recent studies that model potential tree species habitat across the eastern United States during the coming century. Our goals were to quantify and spatially analyze habitat projections and...
John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato
2013-01-01
Forested ecosystems contain the majority of the worldâs terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...
Anna L. Behm; Mary L. Duryea; Alan J. Long; Wayne C. Zipperer
2004-01-01
Six understory species from five pine flatwood sites and six understory species from five hardwood hammock sites were harvested for biomass analyses to compare potential flammability between two ecosystems. In the south-eastern coastal plain of the United States. Plant components were separated into live and dead foliage, accumulated litter on and under the plant, and...
Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito
2010-01-01
Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...
Zhao Xiaoying; Ren Jizhou
2007-01-01
The leguminous Caragana species are important components of vegetation in the semi-arid Loess-gully region, China. These shrub species are important for maintaining the dynamics and function of the ecosystem in the region. They are potential plant resources for restoration of degraded ecosystems. The germination responses to temperatures in two...
Stevens, Kara; Williams, Nicholas E.; Sistla, Seeta A.; Roddy, Adam B.; Urquhart, Gerald R.
2017-01-01
Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions. PMID:29077748
NASA Technical Reports Server (NTRS)
Cockell, C.; Catling, D.; Waites, H.
1999-01-01
Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.
Investigating the allelopathic potential of Kalmia latifolia L. (Ericaceae)
Holly R. Eppard; Jonathan L. Horton; Erik T. Nilsen; Pretson Galusky; Barton D. Clintton
2005-01-01
Evergreen, understory shrubs, often members of the Ericaceae, have been implicated in the suppression of tree recruitment in Many ecosystems. One possible mechanism of this suppression could be an allelopathic interaction between shrubs and seedlings. We tested the allelopathic potential of Kalmia latifoliaL., an important component of southern...
Regime shifts and resilience in China's coastal ecosystems.
Zhang, Ke
2016-02-01
Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.
Robert G. Ribe; Edward T. Armstrong; Paul H. Gobster
2002-01-01
The Northwest Forest Plan applies a shift in policy to national forests in the Pacific Northwest, with implications for other public landscapes. This shift offers potentially strong scenic implications for areas that have historically emphasized clearcutting with little visual impact mitigation. These areas will now emphasize biocentric concerns and harvests formed...
Implications of tristability in pattern-forming ecosystems
NASA Astrophysics Data System (ADS)
Zelnik, Yuval R.; Gandhi, Punit; Knobloch, Edgar; Meron, Ehud
2018-03-01
Many ecosystems show both self-organized spatial patterns and multistability of possible states. The combination of these two phenomena in different forms has a significant impact on the behavior of ecosystems in changing environments. One notable case is connected to tristability of two distinct uniform states together with patterned states, which has recently been found in model studies of dryland ecosystems. Using a simple model, we determine the extent of tristability in parameter space, explore its effects on the system dynamics, and consider its implications for state transitions or regime shifts. We analyze the bifurcation structure of model solutions that describe uniform states, periodic patterns, and hybrid states between the former two. We map out the parameter space where these states exist, and note how the different states interact with each other. We further focus on two special implications with ecological significance, breakdown of the snaking range and complex fronts. We find that the organization of the hybrid states within a homoclinic snaking structure breaks down as it meets a Maxwell point where simple fronts are stationary. We also discover a new series of complex fronts between the uniform states, each with its own velocity. We conclude with a brief discussion of the significance of these findings for the dynamics of regime shifts and their potential control.
USDA-ARS?s Scientific Manuscript database
Bacteriovorax spp. (Bvx) are delta proteobacteria adapted to marine ecosystems where salinity concentration range from 1-3%. Due to their predation of Gram-negative bacteria, Bvx may have great potential for biocontrol of food-borne pathogens on fruits and leafy greens. The goal of this research was...
Analysis of the pattern of potential woody cover in Texas savanna
NASA Astrophysics Data System (ADS)
Yang, Xuebin; Crews, Kelley A.; Yan, Bowei
2016-10-01
While woody plant encroachment has been observed worldwide in savannas and adversely affected the ecosystem structure and function, a thorough understanding of the nature of this phenomenon is urgently required for savanna management and restoration. Among others, potential woody cover (the maximum realizable woody cover that a given site can support), especially its variation over environment has huge implication on the encroachment management in particular, and on tree-grass interactions in general. This project was designed to explore the pattern of potential woody cover in Texas savanna, an ecosystem with a large rainfall gradient in west-east direction. Substantial random pixels were sampled across the study area from MODIS Vegetation Continuous Fields (VCF) tree cover layer (250 m). Since potential woody cover is suggested to be limited by water availability, a nonlinear 99th quantile regression was performed between the observed woody cover and mean annual precipitation (MAP) to model the pattern of potential woody cover. Research result suggests a segmented relationship between potential woody cover and MAP at MODIS scale. Potential biases as well as the practical and theoretical implications were discussed. Through this study, the hypothesis about the primary role of water availability in determining savanna woody cover was further confirmed in a relatively understudied US-located savanna.
Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems.
Guiot, Joel; Cramer, Wolfgang
2016-10-28
The United Nations Framework Convention on Climate Change Paris Agreement of December 2015 aims to maintain the global average warming well below 2°C above the preindustrial level. In the Mediterranean basin, recent pollen-based reconstructions of climate and ecosystem variability over the past 10,000 years provide insights regarding the implications of warming thresholds for biodiversity and land-use potential. We compare scenarios of climate-driven future change in land ecosystems with reconstructed ecosystem dynamics during the past 10,000 years. Only a 1.5°C warming scenario permits ecosystems to remain within the Holocene variability. At or above 2°C of warming, climatic change will generate Mediterranean land ecosystem changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather than temperature anomalies. Copyright © 2016, American Association for the Advancement of Science.
Prieto, Iván; Armas, Cristina; Pugnaire, Francisco I
2012-03-01
Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Creed, Irena F; Bergström, Ann-Kristin; Trick, Charles G; Grimm, Nancy B; Hessen, Dag O; Karlsson, Jan; Kidd, Karen A; Kritzberg, Emma; McKnight, Diane M; Freeman, Erika C; Senar, Oscar E; Andersson, Agneta; Ask, Jenny; Berggren, Martin; Cherif, Mehdi; Giesler, Reiner; Hotchkiss, Erin R; Kortelainen, Pirkko; Palta, Monica M; Vrede, Tobias; Weyhenmeyer, Gesa A
2018-03-15
Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans. © 2018 John Wiley & Sons Ltd.
Pharmaceuticals and personal care products (PPCPs) are widely discharged into the environment via diverse pathways. The effects of PPCPs in the environment have potentially important human and ecosystem health implications, so credible, salient, and legitimate scientific evidence...
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.
Alldred, Mary; Baines, Stephen B; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes
Alldred, Mary; Baines, Stephen B.; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets. PMID:26914688
Law, Elizabeth A; Bryan, Bretr A; Meijaard, Erik; Mallawaarachchi, Thilak; Struebig, Matthew; Wilson, Kerrie A
2015-01-01
Increasingly, landscapes are managed for multiple objectives to balance social, economic, and environmental goals. The Ex-Mega Rice Project (EMRP) peatland in Central Kalimantan, Indonesia provides a timely example with globally significant development, carbon, and biodiversity concerns. To inform future policy, planning, and management in the EMRP, we quantified and mapped ecosystem service values, assessed their spatial interactions, and evaluated the potential provision of ecosystem services under future land-use scenarios. We focus on key policy-relevant regulating (carbon stocks and the potential for emissions reduction), provisioning (timber, crops from smallholder agriculture, palm oil), and supporting (biodiversity) services. We found that implementation of existing land-use plans has the potential to improve total ecosystem service provision. We identify a number of significant inefficiencies, trade-offs, and unintended outcomes that may arise. For example, the potential development of existing palm oil concessions over one-third of the region may shift smallholder agriculture into low-productivity regions and substantially impact carbon and biodiversity outcomes. While improved management of conservation zones may enhance the protection of carbon stocks, not all biodiversity features will be represented, and there will be a reduction in timber harvesting and agricultural production. This study highlights how ecosystem service analyses can be structured to better inform policy, planning, and management in globally significant but data-poor regions.
HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS
The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...
Watermeyer, Katherine E; Hutchings, Laurence; Jarre, Astrid; Shannon, Lynne J
2016-01-01
Several commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus. Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985-1991), during (1997-2000) and after (2003-2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change.
NASA Astrophysics Data System (ADS)
Yu, Jianjun; Berry, Pam
2017-04-01
The drought and heat stress has alerted the composition, structure and biogeography of forests globally, whilst the projected severe and widespread droughts are potentially increasing. This challenges the sustainable forest management to better cope with future climate and maintain the forest ecosystem functions and services. Many studies have investigated the climate change impacts on forest ecosystem but less considered the climate extremes like drought. In this study, we implement a dynamic ecosystem model based on a version of LPJ-GUESS parameterized with European tree species and apply to Great Britain at a finer spatial resolution of 5*5 km. The model runs for the baseline from 1961 to 2011 and projects to the latter 21st century using 100 climate scenarios generated from MaRIUS project to tackle the climate model uncertainty. We will show the potential impacts of climate change on forest ecosystem and vegetation transition in Great Britain by comparing the modelled conditions in the 2030s and the 2080s relative to the baseline. In particular, by analyzing the modelled tree mortality, we will show the tree dieback patterns in response to drought for various species, and assess their drought vulnerability across Great Britain. We also use species distribution modelling to project the suitable climate space for selected tree species using the same climate scenarios. Aided by these two modelling approaches and based on the corresponding modelling results, we will discuss the implications for adaptation strategy for forest management, especially in extreme drought conditions. The gained knowledge and lessons for Great Britain are considered to be transferable in many other regions.
NASA Astrophysics Data System (ADS)
Jiang, Chong; Zhang, Haiyan; Zhang, Zhidong
2018-02-01
Human demands for natural resources have significantly changed the natural landscape and induced ecological degradation and associated ecosystem services. An understanding of the patterns, interactions, and drivers of ecosystem services is essential for the ecosystem management and guiding targeted land use policy-making. The Losses Plateau (LP) provides ecosystem services including the carbon sequestration and soil retention, and exerts tremendous impacts on the midstream and downstream of the Yellow River. Three dominant ecosystem services between 2000 and 2012 within the LP were presented based on multiple source datasets and biophysical models. In addition, paired ecosystem services interactions were quantified using the correlation analysis and constraint line approach. The main conclusions are as follows. It was observed that the warming and wetting climate and ecological program jointly promoted the vegetation growth and carbon sequestration. The increasing precipitation throughout 2000-2012 was related to the soil retention and hydrological regulation fluctuations. The vegetation restoration played a positive role in the soil retention enhancement, thus substantially reduced water and sediment yields. The relationships between ecosystem services were not only correlations (tradeoffs or synergies), but rather constraint effects. The constraint effects between the three paired ecosystem services could be classified as the negative convex (carbon sequestration vs. hydrological regulation) and hump-shaped (soil retention vs. carbon sequestration and soil retention vs. hydrological regulation), and the coefficients of determination for the entire LP were 0.78, 0.84, and 0.65, respectively. In the LP, the rainfall (water availability) was the key constraint factor that affected the relationships between the paired ecosystem services. The spatially explicit mapping of ecosystem services and interaction analyses utilizing constraint line approach enriched the understanding of connections between ecosystem services and the potential drivers, which had important implications for the land use planning and landscapes services optimizing.
Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse ...
Realising the Potential of Serenity in Emerging AmI Ecosystems:Implications and Challenges
NASA Astrophysics Data System (ADS)
Armenteros, Álvaro; García, Laura; Muñoz, Antonio; Maña, Antonio
In this chapter we describe the potential of SERENITY in Ambient Intelligence (AmI) Ecosystems. As a proof of concept, we describe the implementation of a prototype based on the application of the SERENITY model (including processes, artefacts and tools) to an industrial AmI scenario. A complete description of this prototype, along with all Security and Dependability (S&D) artefacts used is provided in this chapter. Besides, the chapter also provides a complete description of one of the S&D Patterns used in the prototype, in order both, to give a global view of SERENITY and to provide useful details about the realization of this scenario.
Caron, A; Grosbois, V; Etter, E; Gaidet, N; de Garine-Wichatitsky, M
2014-12-01
Wild terrestrial birds can act as potential local spreaders or bridge hosts for avian influenza viruses (AIVs) between waterfowl (the maintenance hosts of AIVs) and domestic avian populations in which AIVs may cause disease. Few studies have investigated this hypothesis, although it is an important knowledge gap in our understanding of AIV spread within socio-ecosystems. We designed a simple and reproducible approach in an agro-ecosystem in Zimbabwe based on: (1) bird counts at key target sites (i.e., wetlands, villages, intensive poultry production buildings and ostrich farms) to identify which wild birds species co-occur in these different sites and seasons when the risk of AIV transmission through these potential bridge hosts is maximal and (2) targeted sampling and testing for AIV infection in the identified potential bridge hosts. We found that 12 wild bird species represented the vast majority (79%) of co-occurrences in the different sites, whereas 230 bird species were recorded in this ecosystem. Specifically, three species - barn swallow, Hirundo rustica, red-billed quelea, Quelea quelea and cattle egret, Bubulcus ibis - represented the main potential bridge host species (65% of co-occurrences). In two out of these three species (i.e., barn swallow and red-billed quelea), we detected AIV infections, confirming that they can play a bridge function between waterfowl and domestic species in the ecosystem. Our approach can be easily implemented in other ecosystems to identify potential bridge hosts, and our results have implications in terms of surveillance, risk management and control of AIV spread in socio-ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hermelingmeier, V.
2014-12-01
Over the past 150 years, humans have altered the planet at a rapid pace. In this new era, the Anthropocene, environmental degradation has come to a state where sustainable ecosystem management has developed into an urgent quest for humans to maintain their own life-support system. The ecosystem services (ES) concept, initially introduced as potential facilitator to manage this quest, has been criticized for its vagueness to pose a barrier to the concept's application in practice. Therefore, the focus of this paper is on this vagueness as potential barrier to successful collaboration in the research community (interdisicplinarity) as a precondition to the concept's application for sustainable ecosystem management (transdisicplinarity). Focusing on the European research project Operational Potential for Ecosystem Research Applications (OPERAs), the objective is to serve the research community with the identification of differences in conceptual perspectives on ES (differentiation), in order to recommend an effective way of handling these differences (clarification) as a basis for interdisciplinary integration (synthesis). With an emphasis on differentiation and clarification, the research process concentrates on the derivation of a typology of perspectives from the literature (RQ 1), on the basis of which perspectives in OPERAs are assessed with the help of Q methodology (RQ 2) in order to derive implications for how to handle the concept in the future (RQ 3). The main findings suggest clear differences between three foundational perspectives but a more nuanced variety of viewpoints in OPERAs that can be summarized under five main perspectives. Whereas the notion of interdisciplinarity has often steered the focus towards disciplinary worldviews as the cause for different perspectives, the results point to the insight that perspectives on the ES concept are influenced by a more complex interplay of paradigmatic assumptions. Therefore, clarification is suggested to encompass more than the standardization of discipline-induced worldviews and to require open dialogue on underlying values and ethical stances. In synthesis, the question is not only how to use the ES concept effectively but also to what extent the concept can suffice sustainable ecosystem management in the long-term.
Vulnerability Assessments in Support of the Climate Ready ...
As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology for climate change vulnerability assessments using Massachusetts Bays’ salt marsh ecosystem as a demonstration. The aim is to synthesize place-based information on the potential implications of climate change for key ecosystem processes in each estuary, in a form that will enable managers to undertake management adaptation planning.
Hydrogeology and groundwater ecology: Does each inform the other?
NASA Astrophysics Data System (ADS)
Humphreys, W. F.
2009-02-01
The known, perceived and potential relationships between hydrogeology and groundwater ecology are explored, along with the spatial and temporal scale of these relations, the limit of knowledge and areas in need of research. Issues concerned with the subterranean part of the water cycle are considered from the perspective of the biology of those invertebrate animals that live, of necessity, in groundwater and the microbiological milieu essential for their survival. Groundwater ecosystems are placed in a hydrogeological context including the groundwater evolution along a flowpath, the significance of the biodiversity and of the ecosystem services potentially provided. This is considered against a background of three major components essential to the functioning of groundwater ecosystems, each of which can be affected by activities over which hydrogeologists often have control, and each, in turn, may have implications for groundwater management; these are, a place to live, oxygen and food (energy). New techniques and increasing awareness amongst hydrogeologists of the diversity and broad distribution of groundwater ecosystems offer new opportunities to develop cross disciplinary work between hydrogeologists and groundwater ecologists, already demonstrated to be a field for collaboration with broad benefits.
Physiological implications of anthropogenic environmental calcium depletion
Catherine H. Borer; Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley
2001-01-01
Recent evidence indicates that numerous anthropogenic factors can deplete calcium (Ca) from forested ecosystems. Although it is difficult to quantify the extent of this depletion, some reports indicate that the magnitude of Ca losses may be substantial. The potential for Ca depletion raises important questions about tree health. Only a fraction of foliar Ca is...
Earthworm invasions in the tropics
Grizelle Gonzalez; Ching Yu Huang; Xiaoming Zou; Carlos Rodriguez
2006-01-01
The effects and implications of invasive species in belowground terrestrial ecosystems are not well known in comparison with aboveground terrestrial and marine environments. The study of earthworm invasions in the tropics is limited by a lack of taxonomic knowledge and the potential for loss of species in native habitats due to anthropogenic land use change. Alteration...
Lindo, Zoë; Nilsson, Marie-Charlotte; Gundale, Michael J
2013-07-01
Ecosystems in the far north, including arctic and boreal biomes, are a globally significant pool of carbon (C). Global change is proposed to influence both C uptake and release in these ecosystems, thereby potentially affecting whether they act as C sources or sinks. Bryophytes (i.e., mosses) serve a variety of key functions in these systems, including their association with nitrogen (N2 )-fixing cyanobacteria, as thermal insulators of the soil, and producers of recalcitrant litter, which have implications for both net primary productivity (NPP) and heterotrophic respiration. While ground-cover bryophytes typically make up a small proportion of the total biomass in northern systems, their combined physical structure and N2 -fixing capabilities facilitate a disproportionally large impact on key processes that control ecosystem C and N cycles. As such, the response of bryophyte-cyanobacteria associations to global change may influence whether and how ecosystem C balances are influenced by global change. Here, we review what is known about their occurrence and N2 -fixing activity, and how bryophyte systems will respond to several key global change factors. We explore the implications these responses may have in determining how global change influences C balances in high northern latitudes. © 2013 Blackwell Publishing Ltd.
Underappreciated species in ecology: "ugly fish" in the northwest Atlantic Ocean.
Link, Jason S
2007-10-01
Species shifts and replacements are common in ecological studies. Observations thereof serve as the impetus for many ecological endeavors. Many of the species now known to dominate ecosystem functioning were largely ignored until studies of those underappreciated species elucidated their critical roles. Recognizing the potential importance of underappreciated species has implications for functional redundancies in ecosystems and should alter our approach to long-term monitoring. One example of an applied ecological system containing species shifts, underappreciated species, and potential changes in functional redundancies is the topic of fisheries. The demersal component of many fish communities usually consists of high-profile and commercially valuable species that are targets of fisheries, plus a diverse group of lesser known species that have minimal commercial value and focus. Yet ecologically these traditionally nontargeted species are often a major biomass sink in marine ecosystems and can also be critical in the functioning of bentho-demersal food webs. I examined the biomass trajectories of several species of skates, cottids, lophiids, anarhichadids, zooarcids, and similar species in the northeast U.S. Atlantic ecosystem to determine whether their relative abundance has changed across the past four decades. Distribution and stomach contents of these species were also evaluated over time to further elucidate the relative importance of these species. Landings of these underappreciated bentho-demersal fish were also examined in comparison to those species that historically have been commercially targeted. Of particular emphasis was the evaluation of evidence for sequential stock depletion and the ramifications for functional redundancy for this ecosystem. Results indicate that some of these fish species are now the dominant piscivores, benthivores, and scavengers in this ecosystem. These formerly under-studied species generally have either maintained a consistent population size or have increased in abundance (and expanded in distribution) over the past several decades. Nontraditionally targeted fish species are an often overlooked but important component of bentho-demersal fish communities. Implications for the energy flow and resilience specifically for future fisheries and generally for harvesting biological resources are significant, remaining critical issues for the world's ecosystems.
Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E; Ammann, Christof; Arain, M Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan; Beringer, Jason; Bernhofer, Christian; Black, T Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J; Dellwik, Ebba; Desai, Ankur R; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y; Jones, Mike B; Kiely, Gerard; Kolb, Thomas E; Kutsch, Werner L; Lafleur, Peter; Lawrence, David M; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J William; Noormets, Asko; Oechel, Walter; Olejnik, Janusz; Kyaw Tha Paw U; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L; Seufert, Günther; Spano, Donatella; Stoy, Paul; Sutton, Mark A; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, Xuhui
2012-05-01
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Nitrogen in rock: Occurrences and biogeochemical implications
Holloway, J.M.; Dahlgren, R.A.
2002-01-01
There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.
Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime
NASA Astrophysics Data System (ADS)
Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.; Jenkins, Alan; Mârd, Johanna; Myers-Smith, Isla H.; Prowse, Terry D.; Vincent, Warwick F.; Wookey, Philip A.
2016-03-01
Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological, and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis, we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional, and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate (i) changes in ecosystem productivity; (ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; (iii) altered landscapes, successional trajectories, and creation of new habitats; (iv) altered seasonality and phenological mismatches; and (v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of interecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment scale as an integrated unit of study, thereby more explicitly considering the physical, chemical, and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydroecological units (e.g., stream-pond-lake-river-near shore marine environments).
Robinson, Sharon A; Erickson, David J
2015-02-01
Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion. © 2014 John Wiley & Sons Ltd.
Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily
2017-04-12
Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).
Thermal Change and the Dynamics of Multi-Host Parasite Life Cycles in Aquatic Ecosystems.
Barber, Iain; Berkhout, Boris W; Ismail, Zalina
2016-10-01
Altered thermal regimes associated with climate change are impacting significantly on the physical, chemical, and biological characteristics of the Earth's natural ecosystems, with important implications for the biology of aquatic organisms. As well as impacting the biology of individual species, changing thermal regimes have the capacity to mediate ecological interactions between species, and the potential for climate change to impact host-parasite interactions in aquatic ecosystems is now well recognized. Predicting what will happen to the prevalence and intensity of infection of parasites with multiple hosts in their life cycles is especially challenging because the addition of each additional host dramatically increases the potential permutations of response. In this short review, we provide an overview of the diverse routes by which altered thermal regimes can impact the dynamics of multi-host parasite life cycles in aquatic ecosystems. In addition, we examine how experimentally amenable host-parasite systems are being used to determine the consequences of changing environmental temperatures for these different types of mechanism. Our overarching aim is to examine the potential of changing thermal regimes to alter not only the biology of hosts and parasites, but also the biology of interactions between hosts and parasites. We also hope to illustrate the complexity that is likely to be involved in making predictions about the dynamics of infection by multi-host parasites in thermally challenged aquatic ecosystems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.
The South's outlook for sustainable forest bioenergy and biofuels production
David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow
2010-01-01
The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...
Climate change presents increased potential for very large fires in the contiguous United States
R. Barbero; J. T. Abatzoglou; Sim Larkin; C. A. Kolden; B. Stocks
2015-01-01
Very large fires (VLFs) have important implications for communities, ecosystems, air quality and fire suppression expenditures. VLFs over the contiguous US have been strongly linked with meteorological and climatological variability. Building on prior modelling of VLFs (>5000 ha), an ensemble of 17 global climate models were statistically downscaled over the US...
Rebecca E. Hewitt; Alec P. Bennett; Amy L. Breen; Teresa N. Hollingsworth; D. Lee Taylor; F. Stuart Chapin; T. Scott Rupp
2016-01-01
Context  Forecasting the expansion of forest into Alaska tundra is critical to predicting regional ecosystem services, including climate feedbacks such as carbon storage. Controls over seedling establishment govern forest development and migration potential. Ectomycorrhizal fungi (EMF), obligate symbionts of all Alaskan tree species, are...
Potential effects of restoration on biogeochemical functions of bottom land hardwood ecosystems
Graeme Lockaby; John A. Stanturf
2000-01-01
The concept of wetland restoration carries multiple meanings and implications. The scientific usage of the term connotes re-establishment of wetland functions, and often it is the functions, which society deems most valuable, that receive highest focus. Arguably, among key wetland functions, the highest societal value may be linked with the biogeochemical...
Linda E. Kruger; Adelaide Johnson
2017-01-01
Coastal indigenous people around the world have depended on natural resources from land and sea since time immemorial. However, assessments of potential resource change resulting from ongoing physical change, like we are experiencing today, are rare. Such summaries could increase our understanding of ecosystem dynamics and implications for important resources and could...
Ecological bridges and barriers in pelagic ecosystems
NASA Astrophysics Data System (ADS)
Briscoe, Dana K.; Hobday, Alistair J.; Carlisle, Aaron; Scales, Kylie; Eveson, J. Paige; Arrizabalaga, Haritz; Druon, Jean Noel; Fromentin, Jean-Marc
2017-06-01
Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate-mediated ecosystem change.
NASA Astrophysics Data System (ADS)
Goulsbra, Claire; Rickards, Nathan; Brown, Sarah; Evans, Martin; Boult, Stephen; Alderson, Danielle
2016-04-01
Peatlands are important terrestrial carbon stores, and within these environments, floodplains have been identified as hotspots of carbon processing, potentially releasing substantial amounts of CO2 into the atmosphere. Previous monitoring campaigns have shown that such CO2 release from ecosystem respiration is linked not only to soil temperature and water table depth, but also to CO2 sequestration via primary productivity, thought to be because the root exudates produced during photosynthesis stimulate microbial activity. This suggests that extrapolation models that are parameterised on data collected during day light hours, when vegetation is photosynthesising, may overestimate ecosystem respiration rates at night, which has important implications for estimates of annual CO2 flux and carbon budgeting. To investigate this hypothesis, monitoring data is collected on the CO2 flux from UK peatland floodplains over the full diurnal cycle. This is done via ex-situ manual data collection from mesocosms using an infra-red gas analyser, and the in-situ automated collection of CO2 concentration data from boreholes within the peat using GasClams®. Preliminary data collected during the summer months suggest that night time respiration is suppressed compared to that during the day, and that the significant predictors of respiration are different when examining day and night time data. This highlights the importance of incorporating diurnal variations into models of ecosystem respiration.
Marzluff, John
2017-01-01
Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation—variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity—has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920374
NASA Astrophysics Data System (ADS)
Ma, Xuanlong; Huete, Alfredo; Ponce-Campos, Guillermo; Zhang, Yongguang; Xie, Zunyi; Giovannini, Leandro; Cleverly, James; Eamus, Derek
2016-04-01
Amplification of the hydrologic cycle as a consequence of global warming is increasing the frequency, intensity, and spatial extent of extreme climate events globally. The potential influences resulting from amplification of the hydro-climatic cycle, coupled with an accelerating warming trend, pose great concerns on the sustainability of terrestrial ecosystems to sequester carbon, maintain biodiversity, provide ecosystem services, food security, and support human livelihood. Despite the great implications, the magnitude, direction, and carry-over effect of these extreme climate events on ecosystem function, remain largely uncertain. To address these pressing issues, we conducted an observational, interdisciplinary study using satellite retrievals of atmospheric CO2 and photosynthesis (chlorophyll fluorescence), and in-situ flux tower measures of ecosystem-atmosphere carbon exchange, to reveal the shifts in ecosystem function across extreme drought and wet periods. We further determine the factors that govern ecosystem sensitivity to hydroclimatic extremes. We focus on Australia but extended our analyses to other global dryland regions due to their significant role in global biogeochemical cycles. Our results revealed dramatic impacts of drought and wet hydroclimatic extremes on ecosystem function, with abrupt changes in vegetation productivity, carbon uptake, and water-use-efficiency between years. Drought resulted in widespread reductions or collapse in the normal patterns of vegetation growth seasonality such that in many cases there was no detectable phenological cycle during extreme drought years. We further identified a significant increasing trend (p < 0.001) in extreme wet year precipitation amounts over Australia and many other global regions, resulting in an increasing trend in magnitude of the episodic carbon sink pulses coupled to each La Niña-induced wet years. This finding is of global biogeochemical significance, with the consequence of amplifying the global carbon cycle. Lastly, we use landscape measurements of carbon and water fluxes from eddy-covariance towers and field sampling of aboveground net primary productivity from long-term ecological networks to verify the patterns observed by top-down approaches. Our results demonstrate the intensification of hydroclimatic extremes due to global warming is exerting important impacts on ecosystem function, which further have significant implications on global biogeochemical cycles as well as local ecosystem processes.
Effects of Solar Geoengineering on Vegetation: Implications for Biodiversity and Conservation
NASA Astrophysics Data System (ADS)
Dagon, K.; Schrag, D. P.
2017-12-01
Climate change will have significant impacts on vegetation and biodiversity. Solar geoengineering has potential to reduce the climate effects of greenhouse gas emissions through albedo modification, yet more research is needed to better understand how these techniques might impact terrestrial ecosystems. Here we utilize the fully coupled version of the Community Earth System Model to run transient solar geoengineering simulations designed to stabilize radiative forcing starting mid-century, relative to the Representative Concentration Pathway 6 (RCP6) scenario. Using results from 100-year simulations, we analyze model output through the lens of ecosystem-relevant metrics. We find that solar geoengineering improves the conservation outlook under climate change, but there are still potential impacts on biodiversity. Two commonly used climate classification systems show shifts in vegetation under solar geoengineering relative to RCP6, though we acknowledge the associated uncertainties with these systems. We also show that rates of warming and the climate velocity are minimized globally under solar geoengineering by the end of the century, while trends persist over land in the Northern Hemisphere. Shifts in the amplitude of temperature and precipitation seasonal cycles are observed in the results, and have implications for vegetation phenology. Different metrics for vegetation productivity also show decreases under solar geoengineering relative to RCP6, but could be related to the model parameterization of nutrient cycling. Vegetation water cycling is found to be an important mechanism for understanding changes in ecosystems under solar geoengineering.
Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity
NASA Astrophysics Data System (ADS)
Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.
2017-12-01
Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.
Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction.
Baker, Christopher M; Gordon, Ascelin; Bode, Michael
2017-04-01
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication. © 2016 Society for Conservation Biology.
Crystal L. Raymond; Donald McKenzie
2014-01-01
We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer...
Multiple stressors and the potential for synergistic loss of New England salt marshes
Angelini, Christine; Bertness, Mark D.
2017-01-01
Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change. PMID:28859097
Multiple stressors and the potential for synergistic loss of New England salt marshes.
Crotty, Sinead M; Angelini, Christine; Bertness, Mark D
2017-01-01
Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change.
He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min
2013-01-01
Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.
Stanley T. Asah; Anne D. Guerry; Dale J. Blahna; Joshua J. Lawler
2014-01-01
Ecosystem services, fundamental to livelihoods and well-being, are reshaping environmental management and policy. However, the behavioral dimensions of ecosystem services and the responses of ordinary people to the management of those services, is less well understood. The ecosystem services framework lends itself to understanding the relationship between ecosystems...
Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration
Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.
2011-01-01
Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.
Faust, Derek R; Moore, Matthew T; Emison, Gerald Andrews; Rush, Scott A
2016-05-01
The 1972 Clean Water Act was passed to protect chemical, physical, and biological integrity of United States' waters. The U.S. Environmental Protection Agency and U.S. Army Corps of Engineers codified a new "waters of the United States" rule on June 29, 2015, because several Supreme Court case decisions caused confusion with the existing rule. Climate change could affect this rule through connectivity between groundwater and surface waters; floodplain waters and the 100-year floodplain; changes in jurisdictional status; and sea level rise on coastal ecosystems. Four approaches are discussed for handling these implications: (1) "Wait and see"; (2) changes to the rule; (3) use guidance documents; (4) Congress statutorily defining "waters of the United States." The approach chosen should be legally defensible and achieved in a timely fashion to provide protection to "waters of the United States" in proactive consideration of scientifically documented effects of climate change on aquatic ecosystems.
Jutterström, S; Andersson, H C; Omstedt, A; Malmaeus, J M
2014-09-15
The paper discusses the combined effects of ocean acidification, eutrophication and climate change on the Baltic Sea and the implications for current management strategies. The scientific basis is built on results gathered in the BONUS+ projects Baltic-C and ECOSUPPORT. Model results indicate that the Baltic Sea is likely to be warmer, more hypoxic and more acidic in the future. At present management strategies are not taking into account temporal trends and potential ecosystem change due to warming and/or acidification, and therefore fulfilling the obligations specified within the Marine Strategy Framework Directive, OSPAR and HELCOM conventions and national environmental objectives may become significantly more difficult. The paper aims to provide a basis for a discussion on the effectiveness of current policy instruments and possible strategies for setting practical environmental objectives in a changing climate and with multiple stressors. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Norman, Laura M.; Villarreal, Miguel L.; Niraula, Rewati; Meixner, Thomas; Frisvold, George; Labiosa, William
2013-01-01
In the Santa Cruz Watershed, located on the Arizona-Sonora portion of the U.S.-Mexico border, an international wastewater treatment plant treats wastewater from cities on both sides of the border, before discharging it into the river in Arizona. These artificial flows often subsidize important perennial surface water ecosystems in the region. An explicit understanding of the benefits of maintaining instream flow for present and future generations requires the ability to assess and understand the important trade-offs implicit in water-resource management decisions. In this paper, we outline an approach for modeling and visualizing impacts of management decisions in terms of rare terrestrial and aquatic wildlife, vegetation, surface water, groundwater recharge, real-estate values and socio-environmental vulnerable communities. We identify and quantify ecosystem services and model the potential reduction in effluent discharge to the U.S. that is under scrutiny by binational water policy makers and of concern to stakeholders. Results of service provisioning are presented, and implications for policy makers and resource managers are discussed. This paper presents a robust ecosystem services assessment of multiple scenarios of watershed management as a means to discern eco-hydrological responses and consider their potential values for future generations living in the borderlands.
Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...
Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle
Edward A.G. Schuur; James Bockheim; Josep G. Canadell; Eugenie Euskirchen; Christopher B. Field; Sergey V. Goryachkin; Stefan Hagemann; Peter Kuhry; Peter M. Lafleur; Hanna Lee; Galina Mazhitova; Frederick E. Nelson; Annette Rinke; Vladimir E. Romanovsky; Nikolay Shiklomanov; Charles Tarnocai; Sergey Venevsky; Jason G. Vogel; Sergei A. Zimov
2008-01-01
Thawing permafrost and the resulting microbial decomposition of previously frozen organic carbon (C) is one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. In this article we present an overview of the global permafrost C pool and of the processes that might transfer this C into the atmosphere, as well as...
Anne E. Black; Peter Landres
2012-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA Forest Service and U.S. Department of the Interior 2000). Yet some fire management (such as building fire line, spike camps, or helispots) potentially causes both short- and longterm...
A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin
2014-01-01
Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...
NASA Astrophysics Data System (ADS)
Knowles, John F.; Molotch, Noah P.; Trujillo, Ernesto; Litvak, Marcy E.
2018-04-01
Future projections of declining snowpack and increasing potential evaporation are predicted to advance the timing of snowmelt in mountain ecosystems globally with unknown implications for snowmelt-driven forest productivity. Accordingly, this study combined satellite- and tower-based observations to investigate the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the Southern Rocky Mountain ecoregion, United States. Our results show that early and late season productivity were significantly and inversely related and that future shifts toward earlier and/or reduced snowmelt could decrease snowmelt water use efficiency and thus restrict productivity despite a longer growing season. This was explained by increasing snow aridity, which incorporated evaporative demand and snow water supply, and was modified by summer precipitation to determine total annual productivity. The combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34 year minimum ecosystem productivity that could be indicative of future conditions.
Threshold responses to interacting global changes in a California grassland ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Christopher; Mooney, Harold; Vitousek, Peter
2015-02-02
Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place inmore » the context of 4 global change factors – warming, elevated CO 2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.« less
Does Biodiversity-Ecosystem Function Literature Neglect Tropical Ecosystems?
Clarke, David A; York, Paul H; Rasheed, Michael A; Northfield, Tobin D
2017-05-01
Current evidence suggests that there is a positive relationship between biodiversity and ecosystem functioning, but few studies have addressed tropical ecosystems where the highest levels of biodiversity occur. We develop two hypotheses for the implications of generalizing from temperate studies to tropical ecosystems, and discuss the need for more tropical research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mapping Variation in Vegetation Functioning with Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Couture, J. J.; Kruger, E. L.; Serbin, S.; Singh, A.
2015-12-01
Imaging spectroscopy (otherwise known as hyperspectral remote sensing) offers the potential to characterize the spatial and temporal variation in biophysical and biochemical properties of vegetation that can be costly or logistically difficult to measure comprehensively using traditional methods. A number of recent studies have illustrated the capacity for imaging spectroscopy data, such as from NASA's AVIRIS sensor, to empirically estimate functional traits related to foliar chemistry and physiology (Singh et al. 2015, Serbin et al. 2015). Here, we present analyses that illustrate the implications of those studies to characterize within-field or -stand variability in ecosystem functioning. In agricultural ecosystems, within-field photosynthetic capacity can vary by 30-50%, likely due to within-field variations in water availability and soil fertility. In general, the variability of foliar traits is lower in forests than agriculture, but can still be significant. Finally, we demonstrate that functional trait variability at the stand scale is strongly related to vegetation diversity. These results have two significant implications: 1) reliance on a small number of field samples to broadly estimate functional traits likely underestimates variability in those traits, and 2) if trait estimations from imaging spectroscopy are reliable, such data offer the opportunity to greatly increase the density of measurements we can use to predict ecosystem function.
Untangling the confusion around land carbon science and climate change mitigation policy
NASA Astrophysics Data System (ADS)
Mackey, Brendan; Prentice, I. Colin; Steffen, Will; House, Joanna I.; Lindenmayer, David; Keith, Heather; Berry, Sandra
2013-06-01
Depletion of ecosystem carbon stocks is a significant source of atmospheric CO2 and reducing land-based emissions and maintaining land carbon stocks contributes to climate change mitigation. We summarize current understanding about human perturbation of the global carbon cycle, examine three scientific issues and consider implications for the interpretation of international climate change policy decisions, concluding that considering carbon storage on land as a means to 'offset' CO2 emissions from burning fossil fuels (an idea with wide currency) is scientifically flawed. The capacity of terrestrial ecosystems to store carbon is finite and the current sequestration potential primarily reflects depletion due to past land use. Avoiding emissions from land carbon stocks and refilling depleted stocks reduces atmospheric CO2 concentration, but the maximum amount of this reduction is equivalent to only a small fraction of potential fossil fuel emissions.
Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales
Feld, C.K.; Da Silva, P.M.; Sousa, J.P.; De Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; Partel, M.; Rombke, J.; Sandin, Leonard; Jones, K. Bruce; Harrison, P.
2009-01-01
According to the Millennium Ecosystem Assessment, common indicators are needed to monitor the loss of biodiversity and the implications for the sustainable provision of ecosystem services. However, a variety of indicators are already being used resulting in many, mostly incompatible, monitoring systems. In order to synthesise the different indicator approaches and to detect gaps in the development of common indicator systems, we examined 531 indicators that have been reported in 617 peer-reviewed journal articles between 1997 and 2007. Special emphasis was placed on comparing indicators of biodiversity and ecosystem services across ecosystems (forests, grass- and shrublands, wetlands, rivers, lakes, soils and agro-ecosystems) and spatial scales (from patch to global scale). The application of biological indicators was found most often focused on regional and finer spatial scales with few indicators applied across ecosystem types. Abiotic indicators, such as physico-chemical parameters and measures of area and fragmentation, are most frequently used at broader (regional to continental) scales. Despite its multiple dimensions, biodiversity is usually equated with species richness only. The functional, structural and genetic components of biodiversity are poorly addressed despite their potential value across habitats and scales. Ecosystem service indicators are mostly used to estimate regulating and supporting services but generally differ between ecosystem types as they reflect ecosystem-specific services. Despite great effort to develop indicator systems over the past decade, there is still a considerable gap in the widespread use of indicators for many of the multiple components of biodiversity and ecosystem services, and a need to develop common monitoring schemes within and across habitats. Filling these gaps is a prerequisite for linking biodiversity dynamics with ecosystem service delivery and to achieving the goals of global and sub-global initiatives to halt the loss of biodiversity. ?? 2009 Oikos.
Padilla, Francisco M; Vidal, Beatriz; Sánchez, Joaquín; Pugnaire, Francisco I
2010-12-01
Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO(2) year(-1) in 1921 to 60,635 t CO(2) year(-1) in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO(2) year(-1) by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO(2) fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas. Copyright © 2010 Elsevier Ltd. All rights reserved.
Derse, E.; Knee, K.L.; Wankel, Scott D.; Kendall, C.; Berg, C.J.; Paytan, A.
2007-01-01
Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (??15N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low ??15N values (average -0.5???) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impactthis coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans. ?? 2007 American Chemical Society.
A case study for evaluating potential soil sensitivity in aridland systems.
Peterman, Wendy L; Ferschweiler, Ken
2016-04-01
Globally, ecosystems are subjected to prolonged droughts and extreme heat events, leading to forest die-offs and dominance shifts in vegetation. Some scientists and managers view soil as the main resource to be considered in monitoring ecosystem responses to aridification. As the medium through which precipitation is received, stored, and redistributed for plant use, soil is an important factor in the sensitivity of ecosystems to a drying climate. This study presents a novel approach to evaluating where on a landscape soils may be most sensitive to drying, making them less resilient to disturbance, and where potential future vegetation changes could lead to such disturbance. The drying and devegetation of arid lands can increase wind erosion, contributing to aerosol and dust emissions. This has implications for air quality, human health, and water resources. This approach combines soil data with vegetation simulations, projecting future vegetation change, to create maps of potential areas of concern for soil sensitivity and dust production in a drying climate. Consistent with recent observations, the projections show shifts from grasslands and woodlands to shrublands in much of the southwestern region. An increase in forested area occurs, but shifts in the dominant types and spatial distribution of the forests also are seen. A net increase in desert ecosystems in the region and some changes in alpine and tundra ecosystems are seen. Approximately 124,000 km(2) of soils flagged as "sensitive" are projected to have vegetation change between 2041 and 2050, and 82,927 km(2) of soils may become sensitive because of future vegetation changes. These maps give managers a way to visualize and identify where soils and vegetation should be investigated and monitored for degradation in a drying climate, so restoration and mitigation strategies can be focused in these areas. © 2015 SETAC.
Ensuring Disaster Risk Reduction via Sustainable Wetland Development
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Lindborg, R.; Nyström, S.; Silengo, M.; Tumbo, M.; Koutsouris, A. J.
2015-12-01
Wetland ecosystems around the world are increasingly being targeted as land use development 'hotspots' under growing concerns of climate variability and food security. Anthropogenic encroachment on natural wetland ecosystems can have direct consequences locally through loss of biodiversity and regionally through increased disaster risks associated with, for example, flooding. We consider two regionally-relevant wetland ecosystems in eastern Africa, namely Zambia's Lukanga Swamps and Tanzania's Kilombero Valley, experiencing varying trajectories of development under climatic variations. These regions have been targeted for inclusive, multi-stakeholder initiatives that aim at developing agricultural potential through combinations of large and small scale irrigation schemes. Through our data-driven analysis we highlight the potential for shifts in hydrologic regime of each wetland ecosystem which can have significant regional impacts on disaster risks. In the case of the Lukanga Swamps, wetlands maintain water table fluctuations that help mitigate water cycling with implications for the downstream flooding impact of annual rains. With regards to Kilombero Valley, understanding seasonal changes in hydrological processes and storages provides the cornerstone for managing future water resource impacts/feedbacks under different scenarios of land management. This work emphasizes the need to tailor strategies towards sustainable uses of wetlands that reduce disaster risks regionally while contributing to improved community health and wellbeing. It remains an open (and fundamental) question of how to best define management recommendations and activities that not only achieve climate resiliency but also are acceptable for stakeholders without compromising the balance between ecosystem service supply and biodiversity conservation.
Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles.
Evans, Luke J; Davies, Andrew B; Goossens, Benoit; Asner, Gregory P
2017-01-01
Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR) and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus) throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.
Model-data frameworks for determining greenhouse gas implications of bioenergy landscapes in the US
NASA Astrophysics Data System (ADS)
Hudiburg, T. W.; Kent, J.; DeLucia, E. H.; Law, B. E.
2017-12-01
A sustainable, carbon-negative, bio-based portion of the energy sector may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Woody biomass from harvest residues and forest health thinning operations have also been proposed, however the GHG mitigation potential is less clear. Through integration of observations, ecosystem, and economic models we have assessed the potential for a US Renewable Fuel Standard (RFS) to displace gasoline and reduce GHG emissions from the transportation sector, through the use of cellulosic biofuels (e.g. perennial grasses). We found that 2022 US transportation sector GHG emissions are decreased by 7.0 ± 2.5%; an estimate that is 50% less than those unconstrained by economic feasibility. Also, through integration of observations, ecosystem modeling, and life cycle assessment, we investigated potential carbon mitigation by replacing an Oregon coal plant with wood (bio-coal) from harvest residues and thinning operations in forests vulnerable to drought and fire. We found that carbon emissions varied from no change to moderate increases compared to the current emissions from the coal plant depending on transportation distance, energy inputs for conversion to bio-coal, and avoided emissions from fire and drought. Our work indicates that integrated assessment using ecosystem and economic models that are constrained by observations is required to evaluate potential GHG and carbon mitigation scenarios from varied feedstock sources.
Rönnbäck, Patrik; Kautsky, Nils; Pihl, Leif; Troell, Max; Söderqvist, Tore; Wennhage, Håkan
2007-11-01
Coastal areas are exposed to a variety of threats due to high population densities and rapid economic development. How will this affect human welfare and our dependence on nature's capacity to provide ecosystem goods and services? This paper is original in evaluating this concern for major habitats (macroalgae, seagrasses, blue mussel beds, and unvegetated soft bottoms) in a temperate coastal setting. More than 40 categories of goods and services are classified into provisional, regulating, and cultural services. A wide variety of Swedish examples is described for each category, including accounts of economic values and the relative importance of different habitats. For example, distinguishing characteristics would be the exceptional importance of blue mussels for mitigation of eutrophication, sandy soft bottoms for recreational uses, and seagrasses and macroalgae for fisheries production and control of wave and current energy. Net changes in the provision of goods and services are evaluated for three cases of observed coastal ecosystem shifts: i) seagrass beds into unvegetated substrate; ii) unvegetated shallow soft bottoms into filamentous algal mat dominance; and iii) macroalgae into mussel beds on hard substrate. The results are discussed in a management context including accounts of biodiversity, interconnectedness of ecosystems, and potential of economic valuation.
Osland, Michael J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Larriviere, Jack C.; Hester, Mark W.; Yando, Erik S.; Willis, Jonathan A
2014-01-01
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern United States. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better evaluate the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological impacts of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial-nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought; habitat loss; coastal protection) to biogeochemical processes (e.g., carbon storage; water quality). This research specifically investigated the impact of mangrove forest migration on coastal wetland soil processes and the consequent implications for coastal wetland responses to sea level rise and carbon storage.
Asakura, Takashi; Mallee, Hein; Tomokawa, Sachi; Moji, Kazuhiko; Kobayashi, Jun
2015-02-16
An ecological perspective was prominently present in the health promotion movement in the 1980s, but this seems to have faded. The burden of disease the developing world is facing cannot be addressed solely by reductionist approaches. Holistic approaches are called for that recognize the fundamentally interdependent nature of health and other societal, developmental, and ecosystem related factors in human communities. An ecosystem approach to human health (ecohealth) provides a good starting point to explore these interdependencies. Development assistance is often based on the assumption that developed countries can serve as models for developing ones. Japan has provided lavish assistance to Laos for example, much of it going to the development of transport networks. However, there is little sign that there is an awareness of the potentially negative environmental and health impacts of this assistance. We argue that the health consequences of environmental degradation are not always understood, and that developing countries need to consider these issues. The ecohealth approach is useful when exploring this issue. We highlight three implications of the ecohealth approach: (1) The WHO definition of health as a state of complete physical, mental and social well-being emphasized that health is more than the absence of disease. However, because this approach may involve an unattainable goal, we suggest that health should be defined in the ecosystem context, and the goal should be to attain acceptable and sustainable levels of health through enabling people to realize decent livelihoods, and to pursue their life purpose; (2) The increasing interconnectedness of ecosystems in a globalizing world requires an ethical approach that considers human responsibility for the global biosphere. Here, ecohealth could be a countervailing force to our excessive concentration on economy and technology; and (3) If ecohealth is to become a positive agent of change in the global health promotion movement, it will have to find a secure place in the educational curriculum. This article presents a brief case study of Japan's development assistance to Laos, and its environmental and health implications, as an illustration of the ecohealth approach. We highlight three implications of the ecohealth perspective.
Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E
2016-01-01
Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.
PERSISTENCE OF DESERTIFIED ECOSYSTEMS: EXPLANATIONS AND IMPLICATIONS
Studies of rainfall partitioning by shrubs, responses of shrub-dominated ecosystems to herbicide treatment, and experiments using drought and supplemental rainfall were conducted to test the hypothesis that the shrub-dominated ecosystems that have replaced desert grasslands are r...
Effects of urban development on ant communities: implications for ecosystem services and management
M.P. Sanford; Patricia N. Manley; Dennis D. Murphy
2009-01-01
Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient...
Disturbance ecology of high-elevation five-needle pine ecosystems in western North America
Elizabeth M. Campbell; Robert E. Keane; Evan R. Larson; Michael P. Murray; Anna W. Schoettle; Carmen Wong
2011-01-01
This paper synthesizes existing information about the disturbance ecology of high-elevation five-needle pine ecosystems, describing disturbances regimes, how they are changing or are expected to change, and the implications for ecosystem persistence. As it provides the context for ecosystem conservation/restoration programs, we devote particular attention to wildfire...
Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.
2013-01-01
Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.
Crabbe, M J C
2009-12-01
Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.
2013-01-01
by at least 25% by 2025. To achieve this ambitious goal, DoD is considering a diverse energy portfolio that includes wind , solar, geothermal...generated power (bioenergy). wind , solar, and bioenergy sources each have significant land-management implications, so this third land-use re- quirement...production, the adverse impacts of conflicting requirements can be minimized. The regional differences in wind , solar, and bioenergy potential
Anne E. Black; Peter Landres
2011-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA and USDOI 2000). Yet some fire management (such as building fire line, spike camps, or heli-spots) potentially causes both short- and long-term impacts to forest health. In the short run,...
ERIC Educational Resources Information Center
Torkar, Gregor
2016-01-01
Alarming declines in biodiversity have encouraged scientists to begin promoting the idea of the services ecosystems offer to humans in order to gain support for conservation. The concept of ecosystem services is designed to communicate societal dependence on various natural ecosystems. Schools play an important role in educating students to be…
NASA Astrophysics Data System (ADS)
Smith, James; Rice, Stephen; Hodgkins, Richard
2017-04-01
Despite increasing recognition that animals play important roles in geomorphological systems (zoogeomorphology), with important ecological implications for the animals and their ecosystems (ecosystem engineering), sediment transport continues to be regarded as an abiotic process. This research challenges that orthodoxy by investigating the biotic processes associated with bioturbation in rivers caused by feeding bream (Abramis brama (L.)) and quantifying their impact on fine sediment suspension and sediment yield. Experiments in lakes have demonstrated that bream negatively influence ecosystem dynamics through bottom up mechanisms as a result of physical bioturbation caused by benthivorous feeding. Although this level of bioturbation, and thus sediment entrainment, can alter the fundamental biogeochemical cycles and food web dynamics in lentic ecosystems, research is yet to assess this potential effect in riverine ecosystems or evaluate this bioturbation mechanism as a driver of fluvial sediment flux - even though they are common in rivers across mainland Europe. A series of ex-situ mesocosm experiments have investigated the controls of fine sediment entrainment by bream, assessing the roles of both biomass (size and number) and food density on suspended sediment concentration and turbidity. Bream create large volumes of suspended sediment during feeding (highest recorded turbidity 1172 NTU) and there are significant (p < 0.001) increases in turbidity associated with each experimental parameter: number of fish, fish size and food density. Supplementary experiments have assessed bream as ecosystem engineers in the presence of the congener species, roach (Rutilus rutilus (L.)), which share the same ecological niche. In the presence of roach, the impact of bream on turbidity increased by an average of 120% (6.6 NTU to 15 NTU) and increased further at the 90th percentile by 240% (32 NTU to 110 NTU). In light of these findings, the extensive geographical distribution of bream and the observation that shoals of bream commonly exceed one thousand individuals, it is plausible that bream are an important biological constituent of the fine sediment cascade within riverine systems. Complementary field work is underway to quantify the frequency-magnitude characteristics of the fine sediment plumes that feeding shoals of bream generate in lowland UK rivers.
Linger, Ewuketu
2014-01-01
Homegarden agroforestry is believed to be more diverse and provide multiple services for household than other monocropping system and this is due to the combination of crops, trees and livestock. The aim of this study was to assess socio-economic and agro-ecological role of homegardens in Jabithenan district, North-western Ethiopia. Two sites purposively and two villages randomly from each site were selected. Totally 96 households; in which 48 from homegarden agroforestry user and 48 from non-tree based garden user were selected for this study. Socio-economic data and potential economic and agro-ecosystem role of homegarden agroforestry over non-tree based garden were collected by using semi-structured and structured questionnaires to the households. Homegarden agroforestry significantly (P < 0.05) improved the farmers cash income than non-tree based garden. With insignificant garden size; homegarden agroforestry practice provides good socio-economical and agro-ecological service for farmers which have a higher implication for climate change adaptation than non-tree based garden.
NASA Astrophysics Data System (ADS)
Erickson, Jon David
The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.
Use of experimental ecosystems in regulatory decision making
NASA Astrophysics Data System (ADS)
La Point, Thomas W.; Perry, James A.
1989-09-01
Tiered testing for the effects of chemicals on aquatic ecosystems has begun to include tests at the ecosystem level as a component in pesticide regristration. Because such tests are expensive, regulators and industry need to know what additional information they can gain from such tests relative to the costs of the simpler single-species toxicity bioassays. Requirements for ecosystem-level testing have developed because resource managers have not fully understood the implications of potential damage to resources without having evaluations of the predicted impacts under field conditions. We review approaches taken in the use of experimental ecosystems, discuss benefits and limitations of small- and large-scale ecosystem tests, and point to correlative approaches between laboratory and field toxicity testing. Laboratory experimental ecosystems (microcosms) have been successfully used to measure contaminant bioavailability, to determine routes of uptake in moderately complex aquatic systems, and to isolate factors modifying contaminant uptake into the biota. Such factors cannot be as readily studied in outdoor experimental ecosystems because direct cause-and-effect relations are often confounded and difficult to isolate. However, laboratory tests can be designed to quantify the relations among three variables: known concentrations of Stressors; specific sublethal behavioral, biochemical, and physiological effects displayed by organisms; and responses that have been observed in ecosystem-level analyses. For regulatory purposes, the specificity of test results determines how widely they can be applied. Ecotoxicological research should be directed at attempts to identify instances where single-species testing would be the appropriate level of analysis for identifying critical ecological endpoints and for clarifying relationships between ecosystem structure and function, and where it would be inadequate for a given level of analysis.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-12-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-07-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
Use of experimental ecosystems in regulatory decision making
La Point, Thomas W.; Perry, James A.
1989-01-01
Tiered testing for the effects of chemicals on aquatic ecosystems has begun to include tests at the ecosystem level as a component in pesticide regristration. Because such tests are expensive, regulators and industry need to know what additional information they can gain from such tests relative to the costs of the simpler single-species toxicity bioassays. Requirements for ecosystem-level testing have developed because resource managers have not fully understood the implications of potential damage to resources without having evaluations of the predicted impacts under field conditions. We review approaches taken in the use of experimental ecosystems, discuss benefits and limitations of small- and large-scale ecosystem tests, and point to correlative approaches between laboratory and field toxicity testing.Laboratory experimental ecosystems (microcosms) have been successfully used to measure contaminant bioavailability, to determine routes of uptake in moderately complex aquatic systems, and to isolate factors modifying contaminant uptake into the biota. Such factors cannot be as readily studied in outdoor experimental ecosystems because direct cause-and-effect relations are often confounded and difficult to isolate. However, laboratory tests can be designed to quantify the relations among three variables: known concentrations of Stressors; specific sublethal behavioral, biochemical, and physiological effects displayed by organisms; and responses that have been observed in ecosystem-level analyses. For regulatory purposes, the specificity of test results determines how widely they can be applied. Ecotoxicological research should be directed at attempts to identify instances where single-species testing would be the appropriate level of analysis for identifying critical ecological endpoints and for clarifying relationships between ecosystem structure and function, and where it would be inadequate for a given level of analysis.
Staunton 1 reclamation demonstration project. Aquatic ecosystems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinikour, W. S.
1981-02-01
To provide long-term indications of the potential water quality improvements following reclamation efforts at the Staunton 1 Reclamation Demonstration Project, macroinvertebrates were collected from three on-site ponds and from the receiving stream (Cahokia Creek) for site drainage. Implications for potential benthic community differences resulting from site runoff were disclosed, but macroinvertebrate diversity throughout Cahokia Creek was limited due to an unstable, sandy substrate. The three ponds sampled were the New Pond, which was created as part of the reclamation activities; the Shed Pond, which and the Old Pond, which, because it was an existing, nonimpacted pond free of site runoff,more » served as a control. Comparisons of macroinvertebrates from the ponds indicated the potential for the New Pond to develop into a productive ecosystem. Macroinvertebrates in the New Pond were generally species more tolerant of acid mine drainage conditions. However, due to the present limited faunal densities and the undesirable physical and chemical characteristics of the New Pond, the pond should not be stocked with fish at this time.« less
NASA Astrophysics Data System (ADS)
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem
Scott W. Bailey; Donald C. Buso; Gene E. Likens
2003-01-01
Disturbance of forest ecosystems, such as that caused by harvesting or acid deposition, is thought to alter the ability of the ecosystem to retain nutrients. Although many watershed studies have suggested depletion of available calcium (Ca) pools, interpretation of ecosystem Ca mass balance has been limited by the difficulty in obtaining mineral weathering flux...
Trends in Streamflow Characteristics in Hawaii, 1913-2002
Oki, Delwyn S.
2004-01-01
The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. In Hawaii, surface-water resources are developed for both offstream uses (for example, drinking water, agriculture, and industrial uses) and instream uses (for example, maintenance of habitat and ecosystems, recreational activities, aesthetic values, maintenance of water quality, conveyance of irrigation and domestic water supplies, and protection of traditional and customary Hawaiian rights). Possible long-term trends in streamflow characteristics have important implications for water users, water suppliers, resource managers, and citizens in the State. Proper management of Hawaii's streams requires an understanding of long-term trends in streamflow characteristics and their potential implications. Effects of long-term downward trends in low flows in streams include potential loss of habitat for native stream fauna and reduced water availability for offstream and instream water uses. Effects of long-term upward trends in high flows in streams include construction of bridges and water-conveyance structures that are potentially unsafe if they are not designed with proper consideration of trends in high flows.
Nielsen, Uffe N; Ball, Becky A
2015-04-01
Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as well as mean annual precipitation. While our understanding of dryland ecosystems is improving, there is still a great need for longer term in situ manipulations of precipitation regime to test our model. © 2014 John Wiley & Sons Ltd.
Albrecht, Matthias
2016-01-01
Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304
Sutter, Louis; Albrecht, Matthias
2016-02-10
Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. © 2016 The Author(s).
Habitat characteristics provide insights of carbon storage in seagrass meadows.
Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge
2018-02-16
Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li
2016-05-01
As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.
Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath
2014-11-01
Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles
Davies, Andrew B.; Goossens, Benoit; Asner, Gregory P.
2017-01-01
Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile’s actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR) and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus) throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict. PMID:29020111
Implications of bioactive solute transfer from hosts to parasitic plants.
Smith, Jason D; Mescher, Mark C; De Moraes, Consuelo M
2013-08-01
Parasitic plants--which make their living by extracting nutrients and other resources from other plants--are important components of many natural ecosystems; and some parasitic species are also devastating agricultural pests. To date, most research on plant parasitism has focused on nutrient transfer from host to parasite and the impacts of parasites on host plants. Far less work has addressed potential effects of the translocation of bioactive non-nutrient solutes-such as phytohormones, secondary metabolites, RNAs, and proteins-on the development and physiology of parasitic plants and on their subsequent interactions with other organisms such as insect herbivores. A growing number of recent studies document the transfer of such molecules from hosts to parasites and suggest that they may have significant impacts on parasite physiology and ecology. We review this literature and discuss potential implications for management and priorities for future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
The human gut microbiota and virome: Potential therapeutic implications.
Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio
2015-12-01
Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Selmants, Paul C; Litton, Creighton M; Giardina, Christian P; Asner, Gregory P
2014-09-01
Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above- and belowground live biomass and detritus across a well-constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha(-1) for each 1 °C rise in temperature - a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem-level carbon storage will respond to future warming. © 2014 John Wiley & Sons Ltd.
Fernandino, Gerson; Elliff, Carla I; Silva, Iracema R
2018-06-01
Climate change effects have the potential of affecting both ocean and atmospheric processes. These changes pose serious threats to the millions of people that live by the coast. Thus, the objective of the present review is to discuss how climate change is altering (and will continue to alter) atmospheric and oceanic processes, what are the main implications of these alterations along the coastline, and which are the ecosystem-based management (EBM) strategies that have been proposed and applied to address these issues. While ocean warming, ocean acidification and increasing sea level have been more extensively studied, investigations on the effects of climate change to wind and wave climates are less frequent. Coastal ecosystems and their respective natural resources will respond differently according to location, environmental drivers and coastal processes. EBM strategies have mostly concentrated on improving ecosystem services, which can be used to assist in mitigating climate change effects. The main challenge for developing nations regards gaps in information and scarcity of resources. Thus, for effective management and adaptive EBM strategies to be developed worldwide, information at a local level is greatly needed. Copyright © 2018 Elsevier Ltd. All rights reserved.
The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity
Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah
2014-01-01
This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.
The Longterm Effects of Climate Change in European Shrubland Ecosystems
NASA Astrophysics Data System (ADS)
Emmett, B.; Sowerby, A.; Smith, A.; EU Increase-infrastructure Project Team
2011-12-01
Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems. As climate change progresses the potential feedback from the biosphere to the atmosphere through changes in above and below-ground structure and functioning will become increasingly important. A series of replicate long term climate change experiments have been running for ca. 10 years in contrasting shrubland types across Europe to quantify; (a) the potential changes in carbon sequestration, GHG emissions and nutrient cycling, (b) the links to above and below-ground biodiversity, and (c) implications for water quality, in response to warming and repeated summer drought. Results indicate a relatively high rate of below-ground carbon allocation compared to forest systems and the importance of modifying factors such as past and current management, atmospheric deposition and soil type in determining resilience to change. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods and despite major winter rainfall) was observed in the repeated summer drought treatment, along with a reduction in the maximum water-holding capacity attained. The persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels in the hydric, organic-rich UK system. As above-ground biomass, litter production and diversity was remarkably stable, changes in soil fungal communities and soil physical structure appear to be critical in driving changes in soil carbon fluxes in this organic-rich site. Current ecosystem models may under-estimate potential changes in carbon loss in response to climate change if changes in soil biological and physical properties are not included.
Vegetation Loss Decreases Salt Marsh Denitrification Capacity: Implications for Marsh Erosion.
Hinshaw, Sarra E; Tatariw, Corianne; Flournoy, Nikaela; Kleinhuizen, Alice; Taylor, Caitlin; Sobecky, Patricia A; Mortazavi, Behzad
2017-08-01
Salt marshes play a key role in removing excess anthropogenic nitrogen (N) loads to nearshore marine ecosystems through sediment microbial processes such as denitrification. However, in the Gulf of Mexico, the loss of marsh vegetation because of human-driven disturbances such as sea level rise and oil spills can potentially reduce marsh capacity for N removal. To investigate the effect of vegetation loss on ecosystem N removal, we contrasted denitrification capacity in marsh and subtidal sediments impacted by the Deepwater Horizon oil spill using a combination of 29 N 2 and 30 N 2 production (isotope pairing), denitrification potential measurements (acetylene block), and quantitative polymerase chain reaction (qPCR) of functional genes in the denitrification pathway. We found that, on average, denitrification capacity was 4 times higher in vegetated sediments because of a combination of enhanced nitrification and higher organic carbon availability. The abundance of nirS-type denitrifers indicated that marsh vegetation regulates the activity, rather than the abundance, of denitrifier communities. We estimated that marsh sediments remove an average of 3.6 t N km -2 y -1 compared to 0.9 t N km -2 y -1 in unvegetated sediments. Overall, our findings indicate that marsh loss results in a substantial loss of N removal capacity in coastal ecosystems.
2017-01-01
Coral reef ecosystems of the South Pacific are extremely vulnerable to plastic pollution from oceanic gyres and land-based sources. To describe the extent and impact of plastic pollution, the distribution of both macro- (>5 mm) and microplastic (plastic < 5 mm) of the fringing reef of an isolated South Pacific island, Mo’orea, French Polynesia was quantified. Macroplastic was found on every beach on the island that was surveyed. The distribution of this plastic was categorized by site type and by the presence of Turbinaria ornata, a common macroalgae on Mo’orea. Microplastics were discovered in the water column of the fringing reef of the island, at a concentration of 0.74 pieces m−2. Additionally, this study reports for the first time the ingestion of microplastic by the corallimorpha Discosoma nummiforme. Microplastics were made available to corallimorph polyps in a laboratory setting over the course of 108 h. Positively and negatively buoyant microplastics were ingested, and a microplastic particle that was not experimentally introduced was also discovered in the stomach cavity of one organism. This study indicates that plastic pollution has the potential to negatively impact coral reef ecosystems of the South Pacific, and warrants further study to explore the broader potential impacts of plastic pollution on coral reef ecosystems. PMID:28875079
Connors, Elizabeth J
2017-01-01
Coral reef ecosystems of the South Pacific are extremely vulnerable to plastic pollution from oceanic gyres and land-based sources. To describe the extent and impact of plastic pollution, the distribution of both macro- (>5 mm) and microplastic (plastic < 5 mm) of the fringing reef of an isolated South Pacific island, Mo'orea, French Polynesia was quantified. Macroplastic was found on every beach on the island that was surveyed. The distribution of this plastic was categorized by site type and by the presence of Turbinaria ornata, a common macroalgae on Mo'orea. Microplastics were discovered in the water column of the fringing reef of the island, at a concentration of 0.74 pieces m -2 . Additionally, this study reports for the first time the ingestion of microplastic by the corallimorpha Discosoma nummiforme. Microplastics were made available to corallimorph polyps in a laboratory setting over the course of 108 h. Positively and negatively buoyant microplastics were ingested, and a microplastic particle that was not experimentally introduced was also discovered in the stomach cavity of one organism. This study indicates that plastic pollution has the potential to negatively impact coral reef ecosystems of the South Pacific, and warrants further study to explore the broader potential impacts of plastic pollution on coral reef ecosystems.
A birds-eye view of biological connectivity in mangrove systems
NASA Astrophysics Data System (ADS)
Buelow, Christina; Sheaves, Marcus
2015-01-01
Considerable advances in understanding of biological connectivity have flowed from studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, there are limits to the information that fish can provide on connectivity. Mangrove-bird communities have the potential to connect coastal habitats in different ways and at different scales than fish, so incorporation of these links into our models of coastal ecosystem mosaics affords the opportunity to greatly increase the breadth of our understanding. We review the habitat and foraging requirements of mangrove-bird functional groups to understand how bird use of mangroves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangrove ecosystems. Avian biological connectivity is primarily characterized by foraging behavior and habitat/resource requirements. Therefore, the consequence of bird links for coastal ecosystem functioning largely depends on patterns of habitat use and foraging, and potentially influences nutrient cycling, top-down control and genetic information linkage. Habitats that experience concentrated bird guano deposition have high levels of nitrogen and phosphorus, placing particular importance on the consequences of avian nutrient translocation and subsidization for coastal ecosystem functioning. High mobility allows mangrove-bird communities to link mangrove forests to other mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially more extensive than fish-facilitated connectivity. In particular, migratory birds link habitats at regional, continental and inter-continental scales as they travel among seasonally available feeding areas from breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. Knowledge of the nature and patterns of fish connectivity have contributed to shifting the initial, historical perception of mangrove-ecosystem functioning from that of a simple system based on nutrient and energy retention, to a view that includes fish-facilitated energy export. In a similar way, understanding the nature and implications of mangrove connectivity through bird movements and migrations affords new possibilities for revising our view of the extent of functional links between mangroves and other ecosystems.
Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A
2011-10-01
Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.
Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems
NASA Astrophysics Data System (ADS)
van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H.; Eriksson, Britas Klemens; Bouma, Tjeerd J.; Olff, Han; Silliman, Brian R.
2015-01-01
Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types—including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests—that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.
Coastal estuaries and lagoons: The delicate balance at the edge of the sea
Conrads, Paul A.; Rodgers, Kirk D.; Passeri, Davina L.; Prinos, Scott T.; Smith, Christopher; Swarzenski, Christopher M.; Middleton, Beth A.
2018-04-19
Coastal communities are increasingly concerned about the dynamic balance between freshwater and saltwater because of its implications for societal, economic, and ecological resources. While the mixing of freshwater and saltwater sources defines coastal estuaries and lagoons, sudden changes in this balance can have a large effect on critical ecosystems and infrastructure. Any change to the delivery of water from either source has the potential to affect the health of both humans and natural biota and also to damage coastal infrastructure. This fact sheet discusses the potential of major shifts in the dynamic freshwater-saltwater balance to alter the environment and coastal stability.
The State, Potential Distribution, and Biological Implications of Methane in the Martian Crust
NASA Technical Reports Server (NTRS)
Max, Michael D.; Clifford, Stephen M.
2000-01-01
The search for life on Mars has recently focused on its potential survival in deep (>2 km) subpermafrost aquifers where anaerobic bacteria, similar to those found in deep subsurface ecosystems on Earth, may have survived in an environment that has remained stable for billions of years. An anticipated by-product of this biological activity is methane. The detection of large deposits of methane gas and hydrate in the Martian cryosphere, or as emissions from deep fracture zones, would provide persuasive evidence of indigenous life and confirm the presence of a valuable in situ resource for use by future human explorers.
Climate Change and Interacting Stressors: Implications for ...
EPA announced the release of the final document, Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa. This report provides a synthesis of information on the interactive effects of climate change and other stressors on the reefs of American Samoa as well as an assessment of potential management responses. This report provides the coral reef managers of American Samoa, as well as other coral reef managers in the Pacific region, with some management options to help enhance the capacity of local coral reefs to resist the negative effects of climate change. This report was designed to take advantage of diverse research and monitoring efforts that are ongoing in American Samoa to: analyze and compile the results of multiple research projects that focus on understanding climate-related stressors and their effects on coral reef ecosystem degradation and recovery; and assess implications for coral reef managment of the combined information, including possible response options.
Alternative states of a semiarid grassland ecosystem: implications for ecosystem services
Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.
2011-01-01
Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.
Ecosystems Vulnerability Challenge and Prize Competition
NASA Astrophysics Data System (ADS)
Smith, J. H.; Frame, M. T.; Ferriter, O.; Recker, J.
2014-12-01
Stimulating innovation and private sector entrepreneurship is an important way to advance the preparedness of communities, businesses and individuals for the impacts of climate change on certain aspects of ecosystems, such as: fire regimes; water availability; carbon sequestration; biodiversity conservation; weather-related hazards, and the spread of invasive species. The creation of tools is critical to help communities and natural resource managers better understand the impacts of climate change on ecosystems and the potential resulting implications for ecosystem services and conservation efforts. The Department of the Interior is leading an interagency effort to develop the Ecosystems Vulnerability theme as part of the President's Climate Action Plan. This effort will provide seamless access to relevant datasets that can help address such issues as: risk of wildfires to local communities and federal lands; water sensitivity to climate change; and understanding the role of ecosystems in a changing climate. This session will provide an overview of the proposed Ecosystem Vulnerability Challenge and Prize Competition, outlining the intended audience, scope, goals, and overall timeline. The session will provide an opportunity for participants to offer new ideas. Through the Challenge, access will be made available to critical datasets for software developers, engineers, scientists, students, and researchers to develop and submit applications addressing critical science issues facing our Nation today. Application submission criteria and guidelines will also be discussed. The Challenge will be open to all sectors and organizations (i.e. federal, non-federal, private sector, non-profits, and universities) within the United States. It is anticipated the Challenge will run from early January 2015 until spring of 2015.
The distribution of persistent organic pollutants in a trophically complex Antarctic ecosystem model
NASA Astrophysics Data System (ADS)
Bates, Michael L.; Bengtson Nash, Susan M.; Hawker, Darryl W.; Shaw, Emily C.; Cropp, Roger A.
2017-06-01
Despite Antarctica's isolation from human population centres, persistent organic pollutants (POPs) are transported there via long range atmospheric transport and subsequently cold-trapped. The challenging nature of working in the Antarctic environment greatly limits our ability to monitor POP concentrations and understand the processes that govern the distribution of POPs in Antarctic ecosystems. Here we couple a dynamic, trophically complex biological model with a fugacity model to investigate the distribution of hexachlorobenzene (HCB) in a near-shore Antarctic ecosystem. Using this model we examine the steady-state, and annual cycle of HCB concentration in the atmosphere, ocean, sediment, detritus, and 21 classes of biota that span from primary producers to apex predators. The scope and trophic resolution of our model allows us to examine POP pathways through the ecosystem. In our model the main pathway of HCB to upper trophic species is via pelagic communities, with relatively little via benthic communities. Using a dynamic ecosystem model also allows us to examine the seasonal and potential climate change induced changes in POP distribution. We show that there is a large annual cycle in concentration in the planktonic communities, which may have implications for biomagnification factors calculated from observations. We also examine the direct effects of increasing temperature on the redistribution of HCB in a changing climate and find that it is likely minor compared to other indirect effects, such as changes in atmospheric circulation, sea ice dynamics, and changes to the ecosystem itself.
This report will be a chapter in an updated Riparian BMP manual developed by the State of WA Fish and Wildlife Dept. Jana Compton and I were asked to contribute the chapter on nutrients in riparian ecosystems based on experience and research in riparian systems. The document is...
Carrina Maslovat
2002-01-01
Ecosystem restoration requires a set of reference vegetation conditions which are difficult to find for Garry oak (Quercus garryana) ecosystems in Canada because contemporary sites have been drastically altered. A survey of historical information provides only limited clues about the original understory vegetation. Although there is considerable...
Jeanne C. Chambers; Richard F. Miller; David I. Board; David A. Pyke; Bruce A. Roundy; James B. Grace; Eugene W. Schupp; Robin J. Tausch
2014-01-01
In sagebrush ecosystems invasion of annual exotics and expansion of pinon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species...
Regeneration of southern pine stands under ecosystem management in the Piedmont
James W. McMinn; Alexander Clark
1999-01-01
Ecosystem-oriented management is being used on southern National Forests to conserve biodiversity, improve the balance among forest values, and achieve sustainable conditions. This paper reports on the regeneration phase of a study to identify the implications of ecosystem management practices on loblolly pine (Pinus taeda L.) and shortleaf (I? echinata Mill) pine...
Thomas R. Fox; Carola A. Haas; David W. Smith; David L. Loftis; Shepard M. Zedaker; Robert H. Jones; A.L. Hammett
2007-01-01
Increasing demands for timber and non-timber forest products often conflict with demands to maintain biodiversity and ecosystem processes. To examine tradeoffs between these goals, we implemented six alternative management systems using a stand-level, replicated experiment. The treatments included four silvicultural regeneration methods designed to sustain timber...
Root disease and exotic ecosystems: implications for long-term site productivity
W.J. Otrosina; M. Garbelotto
1998-01-01
Root disease fungi, particularly root-rotting Basidiomycetes, are key drivers of forest ecosystems. These fungi have co?evolved with their hosts in various forest ecosystems and are in various states of equilibrium with them. Management activities and various land uses have taken place in recent times that have dramatically altered edaphic and environmental conditions...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Bolinger, Mark; Heath, Garvin
We model scenarios of the U.S. electric sector in which wind generation reaches 10% of end-use electricity demand in 2020, 20% in 2030, and 35% in 2050. As shown in a companion paper, achieving these penetration levels would have significant implications for the wind industry and the broader electric sector. Compared to a baseline that assumes no new wind deployment, under the primary scenario modeled, achieving these penetrations imposes an incremental cost to electricity consumers of less than 1% through 2030. These cost implications, however, should be balanced against the variety of environmental and social implications of such a scenario.more » Relative to a baseline that assumes no new wind deployment, our analysis shows that the high-penetration wind scenario yields potential greenhouse-gas benefits of $85-$1,230 billion in present-value terms, with a central estimate of $400 billion. Air-pollution-related health benefits are estimated at $52-$272 billion, while annual electric-sector water withdrawals and consumption are lower by 15% and 23% in 2050, respectively. We also find that a high-wind-energy future would have implications for the diversity and risk of energy supply, local economic development, and land use and related local impacts on communities and ecosystems; however, these additional impacts may not greatly affect aggregate social welfare owing to their nature, in part, as resource transfers.« less
Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.
de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur
2015-06-15
Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.
Griffin, Dale W.; Kellogg, Christina A.; Shinn, Eugene A.
2001-01-01
Movement of soil particles in atmospheres is a normal planetary process. Images of Martian dust devils (wind-spouts) and dust storms captured by NASA's Pathfinder have demonstrated the significant role that storm activity plays in creating the red atmospheric haze of Mars. On Earth, desert soils moving in the atmosphere are responsible for the orange hues in brilliant sunrises and sunsets. In severe dust storm events, millions of tons of soil may be moved across great expanses of land and ocean. An emerging scientific interest in the process of soil transport in the Earth's atmosphere is in the field of public and ecosystem health. This article will address the benefits and the potential hazards associated with exposure to particle fallout as clouds of desert dust traverse the globe.
Liu, Yang; El-Kassaby, Yousry A
2018-05-29
While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-08-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H 2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H 2 , often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H 2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H 2 consumption and retardation of radionuclide migration.
″The Anthropocene″, Ecosystem Management, and Environmental Virtue.
Sandler, Ronald
2016-01-01
*Portions of this article are drawn from: Sandler, R. Environmental Ethics: Theory in Practice, Oxford University Press, New York, in press. In this article I consider contrasting views on the implications of rapid, macroscale anthropogenic change for environmental ethics, particularly ecosystem management, species conservation, and environmental virtue. I begin by reviewing the Anthropocene debate, which has become a primary point of discourse on whether we ought to embrace a more interventionist stance regarding ecosystem management and species conservation. I then discuss the challenges posed by rapid ecological change to predominant ecosystem management and species conservation practices. I argue that these challenges not withstanding, we ought not go all in on interventionist management, even as novel conservation and management techniques can be justified in particular cases. It is possible to adopt a more forward looking normative stance, without licensing robust interventionism. Finally, I discuss the implications of this for some environmental virtues.
Sparkle L. Malone; Jordan Barr; Jose D. Fuentes; Steven F. Oberbauer; Christina L. Staudhammer; Evelyn E. Gaiser; Gregory Starr
2016-01-01
We analyzed the ecosystem effects of low-temperature events (<5 °C) over 4 years (2009-2012) in subtropical short and long hydroperiod freshwater marsh and mangrove forests within Everglades National Park. To evaluate changes in ecosystem productivity, we measured temporal patterns of CO2 and the normalized difference vegetation index over the study period. Both...
Keynote address: sustaining people and ecosystems in the 21st Century
Perry Brown
2000-01-01
In its various forms we have been talking about and discovering the principles of ecosystem-based management for over a decade and yet we still are in very early stages of uncovering its many dimensions and implications. This is not surprising since ecosystem-based management is a radical departure from the model of natural resource management that evolved over the...
Low pH Springs - A Natural Laboratory for Ocean Acidification
NASA Astrophysics Data System (ADS)
Derse, E.; Rebolledo-Vieyra, M.; Potts, D. C.; Paytan, A.
2009-12-01
Recent increases in atmospheric carbon dioxide of 40% above pre-industrial levels has resulted in rising aqueous CO2 concentrations that lower the pH of the oceans. Currently, the surface ocean has an average pH between 8.1 and 8.2: it is estimated that over the next 100 years this value will decrease by ~0.4 pH units. Previous studies have highlighted the negative impacts that changes in pH (and the resulting CaCO3 saturation state) have on marine organisms; however, to date, very little is known about the long-term impacts of ocean acidification on ecosystems as a whole. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.25-8.07) has been discharging offshore at highly localized points (called ojos) since the last deglaciation. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. We address the potential long-term implications of low pH waters on marine ecosystems.
Aquatic noise pollution: implications for individuals, populations, and ecosystems.
Kunc, Hansjoerg P; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven
2016-08-17
Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. © 2016 The Author(s).
Aquatic noise pollution: implications for individuals, populations, and ecosystems
Kunc, Hansjoerg P.; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven
2016-01-01
Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. PMID:27534952
Interactions among ecosystem stressors and their importance in conservation
Darling, Emily S.; Brown, Christopher J.
2016-01-01
Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions—notably synergies—a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism's physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world. PMID:26865306
Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min
2016-11-05
There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe(0) NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe(0) NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration-fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe(0) NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe(0) NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER=0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18-57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe(0) NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02mgL(-1) of Fe(0) NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe(0) NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Arctic Browning: vegetation damage and implications for carbon balance.
NASA Astrophysics Data System (ADS)
Treharne, Rachael; Bjerke, Jarle; Emberson, Lisa; Tømmervik, Hans; Phoenix, Gareth
2016-04-01
'Arctic browning' is the loss of biomass and canopy in Arctic ecosystems. This process is often driven by climatic and biological extreme events - notably extreme winter warm periods, winter frost-drought and severe outbreaks of defoliating insects. Evidence suggests that browning is becoming increasingly frequent and severe at the pan-arctic scale, a view supported by observations from more intensely observed regions, with major and unprecedented vegetation damage reported at landscape (>1000km2) and regional (Nordic Arctic Region) scales in recent years. Critically, the damage caused by these extreme events is in direct opposition to 'Arctic greening', the well-established increase in productivity and shrub abundance observed at high latitudes in response to long-term warming. This opposition creates uncertainty as to future anticipated vegetation change in the Arctic, with implications for Arctic carbon balance. As high latitude ecosystems store around twice as much carbon as the atmosphere, and vegetation impacts are key to determining rates of loss or gain of ecosystem carbon stocks, Arctic browning has the potential to influence the role of these ecosystems in global climate. There is therefore a clear need for a quantitative understanding of the impacts of browning events on key ecosystem carbon fluxes. To address this, field sites were chosen in central and northern Norway and in Svalbard, in areas known to have been affected by either climatic extremes or insect outbreak and subsequent browning in the past four years. Sites were chosen along a latitudinal gradient to capture both conditions already causing vegetation browning throughout the Norwegian Arctic, and conditions currently common at lower latitudes which are likely to become more damaging further North as climate change progresses. At each site the response of Net Ecosystem CO2 Exchange to light was measured using a LiCor LI6400 Portable Photosynthesis system and a custom vegetation chamber with artificial shading. These data allowed the impact of browning on plot-level Gross Primary Productivity (GPP), Net Ecosystem Exchange and ecosystem respiration to be calculated. Substantial site-level impacts were identified, with heavily damaged vegetation converted from a net CO2 sink to a net source. Plot-level spectral data were then used to establish a relationship between Leaf Area Index (LAI), as predicted from Normalised Differenced Vegetation Index (NDVI), and GPP. This builds on work demonstrating that NDVI-derived LAI can explain up to 80% of variation in GPP in healthy vegetation. Confirmation that this relationship holds true in browned vegetation validates its use for estimating browning impacts on Arctic carbon balance using remotely sensed data.
The pertinence of Sutton's law to exposure science: Lessons from unconventional shale gas drilling.
Goldstein, Bernard D
2018-01-04
Sutton's Law urges the medical practitioner to utilize the test that goes directly to the problem. When applied to exposure science, Sutton's Law would argue that the major emphasis should be on techniques that directly measure exposure in or close to the human, animal or ecosystem receptors of concern. Exposure science largely and appropriately violates Sutton's Law by estimating exposure based on information on emissions or measurements obtained at a distance from the receptors of concern. I suggest four criteria to help determine whether Sutton's law should be violated for an innovative technology, and explore these criteria in relation to potential human exposure resulting from unconventional gas drilling (UGD): (1) The technological processes possibly leading to release of the chemical or physical agents of concern are reasonably understood; (2) the agents of concern are known; (3) the source and geographical location of the releases can be reasonably identified; and (4) there is information about the likely temporal pattern of the releases and resulting pollutant levels in relation to the temporal patterns of receptor susceptibility. For UGD, the complexity of the technology including many possible release points at different time periods; the existence of three variable mixtures of chemical and physical agents as well as possible unknown reactants; the demonstrated large variation in releases from site to site; and deficiencies in transparency and regulatory oversight, all suggest that studies of the potential health impact of UGD should follow Sutton's Law. This includes the use of techniques that more directly measure exposure close to or within the receptors of concern, such as biological markers or through community-based citizen science. Understanding the implications of Sutton's Law could help focus scientific and regulatory efforts on effective approaches to evaluate the potential health and ecosystem implications of new and evolving technologies.
Groundwater availability as constrained by hydrogeology and environmental flows
Watson, Katelyn A.; Mayer, Alex S.; Reeves, Howard W.
2014-01-01
Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.
How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment
Limpens, Juul; Holmgren, Milena; Jacobs, Cor M. J.; Van der Zee, Sjoerd E. A. T. M.; Karofeld, Edgar; Berendse, Frank
2014-01-01
Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs. PMID:24632565
Biological invasions as disruptors of plant reproductive mutualisms.
Traveset, Anna; Richardson, David M
2006-04-01
Invasive alien species affect the composition and functioning of invaded ecosystems in many ways, altering ecological interactions that have arisen over evolutionary timescales. Specifically, disruptions to pollination and seed-dispersal mutualistic interactions are often documented, although the profound implications of such impacts are not widely recognized. Such disruptions can occur via the introduction of alien pollinators, seed dispersers, herbivores, predators or plants, and we define here the many potential outcomes of each situation. The frequency and circumstances under which each category of mechanisms operates are also poorly known. Most evidence is from population-level studies, and the implications for global biodiversity are difficult to predict. Further insights are needed on the degree of resilience in interaction networks, but the preliminary picture suggests that invasive species frequently cause profound disruptions to plant reproductive mutualisms.
Shanlei Sun; Ge Sun; Peter Caldwell; Steve McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang
2015-01-01
The 781,000 km2 (193 million acre) United States National Forests and Grasslands system (NF) provides important ecosystem services such as clean water supply, timber production, wildlife habitat, and recreation opportunities to the American public. Quantifying the historical impacts of climate change and drought on ecosystem functions at the national scale is essential...
Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.; ...
2015-10-29
Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the salinization of wetlands may be unavoidable in many cases, these systems may also prove to be a fertile testing ground for broader ecological theories including (but not limited to): investigations into alternative stable states and tipping points, trophic cascades, disturbance-recovery processes, and the role of historical events and landscape context in driving community response to disturbance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.
Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the salinization of wetlands may be unavoidable in many cases, these systems may also prove to be a fertile testing ground for broader ecological theories including (but not limited to): investigations into alternative stable states and tipping points, trophic cascades, disturbance-recovery processes, and the role of historical events and landscape context in driving community response to disturbance.« less
NASA Astrophysics Data System (ADS)
Olin, S.; Lindeskog, M.; Pugh, T. A. M.; Schurgers, G.; Wårlind, D.; Mishurov, M.; Zaehle, S.; Stocker, B. D.; Smith, B.; Arneth, A.
2015-11-01
Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway) 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C-N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Gaichas, Sarah; Aydin, Kerim; Francis, Robert C.
2015-11-01
The Eastern Bering Sea (EBS) and Gulf of Alaska (GOA) continental shelf ecosystems show some similar and some distinctive groundfish biomass dynamics. Given that similar species occupy these regions and fisheries management is also comparable, similarities might be expected, but to what can we attribute the differences? Different types of ecosystem structure and control (e.g. top-down, bottom-up, mixed) can imply different ecosystem dynamics and climate interactions. Further, the structural type identified for a given ecosystem may suggest optimal management for sustainable fishing. Here, we use information on the current system state derived from food web models of both the EBS and the GOA combined with dynamic ecosystem models incorporating uncertainty to classify each ecosystem by its structural type. We then suggest how this structure might be generally related to dynamics and predictability. We find that the EBS and GOA have fundamentally different food web structures both overall, and when viewed from the perspective of the same commercially and ecologically important species in each system, walleye pollock (Gadus chalcogrammus). EBS food web structure centers on a large mass of pollock, which appears to contribute to relative system stability and predictability. In contrast, GOA food web structure features high predator biomass, which contributes to a more dynamic, less predictable ecosystem. Mechanisms for climate influence on pollock production in the EBS are increasingly understood, while climate forcing mechanisms contributing to the potentially destabilizing high predator biomass in the GOA remain enigmatic. We present results of identical pollock fishing and climate-driven pollock recruitment simulations in the EBS and GOA which show different system responses, again with less predictable response in the GOA. Overall, our results suggest that identifying structural properties of fished food webs is as important for sustainable fisheries management as attempting to predict climate and fisheries effects within each ecosystem.
Climate change, soil health, and ecosystem goods and services
USDA-ARS?s Scientific Manuscript database
Worldwide, climate change is predicted to alter precipitation regimes, annual temperatures, and occurrence of severe weather events. These changes have important implications for soil health-- defined as the capacity of a soil to contribute to ecosystem function and sustain producers and consumers--...
Great Lakes rivermouth ecosystems: scientific synthesis and management implications
Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...
Risk Tradeoffs in Adaptive Ecosystem Management: The Case of the U.S. Forest Service
NASA Astrophysics Data System (ADS)
Stern, Marc J.; Martin, Caysie A.; Predmore, S. Andrew; Morse, Wayde C.
2014-06-01
Natural resource planning processes on public lands in the United States are driven in large part by the requirements of the National Environmental Policy Act (NEPA), which dictates general processes for analyzing and disclosing the likely impacts of proposed actions. The outcomes of these processes are the result of multiple factors, many related to the manifold smaller incremental decisions made by agency personnel directing the processes. Through interviews with decision makers, team leaders, and team members on five NEPA processes within the U.S. Forest Service, this study examines those incremental decisions. Risk, in particular external relationship risk, emerged as a dominant lens through which agency personnel weigh and make process-related decisions. We discuss the tradeoffs associated with agency actors' emphasis on this form of risk and their potential implications for adaptive ecosystem management and organizational performance.
Bundschuh, Mirco; Hahn, Torsten; Ehrlich, Bert; Höltge, Sibylla; Kreuzig, Robert; Schulz, Ralf
2016-02-01
Due to the high use of antibiotics and antiparasitics for the treatment of livestock, there is concern about the potential impacts of the release of these compounds into freshwater ecosystems. In this context, the present study quantified the acute toxicity of two antibiotics (sulfadiazine and sulfadimidine), and three antiparasitic agents (flubendazole, fenbendazole, ivermectin) for nine freshwater invertebrate species. These experiments revealed a low degree of toxicity for the sulfonamide antibiotics, with limited implications in the survival of all test species at the highest test concentrations (50 and 100 mg/L). In contrast, all three antiparasitic agents indicated on the basis of their acute toxicity risks for the aquatic environment. Moreover, chronic toxicity data from the literature for antiparasitics, including effects on reproduction in daphnids, support the concern about the integrity of aquatic ecosystems posed by releases of these compounds. Thus, these pharmaceuticals warrant further careful consideration by environmental risk managers.
Walston, Leroy J; Mishra, Shruti K; Hartmann, Heidi M; Hlohowskyj, Ihor; McCall, James; Macknick, Jordan
2018-06-13
Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlap between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km 2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.
Social Network Analysis of the Irish Biotech Industry: Implications for Digital Ecosystems
NASA Astrophysics Data System (ADS)
van Egeraat, Chris; Curran, Declan
This paper presents an analysis of the socio-spatial structures of innovation, collaboration and knowledge flow among SMEs in the Irish biotech sector. The study applies social network analysis to determine the structure of networks of company directors and inventors in the biotech sector. In addition, the article discusses the implications of the findings for the role and contours of a biotech digital ecosystem. To distil these lessons, the research team organised a seminar which was attended by representatives of biotech actors and experts.
Integrating Climate Change into Great Lakes Protection
NASA Astrophysics Data System (ADS)
Hedman, S.
2012-12-01
Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency Agreements. EPA has provided GLRI funding for a diverse suite of climate change-related projects including Great Lakes climate change research and modeling; adaptation plan development and implementation; ecosystem vulnerability assessments; outreach and education programs; habitat restoration and protection projects that will increase ecosystem resilience; and other projects that address climate change impacts. This presentation will discuss how the GLRI is helping to improve the climate change science needed to support the Action Plan. It will further describe how the GLRI is helping coordinate climate change efforts among Great Lakes states, tribes, Federal agencies, and other stakeholders. Finally, it will discuss how the GLRI is facilitating adaptation planning by our Great Lakes partners. The draft Lake Superior Ecosystem Climate Change Adaptation Plan serves as a case study for an integrated, collaborative, and coordinated climate change effort.
Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen
2013-01-01
Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...
NASA Astrophysics Data System (ADS)
Nicholls, R. J.; Hutton, C. W.; Lázár, A. N.; Allan, A.; Adger, W. N.; Adams, H.; Wolf, J.; Rahman, M.; Salehin, M.
2016-12-01
Deltas provide diverse ecosystem services and benefits for their populations. At the same time, deltas are also recognised as one of the most vulnerable coastal environments, with a range of drivers operating at multiple scales, from global climate change and sea-level rise to deltaic-scale subsidence and land cover change. These drivers threaten these ecosystem services, which often provide livelihoods for the poorest communities in these regions. The imperative to maintain ecosystem services presents a development challenge: how to develop deltaic areas in ways that are sustainable and benefit all residents including the most vulnerable. Here we present an integrated framework to analyse changing ecosystem services in deltas and the implications for human well-being, focussing in particular on the provisioning ecosystem services of agriculture, inland and offshore capture fisheries, aquaculture and mangroves that directly support livelihoods. The framework is applied to the world's most populated delta, the Ganges-Brahmaputra-Meghna Delta within Bangladesh. The framework adopts a systemic perspective to represent the principal biophysical and socio-ecological components and their interaction. A range of methods are integrated within a quantitative framework, including biophysical and socio-economic modelling and analyses of governance through scenario development. The approach is iterative, with learning both within the project team and with national policy-making stakeholders. The analysis is used to explore physical and social outcomes for the delta under different scenarios and policy choices. We consider how the approach is transferable to other deltas and potentially other coastal areas.
Critical acid load limits in a changing climate: implications and solutions
Steven G. McNulty
2010-01-01
The federal agencies of the United States are currently developing guidelines for critical nitrogen load limits for U.S. forest ecosystems. These guidelines will be used to develop regulations designed to maintain pollutant inputs below the level shown to damage specified ecosystems.
Detection and Assessment of Ecosystem Regime Shifts from Fisher Information
Ecosystem regime shifts, which are long-term system reorganizations, have profound implications for sustainability. There is a great need for indicators of regime shifts, particularly methods that are applicable to data from real systems. We have developed a form of Fisher info...
Processes driving nocturnal transpiration and implications for estimating land evapotranspiration
de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur
2015-01-01
Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373
Climate, icing, and wild arctic reindeer: past relationships and future prospects.
Hansen, Brage Bremset; Aanes, Ronny; Herfindal, Ivar; Kohler, Jack; Saether, Bernt-Erik
2011-10-01
Across the Arctic, heavy rain-on-snow (ROS) is an "extreme" climatic event that is expected to become increasingly frequent with global warming. This has potentially large ecosystem implications through changes in snowpack properties and ground-icing, which can block the access to herbivores' winter food and thereby suppress their population growth rates. However, the supporting empirical evidence for this is still limited. We monitored late winter snowpack properties to examine the causes and consequences of ground-icing in a Svalbard reindeer (Rangifer tarandus platyrhynchus) metapopulation. In this high-arctic area, heavy ROS occurred annually, and ground-ice covered from 25% to 96% of low-altitude habitat in the sampling period (2000-2010). The extent of ground-icing increased with the annual number of days with heavy ROS (> or = 10 mm) and had a strong negative effect on reindeer population growth rates. Our results have important implications as a downscaled climate projection (2021-2050) suggests a substantial future increase in ROS and icing. The present study is the first to demonstrate empirically that warmer and wetter winter climate influences large herbivore population dynamics by generating ice-locked pastures. This may serve as an early warning of the importance of changes in winter climate and extreme weather events in arctic ecosystems.
Parasites and marine invasions: Ecological and evolutionary perspectives
NASA Astrophysics Data System (ADS)
Goedknegt, M. Anouk; Feis, Marieke E.; Wegner, K. Mathias; Luttikhuizen, Pieternella C.; Buschbaum, Christian; Camphuysen, Kees (C. J.); van der Meer, Jaap; Thieltges, David W.
2016-07-01
Worldwide, marine and coastal ecosystems are heavily invaded by introduced species and the potential role of parasites in the success and impact of marine invasions has been increasingly recognized. In this review, we link recent theoretical developments in invasion ecology with empirical studies from marine ecosystems in order to provide a conceptual framework for studying the role of parasites and their hosts in marine invasions. Based on an extensive literature search, we identified six mechanisms in which invaders directly or indirectly affect parasite and host populations and communities: I) invaders can lose some or all of their parasites during the invasion process (parasite release or reduction), often causing a competitive advantage over native species; II) invaders can also act as a host for native parasites, which may indirectly amplify the parasite load of native hosts (parasite spillback); III) invaders can also be parasites themselves and be introduced without needing co-introduction of the host (introduction of free-living infective stages); IV) alternatively, parasites may be introduced together with their hosts (parasite co-introduction with host); V) consequently, these co-introduced parasites can sometimes also infect native hosts (parasite spillover); and VI) invasive species may be neither a host nor a parasite, but nevertheless affect native parasite host interactions by interfering with parasite transmission (transmission interference). We discuss the ecological and evolutionary implications of each of these mechanisms and generally note several substantial effects on natural communities and ecosystems via i) mass mortalities of native populations creating strong selection gradients, ii) indirect changes in species interactions within communities and iii) trophic cascading and knock-on effects in food webs that may affect ecosystem function and services. Our review demonstrates a wide range of ecological and evolutionary implications of marine invasions for parasite-host interactions and suggests that parasite-mediated impacts should be integrated in assessing the risks and consequences of biological invasions.
USDA-ARS?s Scientific Manuscript database
Quantification of rates and patterns of community dynamics is central for understanding the organization and function of ecosystems. These insights may support a greater empirical understanding of ecological resilience, and the application of resilience concepts toward ecosystem management. Distinct...
Understanding how climate change will alter the availability of coastal final ecosystem goods and services (FEGS; such as food provisioning from fisheries, property protection, and recreation) has significant implications for coastal planning and the development of adaptive manag...
NASA Astrophysics Data System (ADS)
Anandhi, A.; Sharma, A.
2017-12-01
Florida is a hotspot of endemism for plants, vertebrates, and insects outside of the tropics. The state has extensive coastline, with the maximum distance from the coast less than 150 km which has diverse ecosystems and landscapes, as well as habitat for many endangered species. Additionally, agriculture is one of the most important economic resources in Florida and is ranked second in the U.S. for value of vegetable production. Florida's biodiversity is threatened by stressors such as increasing urbanization and population, land-use change and socio-economic growth. Given that, climate change and variability will interact with these stresses, potentially accentuating their negative impacts, there are several studies, concerning climate change impacts on Florida's ecosystem to date. The specific objectives of this study were to demonstrate the decision support tool developed from meta-analysis. The Tool was developed using the temperature and precipitation changes in Florida identified from peer reviewed studies. These change values were then synthesized using simple statistical techniques (e.g., histogram, line plots and density plots). Our results indicate a wide variability in the temperature and precipitation changes observed in the studies for Florida. The studies showed a temperature change ranged between +5 °C and -3 °C, while the precipitation change ranged between +30% and -40% in the state. These changes have series implications on the food-water-energy nexus. Some of the potential implications of these changes in the context of the nexus are discussed using causal chains developed from meta-analysis.
NASA Astrophysics Data System (ADS)
Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Fatichi, Simone
2017-04-01
Increasing atmospheric carbon dioxide concentrations stimulate photosynthesis and reduce stomatal conductance, modifying plant water use efficiency. We analyzed eddy covariance flux tower observations from 20 forested ecosystems across the Northern Hemisphere. For these sites, a previous study showed an increase in inherent water use efficiency (IWUE) five times greater than expectations. We used an updated dataset and robust uncertainty quantification to analyze these contemporary trends in IWUE. We found that IWUE increased in the last 15-20 years by roughly 1.4% yr-1, which is less than previously reported, but still 2.8 times greater than theoretical expectations. Numerical simulations by means of an ecosystem model based on temporally static plant functional traits (i.e. model parameters) do not reproduce this increase. We tested the hypothesis that the observed increase in IWUE could be attributed to changes in plant functional traits, potentially triggered by environmental changes. Simulation results accounting for trait plasticity (i.e. by changing model parameters such as specific leaf area and maximum Rubisco capacity) match the observed trends in IWUE, with an increase in both leaf internal CO2 concentration and gross ecosystem production (GEP), and with a negligible trend in evapotranspiration (ET). This supports the hypothesis that changes in plant functional traits of about 1.0% yr-1 can explain the observed IWUE trends and are consistent with observed trends of GEP and ET at larger scales. Our results highlight that at decadal or longer time scales trait plasticity can considerably influence the water, carbon and energy fluxes with implications for both the monitoring of temporal changes in plant traits and their representation in Earth system models.
Human-induced geomorphic change across environmental gradients
NASA Astrophysics Data System (ADS)
Vanacker, V.; Molina, A.; Bellin, N.; Christl, M.
2016-12-01
Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical soil erosion, with direct implications on nutrient cycling, soil fertility and agricultural production. In this study, we present a conceptual model for assessing human-induced erosion for a wide variety of environmental settings and pose that human-induced geomorphic change cannot be assessed solely based on modern erosion rates as natural or baseline erosion rates can be important in e.g. mountainous terrain. As such, we assess the vulnerability of a given ecosystem to human-induced land cover change by quantifying the change in catchment-wide erosion rates resulting from anthropogenic changes in vegetation cover. Human-induced erosion is here approximated by the ratio of the total specific sediment yield to the natural erosional mass flux, and is dimensionless. The conceptual model is applied to three contrasting environmental settings where data on soil production, physical soil erosion and long-term denudation are available: the tropical Andes, subtropical southern Brazil, and semi-arid Spanish Cordillera. The magnitude of human-induced geomorphic change strongly differs between the three regions. The data suggest that the sensitivity to human-induced erosion is ecosystem dependent, and related to soil erosivity and potential vegetation cover disturbances as a result of human impact. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between human disturbed and undisturbed or restored sites.
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-01-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration. PMID:28350393
Microbial Ecosystems from the Deepest Regions of the Terrestrial Deep Biosphere
NASA Astrophysics Data System (ADS)
Moser, D. P.
2011-12-01
Although recent discoveries from four continents support the existence of microbial ecosystems across vast regions of our planet's inner space, very little is known about the abundance, distribution, diversity, or ultimate depth limit of subsurface microbial life. These deep lithospheric inhabitants must contend with a variety of potential challenges including high temperature, pressure and salinity, extreme isolation, and low energy flux. Interestingly, although deep microbial ecosystems are assumed to be energy and nutrient limited, it is often difficult to identify any one limiting substrate and the energy for deep life is often present in relative abundance (e.g. as geologically-produced hydrogen or other reduced gases). Recently, the concept of radiation-supported deep microbial ecosystems has gained traction in the literature. In particular, one bacterium, a Firmicute denoted Candidatus Desulforudis audaxviator, has been shown to be prominent, and in cases dominate, in deep fracture fluids from across the Witwatersrand basin of South Africa, where it appears to persist by utilizing H2 and SO42- derived from radiochemical reactions in U-rich host rock. Until recently, these mines were thought to define the geographic limit of this genus and species; however, our recent North American detection of D. audaxviator in radioactive subsurface water resulting from underground nuclear tests both supports earlier assertions concerning the radiochemical lifestyle of D. audaxviator and greatly expands its range. Results such as these suggest that novel modes of life operating without inputs from the photosphere are possible, and thus may have implications for the likelihood of detecting life off the Earth (e.g. in the Martian subsurface). In addition to underground nuclear detonation cavities, this talk will consider insights gained from ongoing microbial ecology assessments from several to date unexplored deep ecosystems accessed via deep mines in the Black Hills (USA) and Canadian Shield (Canada) and exploratory boreholes in the Southern Great Basin (USA). The tantalizing possibility that several of these new potential habitats have exceeded some limit for life will be also be explored.
Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim
2016-01-01
The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.
Defining Ecosystem Assets for Natural Capital Accounting.
Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter
2016-01-01
In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems' capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.
Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.
Robertson, Susan J; McGill, William B; Massicotte, Hugues B; Rutherford, P Michael
2007-05-01
The importance of developing multi-disciplinary approaches to solving problems relating to anthropogenic pollution is now clearly appreciated by the scientific community, and this is especially evident in boreal ecosystems exposed to escalating threats of petroleum hydrocarbon (PHC) contamination through expanded natural resource extraction activities. This review aims to synthesize information regarding the fate and behaviour of PHCs in boreal forest soils in both ecological and sustainable management contexts. From this, we hope to evaluate potential management strategies, identify gaps in knowledge and guide future research. Our central premise is that mycorrhizal systems, the ubiquitous root symbiotic fungi and associated food-web communities, occupy the structural and functional interface between decomposition and primary production in northern forest ecosystems (i.e. underpin survival and productivity of the ecosystem as a whole), and, as such, are an appropriate focal point for such a synthesis. We provide pertinent basic information about mycorrhizas, followed by insights into the ecology of ecto- and ericoid mycorrhizal systems. Next, we review the fate and behaviour of PHCs in forest soils, with an emphasis on interactions with mycorrhizal fungi and associated bacteria. Finally, we summarize implications for ecosystem management. Although we have gained tremendous insights into understanding linkages between ecosystem functions and the various aspects of mycorrhizal diversity, very little is known regarding rhizosphere communities in PHC-contaminated soils. This makes it difficult to translate ecological knowledge into environmental management strategies. Further research is required to determine which fungal symbionts are likely to survive and compete in various ecosystems, whether certain fungal - plant associations gain in ecological importance following contamination events, and how PHC contamination may interfere with processes of nutrient acquisition and exchange and metabolic processes. Research is also needed to assess whether the metabolic capacity for intrinsic decomposition exists in these ecosystems, taking into account ecological variables such as presence of other organisms (and their involvement in syntrophic biodegradation), bioavailability and toxicity of mixtures of PHCs, and physical changes to the soil environment.
Defining Ecosystem Assets for Natural Capital Accounting
Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter
2016-01-01
In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks. PMID:27828969
Defining ecosystem assets for natural capital accounting
Hein, Lars; Bagstad, Kenneth J.; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter
2016-01-01
In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in m...
Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3...
Study of the Sustainability of an Integrated Ecosystem with Energy Considerations
In recent years, there has been a growing interest in the study of sustainability. This is primarily due to the realization that continuous sustenance of the current ecosystem is possible only if we carefully understand the implications of the policies that are being practiced. I...
Solid residues of incomplete combustion (biochar or char) are continuously being added to soils due to natural vegetation fires in many ecosystems. However, new strategies for carbon sequestration in soils are likely to include the active addition of biochar to soils. Since bioc...
IMPLICATIONS OF INTER-HABITAT VARIATION FOR MONITORING GREAT RIVER ECOSYSTEMS: EMAP-UMR EXPERIENCE
Great River ecosystems (GREs) are complex mosaics of habitats that vary at multiple scales. GRE monitoring designs can capture some but not all of this variation. Each discrete habitat, however defined, must either be sampled as a separate strata or "resource population", combine...
Building an Innovation Ecosystem: Process, Culture and Competencies
ERIC Educational Resources Information Center
Smith, Kenneth R.
2006-01-01
For almost three decades we have optimized our organizations for efficiency and quality. We now look to innovation as the source of competitive advantage--for individuals, for organizations and for society. This paper examines the three components of an innovation ecosystem and their implications for corporations, universities and public policy.…
Ecosystemic Complexity Theory of Conflict: Understanding the Fog of Conflict
ERIC Educational Resources Information Center
Brack, Greg; Lassiter, Pamela S.; Hill, Michele B.; Moore, Sarah A.
2011-01-01
Counselors often engage in conflict mediation in professional practice. A model for understanding the complex and subtle nature of conflict resolution is presented. The ecosystemic complexity theory of conflict is offered to assist practitioners in navigating the fog of conflict. Theoretical assumptions are discussed with implications for clinical…
Potential oil spill risk from shipping and the implications for management in the Caribbean Sea.
Singh, Asha; Asmath, Hamish; Chee, Candice Leung; Darsan, Junior
2015-04-15
The semi enclosed Caribbean Sea is ranked as having one of the most intense maritime traffic in the world. These maritime activities have led to significant oil pollution. Simultaneously, this sea supports many critical habitats functioning as a Large Marine Ecosystem (LME). While the impacts of oil pollution are recognised, a number of management challenges remain. This study applies spatial modelling to identify critical areas potentially at risk from oil spills in the form of a potential oil spill risk (POSR) model. The model indicates that approximately 83% of the sea could be potentially impacted by oil spills due to shipping. The results from this study collectively support a management framework for minimising ship generated oil pollution in the Caribbean Sea. Among the recommended components are a common policy, surveillance and monitoring controls, standards, monitoring programmes, data collection and greater rates of convention ratifications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Olin, S.; Lindeskog, M.; Pugh, T. A. M.; Schurgers, G.; Wårlind, D.; Mishurov, M.; Zaehle, S.; Stocker, B. D.; Smith, B.; Arneth, A.
2015-06-01
We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land use-enabled dynamic vegetation model LPJ-GUESS. Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. We explore trade-offs between important ecosystem services that can be provided from agricultural fields such as crop yields, retention of nitrogen and carbon storage. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till and cover-crops proposed in literature is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C-N interactions in agricultural ecosystems under future environmental change, and the effects these have on terrestrial biogeochemical cycles.
Defining the impact of non-native species.
Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Winter, Marten; Kumschick, Sabrina
2014-10-01
Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Muñoz-Vera, Ana; García, Gregorio; García-Sánchez, Antonio
2015-12-01
Coastal lagoons are ecosystems highly vulnerable to human impacts because of their situation between terrestrial and marine environment. Mar Menor coastal lagoon is one of the largest lagoons of the Mediterranean Sea, placed in SE Spain and subjected to major human impacts, in particular the mining of metal sulphides. As a consequence, metal concentration in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, the present study has assessed the ability of Cotylorhiza tuberculata for bioaccumulating metals from sea water. Up to 65 individuals were sampled at 8 different sampling stations during the summer of 2012. Although the concentration values for different elements considered were moderate (Pb: 0.04-29.50 ppm, Zn: 2.27-93.44 ppm, Cd: 0-0.67 ppm, As: 0.56-130.31 ppm) by dry weight of the jellyfish tissues (bell and oral arms combined), bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content because of their potential environmental and health implications.
Threshold effects in the vegetation response to Holocene climate changes in central Asia
NASA Astrophysics Data System (ADS)
Zhao, Y.
2015-12-01
Understanding the response of ecosystems to past climate is critical for evaluating the impacts of future climate changes. A relatively abrupt vegetation shift in response to the late Holocene gradual climate changes has been well documented for the Sahara-Sahel ecosystem. However, whether such threshold shift is of universal significance remains to be further addressed. Here, we examine the vegetation-climate relationships in central Asia based on four newly recovered Holocene pollen records and a synthesis on previously published pollen data. The results show that the orbital-induced gradual climate trend during the Holocene led to two major abrupt vegetation shifts, and that the timings of these shifts are highly dependent of the local rainfall conditions. Instead, the mid-Holocene vegetation remained rather stable despite of the changing climate. These new findings demonstrate generally significant threshold and truncation effects of climate changes on vegetation, as are strongly supported by surface pollen data and LPJ-GUESS modeling. The results also imply that using pollen data to reconstruct past climate changes is not always straightforward. Our findings have important implication for understanding the potential effects of global warming on dryland ecosystem change.
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
Nonrainfall water origins and formation mechanisms
Kaseke, Kudzai Farai; Wang, Lixin; Seely, Mary K.
2017-01-01
Dryland ecosystems cover 40% of the total land surface on Earth and are defined broadly as zones where precipitation is considerably less than the potential evapotranspiration. Nonrainfall waters (for example, fog and dew) are the least-studied and least-characterized components of the hydrological cycle, although they supply critical amounts of water for dryland ecosystems. The sources of nonrainfall waters are largely unknown for most systems. In addition, most field and modeling studies tend to consider all nonrainfall inputs as a single category because of technical constraints, which hinders prediction of dryland responses to future warming conditions. This study uses multiple stable isotopes (2H, 18O, and 17O) to show that fog and dew have multiple origins and that groundwater in drylands can be recycled via evapotranspiration and redistributed to the upper soil profile as nonrainfall water. Surprisingly, the non–ocean-derived (locally generated) fog accounts for more than half of the total fog events, suggesting a potential shift from advection-dominated fog to radiation-dominated fog in the fog zone of the Namib Desert. This shift will have implications on the flora and fauna distribution in this fog-dependent system. We also demonstrate that fog and dew can be differentiated on the basis of the dominant fractionation (equilibrium and kinetic) processes during their formation using the 17O-18O relationship. Our results are of great significance in an era of global climate change where the importance of nonrainfall water increases because rainfall is predicted to decline in many dryland ecosystems. PMID:28345058
A toy model for estimating N2O emissions from natural soils
NASA Technical Reports Server (NTRS)
Fung, Inez
1992-01-01
A model of N2O emissions from natural soils, whose ultimate objective is to evaluate what contribution natural ecosystems make to the global N2O budget and how the contribution would change with global change, is presented. Topics covered include carbon and nitrogen available in the soil, delivery of nitrifiable N, soil water and oxygen status, soil water budget model, effects of drainage, nitrification and denitrification potentials, soil fertility, N2O production, and a model evaluation. A major implication of the toy model is that the tropics account for more than 80 percent of global emission.
NASA Astrophysics Data System (ADS)
Writer, J.; Keefe, S.; Barber, L. B.; Brown, G.; Schoenfuss, H.; Kiesling, R.; Gray, J. L.
2009-12-01
Select endocrine active compounds (EACs) were measured in four rivers in southern Minnesota. Additionally, caged and wild fish were assessed for indication of endocrine disruption using plasma vitellogenin and histopathology. Low concentrations of EACs were identified in all rivers, as was elevated plasma vitellogenin in caged and wild fish, indicating potential endocrine disruption. To evaluate the persistence of these compounds in small rivers, a tracer study was performed on one of the rivers (Redwood River) using Lagrangian sampling coupled with hydrologic modeling incorporating transient storage. Mass exchange (transient storage, sorption) and degradation were approximated as pseudo first order processes, and in-stream removal rates were then computed by comparing conservative tracer concentrations to organic compound concentrations. Production of estrone and 4-nonylphenol in the studied reach as a result of biochemical transformation from their parent compounds (17β-estradiol and alkylphenolpolyethoxylates, respectively) was quantified. The distance required for 17β-estradiol and nonylphenol to undergo a 50% reduction in concentration was >2 km and >10 km, respectively. These results indicate that EACs are transported several kilometers downstream from discharge sources and therefore have the potential of adversely impacting the lotic ecosystem over these distances.
Jahan, Shanaz; Yusoff, Ismail Bin; Alias, Yatimah Binti; Bakar, Ahmad Farid Bin Abu
2017-01-01
Presently, engineered nanomaterials (ENMs) are used in a wide variety of commercial applications, resulting in an uncontrolled introduction into the aquatic environment. The purpose of this review is to summarize the pathways and factors that controlling the transport and toxicity of five extensively used ENMs. These toxicological pathways are of great importance and need to be addressed for sustainable implications of ENMs without environmental liabilities. Here we discuss five potentially utilized ENMs with their possible toxicological risk factors to aquatic plants, vertebrates model and microbes. Moreover, the key effect of ENMs surface transformations by significant reaction with environmental objects such as dissolved natural organic matter (DOM) and the effect of ENMs surface coating and surface charge will also be debated. The transformations of ENMs are subsequently facing a major ecological transition that is expected to create a substantial toxicological effect towards the ecosystem. These transformations largely involve chemical and physical processes, which depend on the properties of both ENMs and the receiving medium. In this review article, the critical issues that controlling the transport and toxicity of ENMs are reviewed by exploiting the latest reports and future directions and targets are keenly discussed to minimize the pessimistic effects of ENMs.
A trait-based approach for examining microbial community assembly
NASA Astrophysics Data System (ADS)
Prest, T. L.; Nemergut, D.
2015-12-01
Microorganisms regulate all of Earth's major biogeochemical cycles and an understanding of how microbial communities assemble is a key part in evaluating controls over many types of ecosystem processes. Rapid advances in technology and bioinformatics have led to a better appreciation for the variation in microbial community structure in time and space. Yet, advances in theory are necessary to make sense of these data and allow us to generate unifying hypotheses about the causes and consequences of patterns in microbial biodiversity and what they mean for ecosystem function. Here, I will present a metaanalysis of microbial community assembly from a variety of successional and post-disturbance systems. Our analysis shows various distinct patterns in community assembly, and the potential importance of nutrients and dispersal in shaping microbial community beta diversity in these systems. We also used a trait-based approach to generate hypotheses about the mechanisms driving patterns of microbial community assembly and the implications for function. Our work reveals the importance of rRNA operon copy number as a community aggregated trait in helping to reconcile differences in community dynamics between distinct types of successional and disturbed systems. Specifically, our results demonstrate that decreases in average copy number can be a common feature of communities across various drivers of ecological succession, supporting a transition from an r-selected to a K-selected community. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, from cells to populations and communities, and has implications for both ecology and evolution. Trait-based approaches are an important next step to generate and test hypotheses about the forces structuring microbial communities and the subsequent consequences for ecosystem function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCall, James D; Macknick, Jordan E; Walston, Leroy J.
Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlapmore » between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.« less
NASA Astrophysics Data System (ADS)
Band, Larry
2010-05-01
Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a significant increase in population in the Southern Appalachians, with new building of second homes in steep headwaters, requiring significant expansion in high altitude roads, in contrast with traditional valley bottom development. With additional increases in hydrologic extremes (heavy precipitation and drought), and progressive changes in forest composition there has been increases in hazard from flash flooding, landslide activity and degraded water quality. The evaluation of integrated watershed impacts of the expected changes in climate and land management requires an interdisciplinary approach including direct feedbacks between ecological, hydrological, geomorphic and atmospheric processes within the framework of an adapting social system. Advances in this type of interdisciplinary research require a network of ecohydrologic observatories generating long term, multi-dimensional data, and a science community working across the interface of multiple fields. Adding individual and institutional behavior as an input or interactive component of watershed ecosystems remains a challenge that spans ecological, hydrological and social science.
Biological invasions on oceanic islands: Implications for island ecosystems and avifauna
Dean E. Pearson
2009-01-01
Biological invasions present a global threat to biodiversity, but oceanic islands are the systems hardest hit by invasions. Islands are generally depauperate in species richness, trophic complexity, and functional diversity relative to comparable mainland ecosystems. This situation results in low biotic resistance to invasion and many empty niches for invaders to...
ERIC Educational Resources Information Center
Bray, Mark; Kobakhidze, Magda Nutsa
2015-01-01
An established literature draws on ecological concepts to analyze interrelationships within education structures and processes, and the impact of shifting balances. Private supplementary tutoring--relatively new in ecosystems of education around the world--is creating significant changes in relationships, particularly as they concern teachers'…
Weiguo Liu; Conghe Song; Todd A. Schroeder; Warren B. Cohen
2008-01-01
Forest succession is an important ecological process that has profound biophysical, biological and biogeochemical implications in terrestrial ecosystems. Therefore, information on forest successional stages over an extensive forested landscape is crucial for us to understand ecosystem processes, such as carbon assimilation and energy interception. This study explored...
Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications.
Virginia R. Burkett; Douglas A. Wilcox; Robert Stottlemeyer; Wylie Barrow; Dan Fagre; Jill Baron; Jeff Price; Jennifer L. Nielsen; Craig D. Allen; David L. Peterson; Greg Ruggerone; Thomas Doyle
2005-01-01
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that...
USDA-ARS?s Scientific Manuscript database
State and transition models (STMs) are used for communicating about ecosystem change in rangelands and other ecosystems, especially the implications for management. The fundamental premise that rangelands can exhibit multiple states is now widely accepted. The current application of STMs for managem...
Effects of forest harvest on biogeochemical processes in the Caspar Creek watershed
Randy A. Dahlgren
1998-01-01
Water quality and long-term sustainability are major components addressed within the ecosystem approach to forest management. Forest harvest practices are often implicated as having adverse impacts on sensitive aquatic communities and on the long-term sustainability of forest ecosystems. While careless harvest practices can certainly cause adverse impacts, proper...
Characterization of Households and its Implications for the Vegetation of Urban Ecosystems
J.M. Grove; A.R. Troy; J.P.M. O' Neil-Dunne; W.R., Jr. Burch; M.L. Cadenasso; S.T.A. Pickett; S.T.A. Pickett
2006-01-01
Our understanding of the dynamics of urban ecosystems can be enhanced by examining the multidimensional social characteristics of households. To this end, we investigated the relative significance of three social theories of household structure-population, lifestyle behavior, and social stratification-to the distribution of vegetation cover in Baltimore, Maryland, USA...
Keith Reynolds; Paul Hessburg; Joan O’Callaghan
2014-01-01
Human settlement and land management have radically altered the composition and structure of eastern Washington forests. Restoring high-functioning landscapes and habitat patterns have broad implications for the future sustainability of native species, ecosystem services, and ecosystem processes. Many land managers and scientists have turned their attention to whole...
The Human Dimensions of Riparian Areas: Implications for Management and Planning
John F. Dwyer; Pamela J. Jakes; Susan C. Barro
2000-01-01
This chapter introduces an important dimension in building our understanding of how riparian systems function -- people. The human dimensions of natural resource management concerns how people value and interact with these ecosystems, their processes and functions. People as users, managers, owners, or involved citizens are integral components of riparian ecosystems...
The effects of climatic fluctuations and extreme events on running water ecosystems
Woodward, Guy; Bonada, Núria; Brown, Lee E.; Death, Russell G.; Durance, Isabelle; Gray, Clare; Hladyz, Sally; Ledger, Mark E.; Milner, Alexander M.; Ormerod, Steve J.; Thompson, Ross M.
2016-01-01
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world. PMID:27114576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.; ...
2014-10-13
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
N-dimensional hypervolumes to study stability of complex ecosystems
Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara
2016-01-01
Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. PMID:27282314
NASA Astrophysics Data System (ADS)
Gallagher, M. E.; Masiello, C. A.; Hockaday, W. C.; McSwiney, C. P.; Robertson, G. P.
2008-12-01
One of the most effective ways to estimate the size of carbon sinks in the terrestrial biosphere and oceans is through paired measurements of atmospheric CO2 and O2 concentrations (e.g. (Keeling et al. 1996)). Successful use of this technique requires knowledge of the oxidative ratio (OR) of the terrestrial biosphere (the ratio of moles of O2 released per moles of CO2 consumed in gas fluxes between the terrestrial biosphere and atmosphere.) Historically the terrestrial biosphere's OR has been assumed to be a constant, approximately 1.1 (e.g. Prentice et al. 2001). However, small shifts in the biosphere's OR values can lead to large variations in the calculated sizes of the terrestrial biosphere and ocean carbon sinks (Randerson et al. 2006). We have recently shown that it is possible to measure the OR of biomass to at least +/- 0.01 units (Masiello et al., 2008), and that there is significant natural variability in ecosystem OR. Ecosystem OR is impacted by human activities. In this presentation, we explore the effects of one major form of anthropogenic ecosystem alteration: nitrogen fertilization. We are measuring ecosystem OR in corn agricultural ecosystems under a range of nitrogen fertilization treatments at the Kellogg Biological Station- Long Term Ecological Research Site (KBS-LTER) in Michigan. We measure OR indirectly, through its relationship with organic carbon oxidation state (Cox) (Masiello et al. 2008). Here we present data showing the effects of varying corn ecosystem nitrogen fertilization rates (from 0 to 202 kg N/ha) on ecosystem OR and the implications it will have on apportionment calculations.
Biodiversity and ecosystem stability across scales in metacommunities
Wang, Shaopeng; Loreau, Michel
2016-01-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilizing effects for regional ecosystems, through local and spatial insurance effects, respectively. We further show that at the regional scale, the stabilizing effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenization) and biodiversity loss on ecosystem sustainability at large scales. PMID:26918536
NASA Astrophysics Data System (ADS)
Ghyoot, Caroline; Lancelot, Christiane; Flynn, Kevin J.; Mitra, Aditee; Gypens, Nathalie
2017-09-01
Most biogeochemical/ecological models divide planktonic protists between phototrophs (phytoplankton) and heterotrophs (zooplankton). However, a large number of planktonic protists are able to combine several mechanisms of carbon and nutrient acquisition. Not representing these multiple mechanisms in biogeochemical/ecological models describing eutrophied coastal ecosystems can potentially lead to different conclusions regarding ecosystem functioning, especially regarding the success of harmful algae, which are often reported as mixotrophic. This modelling study investigates the implications for trophic dynamics of including 3 contrasting forms of mixotrophy, namely osmotrophy (using alkaline phosphatase activity, APA), non-constitutive mixotrophy (acquired phototrophy by microzooplankton) and also constitutive mixotrophy. The application is in the Southern North Sea, an ecosystem that faced, between 1985 and 2005, a significant increase in the nutrient supply N:P ratio (from 31 to 81 mol N:P). The comparison with a traditional model shows that, when the winter N:P ratio in the Southern North Sea is above 22 molN molP-1 (as occurred from mid-1990s), APA allows a 3-32% increase of annual gross primary production (GPP). In result of the higher GPP, the annual sedimentation increases as well as the bacterial production. By contrast, APA does not affect the export of matter to higher trophic levels because the increased GPP is mainly due to Phaeocystis colonies, which are not grazed by copepods. Under high irradiance, non-constitutive mixotrophy appreciably increases annual GPP, transfer to higher trophic levels, sedimentation, and nutrient remineralisation. In this ecosystem, non-constitutive mixotrophy is also observed to have an indirect stimulating effect on diatoms. Constitutive mixotrophy in nanoflagellates appears to have little influence on this ecosystem functioning. An important conclusion from this work is that contrasting forms of mixotrophy have different impacts on system dynamics and, due to the complex interactions in the ecosystem, their combined effect is not exactly the addition of the effects individually observed. It is thus important to describe such contrasting forms in an appropriate fashion.
Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.
Knauer, Jürgen; Zaehle, Sönke; Medlyn, Belinda E; Reichstein, Markus; Williams, Christopher A; Migliavacca, Mirco; De Kauwe, Martin G; Werner, Christiane; Keitel, Claudia; Kolari, Pasi; Limousin, Jean-Marc; Linderson, Maj-Lena
2018-02-01
Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G 1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G 1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G 1 was sufficiently captured with a simple representation. G 1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived water-use efficiency is interpreted in an ecophysiological context. © 2017 John Wiley & Sons Ltd.
Jaramillo, Eduardo; Dugan, Jenifer E; Hubbard, David M; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S
2017-01-01
Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation.
Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.
2017-01-01
Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation. PMID:28481897
Soil health paradigms and implications for disease management.
Larkin, Robert P
2015-01-01
Soil health has been defined as the capacity of soil to function as a vital living system to sustain biological productivity, maintain environmental quality, and promote plant, animal, and human health. Building and maintaining soil health are essential to agricultural sustainability and ecosystem function. Management practices that promote soil health, including the use of crop rotations, cover crops and green manures, organic amendments, and conservation tillage, also have generally positive effects on the management of soilborne diseases through a number of potential mechanisms, including increasing soil microbial biomass, activity, and diversity, resulting in greater biological suppression of pathogens and diseases. However, there also may be particular disease issues associated with some soil health management practices. In this review, research and progress made over the past twenty years regarding soil health, sustainability, and soil health management practices, with an emphasis on their implications for and effects on plant disease and disease management strategies, are summarized.
Hydrologic influence on redox dynamics in estuarine environments
NASA Astrophysics Data System (ADS)
Michael, H. A.; Kim, K. H.; Guimond, J. A.; Heiss, J.; Ullman, W. J.; Seyfferth, A.
2017-12-01
Redox conditions in coastal aquifers control reactions that impact nutrient cycling, contaminant release, and carbon budgets, with implications for water resources and ecosystem health. Hydrologic changes can shift redox boundaries and inputs of reactants, especially in dynamic coastal systems subject to fluctuations on tidal, lunar, and longer timescales. We present two examples of redox shifts in estuarine systems in Delaware, USA: a beach aquifer and a saltmarsh. Beach aquifers are biogeochemical hot spots due to mixing between fresh groundwater and infiltrating seawater. At Cape Henlopen, DE, geochemical measurements identified reactions in the intertidal aquifer that include cycling of carbon, nitrogen, iron, and sulfur. Measurements and modeling illustrate that redox potential as well as the locations of redox reactions shift on tidal to seasonal timescales and in response to changing beach and aquifer properties, impacting overall rates of reactions such as denitrification that reduces N loads to coastal waters. In the St. Jones National Estuarine Research Reserve, tidal fluctuations in channels cause periodic groundwater-surface water exchange, water table movement, and intermittent flooding that varies spatially across the saltmarsh. These changes create shifts in redox potential that are greatest near channels and in the top 20 cm of sediments. The magnitude of redox change depends on hydrologic setting (near channels or in marsh interior), hydrologic conditions (tidal stage, seasonal shifts), as well as prevalence of macropores created by crab burrows that change seasonally with crab activity. These shifts correspond to changes in porewater chemistry that have implications for nutrient cycling and carbon export to the ocean. Understanding hydrologic influence on redox geochemistry is critical for predicting how these systems and their ecosystem services may change in the future in response to anthropogenic and climate change.
Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A
2015-01-01
Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments. DOI: http://dx.doi.org/10.7554/eLife.04634.001 PMID:25756611
Goto, Daisuke; Wallace, William G
2009-12-01
Organic mercury such as methylmercury is not only one of the most toxic substances found in coastal ecosystems but also has high trophic transfer efficiency. In this study, we examined implications of chronically altered benthic macroinfaunal assemblages for organic mercury trophic availability (based on organic mercury intracellular partitioning) to their predators in the Arthur Kill-AK (New York, USA). Despite low species diversity, both density and biomass of benthic macroinvertebrates in AK were significantly higher than those at the reference site. Disproportionately high biomass of benthic macroinvertebrates (mostly polychaetes) in the northern AK resulted in a more than twofold increase ('ecological enrichment') in the trophically available organic mercury pool. These results suggest that altered benthic macroinfaunal community structure in AK may play an important role in organic mercury trophic availability at the base of benthic food webs and potentially in mercury biogeochemical cycling in this severely urbanized coastal ecosystem.
Yi, S.; Manies, K.; Harden, J.; McGuire, A.D.
2009-01-01
Soil organic layers (OL) play an important role in landatmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that implementation of OL for cold regions modeling: (1) use three general organic horizon types (live, fibrous, and amorphous) to represent vertical soil heterogeneity; (2) implement dynamics of OL over the course of disturbance, as there are significant differences of OL thickness between young and mature stands; and (3) use two broad drainage classes to characterize spatial heterogeneity, as there are significant differences in OL thickness between dry and wet sites. Implementation of these suggestions into models has the potential to substantially improve how OL dynamics influence variability in surface temperature and soil moisture in cold regions. Copyright 2009 by the American Geophys.ical Union.
Toward relaxed eddy accumulation measurements of sediment-water exchange in aquatic ecosystems
NASA Astrophysics Data System (ADS)
Lemaire, Bruno J.; Noss, Christian; Lorke, Andreas
2017-09-01
Solute transport across the sediment-water interface has major implications for water quality and biogeochemical cycling in aquatic ecosystems. Existing measurement techniques, however, are not capable of resolving sediment-water fluxes of most constituents under in situ flow conditions. We investigated whether relaxed eddy accumulation (REA), a micrometeorological technique with conditional sampling of turbulent updrafts and downdrafts, can be adapted to the aquatic environment. We simulated REA fluxes by reanalyzing eddy covariance measurements from a riverine lake. We found that the empirical coefficient that relates mass fluxes to the concentration difference between both REA samples is invariant with scalar and flow and responds as predicted by a joint Gaussian distribution of linearly correlated variables. Simulated REA fluxes differed on average by around 30% from eddy covariance fluxes (mean absolute error). Assessment of the lower quantification limit suggests that REA can potentially be applied for measuring benthic fluxes of a new range of constituents that cannot be assessed by standard eddy covariance methods.
Communicative interactions involving plants: information, evolution, and ecology.
Mescher, Mark C; Pearse, Ian S
2016-08-01
The role of information obtained via sensory cues and signals in mediating the interactions of organisms with their biotic and abiotic environments has been a major focus of work on sensory and behavioral ecology. Information-mediated interactions also have important implications for broader ecological patterns emerging at the community and ecosystem levels that are only now beginning to be explored. Given the extent to which plants dominate the sensory landscapes of terrestrial ecosystems, information-mediated interactions involving plants should be a major focus of efforts to elucidate these broader patterns. Here we explore how such efforts might be enhanced by a clear understanding of information itself-a central and potentially unifying concept in biology that has nevertheless been the subject of considerable confusion-and of its relationship to adaptive evolution and ecology. We suggest that information-mediated interactions should be a key focus of efforts to more fully integrate evolutionary biology and ecology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Muñoz-Vera, Ana; Peñas Castejón, Jose Matías; García, Gregorio
2016-09-15
The effects of an abandoned mining area, exploited for centuries in the mining district of Cartagena-La Union, result in a continuous supply of heavy metals into the Mar Menor coastal lagoon after rain episodes. As a consequence, concentration of trace elements in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, this study assessed the ability of Rhizostoma pulmo to bioaccumulate trace elements. A total of 57 individuals were sampled at eight different sampling stations during the summer of 2012. Although the concentrations of different analyzed elements (Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sn, and Pb) were moderate, bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content, because of their potential environmental and health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evidence and implications of recent and projected climate change in Alaska's forest ecosystems
Jane M. Wolken; Teresa N. Hollingsworth; T. Scott Rupp; F. Stuart Chapin; Sarah F. Trainor; Tara M. Barrett; Patrick F. Sullivan; A. David McGuire; Eugenie S. Euskirchen; Paul E. Hennon; Erik A. Beever; Jeff S. Conn; Lisa K. Crone; David V. A' More; Nancy Fresco; Thomas A. Hanley; Knut Kielland; James J. Kruse; Trista Patterson; Edward A.G. Schuur; David L. Verbyla; John Yarie
2011-01-01
The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of...
Yasmin Lucero; E. Ashley Steel; Kelly M. Burnett; Kelly Christiansen
2011-01-01
Increasingly, ecologists seek to identify and quantify relationships between landscape gradients and aquatic ecosystems. Considerable statistical challenges emerge in this effort, some of which are attributable to multicollinearity between human development and landscape gradients. In this paper, we measure the covariation between human developmentâsuch as agriculture...
Biological and Management Implications of Fire-Pathogen Interactions in the Giant Sequoia Ecosystem
Douglas D. Piirto; John R. Parmeter; Fields W. Cobb; Kevin L. Piper; Amy C. Workinger; William J. Otrosina
1998-01-01
An overriding management goal for national parks is the maintenance or, where necessary, the restoration of natural ecological processes. In Sequoia-Kings Canyon and Yosemite National Parks, there is concern about the effects of fire suppression on the giant sequoia-mixed conifer forest ecosystem. The National Park Service is currently using prescribed fire management...
Perception of scale in forest management planning: Challenges and implications
Swee May Tang; Eric J. Gustafson
1997-01-01
Forest management practices imposed at one spatial scale may affect the patterns and processes of ecosystems at other scales. These impacts and feedbacks on the functioning of ecosystems across spatial scales are not well understood. We examined the effects of silvicultural manipulations simulated at two spatial scales of management planning on landscape pattern and...
The shift to watershed management of rivers from a more reach-based approach has had far-reaching implications for the way we characterize and classify rivers and then use this information to understand and manage biodiversity, ecological functions, and ecosystem services in rive...
Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models
W. R. L. Anderegg; C. Schwalm; F. Biondi; J. J. Camarero; G. Koch; M. Litvak; K. Ogle; J. D. Shaw; E. Shevliakova; A. P. Williams; A. Wolf; E. Ziaco; S. Pacala
2015-01-01
The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of...
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn
2008-01-01
Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...
NASA Astrophysics Data System (ADS)
Weldu, Yemane W.
The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal fuel. Bioenergy alternatives have higher economic cost than the prevailing scenario of coal-fired generation system. Although coal fuel is the most cost effective way of electricity generation, its combustion results in the loss of 123.5 billion USD per year for Alberta due to societal life cycle cost. This research demonstrated that bioenergy can support the transformation of a fossil-based energy system to a more sustainable power production system; however, respiratory effects is a concern.
Toward a phenological mismatch in estuarine pelagic food web?
Chevillot, Xavier; Drouineau, Hilaire; Lambert, Patrick; Carassou, Laure; Sautour, Benoit; Lobry, Jérémy
2017-01-01
Alterations of species phenology in response to climate change are now unquestionable. Until now, most studies have reported precocious occurrence of life cycle events as a major phenological response. Desynchronizations of biotic interactions, in particular predator-prey relationships, are however assumed to strongly impact ecosystems' functioning, as formalized by the Match-Mismatch Hypothesis (MMH). Temporal synchronicity between juvenile fish and zooplankton in estuaries is therefore of essential interest since estuaries are major nursery grounds for many commercial fish species. The Gironde estuary (SW France) has suffered significant alterations over the last three decades, including two Abrupt Ecosystem Shifts (AES), and three contrasted intershift periods. The main objective of this study was to depict modifications in fish and zooplankton phenology among inter-shift periods and discuss the potential effects of the resulting mismatches at a community scale. A flexible Bayesian method was used to estimate and compare yearly patterns of species abundance in the estuary among the three pre-defined periods. Results highlighted (1) an earlier peak of zooplankton production and entrance of fish species in the estuary and (2) a decrease in residence time of both groups in the estuary. Such species-specific phenological changes led to changes in temporal overlap between juvenile fish and their zooplanktonic prey. This situation questions the efficiency and potentially the viability of nursery function of the Gironde estuary, with potential implications for coastal marine fisheries of the Bay of Biscay.
Complex terrain influences ecosystem carbon responses to temperature and precipitation
NASA Astrophysics Data System (ADS)
Reyes, W. M.; Epstein, H. E.; Li, X.; McGlynn, B. L.; Riveros-Iregui, D. A.; Emanuel, R. E.
2017-08-01
Terrestrial ecosystem responses to temperature and precipitation have major implications for the global carbon cycle. Case studies demonstrate that complex terrain, which accounts for more than 50% of Earth's land surface, can affect ecological processes associated with land-atmosphere carbon fluxes. However, no studies have addressed the role of complex terrain in mediating ecophysiological responses of land-atmosphere carbon fluxes to climate variables. We synthesized data from AmeriFlux towers and found that for sites in complex terrain, responses of ecosystem CO2 fluxes to temperature and precipitation are organized according to terrain slope and drainage area, variables associated with water and energy availability. Specifically, we found that for tower sites in complex terrain, mean topographic slope and drainage area surrounding the tower explained between 51% and 78% of site-to-site variation in the response of CO2 fluxes to temperature and precipitation depending on the time scale. We found no such organization among sites in flat terrain, even though their flux responses exhibited similar ranges. These results challenge prevailing conceptual framework in terrestrial ecosystem modeling that assumes that CO2 fluxes derive from vertical soil-plant-climate interactions. We conclude that the terrain in which ecosystems are situated can also have important influences on CO2 responses to temperature and precipitation. This work has implications for about 14% of the total land area of the conterminous U.S. This area is considered topographically complex and contributes to approximately 15% of gross ecosystem carbon production in the conterminous U.S.
By taking a multifactorial approach, the study will document complex aquatic plant responses to NPS nutrient contamination, providing fundamental insight into the broader impacts of environmental degradation, its impacts on plant function, and implications for ecosystem ser...
Global Implications of Great Lakes Wildlife Research.
ERIC Educational Resources Information Center
Colborn, Theo
1991-01-01
Data on the health of wildlife in the Great Lakes ecosystem are reviewed. Researchers infer from data on eight species that the effects in offspring are the result of exposure to chlorinated chemicals by adults and passed to the offspring via maternal transfer. Policy implications are discussed. (CW)
78 FR 34093 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... scientific and technical information presented in the report, the realistic mining scenario used, the data... Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska AGENCY: Environmental Protection Agency... document titled, ``An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska...
Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River Basin lowlands
NASA Astrophysics Data System (ADS)
Vargas, Leonardo; Hein, Lars; Remme, Roy P.
2017-04-01
Worldwide, ecosystem change compromises the supply of ecosystem services (ES). Better managing ecosystems requires detailed information on these changes and their implications for ES supply. Ecosystem accounting has been developed as an environmental-economic accounting system using concepts aligned with the System of National Accounts. Ecosystem accounting requires spatial information from a local to national scale. The objective of this paper is to explore how remote sensing can be used to analyze ecosystems using an accounting approach in the Orinoco River Basin. We assessed ecosystem assets in terms of extent, condition, and capacity to supply ES. We focus on four specific ES: grasslands grazed by cattle, timber harvesting, oil palm fresh fruit bunches harvesting, and carbon sequestration. We link ES with six ecosystem assets: savannahs, woody grasslands, mixed agroecosystems, very dense forests, dense forest, and oil palm plantations. We used remote sensing vegetation and productivity indexes to measure ecosystem assets. We found that remote sensing is a powerful tool to estimate ecosystem extent. The enhanced vegetation index can be used to assess ecosystems condition, and net primary productivity can be used for the assessment of ecosystem assets capacity to supply ES. Integrating remote sensing and ecological information facilitates efficient monitoring of ecosystem assets.
Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach
Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy
2014-01-01
Background Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. Methodology In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Principal findings Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Conclusion/significance Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems. PMID:24763610
Global patterns in ecological indicators of marine food webs: a modelling approach.
Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy
2014-01-01
Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems.
NASA Astrophysics Data System (ADS)
Coetsee, Corli; Jacobs, Shayne; Govender, Navashni
2012-02-01
Nitrogen (N) is a major control on primary productivity and hence on the productivity and diversity of secondary producers and consumers. As such, ecosystem structure and function cannot be understood without a comprehensive understanding of N cycling and dynamics. This overview describes the factors that govern N distribution and dynamics and the consequences that variable N dynamics have for structure, function and thresholds of potential concern (TPCs) for management of a semiarid southern African savanna. We focus on the Kruger National Park (KNP), a relatively intact savanna, noted for its wide array of animal and plant species and a prized tourist destination. KNP's large size ensures integrity of most ecosystem processes and much can be learned about drivers of ecosystem structure and function using this park as a baseline. Our overview shows that large scale variability in substrates exists, but do not necessarily have predictable consequences for N cycling. The impact of major drivers such as fire is complex; at a landscape scale little differences in stocks and cycling were found, though at a smaller scale changes in woody cover can lead to concomitant changes in total N. Contrasting impacts of browsers and grazers on N turnover has been recorded. Due to the complexity of this ecosystem, we conclude that it will be complicated to draw up TPCs for most transformations and pools involved with the N cycle. However, we highlight in which cases the development of TPCs will be possible.
Glibert, Patricia M; Icarus Allen, J; Artioli, Yuri; Beusen, Arthur; Bouwman, Lex; Harle, James; Holmes, Robert; Holt, Jason
2014-12-01
Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services. © 2014 John Wiley & Sons Ltd.
Bastille-Rousseau, Guillaume; Gibbs, James P.; Campbell, Karl; Yackulic, Charles B.; Blake, Stephen
2017-01-01
Restoration of damaged ecosystems through invasive species removal and native species conservation is an increasingly common practice in biodiversity conservation. Estimating the degree of ecosystem response attributable specifically to eradication of exotic herbivores versus restoration of native herbivores is often difficult and is complicated by concurrent temporal changes in other factors, especially climate. We investigated the interactive impacts of native mega-herbivores (giant tortoises) and the eradication of large alien herbivores (goats) on vegetation productivity across the Galapagos Archipelago. We examined archipelago-wide patterns of Normalized Difference Vegetation Index (NDVI) as a proxy for vegetation productivity between 2001 and 2015 and evaluated how goat and historical and current tortoise occurrence influenced productivity. We used a breakpoint analysis to detect change in trends in productivity from five targeted areas following goat eradication. We found a positive association between tortoise occurrence and vegetation productivity and a negative association with goat occurrence. We also documented an increase in plant productivity following goat removal with recovery higher in moister regions than in arid region, potentially indicating an alternate stable state has been created in the latter. Climate variation also contributed to the detected improvement in productivity following goat eradication, sometimes obscuring the effect of eradication but more usually magnifying it by up to 300%. Our work offers perspectives regarding the effectiveness and outcomes of eradicating introduced herbivores and re-introducing native herbivores, and the merits of staging them simultaneously in order to restore critical ecosystem processes such as vegetation productivity.
Molecular Insights into Plant-Microbial Processes and Carbon Storage in Mangrove Ecosystems
NASA Astrophysics Data System (ADS)
Romero, I. C.; Ziegler, S. E.; Fogel, M.; Jacobson, M.; Fuhrman, J. A.; Capone, D. G.
2009-12-01
Mangrove forests, in tropical and subtropical coastal zones, are among the most productive ecosystems, representing a significant global carbon sink. We report new molecular insights into the functional relationship among microorganisms, mangrove trees and sediment geochemistry. The interactions among these elements were studied in peat-based mangrove sediments (Twin Cays, Belize) subjected to a long-term fertilization experiment with N and P, providing an analog for eutrophication. The composition and δ13C of bacterial PLFA showed that bacteria and mangrove trees had similar nutrient limitation patterns (N in the fringe mangrove zone, P in the interior zone), and that fertilization with N or P can affect bacterial metabolic processes and bacterial carbon uptake (from diverse mangrove sources including leaf litter, live and dead roots). PCR amplified nifH genes showed a high diversity (26% nifH novel clones) and a remarkable spatial and temporal variability in N-fixing microbial populations in the rhizosphere, varying primarily with the abundance of dead roots, PO4-3 and H2S concentrations in natural and fertilized environments. Our results indicate that eutrophication of mangrove ecosystems has the potential to alter microbial organic matter remineralization and carbon release with important implications for the coastal carbon budget. In addition, we will present preliminary data from a new study exploring the modern calibration of carbon and hydrogen isotopes of plant leaf waxes as a proxy recorder of past environmental change in mangrove ecosystems.
Lopez, C.B.; Cloern, J.E.; Schraga, T.S.; Little, A.J.; Lucas, L.V.; Thompson, J.K.; Burau, J.R.
2006-01-01
A presumed value of shallow-habitat enhanced pelagic productivity derives from the principle that in nutrient-rich aquatic systems phytoplankton growth rate is controlled by light availability, which varies inversely with habitat depth. We measured a set of biological indicators across the gradient of habitat depth within the Sacramento-San Joaquin River Delta (California) to test the hypothesis that plankton biomass, production, and pelagic energy flow also vary systematically with habitat depth. Results showed that phytoplankton biomass and production were only weakly related to phytoplankton growth rates whereas other processes (transport, consumption) were important controls. Distribution of the invasive clam Corbicula fluminea was patchy, and heavily colonized habitats all supported low phytoplankton biomass and production and functioned as food sinks. Surplus primary production in shallow, uncolonized habitats provided potential subsidies to neighboring recipient habitats. Zooplankton in deeper habitats, where grazing exceeded phytoplankton production, were likely supported by significant fluxes of phytoplankton biomass from connected donor habitats. Our results provide three important lessons for ecosystem science: (a) in the absence of process measurements, derived indices provide valuable information to improve our mechanistic understanding of ecosystem function and to benefit adaptive management strategies; (b) the benefits of some ecosystem functions are displaced by water movements, so the value of individual habitat types can only be revealed through a regional perspective that includes connectedness among habitats; and (c) invasive species can act as overriding controls of habitat function, adding to the uncertainty of management outcomes. ?? 2006 Springer Science+Business Media, Inc.
Integrating ecosystem-service tradeoffs into land-use decisions
Goldstein, Joshua H.; Caldarone, Giorgio; Duarte, Thomas Kaeo; Ennaanay, Driss; Hannahs, Neil; Mendoza, Guillermo; Polasky, Stephen; Wolny, Stacie; Daily, Gretchen C.
2012-01-01
Recent high-profile efforts have called for integrating ecosystem-service values into important societal decisions, but there are few demonstrations of this approach in practice. We quantified ecosystem-service values to help the largest private landowner in Hawaii, Kamehameha Schools, design a land-use development plan that balances multiple private and public values on its North Shore land holdings (Island of O’ahu) of ∼10,600 ha. We used the InVEST software tool to evaluate the environmental and financial implications of seven planning scenarios encompassing contrasting land-use combinations including biofuel feedstocks, food crops, forestry, livestock, and residential development. All scenarios had positive financial return relative to the status quo of negative return. However, tradeoffs existed between carbon storage and water quality as well as between environmental improvement and financial return. Based on this analysis and community input, Kamehameha Schools is implementing a plan to support diversified agriculture and forestry. This plan generates a positive financial return ($10.9 million) and improved carbon storage (0.5% increase relative to status quo) with negative relative effects on water quality (15.4% increase in potential nitrogen export relative to status quo). The effects on water quality could be mitigated partially (reduced to a 4.9% increase in potential nitrogen export) by establishing vegetation buffers on agricultural fields. This plan contributes to policy goals for climate change mitigation, food security, and diversifying rural economic opportunities. More broadly, our approach illustrates how information can help guide local land-use decisions that involve tradeoffs between private and public interests. PMID:22529388
Integrating ecosystem-service tradeoffs into land-use decisions.
Goldstein, Joshua H; Caldarone, Giorgio; Duarte, Thomas Kaeo; Ennaanay, Driss; Hannahs, Neil; Mendoza, Guillermo; Polasky, Stephen; Wolny, Stacie; Daily, Gretchen C
2012-05-08
Recent high-profile efforts have called for integrating ecosystem-service values into important societal decisions, but there are few demonstrations of this approach in practice. We quantified ecosystem-service values to help the largest private landowner in Hawaii, Kamehameha Schools, design a land-use development plan that balances multiple private and public values on its North Shore land holdings (Island of O'ahu) of ∼10,600 ha. We used the InVEST software tool to evaluate the environmental and financial implications of seven planning scenarios encompassing contrasting land-use combinations including biofuel feedstocks, food crops, forestry, livestock, and residential development. All scenarios had positive financial return relative to the status quo of negative return. However, tradeoffs existed between carbon storage and water quality as well as between environmental improvement and financial return. Based on this analysis and community input, Kamehameha Schools is implementing a plan to support diversified agriculture and forestry. This plan generates a positive financial return ($10.9 million) and improved carbon storage (0.5% increase relative to status quo) with negative relative effects on water quality (15.4% increase in potential nitrogen export relative to status quo). The effects on water quality could be mitigated partially (reduced to a 4.9% increase in potential nitrogen export) by establishing vegetation buffers on agricultural fields. This plan contributes to policy goals for climate change mitigation, food security, and diversifying rural economic opportunities. More broadly, our approach illustrates how information can help guide local land-use decisions that involve tradeoffs between private and public interests.
N-dimensional hypervolumes to study stability of complex ecosystems.
Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara
2016-07-01
Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. © 2016 John Wiley & Sons Ltd/CNRS.
Using greenhouse gas fluxes to define soil functional types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben
Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variabilitymore » of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.« less
NASA Astrophysics Data System (ADS)
Crook, E. D.; Paytan, A.; Potts, D. C.; Hernandez Terrones, L.; Rebolledo-Vieyra, M.
2010-12-01
Recent increases in atmospheric carbon dioxide have resulted in rising aqueous CO2 concentrations that lower the pH of the oceans (Caldeira and Wickett 2003, 2005, Doney et al., 2009). It is estimated that over the next 100 years, the pH of the surface oceans will decrease by ~0.4 pH units (Orr et al., 2005), which is expected to hinder the calcifying capabilities of numerous marine organisms. Previous field work (Hall-Spencer et al., 2008) indicates that ocean acidification will negatively impact calcifying species; however, to date, very little is known about the long-term impacts of ocean acidification from the in-situ study of coral reef ecosystems. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.14-8.07) has been discharging offshore at highly localized points (called ojos) for millennia. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. Our findings indicate a decrease in species richness and size with proximity to the low pH waters. We address the potential long-term implications of low pH, low aragonite saturation state on coral reef ecosystems.
NASA Astrophysics Data System (ADS)
Netburn, Amanda N.; Anthony Koslow, J.
2015-10-01
Climate change-induced ocean deoxygenation is expected to exacerbate hypoxic conditions in mesopelagic waters off the coast of southern California, with potentially deleterious effects for the resident fauna. In order to understand the possible impacts that the oxygen minimum zone expansion will have on these animals, we investigated the response of the depth of the deep scattering layer (i.e., upper and lower boundaries) to natural variations in midwater oxygen concentrations, light levels, and temperature over time and space in the southern California Current Ecosystem. We found that the depth of the lower boundary of the deep scattering layer (DSL) is most strongly correlated with dissolved oxygen concentration, and irradiance and oxygen concentration are the key variables determining the upper boundary. Based on our correlations and published estimates of annual rates of change to irradiance level and hypoxic boundary, we estimated the corresponding annual rate of change of DSL depths. If past trends continue, the upper boundary is expected to shoal at a faster rate than the lower boundary, effectively widening the DSL under climate change scenarios. These results have important implications for the future of pelagic ecosystems, as a change to the distribution of mesopelagic animals could affect pelagic food webs as well as biogeochemical cycles.
Body size and lean mass of brown bears across and within four diverse ecosystems
Hilderbrand, Grant V.; Gustine, David; Mangipane, Buck A.; Joly, Kyle; Leacock, William; Mangipane, Lindsey S.; Erlenbach, Joy; Sorum, Mathew; Cameron, Matthew; Belant, Jerrold L.; Cambier, Troy
2018-01-01
Variation in body size across populations of brown bears (Ursus arctos) is largely a function of the availability and quality of nutritional resources while plasticity within populations reflects utilized niche width with implications for population resiliency. We assessed skull size, body length, and lean mass of adult female and male brown bears in four Alaskan study areas that differed in climate, primary food resources, population density, and harvest regime. Full body-frame size, as evidenced by asymptotic skull size and body length, was achieved by 8 to 14 years of age across populations and sexes. Lean body mass of both sexes continued to increase throughout their life. Differences between populations existed for all morphological measures in both sexes, bears in ecosystems with abundant salmon were generally larger. Within all populations, broad variation was seen in body size measures of adults with females displaying roughly a 2-fold difference in lean mass and males showing a 3- to 4-fold difference. The high level of intraspecific variation seen across and within populations suggests the presence of multiple life-history strategies and niche variation relative to resource partitioning, risk tolerance or aversion, and competition. Further, this level of variation indicates broad potential to adapt to changes within a given ecosystem and across the species’ range.
McFarlane, Bonita L; Watson, David O T; Witson, David O T
2008-02-01
Western Canada is experiencing an unprecedented outbreak of the mountain pine beetle (MPB). The MPB has the potential to impact some of Canada's national parks by affecting park ecosystems and the visitor experience. Controls have been initiated in some parks to lessen the impacts and to prevent the beetle from spreading beyond park boundaries. We examine the perception of ecological risk associated with MPB in two of Canada's national parks, the factors affecting perceptions of risk, and the influence of risk judgments on support for controlling MPB outbreaks in national parks. Data were collected using two studies of park visitors: a mail survey in 2003 and an onsite survey in 2005. The MPB was rated as posing a greater risk to the health and productivity of park ecosystems than anthropogenic hazards and other natural disturbance agents. Visitors who were familiar with MPB rated the ecological and visitor experience impacts as negative, unacceptable, and eliciting negative emotion. Knowledge and residency were the most consistent predictors of risk judgments. Of knowledge, risk, and demographic variables, only sex and risk to ecosystem domains influenced support for controlling the MPB in national parks. Implications for managing MPB in national parks, visitor education, and ecological integrity are discussed.
Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.
2017-01-01
When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys. PMID:28102290
Ciccolini, Valentina; Ercoli, Laura; Davison, John; Vasar, Martti; Öpik, Maarja; Pellegrino, Elisa
2016-12-01
Land-use change is known to be a major threat to biodiversity and ecosystem services in Mediterranean areas. However, the potential for different host plants to modulate the effect of land-use intensification on community composition of arbuscular mycorrhizal fungi (AMF) is still poorly understood. To test the hypothesis that low land-use intensity promotes AMF diversity at different taxonomic scales and to determine whether any response is dependent upon host plant species identity, we characterised AMF communities in the roots of 10 plant species across four land use types of differing intensity in a Mediterranean peatland system. AMF were identified using 454 pyrosequencing. This revealed an overall low level of AMF richness in the peaty soils; lowest AMF richness in the intense cropping system at both virtual taxa and family level; strong modulation by the host plant of the impact of land-use intensification on AMF communities at the virtual taxa level; and a significant effect of land-use intensification on AMF communities at the family level. These findings have implications for understanding ecosystem stability and productivity and should be considered when developing soil-improvement strategies in fragile ecosystems, such as Mediterranean peatlands. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Liming impacts on soils, crops and biodiversity in the UK: A review.
Holland, J E; Bennett, A E; Newton, A C; White, P J; McKenzie, B M; George, T S; Pakeman, R J; Bailey, J S; Fornara, D A; Hayes, R C
2018-01-01
Fertile soil is fundamental to our ability to achieve food security, but problems with soil degradation (such as acidification) are exacerbated by poor management. Consequently, there is a need to better understand management approaches that deliver multiple ecosystem services from agricultural land. There is global interest in sustainable soil management including the re-evaluation of existing management practices. Liming is a long established practice to ameliorate acidic soils and many liming-induced changes are well understood. For instance, short-term liming impacts are detected on soil biota and in soil biological processes (such as in N cycling where liming can increase N availability for plant uptake). The impacts of liming on soil carbon storage are variable and strongly relate to soil type, land use, climate and multiple management factors. Liming influences all elements in soils and as such there are numerous simultaneous changes to soil processes which in turn affect the plant nutrient uptake; two examples of positive impact for crops are increased P availability and decreased uptake of toxic heavy metals. Soil physical conditions are at least maintained or improved by liming, but the time taken to detect change varies significantly. Arable crops differ in their sensitivity to soil pH and for most crops there is a positive yield response. Liming also introduces implications for the development of different crop diseases and liming management is adjusted according to crop type within a given rotation. Repeated lime applications tend to improve grassland biomass production, although grassland response is variable and indirect as it relates to changes in nutrient availability. Other indicators of liming response in grassland are detected in mineral content and herbage quality which have implications for livestock-based production systems. Ecological studies have shown positive impacts of liming on biodiversity; such as increased earthworm abundance that provides habitat for wading birds in upland grasslands. Finally, understanding of liming impacts on soil and crop processes are explored together with functional aspects (in terms of ecosystems services) in a new qualitative framework that includes consideration of how liming impacts change with time. This holistic approach provides insights into the far-reaching impacts that liming has on ecosystems and the potential for liming to enhance the multiple benefits from agriculturally managed land. Recommendations are given for future research on the impact of liming and the implications for ecosystem services. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
A suite of biological and ecological responses of a Valued Ecosystem Component species, Crassostrea virginica, was used to investigate ecosystem-wide health effects of watershed alterations in the Caloosahatchee River estuary, Florida. The influence of water quality and season on...
Effects of roads on elk: implications for management in forested ecosystems.
Mary M. Rowland; Michael J. Wisdom; Bruce K. Johnson; Mark A. Penninger
2004-01-01
The effects of roads on both habitat and population responses of elk (Cervus elaphus) have been of keen interest to foresters and ungulate biologists for the last half century. Increased timber harvest in national forests, beginning in the 1960s, led to a proliferation of road networks in forested ecosystems inhabited by elk (Hieb 1976, Lyon and...
Bruce E. Rieman; Daniel J. Isaak
2010-01-01
Anthropogenic climate change is rapidly altering aquatic ecosystems across the Rocky Mountain West and may detrimentally impact populations of sensitive species that are often the focus of conservation efforts. The objective of this report is to synthesize a growing literature on these topics to address the following questions: (1) What is changing in climate and...
A conceptual model of plant responses to climate with implications for monitoring ecosystem change
C. David Bertelsen
2013-01-01
Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...
Janine Rice; Andrew Tredennick; Linda A. Joyce
2012-01-01
The Shoshone National Forest (Shoshone) covers 2.4 million acres of mountainous topography in northwest Wyoming and is a vital ecosystem that provides clean water, wildlife habitat, timber, grazing, recreational opportunities, and aesthetic value. The Shoshone has experienced and adapted to changes in climate for many millennia, and is currently experiencing a warming...
Biodiversity, ecosystem functioning, and classical biological control.
Evans, Edward W
Increasing concern over worldwide loss of biodiversity has led ecologists to focus intently on how ecosystem functioning may depend on diversity. In applied entomology, there is longstanding interest in the issue, especially as regards the importance of natural enemy diversity for pest control. Here I review parallels in interest, conceptual framework, and conclusions concerning biodiversity as it affects ecosystem functioning in general and classical biological control in particular. Whereas the former focuses on implications of loss of diversity, the latter focuses on implications of increase in diversity as additional species of natural enemies are introduced to novel communities in new geographic regions for insect pest and weed control. Many field studies now demonstrate that ecosystem functioning, e.g., as reflected in primary productivity, is enhanced and stabilized over time by high diversity as the community increases in its efficiency in exploiting available resources. Similarly, there is growing field support for the generalization that increasing species and functional diversity of natural enemies leads to increasing pest suppression. Nonetheless a central concern of classical biological control in particular, as it seeks to minimize non-target effects, remains as to whether one or a few species of natural enemies can provide sufficient pest control.
Sound management may sequester methane in grazed rangeland ecosystems
Wang, Chengjie; Han, Guodong; Wang, Shiping; Zhai, Xiajie; Brown, Joel; Havstad, Kris M.; Ma, Xiuzhi; Wilkes, Andreas; Zhao, Mengli; Tang, Shiming; Zhou, Pei; Jiang, Yuanyuan; Lu, Tingting; Wang, Zhongwu; Li, Zhiguo
2014-01-01
Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implemented in the main rangeland regions of China. The influences of rangeland improvement, utilization and livestock production on CH4 flux/emission were assessed to estimate CH4 reduction potential. Results indicate that the grazed rangeland ecosystem is currently a net source of atmospheric CH4. However, there is potential to convert the ecosystem to a net sink by improving management practices. Previous assessments of capacity for CH4 uptake in grazed rangeland ecosystems have not considered improved livestock management practices and thus underestimated potential for CH4 uptake. Optimal fertilization, rest and light grazing, and intensification of livestock management contribute mitigation potential significantly. PMID:24658176
Sound management may sequester methane in grazed rangeland ecosystems.
Wang, Chengjie; Han, Guodong; Wang, Shiping; Zhai, Xiajie; Brown, Joel; Havstad, Kris M; Ma, Xiuzhi; Wilkes, Andreas; Zhao, Mengli; Tang, Shiming; Zhou, Pei; Jiang, Yuanyuan; Lu, Tingting; Wang, Zhongwu; Li, Zhiguo
2014-03-24
Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implemented in the main rangeland regions of China. The influences of rangeland improvement, utilization and livestock production on CH4 flux/emission were assessed to estimate CH4 reduction potential. Results indicate that the grazed rangeland ecosystem is currently a net source of atmospheric CH4. However, there is potential to convert the ecosystem to a net sink by improving management practices. Previous assessments of capacity for CH4 uptake in grazed rangeland ecosystems have not considered improved livestock management practices and thus underestimated potential for CH4 uptake. Optimal fertilization, rest and light grazing, and intensification of livestock management contribute mitigation potential significantly.
Gutiérrez Del Arroyo, Omar; Silver, Whendee L
2018-04-01
Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance-induced pulses of organic matter inputs. © 2017 John Wiley & Sons Ltd.
Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D
2014-08-01
Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Corsetti, F. A.; Thibodeau, A. M.; Ritterbush, K. A.; West, A. J.; Yager, J. A.; Ibarra, Y.; Bottjer, D. J.; Berelson, W.; Bergquist, B. A.
2015-12-01
Recent high-resolution age dating demonstrates that the end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and the release of CO2 and other volatiles to the atmosphere has been implicated in the extinction. Given the potentially massive release of CO2, ocean acidification is commonly considered a factor in the extinction and the collapse of shallow marine carbonate ecosystems. However, the timing of global marine biotic recovery versus the CAMP eruptions is more uncertain. Here, we use Hg concentrations and Hg/TOC ratios as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. We conclude that significant biotic recovery did not begin until CAMP eruptions ceased. Furthermore, the initial benthic recovery in the Muller Canyon section involves the expansion of a siliceous sponge-dominated ecosystem across shallow marine environments, a feature now known from other sections around the world (e.g., Peru, Morocco, Austria, etc.). Carbonate dominated benthic ecosystems (heralded by the return of abundant corals and other skeletal carbonates) did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration considered for ocean acidification events, implying other factors may have played a role in carbonate ecosystem dynamics after the extinction.
Anthropogenic and natural disturbances of carbon, nitrogen and water cycles and their global effects
NASA Astrophysics Data System (ADS)
Tian, H.; Melillo, J.; Virji, H.; Fu, C.; Dickinson, R.; Running, S.; Liu, J.; Wang, Q.; Reilly, J.
2006-05-01
Monsoon Asia includes the Indian sub-continent, Southeast Asia and East Asia. Monsoon Asia is home to more than one-half of the world population, but the total land area in this region is only about 16% of earth's land surface. This region is covered by a range of ecosystems from tropical forests in Southeast Asia to boreal forests in the northern Asia, and from temperate forests in Eastern Asia to deserts in western Asia and tundra in the Himalayan Mountains. These ecosystems account for about one fourth of the potential global terrestrial net primary productivity and for a similar fraction of the carbon stored in land ecosystems. The structure and functioning of these ecosystems are being affected by a complex set of multiple human-induced stresses including air pollution and land transformation. The unprecedented combination of economic and population growth has led to a dramatic land transformation and air pollution across monsoon Asia. The large-scale land transformation and air pollution have important implications for the cycles of carbon, nitrogen and water at regional and global scales. Clearly, monsoon Asia is of critical importance to the understanding of how changing climates and human impacts interact to influence the structure and functioning of ecosystems and the biosphere. In this study, we have reviewed recent advances in the understanding of human-induced changes in biogeochemical and hydrological cycles in Monsoon Asia, including the human-monsoon interactions and the linkage of Asian monsoon to global climate. Finally we have discussed gaps and limitations in existing information that need to be investigated in the future to improve our understanding of human/nature dynamics in monsoon Asia and its linkage to the Earth system.
NASA Astrophysics Data System (ADS)
Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko
2010-12-01
Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.
How do land management practices affect net ecosystem CO2 exchange of an invasive plant infestation?
NASA Astrophysics Data System (ADS)
Sonnentag, O.; Detto, M.; Runkle, B.; Kelly, M.; Baldocchi, D. D.
2009-12-01
Ecosystem gas and energy exchanges of invasive plant infestations under different land management practices have been subject of few studies and thus little is known. Our goal is to characterize seasonal changes in net ecosystem CO2 exchange (NEE) through the processes of photosynthesis (GEP) and ecosystem respiration (Reco) of a grassland used as pasture yet infested by perennial pepperweed (Lepidium latifolium) in California’s Sacramento-San Joaquin River Delta. We analyze eddy-covariance supported by environmental and canopy-scale hyperspectral reflectance measurements acquired in 2007-2009. Our study covers three summer drought periods with slightly different land management practices. Over the study period the site was subject to year-round grazing, and in 2008 the site was additionally mowed. Specific questions we address are a) how does pepperweed flowering affect GEP, b) does a mowing event affect NEE mainly through GEP or Reco, and c) can the combined effects of phenology and mowing on pepperweed NEE potentially be tracked using routinely applied remote sensing techniques? Preliminary results indicate that pepperweed flowering drastically decreases photosynthetic CO2 uptake due to shading by the dense arrangement of white flowers at the canopy top, causing the infestation to be almost CO2 neutral. In contrast, mowing causes the infestation to act as moderate net CO2 sink, mainly due to increased CO2 uptake during regrowth. We demonstrate that spectral regions other than commonly-used red and near-infrared might be more promising for pepperweed monitoring because of its spectral uniqueness during the flowering phase. Our results have important implications for land-use land-cover (LULC) change studies when biological invasions and their management alter ecosystem structure and functioning but not necessarily the respective LULC class.
Jacobson, Michael G
2002-10-01
Many factors influence forest landowner management decisions. This study examines landowner decisions regarding participation in ecosystem management activities, such as a landscape corridor cutting across their private lands. Landscape corridors are recognized worldwide as an important tool in biodiversity conservation. For ecosystem management activities to occur in areas dominated by a multitude of small private forest landholdings, landowner participation and cooperation is necessary. Data from a survey of landowners combined with an analysis of their land's spatial attributes is used to assess their interest in ecosystem management. Results suggest that spatial attributes are not good predictors of an owner's interest in ecosystem management. Other factors such as attitudes and opinions about the environment are more effective in explaining landowner interest. The results have implications for any land manager using GIS data and implementing ecosystem management activities on private forestland.
Jing, Xin; Sanders, Nathan J; Shi, Yu; Chu, Haiyan; Classen, Aimée T; Zhao, Ke; Chen, Litong; Shi, Yue; Jiang, Youxu; He, Jin-Sheng
2015-09-02
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.
Jing, Xin; Sanders, Nathan J.; Shi, Yu; ...
2015-09-02
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation inmore » EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.« less
Jing, Xin; Sanders, Nathan J.; Shi, Yu; Chu, Haiyan; Classen, Aimée T.; Zhao, Ke; Chen, Litong; Shi, Yue; Jiang, Youxu; He, Jin-Sheng
2015-01-01
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems. PMID:26328906
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Xin; Sanders, Nathan J.; Shi, Yu
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation inmore » EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.« less
Hotaling, Scott; Hood, Eran; Hamilton, Trinity L
2017-08-01
Glacier ecosystems are teeming with life on, beneath, and to a lesser degree, within their icy masses. This conclusion largely stems from polar research, with less attention paid to mountain glaciers that overlap environmentally and ecologically with their polar counterparts in some ways, but diverge in others. One difference lies in the susceptibility of mountain glaciers to the near-term threat of climate change, as they tend to be much smaller in both area and volume. Moreover, mountain glaciers are typically steeper, more dependent upon basal sliding for movement, and experience higher seasonal precipitation. Here, we provide a modern synthesis of the microbial ecology of mountain glacier ecosystems, and particularly those at low- to mid-latitudes. We focus on five ecological zones: the supraglacial surface, englacial interior, subglacial bedrock-ice interface, proglacial streams and glacier forefields. For each, we discuss the role of microbiota in biogeochemical cycling and outline ecological and hydrological connections among zones, underscoring the interconnected nature of these ecosystems. Collectively, we highlight the need to: better document the biodiversity and functional roles of mountain glacier microbiota; describe the ecological implications of rapid glacial retreat under climate change and resolve the relative contributions of ecological zones to broader ecosystem function. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change
NASA Astrophysics Data System (ADS)
Midgley, Guy F.; Bond, William J.
2015-09-01
Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.
Biodiversity and ecosystem stability across scales in metacommunities.
Wang, Shaopeng; Loreau, Michel
2016-05-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales. © 2016 John Wiley & Sons Ltd/CNRS.
Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.
2015-01-01
The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914
Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R
2015-01-01
The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.
Gaydos, J K; Miller, W A; Gilardi, K V K; Melli, A; Schwantje, H; Engelstoft, C; Fritz, H; Conrad, P A
2007-02-01
Species of Cryptosporidium and Giardia can infect humans and wildlife and have the potential to be transmitted between these 2 groups; yet, very little is known about these protozoans in marine wildlife. Feces of river otters (Lontra canadensis), a common marine wildlife species in the Puget Sound Georgia Basin, were examined for species of Cryptosporidium and Giardia to determine their role in the epidemiology of these pathogens. Using ZnSO4 flotation and immunomagnetic separation, followed by direct immunofluorescent antibody detection (IMS/DFA), we identified Cryptosporidium sp. oocysts in 9 fecal samples from 6 locations and Giardia sp. cysts in 11 fecal samples from 7 locations. The putative risk factors of proximate human population and degree of anthropogenic shoreline modification were not associated with the detection of Cryptosporidium or Giardia spp. in river otter feces. Amplification of DNA from the IMS/DFA slide scrapings was successful for 1 sample containing > 500 Cryptosporidium sp. oocysts. Sequences from the Cryptosporidium 18S rRNA and the COWP loci were most similar to the ferret Cryptosporidium sp. genotype. River otters could serve as reservoirs for Cryptosporidium and Giardia species in marine ecosystems. More work is needed to better understand the zoonotic potential of the genotypes they carry as well as their implications for river otter health.
Taking action against ocean acidification: a review of management and policy options.
Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre
2013-10-01
Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.
Taking Action Against Ocean Acidification: A Review of Management and Policy Options
NASA Astrophysics Data System (ADS)
Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre
2013-10-01
Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.
Miranda, Andrea L; Cordeiro, Soraia M; Reis, Joice N; Cardoso, Lucas G; Guimarães, Alaíse G
2017-01-01
Coral reefs are one of the most vulnerable ecosystems to ocean warming and acidification, and it is important to determine the role of reef building species in this environment in order to obtain insight into their susceptibility to expected impacts of global changes. Aspects of the life history of a coral population, such as reproduction, growth and size-frequency can contribute to the production of models that are used to estimate impacts and potential recovery of the population, acting as a powerful tool for the conservation and management of those ecosystems. Here, we present the first evidence of Siderastrea stellata planulation, its early growth, population size-frequency distribution and growth rate of adult colonies in Rocas Atoll. Our results, together with the environmental protection policies and the absence of anthropogenic pressures, suggest that S. stellata population may have a good potential in the maintenance and recovery in the atoll. However, our results also indicate an impact on corals' recruitment, probably as a consequence of the positive temperature anomaly that occurred in 2010. Thus, despite the pristine status of Rocas Atoll, the preservation of its coral community seems to be threatened by current global changes, such as more frequent thermal stress events.
Szpak, Paul
2014-01-01
Nitrogen isotopic studies have the potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts. PMID:25002865
Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.
2015-01-01
Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911
NASA Astrophysics Data System (ADS)
Schillaci, Calogero; Lombardo, Luigi; Saia, Sergio; Fantappiè, Maria; Märker, Michael; Acutis, Marco
2016-04-01
Agro-ecosystems have a paramount importance as a source of goods and incomes and have a highly unexpressed potential to mitigate greenhouse gasses (GHG) emission. In agro-ecosystems, Soil Organic Carbon (SOC) is recognized as the most important trait to be managed in order to maintain soil fertility and ecosystems services. Accurate laboratory analysis is indeed the best way to investigate soils. However, it is expensive and time consuming when aiming at gaining information on large areas such as an entire district or region. Remote Sensing (RS) is recently offering increasingly detailed Digital Elevation Models (DEMs) and low-cost multispectral satellite imagery. Moreover accurate worldwide climate records of the last 50 years were recently made freely available. Across Sicily, there is a strong heterogeneity of agro-ecosystems, with a dominance of field crops and orchards. In the present work, we modeled the SOC through a wide range of predictors including both ecosystem and agronomic characteristics of the soils, such as panchromatic bands, a Normalized Differenced Vegetation Index NDVI and landuse based on multispectral remote-sensed data LANDSAT ETM+7, terrain attributes derived by radar satellite data from the Shuttle Radar Topographic Mission (SRTM), as well as soil texture information and climate data record from WORLDCLIM. As dependent variable, a set of 2,891 Walkley-Black SOC and 1,049 bulk density laboratory analyses collected throughout Sicily (Italy) was used for modelling the CS stock and build the map. The Stochastic Gradient Treeboost (SGT) learning algorithm was applied to 75% of the CS stock dataset. The remaining 25% was used to validate the model. In addition, the SGT was compared to a Generalized Linear Mixed Model (GLMM). Both SGT and GLMM models show a high performance. With regards to the full model, both algorithms designated temperature and annual rainfall as fundamental predictors of CS. In addition, SGT highlighted the annual rainfall soil texture, land use and the Band8 among the most important contributors to the model. Conversely, GLMM selected temperature, annual rainfall, slope and LS-factor as primary contributors. Finally, total CS stock was extracted per each agricultural land use within the area of study. The cumulated topsoil CS (0-30cm) within the aforementioned classes accounted for about 59·106 tons, on 1,6 million hectares (about 60% of the island surface). In particular, Non irrigated (rainfed) arable lands, fruit trees and berry plantations, olive groves, and vineyards accounted for 47,4% and 10,2% 13,5%, 9.0 %, of the total CS, respectively, and 48,9%, 9,5%, 13,5%, 9.6% of the total area respectively. The results have implication on both the landscape management when aiming to reduce GHG emission and the computation of the contribute of each land use class to the potential CS and GHG variation. In addition, the model and map resulting from the present work have particular implication when aiming to infer SOC dynamics under climate change or varying ecosystem management scenarios.
Crook, David A; Lowe, Winsor H; Allendorf, Frederick W; Erős, Tibor; Finn, Debra S; Gillanders, Bronwyn M; Hadwen, Wade L; Harrod, Chris; Hermoso, Virgilio; Jennings, Simon; Kilada, Raouf W; Nagelkerken, Ivan; Hansen, Michael M; Page, Timothy J; Riginos, Cynthia; Fry, Brian; Hughes, Jane M
2015-11-15
Understanding the drivers and implications of anthropogenic disturbance of ecological connectivity is a key concern for the conservation of biodiversity and ecosystem processes. Here, we review human activities that affect the movements and dispersal of aquatic organisms, including damming of rivers, river regulation, habitat loss and alteration, human-assisted dispersal of organisms and climate change. Using a series of case studies, we show that the insight needed to understand the nature and implications of connectivity, and to underpin conservation and management, is best achieved via data synthesis from multiple analytical approaches. We identify four key knowledge requirements for progressing our understanding of the effects of anthropogenic impacts on ecological connectivity: autecology; population structure; movement characteristics; and environmental tolerance/phenotypic plasticity. Structuring empirical research around these four broad data requirements, and using this information to parameterise appropriate models and develop management approaches, will allow for mitigation of the effects of anthropogenic disturbance on ecological connectivity in aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Aquatic biodiversity in forests: A weak link in ecosystem services resilience
Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.
2017-01-01
The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.
Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves
Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.
2003-01-01
Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.
Yufang Jin; Michael L. Goulden; Nicolas Faivre; Sander Veraverbeke; Fengpeng Sun; Alex Hall; Michael S. Hand; Simon Hook; James T. Randerson
2015-01-01
The area burned by Southern California wildfires has increased in recent decades, with implications for human health, infrastructure, and ecosystem management. Meteorology and fuel structure are universally recognized controllers of wildfire, but their relative importance, and hence the efficacy of abatement and suppression efforts, remains controversial....
NASA Astrophysics Data System (ADS)
Ghyoot, Caroline; Lancelot, Christiane; Flynn, Kevin J.; Mitra, Aditee; Gypens, Nathalie
2017-04-01
Most biogeochemical/ecological models divide planktonic protists between phototrophs (phytoplankton) and heterotrophs (zooplankton). However, a large number of planktonic protists are able to combine several mechanisms of carbon and nutrient acquisition. Not representing these multiple mechanisms in biogeochemical/ecological models describing eutrophied coastal ecosystems can potentially lead to different conclusions regarding ecosystem functioning, especially regarding the success of harmful algae, which are often reported as mixotrophic. This modelling study investigates, for the first time, the implications for trophic dynamics of including 3 contrasting forms of mixotrophy, namely osmotrophy (using alkaline phosphatase activity, APA), non-constitutive mixotrophy (acquired phototrophy by microzooplankton) and also constitutive mixotrophy. The application is in the Southern North Sea, an ecosystem that faced, between 1985 and 2005, a significant increase in the nutrient supply N:P ratio (from 31 to 81 mole N:P). The comparison with a traditional model shows that, when the winter N:P ratio in the Southern North Sea is above 22 molN molP-1 (as occurred from mid-1990s), APA allows a 3 to 32% increase of annual gross primary production (GPP). In result of the higher GPP, the annual sedimentation increases as well as the bacterial production. By contrast, APA does not affect the export of matter to higher trophic levels because the increased GPP is mainly due to Phaeocystis colonies, which are not grazed by copepods. The effect of non-constitutive mixotrophy depends on light and affects the ecosystem functioning in terms of annual GPP, transfer to higher trophic levels, sedimentation, and nutrient remineralisation. Constitutive mixotrophy in nanoflagellates appears to have little influence on this ecosystem functioning. An important conclusion from this work is that different forms of mixotrophy have different impacts on system dynamics and it is thus important to describe such differences in an appropriate fashion.
Alan Ewert
1995-01-01
With an increased emphasis being placed on ecosystem management, the importance of Human Dimension Research (HDR) efforts in management and policy formulation are becoming more important. Developing an understanding of the type of management questions and policy needs that can be addressed by human dimension research is becoming increasingly important and timely. This...
E. M. Stacy; S. C. Hart; C. T. Hunsaker; D. W. Johnson; A. A. Berhe
2015-01-01
Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual...
Jan E. Cipra; Eugene F. Kelly; Lee MacDonald; John Norman
2003-01-01
This team was asked to address three questions regarding soil properties, erosion and sedimentation, and how aquatic and terrestrial ecosystems have responded or could respond to various land management options. We have used soil survey maps, burn severity maps, and digital elevation model (DEM) maps as primary map data. We used our own field measurements and...
Alexander Clark; James W. McMinn
1999-01-01
National Forests in the United States are under sustainable ecosystem management to conserve biodiversity, achieve sustainable conditions and improve the balance among forest values. This paper reports on a study established to identify the implications of ecosystem management strategies on natural stands in the Piedmont and Coastal Plain. The impact of partial...
Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad; Sakthi Subburayalu
2014-01-01
Forests provide key ecosystem services (ES) and the extent to which the ES are realized varies spatially, with forest composition and cultural context, and in breadth, depending on the dominant tree species inhabiting an area. We address the question of how climate change may impact ES within the temperate and diverse forests of the eastern United States. We quantify...
Kathleen A. Dwire; Sabine Mellmann-Brown
2017-01-01
In the Blue Mountains, climate change is likely to have significant, long-term implications for freshwater resources, including riparian areas, wetlands (box 7.1), and groundwater-dependent ecosystems (GDEs, box 7.2). Climate change is expected to cause a transition from snow to rain, resulting in diminished snowpack and shifts in streamflow to earlier in the season (...
Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston
2017-01-01
We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...
NASA Astrophysics Data System (ADS)
Xin, Z.; Chen, X.; Fu, G.; Li, C.
2017-12-01
Landscapes differ in their capacities to provide ecosystem good and services, which are the benefits humans obtain from nature. Valuation of ecosystem services is recognized as one effective way for improving the recognition and implementation for disposition of land resource and ecosystem protection. In this content, this study aims to reveal the changes in provision of ecosystem services induced by land use changes in both temporal and spatial scales in Dalian, China. Land use changes were firstly characterized based on Landsat TM images from 1984 to 2013. Results showed a severe increase in urban area, with an average increasing rate of 39.5%. Dry land occupied the largest portion of the total area which is mainly developed on the expenses of forest loss; meanwhile, policies of water-saving irrigation has promoted a conversion of paddy fields to dry land. Other categories including water, wetland, brush grass and salting were found to have relative small contrition to the total area. Assigning ecosystem service value (ESV) coefficient to each land use category, changes in ESV of the study area were assessed. Results indicated that the total ESV decreased by 21 billion from 1984 to 2013. Forest, dry land and water are the primary contributors. As for ecosystem functions, the regulation service is the most prominent which contributed to 60% of the total ESV, followed by support, supply and culture services. In addition, ESV changes were found to have a spatial variability, which shows a maximum decreasing rate in the central city, and a highest net value in the surrounding islands. The changes and distributions in land use pattern and ESV were further linked with the local city landscape planning, which has provided implications on city landscape policy making for sustaining the provision of ecosystem services and achieving sustainable development goals.
Vacant urban lot soils and their potential to support ecosystem services
AimsUrban soils are the basis of many ecosystem services in cities. Here, we examine formerly residential vacant lot soils in Cleveland, Ohio and Detroit, Michigan, USA for their potential to provide multiple ecosystem services. We examine two key contrasts: 1) differences betwee...
NASA Astrophysics Data System (ADS)
Schroder (Kushch), Svetlana; Lang, Zhengxin; Rabotyagov, Sergey
2018-04-01
Wetland restoration can increase the provision of multiple non-market ecosystem services. Environmental and socio-economic factors need to be accounted for when land is withdrawn from agriculture and wetlands are restored. We build multi-objective optimization models to provide decision support for wetland restoration in the Le Sueur river watershed in Southern Minnesota. We integrate environmental objectives of sediment reduction and habitat protection with socio-economic factors associated with the overlap of private land with potential wetland restoration sites in the watershed and the costs representing forward-looking farmers voluntarily taking land out of agricultural production in favor of wetland restoration. Our results demonstrate that the inclusion of these factors early on in the restoration planning process affects both the total costs of the restoration project and the spatial distribution of optimally selected wetland restoration sites.
Spatially cascading effect of perturbations in experimental meta-ecosystems.
Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian
2016-09-14
Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. © 2016 The Author(s).
Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan
2015-07-15
A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time which proved to be both, positive and negative. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Obeysekera, Jayantha; Barnes, Jenifer; Nungesser, Martha
2015-04-01
It is important to understand the vulnerability of the water management system in south Florida and to determine the resilience and robustness of greater Everglades restoration plans under future climate change. The current climate models, at both global and regional scales, are not ready to deliver specific climatic datasets for water resources investigations involving future plans and therefore a scenario based approach was adopted for this first study in restoration planning. We focused on the general implications of potential changes in future temperature and associated changes in evapotranspiration, precipitation, and sea levels at the regional boundary. From these, we developed a set of six climate and sea level scenarios, used them to simulate the hydrologic response of the greater Everglades region including agricultural, urban, and natural areas, and compared the results to those from a base run of current conditions. The scenarios included a 1.5 °C increase in temperature, ±10 % change in precipitation, and a 0.46 m (1.5 feet) increase in sea level for the 50-year planning horizon. The results suggested that, depending on the rainfall and temperature scenario, there would be significant changes in water budgets, ecosystem performance, and in water supply demands met. The increased sea level scenarios also show that the ground water levels would increase significantly with associated implications for flood protection in the urbanized areas of southeastern Florida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platt, R.B.; Ragsdale, H.L.; Murdy, W.H.
1977-10-25
The impact of SO/sub 2/ on the survival and stability of plant populations and communities was studied. The results to date have an important bearing on the adequacy of current permissible ambient air levels for SO/sub 2/. Atmospheric SO/sub 2/ concentrations at near permissible levels had a significant adverse effect on sexual reproduction processes, which results in a reduced number of viable seeds, in all 8 populations tested. Implications for both natural and agricultural plant species and possible significant losses of fruit production are discussed. An ecological implication of the invisible effect of fruit and seed mortality is postulated sincemore » the life cycle of many insects and the trophic relations of numerous animals depend, at least in part, on fruit production by trees and shrubs. Hence, there is a potential for disruptive effects on ecosystem level processes. Results are also reported from four systems-oriented studies within the Lower Three Runs Creek Watershed, Savannah River Plant, to examine fallout /sup 137/Cs transfer processes in ecological systems characteristic of the Southeastern Coastal Plain. These studies were carried out within the stream and its floodplains, within floodplains along the stream gradient, in upland aquatic systems (Carolina Bays), and in the upland scrub-oak forest system. Results are discussed.« less
Global drivers and tradeoffs of three urban vegetation ecosystem services.
Dobbs, Cynnamon; Nitschke, Craig R; Kendal, Dave
2014-01-01
Our world is increasingly urbanizing which is highlighting that sustainable cities are essential for maintaining human well-being. This research is one of the first attempts to globally synthesize the effects of urbanization on ecosystem services and how these relate to governance, social development and climate. Three urban vegetation ecosystem services (carbon storage, recreation potential and habitat potential) were quantified for a selection of a hundred cities. Estimates of ecosystem services were obtained from the analysis of satellite imagery and the use of well-known carbon and structural habitat models. We found relationships between ecosystem services, social development, climate and governance, however these varied according to the service studied. Recreation potential was positively related to democracy and negatively related to population. Carbon storage was weakly related to temperature and democracy, while habitat potential was negatively related to democracy. We found that cities under 1 million inhabitants tended to have higher levels of recreation potential than larger cities and that democratic countries have higher recreation potential, especially if located in a continental climate. Carbon storage was higher in full democracies, especially in a continental climate, while habitat potential tended to be higher in authoritarian and hybrid regimes. Similar to other regional or city studies we found that the combination of environment conditions, socioeconomics, demographics and politics determines the provision of ecosystem services. Results from this study showed the existence of environmental injustice in the developing world.
Global Drivers and Tradeoffs of Three Urban Vegetation Ecosystem Services
Dobbs, Cynnamon; Nitschke, Craig R.; Kendal, Dave
2014-01-01
Our world is increasingly urbanizing which is highlighting that sustainable cities are essential for maintaining human well-being. This research is one of the first attempts to globally synthesize the effects of urbanization on ecosystem services and how these relate to governance, social development and climate. Three urban vegetation ecosystem services (carbon storage, recreation potential and habitat potential) were quantified for a selection of a hundred cities. Estimates of ecosystem services were obtained from the analysis of satellite imagery and the use of well-known carbon and structural habitat models. We found relationships between ecosystem services, social development, climate and governance, however these varied according to the service studied. Recreation potential was positively related to democracy and negatively related to population. Carbon storage was weakly related to temperature and democracy, while habitat potential was negatively related to democracy. We found that cities under 1 million inhabitants tended to have higher levels of recreation potential than larger cities and that democratic countries have higher recreation potential, especially if located in a continental climate. Carbon storage was higher in full democracies, especially in a continental climate, while habitat potential tended to be higher in authoritarian and hybrid regimes. Similar to other regional or city studies we found that the combination of environment conditions, socioeconomics, demographics and politics determines the provision of ecosystem services. Results from this study showed the existence of environmental injustice in the developing world. PMID:25402184
A knowledge platform to inform on the effects of trawling on benthic communities
NASA Astrophysics Data System (ADS)
Muntadas, Alba; Lample, Michel; Demestre, Montserrat; Ballé-Béganton, Johanna; de Juan, Silvia; Maynou, Francesc; Bailly, Denis
2018-02-01
For a successful implementation of an Ecosystem Approach to Fisheries (EAF) management, it is necessary that all stakeholders involved in fisheries management are aware of the implications of fishing impacts on ecosystems and agree with the adopted measures to mitigate these impacts. In this context, there is a need for tools to share knowledge on the ecosystem effects of fisheries among these stakeholders. When managing bottom trawl fisheries under an EAF framework, one of the main concerns is the direct and indirect consequences of trawling impacts on benthic ecosystems. We developed a platform using the ExtendSim® software with a user-friendly interface that combines a simulation model based on existing knowledge, data collection and representation of predicted trawling impacts on the seabed. The platform aims to be a deliberation support tool for fisheries' stakeholders and, simultaneously, raise public awareness of the need for good benthic community knowledge to appropriately inform EAF management plans. The simulation procedure assumes that trawling affects benthic communities with an intensity that depends on the level of fishing effort exerted on benthic communities and on the habitat characteristics (i.e. sediment grain size). Data to build the simulation comes from epifaunal samples from 18 study sites located in Mediterranean continental shelves subjected to different levels of fishing effort. In this work, we present the simulation outputs of a 50% fishing effort increase (and decrease) in four of the study sites which cover different habitats and different levels of fishing effort. We discuss the platform strengths and weaknesses and potential future developments.
Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates
Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.
2014-01-01
Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.
The role and management implications of modeling owl populations and the habitats they occupy
Amy E. Kearns
1997-01-01
Modeling ecosystems is an evolving science that is both practical and theoretical. The integration of modeling, landscape ecology, management, and rapidly changing technology offers an array of possible solutions to modern environmental quandaries. In order to address these concerns, a workshop was developed to discuss the role and management implications of modeling...
Climate change, fire management, and ecological services in the southwestern US
Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.
2014-01-01
The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.
Spatial modeling of biological soil crusts to support rangeland assessment and monitoring
Bowker, M.A.; Belnap, J.; Miller, M.E.
2006-01-01
Biological soil crusts are a diverse soil surface community, prevalent in semiarid regions, which function as ecosystem engineers and perform numerous important ecosystem services. Loss of crusts has been implicated as a factor leading to accelerated soil erosion and other forms of land degradation. To support assessment and monitoring efforts aimed at ensuring the sustainability of rangeland ecosystems, managers require spatially explicit information concerning potential cover and composition of biological soil crusts. We sampled low disturbance sites in Grand Staircase-Escalante National Monument (Utah, USA) to determine the feasibility of modeling the potential cover and composition of biological soil crusts in a large area. We used classification and regression trees to model cover of four crust types (light cyanobacterial, dark cyanobacterial, moss, lichen) and 1 cyanobacterial biomass proxy (chlorophyll a), based upon a parsimonious set of GIS (Geographic Information Systems) data layers (soil types, precipitation, and elevation). Soil type was consistently the best predictor, although elevation and precipitation were both invoked in the various models. Predicted and observed values for the dark cyanobacterial, moss, and lichen models corresponded moderately well (R 2 = 0.49, 0.64, 0.55, respectively). Cover of late successional crust elements (moss + lichen + dark cyanobacterial) was also successfully modeled (R2 = 0.64). We were less successful with models of light cyanobacterial cover (R2 = 0.22) and chlorophyll a (R2 = 0.09). We believe that our difficulty modeling chlorophyll a concentration is related to a severe drought and subsequent cyanobacterial mortality during the course of the study. These models provide the necessary reference conditions to facilitate the comparison between the actual cover and composition of biological soil crusts at a given site and their potential cover and composition condition so that sites in poor condition can be identified and management actions can be taken.
Shuhua Yi; Kristen Manies; Jennifer Harden; David McGuire
2009-01-01
Soil organic layers (OL) play an important role in land-atmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that...
John F. Stewart; Rodney Will; Barbara S. Crane; C. Dana Nelson
2016-01-01
Shortleaf pine (Pinus echinata Mill.) is an important conifer in much of the southeastern United States. However, the species and its associated ecosystems are in decline, and recent evidence about hybridization with loblolly pine (Pinus taeda L.) raises concerns that the species may be at risk of further losses due to introgression. Although shortleaf pine is not...
Solomon, Christopher T.; Jones, Stuart E.; Weidel, Brian C.; Buffam, Ishi; Fork, Megan L; Karlsson, Jan; Larsen, Soren; Lennon, Jay T.; Read, Jordan S.; Sadro, Steven; Saros, Jasmine E.
2015-01-01
Lake ecosystems and the services that they provide to people are profoundly influenced by dissolved organic matter derived from terrestrial plant tissues. These terrestrial dissolved organic matter (tDOM) inputs to lakes have changed substantially in recent decades, and will likely continue to change. In this paper, we first briefly review the substantial literature describing tDOM effects on lakes and ongoing changes in tDOM inputs. We then identify and provide examples of four major challenges which limit predictions about the implications of tDOM change for lakes, as follows: First, it is currently difficult to forecast future tDOM inputs for particular lakes or lake regions. Second, tDOM influences ecosystems via complex, interacting, physical-chemical-biological effects and our holistic understanding of those effects is still rudimentary. Third, non-linearities and thresholds in relationships between tDOM inputs and ecosystem processes have not been well described. Fourth, much understanding of tDOM effects is built on comparative studies across space that may not capture likely responses through time. We conclude by identifying research approaches that may be important for overcoming those challenges in order to provide policy- and management-relevant predictions about the implications of changing tDOM inputs for lakes.
Terrestrial Ecosystems of the Conterminous United States
Sayre, Roger G.; Comer, Patrick; Cress, Jill; Warner, Harumi
2010-01-01
The U.S. Geological Survey (USGS), with support from NatureServe, has modeled the potential distribution of 419 terrestrial ecosystems for the conterminous United States using a comprehensive biophysical stratification approach that identifies distinct biophysical environments and associates them with known vegetation distributions (Sayre and others, 2009). This standardized ecosystem mapping effort used an ecosystems classification developed by NatureServe (Comer and others, 2003). The ecosystem mapping methodology was developed for South America (Sayre and others, 2008) and is now being implemented globally (Sayre and others, 2007). The biophysical stratification approach is based on mapping the major structural components of ecosystems (land surface forms, topographic moisture potential, surficial lithology, isobioclimates and biogeographic regions) and then spatially combining them to produce a set of unique biophysical environments. These physically distinct areas are considered as the fundamental structural units ('building blocks') of ecosystems, and are subsequently aggregated and labeled using the NatureServe classification. The structural footprints were developed from the geospatial union of several base layers including biogeographic regions, isobioclimates (Cress and others, 2009a), land surface forms (Cress and others, 2009b), topographic moisture potential (Cress and others, 2009c), and surficial lithology (Cress and others, in press). Among the 49,168 unique structural footprint classes that resulted from the union, 13,482 classes met a minimum pixel count threshold (20,000 pixels) and were aggregated into 419 NatureServe ecosystems using a semiautomated labeling process based on rule-set formulations for attribution of each ecosystem. The resulting ecosystems are those that are expected to occur based on the combination of the bioclimate, biogeography, and geomorphology. Where land use by humans has not altered land cover, natural vegetation assemblages are expected to occur, and these are described in the ecosystems classification. The map does not show the distribution of urban and agricultural areas - these will be masked out in subsequent analyses to depict the current land cover in addition to the potential distribution of natural ecosystems. This map depicts the smoothed and generalized image of the terrestrial ecosystems dataset. Additional information about this map and any data developed for the ecosystems modeling of the conterminous United States is available online at: http://rmgsc.cr.usgs.gov/ecosystems/.
Hu, Xiaoli; Lu, Ling; Li, Xin; Wang, Jianhua; Guo, Ming
2015-01-01
The Heihe River Basin (HRB) is a typical arid inland river basin in northwestern China. From the 1960s to the 1990s, the downstream flow in the HRB declined as a result of large, artificial changes in the distribution of water and land and a lack of effective water resource management. Consequently, the ecosystems of the lower reaches of the basin substantially deteriorated. To restore these degraded ecosystems, the Ecological Water Diversion Project (EWDP) was initiated by the Chinese government in 2000. The project led to agricultural and ecological changes in the middle reaches of the basin. In this study, we present three datasets of land use/cover in the middle reaches of the HRB derived from Landsat TM/ETM+ images in 2000, 2007 and 2011. We used these data to investigate changes in land use/cover between 2000 and 2011 and the implications for sustainable water resource management. The results show that the most significant land use/cover change in the middle reaches of the HRB was the continuous expansion of farmland for economic interests. From 2000 to 2011, the farmland area increased by 12.01%. The farmland expansion increased the water resource stress; thus, groundwater was over-extracted and the ecosystem was degraded in particular areas. Both consequences are negative and potentially threaten the sustainability of the middle reaches of the HRB and the entire river basin. Local governments should therefore improve the management of water resources, particularly groundwater management, and should strictly control farmland reclamation. Then, water resources could be ecologically and socioeconomically sustained, and the balance between upstream and downstream water demands could be ensured. The results of this study can also serve as a reference for the sustainable management of water resources in other arid inland river basins. PMID:26115484
Pathogen evolution across the agro-ecological interface: implications for disease management.
Burdon, Jeremy J; Thrall, Peter H
2008-02-01
Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host-pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host-pathogen systems. We suggest that this is particularly the case given that agro-ecological host-pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for disease management in agro-ecosystems and how we can influence those outcomes. Finally, we identify several major gaps where future research could increase our ability to utilize evolutionary principles in managing disease in agro-ecosystems.
The Potential for Scientific Collaboration in Virtual Ecosystems
ERIC Educational Resources Information Center
Magerko, Brian
2010-01-01
This article explores the potential benefits of creating "virtual ecosystems" from real-world data. These ecosystems are intended to be realistic virtual representations of environments that may be costly or difficult to access in person. They can be constructed as 3D worlds rendered from stereo video data, augmented with scientific data, and then…
Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change
Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston
2017-01-01
We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...
Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds
Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.
2014-01-01
The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate1, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 ± 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.
Microplastics in aquatic environments: Implications for Canadian ecosystems.
Anderson, Julie C; Park, Bradley J; Palace, Vince P
2016-11-01
Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Lam, Yan Y.; Maguire, Sarah; Palacios, Talia; Caterson, Ian D.
2017-01-01
Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders. PMID:28613252
Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D
2017-06-14
Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.
History and effects of hatchery salmon in the Pacific
Nielsen, Jennifer L.; Gallaugher, Patricia; Wood, Laurie
2004-01-01
There has been a long history of production of hatchery salmon along the Pacific coast - from California’s first efforts in the 1870s using eggs from chinook and rainbow trout to the recent large-scale production hatcheries for pink salmon in Japan and the Russian Far East. The rationale for this production has also varied from replacement of fish lost in commercial ocean harvests to mitigation and restoration of salmon in areas where extensive habitat alteration has reduced salmonid viability and abundance. Over the years, we have become very successful in producing a certain type of product from salmon hatcheries, but until recently we seldom questioned the impacts the production and release of hatchery fish may have on freshwater and marine aquatic ecosystems and on the sustainability of sympatric wild salmon populations. This paper addresses the history of hatcheries around the Pacific Rim and considers potential negative implications of hatchery-produced salmon through discussions of biological impacts and biodiversity, ecological impacts and competitive displacement, fish and ecosystem health, and genetic impacts of hatchery fish as threats to wild populations of Pacific salmon.
Assessing the effects of large mobile predators on ecosystem connectivity.
McCauley, Douglas J; Young, Hillary S; Dunbar, Robert B; Estes, James A; Semmens, Brice X; Micheli, Fiorenza
2012-09-01
Large predators are often highly mobile and can traverse and use multiple habitats. We know surprisingly little about how predator mobility determines important processes of ecosystem connectivity. Here we used a variety of data sources drawn from Palmyra Atoll, a remote tropical marine ecosystem where large predators remain in high abundance, to investigate how these animals foster connectivity. Our results indicate that three of Palmyra's most abundant large predators (e.g., two reef sharks and one snapper) use resources from different habitats creating important linkages across ecosystems. Observations of cross-system foraging such as this have important implications for the understanding of ecosystem functioning, the management of large-predator populations, and the design of conservation measures intended to protect whole ecosystems. In the face of widespread declines of large, mobile predators, it is important that resource managers, policy makers, and ecologists work to understand how these predators create connectivity and to determine the impact that their depletions may be having on the integrity of these linkages.
NASA Astrophysics Data System (ADS)
Neu, J. L.; Schimel, D.; Lerdau, M.; Drewry, D.; Fu, D.; Payne, V.; Bowman, K. W.; Worden, J. R.
2016-12-01
Tropospheric ozone concentrations are increasing in many regions of the world, and this ozone can severely damage vegetation. Ozone enters plants through their stomata and oxidizes tissues, inhibiting physiology and decreasing ecosystem productivity. Ozone has been experimentally shown to reduce crop production, with important implications for global food security as concentrations rise. Ozone damage to forests also alters productivity and carbon storage and may drive changes in species distributions and biodiversity. Process-based quantitative estimates of these ozone impacts on terrestrial ecosystems at continental to global scales as well as of feedbacks to air quality via production of volatile organic compounds (VOCs) are thus crucial to sustainable development planning. We demonstrate that leveraging planned and proposed missions to measure ozone, formaldehyde, and isoprene along with solar-induced fluorescence (SiF), evapotranspiration, and plant nitrogen content can meet the requirements of an integrated observing system for air quality-ecosystem interactions while also meeting the needs of the individual Air Quality, Carbon Cycle, and Ecosystems communities.
Bodkin, James L.
2010-01-01
Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Litvak, M. E.; Broxton, P. D.; Gochis, D.; Molotch, N. P.; Troch, P. A.; Ewers, B. E.
2012-12-01
Unprecedented levels of insect induced tree mortality and massive wildfires both have spread through the forests of Western North America over the last decade. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how simultaneous changes in forest structure and climate will interact to affect either downstream water resources or the regeneration and recovery of forested ecosystems. Because both streamflow and ecosystem productivity depend on seasonal snowmelt, a critical knowledge gap exists in how these disturbances will interact with a changing climate to control to the amount, timing, and the partitioning of seasonal snow cover This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a gradient of snow depth and duration from Arizona to Montana. These include undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input likely will not increase under a warming climate. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. These observations suggest that the ecosystem services of water provision and carbon storage may be very different in the forests that regenerate after disturbance.
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.
2014-12-01
In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.
Magrach, Ainhoa; Ghazoul, Jaboury
2015-01-01
Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes. PMID:26177201
Lamsal, Pramod; Kumar, Lalit; Atreya, Kishor; Pant, Krishna Prasad
2017-12-01
Climate change (CC) threatens ecosystems in both developed and developing countries. As the impacts of CC are pervasive, global, and mostly irreversible, it is gaining worldwide attention. Here we review vulnerability and impacts of CC on forest and freshwater wetland ecosystems. We particularly look at investigations undertaken at different geographic regions in order to identify existing knowledge gaps and possible implications from such vulnerability in the context of Nepal along with available adaptation programs and national-level policy supports. Different categories of impacts which are attributed to disrupting structure, function, and habitat of both forest and wetland ecosystems are identified and discussed. We show that though still unaccounted, many facets of forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by CC in the near future. Provisioning ecosystem services and landscape-level ecosystem conservation are anticipated to be highly threatened with future CC. Finally, the need for prioritizing CC research in Nepal is highlighted to close the existing knowledge gap along with the implementation of adaptation measures based on existing location specific traditional socio-ecological system.
Public participation GIS: a method for identifying ecosystems services
Brown, Greg; Montag, Jessica; Lyon, Katie
2012-01-01
This study evaluated the use of an Internet-based public participation geographic information system (PPGIS) to identify ecosystem services in Grand County, Colorado. Specific research objectives were to examine the distribution of ecosystem services, identify the characteristics of participants in the study, explore potential relationships between ecosystem services and land use and land cover (LULC) classifications, and assess the methodological strengths and weakness of the PPGIS approach for identifying ecosystem services. Key findings include: (1) Cultural ecosystem service opportunities were easiest to identify while supporting and regulatory services most challenging, (2) participants were highly educated, knowledgeable about nature and science, and have a strong connection to the outdoors, (3) some LULC classifications were logically and spatially associated with ecosystem services, and (4) despite limitations, the PPGIS method demonstrates potential for identifying ecosystem services to augment expert judgment and to inform public or environmental policy decisions regarding land use trade-offs.
Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications
Lucas, L.V.; Cloern, J.E.; Thompson, J.K.; Monsen, N.E.
2002-01-01
We have now entered an era of large-scale attempts to restore ecological functions and biological communities in impaired ecosystems. Our knowledge base of complex ecosystems and interrelated functions is limited, so the outcomes of specific restoration actions are highly uncertain. One approach for exploring that uncertainty and anticipating the range of possible restoration outcomes is comparative study of existing habitats similar to future habitats slated for construction. Here we compare two examples of one habitat type targeted for restoration in the Sacramento-San Joaquin River Delta. We compare one critical ecological function provided by these shallow tidal habitats - production and distribution of phytoplankton biomass as the food supply to pelagic consumers. We measured spatial and short-term temporal variability of phytoplankton biomass and growth rate and quantified the hydrodynamic and biological processes governing that variability. Results show that the production and distribution of phytoplankton biomass can be highly variable within and between nearby habitats of the same type, due to variations in phytoplankton sources, sinks, and transport. Therefore, superficially similar, geographically proximate habitats can function very differently, and that functional variability introduces large uncertainties into the restoration process. Comparative study of existing habitats is one way ecosystem science can elucidate and potentially minimize restoration uncertainties, by identifying processes shaping habitat functionality, including those that can be controlled in the restoration design.
Ecological and socioeconomic effects of China's policies for ecosystem services.
Liu, Jianguo; Li, Shuxin; Ouyang, Zhiyun; Tam, Christine; Chen, Xiaodong
2008-07-15
To address devastating environmental crises and to improve human well-being, China has been implementing a number of national policies on payments for ecosystem services. Two of them, the Natural Forest Conservation Program (NFCP) and the Grain to Green Program (GTGP), are among the biggest programs in the world because of their ambitious goals, massive scales, huge payments, and potentially enormous impacts. The NFCP conserves natural forests through logging bans and afforestation with incentives to forest enterprises, whereas the GTGP converts cropland on steep slopes to forest and grassland by providing farmers with grain and cash subsidies. Overall ecological effects are beneficial, and socioeconomic effects are mostly positive. Whereas there are time lags in ecological effects, socioeconomic effects are more immediate. Both the NFCP and the GTGP also have global implications because they increase vegetative cover, enhance carbon sequestration, and reduce dust to other countries by controlling soil erosion. The future impacts of these programs may be even bigger. Extended payments for the GTGP have recently been approved by the central government for up to 8 years. The NFCP is likely to follow suit and receive renewed payments. To make these programs more effective, we recommend systematic planning, diversified funding, effective compensation, integrated research, and comprehensive monitoring. Effective implementation of these programs can also provide important experiences and lessons for other ecosystem service payment programs in China and many other parts of the world.
Global urban signatures of phenotypic change in animal and plant populations
Correa, Cristian; Marzluff, John M.; Hendry, Andrew P.; Palkovacs, Eric P.; Hunt, Victoria M.; Apgar, Travis M.; Zhou, Yuyu
2017-01-01
Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends. PMID:28049817
Global urban signatures of phenotypic change in animal and plant populations.
Alberti, Marina; Correa, Cristian; Marzluff, John M; Hendry, Andrew P; Palkovacs, Eric P; Gotanda, Kiyoko M; Hunt, Victoria M; Apgar, Travis M; Zhou, Yuyu
2017-08-22
Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends.
Indicators of ocean health and human health: developing a research and monitoring framework.
Knap, Anthony; Dewailly, Eric; Furgal, Chris; Galvin, Jennifer; Baden, Dan; Bowen, Robert E; Depledge, Michael; Duguay, Linda; Fleming, Lora E; Ford, Tim; Moser, Fredricka; Owen, Richard; Suk, William A; Unluata, Umit
2002-01-01
We need to critically assess the present quality of the marine ecosystem, especially the connection between ecosystem change and threats to human health. In this article we review the current state of indicators to link changes in marine organisms with eventual effects to human health, identify research opportunities in the use of indicators of ocean and human health, and discuss how to establish collaborations between national and international governmental and private sector groups. We present a synthesis of the present state of understanding of the connection between ocean health and human health, a discussion of areas where resources are required, and a discussion of critical research needs and a template for future work in this field. To understand fully the interactions between ocean health and human health, programs should be organized around a "models-based" approach focusing on critical themes and attributes of marine environmental and public health risks. Given the extent and complex nature of ocean and human health issues, a program networking across geographic and disciplinary boundaries is essential. The overall goal of this approach would be the early detection of potential marine-based contaminants, the protection of marine ecosystems, the prevention of associated human illness, and by implication, the development of products to enhance human well-being. The tight connection between research and monitoring is essential to develop such an indicator-based effort. PMID:12204815
Rocha, Adrian V.; Loranty, Michael M.; Higuera, Phil E.; Mack, Michelle C.; Hu, Feng Sheng; Jones, Benjamin M.; Breen, Amy L.; Rastetter, Edward B.; Goetz, Scott J.; Shaver, Gus R.
2012-01-01
Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.
NASA Astrophysics Data System (ADS)
Akoglu, Ekin; Salihoglu, Baris; Fach Salihoglu, Bettina; Libralato, Simone; Cannaby, Heather; Oguz, Temel; Solidoro, Cosimo
2014-05-01
A dynamic Ecopath with Ecosim higher-trophic-level (HTL) model representation of the Black Sea ecosystem was coupled to the physical (BIMS-CIR) and biogeochemical (BIMS-ECO) models of the Black Sea in order to investigate historical anthropogenic and climatological interactions and feedbacks in the ecosystem. Further, the coupled models were used to assess the likely consequences of these interactions on the ecosystem's structure and functioning under predicted future climate (IPCC A1B) and fishing variability. Therefore, two model scenarios were used; i) a hindcast scenario (1980-1999) to evaluate and understand the impacts of the short-term climate and physical variability and the introduction of invasive species on the Black Sea ecosystem, and ii) a forecast scenario (2080-2099) to investigate the potential implications of climate change and anthropogenic exploitation on living resources of the Black Sea ecosystem by the end of the 21st century. According to the outcomes of the hindcast simulation, fisheries were found to be the main driver in determining the structure and functioning of the Black Sea ecosystem under changing environmental conditions. The coupled physical-biogeochemical forecast simulations predicted a slight but statistically significant basin-wide increase in the Black Sea's primary productivity by the end of the century due to increased stratification induced by basin-wide temperature increase and reduced Cold Intermediate Layer (CIL) formation which increased the residence time of riverine nutrients within the euphotic zone. Despite this increased primary productivity, the HTL model forecast simulation predicted a significant decrease in the commercial fish stocks primarily due to fisheries exploitation if current catch rates are maintained into the future. Results further suggested that some economically important small pelagic fish species are likely to disappear from the ecosystem making the recovery of the already-collapsed piscivorous fish stocks increasingly unlikely. In addition, a further reduction in the proportion of piscivorous fish in the fish community was found to be consequent. From a management perspective, the results of the study suggested that along with managing fishing exploitation levels of the target stocks, monitoring and management of other species in the ecosystem that are tightly coupled with the fish species in terms of food web interactions were found to be the most effective way of applying an ecosystem-based management strategy in the Black Sea. Such an approach will ensure the sustainable utilisation of the fish stocks of the Black Sea by maintaining the ecological integrity of the Black Sea marine food web.
Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits
Talie Musavi; Mirco Migliavacca; Martine Janet van de Weg; Jens Kattge; Georg Wohlfahrt; Peter M. van Bodegom; Markus Reichstein; Michael Bahn; Arnaud Carrara; Tomas F. Domingues; Michael Gavazzi; Damiano Gianelle; Cristina Gimeno; André Granier; Carsten Gruening; Kateřina Havránková; Mathias Herbst; Charmaine Hrynkiw; Aram Kalhori; Thomas Kaminski; Katja Klumpp; Pasi Kolari; Bernard Longdoz; Stefano Minerbi; Leonardo Montagnani; Eddy Moors; Walter C. Oechel; Peter B. Reich; Shani Rohatyn; Alessandra Rossi; Eyal Rotenberg; Andrej Varlagin; Matthew Wilkinson; Christian Wirth; Miguel D. Mahecha
2016-01-01
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive...
Ponçon, Nicolas; Balenghien, Thomas; Toty, Céline; Ferré, Jean Baptiste; Thomas, Cyrille; Dervieux, Alain; L’Ambert, Grégory; Schaffner, Francis; Bardin, Olivier
2007-01-01
Using historical data, we highlight the consequences of anthropogenic ecosystem modifications on the abundance of mosquitoes implicated as the current most important potential malaria vector, Anopheles hyrcanus, and the most important West Nile virus (WNV) vector, Culex modestus, in the Camargue region, France. From World War II to 1971, populations of these species increased as rice cultivation expanded in the region in a political context that supported agriculture. They then fell, likely because of decreased cultivation and increased pesticide use to control a rice pest. The species increased again after 2000 with the advent of more targeted pest-management strategies, mainly the results of European regulations decisions. An intertwined influence of political context, environmental constraints, technical improvements, and social factors led to changes in mosquito abundance that had potential consequences on malaria and WNV transmission. These findings suggest that anthropogenic changes should not be underestimated in vectorborne disease recrudescence. PMID:18258028
Mori, Koichiro
2009-02-01
The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.
D. J. Isaak; S. Wollrab; D. Horan; G. Chandler
2011-01-01
Thermal regimes in rivers and streams are fundamentally important to aquatic ecosystems and are expected to change in response to climate forcing as the Earthâs temperature warms. Description and attribution of stream temperature changes are key to understanding how these ecosystems may be affected by climate change, but difficult given the rarity of long-term...
NASA Technical Reports Server (NTRS)
Liu, Hongyu; Moore, Richard; Hostetler, Christopher; Ferrare, Richard; Fairlie, T. Duncan; Hu, Youngxiang; Chen, Gao; Hair, Johnathan W.; Johnson, Matthew; Gantt, Brett;
2016-01-01
The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES; http://naames.larc.nasa.gov) is a five year NASA Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic, with the 1st field deployment in November 2015 and the 2nd in May 2016.
ERIC Educational Resources Information Center
Birkeland, Charles, Ed.
This report presents the Unesco workshop conclusions concerning important differences among tropical seas in terms of ecological processes in coastal marine ecosystems, and the corresponding implications for resource management guidelines. The conclusions result from the presentation and discussion of eight review papers which are included in this…
Biodiversity, traditional medicine and public health: where do they meet?
2007-01-01
Given the increased use of traditional medicines, possibilities that would ensure its successful integration into a public health framework should be explored. This paper discusses some of the links between biodiversity and traditional medicine, and addresses their implications to public health. We explore the importance of biodiversity and ecosystem services to global and human health, the risks which human impacts on ecosystems and biodiversity present to human health and welfare. PMID:17376227
Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates
Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; Gon, Sam 'Ohukani'ohi'a; Koob, Gregory A.
2014-01-01
Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254
Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis.
Keller, Arturo A; Fournier, Eric; Fox, Jessica
2015-06-01
Development of natural landscapes to support human activities impacts the capacity of the landscape to provide ecosystem services. Typically, several ecosystem services are impacted at a single development site and various footprint scenarios are possible, thus a multi-criteria analysis is needed. Restoration potential should also be considered for the area surrounding the permanent impact site. The primary objective of this research was to develop a heuristic approach to analyze multiple criteria (e.g. impacts to various ecosystem services) in a spatial configuration with many potential development sites. The approach was to: (1) quantify the magnitude of terrestrial ecosystem service (biodiversity, carbon sequestration, nutrient and sediment retention, and pollination) impacts associated with a suite of land use change scenarios using the InVEST model; (2) normalize results across categories of ecosystem services to allow cross-service comparison; (3) apply the multi-criteria heuristic algorithm to select sites with the least impact to ecosystem services, including a spatial criterion (separation between sites). As a case study, the multi-criteria impact minimization algorithm was applied to InVEST output to select 25 potential development sites out of 204 possible locations (selected by other criteria) within a 24,000 ha property. This study advanced a generally applicable spatial multi-criteria approach for 1) considering many land use footprint scenarios, 2) balancing impact decisions across a suite of ecosystem services, and 3) determining the restoration potential of ecosystem services after impacts. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.
Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; Gon, Sam 'ohukani'ohi'a; Koob, Gregory A
2014-01-01
Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.
Chapter 11 - Post-hurricane fuel dynamics and implications for fire behavior (Project SO-EM-F-12-01)
Shanyue Guan; G. Geoff. Wang
2018-01-01
Hurricanes have long been a powerful and recurring disturbance in many coastal forest ecosystems. Intense hurricanes often produce a large amount of dead fuels in their affected forests. How the post-hurricane fuel complex changes with time, due todecomposition and management such as salvage, and its implications for fire behavior remain largely unknown....
Brooks, Matthew L.; Brown, Cynthia S.; Chambers, Jeanne C.; D'Antonio, Carla M.; Keeley, Jon E.; Belnap, Jayne
2016-01-01
Exotic annual Bromus species are widely recognized for their potential to invade, dominate, and alter the structure and function of ecosystems. In this chapter, we summarize the invasion potential, ecosystem threats, and management strategies for different Bromus species within each of five ecoregions of the western United States. We characterize invasion potential and threats in terms of ecosystem resistance to Bromus invasion and ecosystem resilience to disturbance with an emphasis on the importance of fi re regimes. We also explain how soil temperature and moisture regimes can be linked to patterns of resistance and resilience and provide a conceptual framework that can be used to evaluate the relative potential for invasion and ecological impact of the dominant exotic annual Bromus species in the western United States.
Urban heat island-induced increases in evapotranspirative demand
NASA Astrophysics Data System (ADS)
Zipper, Samuel C.; Schatz, Jason; Kucharik, Christopher J.; Loheide, Steven P.
2017-01-01
Although the importance of vegetation in mitigating the urban heat island (UHI) is known, the impacts of UHI-induced changes in micrometeorological conditions on vegetation are not well understood. Here we show that plant water requirements are significantly higher in urban areas compared to rural areas surrounding Madison, WI, driven by increased air temperature with minimal effects of decreased air moisture content. Local increases in impervious cover are strongly associated with increased evapotranspirative demand in a consistent manner across years, with most increases caused by elevated temperatures during the growing season rather than changes in changes in growing season length. Potential evapotranspiration is up to 10% higher due to the UHI, potentially mitigating changes to the water and energy balances caused by urbanization. Our results indicate that local-scale land cover decisions (increases in impervious cover) can significantly impact evapotranspirative demand, with likely implications for water and carbon cycling in urban ecosystems.
Thermal Remote Sensing and the Thermodynamics of Ecosystem Development
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, Doug; Fraser, Roydon F.
2011-01-01
Ecosystems develop structure and function that degrades the quality of the incoming energy more effectively. The ecosystem T and Rn/K* and TRN are excellent candidates for indicators of ecological integrity. The potential for these methods to be used for remote sensed ecosystem classification and ecosystem health/integrity evaluation is apparent
A review of impacts by invasive exotic plants on forest ecosystem services
Kevin Devine; Songlin Fei
2011-01-01
Many of our forest ecosystems are at risk due to the invasion of exotic invasive plant species. Invasive plant species pose numerous threats to ecosystems by decreasing biodiversity, deteriorating ecosystem processes, and degrading ecosystem services. Literature on Kentucky's most invasive exotic plant species was examined to understand their potential impacts on...
Polak, Tal; Watson, James E. M.; Fuller, Richard A.; Joseph, Liana N.; Martin, Tara G.; Possingham, Hugh P.; Venter, Oscar; Carwardine, Josie
2015-01-01
The Convention on Biological Diversity (CBD)'s strategic plan advocates the use of environmental surrogates, such as ecosystems, as a basis for planning where new protected areas should be placed. However, the efficiency and effectiveness of this ecosystem-based planning approach to adequately capture threatened species in protected area networks is unknown. We tested the application of this approach in Australia according to the nation's CBD-inspired goals for expansion of the national protected area system. We set targets for ecosystems (10% of the extent of each ecosystem) and threatened species (variable extents based on persistence requirements for each species) and then measured the total land area required and opportunity cost of meeting those targets independently, sequentially and simultaneously. We discover that an ecosystem-based approach will not ensure the adequate representation of threatened species in protected areas. Planning simultaneously for species and ecosystem targets delivered the most efficient outcomes for both sets of targets, while planning first for ecosystems and then filling the gaps to meet species targets was the most inefficient conservation strategy. Our analysis highlights the pitfalls of pursuing goals for species and ecosystems non-cooperatively and has significant implications for nations aiming to meet their CBD mandated protected area obligations. PMID:26064645
Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.
Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James
2017-07-19
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Reserve Design under Climate Change: From Land Facets Back to Ecosystem Representation
Schneider, Richard R.; Bayne, Erin M.
2015-01-01
Ecosystem distributions are expected to shift as a result of global warming, raising concerns about the long-term utility of reserve systems based on coarse-filter ecosystem representation. We tested the extent to which proportional ecosystem representation targets would be maintained under a changing climate by projecting the distribution of the major ecosystems of Alberta, Canada, into the future using bioclimatic envelope models and then calculating the composition of reserves in successive periods. We used the Marxan conservation planning software to generate the suite of reserve systems for our test, varying the representation target and degree of reserve clumping. Our climate envelope projections for the 2080s indicate that virtually all reserves will, in time, be comprised of different ecosystem types than today. Nevertheless, our proportional targets for ecosystem representation were maintained across all time periods, with only minor exceptions. We hypothesize that this stability in representation arises because ecosystems may be serving as proxies for land facets, the stable abiotic landscape features that delineate major arenas of biological activity. The implication is that accommodating climate change may not require abandoning the conventional ecosystem-based approach to reserve design in favour of a strictly abiotic approach, since the two approaches may be largely synonymous. PMID:25978759
The Potential and Flux Landscape Theory of Ecology
Zhang, Kun; Wang, Erkang; Wang, Jin
2014-01-01
The species in ecosystems are mutually interacting and self sustainable stable for a certain period. Stability and dynamics are crucial for understanding the structure and the function of ecosystems. We developed a potential and flux landscape theory of ecosystems to address these issues. We show that the driving force of the ecological dynamics can be decomposed to the gradient of the potential landscape and the curl probability flux measuring the degree of the breaking down of the detailed balance (due to in or out flow of the energy to the ecosystems). We found that the underlying intrinsic potential landscape is a global Lyapunov function monotonically going down in time and the topology of the landscape provides a quantitative measure for the global stability of the ecosystems. We also quantified the intrinsic energy, the entropy, the free energy and constructed the non-equilibrium thermodynamics for the ecosystems. We studied several typical and important ecological systems: the predation, competition, mutualism and a realistic lynx-snowshoe hare model. Single attractor, multiple attractors and limit cycle attractors emerge from these studies. We studied the stability and robustness of the ecosystems against the perturbations in parameters and the environmental fluctuations. We also found that the kinetic paths between the multiple attractors do not follow the gradient paths of the underlying landscape and are irreversible because of the non-zero flux. This theory provides a novel way for exploring the global stability, function and the robustness of ecosystems. PMID:24497975
Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.
Marshall-Colon, Amy; Long, Stephen P; Allen, Douglas K; Allen, Gabrielle; Beard, Daniel A; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A J; Cox, Donna J; Hart, John C; Hirst, Peter M; Kannan, Kavya; Katz, Daniel S; Lynch, Jonathan P; Millar, Andrew J; Panneerselvam, Balaji; Price, Nathan D; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J; Voit, Eberhard O; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang
2017-01-01
Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.
Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform
Marshall-Colon, Amy; Long, Stephen P.; Allen, Douglas K.; Allen, Gabrielle; Beard, Daniel A.; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A. J.; Cox, Donna J.; Hart, John C.; Hirst, Peter M.; Kannan, Kavya; Katz, Daniel S.; Lynch, Jonathan P.; Millar, Andrew J.; Panneerselvam, Balaji; Price, Nathan D.; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G.; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J.; Voit, Eberhard O.; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang
2017-01-01
Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop. PMID:28555150
Lakes provide a variety of ecosystem service benefits that are important to communities in the United States. Standard water quality indicators can be used to assess a lake’s potential to provide ecosystem services such as provisioning of water for domestic, industrial, and agric...
Subterranean Groundwater Nutrient Input to Coastal Oceans and Coral Reef Sustainability
NASA Astrophysics Data System (ADS)
Paytan, A.; Street, J. H.
2003-12-01
Coral reefs are often referred to as the tropical rain forests of the oceans because of their high productivity and biodiversity. Recent observations in coral reefs worldwide have shown clear degradation in water quality and coral reef health and diversity. The implications of this are severe, including tremendous economic losses mostly though fishing and tourism. Nutrient loading has been implicated as one possible cause for the ecosystem decline. A previously unappreciated potential source of nutrient loading is submarine ground water discharge (SGW). Ground water in many cases has high nutrient content from sewage pollution and fertilizer application for agriculture and landscaping. To better understand the effect of this potential source of nutrient input and degrading water quality, we are exploring the contribution of SGW to the nutrient levels in coral reefs. A key to this approach is determining the amount and source of SGW that flows into the coast as well as its nutrient concentrations. The SGW flux and associated input of chemical dissolved load (nutrient, DOC, trace elements and other contaminants) is quantified using naturally occurring Ra isotopes. Radium isotopes have been shown to be excellent tracers for SGW inputs into estuaries and coastal areas (Moore, 1996; Hussain et al., 1999; Kerst et al., 2000). Measurements of Ra activity within the coral reef, the lagoons and the open waters adjacent to the reef provide valuable information regarding the input of Ra as well as nutrients and possibly pollutant from groundwater discharge. Through this analysis the effect of SGD on the delicate carbon and nutrient balance of the fragile coral reef ecosystem could be evaluated. In addition to quantifying the contribution of freshwater to the nutrient mass balance in the reef, information regarding the length of time a water parcel has remained in the near-shore region over the reef can be estimated using the Ra isotope quartet.
Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart; Yi, S.; Thompson, Catharine Copass
2009-01-01
Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat absorption (3.3 ± 1.24 W·m−2·10 yr−1) than that associated with increases in vegetation. Through quantifying feedbacks associated with changes in vegetation and those associated with changes in the snow season length, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the climate system.
Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change
NASA Astrophysics Data System (ADS)
Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.
2011-12-01
Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these vegetation types is projected to increase to 808 MMtC. Our results indicate that future C storage in Arizona is highly dependent on precipitation. Given that most climate models for the Southwest predict a more arid future, it is likely that C storage will decrease in Arizona ecosystems, as it has in response to recent droughts, reducing mitigation of rising human emissions.
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2013-11-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2014-04-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.
Using plant traits to evaluate the resistance and resilience of ecosystem service provision
NASA Astrophysics Data System (ADS)
Kohler, Marina; Devaux, Caroline; Fontana, Veronika; Grigulis, Karl; Lavorel, Sandra; Leitinger, Georg; Schirpke, Uta; Tasser, Erich; Tappeiner, Ulrike
2015-04-01
Mountain grassland ecosystems are a hotspot of biodiversity and deliver a multiplicity of ecosystem services. Due to a long history of well adapted agricultural use and specific environmental conditions (e.g. slope, altitude, or climate), various types of grassland ecosystems have developed. Each of them shows specific attributes in forms of plant communities and abiotic characteristics, which lead to particular ranges of ecosystem service provision. However, ongoing climate and societal changes thread plant community composition and may lead to changes in plant traits, and therefore, the provision of ecosystem services. Currently it is not clear how vulnerable these ecosystems are to disturbances, or whether they have developed a high resilience over time. Thus, it is essential to know the ranges of resistance and resilience of an ecosystem service. We, therefore, developed a static approach based on community weighted mean plant traits and abiotic parameters to measure the boundaries of resistance and resilience of each ecosystem service separately. By calculating actual minimum and maximum amounts of ecosystem services, we define the range of resistance of an ecosystem service. We then calculate the potential amount of an ecosystem services (via simulated plant communities) by assuming that no species is lost or added to the system. By comparing actual and potential values, we can estimate whether an ecosystem service is in danger to lose its resilience. We selected different ecosystem services related to mountain grassland ecosystems, e.g. carbon storage, forage quality, forage quantity, and soil fertility. We analysed each ecosystem service for different grassland management types, covering meadows and pastures of very low land-use intensity through to grasslands of high land-use intensity. Results indicate that certain ecosystem services have a higher resilience than others (e.g. carbon storage) for all management types. The ecosystem may provide steady amounts of ecosystem services also in future when facing environmental or societal disturbances. In contrary, other services are very depending on actual conditions and are, therefore, less stable (e.g. forage quantity). When comparing ranges of resistance and resilience, the actual amount lies very close to the boundaries of the potential provision. This gives us a hint that the ecosystem service is in danger to lose its resilience and amount of ecosystem service provision when facing disturbances in future.
Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.
2016-01-01
Ecohydrological responses to climate change will exhibit spatial variability and understanding the spatial pattern of ecological impacts is critical from a land management perspective. To quantify climate change impacts on spatial patterns of ecohydrology across shrub steppe ecosystems in North America, we asked the following question: How will climate change impacts on ecohydrology differ in magnitude and variability across climatic gradients, among three big sagebrush ecosystems (SB-Shrubland, SB-Steppe, SB-Montane), and among Sage-grouse Management Zones? We explored these potential changes for mid-century for RCP8.5 using a process-based water balance model (SOILWAT) for 898 big sagebrush sites using site- and scenario-specific inputs. We summarize changes in available soil water (ASW) and dry days, as these ecohydrological variables may be helpful in guiding land management decisions about where to geographically concentrate climate change mitigation and adaptation resources. Our results suggest that during spring, soils will be wetter in the future across the western United States, while soils will be drier in the summer. The magnitude of those predictions differed depending on geographic position and the ecosystem in question: Larger increases in mean daily spring ASW were expected for high-elevation SB-Montane sites and the eastern and central portions of our study area. The largest decreases in mean daily summer ASW were projected for warm, dry, mid-elevation SB-Montane sites in the central and west-central portions of our study area (decreases of up to 50%). Consistent with declining summer ASW, the number of dry days was projected to increase rangewide, but particularly for SB-Montane and SB-Steppe sites in the eastern and northern regions. Collectively, these results suggest that most sites will be drier in the future during the summer, but changes were especially large for mid- to high-elevation sites in the northern half of our study area. Drier summer conditions in high-elevation, SB-Montane sites may result in increased habitat suitability for big sagebrush, while those same changes will likely reduce habitat suitability for drier ecosystems. Our work has important implications for where land managers should prioritize resources for the conservation of North American shrub steppe plant communities and the species that depend on them.
NASA Astrophysics Data System (ADS)
Celi, J. E.; Hamilton, S. K.
2013-12-01
Scientific understanding of neotropical floodplains comes mainly from work on large rivers with predictable seasonal flooding regimes. Less studied rivers and floodplains on the Andean-Amazon interface are distinct in their hydrology, with more erratic flow regimes, and thus ecological roles of floodplain inundation differ in those ecosystems. Multiple and unpredictable flooding events control inundation of floodplains, with important implications for fish and wildlife, plant communities, and human activities. Wetlands along the river corridor exist across a continuum from strong river control to influence only by local waters, with the latter often lying on floodplain paleoterraces. The goal of this study was to understand the hydrological interactions and habitat diversity of the Napo River, a major Amazon tributary that originates in the Andes and drains exceptionally biodiverse Andean foreland plains. This river system is envisioned by developers as an industrial waterway that would require hydrological alterations and affect floodplain ecosystems. Water level regimes of the Napo River and its associated environments were assessed using networks of data loggers that recorded time under water across transects extending inland from the river across more than 100 sites and for up to 5 years. These networks also included rising stage samplers that collected flood water samples for determination of their origin (i.e., Andean rivers vs. local waters) based on hydrochemical composition. In addition, this work entails a classification of aquatic environments of the Napo Basin using an object-oriented remote sensing approach to simultaneously analyze optical and radar satellite imagery and digital elevation models to better assess the extent and diversity of flooded environments. We found out a continuum of hydrological regimes and aquatic habitats along the Napo River floodplains that are linked to the river hydrology in different degrees. Overall, environments that are proximal or that have high hydrological connectivity are riverine controlled versus systems that are distal or that have less or no connectivity that rely on rainwater or local runoff as a source of flooding. Outcomes of this research gave us insight on the extent and diversity of aquatic habitats of the Napo River, the role that the river has on their ecohydrology, the potential effects of different hydrologic scenarios on these ecosystems, and the management measures that need to be considered to support conservation in the region.
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Ewers, B. E.; Peckham, S. D.; Savoy, P.; Reed, D. E.; Frank, J. M.
2013-12-01
Widespread epidemics of forest-damaging insects have severe implications for the interconnections between water and ecosystem processes under present-day climate. How these systems respond to future climates is highly uncertain, and so there is a need for a better understanding of the effects of such disturbances on plant hydraulics, and the consequent effects on ecosystem processes. Moreover, large-scale manifestations of such disturbances require scaling knowledge obtained from individual trees or stands up to a regional extent. This requires a conceptual framework that integrates physical and biological processes that are immutable and scalable. Indeed, in Western North America multiple conifer species have been impacted by the bark beetle epidemic, but the prediction of such widespread outbreaks under changing environmental conditions must be generalized from a relatively small number of ground-based observations. Using model-data fusion we examine the fundamental principles that drive ecological and hydrological responses to bark beetles infestation from individuals to regions. The study includes a mid-elevation (2750 m a.s.l) lodgepole pine forest and higher (3190 m a.s.l.) elevation Engelmann spruce - fir forest in southern Wyoming. The study included a suite of observations, comprising leaf gas exchange, non-structural carbon (NSC), plant hydraulics, including sap flux transpiration (E), vulnerability to cavitation, leaf water potentials, and eddy covariance, were made pre-, during-, and post-disturbance, as the bark beetle infestation moved through these areas. Numerous observations tested hypotheses generated by the Terrestrial Regional Ecosystem Exchange Simulator (TREES), which integrates soil hydraulics and dynamic tree hydraulics (cavitation) with canopy energy and gas exchange, and operates at scales from individuals to landscapes. TREES accurately predicted E and NSC dynamics among individuals spanning pre- and post-disturbance periods, with the 95% prediction bounds of the model capturing 95% of observations. Based on support from our model-data fusion we advance a conceptual framework, grounded on the idea of plant hydraulic traits shifting from equilibrium to non-equilibrium states between soil and vegetation, with some traits that forms a key interconnection between water and ecosystem responses to bark beetle disturbance shifting back to equilibrium within five years. Implications of future climate conditions are then examined using our conceptual framework, by exploring the water and carbon responses to insect outbreaks with and without co-occurring drought and heat stress.
Zi, Tan; Schmidt, Michelle; Johnson, Thomas E.; Nover, Daniel M.; Clark, Christopher M.
2017-01-01
A warming climate increases thermal inputs to lakes with potential implications for water quality and aquatic ecosystems. In a previous study, we used a dynamic water column temperature and mixing simulation model to simulate chronic (7-day average) maximum temperatures under a range of potential future climate projections at selected sites representative of different U.S. regions. Here, to extend results to lakes where dynamic models have not been developed, we apply a novel machine learning approach that uses Gaussian Process regression to describe the model response surface as a function of simplified lake characteristics (depth, surface area, water clarity) and climate forcing (winter and summer air temperatures and potential evapotranspiration). We use this approach to extrapolate predictions from the simulation model to the statistical sample of U.S. lakes in the National Lakes Assessment (NLA) database. Results provide a national-scale scoping assessment of the potential thermal risk to lake water quality and ecosystems across the U.S. We suggest a small fraction of lakes will experience less risk of summer thermal stress events due to changes in stratification and mixing dynamics, but most will experience increases. The percentage of lakes in the NLA with simulated 7-day average maximum water temperatures in excess of 30°C is projected to increase from less than 2% to approximately 22% by the end of the 21st century, which could significantly reduce the number of lakes that can support cold water fisheries. Site-specific analysis of the full range of factors that influence thermal profiles in individual lakes is needed to develop appropriate adaptation strategies. PMID:29121058
Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan
2016-05-01
Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m(-2). Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m(-2) and about 99.4% of the mercury resides in soil layers (0-40 cm). The remaining 0.6% (0.50 mg m(-2)) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g(-1), respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. Copyright © 2016 Elsevier Ltd. All rights reserved.
Early detection of ecosystem regime shifts: a multiple method evaluation for management application.
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.
Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P.; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A.; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change. PMID:22808007
Wei, Xiaohua; Blanco, Juan A.
2014-01-01
Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha−1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr−1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products with longer life spans. PMID:24586964
Gröger, Joachim P; Hinrichsen, Hans-Harald; Polte, Patrick
2014-01-01
Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea.
Listopad, Claudia M C S; Köbel, Melanie; Príncipe, Adriana; Gonçalves, Paula; Branquinho, Cristina
2018-01-01
Climate change and increasing socio-economic pressure is placing many ecosystems of high ecological and economic value at risk. This is particularly urgent in dryland ecosystems, such as the montado, a multifunctional savannah-like system heavily modeled by grazing. There is still an ongoing debate about the trade-offs between livestock grazing and the potential for ecosystem regeneration. While it is consensual that overgrazing hinders the development of the shrubs and trees in this system, the effects of undergrazing or grazing exclusion are unclear. This study provides the unique opportunity to study the impact of grazing on compositional and structural biodiversity by examining the ecological chronosequence in a long-term ecological research site, located in Portugal, where grazing exclusion was controlled for over 15years. As the threat of intensification persists, even in areas where climate shifts are evident, there is a critical need to understand if and how the montado might recover by removing grazing pressure. We evaluate succession on structural and compositional diversity after grazing pressure is removed from the landscape at 5, 10, and 15years post-cattle exclusion and contrast it with currently grazed plots. A LiDAR-derived structural diversity index (LHDI), a surrogate of ecosystem structure and function first developed for the pine-grassland woodland systems, is used to quantify the impact of grazing exclusion on structure and natural regeneration. The distribution of the vegetation, particularly those of the herbaceous and shrub strata (>10≤150cm), presents statistically significant changes. The LHDI closely mimics the compositional biodiversity of the shrubs, with an increase in diversity with increased years without grazing. Under present climate conditions, both shrub regeneration and the establishment of tree saplings were strongly promoted by grazing exclusion, which has important management implications for the long-term sustainability of montado systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas
2015-01-01
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2) day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models. © 2014 John Wiley & Sons Ltd.
Wardle, David A; Jonsson, Micael; Kalela-Brundin, Maarit; Lagerström, Anna; Bardgett, Richard D; Yeates, Gregor W; Nilsson, Marie-Charlotte
2012-03-01
Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes.
Gröger, Joachim P.; Hinrichsen, Hans-Harald; Polte, Patrick
2014-01-01
Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea. PMID:24586279
McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.
2012-01-01
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.
NASA Astrophysics Data System (ADS)
Plaza, C.; Schuur, E.; Maestre, F. T.
2015-12-01
Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com
Climate change: potential implications for Ireland's biodiversity
NASA Astrophysics Data System (ADS)
Donnelly, Alison
2018-03-01
A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.
Climate change: potential implications for Ireland's biodiversity.
Donnelly, Alison
2018-03-12
A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.
Barlow, Jos; Peres, Carlos A
2004-01-01
Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process. PMID:15212091
Ocean acidification compromises a planktic calcifier with implications for global carbon cycling.
Davis, Catherine V; Rivest, Emily B; Hill, Tessa M; Gaylord, Brian; Russell, Ann D; Sanford, Eric
2017-05-22
Anthropogenically-forced changes in ocean chemistry at both the global and regional scale have the potential to negatively impact calcifying plankton, which play a key role in ecosystem functioning and marine carbon cycling. We cultured a globally important calcifying marine plankter (the foraminifer, Globigerina bulloides) under an ecologically relevant range of seawater pH (7.5 to 8.3 total scale). Multiple metrics of calcification and physiological performance varied with pH. At pH > 8.0, increased calcification occurred without a concomitant rise in respiration rates. However, as pH declined from 8.0 to 7.5, calcification and oxygen consumption both decreased, suggesting a reduced ability to precipitate shell material accompanied by metabolic depression. Repair of spines, important for both buoyancy and feeding, was also reduced at pH < 7.7. The dependence of calcification, respiration, and spine repair on seawater pH suggests that foraminifera will likely be challenged by future ocean conditions. Furthermore, the nature of these effects has the potential to actuate changes in vertical transport of organic and inorganic carbon, perturbing feedbacks to regional and global marine carbon cycling. The biological impacts of seawater pH have additional, important implications for the use of foraminifera as paleoceanographic indicators.
Caffrey, J.M.; Cloern, J.E.; Grenz, C.
1998-01-01
We present results of an intensive sampling program designed to measure weekly changes in ecosystem respiration (oxygen consumption in the water column and sediments) around the 1996 spring bloom in South San Francisco Bay, California, USA. Measurements were made at a shallow site (2 m, where mean photic depth was 60% of the water column height) and a deep site (15 m, mean photic depth was only 20% of the water column). We also estimated phytoplankton primary production weekly at both sites to develop estimates of net oxygen flux as the sum of pelagic production (PP), pelagic respiration (PR) and benthic respiration (BR). Over the 14 wk period from February 5 to May 14, PP ranged from 2 to 210, PR from 9 to 289, and BR from 0.1 to 48 mmol O2 m-2 d-1, illustrating large variability of estuarine oxygen fluxes at the weekly time scale. Pelagic production exceeded total respiration at the shallow site, but not at the deep site, demonstrating that the shallow domains are net autotrophic but the deep domains are net heterotrophic, even during the period of the spring bloom. If we take into account the potential primary production by benthic microalgae, the estuary as a whole is net autotrophic during spring, net heterotrophic during the nonbloom seasons, and has a balanced net metabolism over a full annual period. The seasonal shift from net autotrophy to heterotrophy during the transition from spring to summer was accompanied by a large shift from dominance by pelagic respiration to dominance by benthic respiration. This suggests that changes in net ecosystem metabolism can reflect changes in the pathways of energy flow in shallow coastal ecosystems.
NASA Astrophysics Data System (ADS)
Inkoom, J. N.; Fürst, C.
2014-12-01
The relationship between agricultural land uses (ALU) and their impact on ecosystems services (ES) including biodiversity conservation is complex. This complexity has been augmented by isolated research on the impact of ALU on the landscape's capacity to provide ES in most climatically vulnerable areas of Sub-Saharan Africa. Though a considerable number of studies emphasise the nexus between specific land use types and their impact on ES, a sufficient modelling basis for an empirical consideration of spatial interactions between different agricultural land uses at the landscape scale within peri-urban areas in Sub-Saharan Africa is consistently missing. The need to assess and address significant issues regarding size, shape, spatial location, and interactivity of different land use patches in assessing land use interactions and their impact on ecosystem service provision necessitated this investigation. To formulate a methodology to correspond to this complexity, ES obtained from a characteristically agricultural and urbanizing landscapes were mapped using analytical hierarchical processes and management expert approaches. Further, landscape metrics and mean enrichment factor approaches are explored as neighbourhood assessment tools aimed at assessing the mutual impact gradient of agricultural and adjacent urban land uses on ES provision. Implementation is undertaken in GISCAME using a 2012 rapideye image classification and primary data collected on selected ES from local farmers within the VEA catchment of Upper East, Ghana. The outcome aims to provide the understanding of expected trade-offs and synergies varying ALU could pose to current and potential ES provision within urbanizing landscapes. Policy implications for observed trade-offs and synergies of ALU interaction on ES, rural livelihoods, and food security are communicated to farmers and decision makers. Keywords: Agricultural land use, neighbourhood interaction, ecosystems services, livelihoods, GISCAME.
He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.
2014-01-01
The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.
Vaudo, Jeremy J.; Heithaus, Michael R.
2013-01-01
Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers – juvenile giant shovelnose rays (Glaucostegus typus), reticulate whiprays (Himantura uarnak), and pink whiprays (H. fai) – in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season) suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics. PMID:23593501
Prey use by dingoes in a contested landscape: Ecosystem service provider or biodiversity threat?
Morrant, Damian S; Wurster, Christopher M; Johnson, Christopher N; Butler, James R A; Congdon, Bradley C
2017-11-01
In Australia, dingoes ( Canis lupus dingo ) have been implicated in the decline and extinction of a number of vertebrate species. The lowland Wet Tropics of Queensland, Australia is a biologically rich area with many species of rainforest-restricted vertebrates that could be threatened by dingoes; however, the ecological impacts of dingoes in this region are poorly understood. We determined the potential threat posed by dingoes to native vertebrates in the lowland Wet Tropics using dingo scat/stomach content and stable isotope analyses of hair from dingoes and potential prey species. Common mammals dominated dingo diets. We found no evidence of predation on threatened taxa or rainforest specialists within our study areas. The most significant prey species were northern brown bandicoots ( Isoodon macrourus ), canefield rats ( Rattus sordidus ), and agile wallabies ( Macropus agilis ). All are common species associated with relatively open grass/woodland habitats. Stable isotope analysis suggested that prey species sourced their nutrients primarily from open habitats and that prey choice, as identified by scat/stomach analysis alone, was a poor indicator of primary foraging habitats. In general, we find that prey use by dingoes in the lowland Wet Tropics does not pose a major threat to native and/or threatened fauna, including rainforest specialists. In fact, our results suggest that dingo predation on "pest" species may represent an important ecological service that outweighs potential biodiversity threats. A more targeted approach to managing wild canids is needed if the ecosystem services they provide in these contested landscapes are to be maintained, while simultaneously avoiding negative conservation or economic impacts.
Dust outpaces bedrock in nutrient supply to montane forest ecosystems
Aciego, S. M.; Riebe, C. S.; Hart, S. C.; Blakowski, M. A.; Carey, C. J.; Aarons, S. M.; Dove, N. C.; Botthoff, J. K.; Sims, K. W. W.; Aronson, E. L.
2017-01-01
Dust provides ecosystem-sustaining nutrients to landscapes underlain by intensively weathered soils. Here we show that dust may also be crucial in montane forest ecosystems, dominating nutrient budgets despite continuous replacement of depleted soils with fresh bedrock via erosion. Strontium and neodymium isotopes in modern dust show that Asian sources contribute 18–45% of dust deposition across our Sierra Nevada, California study sites. The remaining dust originates regionally from the nearby Central Valley. Measured dust fluxes are greater than or equal to modern erosional outputs from hillslopes to channels, and account for 10–20% of estimated millennial-average inputs of bedrock P. Our results demonstrate that exogenic dust can drive the evolution of nutrient budgets in montane ecosystems, with implications for predicting forest response to changes in climate and land use. PMID:28348371
Van Riper, Carena J; Kyle, Gerard T
2014-12-01
Two related approaches to valuing nature have been advanced in past research including the study of ecosystem services and psychological investigations of the factors that shape behavior. Stronger integration of the insights that emerge from these two lines of enquiry can more effectively sustain ecosystems, economies, and human well-being. Drawing on survey data collected from outdoor recreationists on Santa Cruz Island within Channel Islands National Park, U.S., our study blends these two research approaches to examine a range of tangible and intangible values of ecosystem services provided to stakeholders with differing biocentric and anthropocentric worldviews. We used Public Participation Geographic Information System methods to collect survey data and a Social Values for Ecosystem Services mapping application to spatially analyze a range of values assigned to terrestrial and aquatic ecosystems in the park. Our results showed that preferences for the provision of biological diversity, recreation, and scientific-based values of ecosystem services varied across a spatial gradient. We also observed differences that emerged from a comparison between survey subgroups defined by their worldviews. The implications emanating from this investigation aim to support environmental management decision-making in the context of protected areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dam-Induced Sediment Starvation in Deltas: Implications for the Mekong
NASA Astrophysics Data System (ADS)
Kondolf, G. M.; Rubin, Z.; Minear, J. T.
2014-12-01
As the climate warms, especially rapid responses are being seen in the Arctic. Melting ice and thawing soils have wide ranging impacts including changes to ecosystems. What that means depends, in no small measure, on your understanding of—and relationship—to the ecosystems as evidenced by the currencies in which you measure ecosystem change. Thus, an ecologist will tend to focus on the impacts on energy flow and organizational complexity; conservationists on ecosystem services and biodiversity; and subsistence hunters on food security and cultural identity. Policy makers (a poorly defined group) will attempt to integrate all of the above within the very real limits of their fluency with each currency. The situation is further complicated by unavoidable ambiguities; abiotic and biotic influences can be difficult to distinguish, scale impacts ecosystem response unevenly, and ecosystems are useful concepts but not amenable to precise boundaries. As the risks of climate change become more evident, the cost of ambiguities and disparate currencies increases. It is imperative that scientists, conservationists, subsistence hunters, and policy makers appreciate and overcome their different ways of understanding environmental change.
Abele, D; Vazquez, S; Buma, A G J; Hernandez, E; Quiroga, C; Held, C; Frickenhaus, S; Harms, L; Lopez, J L; Helmke, E; Mac Cormack, W P
2017-06-01
Molecular technologies are more frequently applied in Antarctic ecosystem research and the growing amount of sequence-based information available in databases adds a new dimension to understanding the response of Antarctic organisms and communities to environmental change. We apply molecular techniques, including fingerprinting, and amplicon and metagenome sequencing, to understand biodiversity and phylogeography to resolve adaptive processes in an Antarctic coastal ecosystem from microbial to macrobenthic organisms and communities. Interpretation of the molecular data is not only achieved by their combination with classical methods (pigment analyses or microscopy), but furthermore by combining molecular with environmental data (e.g., sediment characteristics, biogeochemistry or oceanography) in space and over time. The studies form part of a long-term ecosystem investigation in Potter Cove on King-George Island, Antarctica, in which we follow the effects of rapid retreat of the local glacier on the cove ecosystem. We formulate and encourage new approaches to integrate molecular tools into Antarctic ecosystem research, environmental conservation actions, and polar ocean observatories. Copyright © 2017 Elsevier B.V. All rights reserved.
Soil fauna, soil properties and geo-ecosystem functioning
NASA Astrophysics Data System (ADS)
Cammeraat, L. H.
2012-04-01
The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.
Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana.
Bukowski, Alexandra R; Petermann, Jana S
2014-06-01
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant-soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant-soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity-productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant-soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant-soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.
Intraspecific plant–soil feedback and intraspecific overyielding in Arabidopsis thaliana
Bukowski, Alexandra R; Petermann, Jana S
2014-01-01
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning. PMID:25360284
U.S. Global Climate Change Impacts Report, Overview of Sectors
NASA Astrophysics Data System (ADS)
Wuebbles, D.
2009-12-01
The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in the climate system and ecosystems. These thresholds determine, for example, the presence of sea ice and permafrost, and the survival of species, from fish to insect pests, with implications for society. With further climate change, the crossing of additional thresholds is expected. These and many other findings will be discussed in the presentation.
Burrowing inhibition by fine textured beach fill: Implications for recovery of beach ecosystems
NASA Astrophysics Data System (ADS)
Viola, Sloane M.; Hubbard, David M.; Dugan, Jenifer E.; Schooler, Nicholas K.
2014-10-01
Beach nourishment is often considered the most environmentally sound method of maintaining eroding shorelines. However, the ecological consequences are poorly understood. Fill activities cause intense disturbance and high mortality and have the potential to alter the diversity, abundance, and distribution of intertidal macroinvertebrates for months to years. Ecological recovery following fill activities depends on successful recolonization and recruitment of the entire sandy intertidal community. The use of incompatible sediments as fill material can strongly affect ecosystem recovery. We hypothesized that burrowing inhibition of intertidal animals by incompatible fine fill sediments contributes to ecological impacts and limits recovery in beach ecosystems. We experimentally investigated the influence of intertidal zone and burrowing mode on responses of beach invertebrates to altered sediment texture (28-38% fines), and ultimately the potential for colonization and recovery of beaches disturbed by beach filling. Using experimental trials in fill material and natural beach sand, we found that the mismatched fine fill sediments significantly inhibited burrowing of characteristic species from all intertidal zones, including sand crabs, clams, polychaetes, isopods, and talitrid amphipods. Burrowing performance of all five species we tested was consistently reduced in the fill material and burrowing was completely inhibited for several species. The threshold for burrowing inhibition by fine sediment content in middle and lower beach macroinvertebrates varied by species, with highest sensitivity for the polychaete (4% fines, below the USA regulatory limit of 10% fines), followed by sand crabs and clams (20% fines). These results suggest broader investigation of thresholds for burrowing inhibition in fine fill material is needed for beach animals. Burrowing inhibition caused by mismatched fill sediments exposes beach macroinvertebrates to stresses, which could depress recruitment and survival at all intertidal zones. Our results suggest use of incompatible fine fill sediments from dredging projects creates unsuitable intertidal habitat that excludes burrowing macroinvertebrates and could delay beach ecosystem recovery. Through effects on beach invertebrates that are prey for shorebirds and fish, the ecological impacts of filling with mismatched fine sediments could influence higher trophic levels and extend beyond the beach itself.
Local disease–ecosystem–livelihood dynamics: reflections from comparative case studies in Africa
Bett, Bernard; Said, M.; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M.; Grant, Donald S.; Koninga, James
2017-01-01
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584171
Great Lakes rivermouth ecosystems: scientific synthesis and management implications
Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.
2013-01-01
At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.
Inman, Arpana G; Altman, Abby; Kaduvettoor-Davidson, Anju; Carr, Amanda; Walker, Jessica A
2011-06-01
The purpose of this study was to examine the "lived experience" of Asian Indian (AI)-White couples in interracial marriages. Ten highly educated AI-White professional couples were individually interviewed about their subjective experience of being in an interracial marriage, the challenges and strengths of this marriage, and the potential role of culture in their marriages. Data were analyzed using the Consensual Qualitative Research methodology. Results indicated that the couples' marital experiences were influenced by a complex intersection of ecosystemic factors with significant psychological impacts. These findings highlight shortcomings in drawing simplistic conclusions regarding the success or failure of an interracial marriage and have important implications for theory, research, and clinical practice. 2011 © FPI, Inc.
Urban aerosols harbor diverse and dynamic bacterial populations
Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.
2007-01-01
Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744
Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds.
Wurzbacher, Christian; Nilsson, R Henrik; Rautio, Milla; Peura, Sari
2017-08-01
In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial succession across a gradient of recently emerged to older ponds using three molecular markers: one universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community. Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their microbes, with potential implications for carbon and nutrient cycling in this increasingly important class of freshwaters.
NASA Astrophysics Data System (ADS)
Melton, F.; Barker, C.; Park, B.; Reisen, W.; Michaelis, A.; Wang, W.; Hashimoto, H.; Milesi, C.; Hiatt, S.; Nemani, R.
2008-12-01
The NASA Terrestrial Observation and Prediction System (TOPS) is a modeling framework that integrates satellite observations, meteorological observations, and ancillary data to support monitoring and modeling of ecosystem and land surface conditions in near real-time. TOPS provides spatially continuous gridded estimates of a suite of measurements describing environmental conditions, and these data products are currently being applied to support the development of new models capable of forecasting estimated mosquito abundance and transmission risk for mosquito-borne diseases such as West Nile virus. We present results from the modeling analyses, describe their incorporation into the California Vectorborne Disease Surveillance System, and describe possible implications of projected climate and land use change for patterns in mosquito abundance and transmission risk for West Nile virus in California.
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869
Beaumont, N J; Austen, M C; Atkins, J P; Burdon, D; Degraer, S; Dentinho, T P; Derous, S; Holm, P; Horton, T; van Ierland, E; Marboe, A H; Starkey, D J; Townsend, M; Zarzycki, T
2007-03-01
This paper identifies and defines ecosystem goods and services provided by marine biodiversity. Case studies have been used to provide an insight into the practical issues associated with the assessment of marine ecosystem goods and services at specific locations. The aim of this research was to validate the definitions of goods and services, and to identify knowledge gaps and likely difficulties of quantifying the goods and services. A validated theoretical framework for the assessment of goods and services is detailed, and examples of the goods and services at a variety of case study areas are documented. These results will enable future assessments of marine ecosystem goods and services. It is concluded that the utilisation of this goods and services approach has the capacity to play a fundamental role in the Ecosystem Approach, by enabling the pressures and demands of society, the economy and the environment to be integrated into environmental management.
Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets.
Cahoon, Sean M P; Sullivan, Patrick F; Shaver, Gaius R; Welker, Jeffrey M; Post, Eric; Holyoak, Marcel
2012-12-01
Arctic and Boreal terrestrial ecosystems are important components of the climate system because they contain vast amounts of soil carbon (C). Evidence suggests that deciduous shrubs are increasing in abundance, but the implications for ecosystem C budgets remain uncertain. Using midsummer CO(2) flux data from 21 sites spanning 16° of latitude in the Arctic and Boreal biomes, we show that air temperature explains c. one-half of the variation in ecosystem respiration (ER) and that ER drives the pattern in net ecosystem CO(2) exchange across ecosystems. Woody sites were slightly stronger C sinks compared with herbaceous communities. However, woody sites with warm soils (> 10 °C) were net sources of CO(2) , whereas woody sites with cold soils (< 10 °C) were strong sinks. Our results indicate that transition to a shrub-dominated Arctic will increase the rate of C cycling, and may lead to net C loss if soil temperatures rise. © 2012 Blackwell Publishing Ltd/CNRS.
Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems
NASA Technical Reports Server (NTRS)
Vandyke, H.; Worrest, R. C.
1976-01-01
Data was provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation was established. The sensitivity of key community components (the primary producers) to increased UV-B radiation was delineated.
Economic valuation of ecosystem services: discussion and application.
Lazo, Jeffrey K
2002-11-01
Ecosystems provide a wide range of services that improve human welfare. Changes in ecosystems imply potential changes in the generation of these ecosystem services and thus changes in welfare. In the lingo of economists, these welfare changes are measured as changes in economic values--increases in welfare being benefits and decreases in welfare being costs. For instance, individuals may benefit from, and thus value, reductions in risks to endangered species. Yet values for many changes in ecosystem services are not captured in market transactions, and thus measuring these values requires nonmarket valuation methods. This paper discusses ecosystem services and values from the viewpoint of an economist, explains what is meant by the valuation of ecosystems, and provides an overview of methods for valuation of ecosystem services. An example is presented from a recent natural resource damage assessment--the Green Bay total value equivalency study. Resources in the Lower Fox River and Green Bay in Wisconsin have been injured by polychlorinated biphenyl contamination from numerous paper mills along the river over several decades. The Green Bay study examines individuals' preferences and values for reducing ecosystem risks and improving ecosystem services and how these values are related to individuals' awareness of and use of ecosystem services in the area. The study uses methods from nonmarket valuation to scale potential restoration projects.
Implications of climate and land use change: Chapter 4
Hall, Jefferson S.; Murgueitio, Enrique; Calle, Zoraida; Raudsepp-Hearne, Ciara; Stallard, Robert F.; Balvanera, Patricia; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella
2015-01-01
This chapter relates ecosystem services to climate change and land use. The bulk of the chapter focuses on ecosystem services and steepland land use in the humid Neotropics – what is lost with land-cover changed, and what is gained with various types of restoration that are sustainable given private ownership. Many case studies are presented later in the white paper. The USGS contribution relates to climate change and the role of extreme weather events in land-use planning.
Dalu, Tatenda; Wasserman, Ryan J; Dalu, Mwazvita T B
2017-03-01
Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition. © 2016 John Wiley & Sons Ltd.
River turbidity and sediment loads during dam removal
Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.
2012-01-01
Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.
Gu, Yingxin; Boyte, Stephen P.; Wylie, Bruce K.; Tieszen, Larry L.
2012-01-01
This study dynamically monitors ecosystem performance (EP) to identify grasslands potentially suitable for cellulosic feedstock crops (e.g., switchgrass) within the Greater Platte River Basin (GPRB). We computed grassland site potential and EP anomalies using 9-year (2000–2008) time series of 250 m expedited moderate resolution imaging spectroradiometer Normalized Difference Vegetation Index data, geophysical and biophysical data, weather and climate data, and EP models. We hypothesize that areas with fairly consistent high grassland productivity (i.e., high grassland site potential) in fair to good range condition (i.e., persistent ecosystem overperformance or normal performance, indicating a lack of severe ecological disturbance) are potentially suitable for cellulosic feedstock crop development. Unproductive (i.e., low grassland site potential) or degraded grasslands (i.e., persistent ecosystem underperformance with poor range condition) are not appropriate for cellulosic feedstock development. Grassland pixels with high or moderate ecosystem site potential and with more than 7 years ecosystem normal performance or overperformance during 2000–2008 are identified as possible regions for future cellulosic feedstock crop development (ca. 68 000 km2 within the GPRB, mostly in the eastern areas). Long-term climate conditions, elevation, soil organic carbon, and yearly seasonal precipitation and temperature are important performance variables to determine the suitable areas in this study. The final map delineating the suitable areas within the GPRB provides a new monitoring and modeling approach that can contribute to decision support tools to help land managers and decision makers make optimal land use decisions regarding cellulosic feedstock crop development and sustainability.
Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks
Karn, Barbara; Kuiken, Todd; Otto, Martha
2009-01-01
Objective Although industrial sectors involving semiconductors; memory and storage technologies; display, optical, and photonic technologies; energy; biotechnology; and health care produce the most products that contain nanomaterials, nanotechnology is also used as an environmental technology to protect the environment through pollution prevention, treatment, and cleanup. In this review, we focus on environmental cleanup and provide a background and overview of current practice; research findings; societal issues; potential environment, health, and safety implications; and future directions for nanoremediation. We do not present an exhaustive review of chemistry/engineering methods of the technology but rather an introduction and summary of the applications of nanotechnology in remediation. We also discuss nanoscale zerovalent iron in detail. Data sources We searched the Web of Science for research studies and accessed recent publicly available reports from the U.S. Environmental Protection Agency and other agencies and organizations that addressed the applications and implications associated with nanoremediation techniques. We also conducted personal interviews with practitioners about specific site remediations. Data synthesis We aggregated information from 45 sites, a representative portion of the total projects under way, to show nanomaterials used, types of pollutants addressed, and organizations responsible for each site. Conclusions Nanoremediation has the potential not only to reduce the overall costs of cleaning up large-scale contaminated sites but also to reduce cleanup time, eliminate the need for treatment and disposal of contaminated soil, and reduce some contaminant concentrations to near zero—all in situ. Proper evaluation of nanoremediation, particularly full-scale ecosystem-wide studies, needs to be conducted to prevent any potential adverse environmental impacts. PMID:20049198
Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.
2015-01-01
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.
Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.
2015-01-01
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal. PMID:26417074
Hisano, Masumi; Searle, Eric B; Chen, Han Y H
2018-02-01
Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.
Is browning a trigger for dominance of harmful cyanobacteria species in lakes?
NASA Astrophysics Data System (ADS)
Freeman, E. C.; Creed, I. F.
2017-12-01
"Browning" is the increase of dissolved organic matter (DOM) loads into aquatic ecosystems. It is typified by an increase in the color of surface waters as well as an increase in iron (Fe) concentrations. Browning, has been observed in boreal and temperate lakes of the northern hemisphere. This phenomena has implications for freshwater ecosystems by shifting microbial community compositions, influencing the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the anabolic food web. We hypothesize that browning of lake waters will increase the dominance of particular species of cyanobacteria with adaptations to lower light, mixotrophic tendencies, and specialized Fe-uptake mechanisms. Here, we present results from a high resolution real-time monitoring campaign of an Ontario lake during the growing season where the toxin-producing cyanobacteria Plantothrix Isothrix is the dominant species. We observe the changes in phytoplankton composition, Fe concentrations, and DOM. These observations are paired with a series of controlled in-lake bottle bioassay experiments that test the role of Fe in controlling the growth of Planktothix Isothrix. In a three-way factorial design, with additions of the macronutrients phosphorus and nitrogen, we explore the effects of Fe removal and addition on the phytoplankton community composition. Understanding the interaction between the effects of browning and toxin-producing phytoplankton gives insight into the dominance of cyanobacteria in a browner world, and the potential risks to aquatic ecosystems and the services they provide.
Ecosystem services provided by agricultural terraces in semi-arid climates.
NASA Astrophysics Data System (ADS)
Romero-Díaz, Asunción; Díaz-Pereira, Elvira; Boix-Fayos, Carolina; de Vente, Joris
2016-04-01
Since ancient times, agricultural terraces are common features throughout the world, especially on steep slope gradients. Nowadays many terraces have been abandoned or removed and few new terraces are build due to increased mechanisation and intensification of agriculture. However, terraces are amongst the most effective soil conservation practices, reducing the slope gradient and slope length, as well as runoff rate and soil erosion, and without terraces, it would be impossible to cultivate on many hillslopes. Moreover, their scenic interest is undeniable, as in some cases, terraced slopes have even become part of UNESCO World Heritage. In order to highlight the potential benefits, requirements and limitations of terraces, we reviewed different types of sustainable land management practices related to terraces and characterised their implications for provisioning, regulating, supporting, and cultural ecosystem services. We centred our review on terraces in semi-arid environments worldwide, as were documented in the WOCAT (World Overview of Conservation Approaches and Technologies) database. Our results show that the most important ecosystem services provided by terraces relate to regulation of the on-site and off-site effects of runoff and erosion, and maintenance of soil fertility and vegetation cover. The presence of terraces also favours the provision of food, fiber, and clean water. In short, our results stress the crucial environmental, geomorphological and hydrological functions of terraces that directly relate to improving the quality of life of the people that use them. These results highlight the need for renewed recognition of the value of terraces for society, their preservation and maintenance.
NASA Astrophysics Data System (ADS)
Chen, Yizhao; Ju, Weimin; Groisman, Pavel; Li, Jianlong; Propastin, Pavel; Xu, Xia; Zhou, Wei; Ruan, Honghua
2017-11-01
The temperate Eurasian steppe (TES) is a region where various environmental, social, and economic stresses converge. Multiple types of disturbance exist widely across the landscape, and heavily influence carbon cycling in this region. However, a current quantitative assessment of the impact of disturbances on carbon sequestration is largely lacking. In this study, we combined the boreal ecosystem productivity simulator (BEPS), the Shiyomi grazing model, and the global fire model (Glob-FIRM) to investigate the impact of the two major types of disturbance in the TES (i.e. domestic grazing and fire) on regional carbon sequestration. Model performance was validated using satellite data and field observations. Model outputs indicate that disturbance has a significant impact on carbon sequestration at a regional scale. The annual total carbon lost due to disturbances was 7.8 TgC yr-1, accounting for 14.2% of the total net ecosystem productivity (NEP). Domestic grazing plays the dominant role in terrestrial carbon consumption, accounting for 95% of the total carbon lost from the two disturbances. Carbon losses from both disturbances significantly increased from 1999 to 2008 (R 2 = 0.82, P < 0.001 for grazing, R 2 = 0.51, P < 0.05 for fire). Heavy domestic grazing in relatively barren grasslands substantially reduced carbon sequestration, particularly in the grasslands of Turkmenistan, Uzbekistan, and the far southwest of Inner Mongolia. This spatially-explicit information has potential implications for sustainable management of carbon sequestration in the vast grassland ecosystems.
NASA Astrophysics Data System (ADS)
Muguerza, N.; Díez, I.; Quintano, E.; Bustamante, M.; Gorostiaga, J. M.
2017-12-01
This study assesses changes in the taxonomic and functional structure and in the diversity of the shallow (3-9 m) subtidal vegetation off the southeastern coast of the Bay of Biscay by studying 19 locations between 1991 and 2013. Results provide evidence that the three-dimensional assemblages of shallow subtidal bottoms in the study area may be shifting towards less structurally complex communities. Canopy-forming algae are declining whereas simple thallus turfs composed of a combination of filamentous, polysiphonated and foliose non-corticated algae are becoming abundant along with articulated corallines and crustose species. Moreover, a significant increase in taxa richness and diversity was found, mainly due to the development of opportunistic and morphologically simple forms with warm-water affinity. The potential ecological consequences of canopy loss for coastal ecosystems are discussed. Given that changes in climate conditions are predicted to intensify, the prevalence of the new turfing space occupiers in the study area here considered seems to be realistic on the basis of their ability to compete for space and resist disturbance. Consequently, major implications for the functioning and diversity of the ecosystem and for ecosystem services may be expected. bJ. rubens and J. Longifurca. cM. alternans and M. expansum. dP. harveyana and P. squamaria. eP. cartilagineum and P. raphelisianum. fP. ardreana, P. parasitica and P. pennata. gU. dangeardii, U. pseudocurvata and U. rigida.
Education for Sustainability: An Ecological Approach.
ERIC Educational Resources Information Center
Companion, Marc
2002-01-01
Describes the ecological design in water purification, indoor climate regulation, and repairing polluted bodies of water. Discusses the implications of ecosystems in the classroom in which students study concepts such as homeostasis and self-regulation. (YDS)
ROLE OF CONTROLLABILITY FOR LONG TERM SUSTAINABILITY
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and nonintuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic unde...
NASA Astrophysics Data System (ADS)
Sukojo, B. M.; Hidayat, H.; Ratnasari, D.
2017-12-01
Indonesia is a vast maritime country; many mangrove conservations is found around coastal areas of Indonesia. Mangroves support the life of a large number of animal species by providing breeding, spawning and feeding. Mangrove forests as one of the unique ecosystems are potential natural resources, supporting the diversity of flora and fauna of terrestrial aquatic communities that directly or indirectly play an important role for human life in economic, social and environmental terms. East Coast Surabaya is an area with the most extensive and diverse mangrove ecosystems along the coast of Surabaya. Currently Pamurbaya used as a recreational object or nature tourism called eco tours. Utilization of mangrove ecosystem as a place of this eco tour bring positive impact on economic potency around pamurbaya area. So, to know the value of the economic potential of mangrove ecosystems for support of nature tourism Pamurbaya region needs to study mapping mangrove ecosystem conditions in the East Coast area of Surabaya. Mapping of mangrove conditions can use remote sensing technology by utilizing satellite image data with high resolution. Data used for mapping mangrove ecosystem conditions on the east coast of Surabaya are high resolution satellite image data of Pleiades 1A and field observation data such as Ground Control Point, soil spectral parameters and water quality. From satellite image data will be classification of mangrove vegetation canopy classification using NDVI vegetation index method using algorithm formula which then will be tested correlation with field observation data on reflectant value of field and water quality parameter. The purpose of this research is to know the condition of mangrove ecosystem to know the economic potential of mangrove ecosystem in supporting Pamurbaya nature tourism. The expected result of this research is the existence of basic geospatial information in the form of mangrove ecosystem condition map. So that can be used as decision makers to find out how big economic potential of mangrove ecosystem in supporting nature tourism Pamurbaya beside that can be used as reference research related mapping, conservation and development of mangrove ecosystem.
The Millennium Ecosystem Assessment produced a compelling synthesis of the global value of ecosystem services to human well-being. While the MEA was a critical, initial step to demonstrate the potential for assessing global trends in ecosystem services, it is important to note th...
Rupert Seidl; Thomas A. Spies; David L. Peterson; Scott L. Stephens; Jeffrey A. Hicke
2015-01-01
Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resiliencebased stewardship is advocated to address these changes in ecosystem management,...
Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F
2016-08-01
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.
Global Carbon Reservoir Oxidative Ratios
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Gallagher, M. E.; Hockaday, W. C.
2010-12-01
Photosynthesis and respiration move carbon and oxygen between the atmosphere and the biosphere at a ratio that is characteristic of the biogeochemical processes involved. This ratio is called the oxidative ratio (OR) of photosynthesis and respiration, and is defined as the ratio of moles of O2 per moles of CO2. This O2/CO2 ratio is a characteristic of biosphere-atmosphere gas fluxes, much like the 13C signature of CO2 transferred between the biosphere and the atmosphere has a characteristic signature. OR values vary on a scale of 0 (CO2) to 2 (CH4), with most ecosystem values clustered between 0.9 and 1.2. Just as 13C can be measured for both carbon fluxes and carbon pools, OR can also be measured for fluxes and pools and can provide information about the processes involved in carbon and oxygen cycling. OR values also provide information about reservoir organic geochemistry because pool OR values are proportional to the oxidation state of carbon (Cox) in the reservoir. OR may prove to be a particularly valuable biogeochemical tracer because of its ability to couple information about ecosystem gas fluxes with ecosystem organic geochemistry. We have developed 3 methods to measure the OR of ecosystem carbon reservoirs and intercalibrated them to assure that they yield accurate, intercomparable data. Using these tools we have built a large enough database of biomass and soil OR values that it is now possible to consider the implications of global patterns in ecosystem OR values. Here we present a map of the natural range in ecosystem OR values and begin to consider its implications. One striking pattern is an apparent offset between soil and biospheric OR values: soil OR values are frequently higher than that of their source biomass. We discuss this trend in the context of soil organic geochemistry and gas fluxes.
Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.
Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E
2011-09-01
The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.
Cumming, Graeme S; Allen, Craig R
2017-09-01
Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice. © 2017 by the Ecological Society of America.
Cumming, Graeme S.; Allen, Craig R.
2017-01-01
Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice.
Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; de Vos, Willem M.
2017-01-01
Abstract High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss key concepts of the human intestinal microbiome landscape, i.e. the compositional and functional ‘core’, the presence of community types and the existence of alternative stable states. Genomic investigation of core taxa revealed functional redundancy, which is expected to stabilize the ecosystem, as well as taxa with specialized functions that have the potential to shape the microbiome landscape. The contrast between Prevotella- and Bacteroides-dominated systems has been well described. However, less known is the effect of not so abundant bacteria, for example, Dialister spp. that have been proposed to exhibit distinct bistable dynamics. Studies employing time-series analysis have highlighted the dynamical variation in the microbiome landscape with and without the effect of defined perturbations, such as the use of antibiotics or dietary changes. We incorporate ecosystem-level observations of the human intestinal microbiota and its keystone species to suggest avenues for designing microbiome modulation strategies to improve host health. PMID:28364729
Bacteria beneath the West Antarctic ice sheet.
Lanoil, Brian; Skidmore, Mark; Priscu, John C; Han, Sukkyun; Foo, Wilson; Vogel, Stefan W; Tulaczyk, Slawek; Engelhardt, Hermann
2009-03-01
Subglacial environments, particularly those that lie beneath polar ice sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb Ice Stream, West Antarctic Ice Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic Ice Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the extent of wet sediments beneath the Antarctic ice sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.
Ruiz-González, Clara; Simó, Rafel; Sommaruga, Ruben; Gasol, Josep M.
2013-01-01
Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change. PMID:23734148
Tillitt, Donald E.; Kraft, Clifford E.; Honeyfield, Dale C.; Fitzsimons, John D.
2012-01-01
In a recent assessment of hypotheses presented by Balk et al. (2009) regarding the etiology of a paralytic disease inflicting bird populations in Northern Europe, Sonne et al. (2012) “call for a major coordinated effort on research…” to “… integrate clinical, physiological, ecological and demographic investigations at all levels to better dissect the causes, the effects on ecosystems and potential impact on affected populations.” Further, they offer, “This should be undertaken before thiamine deficiency can be considered to constitute a serious problem to e.g. the Baltic ecosystems.” While we agree that holistic approaches to environmental research and management are essential, our experience suggests that waiting for definitive results from long-term research and monitoring programs prior to “consideration” of thiamine deficiency as a major factor in the paralytic disease observed in wild bird populations would hinder the ability of natural resource managers to understand and mitigate declining trends in avian population abundance.
NASA Astrophysics Data System (ADS)
Sánchez, Alberto; Ortiz-Hernández, Ma. Concepción; Talavera-Sáenz, Ana; Aguíñiga-García, Sergio
2013-12-01
Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of tourism development (Nichupte Lagoon in Cancun) and decreased toward Bahia Akumal and Tulum. The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos. In areas of the lowest development and with tourist activity restricted, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were relatively enriched compared to Mahahual and Puerto Morelos. Therefore, Puerto Morelos and Mahahual may be used for baseline isotopic monitoring where tourist activities are growing and can lead to environmental pressure on the reef lagoon ecosystem. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.
Stoichiometry of ferns in Hawaii: implications for nutrient cycling.
Amatangelo, Kathryn L; Vitousek, Peter M
2008-10-01
We asked if element concentrations in ferns differ systematically from those in woody dicots in ways that could influence ecosystem properties and processes. Phylogenetically, ferns are deeply separated from angiosperms; for our analyses we additionally separated leptosporangiate ferns into polypod ferns, a monophyletic clade of ferns which radiated after the rise of angiosperms, and all other leptosporangiate (non-polypod) ferns. We sampled both non-polypod and polypod ferns on a natural fertility gradient and within fertilized and unfertilized plots in Hawaii, and compared our data with shrub and tree samples collected previously in the same plots. Non-polypod ferns in particular had low Ca concentrations under all conditions and less plasticity in their N and P stoichiometry than did polypod ferns or dicots. Polypod ferns were particularly rich in N and P, with low N:P ratios, and their stoichiometry varied substantially in response to differences in nutrient availability. Distinguishing between these two groups has the potential to be useful both in and out of Hawaii, as they have distinct properties which can affect ecosystem function. These differences could contribute to the widespread abundance of polypod ferns in an angiosperm-dominated world, and to patterns of nutrient cycling and limitation in sites where ferns are abundant.
Qin, Yu; Yi, Shuhua
2013-01-01
Accurately estimating daily mean ecosystem respiration rate (Re) is important for understanding how ecosystem carbon budgets will respond to climate change. Usually, daily mean Re is represented by measurement using static chamber on alpine meadow ecosystems from 9:00 to 11:00 h a.m. local time directly. In the present study, however, we found that the calculated daily mean Re from 9:00 to 11:00 h a.m. local time was significantly higher than that from 0:00 to 23:30 h local time in an alpine meadow site, which might be caused by special climate condition on the Qinghai-Tibetan Plateau. Our results indicated that the calculated daily mean Re from 9:00 to 11:00 h a.m. local time cannot be used to represent daily mean Re directly.
Ecosystem responses to biogeochemical fronts in the South Brazil Bight
NASA Astrophysics Data System (ADS)
Brandini, Frederico P.; Tura, Pedro M.; Santos, Pedro P. G. M.
2018-05-01
Here we described the general hydrography in the South Brazil Bight (23-28°S) with emphasis on frontal processes and their role in the structure and functioning of the regional shelf ecosystem. One of the key roles of fronts for ecosystem dynamics is the injection of nutrients into the euphotic zone increasing primary production. Frontal systems also affect plankton biodiversity and fisheries. Physical mechanisms behind frontogenesis in this region are similar in the analogous western side of oceanic basins; their magnitude and seasonal dynamics, however, may differ due to peculiarities in shelf morphology, wind field, tidal circulation and continental drainage. Here we provide a reassessment of earlier and recent ecological and hydrographic studies for a better evaluation of the spatial and temporal dynamics of fronts and their regional ecological implications. Albeit in a fragmented manner, we give a more detailed conceptual framework about the ecosystem responses to the complex frontal system in the South Brazil Bight.
Parasites as drivers of key processes in aquatic ecosystems: Facts and future directions.
Sures, B; Nachev, M; Pahl, M; Grabner, D; Selbach, C
2017-09-01
Despite the advances in our understanding of the ecological importance of parasites that we have made in recent years, we are still far away from having a complete picture of the ecological implications connected to parasitism. In the present paper we highlight key issues that illustrate (1) important contributions of parasites to biodiversity, (2) their integral role in ecosystems, (3) as well as their ecological effects as keystone species (4) and in biological invasion processes. By using selected examples from aquatic ecosystems we want to provide an insight and generate interest into the topic, and want to show directions for future research in the field of ecological parasitology. This may help to convince more parasitologists and ecologists contributing and advancing our understanding of the complex and fascinating interplay of parasites, hosts and ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.
Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.
Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans
2015-05-01
Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.
Incorporating ecosystem services into environmental management of deep-seabed mining
NASA Astrophysics Data System (ADS)
Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.
2017-03-01
Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services concepts in deep-seabed mining regulation and propose potential tools to fill them.
Controllability of complex networks for sustainable system dynamics
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often non-linear and non-intuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic un...
Informatics Enabled Behavioral Medicine in Oncology
Hesse, Bradford W.; Suls, Jerry M.
2011-01-01
For the practicing physician, the behavioral implications of preventing, diagnosing, and treating cancer are many and varied. Fortunately, an enhanced capacity in informatics may help create a redesigned ecosystem in which applying evidence-based principles from behavioral medicine will become a routine part of care. Innovation to support this evolution will be spurred by the “meaningful use” criteria stipulated by the Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, and by focused research and development efforts within the broader health information ecosystem. The implications for how to better integrate evidence-based principles in behavioral medicine into oncology care through both spheres of development are discussed within the framework of the cancer control continuum. The promise of using the data collected through these tools to accelerate discovery in psycho-oncology is also discussed. If nurtured appropriately, these developments should help accelerate successes against cancer by altering the behavioral milieu. PMID:21799329
Socio-ecological implications of modifying rotation lengths in forestry.
Roberge, Jean-Michel; Laudon, Hjalmar; Björkman, Christer; Ranius, Thomas; Sandström, Camilla; Felton, Adam; Sténs, Anna; Nordin, Annika; Granström, Anders; Widemo, Fredrik; Bergh, Johan; Sonesson, Johan; Stenlid, Jan; Lundmark, Tomas
2016-02-01
The rotation length is a key component of even-aged forest management systems. Using Fennoscandian forestry as a case, we review the socio-ecological implications of modifying rotation lengths relative to current practice by evaluating effects on a range of ecosystem services and on biodiversity conservation. The effects of shortening rotations on provisioning services are expected to be mostly negative to neutral (e.g. production of wood, bilberries, reindeer forage), while those of extending rotations would be more varied. Shortening rotations may help limit damage by some of today's major damaging agents (e.g. root rot, cambium-feeding insects), but may also increase other damage types (e.g. regeneration pests) and impede climate mitigation. Supporting (water, soil nutrients) and cultural (aesthetics, cultural heritage) ecosystem services would generally be affected negatively by shortened rotations and positively by extended rotations, as would most biodiversity indicators. Several effect modifiers, such as changes to thinning regimes, could alter these patterns.
Invasive aquarium fish transform ecosystem nutrient dynamics
Capps, Krista A.; Flecker, Alexander S.
2013-01-01
Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642
Thrush, Simon F; Hewitt, Judi E; Parkes, Samantha; Lohrer, Andrew M; Pilditch, Conrad; Woodin, Sarah A; Wethey, David S; Chiantore, Mariachiara; Asnaghi, Valentina; De Juan, Silvia; Kraan, Casper; Rodil, Ivan; Savage, Candida; Van Colen, Carl
2014-06-01
Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.
A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals
Valery E. Forbes; Chris J. Salice; Bjorn Birnir; Randy J.F. Bruins; Peter Calow; Virginie Ducrot; Nika Galic; Kristina Garber; Bret C. Harvey; Henriette Jager; Andrew Kanarek; Robert Pastorok; Steve F. Railsback; Richard Rebarber; Pernille Thorbek
2017-01-01
Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem...
Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources
Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, Willliam K.
2016-01-01
In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen.
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.
2017-12-01
Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.
Climate change can alter predator-prey dynamics and population viability of prey.
Bastille-Rousseau, Guillaume; Schaefer, James A; Peers, Michael J L; Ellington, E Hance; Mumma, Matthew A; Rayl, Nathaniel D; Mahoney, Shane P; Murray, Dennis L
2018-01-01
For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.
Barber, Larry B.; Keefe, Steffanie H.; Brown, Greg K.; Furlong, Edward T.; Gray, James L.; Kolpin, Dana W.; Meyer, Michael T.; Sandstrom, Mark W.; Zaugg, Steven D.
2013-01-01
Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L–1) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L–1), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.
Business strategies for conservation on private lands: Koa forestry as a case study
Goldstein, Joshua H.; Daily, Gretchen C.; Friday, James B.; Matson, Pamela A.; Naylor, Rosamond L.; Vitousek, Peter
2006-01-01
Innovative financial instruments are being created to reward conservation on private, working lands. Major design challenges remain, however, to make investments in biodiversity and ecosystem services economically attractive and commonplace. From a business perspective, three key financial barriers for advancing conservation land uses must frequently be addressed: high up-front costs, long time periods with no revenue, and high project risk due to long time horizons and uncertainty. We explored ways of overcoming these barriers on grazing lands in Hawaii by realizing a suite of timber and conservation revenue streams associated with their (partial) reforestation. We calculated the financial implications of alternative strategies, focusing on Acacia koa (“koa”) forestry because of its high conservation and economic potential. Koa’s timber value alone creates a viable investment (mean net present value = $453/acre), but its long time horizon and poor initial cash flow pose formidable challenges for landowners. At present, subsidy payments from a government conservation program targeting benefits for biodiversity, water quality, and soil erosion have the greatest potential to move landowners beyond the tipping point in favor of investments in koa forestry, particularly when combined with future timber harvest (mean net present value = $1,661/acre). Creating financial mechanisms to capture diverse ecosystem service values through time will broaden opportunities for conservation land uses. Governments, nongovernmental organizations, and private investors have roles to play in catalyzing this transition by developing new revenue streams that can reach a broad spectrum of landowners. PMID:16782816
Modeling carbon-nutrient interactions during the early recovery of tundra after fire.
Jiang, Yueyang; Rastetter, Edward B; Rocha, Adrian V; Pearce, Andrea R; Kwiatkowski, Bonnie L; Shaver, Gaius R
2015-09-01
Fire frequency has dramatically increased in the tundra of northern Alaska, USA, which has major implications for the carbon budget of the region and the functioning of these ecosystems, which support important wildlife species. We investigated the postfire succession of plant and soil carbon (C), nitrogen (N), and phosphorus (P) fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River fire scar in northern Alaska. Modeling results indicated that the early regrowth of postfire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability, because of the initially low leaf area and relatively high inorganic N and P concentrations in soil. Our simulations indicated that the postfire recovery of tundra vegetation was sustained predominantly by the uptake of residual inorganic N (i.e., in the remaining ash), and the redistribution of N and P from soil organic matter to vegetation. Although residual nutrients in ash were higher in the severe burn than the moderate burn, the moderate burn recovered faster because of the higher remaining biomass and consequent photosynthetic potential. Residual nutrients in ash allowed both burn sites to recover and exceed the unburned site in both aboveground biomass and production five years after the fire. The investigation of interactions among postfire C, N, and P cycles has contributed to a mechanistic understanding of the response of tundra ecosystems to fire disturbance. Our study provided insight on how the trajectory of recovery of tundra from wildfire is regulated during early succession.
Business strategies for conservation on private lands: Koa forestry as a case study.
Goldstein, Joshua H; Daily, Gretchen C; Friday, James B; Matson, Pamela A; Naylor, Rosamond L; Vitousek, Peter
2006-06-27
Innovative financial instruments are being created to reward conservation on private, working lands. Major design challenges remain, however, to make investments in biodiversity and ecosystem services economically attractive and commonplace. From a business perspective, three key financial barriers for advancing conservation land uses must frequently be addressed: high up-front costs, long time periods with no revenue, and high project risk due to long time horizons and uncertainty. We explored ways of overcoming these barriers on grazing lands in Hawaii by realizing a suite of timber and conservation revenue streams associated with their (partial) reforestation. We calculated the financial implications of alternative strategies, focusing on Acacia koa ("koa") forestry because of its high conservation and economic potential. Koa's timber value alone creates a viable investment (mean net present value = $453/acre), but its long time horizon and poor initial cash flow pose formidable challenges for landowners. At present, subsidy payments from a government conservation program targeting benefits for biodiversity, water quality, and soil erosion have the greatest potential to move landowners beyond the tipping point in favor of investments in koa forestry, particularly when combined with future timber harvest (mean net present value = $1,661/acre). Creating financial mechanisms to capture diverse ecosystem service values through time will broaden opportunities for conservation land uses. Governments, nongovernmental organizations, and private investors have roles to play in catalyzing this transition by developing new revenue streams that can reach a broad spectrum of landowners.
NASA Astrophysics Data System (ADS)
Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.
2017-12-01
Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.
Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels
Watson, Sue-Ann; Lefevre, Sjannie; McCormick, Mark I.; Domenici, Paolo; Nilsson, Göran E.; Munday, Philip L.
2014-01-01
Ocean acidification poses a range of threats to marine invertebrates; however, the potential effects of rising carbon dioxide (CO2) on marine invertebrate behaviour are largely unknown. Marine gastropod conch snails have a modified foot and operculum allowing them to leap backwards rapidly when faced with a predator, such as a venomous cone shell. Here, we show that projected near-future seawater CO2 levels (961 µatm) impair this escape behaviour during a predator–prey interaction. Elevated-CO2 halved the number of snails that jumped from the predator, increased their latency to jump and altered their escape trajectory. Physical ability to jump was not affected by elevated-CO2 indicating instead that decision-making was impaired. Antipredator behaviour was fully restored by treatment with gabazine, a GABA antagonist of some invertebrate nervous systems, indicating potential interference of neurotransmitter receptor function by elevated-CO2, as previously observed in marine fishes. Altered behaviour of marine invertebrates at projected future CO2 levels could have potentially far-reaching implications for marine ecosystems. PMID:24225456
Vanderduys, Eric Peter; Reside, April E.; Grice, Anthony; Rechetelo, Juliana
2016-01-01
Where threatened biodiversity is adversely affected by development, policies often state that "no net loss" should be the goal and biodiversity offsetting is one mechanism available to achieve this. However, developments are often approved on an ad hoc basis and cumulative impacts are not sufficiently examined. We demonstrate the potential for serious threat to an endangered subspecies when multiple developments are planned. We modelled the distribution of the black-throated finch (Poephila cincta cincta) using bioclimatic data and Queensland's Regional Ecosystem classification. We overlaid granted, extant extractive and exploratory mining tenures within the known and modelled ranges of black-throated finches to examine the level of incipient threat to this subspecies in central Queensland, Australia. Our models indicate that more than half of the remaining P. cincta cincta habitat is currently under extractive or exploratory tenure. Therefore, insufficient habitat exists to offset all potential development so "no net loss" is not possible. This has implications for future conservation of this and similarly distributed species and for resource development planning, especially the use of legislated offsets for biodiversity protection. PMID:26934622
Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5
Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty
2013-01-01
Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.
NASA Astrophysics Data System (ADS)
Monson, R. K.; Scott-Denton, L. E.; Lipson, D. A.; Weintrub, M. N.; Rosenstiel, T. N.; Schmidt, S. K.; Williams, M. W.; Burns, S. P.; Delany, A. E.; Turnipseed, A. A.
2005-12-01
Studies were conducted at the Niwot Ridge Ameriflux site to understand wintertime soil carbon cycling and its control over ecosystem respiration. Wintertime respiration in this ecosystem results in the loss of 60-90% of the carbon assimilated the previous growing season. Thus, an understanding of the controls over winter carbon cycling is required to understand controls over the annual carbon budget. Trees were girdled to prevent the transport of photosynthates to the rhizosphere. In plots with non-girdled trees a large mid-winter pulse of sucrose was observed to enter the soil. In plots with girdled trees, no sucrose pulse was observed. Trees of this ecosystem are not photosynthetically active during the winter, leading us to conclude that the sucrose pulse is due to the death of fine roots that had accumulated sucrose the previous autumn. The sucrose pulse is potentially utilized by a novel winter community of microbes. Using DNA fingerprinting we discovered that the dominant isolates from the winter soils were from Jathinobacter, whereas the summer isolates were from Burkholderia. The winter community was capable of high rates of respiration and exponential growth at low temperatures, whereas the summer community was not. Our winter observations also indicated high activity of N-acetyl-C-glucosaminidase, one of the principal enzymes involved in chitin degradation. The presence of such high chitinase activities implicates decomposing fungal biomass as a principle source of CO2 beneath the snow pack. Using a novel in situ, beneath-snow CO2 measurement system, we observed unprecedented Q10 values for winter respiration, being 98 and 8.44 x 104 for the soil next to tree boles or within the open spaces between trees, respectively. These high Q10 values are likely the result of fractional changes in the availability of liquid water below 0°C and responses of microbial biomass to changes in the liquid water fraction. Using six-years of eddy covariance data, we showed that interannual variation in winter ecosystem respiration is positively correlated to interannual variation in the spring snow depth. Years with a with a deeper spring snow pack exhibited higher soil temperatures, and concomitantly higher soil respiration rates. Given the recently reported decadal-scale trend in decreasing snow pack in the Western U.S., which is coupled to warm climate anomalies, our observations indicate the potential for higher wintertime soil carbon sequestration due to lower winter ecosystem respiration rates in subalpine forests. Our studies of processes beneath the winter snow pack demonstrate that contrary to previous assumptions, winter biogeochemical processing of soil organic matter is an important component of ecosystem carbon budgets. Despite low temperatures and an inactive plant rhizosphere, winter microbial communities and exoenzymes appear to be active, carbon substrates appear to be in relatively high abundance and soil respiration rates appear to be sensitive to seasonal and interannual winter climate variability.
Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem
Hensel, Marc J. S.; Silliman, Brian R.
2013-01-01
The global biodiversity crisis impairs the valuable benefits ecosystems provide humans. These nature-generated benefits are defined by a multitude of different ecosystem functions that operate simultaneously. Although several studies have simulated species loss in communities and tracked the response of single functions such as productivity or nutrient cycling, these studies have involved relatively similar taxa, and seldom are strikingly different functions examined. With the exception of highly managed ecosystems such as agricultural fields, rarely are we interested in only one function being performed well. Instead, we rely on ecosystems to deliver several different functions at the same time. Here, we experimentally investigated the extinction impacts of dominant consumers in a salt marsh. These consumers are remarkably phylogenetically diverse, spanning two kingdoms (i.e., Animalia and Fungi). Our field studies reveal that a diverse consumer assemblage significantly enhances simultaneous functioning of disparate ecosystem processes (i.e., productivity, decomposition, and infiltration). Extreme functional and phylogenetic differences among consumers underlie this relationship. Each marsh consumer affected at least one different ecosystem function, and each individual function was affected by no more than two consumers. The implications of these findings are profound: If we want ecosystems to perform many different functions well, it is not just number of species that matter. Rather, the presence of species representing markedly different ecologies and biology is also essential to maximizing multiple functions. Moreover, this work emphasizes the need to incorporate both microcomponents and macrocomponents of food webs to accurately predict biodiversity declines on integrated-ecosystem functioning. PMID:24297926
Indicators of ecosystem function identify alternate states in the sagebrush steppe.
Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E
2011-10-01
Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics for rangeland management. Our findings suggest that the IRH approximate ecosystem processes and can distinguish between alternate states and communities and identify transitions when building data-driven STMs. Functional indicators are a simple, efficient way to create data-driven models that are consistent with alternate state theory. Managers can use them to improve current model-building methods and thus apply state-and-transition models more broadly for land management decision-making.
Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling
NASA Astrophysics Data System (ADS)
Allison, S. D.; Treseder, K. K.
2005-12-01
One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in substrate utilization will also affect total carbon fluxes over longer time scales.
Tallis, Heather; Cole, Aaron; Schill, Steven; Martin, Erik; Heiner, Michael; Paiz, Marie-Claire; Aldous, Allison; Apse, Colin; Nickel, Barry
2017-01-01
Rapidly developing countries contain both the bulk of intact natural areas and biodiversity, and the greatest untapped natural resource stocks, placing them at the forefront of “green” economic development opportunities. However, most lack scientific tools to create development plans that account for biodiversity and ecosystem services, diminishing the real potential to be sustainable. Existing methods focus on biodiversity and carbon priority areas across large geographies (e.g., countries, states/provinces), leaving out essential services associated with water supplies, among others. These hydrologic ecosystem services (HES) are especially absent from methods applied at large geographies and in data-limited contexts. Here, we present a novel, spatially explicit, and relatively simple methodology to identify countrywide HES priority areas. We applied our methodology to the Gabonese Republic, a country undergoing a major economic transformation under a governmental commitment to balance conservation and development goals. We present the first national-scale maps of HES priority areas across Gabon for erosion control, nutrient retention, and groundwater recharge. Priority sub-watersheds covered 44% of the country’s extent. Only 3% of the country was identified as a priority area for all HES simultaneously, highlighting the need to conserve different areas for each different hydrologic service. While spatial tradeoffs occur amongst HES, we identified synergies with two other conservation values, given that 66% of HES priority areas intersect regions of above average area-weighted (by sub-watersheds) total forest carbon stocks and 38% intersect with terrestrial national parks. Considering implications for development, we identified HES priority areas overlapping current or proposed major roads, forestry concessions, and active mining concessions, highlighting the need for proactive planning for avoidance areas and compensatory offsets to mitigate potential conflicts. Collectively, our results provide insight into strategies to protect HES as part of Gabon’s development strategy, while providing a replicable methodology for application to new scales, geographies, and policy contexts. PMID:28594870
Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.
2013-01-01
For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through stream rechanneling or wetland construction in appropriate hydrologic settings.
Li, Baoqin; Li, Zhe; Sun, Xiaoxu; Wang, Qi; Xiao, Enzong; Sun, Weimin
2018-05-04
Autotrophs that inhabit soils receive less attention than their counterparts in other ecosystems, such as deep-sea and subsurface sediments, due to the low abundance of autotrophs in soils with high organic contents. However, the karst rocky desertification region is a unique ecosystem that may have a low level of organic compounds. Therefore, we propose that karst rocky desertification ecosystems may harbor diverse autotrophic microbial communities. In this study, DNA-SIP was employed to identify the chemolithoautotrophic bacteria inhabiting three soil types (i.e., grass, forest, and agriculture) of the karst rocky desertification ecosystems. The results indicated that potential chemolithoautotrophic population was observed in each soil type, even at different time points after amending 13 C-NaHCO 3 , confirming our hypothesis that diverse autotrophs contribute to the carbon cycle in karst soils. Bacteria, such as Ralstonia, Ochrobactrum, Brevibacterium, Acinetobacter, and Corynebacterium, demonstrated their potential to assimilate inorganic carbon and reduce nitrate or thiosulfate as electron acceptors. Putative mixotrophs were identified by DNA-SIP as well, suggesting the metabolic versatility of soil microbiota. A co-occurrence network further indicated that autotrophs and heterotrophs may form associated communities to sustain the ecosystem function. Our current study revealed the metabolic diversity of autotrophic bacteria in soil habitats and demonstrated the potentially important role of chemoautotrophs in karst rocky desertification ecosystems.
Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and non-intuitive relationships amongst different dimensions of sustainability, particularly the systemwide implications of human actions. This basic un...
Burnett, Ryan D.; Roberts, L. Jay
2015-01-01
Whether by design or default, single species management often serves as an umbrella for species with similar habitat requirements. In recent decades the focus of National Forest management in the Sierra Nevada of California has shifted towards increasing closed canopy mature forest conditions through the protection of areas occupied by the California Spotted Owl (Strix occidentalis occidentalis). To evaluate the implications of these habitat changes and the potential umbrella resulting from a system of owl reserves on the broader avian community, we estimated occupancy of birds inside and outside of Spotted Owl Home Range Core Areas in northeastern California. We used point count data in a multi-species hierarchical Bayesian model incorporating the detection history of 81 species over a two-year time period (2005-2006). A small set of vegetation cover and topography covariates were included in the model to account for broad differences in habitat conditions, as well as a term identifying whether or not a site was within a Core Area. Seventeen species had a negative Core Area effect, seven had a positive effect, and the rest were not significant. Estimated species richness was significantly different with 23.1 species per 100 m radius circle outside Core Areas and 21.7 inside Core Areas. The majority of the species negatively associated with Core Areas are tied to early successional and other disturbance-dependent habitats. Conservation and climate vulnerability rankings were mixed. On average we found higher scores (greater risk) for the species positively associated with Core Areas, but a larger number of species with the highest scores were negatively associated with Core Areas. We discuss the implications for managing the Sierra Nevada ecosystem and illustrate the role of monitoring broader suites of species in guiding management of large complex ecosystems. PMID:25905920
Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Huang, Chunlin; Lu, Xuehe; Jin, Jiaxin; Zhou, Guomo
2014-01-01
Satellite observations of carbon dioxide (CO2) are important because of their potential for improving the scientific understanding of global carbon cycle processes and budgets. We present an analysis of the column-averaged dry air mole fractions of CO2 (denoted XCO2) of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) retrievals, which were derived from a satellite instrument with relatively long-term records (2003–2009) and with measurements sensitive to the near surface. The spatial-temporal distributions of remotely sensed XCO2 have significant spatial heterogeneity with about 6–8% variations (367–397 ppm) during 2003–2009, challenging the traditional view that the spatial heterogeneity of atmospheric CO2 is not significant enough (2 and surface CO2 were found for major ecosystems, with the exception of tropical forest. In addition, when compared with a simulated terrestrial carbon uptake from the Integrated Biosphere Simulator (IBIS) and the Emissions Database for Global Atmospheric Research (EDGAR) carbon emission inventory, the latitudinal gradient of XCO2 seasonal amplitude was influenced by the combined effect of terrestrial carbon uptake, carbon emission, and atmospheric transport, suggesting no direct implications for terrestrial carbon sinks. From the investigation of the growth rate of XCO2 we found that the increase of CO2 concentration was dominated by temperature in the northern hemisphere (20–90°N) and by precipitation in the southern hemisphere (20–90°S), with the major contribution to global average occurring in the northern hemisphere. These findings indicated that the satellite measurements of atmospheric CO2 improve not only the estimations of atmospheric inversion, but also the understanding of the terrestrial ecosystem carbon dynamics and its feedback to atmospheric CO2.