Science.gov

Sample records for potential energy anomaly

  1. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  2. Insights on the Cuprate High Energy Anomaly Observed in ARPES

    SciTech Connect

    Moritz, Brian

    2011-08-16

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.

  3. The trace anomaly and dynamical vacuum energy in cosmology

    SciTech Connect

    Mottola, Emil

    2010-04-30

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.

  4. Locating gravitational potential energy

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2017-01-01

    Where does gravitational potential energy reside when a ball is in the air? The perfectly correct answer is that it is located in the ball-Earth system. Still, mechanical energy conservation problems are routinely solved by assigning a potential energy to the ball alone. Provided here is a proof that such an assignment introduces only an entirely undetectable error.

  5. Sensitivity of the International Skating Union's Mathematical Criteria to Flag Potential Scoring Anomalies

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Howell, Steven M.

    2015-01-01

    This article describes the "mathematical criteria" employed by the International Skating Union (ISU) to identify potential judging anomalies within competitive figure skating. The mathematical criteria have greater sensitivity to identify scoring anomalies for technical element scores than for the program component scores. This article…

  6. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  7. Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions

    SciTech Connect

    Dumidu Wijayasekara; Ondrej Linda; Milos Manic; Craig Rieger

    2014-08-01

    Building Energy Management Systems (BEMSs) are essential components of modern buildings that utilize digital control technologies to minimize energy consumption while maintaining high levels of occupant comfort. However, BEMSs can only achieve these energy savings when properly tuned and controlled. Since indoor environment is dependent on uncertain criteria such as weather, occupancy, and thermal state, performance of BEMS can be sub-optimal at times. Unfortunately, the complexity of BEMS control mechanism, the large amount of data available and inter-relations between the data can make identifying these sub-optimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD) based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm based BEMS. In six different scenarios, the Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more), that the alarm based BEMS. In addition, the Fuzzy-ADLD method identified cases that were missed by the alarm based system, demonstrating potential for increased state-awareness of abnormal building behavior.

  8. Spherical harmonic expansions of the Earth's gravitational potential to degree 360 using 30' mean anomalies

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Cruz, Jaime Y.

    1986-01-01

    Two potential coefficient fields that are complete to degree and order 360 have been computed. One field (OSU86E) excludes geophysically predicted anomalies while the other (OSU86F) includes such anomalies. These fields were computed using a set of 30' mean gravity anomalies derived from satellite altimetry in the ocean areas and from land measurements in North America, Europe, Australia, Japan and a few other areas. Where no 30' data existed, 1 deg x 1 deg mean anomaly estimates were used if available. No rigorous combination of satellite and terrestrial data was carried out. Instead advantage was taken of the adjusted anomalies and potential coefficients from a rigorous combination of the GEML2' potential coefficient set and 1 deg x 1 deg mean gravity anomalies. The two new fields were computed using a quadrature procedure with de-smoothing factors. The spectra of the new fields agree well with the spectra of the fields with 1 deg x 1 deg data out to degree 180. Above degree 180 the new fields have more power. The fields have been tested through comparison of Doppler station geoid undulations with undulations from various geopotential models. The agreement between the two types of undulations is approximately + or - 1.6 m. The use of a 360 field over a 180 field does not significantly improve the comparison. Instead it allows the comparison to be done at some stations where high frequency effects are important. In addition maps made in areas of high frequency information (such as trench areas) clearly reveal the signal in the new fields from degree 181 to 360.

  9. Addressing the Challenges of Anomaly Detection for Cyber Physical Energy Grid Systems

    SciTech Connect

    Ferragut, Erik M; Laska, Jason A; Melin, Alexander M; Czejdo, Bogdan

    2013-01-01

    The consolidation of cyber communications networks and physical control systems within the energy smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of anomalies and changes. However, anomaly detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, energy grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to anomaly detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to anomaly detection is adopted that allows for regulation of false alerts and comparison of anomalies across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of anomalies at multiple scales.

  10. Comment on 'Casimir energies: Temperature dependence, dispersion, and anomalies'

    SciTech Connect

    Ravndal, Finn

    2009-05-15

    It is pointed out that the Casimir energy in a medium can be obtained most directly from the zero-point energy of the electromagnetic field because of its reduced propagation velocity. This brings to the fore again the old problem related to how the principle of relativity is combined with the Maxwell field equations in a continuous medium.

  11. Rapid fluid disruption: A source for self-potential anomalies on volcanoes

    USGS Publications Warehouse

    Johnston, M.J.S.; Byerlee, J.D.; Lockner, D.

    2001-01-01

    Self-potential (SP) anomalies observed above suspected magma reservoirs, dikes, etc., on various volcanoes (Kilauea, Hawaii; Mount Unzen, Japan; Piton de la Fournaise, Reunion Island, Miyake Jima, Japan) result from transient surface electric fields of tens of millivolts per kilometer and generally have a positive polarity. These SP anomalies are usually attributed to electrokinetic effects where properties controlling this process are poorly constrained. We propose an alternate explanation that contributions to electric fields of correct polarity should be expected from charge generation by fluid vaporization/disruption. As liquids are vaporized or removed as droplets by gas transport away from hot dike intrusions, both charge generation and local increase in electrical resistivity by removal of fluids should occur. We report laboratory observations of electric fields in hot rock samples generated by pulses of fluid (water) through the rock at atmospheric pressure. These indicate the relative amplitudes of rapid fluid disruption (RFD) potentials and electrokinetic potentials to be dramatically different and the signals are opposite in sign. Above vaporization temperatures, RFD effects of positive sign in the direction of gas flow dominate, whereas below these temperatures, effects of negative sign dominate. This suggests that the primary contribution to observed self-potential anomalies arises from gas-related charge transport processes at temperatures high enough to produce vigorous boiling and vapor transport. At lower temperatures, the primary contribution is from electrokinetic effects modulated perhaps by changing electrical resistivity and RFD effects from high-pressure but low-temperature CO2 and SO2 gas flow ripping water molecules from saturated crustal rocks. If charge generation is continuous, as could well occur above a newly emplaced dike, positive static potentials will be set up that could be sustained for many years, and the simplest method for

  12. LHC Physics Potential versus Energy

    SciTech Connect

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  13. Stress tensor for a scalar field in a spatially varying background potential: Divergences, "renormalization", anomalies, and Casimir forces

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Fulling, Stephen A.; Parashar, Prachi; Kalauni, Pushpa; Murphy, Taylor

    2016-04-01

    Motivated by a desire to understand quantum fluctuation energy densities and stress within a spatially varying dielectric medium, we examine the vacuum expectation value for the stress tensor of a scalar field with arbitrary conformal parameter, in the background of a given potential that depends on only one spatial coordinate. We regulate the expressions by incorporating a temporal-spatial cutoff in the (imaginary) time and transverse-spatial directions. The divergences are captured by the zeroth- and second-order WKB approximations. Then the stress tensor is "renormalized" by omitting the terms that depend on the cutoff. The ambiguities that inevitably arise in this procedure are both duly noted and restricted by imposing certain physical conditions; one result is that the renormalized stress tensor exhibits the expected trace anomaly. The renormalized stress tensor exhibits no pressure anomaly, in that the principle of virtual work is satisfied for motions in a transverse direction. We then consider a potential that defines a wall, a one-dimensional potential that vanishes for z <0 and rises like zα, α >0 , for z >0 . Previously, the stress tensor had been computed outside of the wall, whereas now we compute all components of the stress tensor in the interior of the wall. The full finite stress tensor is computed numerically for the two cases where explicit solutions to the differential equation are available, α =1 and 2. The energy density exhibits an inverse linear divergence as the boundary is approached from the inside for a linear potential, and a logarithmic divergence for a quadratic potential. Finally, the interaction between two such walls is computed, and it is shown that the attractive Casimir pressure between the two walls also satisfies the principle of virtual work (i.e., the pressure equals the negative derivative of the energy with respect to the distance between the walls).

  14. Relativity, potential energy, and mass

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2016-11-01

    This paper is an exploration of the concept of energy, illuminated by the transformative insights of the special theory of relativity. Focusing on potential energy (PE), it will be shown that PE as presently defined is in conflict with the tenets of special relativity. Even though PE remains an indispensable theoretical device its actual physicality is questionable. Moreover its ontological status is quite different from that of both kinetic energy and mass, a significant point that is not widely appreciated. We will establish that PE is a theoretical concept as opposed to an empirical one; it is a descriptor of mass-energy without a detectable physical presence of its own. PE is a measure of energy stored, it is not the energy stored.

  15. Inferring regional surface mass anomalies from GRACE KBRR data by energy integral approach

    NASA Astrophysics Data System (ADS)

    Zhong, Bo; Luo, Zhicai; Li, Qiong; Zhou, Hao

    2016-04-01

    GRACE mission provides an effective technique to detect the mass redistribution through its effects on Earth gravity. Although the mass anomalies on the earth's surface inferred from the monthly average of the spherical harmonic coefficients has been largely successful, this approach has not revealed the submonthly time scale information and fundamental resolution of the GRACE observations. As the GRACE K-band range rate (KBRR) can reveal the local signature more sensitively, the regional recovered approach based on regional basic function is offered to recovery the local mass redistribution with submonthly and high spatial resolution. We established an approach to estimate regional surface mass anomalies by inverting GRACE-based potential difference anomalies at satellite altitude. Spatial constraints versus spherical distance between the mass concentrations are introduced to stabilize the linear system to eliminate the effects of the north-south striping. The efficiency of our approach has been validated using a closed-loop simulation study over South America. It is demonstrated that spatial constraints assist the solutions on reducing striping error inherent in the measurement configuration and temporal aliasing. Finally, time series of 10-day and 30-day regional surface mass anomalies over Tibet plateau also prove to be consistent with independent hydrological models. The time series of mass anomalies reveal the seasonal changes in the source area of three rivers and the accumulation in the north-east Gan-Qing block and Tibet block. Keywords: regional surface mass anomalies, GRACE KBRR, spatial constraints Acknowledgements: This research was jointly supported by the National 973 Program of China (No.2013CB733302), the National Natural Science Foundation of China (No.41474019, No.41131067,No. 41504014).

  16. Source depth estimation of self-potential anomalies by spectral methods

    NASA Astrophysics Data System (ADS)

    Di Maio, Rosa; Piegari, Ester; Rani, Payal

    2017-01-01

    Spectral analysis of the self-potential (SP) field for geometrically simple anomalous bodies is studied. In particular, three spectral techniques, i.e. Periodogram (PM), Multi Taper (MTM) and Maximum Entropy (MEM) methods, are proposed to derive the depth of the anomalous bodies. An extensive numerical analysis at varying the source parameters outlines that MEM is successful in determining the source depth with a percent error less than 5%. The application of the proposed spectral approach to the interpretation of field datasets has provided depth estimations of the SP anomaly sources in very good agreement with those obtained by other numerical methods.

  17. Assessment of Triton Potential Energy

    NASA Astrophysics Data System (ADS)

    Friar, J. L.; Payne, G. L.

    1995-12-01

    An assessment is made of the dominant features contributing to the triton potential energy, with the objective of understanding qualitatively their origins and sensitivities. Relativistic effects, short-range repulsion, and OPEP dominance are discussed. A determination of the importance of various regions of nucleon-nucleon separation is made numerically.

  18. Analysis of Potential Energy Surfaces.

    ERIC Educational Resources Information Center

    Fernandez, G. M.; And Others

    1988-01-01

    Introduces different methodological strategies in analyzing potential energy surfaces (PES) used in chemical reactivity studies. Discusses the theory of PES and gives examples to be used for student work. Provides procedures for calculating normal coordinates and vibrational properties of an activated complex. (ML)

  19. Energies of Screened Coulomb Potentials.

    ERIC Educational Resources Information Center

    Lai, C. S.

    1979-01-01

    This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)

  20. High-Energy Anomaly in the Band Dispersion of the Ruthenate Superconductor

    NASA Astrophysics Data System (ADS)

    Iwasawa, H.; Yoshida, Y.; Hase, I.; Shimada, K.; Namatame, H.; Taniguchi, M.; Aiura, Y.

    2012-08-01

    We reveal a “high-energy anomaly” (HEA) in the band dispersion of the unconventional ruthenate superconductor Sr2RuO4, by means of high-resolution angle-resolved photoemission spectroscopy (ARPES) with tunable energy and polarization of incident photons. This observation provides another class of correlated materials exhibiting this anomaly beyond high-Tc cuprates. We demonstrate that two distinct types of band renormalization associated with and without the HEA occur as a natural consequence of the energetics in the bandwidth and the energy scale of the HEA. Our results are well reproduced by a simple analytical form of the self-energy based on the Fermi-liquid theory, indicating that the HEA exists at a characteristic energy scale of the multielectron excitations. We propose that the HEA universally emerges if the systems have such a characteristic energy scale inside of the bandwidth.

  1. Interpretation of Self-Potential Anomalies Using Constitutive Relationships for Electrochemical and Thermoelectric Coupling Coefficients

    SciTech Connect

    Knapp, R. B.; Kasameyer, P. W.

    1988-01-01

    Constitutive relationships for electrochemical and thermoelectric cross-coupling coefficients are derived using ionic mobilities, applying a general derivative of chemical potential and employing the zero net current condition. The general derivative of chemical potential permits thermal variations which give rise to the thermoelectric effect. It also accounts for nonideal solution behavior. An equation describing electric field strength is similarly derived with the additional assumption of electrical neutrality in the fluid Planck approximation. The Planck approximation implies that self-potential (SP) is caused only by local sources and also that the electric field strength has only first order spatial variations. The derived relationships are applied to the NaCl-KCl concentration cell with predicted and measured voltages agreeing within 0.4 mV. The relationships are also applied to the Long Valley and Yellowstone geothermal systems. There is a high degree of correlation between predicted and measured SP response for both systems, giving supporting evidence for the validity of the approach. Predicted SP amplitude exceeds measured in both cases; this is a possible consequence of the Planck approximation. Electrochemical sources account for more than 90% of the predicted response in both cases while thermoelectric mechanisms account for the remaining 10%; electrokinetic effects are not considered. Predicted electrochemical and thermoelectric voltage coupling coefficients are comparable to values measured in the laboratory. The derived relationships are also applied to arbitrary distributions of temperature and fluid composition to investigate the geometric diversity of observed SP anomalies. Amplitudes predicted for hypothetical saline spring and hot spring environments are less than 40 mV. In contrast, hypothetical near surface steam zones generate very large amplitudes, over 2 V in one case. These results should be viewed with some caution due to the uncertain

  2. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  3. CryoSat Ice Processor: Known Processor Anomalies and Potential Future Product Evolutions

    NASA Astrophysics Data System (ADS)

    Mannan, R.; Webb, E.; Hall, A.; Bouffard, J.; Femenias, P.; Parrinello, T.; Bouffard, J.; Brockley, D.; Baker, S.; Scagliola, M.; Urien, S.

    2016-08-01

    Launched in 2010, CryoSat was designed to measure changes in polar sea ice thickness and ice sheet elevation. To reach this goal the CryoSat data products have to meet the highest performance standards and are subjected to a continual cycle of improvement achieved through upgrades to the Instrument Processing Facilities (IPFs). Following the switch to the Baseline-C Ice IPFs there are already planned evolutions for the next processing Baseline, based on recommendations from the Scientific Community, Expert Support Laboratory (ESL), Quality Control (QC) Centres and Validation campaigns. Some of the proposed evolutions, to be discussed with the scientific community, include the activation of freeboard computation in SARin mode, the potential operation of SARin mode over flat-to-slope transitory land ice areas, further tuning of the land ice retracker, the switch to NetCDF format and the resolution of anomalies arising in Baseline-C. This paper describes some of the anomalies known to affect Baseline-C in addition to potential evolutions that are planned and foreseen for Baseline-D.

  4. The potential of renewable energy

    SciTech Connect

    Not Available

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  5. Global Climate Anomalies and Potential Infectious Disease Risks: 2014-2015

    PubMed Central

    Chretien, Jean-Paul; Anyamba, Assaf; Small, Jennifer; Britch, Seth; Sanchez, Jose L.; Halbach, Alaina C.; Tucker, Compton; Linthicum, Kenneth J.

    2015-01-01

    Background: The El Niño/Southern Oscillation (ENSO) is a global climate phenomenon that impacts human infectious disease risk worldwide through droughts, floods, and other climate extremes. Throughout summer and fall 2014 and winter 2015, El Niño Watch, issued by the US National Oceanic and Atmospheric Administration, assessed likely El Niño development during the Northern Hemisphere fall and winter, persisting into spring 2015. Methods: We identified geographic regions where environmental conditions may increase infectious disease transmission if the predicted El Niño occurs using El Niño indicators (Sea Surface Temperature [SST], Outgoing Longwave Radiation [OLR], and rainfall anomalies) and literature review of El Niño-infectious disease associations. Results: SSTs in the equatorial Pacific and western Indian Oceans were anomalously elevated during August-October 2014, consistent with a developing weak El Niño event. Teleconnections with local climate is evident in global precipitation patterns, with positive OLR anomalies (drier than average conditions) across Indonesia and coastal southeast Asia, and negative anomalies across northern China, the western Indian Ocean, central Asia, north-central and northeast Africa, Mexico/Central America, the southwestern United States, and the northeastern and southwestern tropical Pacific. Persistence of these conditions could produce environmental settings conducive to increased transmission of cholera, dengue, malaria, Rift Valley fever, and other infectious diseases in regional hotspots as during previous El Niño events. Discussion and Conclusions: The current development of weak El Niño conditions may have significant potential implications for global public health in winter 2014-spring 2015. Enhanced surveillance and other preparedness measures in predicted infectious disease hotspots could mitigate health impacts. PMID:25685635

  6. Global Surface Solar Energy Anomalies Including El Nino and La Nina Years

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Brown, D. E.; Chandler, W. S.; DiPasquale, R. C.; Ritchey, Nancy A.; Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.; Stackhouse, Paul W.

    2001-01-01

    This paper synthesizes past events in an attempt to define the general magnitude, duration, and location of large surface solar anomalies over the globe. Surface solar energy values are mostly a function of solar zenith angle, cloud conditions, column atmospheric water vapor, aerosols, and surface albedo. For this study, solar and meteorological parameters for the 10-yr period July 1983 through June 1993 are used. These data were generated as part of the Release 3 Surface meteorology and Solar Energy (SSE) activity under the NASA Earth Science Enterprise (ESE) effort. Release 3 SSE uses upgraded input data and methods relative to previous releases. Cloud conditions are based on recent NASA Version-D International Satellite Cloud Climatology Project (ISCCP) global satellite radiation and cloud data. Meteorological inputs are from Version-I Goddard Earth Observing System (GEOS) reanalysis data that uses both weather station and satellite information. Aerosol transmission for different regions and seasons are for an 'average' year based on historic solar energy data from over 1000 ground sites courtesy of Natural Resources Canada (NRCan). These data are input to a new Langley Parameterized Shortwave Algorithm (LPSA) that calculates surface albedo and surface solar energy. That algorithm is an upgraded version of the 'Staylor' algorithm. Calculations are performed for a 280X280 km equal-area grid system over the globe based on 3-hourly input data. A bi-linear interpolation process is used to estimate data output values on a 1 X 1 degree grid system over the globe. Maximum anomalies are examined relative to El Nino and La Nina events in the tropical Pacific Ocean. Maximum year-to-year anomalies over the globe are provided for a 10-year period. The data may assist in the design of systems with increased reliability. It may also allow for better planning for emergency assistance during some atypical events.

  7. Axial anomaly and energy dependence of hyperon polarization in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Sorin, Alexander; Teryaev, Oleg

    2017-01-01

    We address the issue of energy and charge dependence of global polarization of Λ hyperons in peripheral Au-Au collisions recently observed by the STAR Collaboration at Relativistic Heavy Ion Collider (RHIC). We compare different contributions to the anomalous mechanism relating polarization to vorticity and hydrodynamic helicity in QCD matter. We stress that the suppression of the gravitational anomaly contribution in strongly correlated matter observed in lattice simulations confirms our earlier prediction of rapid decrease of polarization with increasing collision energy. Our mechanism leads to polarization of Λ ¯ of the same sign and larger magnitude than the polarization of Λ. The energy and charge dependence of polarization is suggested as a sensitive probe of fine details of QCD matter structure.

  8. Potential energy surface of cyclooctatetraene

    NASA Astrophysics Data System (ADS)

    Andrés, José L.; Castaño, Obis; Morreale, Antonio; Palmeiro, Raul; Gomperts, Roberto

    1998-01-01

    We present a theoretical study of the cyclooctatetraene (COT) molecule. Seven COT structures are located on the singlet ground state potential energy surface. Four of them, which present D2d (tub), Cs (bicyclo[4.2.0]octa-2,4,7-triene or BOT), C2h (chair) and D4 (crown) symmetries are stable species, and the other three are transition state structures showing Cs, D4h, and D8h symmetry. We discuss the symmetry of wave functions for these stationary points. Geometries, energies, and harmonic vibrational frequencies of these structures, and energy gaps between singlet-triplet states and low-lying singlets are presented. For the planar D4h and D8h structures, Jahn-Teller and tunneling effects have also been discussed. Ring inversion, bond shifting and valence isomerization reactive channels from the tub COT conformer are discussed from the point of view of the corresponding transition state structures. Where possible, in order to lend support to this theoretical information comparisons with recent transition state spectroscopy data are made.

  9. Unforced surface air temperature anomalies and their opposite relationship with the TOA energy imbalance at local and global scales

    NASA Astrophysics Data System (ADS)

    Brown, P. T.; Li, W.; Jiang, J. H.; Su, H.

    2015-12-01

    Unforced global mean surface air temperature (Tglobal) is stable in the long-term primarily because warm Tglobal anomalies are associated with enhanced outgoing longwave radiation to space and thus a negative global radiative energy imbalance (Nglobal, positive downward) at the top of the atmosphere (TOA). However, it is shown here that at the local spatial scale, warm unforced Tlocal anomalies tend to be associated with anomalously positive Nlocal imbalances over most of the surface of the planet. It is revealed that this occurs mainly because warm Tlocal anomalies are accompanied by anomalously low surface albedo near sea ice margins and over high altitudes, anomalously low cloud albedo over much of the mid/low-latitudes and an anomalously large water-vapor greenhouse effect over the deep tropical ocean. During warm Tglobal years, the largest negative Nlocal anomalies primarily occur over regions of cool or near-neutral Tlocal anomalies. These results help explain how TOA energy imbalances can act to damp unforced Tglobal anomalies while simultaneously amplifying unforced Tlocal anomalies.

  10. Spontaneous Potential Anomalies on Active Volcanoes: New Time and Spatial Series from Masaya, Telica, and Cerro Negro, Nicaragua

    NASA Astrophysics Data System (ADS)

    Lehto, H.; Pearson, S.; Connor, C.; Sanford, W.; Saballos, A.

    2006-12-01

    Considerable effort worldwide has gone into monitoring heat and mass transfer at active volcanoes because such information may provide clues about changes in volcanic activity and impending eruptions. Here we present new time and spatial series of spontaneous potential (SP) anomalies from Masaya and Telica volcanoes, and spatial series collected at Cerro Negro volcano. Our primary purpose is to investigate correlations between more easily and cheaply monitored SP and CO2 gas flux, measured by an infrared CO2 analysis system. SP data were collected using nonpolarizing Pb-PbCL2 electrodes that we constructed following the approach of Petiau. Mapping at both Masaya, and Cerro Negro reveals broad correlations between SP anomalies and CO2 flux through soils. In addition, we monitored temperature, barometric pressure, and rainfall at one minute intervals from May-August, 2006 at Masaya and Telica volcanoes. During this period it is clear that SP responds to changes in volcanic activity, with transient anomalies of 75 mV as well as atmospheric forcing due to rainfall, producing anomalies of 56 mV and related phenomena. Preliminary lab experiments provide further details of the electrokinetic origin of these SP anomalies. Our preliminary work supports the idea that large and inexpensive networks of electrodes might track changes in SP anomalies associated with changes in mass flow at active volcanoes.

  11. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  12. SU(4) skyrmions and activation energy anomaly in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Tsitsishvili, G.

    2004-09-01

    The bilayer quantum Hall (QH) system has four energy levels in the lowest Landau level, corresponding to the layer and spin degrees of freedom. We investigate the system in the regime where all four levels are nearly degenerate and equally active. The underlying group structure is SU(4) . At ν=1 the QH state is a charge-transferable state between the two layers and the SU(4) isospin coherence develops spontaneously. Quasiparticles are isospin textures to be identified with SU(4) skyrmions. The skyrmion energy consists of the Coulomb energy, the Zeeman energy and the pseudo-Zeeman energy. The Coulomb energy consists of the self-energy, the capacitance energy and the exchange energy. At the balanced point only pseudospins are excited unless the tunneling gap is too large. Then, the SU(4) skyrmion evolves continuously from the pseudospin-skyrmion limit into the spin-skyrmion limit as the system is transformed from the balanced point to the monolayer point by controlling the bias voltage. Our theoretical result explains quite well the experimental data due to Murphy [S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 72, 728 (1994)] and Sawada [A. Sawada, D. Terasawa, N. Kumada, M. Morino, K. Tagashira, Z. F. Ezawa, K. Muraki, T. Saku, and Y. Hirayama, Physica E 18, 118 (2003); D. Terasawa, M. Morino, K. Nakada, S. Kozumi, A. Sawada, Z. F. Ezawa, N. Kumada, K. Muraki, T. Saku, and Y. Hirayama, Physica E 22, 52 (2004)] on the activation energy anomaly induced by applying parallel magnetic field.

  13. Impacts of cloud-induced mass forcing on the development of moist potential vorticity anomaly during torrential rains

    NASA Astrophysics Data System (ADS)

    Gao, Shouting; Zhou, Yushu; Cui, Xiaopeng; Dai, Guoping

    2004-12-01

    The impacts of cloud-induced mass forcing on the development of the moist potential vorticity (MPV) anomaly associated with torrential rains are investigated by using NCEP/NCAR 1° × 1° data. The MPV tendency equation with the cloud-induced mass forcing is derived, and applied to the torrential rain event over the Changjiang River-Huaihe River Valleys during 26 30 June 1999. The result shows that positive anomalies are located mainly between 850 hPa and 500 hPa, while the maximum MPV, maximum positive tendency of the MPV, and maximum surface rainfall are nearly collocated. The cloud-induced mass forcing contributes to the positive tendency of the moist potential vorticity anomaly. The results indicate that the MPV may be used to track the propagation of rain systems for operational applications.

  14. Energy Detection Based on Undecimated Discrete Wavelet Transform and Its Application in Magnetic Anomaly Detection

    PubMed Central

    Nie, Xinhua; Pan, Zhongming; Zhang, Dasha; Zhou, Han; Chen, Min; Zhang, Wenna

    2014-01-01

    Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a power spectral density of 1/fa (0energy detection method based on undecimated discrete wavelet transform (UDWT) is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT), the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method. PMID:25343484

  15. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  16. Energy restriction and potential energy restriction mimetics.

    PubMed

    Nikolai, Sibylle; Pallauf, Kathrin; Huebbe, Patricia; Rimbach, Gerald

    2015-12-01

    Energy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.

  17. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  18. Guide for Conducting Energy Efficiency Potential Studies

    EPA Pesticide Factsheets

    The Guide for Conducting Energy Efficiency Potential Studies is provided to assist state officials, regulators, legislators, and others in implementing the recommendations of the National Action Plan for Energy Efficiency.

  19. Potential relationships between seismo-deformation and seismo-conductivity anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Hung; Lin, Cheng-Horng; Wang, Chung-Ho; Liu, Jann-Yenq; Yeh, Ta-Kang; Yen, Horng-Yuan; Lin, Tzu-Wei

    2015-12-01

    This study examines the relationships between seismo-deformation and seismo-conductivity anomalies during two M6 earthquakes that occurred on March 27th and June 2nd, 2013 in Taiwan. The Hilbert-Huang Transform is applied on surface displacement data to remove the effects of noise, semi-annual and annual cycles, and the long-term plate movements. The residual displacements have similar orientations when earthquake-related stress accumulates in the crust. Once the accumulated stress approaches the threshold for fault rupture, the orientations of the residual displacements generally become random, except in a small region near the epicenter. Interestingly, high-conductivity anomalies, which can be detected from the 3-component magnetic data via the magnetic transfer function, exist in places very close to this small region near the epicenter. Spatial and temporal correlations between the high-conductivity anomalies and the small region of seismo-deformation anomalies suggest that electric charges may migrate and become trapped in the region during seismogenic processes due to differential stress accumulation. These electric charges form a high-conductivity material that affects the Parkinson vector of the geomagnetic field.

  20. Evaluation of Gravity and Aeromagnetic Anomalies for the Deep Structure and Possibility of Hydrocarbon Potential of the Region Surrounding Lake Van, Eastern Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Aydemir, Attila; Ates, Abdullah; Bilim, Funda; Buyuksarac, Aydin; Bektas, Ozcan

    2013-11-01

    The North Anatolian Fault (NAF) is not observed on the surface beyond 40 km southeast of Karliova town toward the western shoreline of Lake Van. Various amplitudes of gravity and aeromagnetic anomalies are observed around the lake and surrounding region. In the gravity anomaly map, contour intensity is observed from the north of Mus city center toward Lake Van. There is a possibility that the NAF extends from here to the lake. Because there is no gravity data within the lake, the extension of the NAF is unknown and uncertain in the lake and to the east. Meanwhile, it is observed from the aeromagnetic anomalies that there are several positive and negative amplitude anomalies aligned around a slightly curved line in the east-west direction. The same curvature becomes much clearer in the analytic signal transformation map. The volcanic mountains of Nemrut and Suphan, and magnetic anomalies to the east of the Lake Van are all lined up and extended with this slightly curved line, provoking thoughts that a fault zone that was not previously mapped may exist. The epicenter of the major earthquake event that occurred on October 23, 2011 is located on this fault zone. The fault plane solution of this earthquake indicates a thrust fault in the east-west direction, consistent with the results of this study. Volcanic mountains in this zone are accepted as still being active because of gas seepages from their calderas, and magnetic anomalies are caused by buried causative bodies, probably magmatic intrusions. Because of its magmatic nature, this zone could be a good prospect for geothermal energy exploration. In this study, the basement of the Van Basin was also modelled three-dimensionally (3D) in order to investigate its hydrocarbon potential, because the first oil production in Anatolia was recorded around the Kurzot village in this basin. According to the 3D modelling results, the basin is composed of three different depressions aligned in the N-S direction and many

  1. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  2. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  3. Geothermal Energy Potential of Turkey: Inferred from the Aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Ates, Abdullah; Bilim, Funda; Buyuksarac, Aydin; Bektas, Ozcan

    2010-05-01

    Geothermal energy potential of Turkey is well known. There are lots of hot springs with over 30° C water temperatures. However, the significance of these geothermal energy potential of Turkey is not adequately understood. We believe that the main reason for this; is the lack of exploration methods and tools in a wide area as large as Turkey. We exploited a well known physical property of rocks to estimate the geothermal energy potential. Physically, substances lose their magnetization above a temperature known as the Curie that is the 580° C for magnetite. Properties of the Curie temperature have been exploited to observe the bottom depth of the magnetization. That is the depth where the heat reaches to 580° C. In another word, there is no magnetization below this depth. In normal crust this depth is about 22-24 km. Thus, investigation of the bottom depth of magnetization by using aeromagnetic anomalies can lead to information that if there are any anomalous regions well above the normal crust. The aeromagnetic anomalies of whole of Turkey were surveyed by the Mineral Research and Exploration (MTA) of Turkey. The survey was completed during late 1980's. Five kilometers grid data were available and used for regional exploration purposes. Exploration of the geothermal energy potential of Turkey was done from west to east in the similar way to search for shallow high temperature regions. These are from west to east; i.) Western Turkey: Two major shallow depth regions were determined at the west of Kutahya and the north-east of Denizli. The Curie Point Depths (CPDs) were calculated as about 7 km and about 9 km in Kutahya and Denizli, respectively. Also, high heat flow values and crustal thinning (about 32 km from gravity anomalies of western Turkey) were calculated for western Turkey. ii.) Central Turkey: A CPD depth of 8 km was calculated. This gives us a temperature gradient of 0.073° C/m. Geothermal energy potential was studied using water chemistry and isotopic

  4. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  5. Application of Qualitative and Quantitative Analyses of Self-Potential Anomaly in Caves Detection in Djuanda Forest Park, Bandung

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Arkanuddin, Muhammad R.; Pratomo, Prihandhanu M.; Novana, Eka C.; Agustina, Rena D.

    2010-12-01

    Self-Potential (SP) is naturally occurring electric potential difference observed at the surface. In the vicinity of a cave, SP anomaly is dominantly generated by the resistivity contrast of the cave with its environment and the current source associated with the streaming potential generated by fluid flow through the cave. In this study we applied a simple qualitative analysis to understand the SP values caused by streaming potential and values that are due to the presence of caves. Further, we conducted two-dimensional SP continuous modeling by solving the fluid velocity vector first in the modeling domain. Current source distribution and hence the SP value are obtained by incorporating resistivity value of the subsurface and calculating the divergence of the velocity vector. For validation, this scheme was applied in detection caves dug by Japanese army during WWII as at Djuanda Forest Park, Bandung. The results can be used to understand the characteristics of fluid flow and current source distribution around cavities that are responsible for the observed SP anomaly at the surface.

  6. Wind energy in China: Estimating the potential

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9-14% of China's projected energy demand by 2030.

  7. Oxygen Isotope Anomaly in the Carbonate Fractions of Aerosols and its Potential to Assess Urban Pollution

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abramian, A.; Dominguez, G.; Jackson, T.; Thiemens, M. H.

    2008-12-01

    = 0.887) was observed between oxygen isotope anomaly (Δ17O) in the carbonate fraction of coarse aerosols and urban index, indicating that the isotope anomaly of carbonates can be used as a proxy for urban pollution. Additionally, controlled laboratory experiments to understand the origin of isotope anomaly in the carbonate fraction of aerosols will be discussed.

  8. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  9. High energy electron sintering of icy regoliths: Formation of the PacMan thermal anomalies on the icy Saturnian moons

    NASA Astrophysics Data System (ADS)

    Schaible, M. J.; Johnson, R. E.; Zhigilei, L. V.; Piqueux, S.

    2017-03-01

    The so-called 'PacMan' features on the leading hemispheres of the icy Saturnian moons of Mimas, Tethys and Dione were initially identified as anomalous optical discolorations and subsequently shown to have greater thermal inertia than the surrounding regions. The shape of these regions matches calculated deposition contours of high energy plasma electrons moving opposite to the moon's orbital direction, thus suggesting that electron interactions with the grains produce the observed anomalies. Here, descriptions of radiation-induced diffusion processes are given, and various sintering models are considered to calculate the rate of increase in the contact volume between grains in an icy regolith. Estimates of the characteristic sintering timescale, i.e. the time necessary for the thermal inertia to increase from that measured outside the anomalous regions to that within, are given for each of the moons. Since interplanetary dust particle (IDP) impact gardening and E-ring grain infall would be expected to mix the regolith and obscure the effects of high energy electrons, sintering rates are compared to rough estimates of the impact-induced resurfacing rates. Estimates of the sintering timescale determined by extrapolating laboratory measurements are below ∼0.03 Myr, while the regolith renewal timescales are larger than ∼0.1 Myr, thus indicating that irradiation by the high energy electrons should be sufficient to form stable thermal anomalies. More detailed models developed for sintering of spherical grains are able to account for the radiation-induced anomalies on Mimas and Tethys only if the regoliths on those bodies are relatively compact and composed of small (≲ 5 μm) grains or grain aggregates, and/or the grains are highly non-spherical with surface defect densities in the inter-grain contact regions that are much higher than expected for crystalline water ice grains at thermal equilibrium. These results are consistent with regolith thermal conductivity

  10. Applying supersymmetry to energy dependent potentials

    SciTech Connect

    Yekken, R.; Lassaut, M.; Lombard, R.J.

    2013-11-15

    We investigate the supersymmetry properties of energy dependent potentials in the D=1 dimensional space. We show the main aspects of supersymmetry to be preserved, namely the factorization of the Hamiltonian, the connections between eigenvalues and wave functions of the partner Hamiltonians. Two methods are proposed. The first one requires the extension of the usual rules via the concept of local equivalent potential. In this case, the superpotential becomes depending on the state. The second method, applicable when the potential depends linearly on the energy, is similar to what has been already achieved by means of the Darboux transform. -- Highlights: •Supersymmetry extended to energy dependent potentials. •Generalization of the concept of superpotential. •An alternative method used for linear E-dependence leads to the same results as Darboux transform.

  11. Energy dependence of the optical potentials for the 9Be +208Pb and 9Be +209Bi systems at near-Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.

    2015-04-01

    We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.

  12. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    SciTech Connect

    Izvekov, Sergei Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching of the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.

  13. Biomass resource potential using energy crops

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Martin, S.A.

    1993-09-01

    Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

  14. Potential energy surfaces for cluster emitting nuclei

    SciTech Connect

    Poenaru, Dorin N.; Gherghescu, Radu A.; Greiner, Walter

    2006-01-15

    Potential energy surfaces are calculated by use of the most advanced asymmetric two-center shell model that allows us to obtain shell-and-pairing corrections that are added to the Yukawa-plus-exponential model deformation energy. Shell effects are of crucial importance for the experimental observation of spontaneous disintegration by heavy-ion emission. Results for {sup 222}Ra, {sup 232}U, {sup 236}Pu, and {sup 242}Cm illustrate the main ideas and show for the first time, for a cluster emitter, a potential barrier obtained by use of the macroscopic-microscopic method.

  15. Potential energy function for the hydroperoxyl radical

    SciTech Connect

    Lemon, W.J.; Hase, W.L.

    1987-03-12

    A switching function formalism is used to derive an analytic potential energy surface for the O + OH in equilibrium HO/sub 2/ in equilibrium H + O/sub 2/ reactive system. Both experimental and ab initio data are used to derive parameters for the potential energy surface. Trajectory calculations for highly excited HO/sub 2/ are performed on this surface. From these trajectories quasi-periodic eigentrajectories are found for vibrational levels near the HO/sub 2/ dissociation threshold with small amounts of quanta in the OH stretch mode and large amounts of quanta in the OO stretch mode.

  16. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  17. Potential energy sputtering of EUVL materials

    SciTech Connect

    Pomeroy, J M; Ratliff, L P; Gillaspy, J D; Bajt, S

    2004-07-02

    Of the many candidates employed for understanding the erosion of critical Extreme Ultraviolet Lithography (EUVL) components, potential energy damage remains relatively uninvestigated. Unlike the familiar kinetic energy sputtering, which is a consequence of the momentum transferred by an ion to atoms in the target, potential energy sputtering occurs when an ion rapidly collects charge from the target as it neutralizes. Since the neutralization energy of a singly charged ion is typically on the order of 10 eV, potential energy effects are generally neglected for low charge state ions, and hence the bulk of the sputtering literature. As an ion's charge state is increased, the potential energy (PE) increases rapidly, e.g. PE(Xe{sup 1+})= 11 eV, PE(Xe{sup 10+}) = 810 eV, PE(Xe{sup 20+}) = 4.6 keV, etc. By comparison, the binding energy of a single atom on a surface is typically about 5 eV, so even relatively inefficient energy transfer mechanisms can lead to large quantities of material being removed, e.g. 25% efficiency for Xe{sup 10+} corresponds to {approx} 40 atoms/ion. By comparison, singly charged xenon ions with {approx} 20 keV of kinetic energy sputter only about 5 atoms/ion at normal incidence, and less than 1 atom/ion at typical EUV source energies. EUV light sources are optimized for producing approximately 10{sup 16} xenon ions per shot with an average charge state of q=10 in the core plasma. At operational rates of {approx}10 kHz, the number of ions produced per second becomes a whopping 10{sup 20}. Even if only one in a billion ions reaches the collector, erosion rates could reach {approx}10{sup 12} atoms per second, severely reducing the collector lifetime (for an average yield of 10 atoms/ion). In addition, efforts to reduce contamination effects may contribute to reduced neutralization and even larger potential energy damages rates (discussed further below). In order to provide accurate estimates for collector lifetimes and to develop mitigation schemes

  18. Potential energy hypersurface and molecular flexibility

    NASA Astrophysics Data System (ADS)

    Koča, Jaroslav

    1993-02-01

    The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.

  19. Potential Energy Cost Savings from Increased Commercial Energy Code Compliance

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Cohan, David F.

    2016-08-22

    An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed office buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.

  20. Divacancy binding energy, formation energy and surface energy of BCC transition metals using MEAM potentials

    NASA Astrophysics Data System (ADS)

    Uniyal, Shweta; Chand, Manesh; Joshi, Subodh; Semalty, P. D.

    2016-05-01

    The modified embedded atom method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy and surface energies for low index planes in bcc transition metals. The calculated results of divacancy binding energy and vacancy formation energy compare well with experimental and other available calculated results.

  1. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  2. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  3. A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause

    PubMed Central

    Tulloch, R.; Smith, K. S.

    2006-01-01

    The horizontal spectra of atmospheric wind and temperature at the tropopause have a steep −3 slope at synoptic scales, but transition to −5/3 at wavelengths of the order of 500–1,000 km [Nastrom, G. D. & Gage, K. S. (1985) J. Atmos. Sci. 42, 950–960]. Here we demonstrate that a model that assumes zero potential vorticity and constant stratification N over a finite-depth H in the troposphere exhibits the same type of spectra. In this model, temperature perturbations generated at the planetary scale excite a direct cascade of energy with a slope of −3 at large scales, −5/3 at small scales, and a transition near horizontal wavenumber kt = f/NH, where f is the Coriolis parameter. Ballpark atmospheric estimates for N, f, and H give a transition wavenumber near that observed, and numerical simulations of the previously undescribed model verify the expected behavior. Despite its simplicity, the model is consistent with a number of perplexing features in the observations and demonstrates that a complete theory for mesoscale dynamics must take temperature advection at boundaries into account. PMID:17001017

  4. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  5. A universal high energy anomaly in angle resolved photoemissionspectra of high temperature superconductors -- possible evidence ofspinon and holon branches

    SciTech Connect

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi,H.; Lee, D.-H.; Lanzara A.

    2006-12-19

    A universal high energy anomaly in the single particlespectral function is reported in three different families of hightemperature superconductors by using angle-resolved photoemissionspectroscopy. As we follow the dispersing peak of the spectral functionfrom the Fermi energy to the valence band complex, we find dispersionanomalies marked by two distinctive high energy scales, E_1 approx 0.38eV and E_2 approx 0.8 eV. E_1 marks the energy above which the dispersionsplits into two branches. One is a continuation of the near parabolicdispersion, albeit with reduced spectral weight, and reaches the bottomof the band at the Gamma point at approx 0.5 eV. The other is given by apeak in the momentum space, nearly independent of energy between E_1 andE_2. Above E_2, a band-like dispersion re-emerges. We conjecture thatthese two energies mark the disintegration of the low energyquasiparticles into a spinon and holon branch in the high T_c cuprates.

  6. Effect of Strong Correlations on the High Energy Anomaly in Hole- and Electron-Doped High-Tc Superconductors

    SciTech Connect

    Moritz, B.; Schmitt, F.; Meevasana, W.; Johnston, S.; Motoyama, E.M.; Greven, M.; Lu, D.H.; Kim, C.; Scalettar, R.T.; Shen, Z.-X.; Devereaux, T.P.; /SLAC, SIMES

    2010-02-15

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the byproduct of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  7. Potential Energy Curves of Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Fallon, Robert J.; Vanderslice, Joseph T.; Mason, Edward A.

    1960-01-01

    Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here.

  8. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  9. Potential energy landscapes of tetragonal pyramid molecules

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuichiro; Sato, Hirofumi; Morgan, John W. R.; Wales, David J.

    2016-11-01

    Hiraoka et al. have developed a self-assembling system referred to as a nanocube (Hiraoka et al., 2008). In the present contribution a coarse-grained model for this system is analysed, focusing on how the potential energy landscape for self-assembly is related to the geometry of the building blocks. We find that six molecules assemble to form various clusters, with cubic and sheet structures the most stable. The relative stability is determined by the geometry of the building blocks.

  10. Potential energy surfaces of Polonium isotopes

    NASA Astrophysics Data System (ADS)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  11. The Wind Energy Potential of Iceland

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  12. Studies of the development of congenital anomalies in rats. III. Effects of inhibition of mitochondrial energy systems on embryonic development.

    PubMed

    Mackler, B; Grace, R; Tippit, D F; Lemire, R J; Shepard, T H; Kelley, V C

    1975-12-01

    Pregnant rats were treated with various inhibitors of mitochondrial oxidative energy metabolism and with lowered oxygen tension, and the embryo fetuses examined for the occurrence of congenital malformations and for changes in enzymatic activities. Treatment with all agents tested resulted in the production of skeletal anomalies. Sodium phenobarbital was the most teratogenic of the drugs tested and produced a high incidence of malformations which included cleft palate, tail anomalies, spinal retroflexion, domed head, and facial hypoplasia. Diphenylhydantoin produced a low incidence of syndactyly and oligodactyly. In addition to its effects on fetal growth and development chloramphenicol appeared to interfere with implantation. Tissue preparations from embryos exposed to sodium phenobarbital and chloramphenicol showed markedly lowered levels of DPNH oxidase activity. Cytochrome oxidase activity was also markedly lowered in the preparations from chloramphenicol-exposed embryos. Enzyme activities in preparations from embryos exposed to malonate and diphenylhydantoin appeared unaffected, although the drugs are strong inhibitors of electron transport in vitro; the lack of apparent effect may be due to the fact that both drugs do not bind to the enzyme preparations and were diluted 100- to 200-fold during preparation and assay of the tissue homogenates.

  13. A modified panel of sentinel congenital anomalies for potential use in mutation epidemiology based on birth defects registry data.

    PubMed

    Langlois, Peter H; Moffitt, Karen B; Scheuerle, Angela E

    2014-09-01

    Since 1983, several authors have used panels of "sentinel" congenital anomalies that might serve as indicators of the human genome mutation rate. The current study suggests a considerably updated panel, and applies it to public health birth defects registry data to determine the potential number of de novo cases. Data were taken from deliveries in 1999-2009 from the Texas Birth Defects Registry, an active surveillance program. Cases with one of the conditions or syndromes in the panel were identified using codes and text searches. Frequencies and birth prevalence were calculated for the overall panel and subcategories within it. Of the 60 conditions appearing in previous papers on sentinel phenotypes, 21 (35%) were used in the current study along with 27 new phenotypes. We found 1,694 cases. Of those, 1,100 exhibited phenotypes thought to arise de novo in at least 90% of the cases ("all/almost all" subpanel), and 594 considered de novo in roughly 50-90% of cases ("most" subpanel). Chromosomal deletion disorders were present in 523 cases and imprinting disorders in 243. After adjusting for maternal age, occurrence of cases in the total panel, "most" subpanel, and imprinting disorders subpanel were significantly associated with paternal age. Our panel of sentinel phenotypes differs from previous panels due to evolved knowledge of genetic disorders, different approaches with respect to interviewing, and different operational definitions. It is hoped that using an overall panel as well as subpanels may maximize statistical power as well as suggest potential mechanisms.

  14. Theoretical studies of potential energy surfaces

    SciTech Connect

    Harding, L.B.

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  15. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  16. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  17. Nolen-Schiffer anomaly

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.

    1995-08-01

    The Argonne v{sub 18} potential contains a detailed treatment of the pp, pn and nn electromagnetic potential, including Coulomb, vacuum polarization, Darwin Foldy and magnetic moment terms, all with suitable form factors and was fit to pp and pn data using the appropriate nuclear masses. In addition, it contains a nuclear charge-symmetry breaking (CSB) term adjusted to reproduce the difference in the experimental pp and nn scattering lengths. We have used these potential terms to compute differences in the binding energies of mirror isospin-1/2 nuclei (Nolen-Schiffer [NS] anomaly). Variational Monte Carlo calculations for the {sup 3}He-{sup 3}H system and cluster variational Monte Carlo for the {sup 15}O-{sup 15}N and {sup 17}F-{sup 17}O systems were made. In the first case, the best variational wave function for the A = 3 nuclei was used. However, because our {sup 16}O wave function does not reproduce accurately the {sup 16}O rms radius, to which the NS anomaly is very sensitive, we adjusted the A = 15 and A = 17 wave functions to reproduce the experimental density profiles. Our computed energy differences for these three systems are 0.757 {plus_minus} .001, 3.544 {plus_minus} .018 and 3.458 {plus_minus} .040 MeV respectively, which are to be compared with the experimental differences of 0.764, 3.537, and 3.544 MeV. Most of the theoretical uncertainties are due to uncertainties in the experimental rms radii. The nuclear CSB potential contributes 0.066, 0.188, and 0.090 MeV to these totals. We also attempted calculations for A = 39 and A = 41. However, in these cases, the experimental uncertainties in the rms radius make it impossible to extract useful information about the contribution of the nuclear CSB potential.

  18. Triton Binding Energy of Kharkov Potential

    NASA Astrophysics Data System (ADS)

    Kamada, H.; Shebeko, O.; Arslanaliev, A.

    2017-03-01

    The Kharkov potential is a recent field theoretical model of nucleon-nucleon (NN) interaction that has been built up in the framework of the instant form of relativistic dynamics starting with the total Hamiltonian of interacting meson and nucleon fields and using the method of unitary clothing transformations. The latter connect the representation of "bare" particles and the representation of "clothed" particles, i.e., the particles with physical properties. Unlike many available NN potentials each of which is the kernel of the corresponding nonrelativistic Lippmann-Schwinger (LS) equation this potential being dependent in momentum space on the Feynman-like propagators and covariant cutoff factors at the meson-nucleon vertices is the kernel of relativistic integral equations for the NN bound and scattering states. Therefore we do not need to invent any transform of a given nonrelativistic potential to its relativistic counterpart. As a feasible study, we have started with the so-called 5ch Faddeev calculation for three-nucleon bound state (triton) and obtained a reasonable value of its binding energy (-7.42 MeV).

  19. Potential energy surfaces of superheavy nuclei

    SciTech Connect

    Bender, M.; Rutz, K.; Maruhn, J.A.; Greiner, W.; Reinhard, P.-G. Rutz, K.; Maruhn, J.A.; Greiner, W.

    1998-10-01

    We investigate the structure of the potential energy surfaces of the superheavy nuclei {sub 158}{sup 258}Fm{sub 100}, {sub 156}{sup 264}Hs{sub 108}, {sub 166}{sup 278}112, {sub 184}{sup 298}114, and {sub 172}{sup 292}120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers. {copyright} {ital 1998} {ital The American Physical Society}

  20. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole.

    PubMed

    Li, Shaohong L; Xu, Xuefei; Hoyer, Chad E; Truhlar, Donald G

    2015-09-03

    Diabatization of potential energy surfaces is a technique that enables convenient molecular dynamics simulations of electronically nonadiabatic processes, but diabatization itself is nonunique and can be inconvenient; the best methods to achieve diabatization are still under study. Here, we present the diabatization of two electronic states of thioanisole in the S-CH3 bond stretching and C-C-S-C torsion two-dimensional nuclear coordinate space containing a conical intersection. We use two systematic methods: the (orbital-dependent) 4-fold way and the (orbital-free) Boys localization diabatization method. These very different methods yield strikingly similar diabatic potential energy surfaces that cross at geometries where the adiabatic surfaces are well separated and do not exhibit avoided crossings, and the contours of the diabatic gap and diabatic coupling are similar for the two methods. The validity of the diabatization is supported by comparing the nonadiabatic couplings calculated from the diabatic matrix elements to those calculated by direct differentiation of the adiabatic states.

  1. Chromosome 3 Anomalies Investigated by Genome Wide SNP Analysis of Benign, Low Malignant Potential and Low Grade Ovarian Serous Tumours

    PubMed Central

    Birch, Ashley H.; Arcand, Suzanna L.; Oros, Kathleen K.; Rahimi, Kurosh; Watters, A. Kevin; Provencher, Diane; Greenwood, Celia M.; Mes-Masson, Anne-Marie; Tonin, Patricia N.

    2011-01-01

    Ovarian carcinomas exhibit extensive heterogeneity, and their etiology remains unknown. Histological and genetic evidence has led to the proposal that low grade ovarian serous carcinomas (LGOSC) have a different etiology than high grade carcinomas (HGOSC), arising from serous tumours of low malignant potential (LMP). Common regions of chromosome (chr) 3 loss have been observed in all types of serous ovarian tumours, including benign, suggesting that these regions contain genes important in the development of all ovarian serous carcinomas. A high-density genome-wide genotyping bead array technology, which assayed >600,000 markers, was applied to a panel of serous benign and LMP tumours and a small set of LGOSC, to characterize somatic events associated with the most indolent forms of ovarian disease. The genomic patterns inferred were related to TP53, KRAS and BRAF mutations. An increasing frequency of genomic anomalies was observed with pathology of disease: 3/22 (13.6%) benign cases, 40/53 (75.5%) LMP cases and 10/11 (90.9%) LGOSC cases. Low frequencies of chr3 anomalies occurred in all tumour types. Runs of homozygosity were most commonly observed on chr3, with the 3p12-p11 candidate tumour suppressor region the most frequently homozygous region in the genome. An LMP harboured a homozygous deletion on chr6 which created a GOPC-ROS1 fusion gene, previously reported as oncogenic in other cancer types. Somatic TP53, KRAS and BRAF mutations were not observed in benign tumours. KRAS-mutation positive LMP cases displayed significantly more chromosomal aberrations than BRAF-mutation positive or KRAS and BRAF mutation negative cases. Gain of 12p, which harbours the KRAS gene, was particularly evident. A pathology review reclassified all TP53-mutation positive LGOSC cases, some of which acquired a HGOSC status. Taken together, our results support the view that LGOSC could arise from serous benign and LMP tumours, but does not exclude the possibility that HGOSC may derive

  2. Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices

    PubMed Central

    Majumder, Sagardip; Dhar, Jayabrata; Chakraborty, Suman

    2015-01-01

    We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and hydrodynamics over reduced length scales. The predictions from our model are supported by reported experimental data, and are in excellent quantitative agreement with molecular dynamics simulations. The present model, thus, may be employed to rationalize the discrepancies between low energy conversion efficiencies of nanofluidic channels that have been realized from experiments, and the impractically high energy conversion efficiencies that have been routinely predicted by the existing theories. PMID:26437925

  3. Holonomy anomalies

    SciTech Connect

    Bagger, J.; Nemeschansky, D.; Yankielowicz, S.

    1985-05-01

    A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs. (LEW)

  4. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of

  5. Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD Equations

    NASA Astrophysics Data System (ADS)

    Guo, Shanshan; Tan, Zhong

    2016-12-01

    In this paper, we establish the longitudinal and transverse local energy balance equation of distributional solutions of the incompressible three-dimensional MHD equations. In particular, we find that the functions D_L^ɛ (u,B) and D_T^ɛ (u,B) appeared in the energy balance, all converging to the defect distribution (in the sense of distributions) D(u,B) which has been defined in Gao et al. (Acta Math Sci 33:865-871, 2013). Furthermore, we give a simpler form of defect distribution term, which is similar to the relation in turbulence theory, called the "4 / 3-law." As a corollary, we give the analogous "4 / 5-law" holds in the local sense.

  6. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  7. Thermophotovoltaic energy conversion: Technology and market potential

    SciTech Connect

    Ostrowski, L.J.; Pernisz, U.C.; Fraas, L.M.

    1996-02-01

    This report contains material displayed on poster panels during the Conference. The purpose of the contribution was to present a summary of the business overview of thermophotovoltaic generation of electricity and its market potential. The market analysis has shown that the TPV market, while currently still in an early nucleation phase, is evolving into a range of small niche markets out of which larger-size opportunities can emerge. Early commercial applications on yachts and recreational vehicles which require a quiet and emission-free compact electrical generator fit the current TPV technology and economics. Follow-on residential applications are attractive since they can combine generation of electricity with space and hot water heating in a co-generation system. Development of future markets in transportation, both private and communal or industrial, will be driven by legislation requiring emission-free vehicles, and by a reduction in TPV systems cost. As a result of {open_quote}{open_quote}moving down the learning curve,{close_quote}{close_quote} growing power and consumer markets are predicted to come into reach of TPV systems, a development favored by high overall energy conversion efficiency due to high radiation energy density and to high electric conversion efficiency available with photovoltaic cells. {copyright} {ital 1996 American Institute of Physics.}

  8. The Wind Energy Potential of Kurdistan, Iran.

    PubMed

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms.

  9. Thermophotovoltaic energy conversion: Technology and market potential

    NASA Astrophysics Data System (ADS)

    Ostrowski, Leon J.; Pernisz, Udo C.; Fraas, Lewis M.

    1996-02-01

    This report contains material displayed on poster panels during the Conference. The purpose of the contribution was to present a summary of the business overview of thermophotovoltaic generation of electricity and its market potential. The market analysis has shown that the TPV market, while currently still in an early nucleation phase, is evolving into a range of small niche markets out of which larger-size opportunities can emerge. Early commercial applications on yachts and recreational vehicles which require a quiet and emission-free compact electrical generator fit the current TPV technology and economics. Follow-on residential applications are attractive since they can combine generation of electricity with space and hot water heating in a co-generation system. Development of future markets in transportation, both private and communal or industrial, will be driven by legislation requiring emission-free vehicles, and by a reduction in TPV systems cost. As a result of ``moving down the learning curve,'' growing power and consumer markets are predicted to come into reach of TPV systems, a development favored by high overall energy conversion efficiency due to high radiation energy density and to high electric conversion efficiency available with photovoltaic cells.

  10. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  11. Bangui Anomaly

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.

    2004-01-01

    Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.

  12. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  13. Mapping Stratigraphy and Anomalies in Iron-Rich Volcanoclastics Using Ground-Penetrating Radar: Potential for Subsurface Exploration on Mars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Clifford, S.; Khan, S.; Fernandez, J.; Wiggs, E.; Gonzalez, S. L.; Wyrick, D.; Grimm, R.; Dinwiddie, C.; Pommerol, A.

    2004-12-01

    Ground-penetrating radar (GPR) studies conducted in iron-rich volcanoclastics can yield valuable information for interpreting the subsurface stratigraphy resulting from lava flows and intervening unconsolidated volcanic and sedimentary deposits with different compositions and ages. GPR is also valuable for mapping subsurface anomalies and structures, such as rifts and lava tubes. We performed a geophysical field survey in Craters of the Moon National Park to evaluate the potential for using GPR to map local areas of the Martian subsurface for evidence of subsurface water. Craters of the Moon is located in the South Central portion of Idaho, and lies within the Eastern Snake River Plain; it is a composite of more than forty different lava flows, erupted from approximately twenty-five cinder cones and eruptive fissures over eight distinct eruptive periods ranging in age from Late Pleistocene to Holocene. We used a GPR operating at 16 and 100 MHz to perform structural mapping at several different locations. Radar studies were combined with transient electromagnetic soundings and infrared spectroscopy to assess the effect of soil conductivity and geochemistry on identification of subsurface structures. Our results show that, even with a relatively high amount of irons oxides (~14 %), GPR penetration depths of 50 m were achieved with the 100 MHz antenna and penetration depths of 150 m were achieved with the 16 MHz antenna. These depths of investigation may be attributable to the high porosity of the soil at the studied areas, which lowered the electrical losses, thus favoring a relatively deep penetration of the radar wave.

  14. Anomalies in the theory of viscous energy losses due to shear in rotational MEMS resonators.

    SciTech Connect

    Walsh, Timothy Francis; Klody, Kelly Anne; Jenkins, Mark W.; Dohner, Jeffrey Lynn

    2003-12-01

    In this paper, the effect of viscous wave motion on a micro rotational resonator is discussed. This work shows the inadequacy of developing theory to represent energy losses due to shear motion in air. Existing theory predicts Newtonian losses with little slip at the interface. Nevertheless, experiments showed less effect due to Newtonian losses and elevated levels of slip for small gaps. Values of damping were much less than expected. Novel closed form solutions for the response of components are presented. The stiffness of the resonator is derived using Castigliano's theorem, and viscous fluid motion above and below the resonator is derived using a wave approach. Analytical results are compared with experimental results to determine the utility of existing theory. It was found that existing macro and molecular theory is inadequate to describes measured responses.

  15. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  16. An ab initio method for locating potential energy minima

    SciTech Connect

    Bock, Nicolas; Peery, Travis; Venneri, Giulia; Chisolm, Eric; Wallace, Duane; Lizarraga, Raquel; Holmstrom, Erik

    2009-01-01

    We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.

  17. Energy flux and hydrogeology of thermal anomalies in the Gulf of Mexico basin. Progress report, June 1992--August 1993

    SciTech Connect

    Sharp, J.M. Jr.

    1993-09-01

    Specific project objectives are to: determine whether or not the observed thermal anomalies in the Gulf of Mexico sedimentary basin can be accounted for by heat conduction only; determine whether or not the present-day groundwater flow system is amenable with the heat advection hypothesis; and determine fluid and heat flux histories that are consistent with the observed data. In support of these objectives, we have collected over 25,000 data points, reflecting pressures and temperatures at depths of up to 16,000 feet in the Texas portion of the Gulf of Mexico basin. These data have been collated into a computerized data base system. In addition, we have begun collection of thermophysical data. This research provides fundamental knowledge and understanding to the geosciences and contributes to the sciences and technology base required for current and future energy technologies. Quantifying the evolution of the hydrodynamic and thermal regimes in sedimentary basins is important for predicting timing of hydrocarbon maturation and migration. The evolving subsurface temperature and hydrodynamic system also have a first-order control on sediment diagenesis, brine evolution, and the formation of ore deposits.

  18. Renewable Energy Potential for New Mexico

    EPA Pesticide Factsheets

    RE-Powering America's Land: Renewable Energy on Contaminated Land and Mining Sites was presented by Penelope McDaniel, during the 2008 Brown to Green: Make the Connection to Renewable Energy workshop.

  19. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  20. The Potential Energy of an Autoencoder.

    PubMed

    Kamyshanska, Hanna; Memisevic, Roland

    2015-06-01

    Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient inference. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units, the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative classifier based on class-specific autoencoders is presented.

  1. Energy in America: Progress and Potential.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…

  2. Potential Advantages of Reusing Potentially Contaminated Land for Renewable Energy Fact Sheet

    EPA Pesticide Factsheets

    EPA promotes the reuse of potentially contaminated lands and landfills for renewable energy. This strategy creates new markets for potentially contaminated lands, while providing a sustainable land development strategy for renewable energy.

  3. Universal High Energy Anomaly in the Angle-Resolved Photoemission Spectra of High Temperature Superconductors: Possible Evidence of Spinon and Holon Branches

    NASA Astrophysics Data System (ADS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S. Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2007-02-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E1≈0.38eV and E2≈0.8eV. E1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Γ point at ≈0.5eV. The other is given by a peak in the momentum space, nearly independent of energy between E1 and E2. Above E2, a bandlike dispersion reemerges. We conjecture that these two energies mark the disintegration of the low-energy quasiparticles into a spinon and holon branch in the high Tc cuprates.

  4. Lifshitz anomalies, Ward identities and split dimensional regularization

    NASA Astrophysics Data System (ADS)

    Arav, Igal; Oz, Yaron; Raviv-Moshe, Avia

    2017-03-01

    We analyze the structure of the stress-energy tensor correlation functions in Lifshitz field theories and construct the corresponding anomalous Ward identities. We develop a framework for calculating the anomaly coefficients that employs a split dimensional regularization and the pole residues. We demonstrate the procedure by calculating the free scalar Lifshitz scale anomalies in 2 + 1 spacetime dimensions. We find that the analysis of the regularization dependent trivial terms requires a curved spacetime description without a foliation structure. We discuss potential ambiguities in Lifshitz scale anomaly definitions.

  5. Energy Consumption and Renewable Energy Development Potential on Indian Lands

    EIA Publications

    2000-01-01

    Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the potential for renewable resources development of Indian lands.

  6. Framework for State-Level Renewable Energy Market Potential Studies

    EPA Pesticide Factsheets

    This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study.

  7. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  8. DOWN'S ANOMALY.

    ERIC Educational Resources Information Center

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  9. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  10. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  11. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  12. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  13. Geothermal energy potential in the San Luis Valley, Colorado

    SciTech Connect

    Coe, B.A.

    1980-01-01

    The background of the area itself is investigated considering the geography, population, economy, attitudes of residents, and energy demands of the area. The requirements for geothermal energy development are considered, including socio-economic, institutional, and environmental conditions as well as some technical aspects. The current, proposed, and potential geothermal energy developments are described. The summary, conclusions, and methodology are included. (MHR)

  14. Morphing ab initio potential energy curve of beryllium monohydride

    NASA Astrophysics Data System (ADS)

    Špirko, Vladimír

    2016-12-01

    Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.

  15. Potential environmental problems of photovoltaic energy technology

    SciTech Connect

    Hendrey, G.R.; Moskowitz, P.D.; Patten, D.; Berry, W.; Conway, H.L.

    1980-01-01

    Separate abstracts were prepared for the ten papers of this proceedings of a workshop held at Brookhaven National Laboratory in 1980. The purposes of this proceedings are to provide a preliminary identificaton and assessment of environmental hazards which might be realistically associated with growth of the photovoltaic industry, and to provide a reference for environmental considerations by obtaining a 1980 state-of-the-art assessment of growth anticipated for the industry. Currently the industry is considered to be in the early stages of development and several possible technological options are available for large-scale manufacturing as the industry grows. Estimates of the industrial emissions of materials considered to be potentially harmful in the environment were obtained by several different analytical methods. (KRM)

  16. Potential for energy recovery from solid wastes

    SciTech Connect

    Velzy, C.O.

    1983-01-01

    This paper discusses the technologies, opportunities, and problems of energy-from-refuse systems. Topics considered include the direct combustion of as-received refuse, the mass-burn systems, the combustion of refuse-derived fuel, and the production of methane gas from the organic and cellulosic fraction of solid waste. A DOE-sponsored methane plant operated by Waste Management is now being evaluated at Pompano Beach, Florida. The Europeans have moved ahead so rapidly in the beneficial use of heat from the combustion of their solid waste because of the availability of a ready market for the heat in municipal facilities and/or town district heating systems. It is suggested that the use of the heat from the combustion of solid waste should be broadened to include district heating and cooling, complementary municipal functions (e.g. the disposal of sludges from wastewater treatment), integration in power generation facilities in uses other than direct production of power (e.g. boiler feedwater heating), and in industrial processing.

  17. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  18. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  19. Intermolecular potential energy surface for CS2 dimer.

    PubMed

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface.

  20. Biomass energy: the scale of the potential resource.

    PubMed

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.

  1. Gravitational anomalies in the solar system?

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2015-02-01

    Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.

  2. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  3. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  4. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    PubMed

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-03-23

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the (3)A″ state of SH2, which facilitates the SH + H ↔ S((3)P) + H2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10(2)) of ab initio points, but it needs substantially more points (∼1 × 10(3)) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  5. Isostasy, Stress and Gravitational Potential Energy in the Southern Atlantic - Insights from Satellite Gravity Observations

    NASA Astrophysics Data System (ADS)

    Goetze, H. J.; Klinge, L.; Scheck-Wenderoth, M.; Dressel, I.; Sippel, J.

    2015-12-01

    New satellite gravity fields e.g. EGM2008, GoCo3S and very recently EIGEN-6C4 (Förste et al., 2014) provide high-accuracy and globally uniform information of the Earth's gravity field and partly of its gradients. The main goal of this study is to investigate the impact of this new gravity field and its processed anomalies (Bouguer, Free-air and Vening-Meinesz residual fields) on lithospheric modelling of passive plate margins in the area of the Southern Atlantic. In an area fixed by the latitudes 20° N - 50° S and longitudes 70° W - 20° E we calculated station-complete Bouguer anomalies (bathymetry/topography corrected) both on- and offshore and compared them with the gravity effect of a velocity model which bases on S - waves tomography (Schaeffer and Lebedev, 2013). The corresponding maps provide more insight in the abnormal mass distribution of oceanic lithosphere and the ocean-continent transition zones on both sides of the Atlantic Ocean than Free-air anomalies which are masked by bathymetry. In a next step we calculated isostatic residual fields (Vening-Meinesz isostasy with regard to different lithospheric rigidities) to remove global components (long wavelengths) from the satellite gravity. The Isostatic residual field will be compared with the GPE (gravitational potential energy). GPE variations in the Southern Atlantic, relative to the reference state, were calculated as ΔGPE. Often the oceanic lithosphere is characterized by negative ∆GPE values indicating that the ocean basin is in compression. Differences from this observation will be compared with the state of stress in the area of the passive margins of South America and South Africa and the oceanic lithosphere in between. Schaeffer, A. J. and S. Lebedev, Global shear-speed structure of the upper mantle and transition zone. Geophys. J. Int., 194 (1), 417-449, 2013. doi:10.1093/gji/ggt095

  6. Saint Paul Energy Park: the potential for district heating

    SciTech Connect

    Lee, C.; Kron, R.; Davis, H.

    1980-03-01

    The results of ANL's study of the energy and economic aspects of using district heating in the St. Paul Energy Park are summarized. The Energy Park is a 6 million ft/sup 2/ residential, commercial office, and light industrial complex to be built in the midway area of St. Paul, Minnesota. Space heating and cooling design loads for the park were calculated assuming that the ASHRAE's 90-75 energy-conserving construction standards would be used in constructing the park's buildings. Based in part on this assumption, ANL estimated the costs and energy use characteristics of six possible energy system options for supplying Energy Park's space heating, space cooling, and domestic hot water heating needs. The results indicate that in today's economy, a central heating and cooling plant with natural gas boilers and electrically driven centrifugal chillers with thermal storage has good potential for energy and economic savings and clearly merits further consideration.

  7. Congenital anomalies

    PubMed Central

    Kunisaki, Shaun M.

    2012-01-01

    Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital anomalies diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital anomalies. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed. PMID:22986340

  8. Possible explanation of the atmospheric kinetic and potential energy spectra.

    PubMed

    Vallgren, Andreas; Deusebio, Enrico; Lindborg, Erik

    2011-12-23

    We hypothesize that the observed wave number spectra of kinetic and potential energy in the atmosphere can be explained by assuming that there are two related cascade processes emanating from the same large-scale energy source, a downscale cascade of potential enstrophy, giving rise to the k(-3) spectrum at synoptic scales and a downscale energy cascade giving rise to the k(-5/3) spectrum at mesoscales. The amount of energy which is going into the downscale energy cascade is determined by the rate of system rotation, with negligible energy going downscale in the limit of very fast rotation. We present a set of simulations of a system with strong rotation and stratification, supporting these hypotheses and showing good agreement with observations.

  9. Integrated Potential-field Studies in Support of Energy Resource Assessment in Frontier Areas of Alaska

    NASA Astrophysics Data System (ADS)

    Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.

    2008-05-01

    basement gravity (green) highlight domains with common geophysical characteristics and, by inference, lithology. The observed patterns suggest that much of the basin is underlain by Devonian to Jurassic oceanic rocks that probably have little or no potential for hydrocarbon generation. The coastal plain surficial deposits in the northern part of ANWR conceal another frontier basin with hydrocarbon potential. Proprietary aeromagnetic and gravity data were used, along with seismic reflection profiles, to construct a structural and stratigraphic model of this highly deformed sedimentary basin for use in an energy resource assessment. Matched-filtering techniques were used to separate short-wavelength magnetic and gravity anomalies attributed to sources near the top of the sedimentary section from longer-wavelength anomalies attributed to deeper basin and basement sources. Models along the seismic reflection lines indicate that the primary sources of the short-wavelength anomalies are folded and faulted sedimentary beds truncated at the Pleistocene erosion surface. In map view, the aeromagnetic and gravity anomalies produced by the sedimentary units were used to identify possible structural trapping features and geometries, but they also indicated that these features may be significantly disrupted by faulting.

  10. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    PubMed

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  11. Gravitational potential as a source of earthquake energy

    USGS Publications Warehouse

    Barrows, L.; Langer, C.J.

    1981-01-01

    Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.

  12. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  13. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    DTIC Science & Technology

    2012-05-23

    output • Uses the organic portion of solid waste (such as food waste , paper products, and agricultural waste ) to fuel an anaerobic digestion ...Sustainability Symposium & Exhibition Anaerobic Digestion • What does it do? • Offers sustainability by addressing renewable energy, waste ... Waste to Energy Potential – A High Concentration Anaerobic Bioreactor Presenter: Scott Murphy & Rebecca Robbennolt ARCADIS/Malcolm Pirnie Date

  14. Energy potential of municipal solid waste is limited

    SciTech Connect

    1994-09-01

    Energy recovery from municipal solid waste has the potential for making only a limited contribution to the nation`s overall energy production. Although the current contribution of waste-derived energy production is less than one-half of 1 percent of the nation`s total energy Supply, DOE has set a goal for energy from waste at 2 percent of the total supply by 2010. The industry`s estimates show a smaller role for waste as an energy source in the future. The energy potential from waste is limited not only by the volume and energy content of the waste itself, but also by the factors affecting the use of waste disposal options, including public opposition and the availability of financing. Energy production from waste combustors and from landfill gases generates pollutants, although these are reduced through current regulations that require the use of emissions control technology and define operational criteria for the facilities. Although DOE estimates that one-third of the energy available from waste is available in the form of energy savings through the recycling of materials, the Department`s research in this area is ongoing.

  15. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  16. Separable representation of energy-dependent optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  17. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  18. A triangular element based on generalized potential energy concepts

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1976-01-01

    Stiffness equations are formulated for a doubly-curved triangular thin shell finite element. The strain energy component of the potential energy is first expressed in terms of displacements and displacement gradients with the aid of consistent deep shell strain-displacement equations. The element in-plane and normal displacement fields are approximated by complete cubic polynomials. These functions do not satisfy the interelement displacement admissibility conditions. Satisfaction is forced by the imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Some numerical results for a pinched cylinder, a cylindrical sphere, and a pinched sphere are examined.

  19. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  20. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  1. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    SciTech Connect

    Webber, Carrie A.; Brown, Richard E.

    1998-06-19

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  2. Kappa distribution in the presence of a potential energy

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2015-02-01

    The present paper develops the theory and formulations of the kappa distributions that describe particle systems characterized by a nonzero potential energy. As yet, kappa distributions were used for the statistical description of the velocity or kinetic energy of particles but not of the potential energy. With the results provided here, it is straightforward to use the developed kappa distributions to describe any particle population of space plasmas subject to a nonnegligible potential energy. Starting from the kappa distribution of the Hamiltonian function, we develop the distributions that describe either the complete phase space or the marginal spaces of positions and velocities. The study shows, among others: (a) The kappa distributions of velocities that describe space plasmas can be vastly different from the standard formulation of the kappa distribution, because of the presence of a potential energy; the correct formulation should be given by the marginal kappa distribution of velocities by integrating the distribution of the Hamiltonian over the potential energy. (b) The long-standing problem of the divergence of the Boltzmannian exponential distribution for bounded radial potentials is solved using kappa distributions of negative kappa index. (c) Anisotropic distributions of velocities can exist in the presence of a velocity-dependent potential. (d) A variety of applications, including derivations/verifications of the following: (i) the Jeans', the most frequent, and the maximum radii in spherical/linear gravitational potentials; (ii) the Virial theorem for power law potentials; (iii) the generalized barometric formula, (iv) the plasma density profiles in Saturnian magnetosphere, and (v) the average electron magnetic moment in Earth's magnetotail.

  3. Fusion at deep subbarrier energies: potential inversion revisited

    SciTech Connect

    Hagino, K.; Rowley, N.

    2009-03-04

    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.

  4. New Methods for Exploring QM:MM Potential Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2010-06-01

    In recent years, the applicability of quantum chemical methods for large system studies has been greatly enhanced by the development of hybrid QM:MM techniques. Despite these advancements, exploring the associated potential energy surfaces continues to present two key challenges. First, the QM energy and derivative evaluations may be too costly for simulations; and second, the system size for many QM:MM cases are too large to effectively store or use second-order information, an approach often used in QM studies to allow for larger integration steps and fewer QM evaluations of the potential energy surface. Our most recent work is focused on overcoming both computational bottlenecks. Using surface fitting models together with direct Hessian-vector and diagonalization algorithms, we are developing models that can accurately and efficiently explore QM:MM potential energy landscapes for very large systems. Our current development status and results from initial applications will be described.

  5. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  6. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  7. Calculation of molecular free energies in classical potentials

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Singh, Bipin

    2016-02-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.

  8. Potential for energy conservation in the glass industry

    SciTech Connect

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  9. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    PubMed

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.

  10. Critical points, phase transitions and water-like anomalies for an isotropic two length scale potential with increasing attractive well

    NASA Astrophysics Data System (ADS)

    Pinheiro, L.; Furlan, A. P.; Krott, L. B.; Diehl, A.; Barbosa, M. C.

    2017-02-01

    Molecular Dynamic and Monte Carlo studies are performed in a system of particles interacting through core-softened (CS) potential, composed by two length scales: a repulsive shoulder at short distances and the another a variable scale, that can be repulsive or strongly attractive depending on the parameters used. The system show water-like anomalous behavior. The density, diffusion and structural anomalous regions in the pressure versus temperature phase diagram shrink in pressure as the system becomes more attractive. The transition appears with the increase of the attraction well. We found that the liquid-gas phase transition is Ising-like for all the CS potentials and its critical temperature increases with the increase of the attraction. No Ising-like behavior for the liquid-liquid phase transition was detected in the Monte Carlo simulations what might be due to the presence of stable amorphous phases.

  11. Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa

    SciTech Connect

    Cowlin, S. C.; Heimiller, D.; Bilello, D.; Renne, D.

    2008-01-01

    This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).

  12. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  13. Wind energy potential analysis in Al-Fattaih-Darnah

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Salem, Abdelkarim Ali; Himawanto, Dwi Aries

    2016-03-01

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth's surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  14. Warm body temperature facilitates energy efficient cortical action potentials.

    PubMed

    Yu, Yuguo; Hill, Adam P; McCormick, David A

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+) channel inactivation, resulting in a marked reduction in overlap of the inward Na(+), and outward K(+), currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+) entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  15. RKRV potential energy curves and dissociation energies of NH and PH

    NASA Astrophysics Data System (ADS)

    Reddy, R. R.; Viswanath, R.

    1989-05-01

    The turning points of the potential energy curves for the ground states of NH and PH molecules were calculated using the approach of Rydberg-Klein-Rees modified by Vanderslice et al. (1960), together with the energy values obtained from the Lippincott potential function. These values were compared with those obtained by Jarmain (1960). The values of the dissociation energies of the NH and PH were estimated to be about 3.45 and 3.16, respectively.

  16. Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface

    NASA Astrophysics Data System (ADS)

    Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C.; van der Avoird, Ad

    2008-03-01

    A six-dimensional interaction potential for the water dimer has been fitted to ab initio interaction energies computed at 2510 dimer configurations. These energies were obtained by combining the supermolecular second-order energies extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The energies have been fitted using an analytic form with the induction component represented by a polarizable term, making the potential directly transferable to clusters and the bulk phase. Geometries and energies of stationary points on the potential surface agree well with the results of high-level ab initio geometry optimizations.

  17. Low-energy K- optical potentials: deep or shallow?

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K- optical potential in the nuclear medium is evaluated self consistently from a free-space K-Nt matrix constructed within a coupled-channel chiral approach. The fit of model parameters gives a good description of the low-energy data plus the available K- atomic data. The resulting optical potential is relatively `shallow' in contradiction to the potentials obtained from phenomenological analysis. The calculated (Kstop-,π) hypernuclear production rates are very sensitive to the details of kaonic bound state wave function. The (Kstop-,π) reaction could thus serve as a suitable tool to distinguish between shallow and deep K- optical potentials.

  18. Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Marazza, Diego; Contin, Andrea

    2015-04-01

    The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.

  19. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  20. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    NASA Astrophysics Data System (ADS)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.

    2016-08-01

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  1. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  2. Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.

  3. High-energy anomaly in Nd2-xCexCuO4 investigated by angle-resolved photoemission spectroscopy and quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Schmitt, F.; Moritz, B.; Johnston, S.; Mo, S.-K.; Hashimoto, M.; Moore, R. G.; Lu, D.-H.; Motoyama, E.; Greven, M.; Devereaux, T. P.; Shen, Z.-X.

    2011-05-01

    Recent high-binding-energy angle-resolved photoemission spectroscopy (ARPES) experiments reveal a change in band dispersion in the high-temperature superconducting cuprates (HTSCs) known as the high-energy anomaly (HEA). Despite considerable experimental and theoretical attention, the origin of the HEA remains a topic of some controversy. In this paper we present systematic and comprehensive experimental evidence on the origin of the HEA from ARPES measurements on the electron-doped HTSC material Nd2-xCexCuO4 at a number of dopings across the phase diagram and over the entire Brillouin zone (BZ). Comparing these new experimental findings to quantum Monte Carlo simulations of the single-band Hubbard model across the BZ and for various dopings demonstrates that this simple model qualitatively reproduces the key experimental features of the HEA and points to significant self-energy and band renormalization effects accompanying strong electron correlations as its origin rather than coupling to any one emergent bosonic mode, e.g., antiferromagnetic spin fluctuations. We conclude from comparison to this simple model that the HEA in these systems should be regarded as a crossover from a coherent quasiparticle band at low binding energies, emergent from the upper Hubbard band in electron-doped HTSCs due to doping and modified by subsequent strong band renormalization effects, to oxygen valence bands at higher binding energy that would be revealed in simulations explicitly incorporating these important orbital degrees of freedom.

  4. Rapid ocean wave teleconnections linking Antarctic salinity anomalies to the equatorial ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Atkinson, C. P.; Wells, N. C.; Blaker, A. T.; Sinha, B.; Ivchenko, V. O.

    2009-04-01

    The coupled climate model FORTE is used to investigate rapid ocean teleconnections between the Southern Ocean and equatorial Pacific Ocean. Salinity anomalies located throughout the Southern Ocean generate barotropic signals that propagate along submerged topographic features and result in the growth of baroclinic energy anomalies around Indonesia and the tropical Pacific. Anomalies in the Ross, Bellingshausen and Amundsen Seas exchange the most barotropic kinetic energy between high and low latitudes. In the equatorial Pacific, baroclinic Kelvin waves are excited which propagate eastwards along the thermocline, resulting in SST anomalies in the central and eastern Pacific. SST anomalies are subsequently amplified to magnitudes of 1.25°C by air-sea interaction, which could potentially influence other coupled Pacific phenomena.

  5. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.

    1975-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.

  6. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials

    SciTech Connect

    Brokaw, Jason B.; Haas, Kevin R.; Chu, Jhih-wei

    2009-08-11

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C₇eq-to-Cax isomerization of an alanine dipeptide, the ⁴C₁- to-¹C₄ transition of an α-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a

  7. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials.

    PubMed

    Brokaw, Jason B; Haas, Kevin R; Chu, Jhih-Wei

    2009-08-11

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C7eq-to-Cax isomerization of an alanine dipeptide, the (4)C1-to-(1)C4 transition of an α-d-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path

  8. Reference pressure changes and available potential energy in isobaric coordinates

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.

    1985-01-01

    A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.

  9. Finding reaction paths using the potential energy as reaction coordinate.

    PubMed

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-14

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.

  10. Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces.

    PubMed

    Evenhuis, Christian R; Manthe, Uwe

    2008-07-14

    A potential energy interpolation approach based on modified Shepard interpolation and specifically designed for calculation of vibrational states is presented. The importance of the choice of coordinates for the rate of convergence is demonstrated. Studying the vibrational states of the water molecule as a test case, a coordinate system comprised of inverse bond distances and trigonometric functions of the bond angle is found to be particularly efficient. Different sampling schemes used to locate the reference points in the modified Shepard interpolation are investigated. A final scheme is recommended, which allows the construction of potential energy surfaces to sub-wave-number accuracy.

  11. Gauge anomalies, gravitational anomalies, and superstrings

    SciTech Connect

    Bardeen, W.A.

    1985-08-01

    The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.

  12. Potential function and dissociation energy of alkali halide

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhay P.; Pandey, Anjani K.; Pandey, Brijesh K.

    2016-05-01

    Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L5 potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.

  13. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  14. LHC Physics Potential vs. Energy: Considerations for the 2011 Run

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2011-02-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I quantify the advantage of increasing the beam energy from 3.5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u {bar d}, qq, and gq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes. This note extends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/.

  15. Energy savings potential in air conditioners and chiller systems

    DOE PAGES

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  16. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  17. The elliptic anomaly

    NASA Technical Reports Server (NTRS)

    Janin, G.; Bond, V. R.

    1980-01-01

    An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.

  18. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under

  19. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  20. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  1. Teaching Field Concept and Potential Energy at A-Level.

    ERIC Educational Resources Information Center

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  2. Potential Energy Surface Database of Group II Dimer

    National Institute of Standards and Technology Data Gateway

    SRD 143 NIST Potential Energy Surface Database of Group II Dimer (Web, free access)   This database provides critical atomic and molecular data needed in order to evaluate the feasibility of using laser cooled and trapped Group II atomic species (Mg, Ca, Sr, and Ba) for ultra-precise optical clocks or quantum information processing devices.

  3. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  4. Spectroscopic constants and potential energy curves of PF

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1995-09-01

    Spectroscopic constants of low-lying bound electronic states and potential energy curves of 19 electronic states of PF arising from the valence dissociation limits are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods, which included up to 0.9 million configurations.

  5. Spectroscopic constants and potential energy curves of AsF

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1996-02-01

    Spectroscopic constants and potential energy curves of 21 electronic states of AsF are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) and multireference singles and doubles configuration interaction (MRSDCI) methods. The computed spectroscopic constants agree with the experimental values for the observed states.

  6. Energy harvesting potential of tuned inertial mass electromagnetic transducers

    NASA Astrophysics Data System (ADS)

    Asai, Takehiko; Araki, Yoshikazu; Ikago, Kohju

    2017-02-01

    The demand for developing renewable energy technologies has been growing in today's society. As one of promising renewable energy sources, large-scale energy harvesting from structural vibrations employing electromagnetic transducers has recently been proposed and considerable effort has been devoted to increase the power generation capability. In this paper, we introduce the mechanism of a tuned inertial mass electromagnetic transducer (TIMET), which can absorb vibratory energy more efficiently by tuning the parameters to adjust the system. Then we propose a new vibratory energy harvester with the TIMET and determine the parameter values for the device with a simple static admittance (SA) control law to maximize the energy harvested from a stationary stochastic disturbance. To investigate the energy harvesting potential of the TIMET further, the performance-guaranteed (PG) control and the LQG control proposed in the literature are applied as well. Then the numerical simulation studies are carried out and the effectiveness of the proposed energy harvester is examined by comparing the traditional electromagnetic transducers.

  7. N2(+) bound quartet and sextet state potential energy curves

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Bauschlicher, C. W., Jr.; Stallcop, J. R.

    1985-01-01

    The N2(+) potential energies have been determined from a complete active space self-consistent field calculation with active 2s and 2p electrons. A (6s 4p 3d 1f) Gaussian basis set was used together with additional higher angular momentum and diffuse functions. The calculated potential energy curves for the states 4Sigma(mu)(+), 4Pi(g), and 6Sigma(g)(+), for which there are no spectroscopic observations, are presented. The corresponding spectroscopic constants have been determined from a polynomial curve fit to the computed energies near the well minima and are shown. The 6Sigma(g)(+) state is found to be significantly bound, with a minimum at 1.72 A.

  8. Understanding Potential Climate Variability Impacts on the Offshore Energy Industry

    NASA Astrophysics Data System (ADS)

    Stear, J.

    2014-12-01

    Climate variability may have important implications for the offshore energy industry. Scenarios of increased storm activity and changes in sea level could require the retrofit of existing offshore platforms and coastal infrastructure, the decommissioning of facilities for which upgrade or relocation is not economically viable, and the development of new methods and equipment which are removed from or less sensitive to environmental loads. Over the past years the energy industry has been actively involved in collaborative research efforts with government and academia to identify the potential changes in the offshore operating environment, and corresponding risk implications. This presentation will review several of these efforts, and for several of the hypothetical climate variation scenarios, review the potential impacts on and possible mitigations for offshore and coastal energy infrastructure and operations.

  9. Three-dimensional potential energy surface of Ar–CO

    SciTech Connect

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  10. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  11. Three-dimensional potential energy surface of Ar-CO.

    PubMed

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar-CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  12. Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures.

    PubMed

    Chatzieleftheriou, Stavros; Adendorff, Matthew R; Lagaros, Nikos D

    2016-10-24

    The potential energy of molecules and nanostructures is commonly calculated in the molecular mechanics formalism by superimposing bonded and nonbonded atomic energy terms, i.e. bonds between two atoms, bond angles involving three atoms, dihedral angles involving four atoms, nonbonded terms expressing the Coulomb and Lennard-Jones interactions, etc. In this work a new, generalized numerical simulation is presented for studying the mechanical behavior of three-dimensional nanostructures at the atomic scale. The energy gradient and Hessian matrix of such assemblies are usually computed numerically; a potential energy finite element model is proposed herein where these two components are expressed analytically. In particular, generalized finite elements are developed that express the interactions among atoms in a manner equivalent to that invoked in simulations performed based on the molecular dynamics method. Thus, the global tangent stiffness matrix for any nanostructure is formed as an assembly of the generalized finite elements and is directly equivalent to the Hessian matrix of the potential energy. The advantages of the proposed model are identified in terms of both accuracy and computational efficiency. In the case of popular force fields (e.g., CHARMM), the computation of the Hessian matrix by implementing the proposed method is of the same order as that of the gradient. This analysis can be used to minimize the potential energy of molecular systems under nodal loads in order to derive constitutive laws for molecular systems where the entropy and solvent effects are neglected and can be approximated as solids, such as double stranded DNA nanostructures. In this context, the sequence dependent stretch modulus for some typical base pairs step is calculated.

  13. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  14. Novel mixture model for the representation of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Tien Lam; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Dam, Hieu Chi

    2016-10-01

    We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the generative Gaussian mixture model, physically meaningful patterns of atomic local chemical environments can be detected automatically. Based on the obtained information regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model for estimating the atomic potential energy. Our experiments show that the proposed mixture model significantly improves the accuracy of the prediction of the potential energy surface for complex systems that possess a large diversity in their local structures.

  15. Diffusional anomaly and network dynamics in liquid silica

    NASA Astrophysics Data System (ADS)

    Sharma, Ruchi; Mudi, Anirban; Chakravarty, Charusita

    2006-07-01

    The present study applies the power spectral analysis technique to understand the diffusional anomaly in liquid silica, modeled using the Beest-Kramer-van Santen (BKS) potential. Molecular-dynamics simulations have been carried out to show that power spectrum of tagged particle potential energy of silica shows a regime with 1/fα dependence on frequency f which is the characteristic signature of multiple time scale behaviour in networks. As demonstrated earlier in the case of water [J. Chem. Phys. 122, 104507 (2005)], the variations in the mobility associated with the diffusional anomaly are mirrored in the scaling exponent α associated with this multiple time scale behavior. Our results indicate that in the anomalous regime, as the local tetrahedral order decreases with temperature or pressure, the coupling of local modes to network reorganizations increases and so does the diffusivity. This symmetry-dependence of the vibrational couplings is responsible for the connection between the structural and diffusional anomalies.

  16. An exploration of the ozone dimer potential energy surface

    SciTech Connect

    Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve

    2014-06-28

    The (O{sub 3}){sub 2} dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O{sub 3} monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm{sup −1}. In addition to the five minima, 11 higher-order stationary points are identified.

  17. Potential energy curves and dissociation energy of group IIA diatomic fluorides

    NASA Astrophysics Data System (ADS)

    Varma, M. P.; Ishwar, N. B.; Jha, B. L.

    1982-04-01

    Reliable (RKRV) potential energy curves have been constructed for different experimentally observed electronic states of BeF, MgF, CaF, SrF and BaF molecules from the latest spectroscopic data using the method of Rao and Venkateswarlu. Using a three-parameters Lippincott potential function the precise values of ground state dissociation energies of these molecules have been obtained. Values so obtained are found to be in close agreement with the experimental results.

  18. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  19. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  20. Study of chirally motivated low-energy K - optical potentials

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K - optical potential in the nuclear medium is evaluated self consistently from a free-space K -N t matrix constructed within a coupled-channel chiral approach to the low-energy K¯N data. The chiral-model parameters are fitted to a select subset of the low-energy data plus the K - atomic data throughout the periodic table. The resulting attractive K - optical potentials are relatively 'shallow', with central depth of the real part about 55 MeV, for a fairly reasonable reproduction of the atomic data with χ2/ N≈2.2. Relatively 'deep' attractive potentials of depth about 180 MeV, which result in other phenomenological approaches with χ2/ N≈1.5, are ruled out within chirally motivated models. Different physical data input is required to distinguish between shallow and deep K - optical potentials. The (K -stop, π) reaction could provide such a test, with exclusive rates differing by over a factor of three for the two classes of potentials. Finally, forward (K -,p) differential cross sections for the production of relatively narrow deeply bound K -nuclear states are evaluated for deep K - optical potentials, yielding values considerably lower than those estimated before.

  1. Geochemical anomalies from bottom ash in a road construction--comparison of the leaching potential between an ash road and the surroundings.

    PubMed

    Lind, Bo B; Norrman, Jenny; Larsson, Lennart B; Ohlsson, Sten-Ake; Bristav, Henrik

    2008-01-01

    A study was performed between June 2001 and December 2004 with the primary objective of assessing long-term leaching from municipal solid waste incineration bottom ash in a test road construction in relation to a reference road made up of conventional materials and the natural geochemical conditions in the surroundings. The metal leaching from the test road and the reference road was compared with the natural weathering in the regional surroundings for three time scales: 16, 80 and 1000 years. The results show that Cu and Zn cause a geochemical anomaly from the test road compared with the surroundings. The leaching of Cu from the test road is initially high but will decline with time and will in the long term be exceeded by natural weathering. Zn on the other hand has low initial leaching, which will increase with time and will in the long term exceed that of the test road and the surroundings by a factor of 100-300. For the other metals studied, Al, Na, K and Mg, there is only very limited leaching over time and the potential accumulation will not exceed the background values in a 1000 years.

  2. Residential energy efficiency: Progress since 1973 and future potential

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  3. A test of H2-He potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Thibault, Franck; Wcisło, Piotr; Ciuryło, Roman

    2016-11-01

    The close-coupling method is used to calculate purely rotational relaxation rates and pressure broadening and shifting coefficients for H2-He collisions, in order to test various potential energy surfaces. Downward rate coefficients k3→1(T) and k2→0(T) are compared with experimental data, but the subtle differences in the potential energy surfaces are hardly reflected in these rates. Helium pressure broadening and shifting generalized cross sections for the isotropic Raman Q(1) lines of the fundamental bands of D2 and H2 as well as the purely rotational Stokes S0(1) line of H2 are therefore also considered. While these spectroscopic characteristics are much more sensitive to the precise form of the interaction potential, a proper validation cannot be performed without taking into account the influence of the translational motion on the molecular line shapes. After including this, it is found that the potential energy surface of Bakr, Smith and Patkowski [B.W. Bakr, D.G.A. Smith, K. Patkowski, J. Chem. Phys. 139, 144305 (2013)] allows the best reproduction of the experimental data.

  4. Using peat for energy: Potential environmental restraints. Overview

    NASA Astrophysics Data System (ADS)

    Reed, R. M.; Voorhees, L. D.; Mulholland, P. J.

    Serious consideration is being given to using peat as an energy resource in Minnesota, North Carolina, Florida, and some New England States. Potential environmental constraints for using peat as an energy resource are associated with disruption of important regional wetland ecosystems. Mining peatlands may significantly modify ground and surface water hydrology, degrade water quality in downstream receiving systems, contribute to the deterioration of local air quality, disrupt or eliminate plant and animal populations having specialized requirements and limited distributions, and destroy unique wetland ecosystems representing important scientific and educational resources. Careful selection of peatlands to be developed and application of appropriate mitigation and monitoring programs will be necessary to offset these impacts.

  5. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    PubMed

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  6. The H 2O ++ Ground State Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Bunker, P. R.; Bludsky, Ota; Jensen, Per; Wesolowski, S. S.; Van Huis, T. J.; Yamaguchi, Y.; Schaefer, H. F.

    1999-12-01

    At the correlation-consistent polarized-valence quadruple-zeta complete active space self-consistent field second-order configuration interaction level of ab initio theory (cc-pVQZ CASSCF-SOCI), we calculated 129 points on the ground electronic state potential energy surface of the water dication H2O++; this calculation includes the energy of X3Σ- OH+ at equilibrium and the energy of the triplet oxygen atom. We determined the parameters in an analytical function that represents this surface out to the (OH+ + H+) and (O + 2H+) dissociation limits, for bending angles from 70 to 180°. There is a metastable minimum in this surface, at an energy of 43 600 cm-1 above the H+ + OH+ dissociation energy, and the geometry at this minimum is linear (D∞h), with an OH bond length of 1.195 Å. On the path to dissociation to H+ + OH+, there is a saddle point at an energy of 530 cm-1 above the minimum, and the geometry at the saddle point is linear (C∞ Kv) with OH bond lengths of 1.121 and 1.489 Å. Using the stabilization method, we calculated the lowest resonance on this surface. Relative to the metastable local minimum on the potential energy surface, the position of the lowest resonance for H2O++, D2O++, and T2O++ is 1977(85), 1473(25), and 1249(10) cm-1, respectively, where the width of each resonance (in cm-1) is given in parentheses.

  7. Assessment of Tidal Stream Energy Potential for the United States

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.

    2010-12-01

    Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well

  8. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  9. Mashreq Arab interconnected power system potential for economic energy trading

    SciTech Connect

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.

  10. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  11. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1992-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  12. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1993-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  13. Constraints on lithospheric structure from satellite potential field data: Africa and Asia. Analysis and interpretation of MAGSAT anomalies over North Africa

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1986-01-01

    Crustal anomaly detection with MAGSAT data is frustrated by the inherent resolving power of the data and by contamination from the external and core fields. The quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within the proposed resolution and crustal amplitude capabilities of the MAGSAT fields. To test this hypothesis, the north African hotspots associated with Ahaggar, Tibestia and Darfur have been modeled as magnetic induction anomalies due solely to shallower depth to the Curie isotherm surface beneath these features. The MAGSAT data were reduced by subtracting the external and core fields to isolate the scalar and vertical component crustal signals. The predicted model magnetic signal arising from the surface topography of the uplift and the Curie isotherm surface was calculated at MAGSAT altitudes by the Fourier transform technique modified to allow for variable magnetization. In summary it is suggested that the region beneath Ahaggar is associated with a strong thermal anomaly and the predicted anomaly best fits the associated MAGSAT anomaly if the African plate is moving in a northeasterly direction.

  14. The potential impact of hydrogen energy use on the atmosphere

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  15. Free energy generalization of the Peierls potential in iron.

    PubMed

    Gilbert, M R; Schuck, P; Sadigh, B; Marian, J

    2013-08-30

    In body-centered-cubic (bcc) crystals, 1/2<111> screw dislocations exhibit high intrinsic lattice friction as a consequence of their nonplanar core structure, which results in a periodic energy landscape known as the Peierls potential U(P). The main features determining plastic flow, including its stress and temperature dependences, can be derived directly from this potential, hence its importance. In this Letter, we use thermodynamic integration to provide a full thermodynamic extension of U(P) for bcc Fe. We compute the Peierls free energy path as a function of stress and temperature and show that the critical stress vanishes at 700 K, supplying the qualitative elements that explain plastic behavior in the athermal limit.

  16. The Potential for Energy Efficiency and Renewable Energy in North Carolina

    SciTech Connect

    Hadley, SW

    2003-08-06

    As many states have restructured their electric power industry, they have established a ''systems benefit charge'' to help fund those activities that will no longer be funded by utilities in the new structure. Examples include weatherization of low-income housing, efficiency programs, and renewable energy development. Varying amounts have been collected and allocated depending on state needs and abilities. One question that arises is what are the potential results of funding the different types of programs. What is the potential for energy efficiency or for renewable power, and what would be accomplished given the amount of funding that the system benefit charge may provide? The purpose of this project is to provide an initial estimate of the potential for energy efficiency and renewable energy in North Carolina. This potential could be funded by a public benefits fund resulting from a green power program being considered in the state. It concentrates on electric energy savings and production. Savings in buildings can include improvements to space conditioning as well as improvements to lighting or other appliances. Distributed power potential, through use of combined heat and power and renewables such as photovoltaic, wind, and biomass were examined. The goal is to provide information to decision makers who are developing a green power program in North Carolina. It will not be a complete and detailed study of all efficiency potentials but is more of a scoping exercise to determine the relative impacts and begin the process for a more definitive study at a later date. Statewide energy savings potential cannot be directly measured but must be calculated. First, the word ''potential'' means that the savings have not occurred yet. Second, the savings are often only indirectly measured by estimating what energy use there would have been without the changes in technology or behavior. Calculations through sampling and statistical analysis or by simulation are a necessary

  17. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect

    Ruedenberg, K.

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  18. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.

  19. MCSCF potential energy surface for photodissociation of formaldehyde

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Morokuma, K.

    1976-01-01

    The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.

  20. Spectroscopic constants and potential energy curves of GeF +

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Balasubramanian, K.

    1995-05-01

    Spectroscopic constants and potential energy curves of 27 electronic states of GeF + are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods that included up to 1.6 million configurations. Our computed spectroscopic constants of the 1Σ+ electronic state fit well with the experimentally observed X ground state. Other yet to be observed properties of several excited electronic states are reported.

  1. Spectroscopic constants and potential energy curves of SnF

    NASA Astrophysics Data System (ADS)

    Dai, Dingguo; Balasubramanian, K.

    1994-07-01

    Spectroscopic constants and potential energy curves of 20 electronic states of SnF arising from valence dissociation limits are computed using the complete active space MCSCF (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods, which included up to one million configurations. Our computed spectroscopic constants of five electronic states fit well with the experimentally observed X, A, a, and C states. The dipole moments and other yet to be observed properties of several electronic states are reported.

  2. Spectroscopic Properties and Potential Energy Curves of SnF +

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Xu, H.

    1995-06-01

    Spectroscopic properties and potential energy curves of several electronic states of SnF+ are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods that include up to 1.6 million configurations. Spin-orbit effects were incorporated using the relativistic configuration interaction (RCI) method. Spectroscopic properties of several excited electronic states of SnF+ are reported, none of which is observed at present.

  3. The Potential of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Sakipova, S.; Jakovics, A.; Gendelis, S.

    2016-02-01

    The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  4. CO dimer: new potential energy surface and rovibrational calculations.

    PubMed

    Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2013-08-15

    The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new potential energy surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio potential energy surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The potential has two nonpolar minima giving rise to a complicated set of energy level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction energy even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation energy (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated energy levels were compared to 105 J ≤ 10 levels from experiment. The rms error for 68 levels with J ≤ 6 is only 0.29 cm(-1). The calculated energy levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an energy lower than many previously known stacks and may be observable.

  5. Chiral anomalies and differential geometry

    SciTech Connect

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  6. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  7. Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe

    NASA Astrophysics Data System (ADS)

    Moemken, Julia; Reyers, Mark; Buldmann, Benjamin; Pinto, Joaquim G.

    2016-04-01

    weather type with strong pressure gradients over Central Europe is identified as potential source for the skill for wind energy potentials, showing similar forecast skill and a high correlation with Eout anomalies. These results are promising regarding the establishment of a decadal prediction system for wind energy for Central Europe.

  8. A satellite investigation of energy flux and inferred potential drop in auroral electron energy spectra

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Burch, J. L.

    1981-01-01

    The relationship between auroral electron energy flux and the inferred accelerating potential drop for accelerated Maxwellian distributions is investigated on the basis of Atmospheric Explorer D spectral measurements. An analytical approximation for the total downward energy flux carried by an isotropic Maxwellian electron population accelerated by a field-aligned electrostatic potential drop is derived which is valid for values of the electron energy/characteristic accelerated Maxwellian distribution energy which are less than the difference between the ratio of the magnetic field strengths at the altitude of observation and the altitude of potential drop, and unity. Data from the Low Energy Electron Experiment on board AE D obtained on both the dayside and the nightside during periods of significant inverted-V type electron precipitation shows that the 455 energy spectra considered, 160 of them, obtained between 60 and 85 deg invariant latitude, could be fit to accelerated Maxwellian distributions. The 160 Maxwellian spectra are then shown to be in agreement with the predictions of the accelerated Maxwellian model. Finally, analysis of individual spectra suggests that the altitude of the inferred potential drop is at a maximum near the center of the inverted-V structures.

  9. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    PubMed

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  10. Energy conservation potential of the US Department of Energy interim commercial building standards

    SciTech Connect

    Hadley, D.L.; Halverson, M.A.

    1993-12-01

    This report describes a project conducted to demonstrate the whole-building energy conservation potential achievable from full implementation of the US Department of Energy (DOE) Interim Energy Conservation Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings. DOE`s development and implementation of energy performance standards for commercial buildings were established by the Energy Conservation Standards for New Buildings Act of 1976, as amended, Public Law (PL) 94-385, 42 USC 6831 et seq., hereinafter referred to as the Act. In accordance with the Act, DOE was to establish performance standards for both federal and private sector buildings ``to achieve the maximum practicable improvements in energy efficiency and use of non-depletable resources for all new buildings``.

  11. Metabolic Energy of Action Potentials Modulated by Spike Frequency Adaptation

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-01-01

    Spike frequency adaptation (SFA) exists in many types of neurons, which has been demonstrated to improve their abilities to process incoming information by synapses. The major carrier used by a neuron to convey synaptic signals is the sequences of action potentials (APs), which have to consume substantial metabolic energies to initiate and propagate. Here we use conductance-based models to investigate how SFA modulates the AP-related energy of neurons. The SFA is attributed to either calcium-activated K+ (IAHP) or voltage-activated K+ (IM) current. We observe that the activation of IAHP or IM increases the Na+ load used for depolarizing membrane, while produces few effects on the falling phase of AP. Then, the metabolic energy involved in Na+ current significantly increases from one AP to the next, while for K+ current it is less affected. As a consequence, the total energy cost by each AP gets larger as firing rate decays down. It is also shown that the minimum Na+ charge needed for the depolarization of each AP is unaffected during the course of SFA. This indicates that the activation of either adaptation current makes APs become less efficient to use Na+ influx for their depolarization. Further, our simulations demonstrate that the different biophysical properties of IM and IAHP result in distinct modulations of metabolic energy usage for APs. These investigations provide a fundamental link between adaptation currents and neuronal energetics, which could facilitate to interpret how SFA participates in neuronal information processing. PMID:27909394

  12. Gravitational potential energy of the earth - A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain energy in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of energy. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.

  13. GIS Assessment of Wind Energy Potential in California and Florida

    NASA Astrophysics Data System (ADS)

    Snow, R. K.; Snow, M. M.

    2008-05-01

    Energy efficiency coupled with renewable energy technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative energy sector is wind power, which is now one of the largest sources of new power generation in the U.S. creating jobs and revenue for rural communities while powering our economy with an emissions-free source of energy. In 2006, wind turbines capable of generating more than 2,400 megawatts of electricity were installed in the U.S. and by 2007 this number had risen to 3,000 megawatts. The U.S. generated 31 billion kilowatt-hours of wind power in 2007, which is enough electricity to power the equivalent of nearly 3 million average homes. It is estimated that generating the same amount of electricity would require burning 16 million tons of coal or 50 million barrels of oil. This study examines the wind power potential of sites near populated areas in Florida and California to determine the practicability of installing wind turbines at these locations. A GIS was developed in order to conduct a spatial analysis of these sites based on mean annual wind speed measured in meters per second and wind power density ratings measured in watts per square meter. The analysis indicates that coastal areas of Cocoa Beach, Key West, Hollywood, and West Palm Beach, respectively, possess the greatest potential for wind energy in Florida with mean annual wind speeds of 4.9 m/s and average wind power density ratings of 171 w/m2 peaking at Cocoa Beach followed by wind speeds of 4.64 m/s and wind power ratings of 115 w/m2 at Key West. California wind energy potential is even greater than that of Florida with Fairfield exhibiting mean annual wind speeds of 5.9 m/s and average wind power density ratings of 327 w/m2 followed by the Mojave and Palmdale areas with mean annual wind speeds of

  14. Onshore wind energy potential over Iberia: present and future projections

    NASA Astrophysics Data System (ADS)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  15. Microscopic positive-energy potential based on the Gogny interaction

    NASA Astrophysics Data System (ADS)

    Blanchon, G.; Dupuis, M.; Arellano, H. F.; Vinh Mau, N.

    2015-01-01

    We present a nucleon elastic scattering calculation based on Green's function formalism in the random-phase approximation. For the first time, the finite-range Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, nonlocal, and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross sections. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schrödinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from 40Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to a much-too-high volume integral of the real potential for large partial waves. This work opens the way to simultaneously assess effective interactions suitable for both nuclear structure and reactions.

  16. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    NASA Astrophysics Data System (ADS)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  17. Potential for energy conservation in the cement industry

    SciTech Connect

    Garrett-Price, B.A.

    1985-02-01

    This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

  18. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  19. The molecular potential energy surface and vibrational energy levels of methyl fluoride. Part II.

    PubMed

    Manson, Steven A; Law, Mark M; Atkinson, Ian A; Thomson, Grant A

    2006-06-28

    New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.

  20. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    PubMed

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-07

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  1. Theoretical studies of potential energy surfaces and computational methods

    SciTech Connect

    Shepard, R.

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  2. Potential impacts of nanotechnology on energy transmission applications and needs.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  3. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  4. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  5. Expressions of Energy and Potential due to Orbital Polarization

    NASA Astrophysics Data System (ADS)

    Narita, Akira; Higuchi, Masahiko

    2006-02-01

    The simple and tractable representation for the LS-multiplet energy in l1l2-configuration in an atom is derived in the form of the polynomials being a function of l1\\cdotl2 which obey the recurrence formulae, and is suitable for the vector model. Moreover, it is extended to ln configurations. On a basis of the model, the definition of the orbital polarization energy is given. The more precise expressions of the energies compared to those so far proposed by Eriksson et al. are derived for the maximal spin multiplets in pn, dn, and fn. They are composed of two terms depending on -3L2/2 and n(n-2l-1). They are the exact for pn and dn, but it for fn is correct only for a ground multiplet. Other expressions are also derived as a function of L2 for fn, though more complicated. For the actual atomic and band structure calculations based on local-spin-density-approximation (LSDA), the modified expression for the energy is proposed. The potential is derived from its expression in terms of the density functional theory, and can be applied to their structure calculations.

  6. Thermal anomalies in stressed Teflon.

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Wulff, C. A.

    1972-01-01

    In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.

  7. Accurate ab initio potential energy computations for the H sub 4 system: Tests of some analytic potential energy surfaces

    SciTech Connect

    Boothroyd, A.I. ); Dove, J.E.; Keogh, W.J. ); Martin, P.G. ); Peterson, M.R. )

    1991-09-15

    The interaction potential energy surface (PES) of H{sub 4} is of great importance for quantum chemistry, as a test case for molecule--molecule interactions. It is also required for a detailed understanding of certain astrophysical processes, namely, collisional excitation and dissociation of H{sub 2} in molecular clouds, at densities too low to be accessible experimentally. Accurate {ital ab} {ital initio} energies were computed for 6046 conformations of H{sub 4}, using a multiple reference (single and) double excitation configuration interaction (MRD-CI) program. Both systematic and random'' errors were estimated to have an rms size of 0.6 mhartree, for a total rms error of about 0.9 mhartree (or 0.55 kcal/mol) in the final {ital ab} {ital initio} energy values. It proved possible to include in a self-consistent way {ital ab} {ital initio} energies calculated by Schwenke, bringing the number of H{sub 4} conformations to 6101. {ital Ab} {ital initio} energies were also computed for 404 conformations of H{sub 3}; adding {ital ab} {ital initio} energies calculated by other authors yielded a total of 772 conformations of H{sub 3}. (The H{sub 3} results, and an improved analytic PES for H{sub 3}, are reported elsewhere.) {ital Ab} {ital initio} energies are tabulated in this paper only for a sample of H{sub 4} conformations; a full list of all 6101 conformations of H{sub 4} (and 772 conformations of H{sub 3} ) is available from Physics Auxiliary Publication Service (PAPS), or from the authors.

  8. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    SciTech Connect

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  9. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Schaefer, Bastian; Ghasemi, S. Alireza; Roy, Shantanu; Goedecker, Stefan; Goedecker Group Team

    Optimizations of atomic positions belong to the most frequently performed tasks in electronic structure calculations. Many simulations like global minimum searches or the identification of chemical reaction pathways can require the computation of hundreds or thousands of minimizations or saddle points. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. In this talk a recently published technique that allows to obtain significant curvature information of noisy potential energy surfaces is presented. This technique was used to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. With the help of benchmarks both the minimizer and the saddle finding approach were demonstrated to be superior to comparable existing methods.

  10. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Schaefer, Bastian; Alireza Ghasemi, S.; Roy, Shantanu; Goedecker, Stefan

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  11. Domestic refrigeration appliances in Poland: Potential for improving energy efficiency

    SciTech Connect

    Meyers, S.; Schipper, L.; Lebot, B.

    1993-08-01

    This report is based on information collected from the main Polish manufacturer of refrigeration appliances. We describe their production facilities, and show that the energy consumption of their models for domestic sale is substantially higher than the average for similar models made in W. Europe. Lack of data and uncertainty about future production costs in Poland limits our evaluation of the cost-effective potential to increase energy efficiency, but it appears likely that considerable improvement would be economic from a societal perspective. Many design options are likely to have a simple payback of less than five years. We found that the production facilities are in need of substantial modernization in order to produce higher quality and more efficient appliances. We discuss policy options that could help to build a market for more efficient appliances in Poland and thereby encourage investment to produce such equipment.

  12. Calorific evaluation and energy potential of grape pomace

    NASA Astrophysics Data System (ADS)

    Burg, Patrik; Ludín, David; Rutkowski, Kazimierz; Krakowiak-Bal, Anna; Trávníček, Petr; Zemánek, Pavel; Turan, Jan; Višacki, Vladimir

    2016-04-01

    This article deals with energetic evaluation and potential of pomace - a waste product originating during production of grape wine. Calorimetric analysis of 19 grapevine varieties was performed in 2013 and 2014. The aim was to specify their combustible limit and the gross calorific value. The evaluations were performed on pristine pomace, pomace without seeds, and only on seeds themselves. The results obtained imply that pomace is an interesting energetic resource with a gross calorific value of 16.07-18.97 MJ kg-1. Lower calorific values were detected in pomace after seed separation ie 14.60-17.75 MJ kg-1; on the contrary, seeds alone had the highest calorific values of 19.78-21.13 MJ kg-1. It can be assumed from the results of energetic evaluation of pomace in Czech Republic conditions that, by purposeful and efficient usage of pomace, 6.4 GWh of electric energy and 28 GWh of thermal energy can be generated.

  13. Energy dependence of the optical potential of weakly and tightly bound nuclei as projectiles on a medium-mass target

    SciTech Connect

    Figueira, J. M.; Arazi, A.; Carnelli, P.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Niello, J. O. Fernandez; Capurro, O. A.; Fimiani, L.; Marti, G. V.; Lubian, J.; Monteiro, D. S.; Gomes, P. R. S.

    2010-02-15

    Angular distributions for the elastic scattering of the weakly bound {sup 6,7}Li+{sup 144}Sm systems were measured with high accuracy at bombarding energies from 85% up to 170% of the Coulomb barrier. An optical model analysis was performed, and the relevant parameters of the real and imaginary parts of the optical potential were extracted. The results are compared with those previously published for the tightly bound {sup 12}C+{sup 144}Sm and {sup 16}O+{sup 144}Sm systems. The usual threshold anomaly observed in the behavior of the potential of tightly bound systems was not observed for either weakly bound system. This absence is attributed to the repulsion due to breakup coupling which cancels the attraction arising from couplings with bound channels.

  14. Energy strategy and mitigation potential in energy sector of the Russian federation

    SciTech Connect

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  15. Energy expenditure estimates during school physical education: Potential vs. reality?

    PubMed

    Kahan, David; McKenzie, Thomas L

    2017-02-01

    Schools are salient locations for addressing the high prevalence of overweight and obesity. Most US states require some physical education (PE) and the energy expended during PE has potential to positively affect energy balance. We previously used 2012 data to examine state policies for PE to calculate estimated student energy expenditure (EEE) under potential (i.e., recommendations followed) and existing conditions. Since then, data have been updated on both state policies and the conduct of PE. Based on updated data, we used PE frequency, duration, and intensity, student mass, and class size to calculate EEE for the delivery of PE under (a) national professional recommendations, (b) 2016 state policies, and (c) school-reported conditions. Although increased from four years ago, only 22 states currently have policies mandating specific PE minutes. EEE over 10years shows the enormous impact PE could have on energy balance. For the average recommended-size PE class, resultant annual EEE based on professional recommendations for min/week far exceeded those based on average state (n=22) policy for min/week by 44.5% for elementary, 62.7% for middle, and 59.5% for high schools. Since 2012 more states adopted policies for PE minutes than dropped them, however, EEE over 10years showed a net loss of 1200kcal/student. With no overall recent improvements in state PE policy and professional recommendations currently not being met, PE remains an underutilized public health resource for EEE. Strong policies, coupled with enhanced accountability of PE teachers and administrators, are needed to ensure PE exists in schools.

  16. Freezing of Energy of a Soliton in an External Potential

    NASA Astrophysics Data System (ADS)

    Bambusi, D.; Maspero, A.

    2016-05-01

    In this paper we study the dynamics of a soliton in the generalized NLS with a small external potential ɛV of Schwartz class. We prove that there exists an effective mechanical system describing the dynamics of the soliton and that, for any positive integer r, the energy of such a mechanical system is almost conserved up to times of order ɛ - r . In the rotational invariant case we deduce that the true orbit of the soliton remains close to the mechanical one up to times of order ɛ - r .

  17. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave.

  18. Terahertz absorption spectra and potential energy distribution of liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-01

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave.

  19. Spectroscopic Constants and Potential Energy Curves for GeF

    NASA Astrophysics Data System (ADS)

    Liao, D. W.; Balasubramanian, K.

    1994-01-01

    The spectroscopic constants of the electronic states of GeF lying below the 60000 cm -1 region are obtained using the complete active space multiconfiguration self-consistent field followed by first- and second-order configuration interaction (FOCI. SOCI) methods which included up to a million configurations. The potential energy curves of the low-lying electronic states are also computed. The computed spectroscopic constants confirm the assignments of the X, A, a, C, C', and D' states of GeF. In addition the spectroscopic constants of several electronic states of GeF are predicted which are yet to be observed.

  20. Spectroscopic constants and potential energy curves for TaH

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Balasubramanian, K.

    1991-09-01

    Spectroscopic constants and potential energy curves of 21 electronic states of the diatomic TaH are computed using complete active space multiconfiguration self-consistent field (CASSCF) followed by second-order configuration interaction (SOCI) calculations. In addition spin-orbit effects were included using the relativistic configuration interaction method (RCI). The ground state of TaH was found to be a 0 + state, which is a mixture of 5Δ(0 +), 5Π(0 +), 3Σ -(0 +), and 3Π(0 +). The spin-orbit effects were found to be significant for TaH. Several spectroscopic transitions are predicted for TaH none of which is observed.

  1. Spectroscopic Constants and Potential Energy Curves for GeBr

    NASA Astrophysics Data System (ADS)

    Liao, D. W.; Balasubramanian, K.

    1993-12-01

    Spectroscopic constants and potential energy curves of several low-lying electronic states of the GeBr radical are computed using the complete active space multiconfiguration self-consistent filed (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods which included up to a million configurations. Our computed spectroscopic constants confirm the assignments of X, A, A‧, B, and C states. Spectroscopic properties of several other electronic states below 30 000 cm-1 are predicted, which are yet to be observed.

  2. Assessing geothermal energy potential in upstate New York. Final report

    SciTech Connect

    Hodge, D.S.

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  3. Potential energy curves and collision integrals of air components

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  4. Global Expression for Representing Diatomic Potential-Energy Curves

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Schlosser, Herbert; Smith, John R.

    1991-01-01

    A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.

  5. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  6. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    SciTech Connect

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  7. Lymphatic Anomalies Registry

    ClinicalTrials.gov

    2016-07-26

    Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis

  8. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  9. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia

    NASA Astrophysics Data System (ADS)

    Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J.

    2014-06-01

    Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m2, equivalent to 4.8 kWh/m2/day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures.

  10. Global potential energy hypersurface for dynamical studies of energy transfer in HF--HF collisions

    SciTech Connect

    Redmon, M.J.; Binkley, J.S.

    1987-07-15

    The interaction energy of two HF molecules at 1332 individual points has been calculated with Moeller--Plesset (many--body) perturbation theory at the MP4-SDTQ level using a 6-311G** basis set. 293 of the points correspond to stretching of one HF molecule from its equilibrium geometry. No attempt was made to use a sufficiently fine grid to accurately describe the well region corresponding to hydrogen bonding. However, the location and minimum energy are consistent with experiment and other accurate theoretical results. An extensive global fit (rms error of 1 kcal/mol) is reported of 1319 points (below 10 eV of potential energy) using a modified London potential with corrections obtained using polynomials through four-body interactions. A model electrostatic potential represents the long-range interaction. In addition, the use of an expansion in products of three Legendre functions is discussed. It is shown that the latter approach, although accurately fitting the ab initio data, has difficulties interpolating in regions of the surface exhibiting diverse magnitudes of potential energy, and therefore must be used with caution. This surface should be useful for studies of T--V--R processes in this system.

  11. Ebstein anomaly: a review.

    PubMed

    Galea, Joseph; Ellul, Sarah; Schembri, Aaron; Schembri-Wismayer, Pierre; Calleja-Agius, Jean

    2014-01-01

    Cardiac congenital abnormalities are a leading cause in neonatal mortality occurring in up to 1 in 200 of live births. Ebstein anomaly, also known as Kassamali anomaly, accounts for 1 percent of all congenital cardiac anomalies. This congenital abnormality involves malformation of the tricuspid valve and of the right ventricle. In this review, the causes of the anomaly are outlined and the pathophysiology is discussed, with a focus on the symptoms, management, and treatments available to date.

  12. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    PubMed

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  13. Microscopically derived potential energy surfaces from mostly structural considerations

    SciTech Connect

    Ermamatov, M.J.; Hess, Peter O.

    2016-08-15

    A simple procedure to estimate the quadrupole Potential-Energy-Surface (PES) is presented, using mainly structural information, namely the content of the shell model space and the Pauli exclusion principle. Further microscopic properties are implicitly contained through the use of results from the Möller and Nix tables or experimental information. A mapping to the geometric potential is performed yielding the PES. The General Collective Model is used in order to obtain an estimate on the spectrum and quadrupole transitions, adjusting only the mass parameter. First, we test the conjecture on known nuclei, deriving the PES and compare them to known data. We will see that the PES approximates very well the structure expected. Having acquired a certain confidence, we predict the PES of several chain of isotopes of heavy and super-heavy nuclei and at the end we investigate the structure of nuclei in the supposed island of stability. One of the main points to show is that simple assumptions can provide already important information on the structure of nuclei outside known regions and that spectra and electromagnetic transitions can be estimated without using involved calculations and assumptions. The procedure does not allow to calculate binding energies. The method presented can be viewed as a starting point for further improvements.

  14. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  15. POTLIB 2001: A potential energy surface library for chemical systems

    NASA Astrophysics Data System (ADS)

    Duchovic, Ronald J.; Volobuev, Yuri L.; Lynch, Gillian C.; Truhlar, Donald G.; Allison, Thomas C.; Wagner, Albert F.; Garrett, Bruce C.; Corchado, Jose C.

    2002-04-01

    POTLIB 2001 is a computer program library of global chemical potential energy surface (PES) functions (91 functions in version 1.0) along with test data, a suite of utility programs, and a convenient user interface. The PES programs are written in ANSI standard FORTRAN77 and can be used to determine the Born-Oppenheimer potential energy of chemical systems as a function of the internal coordinates. The accompanying test data allow users to verify local implementations of this library. Finally, the utility programs permit use of this library in conjunction with a variety of chemical dynamics and chemical kinetics computer codes. Interface routines are provided for the POLYRATE and ABCRATE program packages of Truhlar and co-workers, the VENUS96 program package of Hase and co-workers, and the VARIFLEX program package of Klippenstein and co-workers; the routines in this library can also be used in conjunction with the DYNASOL program package of Zhang and co-workers. This article describes the library and the utility programs and outlines the systematic conventions used for interfaces in the computer programs contained in the library. Adherence to these conventions will allow future PESs to be compatible with this library.

  16. Gravitational potential energy of the earth: A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1977-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic equation agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the mantle and crust of -2.77 x 10 to the twenty-ninth power ergs, an order of magnitude. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the twentieth power poises is found by assuming the total geothermal flux is due to viscous dissipation. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at one per cent efficiency, then the viscosity is ten to the twenty second power poises, a number preferred by some as the viscosity of the mantle.

  17. Material and energy recovery in integrated waste management systems: The potential for energy recovery

    SciTech Connect

    Consonni, Stefano; Vigano, Federico

    2011-09-15

    Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy

  18. Spacecraft Environmental Anomalies Handbook

    DTIC Science & Technology

    1989-08-01

    engineering solutions for mitigating the effects of environmental anomalies have been developed. Among the causes o, spacecraft anomalies are surface...have been discovered after years of investig!:tion, and engineering solutions for mitigating the effccts of environmental anomalies have been developed...23 * 6.4.3 Fauth Tolerant Solutions .............................................................................. 23 6.4.4. Methods

  19. South Atlantic Anomaly

    Atmospheric Science Data Center

    2013-04-19

    article title:  The South Atlantic Anomaly     View larger GIF image The South Atlantic Anomaly (SAA) . Even before the cover opened, the Multi-angle Imaging ... Atlantic Anomaly location:  Atlantic Ocean Global Images First Light Images region:  Before the ...

  20. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. Bony anomaly of Meckel's cave.

    PubMed

    Tubbs, R Shane; Salter, E George; Oakes, W Jerry

    2006-01-01

    This study describes the seemingly rare occurrence of bone formation within the proximal superior aspect of Meckel's cave thus forming a bony foramen for the proximal trigeminal nerve to traverse. The anatomy of Meckel's cave is reviewed and the clinical potential for nerve compression from this bony anomaly discussed.

  3. Minor congenital anomalies and ataxic cerebral palsy.

    PubMed Central

    Miller, G

    1989-01-01

    The incidence of minor congenital anomalies was examined in 36 patients with ataxic cerebral palsy, in unaffected family members, and in 100 unrelated control subjects. None of the control subjects or family members had more than four anomalies, and 25 of 36 (69%) of the patients had more than four. The distribution of anomalies differed considerably, with 60% of the index cases having seven or more, and 94% of the controls having three or less. The number occurring in the patients was significantly more than in their relatives. Of the 25 patients with more than four anomalies, 16 (64%) had undergone potentially adverse perinatal or early postnatal events. Thus minor congenital anomalies were considerably more frequent in those with ataxic cerebral palsy than in related or unrelated control subjects. These anomalies may be markers of early prenatal factors that contributed to the adverse outcome either directly or by predisposing to perinatal difficulties. PMID:2751330

  4. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  5. ISHM Anomaly Lexicon for Rocket Test

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Buchanan, Aubri; Hensarling, Paula L.; Morris, Jonathan; Turowski, Mark; Figueroa, Jorge F.

    2007-01-01

    byproducts of the anomaly lexicon compilation effort. For example, (1) Allows determination of the frequency distribution of anomalies to help identify those with the potential for high return on investment if included in automated detection as part of an ISHM system, (2) Availability of a regular lexicon could provide the base anomaly name choices to help maintain consistency in the DR collection process, and (3) Although developed for the rocket engine test environment, most of the anomalies are not specific to rocket testing, and thus can be reused in other applications.

  6. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  7. Spectral anomalies in Young's double-slit interference experiment.

    PubMed

    Pu, Jixiong; Cai, Chao; Nemoto, Shojiro

    2004-10-18

    We report a phenomenon of spectral anomalies in the interference field of Young's double-slit interference experiment. The potential applications of the spectral anomalies in the information encoding and information transmission in free space are also considered.

  8. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  9. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Lad, R. A.

    1956-01-01

    The lattice summations of the potential energy of importance in the graphite system have been computed by direct summation assuming a Lennard-Jones 6-12 potential between carbon atoms. From these summations, potential energy curves were constructed for interactions between a carbon atom and a graphite monolayer, between a carbon atom and a graphite surface, between a graphite monolayer and a semi-infinite graphite crystal and between two graphite semi-infinite crystals. Using these curves, the equilibrium distance between two isolated physically interacting carbon atoms was found to be 2.70 a, where a is the carbon-carbon distance in a graphite sheet. The distance between a surface plane and the rest of the crystal was found to be 1.7% greater than the interlayer spacing. Theoretical values of the energy of cohesion and the compressibility were calculated from the potential curve for the interaction between two semi-infinite crystals. They were (delta)E(sub c) = -330 ergs/sq cm and beta =3.18x10(exp -12)sq cm/dyne, respectively. These compared favorably with the experimental values of (delta)E(sub c) = -260 ergs/sq cm and beta = 2.97 X 10(exp -2) sq cm/dyne.

  10. Isotopic dependence of fusion enhancement of various heavy ion systems using energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2015-01-01

    In the present work, the fusion of symmetric and asymmetric projectile-target combinations are deeply analyzed within the framework of energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus-nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm, which is much larger than a value (a = 0.65 fm) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus-nucleus potential possesses normal diffuseness parameter.

  11. IRETHERM: Magnetotelluric studies of Irish radiothermal granites and their geothermal energy potential

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Jones, A. G.; Muller, M. R.; Feely, M.

    2013-12-01

    The IRETHERM project seeks to develop a strategic understanding of Ireland's deep geothermal energy potential through integrated modeling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), heat-flow (HF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is of key importance in assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Leinster granite, the Galway granite and the buried Kentstown granite. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of an early 1980's EU-funded geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite. In the Galway granite batholith, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Ros a Mhil borehole. The lower heat-flow encountered at the Ros a Mhil borehole suggests that the associated high heat production does not extend to great depth. The buried Kentstown granite has associated with it a significant negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 485 m. Heat production has been measured at 2.4 μWm-3 in core samples taken from the weathered top 30m of the granite. The core of this study consists of an ambitious program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, extending over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite extend to depths of 2-5 km. Over the Galway granite, MT and AMT data have been collected at a total

  12. Radioactive anomaly discrimination from spectral ratios

    DOEpatents

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  13. Improved DFT Potential Energy Surfaces via Improved Densities.

    PubMed

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  14. Potential alternative energy technologies on the Outer Continental Shelf.

    SciTech Connect

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  15. Spectroscopic constants and potential energy curves of HfH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Das, Kalyan K.

    1991-01-01

    Complete active space multiconfiguration self-consistent field (CAS-MCSFC) followed by full second-roder CI (SOCI) and relativistic configuration interaction (RCI) including spin-orbit coupling calculations are carried out on 14 λ- s and 10 ω-ω states of HfH. The spectroscopic constants ( re, Te, ωe, μe, De) of these states are computed. The potential energy curves of these states are also reported. We find several electronic transitions in the IR-UV regions for HfH which are yet to be observed. The ground state of HfH is found to be a {3}/{2} state (82% 2Δ, 8% 2Π) with r e = 1.854 Å, ωe = 1704 cm -1 and μe = 0.66 D. The spin-orbit effects are found to be very significant for HfH.

  16. Spectroscopic Constants and Potential Energy Curves of PbI

    NASA Astrophysics Data System (ADS)

    Benavidesgarcia, M.; Balasubramanian, K.

    1993-10-01

    The spectroscopic constants and potential energy curves of the PbI diatomic were computed using complete active space SCF (CASSCF) followed by first-order CI (FOCI) and second-order CI (SOCI) calculations which included 607 000 configurations. Spin-orbit coupling was studied using the relativistic CI (RCI) method. The spectroscopic properties of the 2Π1/2 state are Re = 2.885 Å, ωe, = 153 cm-1, and De = 2.54(eV), while for the 2Π3/2 state the corresponding values are Re = 2.859 Å, ωe = 162 cm-1, and Te = 8255 cm-1. Our computed constants are in good agreement with experiment for the observed states. We also computed the properties and curves for several excited states which are yet to be observed.

  17. Spectroscopic constants and potential energy curves of tungsten carbide

    SciTech Connect

    Balasubramanian, K.

    2000-05-01

    Spectroscopic constants (R{sub e},{omega}{sub e},T{sub e},{mu}{sub e}) and potential energy curves for 40 low-lying electronic states of the diatomic tungsten carbide (WC) were obtained using the complete active space multiconfiguration self-consistent field followed by the multireference singles+doubles configuration interaction and full first- and second-order configuration interaction calculations that included up to 6.4 mil configurations. Spin-orbit effects were included through the enhanced relativistic configuration interaction method described here for 28 electronic states of WC lying below {approx}20 000 cm-1. The spin-orbit splitting of the ground state of WC was found to be very large (4394 cm-1). The ground and excited electronic states of the W atom were also computed and were found to be in good agreement with the experimental data. The nature of bonding was analyzed through the composition of orbitals, leading configurations, Mulliken populations, and dipole moments. The dissociation energy of WC was computed including spin-orbit and electron correlation effects. The recent photoelectron spectra of WC{sup -} were assigned on the basis of our computed results. (c) 2000 American Institute of Physics.

  18. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  19. Spectroscopic properties and potential energy surfaces of GeH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Li, Junqing

    1988-04-01

    MCSCF (complete active space SCF) followed by configuration interaction calculations are carried out on 12 electronic states of GeH. Relativistic configuration interaction calculations are carried out with the objective of computing the spin-orbit corrections for the low-lying states. These calculations reveal the existence of 10 bound electronic states of GeH for which spectroscopic properties are computed. The three experimentally observed bands ( a- X, A- X, B- X) are assigned and the uncertainties in the experimental Te and ωe values of these states are corrected. In addition, the spectroscopic properties of 8 states are calculated which are yet to be observed. The spin-orbit coupling constant for the ground state X( 2Π) is calculated to be 869 cm -1. An accurate dissociation energy of 2.81 eV was obtained using {MCSCF}/{SOCI} calculation which employed a large Gaussian basis set questioning the experimental De of ˜3.3 eV obtained from the predissociation in the A2Δ state. It is shown that the intersection of the repulsive 4Π curve which dissociates into the ground state atoms causes predissociation in the A( 2Δ) , B( 2Σ +) , 2Σ +(III), and 2Π(II) states. The potential energy surfaces of a few excited states contain barriers. The calculated ground state dipole moment of 0.098 D is in disagreement with an experimental value of 1.24 D, questioning the experimental dipole moment.

  20. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies

    NASA Astrophysics Data System (ADS)

    Wilde, Pat; Quinby-Hunt, Mary S.; Erdtmann, Bernd-Dieter

    1996-01-01

    The whole-rock cerium anomaly, tested for outer shelf-upper slope stratigraphic sections from the middle Ordovician through the lower Silurian of Scotland, is proposed as an empirical technique to develop a eustatic 3rd-order or finer-scale sea-level curve. This interval was chosen as it straddles the well-documented Late Ordovician glaciation and can be defined by graptolite zones. The anomaly is calculated from neutron activation analysis of low-carbonate, phosphate-free, fossil-free field-identified shales of the graptolite facies by comparison of the normalized cerium content with the linearized trend of the normalized composition of other rare earth elements in order of atomic number. For sections originally deposited in the main pycnocline below the surface mixed layer, values of the anomaly for a given sample would indicate its position on the redox curves developed for the early Paleozoic by Wilde (1987). Changes in the anomaly that are positive with time would indicate a lowering of sea level as the apparent depth on the redox curve would reflect more oxic conditions. Relative changes negative with time would indicate a rise in sea level as the apparent depth reflects more anoxic conditions. Depending on the vertical sample spacing and the time interval sampled, resolution of the order of 1 m.y. might be achieved. Thus the Vail et al. (1977) curves of the 3rd order (1 to 10 m.y.) or of finer scale could be obtained by this technique with the proper choice of section. Accordingly, for the early through middle Paleozoic when the main pycnocline was anoxic, this geochemical technique could be used to develop eustatic sea-level curves and additionally offer an independent calibration for seismic stratigraphy as well as an indicator of glacial-interglacial climatic sequences or eustatic changes due to fluctuations in global ridge crest volumes.

  1. Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico

    USGS Publications Warehouse

    Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G.

    2009-01-01

    The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA-SDA methodology was used to establish the regional background range from the area of Catorce-Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA-SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.

  2. A satellite investigation of energy flux and inferred potential drop in auroral electron energy spectra

    NASA Technical Reports Server (NTRS)

    Meniett, J. D.; Burch, J. L.

    1981-01-01

    Because predicted relationship (epsilon directly varies with V squared) between auroral electron energy flux (epsilon) and the inferred acceleration potential drop (V) for accelerated Maxwellian distributions was favorably tested by other using sounding rocket data for the limiting case of eVE 1 (where Ec is the characteristic energy of the accelerated Maxwellian distribution) and for a single inverted-V observed by the Injun 5 satellite, data from Atmosphere D were used to extend these studies over the range .2 eV/Ec 5 and for a wide range of latitudes and local times on both the nightside and the dayside. Results show good agreement with the full accelerated Maxwellian model. An analytical approximation to the electron energy flux was derived which better describes the data over the range .2 eV/Ec approximated 3. Analyses of individual energy spectra at small and large pitch angles through well-defined inverted-V structures suggest that the altitude of the inferred potential drop maximizes near the center of the inverted-V's.

  3. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    SciTech Connect

    Griffin, John

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  4. Footprinting molecular electrostatic potential surfaces for calculation of solvation energies.

    PubMed

    Calero, Christian Solis; Farwer, Jochen; Gardiner, Eleanor J; Hunter, Christopher A; Mackey, Mark; Scuderi, Serena; Thompson, Stuart; Vinter, Jeremy G

    2013-11-07

    A liquid is composed of an ensemble of molecules that populate a large number of different states, so calculation of the solvation energy of a molecule in solution requires a method for summing the interactions with the environment over all of these states. The surface site interaction model for the properties of liquids at equilibrium (SSIMPLE) simplifies the surface of a molecule to a discrete number of specific interaction sites (SSIPs). The thermodynamic properties of these interaction sites can be characterised experimentally, for example, through measurement of association constants for the formation of simple complexes that feature a single H-bonding interaction. Correlation of experimentally determined solution phase H-bond parameters with gas phase ab initio calculations of maxima and minima on molecular electrostatic potential surfaces (MEPS) provides a method for converting gas phase calculations on isolated molecules to parameters that can be used to estimate solution phase interaction free energies. This approach has been generalised using a footprinting technique that converts an MEPS into a discrete set of SSIPs (each described by a polar interaction parameter, εi). These SSIPs represent the molecular recognition properties of the entire surface of the molecule. For example, water is described by four SSIPs, two H-bond donor sites and two H-bond acceptor sites. A liquid mixture is described as an ensemble of SSIPs that represent the components of the mixture at appropriate concentrations. Individual SSIPs are assumed to be independent, so speciation of SSIP contacts can be calculated based on properties of the individual SSIP interactions, which are given by the sum of a polar (εiεj) and a non-polar (E(vdW)) interaction term. Results are presented for calculation the free energies of transfer of a range of organic molecules from the pure liquid into water, from the pure liquid into n-hexadecane, from n-hexadecane into water, from n-octanol into

  5. Constrained Broyden Dimer Method with Bias Potential for Exploring Potential Energy Surface of Multistep Reaction Process.

    PubMed

    Shang, Cheng; Liu, Zhi-Pan

    2012-07-10

    To predict the chemical activity of new matter is an ultimate goal in chemistry. The identification of reaction pathways using modern quantum mechanics calculations, however, often requires a high demand in computational power and good chemical intuition on the reaction. Here, a new reaction path searching method is developed by combining our recently developed transition state (TS) location method, namely, the constrained Broyden dimer method, with a basin-filling method via bias potentials, which allows the system to walk out from the energy traps at a given reaction direction. In the new method, the reaction path searching starts from an initial state without the need for preguessing the TS-like or final state structure and can proceed iteratively to the final state by locating all related TSs and intermediates. In each elementary reaction step, a reaction direction, such as a bond breaking, needs to be specified, the information of which is refined and preserved as a normal mode through biased dimer rotation. The method is tested successfully on the Baker reaction system (50 elementary reactions) with good efficiency and stability and is also applied to the potential energy surface exploration of multistep reaction processes in the gas phase and on the surface. The new method can be applied for the computational screening of new catalytic materials with a minimum requirement of chemical intuition.

  6. Potential Ambient Energy-Harvesting Sources and Techniques

    ERIC Educational Resources Information Center

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  7. Analysis of Solar Irradiation Anomalies in Long Term Over India

    NASA Astrophysics Data System (ADS)

    Cony, M.; Polo, J.; Martin, L.; Navarro, A.; Serra, I.

    2012-04-01

    India has a high potential for solar energy applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource potential. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar energy applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of global hemispheric irradiation measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of solar irradiation in India using anomalies techniques and trends in ten places over India. Most of the places have exhibit a decreasing trend and negative anomalies confirming thus the darkening effect already reported by solar dimming studies. The analysis of anomalies has also found two periods of different behavior. From 1964 till 1988 the anomalies observed were positive and the last 20 years seems to be a period of negative anomalies. This observation is also consequent with

  8. Global Horizontal Irradiance Anomalies in Long Term Series Over India

    NASA Astrophysics Data System (ADS)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    India has a high potential for solar energy applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource potential. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar energy applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation (GHI) and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of GHI measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of GHI using anomalies techniques over ten different sites over India. Besides, techniques of linear trends have been applied for to show the evolution over this period. The analysis of anomalies has also found two periods of different behavior. From 1964 till 1988 the anomalies observed were positive and the last 20 years seems to be a period of negative anomalies. The results exhibit a decreasing trend and negative anomalies confirming thus the darkening effect already reported by solar dimming studies

  9. Taussig-Bing Anomaly

    PubMed Central

    Konstantinov, Igor E.

    2009-01-01

    Taussig-Bing anomaly is a rare congenital heart malformation that was first described in 1949 by Helen B. Taussig (1898–1986) and Richard J. Bing (1909–). Although substantial improvement has since been achieved in surgical results of the repair of the anomaly, management of the Taussig-Bing anomaly remains challenging. A history of the original description of the anomaly, the life stories of the individuals who first described it, and the current outcomes of its surgical management are reviewed herein. PMID:20069085

  10. The Potential for Renewable Energy Development to Benefit Restoration of the Salton Sea. Analysis of Technical and Market Potential

    SciTech Connect

    Gagne, Douglas; Haase, Scott; Oakleaf, Brett; Hurlbut, David; Akar, Sertac; Wall, Anna; Turchi, Craig; Pienkos, Philip; Melius, Jennifer; Melaina, Marc

    2015-11-01

    This report summarizes the potential for renewable energy development in the Salton Sea region, as well as the potential for revenues from this development to contribute financially to Salton Sea restoration costs. It considers solar, geothermal, biofuels or nutraceutical production from algae pond cultivation, desalination using renewable energy, and mineral recovery from geothermal fluids.


  11. Molecular understanding of mutagenicity using potential energy methods

    SciTech Connect

    Broyde, S.; Shapiro, R.

    1992-07-01

    Our objective, has been to elucidate on a molecular level, at atomic resolution, the structures of DNAs modified by 2-aminofluorene and its N-acetyl derivative, 2-acetylaminofluorene (AAF). The underlying hypothesis is that DNA replicates with reduced fidelity when its normal right-handed B-structure is altered, and one result is a higher mutation rate. This change in structure may occur normally at a low incidence, for example by the formation of hairpin loops in appropriate sequences, but it may be enhanced greatly after covalent modification by a mutagenic substance. We use computational methods and have been able to incorporate the first data from NMR studies in our calculations. Computational approaches are important because x-ray and spectroscopic studies have not succeeded in producing atomic resolution views of mutagen and carcinogen-oligonucleotide adducts. The specific methods that we employ are minimized potential energy calculations using the torsion angle space molecular mechanics program DUPLEX to yield static views. Molecular dynamics simulations, with full solvent and salt, of the important static structures are carried out with the program AMBER; this yields mobile views in a medium that mimics the natural aqueous environment of the cell as well as can be done with current available computing resources.

  12. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1992-01-01

    The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.

  13. Spectroscopic constants and potential energy curves for OsH

    NASA Astrophysics Data System (ADS)

    Benavides-Garcia, M.; Balasubramanian, K.

    1991-11-01

    Complete active space (CASSCF) followed by first-order configuration interaction (FOCI) and second-order CI (SOCI) are carried out on 21 low-lying electronic states of OsH. Spin-orbit effects are investigated using the relativistic CI (RCI) methodology. The ground state of OsH is found to be 4Π symmetry with R e = 1.606 Å, ωe = 2138 cm -1, De = 2.317 eV, and μe = -1.651 D in the absence of spin-orbit interactions, while the ground state is found to be a strong mixture of 4Π( {5}/{2}) and 4Δ( {5}/{2}) including spin-orbit coupling. Potential energy surfaces for 21 low-lying electronic states are reported. Allowed electronic transitions from the ground X4Π and some other low-lying states are predicted. The nature and bonding of the low-lying electronic states are analyzed through Mulliken populations.

  14. Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.

    PubMed

    Brites, Vincent; Cimas, Alvaro; Spezia, Riccardo; Sieffert, Nicolas; Lisy, James M; Gaigeot, Marie-Pierre

    2015-03-10

    Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled.

  15. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface.

    PubMed

    Pradhan, Ekadashi; Brown, Alex

    2016-05-07

    A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm(-1)) up to 10 000 cm(-1) above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxation with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm(-1) above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.

  16. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  17. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1985-01-01

    Two parallel sets of analyses, which in one case included and in the other omitted data observed by satellite based and other FGGE special observing systems are examined. The results of our previous work is extended in two separate, but not unrelated, ways. First, from these two parallel analyses, which are labeled FGGE (full FGGE system) and NOSAT (satellite omitted), it was discovered that the two sets of fields were quite close over much of the globe. Locally the influence of satellite based systems led to some differences, particularly over the Southern Hemisphere Oceans. The diabatic heating fields generated by the GLA FGGE analysis was also examined. From these fields, one can ascertain the role of total diabatic heating and of the various diabatic heating components in the atmospheric energy cycle, in particular in the generation of available potential energy.

  18. Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.

    PubMed

    Koput, Jacek

    2017-05-05

    An accurate potential energy surface of sulfur dioxide, SO2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO2 molecule is discussed. The vibration-rotation energy levels of the (32) SO2 and (34) SO2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc.

  19. Ab initio potential energy surface and vibration-rotation energy levels of beryllium monohydroxide.

    PubMed

    Koput, Jacek

    2017-01-05

    The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state X 2A' has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm(-1) . The vibration-rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high-resolution vibration-rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc.

  20. Up and away in the potential landscape of diatomic molecule potential energy curves

    NASA Astrophysics Data System (ADS)

    Stwalley, William C.

    2016-12-01

    The understanding of the potential curves of a given molecule has expanded in many ways during my last 52 years as an experimental and theoretical molecular chemist/physicist in graduate school in Chemistry at Harvard and in both the Chemistry and Physics Departments at University of Iowa and University of Connecticut. This expansion has been up in energy and vibrational and rotational quantum numbers and away from Re to long range as well. It is clear that Prof. Robert Le Roy, who I have known since the late 1960s, has made many important and greatly appreciated contributions to the landscape I describe below from my personal perspective, especially with regard to long range molecules and solution of the radial Schrödinger equations and related calculations.

  1. Gas hydrates as potential resource of energy and pathfinders for conventional type hydrocarbon deposits

    SciTech Connect

    Krason, J. )

    1991-03-01

    Solid compounds of water and gaseous hydrocarbons are known as gas hydrates, clathrates, or cryohydrates. They occur naturally in offshore and terrestrial environments, in the areas where temperature is at least seasonally low (i.e. close to or below freezing), bathymetric, geostatic, ice, or permafrost pressure is sufficiently high, and the source of hydrocarbons is available. These factors (regional and local geological conditions of 21 locations grouped into 13 study regions worldwide offshore and one in permafrost environments with proven, reported, and inferred presence of gas hydrates) have been recently researched by Geoexplorers International, Inc. Conservative estimations from Geoexplorers International suggest that the world's total gas hydrates may contain 7,000 to 50,000 tcf of natural gas. Although at this time exploitation of gas trapped in the hydrate zone and below is not economically viable, because estimated reserves are enormous, they should be seriously considered as potential energy resource. Smaller, but less dispersed massive gas hydrate deposits associated with fault zones may be the first offshore gas resource to become economic. This research, particularly of the Messoyakh gas field, has proved that the presence of gas hydrates provides very useful information in exploration for conventional oil and gas deposits. Gas hydrates indicate ongoing hydrocarbon generation in the sediments. Hydrates are valuable to assess the present heat flow and thermal history of a region. Since gas hydrates exist only under a very limited range of pressure and temperature, deviation in patterns of their occurrence can be related to changes in pore water chemistry, hydrocarbon composition, or pressure and temperature gradient anomalies.

  2. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  3. French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products.

    PubMed

    Jard, G; Marfaing, H; Carrère, H; Delgenes, J P; Steyer, J P; Dumas, C

    2013-09-01

    Macroalgae are biomass resources that represent a valuable feedstock to be used entirely for human consumption or for food additives after some extractions (mainly colloids) and/or for energy production. In order to better develop the algal sector, it is important to determine the capacity of macroalgae to produce these added-values molecules for food and/or for energy industries on the basis of their biochemical characteristics. In this study, ten macroalgae obtained from French Brittany coasts (France) were selected. The global biochemical composition (proteins, lipids, carbohydrates, fibers), the presence and characteristics of added-values molecules (alginates, polyphenols) and the biochemical methane potential of these algae were determined. Regarding its biochemical composition, Palmaria palmata is interesting for food (rich in nutrients) and for anaerobic digestion (0.279 LCH4/gVS). Saccharina latissima could be used for alginate extraction (242 g/kgTS, ratio between mannuronic and guluronic acid M/G=1.4) and Sargassum muticum for polyphenol extraction (19.8 g/kgTS).

  4. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    SciTech Connect

    Belles, Randy J.; Omitaomu, Olufemi A.

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  5. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  6. Competing Orders and Anomalies

    NASA Astrophysics Data System (ADS)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  7. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-08-08

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  8. By-products: oil sorbents as a potential energy source.

    PubMed

    Karakasi, Olga K; Moutsatsou, Angeliki

    2013-04-01

    The present study investigated the utilization of an industrial by-product, lignite fly ash, in oil pollution treatment, with the further potential profit of energy production. The properties of lignite fly ash, such as fine particle size, porosity, hydrophobic character, combined with the properties, such as high porosity and low specific gravity, of an agricultural by-product, namely sawdust, resulted in an effective oil-sorbent material. The materials were mixed either in the dry state or in aqueous solution. The oil sorption behaviour of the fly ash-sawdust mixtures was investigated in both marine and dry environments. Mixtures containing fly ash and 15-25% w/w sawdust performed better than each material alone when added to oil spills in a marine environment, as they formed a cohesive semi-solid phase, adsorbing almost no water, floating on the water surface and allowing total oil removal. For the clean-up of an oil spill 0.5 mm thick with surface area 1000 m(2), 225-255 kg of lignite fly ash can be utilized with the addition of 15-25% w/w sawdust. Fly ash-sawdust mixtures have also proved efficient for oil spill clean-up on land, since their oil sorption capacity in dry conditions was at least 0.6-1.4 g oil g(-1) mixture. The higher calorific value of the resultant oil-fly ash-sawdust mixtures increased up to that of bituminous coal and oil and exceeded that of lignite, thereby encouraging their utilization as alternative fuels especially in the cement industry, suggesting that the remaining ash can contribute in clinker production.

  9. Potential of energy farming in the southeastern California desert

    SciTech Connect

    Lew, V.

    1980-04-01

    The California Energy Commission is currently analyzing the use of energy farms to provide future sources of energy for California. Energy farms can be defined as growing plants and converting them to various forms of energy. The use of marginal desert lands in southeastern California for the siting of energy farms using acacia, Eucalyptus, euphorbia, quayule, jojoba, mesquite, or tamarisk is considered. Two hypothetical scenarios using either rainfall, or rainfall and groundwater as water sources were described to determine the maximum amount of energy produced from estimated amounts of suitable land in this area. Considering both scenarios, the maximum range of energy produced is .03 to 0.4 Quads. It is recommended that (1) genetic research be continued to increase biomass yields of these and other candidate plants grown in the desert; and (2) small test plots be established at varying desert locations to collect yield growth, and survival data. Once this information is known, the identification of the best plant(s) to use for energy farming in the California desert area will be known, as well as the cost and quantity of energy produced.

  10. Resonance energies, lifetimes and complex energy potential curves from standard wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod

    2012-05-01

    We show here for a simple model system that the wavepacket dynamics in the interaction region can be described by a superposition of the non-Hermitian exponential divergent eigenfunctions of the physical Hamiltonian. We demonstrate how it is possible to obtain the complex eigenvalues and also the corresponding resonance eigenfunctions from the propagation of the wavepacket within the framework of the standard formalism of quantum mechanics. The general results demonstrated here for a simple model can lead to two different types of computational applications: (i) for systems where one can obtain the resonance energies and lifetimes as well as their corresponding eigenfunctions it is possible to study the evolution of the physical properties solely based on the initially populated resonance states without the need to propagate the wavepacket; (ii) for molecular systems where it is quite difficult to solve the non-Hermitian time-independent Schrödinger equation and obtain molecular resonance energies and functions. For this type of problem, the methods presented here enable one to evaluate the topology of complex potential energy surfaces from the wavepacket propagation and facilitate the study of the nuclear dynamics of ionizing molecular systems.

  11. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1986-01-01

    Two major themes were pursued during this research period. The first of these involved examining the impacts of satellite-based data and the forecast model used by the Goddard Laboratory for Atmospheres (GLA) on general circulation statistics. For the other major topic, the diabatic heating fields produced by GLA were examined for one month during the FGGE First Special Observing Period. As part of that effort, the three-dimensional distribution of the four component heating fields were studied, namely those due to shortwave radiation, Q sub SW, longwave radiation, Q sub LW, sensible heating, Q sub S, and latent heating, Q sub L. These components were calculated as part of the GLA analysis/forecast system and archived every quarter day; from these archives cross products with temperature were computed to enable the direct calculation of certain terms of the large-scale atmospheric energy cycle, namely those involving the generation of available potential energy (APE). The decision to archive the diabatic heating components separately has enabled researchers to study the role of the various processes that drive the energy cycle of the atmosphere.

  12. Computing Critical Properties with Yang-Yang Anomalies

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael

    2017-01-01

    Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.

  13. Solar biomass energy: an overview of u.s. Potential.

    PubMed

    Burwell, C C

    1978-03-10

    The U.S. annual biomass production for food, lumber, paper, and fiber, if used exclusively for energy, would provide 25 percent of current energy requirements. The collection of unharvested wood residues and cull trees for direct use as fuel for small nearby space-heating applications-especially for peak winter conditions-is an important near-term solar energy opportunity. Improved management of hundreds of millions of acres of productive forest land is an important opportunity for the long term. Harvest of cropland residues for energy values, new biomass production using intensive short-rotation silviculture, resubstitution of natural products for petroleum-based synthetics, and forest management for large-scale production of electricity and synthetic fuels are judged to be less appropriate directions for the U.S. energy system to take.

  14. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol.

    PubMed

    Xu, Xuefei; Yang, Ke R; Truhlar, Donald G

    2013-08-13

    Complete-active-space self-consistent-field (CASSCF) calculations provide useful reference wave functions for configuration interaction or perturbation theory calculations of excited-state potential energy surfaces including dynamical electron correlation. However, the canonical molecular orbitals (MOs) of CASSCF calculations usually have mixed character in regions of strong interaction of two or more electronic states; therefore, they are unsuitable for diabatization using the configurational uniformity approach. Here, CASSCF diabatic MOs for phenol have been obtained by the 4-fold way, and comparison to the CASSCF canonical MOs shows that they are much smoother. Using these smooth CASSCF diabatic MOs, we performed direct diabatization calculations for the three low-lying states ((1)ππ, (1)ππ*, and (1)πσ*) and their diabatic (scalar) couplings at the dynamically correlated multiconfiguration quasidegenerate perturbation theory (MC-QDPT) level. We present calculations along the O-H stretching and C-C-O-H torsion coordinates for the nonadiabatic photodissociation of phenol to the phenoxyl radical and hydrogen atom. The seams of (1)ππ*/(1)πσ* and (1)ππ/(1)πσ* diabatic crossings are plotted as functions of these coordinates. We also present diabatization calculations for displacements along the out-of-plane ring distortion modes 16a and 16b of the phenyl group. The dominant coupling modes of the two conical intersections ((1)ππ*/(1)πσ* and (1)ππ/(1)πσ*) are discussed. The present diabatization method is confirmed to be valid even for significantly distorted ring structures by diabatization calculations along a reaction path connecting the planar equilibrium geometry of phenol to its strongly distorted prefulvenic form. The present work provides insight into the mode specificity of phenol photodissociation and shows that diabatization at the MC-QDPT level employing CASSCF diabatic MOs can be a good starting point for multidimensional dynamics

  15. Representing potential energy surfaces by high-dimensional neural network potentials.

    PubMed

    Behler, J

    2014-05-07

    The development of interatomic potentials employing artificial neural networks has seen tremendous progress in recent years. While until recently the applicability of neural network potentials (NNPs) has been restricted to low-dimensional systems, this limitation has now been overcome and high-dimensional NNPs can be used in large-scale molecular dynamics simulations of thousands of atoms. NNPs are constructed by adjusting a set of parameters using data from electronic structure calculations, and in many cases energies and forces can be obtained with very high accuracy. Therefore, NNP-based simulation results are often very close to those gained by a direct application of first-principles methods. In this review, the basic methodology of high-dimensional NNPs will be presented with a special focus on the scope and the remaining limitations of this approach. The development of NNPs requires substantial computational effort as typically thousands of reference calculations are required. Still, if the problem to be studied involves very large systems or long simulation times this overhead is regained quickly. Further, the method is still limited to systems containing about three or four chemical elements due to the rapidly increasing complexity of the configuration space, although many atoms of each species can be present. Due to the ability of NNPs to describe even extremely complex atomic configurations with excellent accuracy irrespective of the nature of the atomic interactions, they represent a general and therefore widely applicable technique, e.g. for addressing problems in materials science, for investigating properties of interfaces, and for studying solvation processes.

  16. The potential for energy conservation in the United States

    SciTech Connect

    Carlsmith, R.S.

    1993-12-31

    The period of high oil prices between 1973 and 1985 was traumatic in the United States, as it was also in the rest of the world. It was also instructive in showing the kinds of adaptation that could occur rapidly in a very large industrialized economy. During the period, energy use remained essentially constant while the economy continued to grow. The efficiency of energy use, as indicated by the ratio of energy consumption to gross domestic product, increased by 24 percent. Since 1985 there has been little further improvement in energy efficiency. Can this kind of improvement in efficiency be repeated, and if so, what can make it happen? A number of energy analysts have recently made projections for the next 20 years. The projections all indicate steady increases of about 1 percent per year in the level of energy use. Since these projections assumed that gross domestic product will increase by about 2.3 percent per year, the implication is that energy efficiency is expected to increase slowly during the next two decades.

  17. Probing Potential Energy Surface Exploration Strategies for Complex Systems.

    PubMed

    N'Tsouaglo, Gawonou Kokou; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand; Pochet, Pascal

    2015-04-14

    The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems, yet these algorithms often include a number of steps of which the effect is not always clear. Decoupling these steps and their impacts can allow us to better understand both their role and the nature of complex energy landscape. Here, we consider a family of minimum-energy algorithms based, directly or indirectly, on the well-known Bell-Evans-Polanyi (BEP) principle. Comparing trajectories generated with BEP-based algorithms to kinetically correct off-lattice kinetic Monte Carlo schemes allow us to confirm that the BEP principle does not hold for complex systems since forward and reverse energy barriers are completely uncorrelated. As would be expected, following the lowest available energy barrier leads to rapid trapping. This is why BEP-based methods require also a direct handling of visited basins or barriers. Comparing the efficiency of these methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods lie first and foremost in the basin management rather than in the BEP-like step.

  18. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    SciTech Connect

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik E-mail: keeton@physics.rutgers.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  19. Airports Offer Unrealized Potential for Alternative Energy Production

    NASA Astrophysics Data System (ADS)

    Devault, Travis L.; Belant, Jerrold L.; Blackwell, Bradley F.; Martin, James A.; Schmidt, Jason A.; Wes Burger, L.; Patterson, James W.

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  20. Airports offer unrealized potential for alternative energy production.

    PubMed

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  1. Vascular anomalies in children.

    PubMed

    Weibel, L

    2011-11-01

    Vascular anomalies are divided in two major categories: tumours (such as infantile hemangiomas) and malformations. Hemangiomas are common benign neoplasms that undergo a proliferative phase followed by stabilization and eventual spontaneous involution, whereas vascular malformations are rare structural anomalies representing morphogenetic errors of developing blood vessels and lymphatics. It is important to properly diagnose vascular anomalies early in childhood because of their distinct differences in morbidity, prognosis and need for a multidisciplinary management. We discuss a number of characteristic clinical features as clues for early diagnosis and identification of associated syndromes.

  2. Potential displacement of petroleum imports by solar energy technologies

    NASA Astrophysics Data System (ADS)

    Deleon, P.; Jackson, B. L.; McNown, R. F.; Mahrenholz, G. J.

    1980-05-01

    The United States currently imports close to half of its petroleum requirements. The economic, social, and political costs of a foreign oil dependency are discussed. Development of alternative, domestic energy sources, such as solar energy technologies, which can displace foreign petroleum is discussed. It is estimated that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  3. Anomalies, conformal manifolds, and spheres

    DOE PAGES

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; ...

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  4. Anomalies, conformal manifolds, and spheres

    SciTech Connect

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  5. The extended Lennard-Jones potential energy function: A simpler model for direct-potential-fit analysis

    NASA Astrophysics Data System (ADS)

    Hajigeorgiou, Photos G.

    2016-12-01

    An analytical model for the diatomic potential energy function that was recently tested as a universal function (Hajigeorgiou, 2010) has been further modified and tested as a suitable model for direct-potential-fit analysis. Applications are presented for the ground electronic states of three diatomic molecules: oxygen, carbon monoxide, and hydrogen fluoride. The adjustable parameters of the extended Lennard-Jones potential model are determined through nonlinear regression by fits to calculated rovibrational energy term values or experimental spectroscopic line positions. The model is shown to lead to reliable, compact and simple representations for the potential energy functions of these systems and could therefore be classified as a suitable and attractive model for direct-potential-fit analysis.

  6. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed.

  7. Free-energy coarse-grained potential for C{sub 60}

    SciTech Connect

    Edmunds, D. M. Tangney, P.; Vvedensky, D. D.; Foulkes, W. M. C.

    2015-10-28

    We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C{sub 60}. Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures.

  8. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  9. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  10. Chapter 2: Assessing the Potential Energy Impacts of Clean Energy Initiatives

    EPA Pesticide Factsheets

    “Assessing the Multiple Benefits of Clean Energy” helps state energy, environmental, and economic policy makers identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energy initiatives

  11. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  12. The Potential for Harvesting Energy from the Movement of Trees

    PubMed Central

    McGarry, Scott; Knight, Chris

    2011-01-01

    Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node. PMID:22163695

  13. The potential for harvesting energy from the movement of trees.

    PubMed

    McGarry, Scott; Knight, Chris

    2011-01-01

    Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node.

  14. Dual diaphragmatic anomalies

    PubMed Central

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457

  15. New potential high energy density compounds: Oxadiaziridine derivatives

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Chi, Wei-Jie

    2014-10-01

    The -CN, -N3, -NF2, -NH2, -NHNO2, -NO2, and -ONO2 derivatives of oxadiaziridine were studied using B3LYP/6-311G** level of density functional theory. The gas phase heats of formation of oxadiaziridine derivatives were calculated by isodesmic reaction. All these compounds have high and positive heats of formation due to strain energies of small ring. Detonation properties were calculated via Kamlet-Jacobes equations and specific impulse. The effects of substituent groups on detonation performance were discussed. The impact sensitivity was estimated according to the "available free space per molecule in unit cell" and "energy gaps" methods. The similar conclusions were given by two different methods. The effects of substituents on impact sensitivity were discussed. According to the given estimations of detonation performance and sensitivity, some oxadiaziridine derivatives may be considered promising high energies materials.

  16. Assessment of Energy Production Potential from Tidal Streams in the United States

    SciTech Connect

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.; Smith, Brennan T.; Neary, Vincent

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  17. A potential enstrophy and energy conserving scheme for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Lamb, V. R.

    1981-01-01

    To improve the simulation of nonlinear aspects of the flow over steep topography, a potential enstrophy and energy conserving scheme for the shallow water equations is derived. It is pointed out that a family of schemes can conserve total energy for general flow and potential enstrophy for flow with no mass flux divergence. The newly derived scheme is a unique member of this family, that conserves both potential enstrophy and energy for general flow. Comparison by means of numerical experiment with a scheme that conserves (potential) enstrophy for purely horizontal nondivergent flow demonstrated the considerable superiority of the newly derived potential enstrophy and energy conserving scheme, not only in suppressing a spurious energy cascade but also in determining the overall flow regime. The potential enstrophy and energy conserving scheme for a spherical grid is also presented.

  18. The ratios of partition functions at different temperatures - Sensitivity to potential energy shape II

    NASA Astrophysics Data System (ADS)

    Buchowiecki, Marcin

    2016-05-01

    The ratios of partition functions at different temperatures are calculated and its dependence on potential energy shape is analyzed. The role of anharmonicity and non-rigidity of rotations is discussed in the context of the angular frequency and the shape of potential energy curve. A role of inflection point of potential energy curve for the quality of rigid rotor harmonic oscillator and rigid rotor Morse oscillator is elucidated.

  19. Brownian motor with competing spatial and temporal asymmetry of potential energy.

    PubMed

    Rozenbaum, V M; Korochkova, T Ye; Chernova, A A; Dekhtyar, M L

    2011-05-01

    A Brownian motor is considered which operates due to asymmetric dichotomic fluctuations of the spatially periodic asymmetric potential energy. As shown, the motion direction and stopping points of this motor are dictated by the competition between the spatial and temporal asymmetry of the potential energy (or solely by temporal asymmetry in the case that the potential energy sign fluctuates). For an asymmetric sawtooth potential, the Brownian-particle average velocity is calculated numerically as a function of certain parameters of the model, whereas the low-frequency and low-energy approximations allow the corresponding analytical relationships to be derived for an arbitrarily shaped potential profile. It is shown that temporal asymmetry is not necessary for stopping point occurrence provided that the potential profile fluctuates not only in amplitude but in shape as well. This inference is illustrated by photoinduced fluctuations of the potential energy for a number of substituted arylpyrene molecules on a substrate with symmetrically distributed charge density.

  20. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    SciTech Connect

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.; Jang, J.W.; Jung, J.W.; Tsouris, Costas

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.

  1. Potential displacement of petroleum imports by solar energy technologies

    SciTech Connect

    DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.

    1980-05-01

    The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  2. Potential of cattails as an energy source. Final report

    SciTech Connect

    Pratt, D.C.; Bonnewell, V.; Andrews, N.J.; Kim, J.H.

    1980-01-01

    Research on the feasibility of growing cattails as an energy crop is described. The following topics are included: productivity in natural strands, germination requirements for seed, establishing stands by seeding, rhizome dormancy and development, harvesting and stand establishment, and analysis of canopy structure and radiation profiles in a natural community. (MHR)

  3. Astrometric Solar-System Anomalies

    NASA Astrophysics Data System (ADS)

    Anderson, John D.

    2009-05-01

    There are four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital energy per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four anomalies have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.

  4. A terrain-dependent reference atmosphere determination method for available potential energy calculations

    NASA Technical Reports Server (NTRS)

    Koehler, T. L.

    1986-01-01

    An iterative technique that determines the reference atmosphere which incorporates the effects of uneven surface topography is presented. This method has been successfully applied in several available potential energy studies. An alternative method due to Taylor is also evaluated. While Taylor presented excellent continuous formulations of the available potential energy that include topography, his method for determining the reference atmosphere distributions failed to provide the accuracy needed to produce reliable available potential energy estimates. Since topography has a significant influence on the general circulation, it is important to employ techniques that incorporate its effects in the determination of available potential energy.

  5. A Framework for State-Level Renewable Energy Market Potential Studies

    EPA Pesticide Factsheets

    This document provides a framework/next steps for state officials who require estimates of renewable energy market potential, shows how to conduct a market potential study, and distinguishes between goal-oriented studies and other types of studies.

  6. Potential therapeutic targets in energy metabolism pathways of breast cancer.

    PubMed

    Islam, Rowshan Ara; Hossain, Sazzad; Chowdhury, Ezharul Hoque

    2017-03-30

    Mutations in proto-oncogenes and tumor suppressor genes make cancer cells proliferate indefinitely. As they possess almost all mechanisms for cell proliferation and survival like healthy cells, it is difficult to specifically target cancer cells in the body. Current treatments in most of the cases are harmful to healthy cells as well. Thus, it would be of great prudence to target specific characters of cancer cells. Since cancer cells avidly use glucose and glutamine to survive and proliferate by upregulating the relevant enzymes and their specific isoforms having important regulatory roles, it has been of great interest recently to target the energy-related metabolic pathways as part of the therapeutic interventions. This paper summarizes the roles of energy metabolism and their cross-talks with other important signaling pathways in regulating proliferation, invasion and metastasis in breast cancer. As breast cancer is a highly heterogeneous disease, a clear understanding of the variations of energy metabolism in different molecular subtypes would help in treating each type with a very customized, safer and efficient treatment regimen, by targeting specific glucose metabolism and related pathways with gene silencing nucleic acid sequences or small molecule drugs, or the combination of both.

  7. Transportation and energy efficiency: Promised potentials, serious roadblocks

    SciTech Connect

    Kraft-Oliver, T.V.

    1995-12-31

    Transportation is both a critical element of achieving national economic development goals and a major consumer of scarce and expensive energy resources. Improvements in access and mobility from reduced congestion, higher speeds, additional non motorized and pedestrian options, and better mass transit will result in reductions in energy use in most cases. Additional improvements in vehicle efficiency are possible but will not meet the needs of the region for transportation and energy efficiency improvements in the absence of these other improvements. The barriers to success in the transport sector are obvious on a superficial level. They include lack of road space, inadequate or incomplete road networks, insufficient mass transit capacity, predation of pedestrian and nonmotorized vehicle space by motor vehicles, and financing. The lack of progress in solving many of these problems over the past ten to twenty years indicates that there are underlying issues not yet addressed. Perceptions of these problems have changed since the middle 1970s and early 1980s as international lending and technical assistance began to focus on transportation. In those early years the problems were described as financial, and `meeting demand` challenges. The World Bank is now conducting a review of their Transport Sector Policy. While the review has not progressed to a final document and certainly not to articulation or transformation of Bank policy, early drafts reflect a view that past failures to improve transportation circumstances are human resource and institutional problems.

  8. Intersections of potential energy surfaces of short-lived states: the complex analogue of conical intersections.

    PubMed

    Feuerbacher, Sven; Sommerfeld, Thomas; Cederbaum, Lorenz S

    2004-02-15

    Whereas conical intersections between potential energy surfaces of bound states are well known, the interaction of short-lived states has been investigated only rarely. Here, we present several systematically constructed model Hamiltonians to study the topology of intersecting complex potential energy surfaces describing short-lived states: We find the general phenomenon of doubly intersecting complex energy surfaces, i.e., there are two points instead of one as in the case of bound states where the potential energy surfaces coalesce. In addition, seams of intersections of the respective real and imaginary parts of the potential energy surfaces emanate from these two points. Using the Sigma* and Pi* resonance states of the chloroethene anion as a practical example, we demonstrate that our complete linear model Hamiltonian is able to reproduce all phenomena found in explicitly calculated ab initio complex potential energy surfaces.

  9. Rivers of Energy: The Hydropower Potential. Worldwatch Paper No. 44.

    ERIC Educational Resources Information Center

    Deudney, Daniel

    Described are the history, current status and future potential of hydroelectric power in the world. Issues discussed include the environmental and social impacts of dam construction, and the use of small-scale hydroelectric installations in developing nations. Also considered are hydroelectric development of the world's remote regions, the need to…

  10. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  11. Energy use reduction potential in the beet sugar industry

    SciTech Connect

    Barron, T.S.; Heist, J.A.

    1984-01-01

    Process energy use data are presented for most of the forty operating beet sugar factories in the United States. Sixty percent of the processing capacity is in states that actively pursue cogeneration projects. Most of the present factories cogenerate steam and electricity for their own use. Fossil fuel boilers and low- to medium-pressure steam turbines are used exclusively for this purpose. Three alternative cogeneration technologies are evaluated, with economic feasibility found to depend on the price at which excess electricity can be sold.

  12. Energy use reduction potential in the beet sugar industry

    SciTech Connect

    Barron, T.S.; Cleary, M.

    1985-01-01

    Process energy use data are presented for most of the forty operating beet sugar factories in the United States. Sixty percent of the processing capacity is in states that actively pursue cogeneration projects. Most of the present factories cogenerate steam and electricity for their own use. Fossil fuel boilers and low- to medium-pressure steam turbines are used exclusively for this purpose. Three alternative cogeneration technologies are evaluated, with economic feasibility found to depend on the price at which excess electricity can be sold.

  13. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  14. Energy potential of biomass from conservation grasslands in Minnesota, USA.

    PubMed

    Jungers, Jacob M; Fargione, Joseph E; Sheaffer, Craig C; Wyse, Donald L; Lehman, Clarence

    2013-01-01

    Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha(-1). May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg(-1) and the concentration of plant N was 7.1 g kg(-1), both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic

  15. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    SciTech Connect

    Sathaye, Nakul; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2012-10-31

    Ceiling fans contribute significantly to residential electricity consumption, both in an absolute sense and as a proportion of household consumption in many locations, especially in developing countries in warm climates. However, there has been little detailed assessment of the costs and benefits of efficiency improvement options for ceiling fans and the potential resulting electricity consumption and greenhouse gas (GHG) emissions reductions. We analyze the costs and benefits of several options to improve the efficiency of ceiling fans and assess the global potential for electricity savings and GHG emission reductions with more detailed assessments for India, China, and the U.S. We find that ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terrawatt hours per year (TWh/year) could be saved and 25 million metric tons of carbon dioxide (CO2) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize this savings potential.

  16. Non-resonant energy harvesting via an adaptive bistable potential

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-01-01

    Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts.

  17. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  18. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    SciTech Connect

    Taylor, Margaret; Fujita, K. Sydny

    2012-09-17

    In 2011, energy used by federal buildings cost approximately $7 billion. Reducing federal energy use could help address several important national policy goals, including: (1) increased energy security; (2) lowered emissions of greenhouse gases and other air pollutants; (3) increased return on taxpayer dollars; and (4) increased private sector innovation in energy efficient technologies. This report estimates the impact of efficient product procurement on reducing the amount of wasted energy (and, therefore, wasted money) associated with federal buildings, as well as on reducing the needless greenhouse gas emissions associated with these buildings.

  19. Development of a "First Principles" Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient.

    PubMed

    Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco

    2013-12-10

    The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.

  20. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    ERIC Educational Resources Information Center

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  1. Diabatic heating fields and the generation of available potential energy during FGGE

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Baker, Wayman E.; Kalnay, Eugenia

    1986-01-01

    Global diabatic heating is estimated using fields of directly computed heating components, in particular those due to shortwave radiation, longwave radiation, sensible heating, and latent heating produced every 6 hours. The role of average fields of diabatic heating in the generation of available potential energy is examined. It is observed that latent heating is most significant in generating available potential energy.

  2. Magnetic anomalies. [Magsat studies

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.

    1983-01-01

    The implications and accuracy of anomaly maps produced using Magsat data on the scalar and vector magnetic field of the earth are discussed. Comparisons have been made between the satellite maps and aeromagnetic survey maps, showing smoother data from the satellite maps and larger anomalies in the aircraft data. The maps are being applied to characterize the structure and tectonics of the underlying regions. Investigations are still needed regarding the directions of magnetization within the crust and to generate further correlations between anomaly features and large scale geological structures. Furthermore, an increased data base is recommended for the Pacific Ocean basin in order to develop a better starting model for Pacific tectonic movements. The Pacific basin was large farther backwards in time and subduction zones surround the basin, thereby causing difficulties for describing the complex break-up scenario for Gondwanaland.

  3. Energy efficiency monitoring and economic analysis for energy saving potential in UNITEN

    NASA Astrophysics Data System (ADS)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Yew, Kang Chin; Azwa Shaaya, Sharifah

    2013-06-01

    This paper discusses on energy efficiency survey for typical buildings in Universiti Tenaga Nasional (UNITEN). Undeniably, wastage of energy will cause the increase of operation cost and depletion of fossil fuel resources which contributes to the climate change issue in the world. UNITEN was commenced in the late 1990s and most of the buildings in this university are not equipped with energy management system. Such system is the solution to reduce energy use while maximizing the comfort levels of the occupants. Disregard to the energy management system, the implementation of other energy saving measures is the main objective of this paper. By taking the right measures, the energy wastage in the buildings of this university can be reduced.

  4. The global technical potential of bio-energy in 2050 considering sustainability constraints.

    PubMed

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-12-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

  5. Trace anomaly on a quantum spacetime manifold

    SciTech Connect

    Spallucci, Euro; Smailagic, Anais; Nicolini, Piero

    2006-04-15

    In this paper we investigate the trace anomaly in a space-time where single events are delocalized as a consequence of short distance quantum coordinate fluctuations. We obtain a modified form of heat kernel asymptotic expansion which does not suffer from short distance divergences. Calculation of the trace anomaly is performed using an IR regulator in order to circumvent the absence of UV infinities. The explicit form of the trace anomaly is presented and the corresponding 2D Polyakov effective action and energy-momentum tensor are obtained. The vacuum expectation value of the energy-momentum tensor in the Boulware, Hartle-Hawking and Unruh vacua is explicitly calculated in a rt section of a recently found, noncommutative inspired, Schwarzschild-like solution of the Einstein equations. The standard short distance divergences in the vacuum expectation values are regularized in agreement with the absence of UV infinities removed by quantum coordinate fluctuations.

  6. On the potential energy in a gravitationally bound two-body system

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2015-01-01

    The potential energy problem in a gravitationally bound two-body system is studied in the framework of a recently proposed impact model of gravity (Wilhelm et al., 2013). The concept of a closed system has been modified, before the physical processes resulting in the liberation of the potential energy can be described. The energy is extracted from the background flux of hypothetical interaction entities.

  7. Kappa distributions in the presence of a potential energy

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2016-10-01

    Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as geophysical, space, and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions, or combinations thereof. Empirical kappa distributions have become increasingly widespread across plasma physics. A breakthrough in the field came with the connection of kappa distributions to non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, one of which is the generalization to the phase-space kappa distributions of a Hamiltonian with non-zero potentials. We present the theory behind the phase-space kappa distributions and discuss three important applications in collisionless plasmas: (i) origin of polytropic relation; (ii) gravitational field; (iii) barometric relation (i.e., pressure vs. altitude); and (iv) plasma magnetization.

  8. Achieving Land, Energy, and Environmental Compatibility: Utility-Scale Solar Energy Potential and Land-Use in California

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Field, C. B.

    2013-12-01

    Solar energy is an archetype renewable energy technology with great potential to reduce greenhouse gas emissions when substituted for carbon-intensive energy. Utility-scale solar energy (USSE; i.e., > 1 MW) necessitates large quantities of space making the efficient use of land for USSE development critical to realizing its full potential. However, studies elucidating the interaction between land-use and utility-scale solar energy (USSE) are limited. In this study, we assessed 1) the theoretical and technical potential of terrestrial-based USSE systems, and 2) land-use and land-cover change impacts from actual USSE installations (> 20 MW; planned, under construction, operating), using California as a case study due to its early adoption of renewable energy systems, unique constraints on land availability, immense energy demand, and vast natural resources. We used topo-climatic (e.g., slope, irradiance), infrastructural (e.g., proximity to transmission lines), and ecological constraints (e.g., threatened and endangered species) to determine highly favorable, favorable, and unfavorable locations for USSE and to assess its technical potential. We found that the theoretical potential of photovoltaic (PV) and concentrating solar power (CSP) in California is 26,097 and 29,422 kWh/m2/day, respectively. We identified over 150 planned, under construction, and operating USSE installations in California, ranging in size from 20 to 1,000 MW. Currently, 29% are located on shrub- and scrublands, 23% on cultivated crop land, 13% on pasture/hay areas, 11% on grassland/herbaceous and developed open space, and 7% in the built environment. Understanding current land-use decisions of USSE systems and assessing its future potential can be instructive for achieving land, energy, and environmental compatibility, especially for other global regions that share similar resource demands and limitations.

  9. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    SciTech Connect

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg; Jenkin, Thomas

    2016-12-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon emitting energy sources.

  10. Residential energy use and potential conservation through reduced laundering temperatures in the United States and Canada.

    PubMed

    Sabaliunas, Darius; Pittinger, Charles; Kessel, Cristy; Masscheleyn, Patrick

    2006-04-01

    A residential energy-use model was developed to estimate energy budgets for household laundering practices in the United States and Canada. The thermal energy for heating water and mechanical energy for agitating clothes in conventional washing machines were calculated for representative households in the United States and Canada. Comparisons in energy consumption among hot-, warm-, and cold-water wash and rinse cycles, horizontal- and vertical-axis washing machines, and gas and electric water heaters, were calculated on a per-wash-load basis. Demographic data for current laundering practices in the United States and Canada were then incorporated to estimate household and national energy consumption on an annual basis for each country. On average, the thermal energy required to heat water using either gas or electric energy constitutes 80% to 85% of the total energy consumed per wash in conventional, vertical-axis (top-loading) washing machines. The balance of energy used is mechanical energy. Consequently, the potential energy savings per load in converting from hot-and-warm- to cold-wash temperatures can be significant. Annual potential energy and cost savings and reductions in carbon dioxide emissions are also estimated for each country, assuming full conversion to cold-wash water temperatures. This study provides useful information to consumers for conserving energy in the home, as well as to, manufacturers in the design of more energy-efficient laundry formulations and appliances.

  11. The Growth and Decay of Hydrate Anomalies in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Irizarry, J. T.; Rempel, A. W.

    2014-12-01

    Natural gas hydrates, stored in huge quantities beneath permafrost, and in submarine sediments on the continental shelf, have the potential to become a vital clean-burning energy source. However, clear evidence is recorded in coastal sediments worldwide that past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. Arctic permafrost is thawing, and environmental changes can alter ocean circulation to warm the seafloor, causing hydrates to dissociate or dissolve in the sediments beneath. Decades of focused research provide a firm understanding of laboratory conditions under which hydrates become unstable and dissociate, and how hydrate reserves form when microbes convert organic material into methane, which can also dissolve and be carried by pore waters into the hydrate stability zone. Despite these advances, many key questions that concern both the resource potential of hydrates and their role in causing environmental geohazards, are intimately tied to the more poorly understood behavior of hydrate anomalies, which tend to be concentrated in the large pores of sand layers and form segregated lenses and nodules in muds. We present simple models designed to unravel the importance of the diverse physical interactions (i.e. flow focusing, free-gas infiltration, and pore-scale solubility effects) that help control how hydrate anomalies form. Predicted hydrate distributions are qualitatively different when accumulation in anomalies is supplied primarily by: 1. aqueous flow through sediments with enhanced permeability, 2. free-gas transport high above the three-phase stability boundary, or 3. diffusive transport along solubility gradients associated with pore-scale effects. We discuss examples that illustrate each of these distinct generation

  12. Energy potential from livestock and poultry wastes in the South. Agricultural Economic Report

    SciTech Connect

    Jones, H.B.; Ogden, E.A.

    1984-11-01

    Livestock and poultry wastes could produce significant amounts of biomass energy if conventional energy prices continue to rise. This study estimates the economically recoverable energy available through anaerobic digestion or direct burning of animal wastes in the South for the base year 1980 with projections for 1985 and 1990. Potential thermal energy from livestock and poultry wastes in 1990 could total more than 79.5 trillion Btu, or about 30 percent of the energy from such sources nationwide. The total potential farm value of biomass energy from livestock and poultry enterprises in the South could range from $344 million to $1.08 billion in 1990 depending upon the types of conventional energy displaced. Energy products from these wastes attained their highest value when substituted for LP gas.

  13. Evaluation of magnetic anomalies located in Lower Bayou Teche, St. Mary Parish, Louisiana

    NASA Astrophysics Data System (ADS)

    Goodwin, R. Christopher; Athens, William P.; Saltus, Allen R., Jr.

    1991-07-01

    This report presents results of testing and assessment of eleven previously recorded magnetic anomalies located in Lower Bayou Teche, St. Mary Parish, Louisiana. Maintenance dredging of Lower Bayou Teche may impact several of the eight anomalies evaluated in this study. Objectives of the study were to conduct detailed surveys and assessments of eight previously located anomalies. These were Anomalies 8, 13, 24a, 29, 30, 31, 33, and 58. Three orther anomalies, Anomaly nos. 23, 24b, and 55 were also briefly examined. Methods used during survey included relocation of each anomaly with a magnetometer; informal magnetic and fathometer survey of each anomaly and its vicinity, physical search of the river bottom at each anomaly location; use of a metal detector to assess the depth of the magnetic source of each anomaly; probing of the river bottom to locate buried structures; and limited excavation with a jet probe to document the source, nature, and research potential of each of the eight anomalies. Two of the anomalies, Anomaly nos. 30 and 58 could not be relocated. Four of the anomalies apparently are associated with modern debris: Anomaly nos. 8, 13, 29, and 31. Anomaly no. 33 appears to be an isolated object. Evidence of structure was observed 14 to 15 ft below water surface, however, it occurs below the project impact zone. One archeological site, the Anomaly no. 23/24 Complex (Site 16SMY76) was defined. It consists of two wooden barges and some twentieth century bridge remains.

  14. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  15. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    SciTech Connect

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O'Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  16. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  17. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-29

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  18. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  19. Potential energy curves crossing and low-energy charge transfer dynamics in (BeH2O)2+ complex

    NASA Astrophysics Data System (ADS)

    Sun, QiXiang; Yan, Bing

    2012-07-01

    The singlet rigid Be—O dissociation potential energy curves correlating to the first four molecular limits of (BeH2O)2+ complex were calculated using the multi-reference single and double excitation configuration interaction theory. The radial couplings of three low-lying 1A1 states were calculated and combined with adiabatic potential energy curves to investigate and charge-transfer collision dynamics by using quantum-mechanical molecular orbital close-coupling methods. It is found that the total charge-transfer cross sections are dominated by the Be+(2S)+H2O+(Ã2A1) channel. The rate coefficients in the range of 10-17-10-12 cm3/s are very sensitive to temperature below 1000 K. The complexation energy without charge-transfer was determined to be 143.6 kcal/mol, including zero-point vibration energy corrections. This is in good agreement with the previous results.

  20. Estimating Potential Energy Efficiency and Renewable Energy (EE/RE) Impacts

    EPA Pesticide Factsheets

    These carbon pollution emission resources include AVoided Emissions &geneRation Tool (AVERT), assessing multiple benefits, combined heat and power partnership, SEE Action, and technical assistance from the U.S. Department of Energy (DOE).

  1. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Wang, Weimin

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  2. Morse potential, symmetric Morse potential and bracketed bound-state energies

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2016-04-01

    For the needs of non-perturbative quantum theory, an upgraded concept of solvability is proposed. In a broader methodical context, the innovation involves Schrödinger equations which are piecewise analytic and piecewise solvable in terms of special (in our illustrative example, Whittaker) functions. In a practical implementation of our symbolic-manipulation-based approach, we work with a non-analyticity in the origin. A persuasive advantage is then found in the both-sidedness of our iterative localization of the energies.

  3. EPA RE-Powering Mapper: Alternative Energy Potential at Cleanup Sites

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management??s (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.

  4. Hawking radiation and covariant anomalies

    SciTech Connect

    Banerjee, Rabin; Kulkarni, Shailesh

    2008-01-15

    Generalizing the method of Wilczek and collaborators we provide a derivation of Hawking radiation from charged black holes using only covariant gauge and gravitational anomalies. The reliability and universality of the anomaly cancellation approach to Hawking radiation is also discussed.

  5. XYY chromosome anomaly and schizophrenia.

    PubMed

    Rajagopalan, M; MacBeth, R; Varma, S L

    1998-02-07

    Sex chromosome anomalies have been associated with psychoses, and most of the evidence is linked to the presence of an additional X chromosome. We report a patient with XYY chromosome anomaly who developed schizophrenia.

  6. Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results

    SciTech Connect

    Brown, Austin; Beiter, Philipp; Heimiller, Donna; Davidson, Carolyn; Denholm, Paul; Melius, Jennifer; Lopez, Anthony; Hettinger, Dylan; Mulcahy, David; Porro, Gian

    2016-08-01

    The report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, is defined in this report as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity.

  7. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.

    PubMed

    Gapsys, Vytautas; Seeliger, Daniel; de Groot, Bert L

    2012-07-10

    The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.

  8. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-07-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  9. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  10. Vibrational Levels and Resonances on a New Potential Energy Surface for the Ground Electronic State of Ozone

    NASA Astrophysics Data System (ADS)

    Ndengue, Steve Alexandre; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    The isotopic ratios for ozone observed in laboratory and atmospheric measurements, known as the ozone isotopic anomaly,[1,2] have been an open question in physical and atmospheric chemistry for the past 30 years. The biggest limitation in achieving agreement between theory and experiment has been the availability of a satisfactory[3-5] ground state potential energy surface (PES). The presence of a spurious reef feature in the asymptotic region of most PESs has been associated with large discrepancies between calculated and observed rates of formation especially at low temperature. We recently proposed a new global potential energy surface for ozone[6,7] possessing 4 features that make it suitable for kinetics and dynamics studies: excellent equilibrium parameters, good agreement with experimental vibrational levels, accurate dissociation energy and a transition region with accurate topography (without the reef artifact). This PES has been used recently to simulate the temperature dependent exchange reaction (16O+16O2) with a quantum statistical model[6,7], and, for the first time, a negative temperature dependence which agrees with experiments was obtained, indicating the good quality of this global surface. A quantum description of the ozone exchange and recombination reaction requires knowledge of the resonances but also the rovibrational levels just below the dissociation. We present results of global 3-well vibrational-state calculations up to the dissociation threshold and (J = 0) resonances up to 1000 wn beyond. The calculations were done using a large DVR basis ( 24 million functions) with a symmetry-adapted Lanczos algorithm as well as MCTDH. Results indicate the presence of localized bound states at energies close to the dissociation threshold beyond which some long-lived resonances follow, contrasted with a few delocalized bound states with density at large values of the stretching coordinates. References: 1- K. Mauersberger et al., Adv. At. Mol. Opt

  11. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    NASA Astrophysics Data System (ADS)

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  12. An Integrated Geovisual Analytics Framework for Analysis of Energy Consumption Data and Renewable Energy Potentials

    SciTech Connect

    Omitaomu, Olufemi A; Kramer, Ian S; Kodysh, Jeffrey B; Bhaduri, Budhendra L; Steed, Chad A; Karthik, Rajasekar; Nugent, Philip J; Myers, Aaron T

    2012-01-01

    We present an integrated geovisual analytics framework for utility consumers to interactively analyze and benchmark their energy consumption. The framework uses energy and property data already available with the utility companies and county governments respectively. The motivation for the developed framework is the need for citizens to go beyond the conventional utility bills in understanding the patterns in their energy consumption. There is also a need for citizens to go beyond one-time improvements that are often not monitored and measured over time. Some of the features of the framework include the ability for citizens to visualize their historical energy consumption data along with weather data in their location. The quantity of historical energy data available is significantly more than what is available from utility bills. An overlay of the weather data provides users with a visual correlation between weather patterns and their energy consumption patterns. Another feature of the framework is the ability for citizens to compare their consumption on an aggregated basis to that of their peers other citizens living in houses of similar size and age and within the same or different geographical boundaries, such as subdivision, zip code, or county. The users could also compare their consumption to others based on the size of their family and other attributes. This feature could help citizens determine if they are among the best in class . The framework can also be used by the utility companies to better understand their customers and to plan their services. To make the framework easily accessible, it is developed to be compatible with mobile consumer electronics devices.

  13. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    SciTech Connect

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  14. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    SciTech Connect

    Zogg, Robert; Goetzler, William; Ahlfeldt, Christopher; Hiraiwa, Hirokazu; Sathe, Amul; Sutherland, Timothy

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  15. New potential energy surface for the HCS(+)-He system and inelastic rate coefficients.

    PubMed

    Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip

    2015-07-28

    A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS(+)-He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS(+) by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO(+)-He system. The HCS(+)-He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.

  16. Creating chiral anomalies

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Cano, Jennifer; Wang, Zhijun; Hirschberger, Max; Ong, N. Phuan; Bernevig, B. Andrei

    Materials with intrinsic Weyl points should present exotic magnetotransport phenomena due to spectral flow between Weyl nodes of opposite chirality - the so-called ``chiral anomaly''. However, to date, the most definitive transport data showing the presence of a chiral anomaly comes from Dirac (not Weyl) materials. These semimetals develop Weyl fermions only in the presence of an externally applied magnetic field, when the four-fold degeneracy is lifted. In this talk we examine Berry phase effects on transport due to the emergence of these field-induced Weyl point and (in some cases) line nodes. We pay particular attention to the differences between intrinsic and field-induced Weyl fermions, from the point of view of kinetic theory. Finally, we apply our analysis to a particular material relevant to current experiments performed at Princeton.

  17. Ebstein Anomaly in Pregnancy.

    PubMed

    Rusdi, Lusiani; Azizi, Syahrir; Suwita, Christopher; Karina, Astrid; Nasution, Sally A

    2016-10-01

    A 27-year-old primiparous woman with 28 weeks gestational age was admitted to our hospital with worsening shortness of breath. She was diagnosed with Ebstein's anomaly three years ago, but preferred to be left untreated. The patient was not cyanotic and her vital signs were stable. Her ECG showed incomplete RBBB and prolonged PR-interval. Blood tests revealed mild anemia. Observation of two-dimensional echo with color flow Doppler study showed Ebstein's anomaly with PFO as additional defects, EF of 57%, LV and LA dilatation, RV atrialization, severe TR, and moderate PH with RVSP of 44.3 mmHg. The patient then underwent elective sectio caesaria at 30 weeks of gestational age; both the mother and her baby were alive and were in good conditions.

  18. Vibrational energies and full analytic potential energy functions of PbI and InI from pure microwave data

    NASA Astrophysics Data System (ADS)

    Yoo, Ji Ho; Köckert, Hansjochen; Mullaney, John C.; Stephens, Susanna L.; Evans, Corey J.; Walker, Nicholas R.; Le Roy, Robert. J.

    2016-12-01

    Pure rotational spectra of PbI and InI are interpreted to yield a full analytic potential energy function for each molecule. Rotational spectra for PbI have been retrieved from literature sources to perform the analysis. Rotational transition frequencies for excited vibrational states of InI (0 < v < 11) are measured during this work. Ignoring hyperfine splittings, Bv and Dv values are used to generate a set of "synthetic" pure R (0) transitions for each vibrational level. These are then fitted to an "Expanded Morse Oscillator" (EMO) potential using the direct-potential-fit program, dPOTFIT. The well-depth parameter, De , is fixed at a literature value, while values of the equilibrium distance re and EMO exponent-coefficient expansion (potential-shape) parameters are determined from the fits. Comparison with potential functions determined after including older mid-IR and visible electronic transition data shows that our analysis of the pure microwave data alone yields potential energy functions that accurately predict (to better than 1%) the overtone vibrational energies far beyond the range spanned by the levels for which the microwave data is available.

  19. Effective Potential Energies and Transport Cross Sections for Atom-Molecule Interactions of Nitrogen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The potential energy surfaces for H2-N and N2-N interactions are calculated by accurate ab initio methods and applied to determine transport data. The results confirm that an effective potential energy for accurately determining transport properties can be calculated using a single orientation. A simple method is developed to determine the dispersion coefficients of effective potential energies Effective potential energies required for O2-O collisions are determ=ined. The H2-N, N2-N, O2-H, and O2-O collision integrals are calculated and tabulated for a large range of temperatures. The theoretical values of the N2-N and O2-O diffusion coefficients compare well with measured data available at room temperature.

  20. Determining the Intermolecular Potential Energy in a Gas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Olbregts, J.; Walgraeve, J. P.

    1976-01-01

    Describes an experiment in which gas viscosity coefficients over a large temperature range are used to determine the parameters of the intermolecular potential energy and other properties such as virial coefficients. (MLH)

  1. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    SciTech Connect

    Wan, Y.; Renne, O.D.; Junfeng, Li

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  2. Pathogenesis of Vascular Anomalies

    PubMed Central

    Boon, Laurence M.; Ballieux, Fanny; Vikkula, Miikka

    2010-01-01

    Vascular anomalies are localized defects of vascular development. Most of them occur sporadically, i.e. there is no familial history of lesions, yet in a few cases clear inheritance is observed. These inherited forms are often characterized by multifocal lesions that are mainly small in size and increase in number with patient’s age. On the basis of these inherited forms, molecular genetic studies have unraveled a number of inherited mutations giving direct insight into the pathophysiological cause and the molecular pathways that are implicated. Genetic defects have been identified for hereditary haemorrhagic telangiectasia (HHT), inherited cutaneomucosal venous malformation (VMCM), glomuvenous malformation (GVM), capillary malformation - arteriovenous malformation (CM-AVM), cerebral cavernous malformation (CCM) and some isolated and syndromic forms of primary lymphedema. We focus on these disorders, the implicated mutated genes and the underlying pathogenic mechanisms. We also call attention to the concept of Knudson’s double-hit mechanism to explain incomplete penetrance and the large clinical variation in expressivity of inherited vascular anomalies. This variability renders the making of correct diagnosis of the rare inherited forms difficult. Yet, the identification of the pathophysiological causes and pathways involved in them has had an unprecedented impact on our thinking of their etiopathogenesis, and has opened the doors towards a more refined classification of vascular anomalies. It has also made it possible to develop animal models that can be tested for specific molecular therapies, aimed at alleviating the dysfunctions caused by the aberrant genes and proteins. PMID:21095468

  3. Continental and oceanic magnetic anomalies: Enhancement through GRM

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.

    1985-01-01

    In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.

  4. Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure.

    PubMed

    Cheung, Ngaam J; Shen, Hong-Bin

    2014-11-01

    The stable conformation of a molecule is greatly important to uncover the secret of its properties and functions. Generally, the conformation of a molecule will be the most stable when it is of the minimum potential energy. Accordingly, the determination of the conformation can be solved in the optimization framework. It is, however, not an easy task to achieve the only conformation with the lowest energy among all the potential ones because of the high complexity of the energy landscape and the exponential computation increasing with molecular size. In this paper, we develop a hierarchical and heterogeneous particle swarm optimizer (HHPSO) to deal with the problem in the minimization of the potential energy. The proposed method is evaluated over a scalable simplified molecular potential energy function with up to 200 degrees of freedom and a realistic energy function of pseudo-ethane molecule. The experimental results are compared with other six PSO variants and four genetic algorithms. The results show HHPSO is significantly better than the compared PSOs with p-value less than 0.01277 over molecular potential energy function.

  5. Study of the Potential Energy Consumption Impacts of Connected and Automated Vehicles

    EIA Publications

    2017-01-01

    A new study commissioned by the U.S. Energy Information Administration, finds that the introduction of connected and automated vehicle technologies have the potential to affect vehicle energy consumption, travel, usage, vehicle design and attributes, and personal ownership rates. Rate of technology development, consumer acceptance, and regulatory support and oversight will affect the rate of market penetration of these vehicle technologies.

  6. The Potential for Energy Retrofits within the City of Sacramento's Rental Housing Inspection Program

    SciTech Connect

    Iverson, Megan M.; Sande, Susan; Britt, Michelle L.

    2011-04-15

    This report presents the results of an analysis performed by Pacific Northwest National Laboratory for the City of Sacramento--under the U.S. Department of Energy’s Energy Efficiency and Renewable Energy Office of Weatherization and Intergovernmental Projects Technical Assistance Program--to help determine the potential for incorporating energy efficiency standards into the City’s existing Rental Housing Inspection Program as part of Sacramento’s efforts to create a Climate Action Plan.

  7. Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities

    SciTech Connect

    Chvala, William D.

    2001-07-31

    This document presents the findings of a technology market assessment for thermal energy storage (TES) in space cooling applications. The potential impact of TES in Federal facilities is modeled using the Federal building inventory with the appropriate climatic and energy cost data. In addition, this assessment identified acceptance issues and major obstacles through interviews with energy services companies (ESCOs), TES manufacturers, and Federal facility staff.

  8. Use of vegetation to ameliorate building microclimates: an assessment of energy-conservation potentials

    SciTech Connect

    Hutchison, B.A.; Taylor, F.G.; Wendt, R.L.

    1982-04-01

    The space-conditioning energy conservation potentials of landscapes designed to ameliorate building microclimates are evaluated. The physical bases for vegetative modifications of climate are discussed, and results of past study of the effects of vegetation on space-conditioning energy consumption in buildings are reviewed. The state-of-the-art of energy-conserving landscape designs is assessed and recommendations are presented for further research.

  9. A Review of Vascular Anomalies: Genetics and Common Syndromes

    PubMed Central

    Killion, Elizabeth; Mohan, Kriti; Lee, Edward I.

    2014-01-01

    Vascular tumors and malformations are unique in that affected cells exhibit disrupted angiogenesis. The current treatment options often yield suboptimal results. New insight into the genetics and molecular basis of vascular anomalies may pave the way for potential development of targeted therapy. The authors review the genetic and molecular basis of vascular anomalies and common associated syndromes. PMID:25045331

  10. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  11. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  12. Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa (Poster)

    SciTech Connect

    Cowlin, S.; Heimiller, D.; Bilello, D.; Renne, D.

    2008-10-01

    Approximately 1.6 billion people worldwide do not have access to electricity, and roughly 2.4 billion people rely on traditional biomass fuels to meet their heating and cooking needs. Lack of access to and use of energy - or energy poverty - has been recognized as a barrier to reaching the Millennium Development Goals (MDGs) and other targeted efforts to improve health and quality of life. Reducing reliance on traditional biomass can substantially reduce indoor air pollution-related morbidity and mortality; increasing access to lighting and refrigeration can improve educational and economic opportunities. Though targeted electrification efforts have had success within Latin America and East Asia (reaching electrification rates above 85%), sub-Saharan Africa has maintained electrification rates below 25% (IEA 2004).

  13. Geopotential field anomalies and regional tectonic features

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Korte, Monika

    2016-07-01

    Maps of both gravity and magnetic field anomalies offer crucial information about physical properties of the Earth's crust and upper mantle, required in understanding geological settings and tectonic structures. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Two regions are considered: southern Africa (encompassing South Africa, Namibia and Botswana) and Germany. This twofold choice is motivated firstly by the fact that these regions represent rather diverse geological and geophysical conditions (old Archean crust with strong magnetic anomalies in southern Africa, and much younger, weakly magnetized crust in central Europe) and secondly by our intimate knowledge of the magnetic vector ground data from these two regions. We take also advantage of the recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of some 200 km resolution. Comparing short and long wavelength anomalies and the correlation of rather large scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement over the southern African region than the German territory. This probably indicates a stronger concordance between near-surface and deeper structures in the former area, which can be perceived to agree with a thicker lithosphere.

  14. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    SciTech Connect

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-07-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  15. [The effect of limiting neuronal energy metabolism on the level of impulse activity and membrane potentials].

    PubMed

    Voronova, N V; Chumachenko, A A

    1989-01-01

    The changes of the membrane potential and the frequency of impulse activity of the crayfish stretch receptor neuron have been studied under condition of energy supply deficiency. The energetic metabolism inhibitors have been found not to exert a significant effect on the membrane potential. The activity of the glycolysis process and the Krebs cycle have different effect on the sensitivity of the generating mechanism.

  16. Free-energy functionals of the electrostatic potential for Poisson-Boltzmann theory.

    PubMed

    Jadhao, Vikram; Solis, Francisco J; de la Cruz, Monica Olvera

    2013-08-01

    In simulating charged systems, it is often useful to treat some ionic components of the system at the mean-field level and solve the Poisson-Boltzmann (PB) equation to get their respective density profiles. The numerically intensive task of solving the PB equation at each step of the simulation can be bypassed using variational methods that treat the electrostatic potential as a dynamic variable. But such approaches require the access to a true free-energy functional: a functional that not only provides the correct solution of the PB equation upon extremization, but also evaluates to the true free energy of the system at its minimum. Moreover, the numerical efficiency of such procedures is further enhanced if the free-energy functional is local and is expressed in terms of the electrostatic potential. Existing PB functionals of the electrostatic potential, while possessing the local structure, are not free-energy functionals. We present a variational formulation with a local free-energy functional of the potential. In addition, we also construct a nonlocal free-energy functional of the electrostatic potential. These functionals are suited for employment in simulation schemes based on the ideas of dynamical optimization.

  17. The potential energy landscape for crystallisation of a Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    de Souza, Vanessa K.; Wales, David J.

    2016-07-01

    Crystallisation pathways are explored by direct analysis of the potential energy landscape for a system of Lennard-Jones particles with periodic boundary conditions. A database of minima and transition states linking liquid and crystalline states is constructed using discrete path sampling and the entire potential energy landscape from liquid to crystal is visualised. We demonstrate that there is a strong negative correlation between the number of atoms in the largest crystalline cluster and the potential energy. In common with previous results we find a strong bias towards the growth of FCC rather than HCP clusters, despite a very small potential energy difference. We characterise three types of perfect crystals with very similar energies: pure FCC, pure HCP, and combinations of FCC and HCP layers. There are also many slightly defective crystalline structures. The effect of the simulation box is analysed for a supercell containing 864 atoms. There are low barriers between some of the different crystalline structures via pathways involving sliding layers, and many different defective structures with FCC layers stacked at an angle to the periodic box. Finally, we compare a binary Lennard-Jones system and visualise the potential energy landscape from supercooled liquid to crystal.

  18. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-06

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  19. Cloud-generated radiative heating and its generation of available potential energy

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  20. The PyPES library of high quality semi-global potential energy surfaces.

    PubMed

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-05

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib.

  1. Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Arakawa, Akio; Hsu, Yueh-Jiuan G.

    1990-01-01

    To incorporate potential enstrophy dissipation into discrete shallow water equations with no or arbitrarily small energy dissipation, a family of finite-difference schemes have been derived with which potential enstrophy is guaranteed to decrease while energy is conserved (when the mass flux is nondivergent and time is continuous). Among this family of schemes, there is a member that minimizes the spurious impact of infinite potential vorticities associated with infinitesimal fluid depth. The scheme is, therefore, useful for problems in which the free surface may intersect with the lower boundary.

  2. Contribution of three-body potentials to the binding energy of heavy atoms

    NASA Technical Reports Server (NTRS)

    Zygelman, B.; Mittleman, M. H.

    1986-01-01

    The conversion of quantum electrodynamics to a configuration-space Hamiltonian formalism introduces three-electron potentials of relativistic origin. For heavy atoms, it is found that the contribution of these potentials to the inner-shell binding energy is no more than 0.21 eV. This is too small to explain the discrepancy between current theory and experiment. The uniqueness of the potentials obtained in the configuration-space Hamiltonian is also discussed.

  3. Surface tension, surface energy, and chemical potential due to their difference.

    PubMed

    Hui, C-Y; Jagota, A

    2013-09-10

    It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.

  4. How the Reorganization Free Energy Affects the Reduction Potential of Structurally Homologous Cytochromes.

    PubMed

    Daidone, Isabella; Amadei, Andrea; Zaccanti, Francesco; Borsari, Marco; Bortolotti, Carlo Augusto

    2014-05-01

    Differences in the reduction potential E(0) among structurally similar metalloproteins cannot always be fully explained on the basis of their 3-D structures. We investigate the molecular determinants to E(0) using the mixed quantum mechanics/molecular mechanics approach named perturbed matrix method (PMM); after comparison with experimental values to assess the reliability of our calculations, we investigate the relationship between the change in free energy upon reduction ΔA(0) and the reorganization energy. We find that the reduction potential of cytochromes can be regarded as the result of the sum of two terms, one being mostly dependent on the energy fluctuations within a limited range around the mean transition energy and the second being mostly dependent linearly on the difference Δλ = λred - λox of the reorganization free energies for the ox → red (λred) and for the red → ox (λox) relaxations.

  5. Kohn anomaly in phonon driven superconductors

    NASA Astrophysics Data System (ADS)

    Das, M. P.; Chaudhury, R.

    2014-08-01

    Anomalies often occur in the physical world. Sometimes quite unexpectedly anomalies may give rise to new insight to an unrecognized phenomenon. In this paper we shall discuss about Kohn anomaly in a conventional phonon-driven superconductor by using a microscopic approach. Recently Aynajian et al.'s experiment showed a striking feature; the energy of phonon at a particular wave-vector is almost exactly equal to twice the energy of the superconducting gap. Although the phonon mechanism of superconductivity is well known for many conventional superconductors, as has been noted by Scalapino, the new experimental results reveal a genuine puzzle. In our recent work we have presented a detailed theoretical analysis with the help of microscopic calculations to unravel this mystery. We probe this aspect of phonon behaviour from the properties of electronic polarizability function in the superconducting phase of a Fermi liquid metal, leading to the appearance of a Kohn singularity. We show the crossover to the standard Kohn anomaly of the normal phase for temperatures above the transition temperature. Our analysis provides a nearly complete explanation of this new experimentally discovered phenomenon. This report is a shorter version of our recent work in JPCM.

  6. Effects of pion-fold-pion diagrams in the energy-independent nucleon-nucleon potential

    NASA Astrophysics Data System (ADS)

    de Guzman, G.; Kuo, T. T. S.; Holinde, K.; Machleidt, R.; Faessler, A.; Müther, H.

    1985-10-01

    Based on a T-matrix equivalence theory, an energy-independent or locally energy-dependent nucléon-nucléon potential VNN derived from meson exchanges is studied. The potential, given as a series expansion of folded diagrams, is independent of the asymptotic energy of the scattering nucleons. It is, however, locally energy dependent in the sense that its matrix elements < a| VNN| b> depend on the energies associated with its bra and ket states a and b. Our formulation makes use of right-hand-side on-shell T-matrix equivalence of the field-theoretical and potential descriptions when limited to the space of neutrons and protons only. This preserves not only scattering (e.g. phase shifts, projections of wave functions) but also bound-state properties. The matrix elements of V were calculated for two potential models, one based on one-pion exchange (OPEP) and the other on one-boson exchange (OBEP) using {π, ρ, σ, ω, δ, η }. Three types of phase-shift calculations have been carried out to study the viability of constructing an energy-independent potential using the folded-diagram expansion: (A) NN phase shifts for an energy-dependent OPEP and OBEP. For the OBEP we used parameters adjusted to fit experimental data. (B) The same phase shifts for the energy-independent case for both OPEP and OBEP. (C) Repetition of (B) with effects of the two-pion folded diagrams included. Our results show two important points: (i) folded diagrams are of essential importance, and (ii) the first-order folded diagrams contain the dominant effect and the neglect of terms with more than two folds can be regarded as a good approximation. The effects of folded diagrams are large especially for low partial waves and high energies. For high partial waves ( J greater than 2) the folded terms are negligible, and the phase shifts given by (A), (B) and (C) practically coincide.

  7. The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study

    SciTech Connect

    Masanet, Eric; Shehabi, Arman; Liang, Jiaqi; Ramakrishnan, Lavanya; Ma, XiaoHui; Hendrix, Valerie; Walker, Benjamin; Mantha, Pradeep

    2013-06-03

    The energy use of data centers is a topic that has received much attention, given that data centers currently account for 1-2% of global electricity use. However, cloud computing holds great potential to reduce data center energy demand moving forward, due to both large reductions in total servers through consolidation and large increases in facility efficiencies compared to traditional local data centers. However, analyzing the net energy implications of shifts to the cloud can be very difficult, because data center services can affect many different components of society’s economic and energy systems.

  8. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect

    Haas, Kevin A.

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  9. Activity related energy expenditure, appetite and energy intake: potential implications for weight management.

    PubMed

    Harrington, D M; Martin, C K; Ravussin, E; Katzmarzyk, P T

    2013-08-01

    The aim was to investigate relationships between activity related energy expenditure (AREE), appetite ratings and energy intake (EI) in a sample of 40 male (26.4years; BMI 23.5kg/m(2)) and 42 female (26.9years; BMI 22.4kg/m(2)) participants. AREE was expressed as the residual value of the regression between total daily EE (by doubly labeled water) and resting EE (by indirect calorimetry). EI was measured using an ad libitum buffet meal and visual analogue scales measured subjective appetite ratings before and after the meal. AREE was divided into low, middle and high sex-specific tertiles. General linear models were used to investigate differences in appetite ratings and EI across AREE tertiles. Before the meal, males in the high AREE tertile had significantly lower desire to eat and lower prospective food consumption and higher feelings of fullness compared to those in the low tertile. Males in the middle tertile had significantly higher satiety quotients after the meal and lower EI compared to the other tertiles. No significant differences across tertiles were found in females. Sex differences in relationships between AREE, appetite ratings and EI may lead to differing patterns of EI and subsequent weight maintenance.

  10. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    PubMed

    Koput, Jacek

    2016-10-05

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state.

  11. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  12. Detecting Patterns of Anomalies

    DTIC Science & Technology

    2009-03-01

    ct)P (bt|ct) , where A,B and C are mutually exclusive subsets of attributes with at most k elements . This ratio is similar to the previous formula , but...AND SUBTITLE Detecting Patterns of Anomalies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...to be dependent if, µ(A,B) ≥ βµ (2.1) where, βµ is a threshold parameter, set to a low value of 0.1 ( empirically ) in our experi- ments. Thus, for a

  13. Ab initio ground-state potential energy function and vibration-rotation energy levels of imidogen, NH.

    PubMed

    Koput, Jacek

    2015-06-30

    The accurate ground-state potential energy function of imidogen, NH, has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to octuple-zeta quality. The importance of several effects, including electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, adiabatic, and nonadiabatic corrections were discussed. Along with the large one-particle basis set, all of these effects were found to be crucial to attain "spectroscopic" accuracy of the theoretical predictions of vibration-rotation energy levels of NH.

  14. Global and Regional Future Potential for Energy from Municipal Solid Waste

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Smith, S. J.

    2008-12-01

    Municipal Solid Waste (MSW) is a low-cost form of alternative energy with a large potential for future expansion. MSW is already collected and aggregated at population centers where energy demands are high. In addition, it is non-seasonal, and using MSW as an energy source reduces land demand for waste disposal sites in urban areas where land pressures are high. Across the world, the MSW generation rate and its composition vary greatly, but detailed historical data on MSW are not well archived for most of the world. In this study, material flows into the MSW stream are estimated by analyzing production and trade statistics of food, wood, and paper. A life cycle analysis for consumption is used to estimate the amount and composition of MSW for all countries of the world. The primary energy available is estimated based on the energy content of the various waste components. The relationship between GDP, population, per capita GDP, and MSW generation is determined via a regression model. The ObjECTS MiniCAM (integrated assessment model) is used to project the demand for waste-to-energy for the next century for different regions of the world under various international climate policy scenarios. MSW is potentially a low net carbon energy source that can displace fossil energy, and as such, demand for waste-to-energy increases under a climate policy that places a price on carbon emissions.

  15. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  16. Satellite magnetic anomalies over subduction zones - The Aleutian Arc anomaly

    NASA Technical Reports Server (NTRS)

    Clark, S. C.; Frey, H.; Thomas, H. H.

    1985-01-01

    Positive magnetic anomalies seen in MAGSAT average scalar anomaly data overlying some subduction zones can be explained in terms of the magnetization contrast between the cold subducted oceanic slab and the surrounding hotter, nonmagnetic mantle. Three-dimensional modeling studies show that peak anomaly amplitude and location depend on slab length and dip. A model for the Aleutian Arc anomaly matches the general trend of the observed MAGSAT anomaly if a slab thickness of 7 km and a relatively high (induced plus viscous) magnetization contrast of 4 A/m are used. A second source body along the present day continental margin is required to match the observed anomaly in detail, and may be modeled as a relic slab from subduction prior to 60 m.y. ago.

  17. Feet on the potential energy surface, head in the pi clouds

    SciTech Connect

    Smith, Quentin

    2011-01-01

    This work presents explorations of the potential energy surface of clusters of atoms and of the interactions between molecules. First, structures of small aluminum clusters are examined and classified as ground states, transition states, or higher-order saddle points. Subsequently, the focus shifts to dispersion-dominated π-π interactions when the potential energy surfaces of benzene, substituted benzene, and pyridine dimers are explored. Because DNA nucleotide bases can be thought of as substituted heterocycles, a natural extension of the substituted benzene and pyridine investigations is to model paired nucleotide bases. Finally, the success of the dispersion studies inspires the development of an extension to the computational method used, which will enable the dispersion energy to be modeled – and the potential energy surface explored – in additional chemical systems. The effective fragment potential (EFP) method is described, as well as various quantum mechanical methods. An ab inito quantum mechanical study of 13-atom aluminum clusters is described. EFP studies of aromatic dimers are reported in which dispersion energy makes a significant contribution to the attraction between monomers. Theory and code development toward a means of computing dispersion energy in mixed ab inito-EFP systems are described.

  18. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    SciTech Connect

    Gao, Ji; Zhang, Aiping; Lam, Shu Kee; Zhang, Xuesong; Thomson, Allison M.; Lin, Erda; Jiang, Kejun; Clarke, Leon E.; Edmonds, James A.; Kyle, Page G.; Yu, Sha; Zhou, Yuyu; Zhou, Sheng

    2016-01-05

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.

  19. Regional prediction of long-term landfill gas to energy potential.

    PubMed

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects.

  20. Assessment of the potential of halophytes as energy crops for the electric utility industry. Final report

    SciTech Connect

    Goodin, J.R.

    1984-09-01

    This technical report assesses and estimates the potential of selected halophytes as future renewable energy resources, especially by US electric utilities, and familiarizes nonspecialists with research and development problems that must be resolved before these energy sources can become dependable supplies of energy. A literature search related to both indigenous and exotic species of halophytes has been done and appropriate terrestrial species have been selected. Selection criteria include: total biomass potential, genetic constraints, establishment and cultivation requirements, regions of suitability, secondary credits, and a number of other factors. Based on these selection criteria, for the arid western states with high levels of salinity in water and/or soils, there is little potential for energy feedstocks derived from grasses and herbaceous forbs. Likewise, coastal marshes, estuaries, and mangrove swamps, although excellent biomass producers, are too limited by region and have too many ecological and environmental problems for consideration. The deep-rooted, perennial woody shrubs indigenous to many saline regions of the west provide the best potential. The number of species in this group is limited, and Atriplex canescens, Sarcobatus vermiculatus, and Chrysothamnus nauseosus are the three species with the greatest biological potential. These shrubs would receive minimal energy inputs in cultivation, would not compete with agricultural land, and would restore productivity to severely disturbed sites. One might logically expect to achieve biomass feedstock yields of three to five tons/acre/yr on a long-term sustainable basis. The possibility also exists that exotic species might be introduced. 67 references, 1 figure, 5 tables.

  1. Focusing on the future: Solar thermal energy systems emerge as competitive technologies with major economic potential

    NASA Astrophysics Data System (ADS)

    1989-03-01

    Hundreds of thousands of U.S. citizens are now receiving a portion of their daily demand for electricity from large-scale solar thermal electric generating stations-power plants that use concentrated solar energy to drive electric power generators. Just as with coal, fuel oil, natural gas, and nuclear energy, concentrated solar energy can create working temperatures of around 600C and much higher. Also, solar power plants contribute almost nothing to the atmospheric greenhouse effect and pose few, if any, of the other environmental problems associated with conventional energy sources. As a result of research and development within the national Solar Thermal Technology Program of the U.S. Department of Energy (DOE), solar thermal energy is on the threshold of competing economically with conventional power plants and is now viable for international markets. Its potential for spurring American economic growth and exports is significant.

  2. Estimating Renewable Energy Economic Potential in the United States. Methodology and Initial Results

    SciTech Connect

    Brown, Austin; Beiter, Philipp; Heimiller, Donna; Davidson, Carolyn; Denholm, Paul; Melius, Jennifer; Lopez, Anthony; Hettinger, Dylan; Mulcahy, David; Porro, Gian

    2016-08-01

    This report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, may be defined in several ways. For example, one definition might be expected revenues (based on local market prices) minus generation costs, considered over the expected lifetime of the generation asset. Another definition might be generation costs relative to a benchmark (e.g., a natural gas combined cycle plant) using assumptions of fuel prices, capital cost, and plant efficiency. Economic potential in this report is defined as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity. The assessment is conducted at a high geospatial resolution (more than 150,000 technology-specific sites in the continental United States) to capture the significant variation in local resource, costs, and revenue potential. This metric can be a useful screening factor for understanding the economic viability of renewable generation technologies at a specific location. In contrast to many common estimates of renewable energy potential, economic potential does not consider market dynamics, customer demand, or most policy drivers that may incent renewable energy generation.

  3. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  4. Einstein, Entropy and Anomalies

    NASA Astrophysics Data System (ADS)

    Sirtes, Daniel; Oberheim, Eric

    2006-11-01

    This paper strengthens and defends the pluralistic implications of Einstein's successful, quantitative predictions of Brownian motion for a philosophical dispute about the nature of scientific advance that began between two prominent philosophers of science in the second half of the twentieth century (Thomas Kuhn and Paul Feyerabend). Kuhn promoted a monistic phase-model of scientific advance, according to which a paradigm driven `normal science' gives rise to its own anomalies, which then lead to a crisis and eventually a scientific revolution. Feyerabend stressed the importance of pluralism for scientific progress. He rejected Kuhn's model arguing that it fails to recognize the role that alternative theories can play in identifying exactly which phenomena are anomalous in the first place. On Feyerabend's account, Einstein's predictions allow for a crucial experiment between two incommensurable theories, and are an example of an anomaly that could refute the reigning paradigm only after the development of a competitor. Using Kuhn's specification of a disciplinary matrix to illustrate the incommensurability between the two paradigms, we examine the different research strategies available in this peculiar case. On the basis of our reconstruction, we conclude by rebutting some critics of Feyerabend's argument.

  5. The XXXXY Chromosome Anomaly

    PubMed Central

    Zaleski, Witold A.; Houston, C. Stuart; Pozsonyi, J.; Ying, K. L.

    1966-01-01

    The majority of abnormal sex chromosome complexes in the male have been considered to be variants of Klinefelter's syndrome but an exception should probably be made in the case of the XXXXY individual who has distinctive phenotypic features. Clinical, radiological and cytological data on three new cases of XXXXY syndrome are presented and 30 cases from the literature are reviewed. In many cases the published clinical and radiological data were supplemented and re-evaluated. Mental retardation, usually severe, was present in all cases. Typical facies was observed in many; clinodactyly of the fifth finger was seen in nearly all. Radiological examination revealed abnormalities in the elbows and wrists in all the 19 personally evaluated cases, and other skeletal anomalies were very frequent. Cryptorchism is very common and absence of Leydig's cells may differentiate the XXXXY chromosome anomaly from polysomic variants of Klinefelter's syndrome. The relationship of this syndrome to Klinefelter's syndrome and to Down's syndrome is discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15 PMID:4222822

  6. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  7. Reduction potentials of total energy consumption and GHG emissions in Xiamen

    NASA Astrophysics Data System (ADS)

    Bin, C.; Cui, S.

    2009-12-01

    Urban areas contain 40% of the population and contribute 75% of the Chinese national economy. The 35 largest cities in China, which contain 18% of the population, contribute 40% of China’s energy uses and CO2 emissions. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying effects of energy-saving policies and finding solution to GHG emissions in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from Xiamen city. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2007-2020 and GHG emissions are estimated. Two scenarios have been designed to describe the future strategies relating to the development of Xiamen city. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of urban energy demand. The ‘Integrated’ scenario is considered to be the most optimized case where a series of available reduction measures such as clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control and new and renewable energy development and utilization are assumed to be implemented. Energy demand and GHG emissions in Xiamen up to 2020 are estimated in these two scenarios. The total reduction potentials in the ‘Integrated’ scenario and the relative contribution rate of reduction potentials of each measure have been estimated.

  8. Spectral Methods for Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Parker, R. L.; Gee, J. S.

    2013-12-01

    Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this

  9. Critical insight into the influence of the potential energy surface on fission dynamics

    SciTech Connect

    Mazurek, K.

    2011-07-15

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  10. Potential energy function information from quantum phase shift using the variable phase method.

    PubMed

    Lemes, Nelson H T; Braga, João P; Alves, Márcio O; Costa, Éderson D'M

    2014-07-01

    The present work discusses quantum phase shift sensitivity analysis with respect to the potential energy function. A set of differential equations for the functional derivative of the quantum phase shift with respect to the potential energy function was established and coupled with the variable phase equation. This set of differential equations provides a simple, exact and straightforward way to establish the sensitivity matrix. The present procedure is easier to use than the finite difference approach, in which several direct problems have to be addressed. Furthermore, integration of the established equations can be used to demonstrate how the sensitivity phase shift is accumulated as a function of the interatomic distance. The potential energy function was refined to produce a better quality function. The average error on the phase shift decreased from 9.8% in the original potential function to 0.13% in the recovered potential. The present procedure is an important initial step for further work towards recovering potential energy functions in upper dimensions or to recovering this function from cross sections.

  11. Critical insight into the influence of the potential energy surface on fission dynamics

    NASA Astrophysics Data System (ADS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Nadtochy, P. N.; Ademard, G.

    2011-07-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  12. Group actions and anomalies in gauge theories

    NASA Astrophysics Data System (ADS)

    Catenacci, R.; Pirola, G. P.; Martellini, Maurizio; Reina, Cesare

    1986-05-01

    The transformation properties are studied of the vacuum functional W(A) for chiral fermions in a gauge potential A under the group A×U(1)×R+ of gauge, chiral and scale transformations. The vacuum functional W is identified with a section of a G×U(1)×R+ line bundle over the space A of all gauge potentials. Known results on bundles carrying group actions give a simple and unifying clue to non-abelian, abelian chiral anomalies, as well as to trace anomalies. While the first are due to the twisting of a line bundle on A/G, the abelian chiral and trace anomalies are related to characters of U(1) and R+ respectively. Characters of U(1) are basically controlled by ``winding numbers'', i.e. again by topology. Opposite to these, trace anomalies seem to have little to do with topology, with the exception of two-dimensional theories. Also at Gruppo Nazionale di Fisica Matematica, CNR.

  13. A potential new energy source - Assessment of energy recovery from municipal solid waste

    NASA Astrophysics Data System (ADS)

    Sherwin, E. T.; Nollet, A. R.

    1980-08-01

    The state-of-the-art of recovering resources from the 135 million tons of household, industrial, and commercial wastes generated each year in the United States is discussed. Some of the hazards attendant upon the preliminary shredding of solid wastes at resource recovery plants are described with reference made to the impetus for resource recovery arising from legislation and to the difficulty in finding markets for refuse-derived fuel. Economic factors militating against resource recovery are enumerated, including the unviability of mass-burning systems to generate process or heating steam and/or electrical energy. It is also shown that the cost per ton of incoming waste has been underestimated and that the revenues to be derived from recovered resources have been overestimated. A new system in which separation, that is, classification, of incoming waste is the first step is proposed. This system would avoid the hazards of shredding and would make the recovery of resources less costly. It is shown that the cellulose contained in solid waste could be converted into ethanol.

  14. Technology assessment of solar energy systems: Potential soil erosion effects of harvesting crop residues for energy production

    NASA Astrophysics Data System (ADS)

    Torpy, M. F.; Habegger, L. J.; Snider, M. A.; Surles, T.

    1981-01-01

    An evaluation is presented of the potential increase in erosion that could result from removal of the ground cover that the residues provide. The study indicates that removal of crop residues sufficient to produce 0.13 and 0.42 x 10 to the 15th power Btu of end-use energy (as specified, respectively, in the two scenarios addressed by the Technology Assessment of Solar Energy Program) would have little effect on soil erosion except in a few areas. An alternative scenario is addressed in which all reasonably available crop residues would be harvested to produce 1.5 x 10 to the 15th power Btu of end-use energy. The approach used in evaluating erosion due to removal of residue is also described.

  15. Neonate with VACTERL Association and a Branchial Arch Anomaly without Hydrocephalus.

    PubMed

    Velazquez, Danitza; Pereira, Elaine; Havranek, Thomas

    2016-03-01

    VACTERL (vertebral anomalies, anal atresia, cardiac defect, tracheoesophageal fistula, renal anomaly, limb anomalies) is an association of anomalies with a wide spectrum of phenotypic expression. While the majority of cases are sporadic, there is evidence of an inherited component in a small number of patients as well as the potential influence of nongenetic risk factors (maternal diabetes mellitus). Presence of hydrocephalus has been reported in VACTERL patients (VACTERL-H) in the past, with some displaying branchial arch anomalies. We report the unique case of an infant of diabetic mother with VACTERL association and a branchial arch anomaly-in the absence of hydrocephalus.

  16. Rovibrational energy transfer in the He-C{sub 3} collision: Potential energy surface and bound states

    SciTech Connect

    Denis-Alpizar, Otoniel; Stoecklin, Thierry Halvick, Philippe

    2014-02-28

    We present a four-dimensional potential energy surface (PES) for the collision of C{sub 3} with He. Ab initio calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and mid-bond functions. The global minimum of the potential energy is found to be −26.9 cm{sup −1} and corresponds to an almost T-shaped structure of the van der Waals complex along with a slightly bent configuration of C{sub 3}. This PES is used to determine the rovibrational energy levels of the He-C{sub 3} complex using the rigid monomer approximation (RMA) and the recently developed atom-rigid bender approach at the Close Coupling level (RB-CC). The calculated dissociation energies are −9.56 cm{sup −1} and −9.73 cm{sup −1}, respectively at the RMA and RB-CC levels. This is the first theoretical prediction of the bound levels of the He-C{sub 3} complex with the bending motion.

  17. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  18. Modelling the potential for wind energy integration on China’s coal-heavy electricity grid

    NASA Astrophysics Data System (ADS)

    Davidson, Michael R.; Zhang, Da; Xiong, Weiming; Zhang, Xiliang; Karplus, Valerie J.

    2016-07-01

    Expanding the use of wind energy for electricity generation forms an integral part of China’s efforts to address degraded air quality and climate change. However, the integration of wind energy into China’s coal-heavy electricity system presents significant challenges owing to wind’s variability and the grid’s system-wide inflexibilities. Here we develop a model to predict how much wind energy can be generated and integrated into China’s electricity mix, and estimate a potential production of 2.6 petawatt-hours (PWh) per year in 2030. Although this represents 26% of total projected electricity demand, it is only 10% of the total estimated physical potential of wind resources in the country. Increasing the operational flexibility of China’s coal fleet would allow wind to deliver nearly three-quarters of China’s target of producing 20% of primary energy from non-fossil sources by 2030.

  19. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy

    DOE PAGES

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2015-12-01

    We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibriummore » quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.« less

  20. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    SciTech Connect

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  1. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2015-12-01

    The rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever the energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (X X Z spin chain), the energy current in Lorentz-invariant theories or the particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials," expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies nonequilibrium Maxwell relations for the Drude weights. We verify our results via density-matrix renormalization group calculations for the X X Z chain.

  2. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy

    SciTech Connect

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2015-12-01

    We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.

  3. Classical trajectory studies of gas phase reaction dynamics and kinetics using ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.

    1989-01-01

    Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.

  4. Evaluation of the mutagenic potential of different forms of energy production.

    PubMed

    Léonard, A; Léonard, E D

    1983-08-01

    The consequence of exposure to the effluents of power plants that elicits the most concern is probably the induction of cancers. Due mainly to the high uncertainty of epidemiological surveys on exposure to low doses of mutagens, observations performed up to now on man have provided contradictory and inconclusive results. Since a high correlation exists between the mutagenicity of environmental agents and their carcinogenic properties, an attempt has been made to evaluate the carcinogenic potential of the different forms of energy production on the basis of the results of short term tests performed on the effluents of several power plants. Any energy source is associated with such risks and, in spite of the fact that real comparative studies were not available, coal as a source of energy presents obviously higher mutagenic potential than nuclear power. Renewable forms of energy are cleaner but are, however, not entirely devoid of health impacts.

  5. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy.

    PubMed

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E

    2015-12-31

    The rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever the energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), the energy current in Lorentz-invariant theories or the particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials," expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies nonequilibrium Maxwell relations for the Drude weights. We verify our results via density-matrix renormalization group calculations for the XXZ chain.

  6. Simple prescription for computing the interparticle potential energy for D-dimensional gravity systems

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Helayël-Neto, José; Barone, F. E.; Herdy, Wallace

    2015-02-01

    A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude ({{M}NR}), a trivial expression for computing {{M}NR} is obtained from our prescription as an added bonus.

  7. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    NASA Astrophysics Data System (ADS)

    Kolb, Brian; Zhao, Bin; Li, Jun; Jiang, Bin; Guo, Hua

    2016-06-01

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H2 → H2 + H, H + H2O → H2 + OH, and H + CH4 → H2 + CH3. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  8. Potential energy surface and bound states of the NH3-Ar and ND3-Ar complexes.

    PubMed

    Loreau, J; Liévin, J; Scribano, Y; van der Avoird, A

    2014-12-14

    A new, four-dimensional potential energy surface for the interaction of NH3 and ND3 with Ar is computed using the coupled-cluster method with single, double, and perturbative triple excitations and large basis sets. The umbrella motion of the ammonia molecule is explicitly taken into account. The bound states of both NH3-Ar and ND3-Ar are calculated on this potential for total angular momentum values from J = 0 to 10, with the inclusion of Coriolis interactions. The energies and splittings of the rovibrational levels are in excellent agreement with the extensive high-resolution spectroscopic data accumulated over the years in the infrared and microwave regions for both complexes, which demonstrates the quality of the potential energy surface.

  9. Jahn-Teller effect for short-lived states: Study of the complex potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Feuerbacher, Sven; Cederbaum, Lorenz S.

    2004-07-01

    The Jahn-Teller effect for bound electronic states has been investigated for many decades. In contrast, nothing is known regarding its occurrence for short-lived electronic states. Here we investigate the linear and the quadratic E⊗e Jahn-Teller effect for degenerate resonance states with special regard to the complex potential energy surfaces. We find many new phenomena for both the real and imaginary parts of the potential energy surfaces including additional minima and intersections. Possible simplifications of the equations describing the adiabatic potential energy surfaces are discussed. We also briefly investigate other Jahn-Teller effects in linear approximation. The theoretical concepts are exemplified by calculating ab initio data for the degenerate Π*-type resonance states of the tris(boramethyl)amin anion along two different doubly degenerate vibrational modes.

  10. Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-01-01

    We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.

  11. Microscopic origin of the '0.7-anomaly' in quantum point contacts.

    PubMed

    Bauer, Florian; Heyder, Jan; Schubert, Enrico; Borowsky, David; Taubert, Daniela; Bruognolo, Benedikt; Schuh, Dieter; Wegscheider, Werner; von Delft, Jan; Ludwig, Stefan

    2013-09-05

    Quantum point contacts are narrow, one-dimensional constrictions usually patterned in a two-dimensional electron system, for example by applying voltages to local gates. The linear conductance of a point contact, when measured as function of its channel width, is quantized in units of GQ = 2e(2)/h, where e is the electron charge and h is Planck's constant. However, the conductance also has an unexpected shoulder at ∼0.7GQ, known as the '0.7-anomaly', whose origin is still subject to debate. Proposed theoretical explanations have invoked spontaneous spin polarization, ferromagnetic spin coupling, the formation of a quasi-bound state leading to the Kondo effect, Wigner crystallization and various treatments of inelastic scattering. However, explicit calculations that fully reproduce the various experimental observations in the regime of the 0.7-anomaly, including the zero-bias peak that typically accompanies it, are still lacking. Here we offer a detailed microscopic explanation for both the 0.7-anomaly and the zero-bias peak: their common origin is a smeared van Hove singularity in the local density of states at the bottom of the lowest one-dimensional subband of the point contact, which causes an anomalous enhancement in the Hartree potential barrier, the magnetic spin susceptibility and the inelastic scattering rate. We find good qualitative agreement between theoretical calculations and experimental results on the dependence of the conductance on gate voltage, magnetic field, temperature, source-drain voltage (including the zero-bias peak) and interaction strength. We also clarify how the low-energy scale governing the 0.7-anomaly depends on gate voltage and interactions. For low energies, we predict and observe Fermi-liquid behaviour similar to that associated with the Kondo effect in quantum dots. At high energies, however, the similarities between the 0.7-anomaly and the Kondo effect end.

  12. High level predictions on the potential energy hypersurface of the nitric oxide dimer

    SciTech Connect

    Huang, Q.; Magers, D.H.; Leszczynski, J.

    1994-12-31

    The potential energy hypersurface of the NO dimer is investigated at the SCF and MP2 levels of theory using three spit-valence basis sets: 6-31G(d), 6-311G(2d), 6-311G(3df). Seven minimum energy conformers are identified. Their molecular structures, energetics, and harmonic vibrational frequencies are discussed and compared to available experimental data.

  13. Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule

    SciTech Connect

    Párraga, H.; Arranz, F. J. Benito, R. M.; Borondo, F.

    2013-11-21

    An accurate ab initio quantum chemistry study at level of quadratic configuration interaction method of the electronic ground state of the KCN molecule is presented. A fitting of the results to an analytical series expansion was performed to obtain a global potential energy surface suitable for the study of the associated vibrational dynamics. Additionally, classical Poincaré surfaces of section for different energies and quantum eigenstates were calculated, showing the highly nonlinear behavior of this system.

  14. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  15. Generation of Available Potential Energy and Other Diagnostic Studies During FGGE

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1984-01-01

    The energy cycle of the atmosphere was examined by utilizing gridded analyses of the state of the atmosphere produced by a special objective analysis system and the GLAS fourth order general circulation model. The analyses of a month period during the first special observing period of FGGE are produced at GLAS. The various diabatic heating fields necessary for direct computation of the generation of available potential energy (P) are recorded.

  16. Examination of Potential Benefits of an Energy Imbalance Market in the Western Interconnection

    SciTech Connect

    Milligan, M.; Clark, K.; King, J.; Kirby, B.; Guo, T.; Liu, G.

    2013-03-01

    In the Western Interconnection, there is significant interest in improving approaches to wide-area coordinated operations of the bulk electric power system, in part because of the increasing penetration of variable generation. One proposed solution is an energy imbalance market. This study focused on that approach alone, with the goal of identifying the potential benefits of an energy imbalance market in the year 2020.

  17. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will

  18. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    PubMed

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  19. Ab initio intermolecular potential energy surfaces for the Ar-NCCN van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Solimannejad, Mohammad; Jouypazadeh, Hamidreza; Farrokhpour, Hossein

    2014-11-01

    The intermolecular potential energy surface of complex pairing argon with cyanogen molecule (NCCN) was calculated using the coupled cluster with single and double and perturbative triple excitations (CCSD(T)) with aug-cc-pvdz basis set extended with a set of mid-bond (3s3p2d1f1g) functions. The interaction energies were calculated by the supermolecular approach with the full counterpoise correction for the basis set superposition error. The calculated potential energies were fitted to an analytical expression. The calculated Ar-NCCN potential energy surface shows a global minimum at 3.35 Å, the distance between argon and centre of mass of cyanogen, for the T-shaped geometry and two local minimum at distance of 5.54 Å for the linear geometry on one side of cyanogen. Finally, the interaction second virial coefficients were calculated using the fitted potential energy surface and were compared with those obtained by the parameters of the Beattie-Bridgeman equation of states of pure argon and cyanogens fluids, approximately.

  20. Ring-Puckering Potential Energy Functions for Trimethylene Sulfide and Its Monovalent Cation.

    PubMed

    Chun, Hye Jin; Ocola, Esther J; Laane, Jaan

    2017-04-13

    The spectra and ring-puckering potential energy function for trimethylene sulfide cation (TMS(+)) from vacuum ultraviolet mass-analyzed threshold ionization spectra have recently been reported. To provide an in-depth comparison of the potential function with that of trimethylene sulfide (TMS) itself, we have used ab initio MP2/cc-pVTZ calculations and DFT B3LYP/cc-pVTZ calculations to predict the structures of both TMS and TMS(+) and then used these to calculate coordinate-dependent ring-puckering kinetic energy functions for both species. These kinetic energy functions allowed us to calculate refined potential energy functions of the puckering for both molecules based on the previously published spectra. TMS has an experimental barrier of 271 cm(-1) and energy minima at ring-puckering angles of ±29°. For TMS(+) the barrier is 60 cm(-1) and the energy minima correspond to ring-puckering angles of ±21°. The lower barrier for the cation reflects the smaller amount of angle strain in the ring angles for TMS(+).