Sample records for potential energy anomaly

  1. Modeling of self-potential anomalies near vertical dikes.

    USGS Publications Warehouse

    Fitterman, D.V.

    1983-01-01

    The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author

  2. Waterlike anomalies in a two-dimensional core-softened potential

    NASA Astrophysics Data System (ADS)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  3. Core-softened potentials, multiple liquid-liquid critical points, and density anomaly regions: An exact solution

    NASA Astrophysics Data System (ADS)

    Rizzatti, Eduardo O.; Barbosa, Marco Aurélio A.; Barbosa, Marcia C.

    2018-02-01

    The pressure versus temperature phase diagram of a system of particles interacting through a multiscale shoulder-like potential is exactly computed in one dimension. The N-shoulder potential exhibits N density anomaly regions in the phase diagram if the length scales can be connected by a convex curve. The result is analyzed in terms of the convexity of the Gibbs free energy.

  4. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    PubMed

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  5. Insights on the Cuprate High Energy Anomaly Observed in ARPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritz, Brian

    2011-08-16

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA.more » Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.« less

  6. The trace anomaly and dynamical vacuum energy in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottola, Emil

    2010-04-30

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effectivemore » action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.« less

  7. Supersymmetric Casimir energy and the anomaly polynomial

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol

    2015-09-01

    We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.

  8. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    NASA Astrophysics Data System (ADS)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  9. Rapid fluid disruption: A source for self-potential anomalies on volcanoes

    USGS Publications Warehouse

    Johnston, M.J.S.; Byerlee, J.D.; Lockner, D.

    2001-01-01

    Self-potential (SP) anomalies observed above suspected magma reservoirs, dikes, etc., on various volcanoes (Kilauea, Hawaii; Mount Unzen, Japan; Piton de la Fournaise, Reunion Island, Miyake Jima, Japan) result from transient surface electric fields of tens of millivolts per kilometer and generally have a positive polarity. These SP anomalies are usually attributed to electrokinetic effects where properties controlling this process are poorly constrained. We propose an alternate explanation that contributions to electric fields of correct polarity should be expected from charge generation by fluid vaporization/disruption. As liquids are vaporized or removed as droplets by gas transport away from hot dike intrusions, both charge generation and local increase in electrical resistivity by removal of fluids should occur. We report laboratory observations of electric fields in hot rock samples generated by pulses of fluid (water) through the rock at atmospheric pressure. These indicate the relative amplitudes of rapid fluid disruption (RFD) potentials and electrokinetic potentials to be dramatically different and the signals are opposite in sign. Above vaporization temperatures, RFD effects of positive sign in the direction of gas flow dominate, whereas below these temperatures, effects of negative sign dominate. This suggests that the primary contribution to observed self-potential anomalies arises from gas-related charge transport processes at temperatures high enough to produce vigorous boiling and vapor transport. At lower temperatures, the primary contribution is from electrokinetic effects modulated perhaps by changing electrical resistivity and RFD effects from high-pressure but low-temperature CO2 and SO2 gas flow ripping water molecules from saturated crustal rocks. If charge generation is continuous, as could well occur above a newly emplaced dike, positive static potentials will be set up that could be sustained for many years, and the simplest method for

  10. On the origin of the energy dissipation anomaly in (Hall) magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Galtier, Sébastien

    2018-05-01

    Incompressible Hall magnetohydrodynamics (MHD) may be the subject of energy dissipation anomaly which stems from the lack of smoothness of the velocity and magnetic fields. I derive the exact expression of which appears to be closely connected with the well-known 4/3 exact law of Hall MHD turbulence theory. This remarkable similitude suggests a deeper mathematical property of the fluid equations. In the MHD limit, the expression of differs from the one derived by Gao et al (2013 Acta Math. Sci. 33 865–71) which presents miscalculations. The energy dissipation anomaly can be used to better estimate the local heating in space plasmas where in situ measurements are accessible.

  11. Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts

    NASA Astrophysics Data System (ADS)

    Romanova, Vanya; Hense, Andreas

    2017-08-01

    In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.

  12. Sensitivity of the International Skating Union's Mathematical Criteria to Flag Potential Scoring Anomalies

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Howell, Steven M.

    2015-01-01

    This article describes the "mathematical criteria" employed by the International Skating Union (ISU) to identify potential judging anomalies within competitive figure skating. The mathematical criteria have greater sensitivity to identify scoring anomalies for technical element scores than for the program component scores. This article…

  13. Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Ondrej Linda; Milos Manic

    Building Energy Management Systems (BEMSs) are essential components of modern buildings that utilize digital control technologies to minimize energy consumption while maintaining high levels of occupant comfort. However, BEMSs can only achieve these energy savings when properly tuned and controlled. Since indoor environment is dependent on uncertain criteria such as weather, occupancy, and thermal state, performance of BEMS can be sub-optimal at times. Unfortunately, the complexity of BEMS control mechanism, the large amount of data available and inter-relations between the data can make identifying these sub-optimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD)more » based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm based BEMS. In six different scenarios, the Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more), that the alarm based BEMS. In addition, the Fuzzy-ADLD method identified cases that were missed by the alarm based system, demonstrating potential for increased state-awareness of abnormal building behavior.« less

  14. Neutrino scattering and the reactor antineutrino anomaly

    NASA Astrophysics Data System (ADS)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  15. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.

    2012-10-01

    We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  16. On the gravitational potential and field anomalies due to thin mass layers

    NASA Technical Reports Server (NTRS)

    Ockendon, J. R.; Turcotte, D. L.

    1977-01-01

    The gravitational potential and field anomalies for thin mass layers are derived using the technique of matched asymptotic expansions. An inner solution is obtained using an expansion in powers of the thickness and it is shown that the outer solution is given by a surface distribution of mass sources and dipoles. Coefficients are evaluated by matching the inner expansion of the outer solution with the outer expansion of the inner solution. The leading term in the inner expansion for the normal gravitational field gives the Bouguer formula. The leading term in the expansion for the gravitational potential gives an expression for the perturbation to the geoid. The predictions given by this term are compared with measurements by satellite altimetry. The second-order terms in the expansion for the gravitational field are required to predict the gravity anomaly at a continental margin. The results are compared with observations.

  17. Global Surface Solar Energy Anomalies Including El Nino and La Nina Years

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Brown, D. E.; Chandler, W. S.; DiPasquale, R. C.; Ritchey, Nancy A.; Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.; Stackhouse, Paul W.

    2001-01-01

    This paper synthesizes past events in an attempt to define the general magnitude, duration, and location of large surface solar anomalies over the globe. Surface solar energy values are mostly a function of solar zenith angle, cloud conditions, column atmospheric water vapor, aerosols, and surface albedo. For this study, solar and meteorological parameters for the 10-yr period July 1983 through June 1993 are used. These data were generated as part of the Release 3 Surface meteorology and Solar Energy (SSE) activity under the NASA Earth Science Enterprise (ESE) effort. Release 3 SSE uses upgraded input data and methods relative to previous releases. Cloud conditions are based on recent NASA Version-D International Satellite Cloud Climatology Project (ISCCP) global satellite radiation and cloud data. Meteorological inputs are from Version-I Goddard Earth Observing System (GEOS) reanalysis data that uses both weather station and satellite information. Aerosol transmission for different regions and seasons are for an 'average' year based on historic solar energy data from over 1000 ground sites courtesy of Natural Resources Canada (NRCan). These data are input to a new Langley Parameterized Shortwave Algorithm (LPSA) that calculates surface albedo and surface solar energy. That algorithm is an upgraded version of the 'Staylor' algorithm. Calculations are performed for a 280X280 km equal-area grid system over the globe based on 3-hourly input data. A bi-linear interpolation process is used to estimate data output values on a 1 X 1 degree grid system over the globe. Maximum anomalies are examined relative to El Nino and La Nina events in the tropical Pacific Ocean. Maximum year-to-year anomalies over the globe are provided for a 10-year period. The data may assist in the design of systems with increased reliability. It may also allow for better planning for emergency assistance during some atypical events.

  18. Developing global climate anomalies suggest potential disease risks for 2006-2007.

    PubMed

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J; Linthicum, Kenneth J

    2006-12-28

    El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data. Sea surface temperatures (SSTs) in the equatorial east Pacific ocean have anomalously increased significantly during July - October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 - January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications are that the following regions are at increased

  19. NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies

    NASA Astrophysics Data System (ADS)

    Nasuti, Yasin; Nasuti, Aziz

    2018-07-01

    We develop a new phase-based filter to enhance the edges of geological sources from potential-field data called NTilt, which utilizes the vertical derivative of the analytical signal in different orders to the tilt derivative equation. This will equalize signals from sources buried at different depths. In order to evaluate the designed filter, we compared the results obtained from our filter with those from recently applied methods, testing against both synthetic data, and measured data from the Finnmark region of North Norway were used. The results demonstrate that the new filter permits better definition of the edges of causative anomalies, as well as better highlighting several anomalies that either are not shown in tilt derivative and other methods or not very well defined. The proposed technique also shows improvements in delineation of the actual edges of deep-seated anomalies compared to tilt derivative and other methods. The NTilt filter provides more accurate and sharper edges and makes the nearby anomalies more distinguishable, and also can avoid bringing some additional false edges reducing the ambiguity in potential field interpretations. This filter, thus, appears to be promising in providing a better qualitative interpretation of the gravity and magnetic data in comparison with the more commonly used filters.

  20. CryoSat Ice Processor: Known Processor Anomalies and Potential Future Product Evolutions

    NASA Astrophysics Data System (ADS)

    Mannan, R.; Webb, E.; Hall, A.; Bouffard, J.; Femenias, P.; Parrinello, T.; Bouffard, J.; Brockley, D.; Baker, S.; Scagliola, M.; Urien, S.

    2016-08-01

    Launched in 2010, CryoSat was designed to measure changes in polar sea ice thickness and ice sheet elevation. To reach this goal the CryoSat data products have to meet the highest performance standards and are subjected to a continual cycle of improvement achieved through upgrades to the Instrument Processing Facilities (IPFs). Following the switch to the Baseline-C Ice IPFs there are already planned evolutions for the next processing Baseline, based on recommendations from the Scientific Community, Expert Support Laboratory (ESL), Quality Control (QC) Centres and Validation campaigns. Some of the proposed evolutions, to be discussed with the scientific community, include the activation of freeboard computation in SARin mode, the potential operation of SARin mode over flat-to-slope transitory land ice areas, further tuning of the land ice retracker, the switch to NetCDF format and the resolution of anomalies arising in Baseline-C. This paper describes some of the anomalies known to affect Baseline-C in addition to potential evolutions that are planned and foreseen for Baseline-D.

  1. Potential sources of the air masses leading to warm and cold anomalies in Moscow in summer

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Semenov, V. A.

    2017-11-01

    For summer (June-July-August) days in 1949-2016, using the NOAA trajectory model HYSPLIT_4, the 5-day backward trajectories of the air parcels (elementary air particles) were calculated. Using the daily surface air temperatures (SAT) in summer in Moscow in 1949-2016 and the results of the backward trajectories modeling by PSCF (potential source contribution function) and CWT (concentration weighted trajectories) methods the regions where the air masses most probably hit to before its arrive into the Moscow region at the days of 20%, 10%, 5% and 2% of the strongest positive and negative anomalies of SAT in summer in Moscow. For composites of days with SAT in summer in Moscow above 90th and below the 10th percentile of the distribution function of the SAT, the field of the anomaly of atmospheric pressure at sea level relative to 1981-2010 climatology and the field of average SAT in Eurasia north of 30° N are calculated. The peculiarities of the fields associated with the strong positive and negative anomalies of SAT in summer seasons in Moscow are identified. The fields of potential sources of air parcels, mean air temperature on the path of the movement of air parcels and the average height of the backward trajectory for days with strong anomalies of SAT in summer in Moscow are compared. Possible atmospheric circulation drivers of the highest and lowest anomalies of SAT in winter in Moscow are found out.

  2. Gravitational anomalies in the solar system?

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2015-02-01

    Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.

  3. Global Climate Anomalies and Potential Infectious Disease Risks: 2014-2015

    PubMed Central

    Chretien, Jean-Paul; Anyamba, Assaf; Small, Jennifer; Britch, Seth; Sanchez, Jose L.; Halbach, Alaina C.; Tucker, Compton; Linthicum, Kenneth J.

    2015-01-01

    Background: The El Niño/Southern Oscillation (ENSO) is a global climate phenomenon that impacts human infectious disease risk worldwide through droughts, floods, and other climate extremes. Throughout summer and fall 2014 and winter 2015, El Niño Watch, issued by the US National Oceanic and Atmospheric Administration, assessed likely El Niño development during the Northern Hemisphere fall and winter, persisting into spring 2015. Methods: We identified geographic regions where environmental conditions may increase infectious disease transmission if the predicted El Niño occurs using El Niño indicators (Sea Surface Temperature [SST], Outgoing Longwave Radiation [OLR], and rainfall anomalies) and literature review of El Niño-infectious disease associations. Results: SSTs in the equatorial Pacific and western Indian Oceans were anomalously elevated during August-October 2014, consistent with a developing weak El Niño event. Teleconnections with local climate is evident in global precipitation patterns, with positive OLR anomalies (drier than average conditions) across Indonesia and coastal southeast Asia, and negative anomalies across northern China, the western Indian Ocean, central Asia, north-central and northeast Africa, Mexico/Central America, the southwestern United States, and the northeastern and southwestern tropical Pacific. Persistence of these conditions could produce environmental settings conducive to increased transmission of cholera, dengue, malaria, Rift Valley fever, and other infectious diseases in regional hotspots as during previous El Niño events. Discussion and Conclusions: The current development of weak El Niño conditions may have significant potential implications for global public health in winter 2014-spring 2015. Enhanced surveillance and other preparedness measures in predicted infectious disease hotspots could mitigate health impacts. PMID:25685635

  4. Global climate anomalies and potential infectious disease risks: 2014-2015.

    PubMed

    Chretien, Jean-Paul; Anyamba, Assaf; Small, Jennifer; Britch, Seth; Sanchez, Jose L; Halbach, Alaina C; Tucker, Compton; Linthicum, Kenneth J

    2015-01-26

    The El Niño/Southern Oscillation (ENSO) is a global climate phenomenon that impacts human infectious disease risk worldwide through droughts, floods, and other climate extremes. Throughout summer and fall 2014 and winter 2015, El Niño Watch, issued by the US National Oceanic and Atmospheric Administration, assessed likely El Niño development during the Northern Hemisphere fall and winter, persisting into spring 2015. We identified geographic regions where environmental conditions may increase infectious disease transmission if the predicted El Niño occurs using El Niño indicators (Sea Surface Temperature [SST], Outgoing Longwave Radiation [OLR], and rainfall anomalies) and literature review of El Niño-infectious disease associations. SSTs in the equatorial Pacific and western Indian Oceans were anomalously elevated during August-October 2014, consistent with a developing weak El Niño event. Teleconnections with local climate is evident in global precipitation patterns, with positive OLR anomalies (drier than average conditions) across Indonesia and coastal southeast Asia, and negative anomalies across northern China, the western Indian Ocean, central Asia, north-central and northeast Africa, Mexico/Central America, the southwestern United States, and the northeastern and southwestern tropical Pacific. Persistence of these conditions could produce environmental settings conducive to increased transmission of cholera, dengue, malaria, Rift Valley fever, and other infectious diseases in regional hotspots as during previous El Niño events. The current development of weak El Niño conditions may have significant potential implications for global public health in winter 2014-spring 2015. Enhanced surveillance and other preparedness measures in predicted infectious disease hotspots could mitigate health impacts.

  5. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  6. Laboratory studies of magnetic anomaly effects on electric potential distributions near the lunar surface

    NASA Astrophysics Data System (ADS)

    Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado CenterLunar Dust; Atmospheric Studies

    2011-12-01

    The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic anomalies. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic anomalies. Plasmas are created above the surface by a hot filament discharge. Potential distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface potential at the center of the magnetic dipole is found close to the plasma bulk potential. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A potential minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the potential minimum with respect to the bulk plasma potential decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The potential at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.

  7. Radioactive anomaly discrimination from spectral ratios

    DOEpatents

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  8. Cervical vertebral anomalies in patients with anomalies of the head and neck.

    PubMed

    Manaligod, J M; Bauman, N M; Menezes, A H; Smith, R J

    1999-10-01

    Congenital head and neck anomalies can occur in association with vertebral anomalies, particularly of the cervical vertebrae. While the former are easily recognized, especially when part of a syndrome, the latter are often occult, thereby delaying their diagnosis. The presence of vertebral anomalies must be considered in pediatric patients with head and neck abnormalities to expedite management of select cases and to prevent neurologic injury. We present our experience with 5 pediatric patients who were referred to the Department of Otolaryngology-Head and Neck Surgery at the University of Iowa with a variety of syndromic anomalies of the head and neck. Each patient was subsequently also found to have a vertebral anomaly. The relevant embryogenesis of the anomalous structures is discussed, with highlighting of potential causes such as teratogenic agents and events and germ-line mutations. A review of syndromes having both head and neck and vertebral anomalies is presented to heighten awareness of otolaryngologists evaluating children with syndromic disorders. Finally, the findings on radiographic imaging studies, particularly computed tomography, are discussed to facilitate the prompt diagnosis of vertebral anomalies.

  9. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  10. The Compact Environmental Anomaly Sensor (CEASE) III

    NASA Astrophysics Data System (ADS)

    Roddy, P.; Hilmer, R. V.; Ballenthin, J.; Lindstrom, C. D.; Barton, D. A.; Ignazio, J. M.; Coombs, J. M.; Johnston, W. R.; Wheelock, A. T.; Quigley, S.

    2016-12-01

    The Air Force Research Laboratory's Energetic Charged Particle (ECP) sensor project is a comprehensive effort to measure the charged particle environment that causes satellite anomalies. The project includes the Compact Environmental Anomaly Sensor (CEASE) III, building on the flight heritage of prior CEASE designs. CEASE III consists of multiple sensor modules. High energy particles are observed using independent unique silicon detector stacks. In addition CEASE III includes an electrostatic analyzer (ESA) assembly which uses charge multiplication for particle detection. The sensors cover a wide range of proton and electron energies that contribute to satellite anomalies.

  11. Computing Critical Properties with Yang-Yang Anomalies

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael

    2017-01-01

    Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.

  12. Global Horizontal Irradiance Anomalies in Long Term Series Over India

    NASA Astrophysics Data System (ADS)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    India has a high potential for solar energy applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource potential. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar energy applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation (GHI) and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of GHI measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of GHI using anomalies techniques over ten different sites over India. Besides, techniques of linear trends have been applied for to show the evolution over this period. The analysis of anomalies has also found two periods of different behavior. From 1964 till 1988 the anomalies observed were positive and the last 20 years seems to be a period of negative anomalies. The results exhibit a decreasing trend and negative anomalies confirming thus the darkening effect already reported by solar dimming studies

  13. Dependence of the 0.7 anomaly on the curvature of the potential barrier in quantum wires

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Hamilton, A. R.; Kelly, M. J.; Smith, C. G.

    2015-06-01

    Ninety-eight one-dimensional channels defined using split gates fabricated on a GaAs/AlGaAs heterostructure are measured during one cooldown at 1.4 K. The devices are arranged in an array on a single chip and are individually addressed using a multiplexing technique. The anomalous conductance feature known as the "0.7 structure" is studied using statistical techniques. The ensemble of data shows that the 0.7 anomaly becomes more pronounced and occurs at lower values as the curvature of the potential barrier in the transport direction decreases. This corresponds to an increase in the effective length of the device. The 0.7 anomaly is not strongly influenced by other properties of the conductance related to density. The curvature of the potential barrier appears to be the primary factor governing the shape of the 0.7 structure at a given T and B .

  14. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    NASA Astrophysics Data System (ADS)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2018-06-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  15. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    NASA Astrophysics Data System (ADS)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2017-08-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  16. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a "fold" lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  17. Little SUSY hierarchy in mixed modulus-anomaly mediation

    NASA Astrophysics Data System (ADS)

    Choi, Kiwoon; Jeong, Kwang Sik; Kobayashi, Tatsuo; Okumura, Ken-ichi

    2006-02-01

    Motivated by the KKLT string compactification involving a supersymmetry-breaking uplifting potential, we examine 4D effective supergravity with a generic form of uplifting potential, focusing on the possibility that the resulting mixed modulus-anomaly mediated soft terms realize the little hierarchy between the Higgs boson masses mH and the sparticle masses mSUSY. It is noted that for some type of uplifting potential, the anomaly-mediated contribution to mH2 at MGUT can cancel the subsequent renormalization group evolution of mH2 down to TeV scale, thereby the model can naturally realize the little hierarchy mH2 ∼mSUSY2 / 8π2 which is desirable for the lightest Higgs boson mass to satisfy the experimental bound. In such models, the other Higgs mass parameters μ and B can have the desirable size μ ∼ B ∼mH without severe fine-tuning of parameters, although the gravitino is much heavier than the Higgs boson. Those models for the little hierarchy avoid naturally the dangerous SUSY flavor and CP violations, and predict nearly degenerate low energy gaugino masses, pure Higgsino LSP, and also a specific relation between the stop and gaugino masses.

  18. Adiabatic Quantum Anomaly Detection and Machine Learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen; Lidar, Daniel

    2012-02-01

    We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.

  19. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik, E-mail: acongdon@jpl.nasa.go, E-mail: keeton@physics.rutgers.ed, E-mail: nordgren@sas.upenn.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxiesmore » with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.« less

  20. Universal High Energy Anomaly in the Angle-Resolved Photoemission Spectra of High Temperature Superconductors: Possible Evidence of Spinon and Holon Branches

    NASA Astrophysics Data System (ADS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S. Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2007-02-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E1≈0.38eV and E2≈0.8eV. E1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Γ point at ≈0.5eV. The other is given by a peak in the momentum space, nearly independent of energy between E1 and E2. Above E2, a bandlike dispersion reemerges. We conjecture that these two energies mark the disintegration of the low-energy quasiparticles into a spinon and holon branch in the high Tc cuprates.

  1. A least-squares minimisation approach to depth determination from numerical second horizontal self-potential anomalies

    NASA Astrophysics Data System (ADS)

    Abdelrahman, El-Sayed Mohamed; Soliman, Khalid; Essa, Khalid Sayed; Abo-Ezz, Eid Ragab; El-Araby, Tarek Mohamed

    2009-06-01

    This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative anomalies obtained from self-potential (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the centre of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination from second derivative SP anomalies has been transformed into the problem of finding a solution to a non-linear equation of the form f(z)=0. Formulas have been derived for horizontal cylinders, spheres, and vertical cylinders. Procedures are also formulated to determine the electric dipole moment and the polarization angle. The proposed method was tested on synthetic noisy and real SP data. In the case of the synthetic data, the least-squares method determined the correct depths of the sources. In the case of practical data (SP anomalies over a sulfide ore deposit, Sariyer, Turkey and over a Malachite Mine, Jefferson County, Colorado, USA), the estimated depths of the buried structures are in good agreement with the results obtained from drilling and surface geology.

  2. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping

  3. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  4. ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butter, Daniel; Gaillard, Mary K.

    2009-06-10

    We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.

  5. Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Hsieh, Chang-Tse; Ryu, Shinsei

    2017-11-01

    The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the lattice translation symmetry and particle number conservation are strictly imposed. In this paper, we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective of quantum anomalies. We first note that they can both be described by the same low-energy effective field theory with the same effective symmetry realizations on low-energy modes, wherein non-on-site lattice translation symmetry is encoded as if it were an internal symmetry. In spite of the identical form of the low-energy effective field theories, we show that the quantum anomalies of the theories play different roles in the two systems. In particular, we find that the chiral anomaly is equivalent to the LSM theorem, whereas there is another anomaly that is not related to the LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of the gaplessness local in the parameter space.

  6. High energy electron sintering of icy regoliths: Formation of the PacMan thermal anomalies on the icy Saturnian moons

    NASA Astrophysics Data System (ADS)

    Schaible, M. J.; Johnson, R. E.; Zhigilei, L. V.; Piqueux, S.

    2017-03-01

    The so-called 'PacMan' features on the leading hemispheres of the icy Saturnian moons of Mimas, Tethys and Dione were initially identified as anomalous optical discolorations and subsequently shown to have greater thermal inertia than the surrounding regions. The shape of these regions matches calculated deposition contours of high energy plasma electrons moving opposite to the moon's orbital direction, thus suggesting that electron interactions with the grains produce the observed anomalies. Here, descriptions of radiation-induced diffusion processes are given, and various sintering models are considered to calculate the rate of increase in the contact volume between grains in an icy regolith. Estimates of the characteristic sintering timescale, i.e. the time necessary for the thermal inertia to increase from that measured outside the anomalous regions to that within, are given for each of the moons. Since interplanetary dust particle (IDP) impact gardening and E-ring grain infall would be expected to mix the regolith and obscure the effects of high energy electrons, sintering rates are compared to rough estimates of the impact-induced resurfacing rates. Estimates of the sintering timescale determined by extrapolating laboratory measurements are below ∼0.03 Myr, while the regolith renewal timescales are larger than ∼0.1 Myr, thus indicating that irradiation by the high energy electrons should be sufficient to form stable thermal anomalies. More detailed models developed for sintering of spherical grains are able to account for the radiation-induced anomalies on Mimas and Tethys only if the regoliths on those bodies are relatively compact and composed of small (≲ 5 μm) grains or grain aggregates, and/or the grains are highly non-spherical with surface defect densities in the inter-grain contact regions that are much higher than expected for crystalline water ice grains at thermal equilibrium. These results are consistent with regolith thermal conductivity

  7. Penile anomalies in adolescence.

    PubMed

    Wood, Dan; Woodhouse, Christopher

    2011-03-07

    This article considers the impact and outcomes of both treatment and underlying condition of penile anomalies in adolescent males. Major congenital anomalies (such as exstrophy/epispadias) are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring) in this group, and surgical assessment for potential surgical candidates. The emergence of new surgical techniques continues to improve outcomes and potentially raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile anomalies, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism.

  8. Analysis of GEO spacecraft anomalies: Space weather relationships

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Sung; Lee, Jaejin; Cho, Kyung-Suk; Kwak, Young-Sil; Cho, Il-Hyun; Park, Young-Deuk; Kim, Yeon-Han; Baker, Daniel N.; Reeves, Geoffrey D.; Lee, Dong-Kyu

    2011-06-01

    While numerous anomalies and failures of spacecraft have been reported since the beginning of the space age, space weather effects on modern spacecraft systems have been emphasized more and more with the increase of their complexity and capability. However, the relationship between space weather and commercial satellite anomalies has not been studied extensively. In this paper, we investigate the geostationary Earth orbit (GEO) satellite anomalies archived by Satellite News Digest during 1997-2009 in order to search for possible influences of space weather on the anomaly occurrences. We analyze spacecraft anomalies for the Kp index, local time, and season and then compare them with the tendencies of charged particles observed by Los Alamos National Laboratory (LANL) satellites. We obtain the following results: (1) there are good relationships between geomagnetic activity (as measured by the Kp index) and anomaly occurrences of the GEO satellites; (2) the satellite anomalies occurred mainly in the midnight to morning sector; and (3) the anomalies are found more frequently in spring and fall than summer and winter. While we cannot fully explain how space weather is involved in producing such anomalies, our analysis of LANL data shows that low-energy (<100 keV) electrons have similar behaviors with spacecraft anomalies and implies the spacecraft charging might dominantly contribute to the GEO spacecraft anomalies reported in Satellite News Digest.

  9. The effect of soil moisture anomalies on maize yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  10. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  11. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  12. Algebraic classification of Weyl anomalies in arbitrary dimensions.

    PubMed

    Boulanger, Nicolas

    2007-06-29

    Conformally invariant systems involving only dimensionless parameters are known to describe particle physics at very high energy. In the presence of an external gravitational field, the conformal symmetry may generalize to the Weyl invariance of classical massless field systems in interaction with gravity. In the quantum theory, the latter symmetry no longer survives: A Weyl anomaly appears. Anomalies are a cornerstone of quantum field theory, and, for the first time, a general, purely algebraic understanding of the universal structure of the Weyl anomalies is obtained, in arbitrary dimensions and independently of any regularization scheme.

  13. Efficacy of very fast simulated annealing global optimization method for interpretation of self-potential anomaly by different forward formulation over 2D inclined sheet type structure

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Sharma, S. P.

    2012-12-01

    Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the

  14. Integrated Potential-field Studies in Support of Energy Resource Assessment in Frontier Areas of Alaska

    NASA Astrophysics Data System (ADS)

    Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.

    2008-05-01

    basement gravity (green) highlight domains with common geophysical characteristics and, by inference, lithology. The observed patterns suggest that much of the basin is underlain by Devonian to Jurassic oceanic rocks that probably have little or no potential for hydrocarbon generation. The coastal plain surficial deposits in the northern part of ANWR conceal another frontier basin with hydrocarbon potential. Proprietary aeromagnetic and gravity data were used, along with seismic reflection profiles, to construct a structural and stratigraphic model of this highly deformed sedimentary basin for use in an energy resource assessment. Matched-filtering techniques were used to separate short-wavelength magnetic and gravity anomalies attributed to sources near the top of the sedimentary section from longer-wavelength anomalies attributed to deeper basin and basement sources. Models along the seismic reflection lines indicate that the primary sources of the short-wavelength anomalies are folded and faulted sedimentary beds truncated at the Pleistocene erosion surface. In map view, the aeromagnetic and gravity anomalies produced by the sedimentary units were used to identify possible structural trapping features and geometries, but they also indicated that these features may be significantly disrupted by faulting.

  15. Wintertime atmospheric response to decadal SST anomalies in the North Pacific frontal zone and its relationship to dominant atmospheric internal variability

    NASA Astrophysics Data System (ADS)

    Okajima, S.; Nakamura, H.; Nishii, K.; Miyasaka, T.; Kuwano-Yoshida, A.; Taguchi, B.

    2016-02-01

    A decadal-scale warm SST anomaly observed in the North Pacific subarctic frontal zone (SAFZ) tends to accompany a basin-scale anticyclonic anomaly in the troposphere that peaks in January. A set of sensitivity experiments conducted with an AGCM simulates an anticyclonic ensemble response over the North Pacific in January. As observed, the simulated anticyclonic response is in equivalent barotropic structure and maintained mainly through energy conversion from the ensemble mean circulation realized under the climatological SST, suggesting that the anomaly may have a characteristic of a dynamical mode. Conversion of both available potential energy (APE) and kinetic energy (KE) from the mean flow is important for the observed anomaly, while only the former is important for the model response. This is because the model response is located to the north of the jet core region whereas the observed anomaly is straddling the jet exit region, which appears to be in correspondence to the northwestward displacement of the center of the dominant atmospheric internal variability in our model relative to the observed center. Transient eddy feedback forcing also acts to maintain the observed anomaly rather efficiently, while its efficiency is much lower for the simulated response, which seems to be consistent with the poleward displacement of the anticyclonic response from the jet and stormtrack axes. A multi-decadal integration of our coupled GCM also suggests that atmospheric internal variability may be important for determining atmospheric response to the decadal SST variability of the SAFZ.

  16. Bangui Anomaly

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.

    2004-01-01

    Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.

  17. ISHM Anomaly Lexicon for Rocket Test

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Buchanan, Aubri; Hensarling, Paula L.; Morris, Jonathan; Turowski, Mark; Figueroa, Jorge F.

    2007-01-01

    byproducts of the anomaly lexicon compilation effort. For example, (1) Allows determination of the frequency distribution of anomalies to help identify those with the potential for high return on investment if included in automated detection as part of an ISHM system, (2) Availability of a regular lexicon could provide the base anomaly name choices to help maintain consistency in the DR collection process, and (3) Although developed for the rocket engine test environment, most of the anomalies are not specific to rocket testing, and thus can be reused in other applications.

  18. An Extreme-Value Approach to Anomaly Vulnerability Identification

    NASA Technical Reports Server (NTRS)

    Everett, Chris; Maggio, Gaspare; Groen, Frank

    2010-01-01

    The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.

  19. Hyperon polarization in heavy-ion collisions and holographic gravitational anomaly

    NASA Astrophysics Data System (ADS)

    Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg

    2018-04-01

    We study the energy dependence of global polarization of Λ hyperons in peripheral Au-Au collisions. We combine the calculation of vorticity and strange chemical potential in the framework of the kinetic quark-gluon-string model with the anomalous mechanism related to the axial vortical effect. We pay special attention to the temperature-dependent contribution related to the holographic gravitational anomaly and find that the preliminary data from the BNL Relativistic Heavy Ion Collider are compatible with its suppression discovered earlier in lattice calculations.

  20. A DBN based anomaly targets detector for HSI

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Wang, Shaojun; Yu, Jinxiang; Peng, Yu

    2017-10-01

    Due to the assumption that Hyperspectral image (HSI) should conform to Gaussian distribution, traditional Mahalanobis distance-based anomaly targets detectors perform poor because the assumption may not always hold. In order to solve those problems, a deep learning based detector, Deep Belief Network(DBN) anomaly detector(DBN-AD), was proposed to fit the unknown distribution of HSI by energy modeling, the reconstruction errors of this encode-decode processing are used for discriminating the anomaly targets. Experiments are implemented on real and synthesized HSI dataset which collection by Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Comparing to classic anomaly detector, the proposed method shows better performance, it performs about 0.17 higher in Area Under ROC Curve (AUC) than that of Reed-Xiaoli detector(RXD) and Kernel-RXD (K-RXD).

  1. A comparison of classical and intelligent methods to detect potential thermal anomalies before the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4)

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, M.

    2013-04-01

    In this paper, a number of classical and intelligent methods, including interquartile, autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and support vector machine (SVM), have been proposed to quantify potential thermal anomalies around the time of the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4). The duration of the data set, which is comprised of Aqua-MODIS land surface temperature (LST) night-time snapshot images, is 62 days. In order to quantify variations of LST data obtained from satellite images, the air temperature (AT) data derived from the meteorological station close to the earthquake epicenter has been taken into account. For the models examined here, results indicate the following: (i) ARIMA models, which are the most widely used in the time series community for short-term forecasting, are quickly and easily implemented, and can efficiently act through linear solutions. (ii) A multilayer perceptron (MLP) feed-forward neural network can be a suitable non-parametric method to detect the anomalous changes of a non-linear time series such as variations of LST. (iii) Since SVMs are often used due to their many advantages for classification and regression tasks, it can be shown that, if the difference between the predicted value using the SVM method and the observed value exceeds the pre-defined threshold value, then the observed value could be regarded as an anomaly. (iv) ANN and SVM methods could be powerful tools in modeling complex phenomena such as earthquake precursor time series where we may not know what the underlying data generating process is. There is good agreement in the results obtained from the different methods for quantifying potential anomalies in a given LST time series. This paper indicates that the detection of the potential thermal anomalies derive credibility from the overall efficiencies and potentialities of the four integrated methods.

  2. Continental and oceanic magnetic anomalies: Enhancement through GRM

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.

    1985-01-01

    In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.

  3. Neonate with VACTERL Association and a Branchial Arch Anomaly without Hydrocephalus.

    PubMed

    Velazquez, Danitza; Pereira, Elaine; Havranek, Thomas

    2016-03-01

    VACTERL (vertebral anomalies, anal atresia, cardiac defect, tracheoesophageal fistula, renal anomaly, limb anomalies) is an association of anomalies with a wide spectrum of phenotypic expression. While the majority of cases are sporadic, there is evidence of an inherited component in a small number of patients as well as the potential influence of nongenetic risk factors (maternal diabetes mellitus). Presence of hydrocephalus has been reported in VACTERL patients (VACTERL-H) in the past, with some displaying branchial arch anomalies. We report the unique case of an infant of diabetic mother with VACTERL association and a branchial arch anomaly-in the absence of hydrocephalus.

  4. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. Copyright © 2015 Mosby, Inc. All rights reserved.

  5. Semiclassical theory of the tunneling anomaly in partially spin-polarized compressible quantum Hall states

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.

    2018-05-01

    Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.

  6. Isotopic dependence of fusion enhancement of various heavy ion systems using energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2015-01-01

    In the present work, the fusion of symmetric and asymmetric projectile-target combinations are deeply analyzed within the framework of energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus-nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm, which is much larger than a value (a = 0.65 fm) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus-nucleus potential possesses normal diffuseness parameter.

  7. Anomaly-free models for flavour anomalies

    NASA Astrophysics Data System (ADS)

    Ellis, John; Fairbairn, Malcolm; Tunney, Patrick

    2018-03-01

    We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1)^' gauge boson Z^' . We assume universal and rational U(1)^' charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1)^' charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion. There are non-trivial anomaly-free models with more than one such `dark' fermion, or with a single DM fermion if right-handed up-type quarks have non-zero U(1)^' charges. In some of the latter models the U(1)^' couplings of the first- and second-generation quarks all vanish, weakening the LHC Z^' constraint, and in some other models the DM particle has purely axial couplings, weakening the direct DM scattering constraint. We also consider models in which anomalies are cancelled via extra vector-like leptons, showing how the prospective LHC Z^' constraint may be weakened because the Z^' → μ ^+ μ ^- branching ratio is suppressed relative to other decay modes.

  8. Anomalies, conformal manifolds, and spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  9. Anomalies, conformal manifolds, and spheres

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-01

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space {M} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail {N}=(2,2) and {N}=(0,2) supersymmetric theories in d = 2 and {N}=2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For {N}=(2,2) theories in d = 2 and {N}=2 theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of {M} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  10. Anomalies, conformal manifolds, and spheres

    DOE PAGES

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; ...

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  11. Consistent description of kinetic equation with triangle anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu Shi; Gao Jianhua; Wang Qun

    2011-05-01

    We provide a consistent description of the kinetic equation with a triangle anomaly which is compatible with the entropy principle of the second law of thermodynamics and the charge/energy-momentum conservation equations. In general an anomalous source term is necessary to ensure that the equations for the charge and energy-momentum conservation are satisfied and that the correction terms of distribution functions are compatible to these equations. The constraining equations from the entropy principle are derived for the anomaly-induced leading order corrections to the particle distribution functions. The correction terms can be determined for the minimum number of unknown coefficients in onemore » charge and two charge cases by solving the constraining equations.« less

  12. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies.

    PubMed

    Sadick, Maliha; Müller-Wille, René; Wildgruber, Moritz; Wohlgemuth, Walter A

    2018-06-06

     Vascular anomalies are a diagnostic and therapeutic challenge. They require dedicated interdisciplinary management. Optimal patient care relies on integral medical evaluation and a classification system established by experts in the field, to provide a better understanding of these complex vascular entities.  A dedicated classification system according to the International Society for the Study of Vascular Anomalies (ISSVA) and the German Interdisciplinary Society of Vascular Anomalies (DiGGefA) is presented. The vast spectrum of diagnostic modalities, ranging from ultrasound with color Doppler, conventional X-ray, CT with 4 D imaging and MRI as well as catheter angiography for appropriate assessment is discussed.  Congenital vascular anomalies are comprised of vascular tumors, based on endothelial cell proliferation and vascular malformations with underlying mesenchymal and angiogenetic disorder. Vascular tumors tend to regress with patient's age, vascular malformations increase in size and are subdivided into capillary, venous, lymphatic, arterio-venous and combined malformations, depending on their dominant vasculature. According to their appearance, venous malformations are the most common representative of vascular anomalies (70 %), followed by lymphatic malformations (12 %), arterio-venous malformations (8 %), combined malformation syndromes (6 %) and capillary malformations (4 %).  The aim is to provide an overview of the current classification system and diagnostic characterization of vascular anomalies in order to facilitate interdisciplinary management of vascular anomalies.   · Vascular anomalies are comprised of vascular tumors and vascular malformations, both considered to be rare diseases.. · Appropriate treatment depends on correct classification and diagnosis of vascular anomalies, which is based on established national and international classification systems, recommendations and guidelines.. · In the classification

  13. Drug safety in pregnancy--monitoring congenital anomalies.

    PubMed

    Morgan, Margery; De Jong-van den Berg, Lolkje T W; Jordan, Sue

    2011-04-01

    This paper outlines research into the causes of congenital anomalies, and introduces a pan-European study. The potential roles of nurses and midwives in this area are illustrated by a case report. Since the thalidomide disaster, use of drugs in pregnancy has been carefully monitored to prevent anything similar happening again. However, monitoring is incomplete and questions remain unanswered. Many medicines are essential for the health of pregnant women. However, drug use in pregnancy requires surveillance. Methods include spontaneous reporting of adverse events, cohort studies and case control studies. It is hoped that a Europe-wide study, combining data from several congenital anomaly registers, will provide a sufficiently large population to assess the impact of selected drugs on congenital anomalies. However, this work depends on the consistency of reporting by nurses and midwives. Drug safety in pregnancy remains undetermined. Collaboration across Europe has the potential to provide a framework for safety evaluation. Prescribers should consider the possibility of pregnancy in women of child-bearing age. Careful review of maternal drug use in early pregnancy is essential. Midwives and nurses should be aware of adverse event drug reporting systems, including congenital anomaly registers. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  14. Real-time anomaly detection for very short-term load forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jian; Hong, Tao; Yue, Meng

    Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonlymore » used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Lastly, a general anomaly detection framework is proposed for the future research.« less

  15. Real-time anomaly detection for very short-term load forecasting

    DOE PAGES

    Luo, Jian; Hong, Tao; Yue, Meng

    2018-01-06

    Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonlymore » used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Lastly, a general anomaly detection framework is proposed for the future research.« less

  16. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Chen, Anffany; Franz, M.

    2016-10-01

    Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b . For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a "topological coaxial cable." This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e . These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd3 As2 and Na3Bi and Weyl semimetals with unbroken time-reversal symmetry.

  17. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  18. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of

  19. La prospection geothermique de surface au Maroc: hydrodynamisme, anomalies thermiques et indices de surfaceGeothermal prospecting in Morocco: hydrodynamics, thermal anomalies and surface indices

    NASA Astrophysics Data System (ADS)

    Zarhloule, Y.; Lahrache, A.; Ben Abidate, L.; Khattach, D.; Bouri, S.; Boukdir, A.; Ben Dhia, H.

    2001-05-01

    Shallow geothermal prospecting ( < 700 m) has been performed in four zones in Morocco for which few deep data are available: northwestern basin, northeastern basin, Tadla Basin and Agadir Basin. These areas are different geologically and hydrogeologically. The temperature data from 250 wells at depths between 15 and 500 m have been analysed in order to estimate the natural geothermal gradient in these areas, to determine the principal thermal anomalies, to identify the main thermal indices and to characterise the recharge, discharge and potential mixing limits of the aquifers. The hydrostratigraphical study of each basin revealed several potential reservoir layers in which the Turonian carbonate aquifer (Tadal and Agadir Basins) and Liassic acquifer (Moroccan northwestern and northeastern basins) are the most important hot water reservoirs in Morocco. The recharge zones of each aquifer are characterised by high topography, high water potential, shallow cold water, low geothermal gradient and negative anomalies. The discharge zones are characterized by low topography, low piezometric level, high geothermal gradient, high temperature with hot springs and positive anomalies. The main thermal indices and the principal thermal anomalies that coincide with the artesian zones of the Turonian and Liassic aquifers have been identified.

  20. Vertebral column anomalies in Indo-Pacific and Atlantic humpback dolphins Sousa spp.

    PubMed

    Weir, Caroline R; Wang, John Y

    2016-08-09

    Conspicuous vertebral column abnormalities in humpback dolphins (genus Sousa) were documented for the first time during 3 photo-identification field studies of small populations in Taiwan, Senegal and Angola. Seven Taiwanese humpback dolphins S. chinensis taiwanensis with vertebral column anomalies (lordosis, kyphosis or scoliosis) were identified, along with 2 possible cases of vertebral osteomyelitis. There was evidence from several individuals photographed over consecutive years that the anomalies became more pronounced with age. Three Atlantic humpback dolphins S. teuszii were observed with axial deviations of the vertebral column (lordosis and kyphosis). Another possible case was identified in a calf, and 2 further animals were photographed with dorsal indents potentially indicative of anomalies. Vertebral column anomalies of humpback dolphins were predominantly evident in the lumbo-caudal region, but one Atlantic humpback dolphin had an anomaly in the cervico-thoracic region. Lordosis and kyphosis occurred simultaneously in several individuals. Apart from the described anomalies, all dolphins appeared in good health and were not obviously underweight or noticeably compromised in swim speed. This study presents the first descriptions of vertebral column anomalies in the genus Sousa. The causative factors for the anomalies were unknown in every case and are potentially diverse. Whether these anomalies result in reduced fitness of individuals or populations merits attention, as both the Taiwanese and Atlantic humpback dolphin are species of high conservation concern.

  1. Testing Lorentz invariance violations in the tritium beta-decay anomaly

    NASA Astrophysics Data System (ADS)

    Carmona, J. M.; Cortés, J. L.

    2000-11-01

    We consider a Lorentz non-invariant dispersion relation for the neutrino, which would produce unexpected effects with neutrinos of few eV, exactly where the tritium beta-decay anomaly is found. We use this anomaly to put bounds on the violation of Lorentz invariance. We discuss other consequences of this non-invariant dispersion relation in neutrino experiments and high-energy cosmic-ray physics.

  2. Anomalies in cosmic rays: New particles versus charm?

    NASA Technical Reports Server (NTRS)

    Balayan, G. L.; Khodjamirian, A. Y.; Oganessian, A. G.

    1985-01-01

    For a long time two anomalies are observed in cosmic rays at energies E approx. = 100 TeV: (1) the generation of long-flying cascades in the hadron calorimeter (the so-called Tien-Shan effect) and; (2) the enhancement of direct muon yield as compared with the accelerator energy region. The aim is to discuss the possibility that both anomalies have common origins arising from production and decays of the same particles. the main conclusions are the following: (1) direct muons cannot be generated by any new particles with mass exceeding 10+20 GeV; and (2) if both effects are originated from the charmed hadrons, then the needed charm hadroproduction cross section is unexpectedly large as compared with the quark-gluon model predictions.

  3. Environment induced anomalies on the TDRS and the role of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Whittlesey, A.; Daughtridge, S.

    1990-01-01

    The NASA Tracking and Data Relay Satellites (TDRS) have experienced several classes of anomalies that appear to be related to the natural environment. The most serious of these have been anomalies in the Attitude Control System control processor electronics which resulted in check sum errors that were ultimately traced to high-energy, particle-induced single event upsets in the RAM memory. Three other types of anomalies on TDRS have also been correlated with environmental effects. This paper briefly documents the occurrences of these anomalies and describes the nature of each. These events are correlated with various environmental factors. For all cases, there appears to be a causal relationship between spacecraft charging events and the engineering anomalies.

  4. Quantum machine learning for quantum anomaly detection

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Rebentrost, Patrick

    2018-04-01

    Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.

  5. The Growth and Decay of Hydrate Anomalies in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Irizarry, J. T.; Rempel, A. W.

    2014-12-01

    Natural gas hydrates, stored in huge quantities beneath permafrost, and in submarine sediments on the continental shelf, have the potential to become a vital clean-burning energy source. However, clear evidence is recorded in coastal sediments worldwide that past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. Arctic permafrost is thawing, and environmental changes can alter ocean circulation to warm the seafloor, causing hydrates to dissociate or dissolve in the sediments beneath. Decades of focused research provide a firm understanding of laboratory conditions under which hydrates become unstable and dissociate, and how hydrate reserves form when microbes convert organic material into methane, which can also dissolve and be carried by pore waters into the hydrate stability zone. Despite these advances, many key questions that concern both the resource potential of hydrates and their role in causing environmental geohazards, are intimately tied to the more poorly understood behavior of hydrate anomalies, which tend to be concentrated in the large pores of sand layers and form segregated lenses and nodules in muds. We present simple models designed to unravel the importance of the diverse physical interactions (i.e. flow focusing, free-gas infiltration, and pore-scale solubility effects) that help control how hydrate anomalies form. Predicted hydrate distributions are qualitatively different when accumulation in anomalies is supplied primarily by: 1. aqueous flow through sediments with enhanced permeability, 2. free-gas transport high above the three-phase stability boundary, or 3. diffusive transport along solubility gradients associated with pore-scale effects. We discuss examples that illustrate each of these distinct generation

  6. Neonate with VACTERL Association and a Branchial Arch Anomaly without Hydrocephalus

    PubMed Central

    Velazquez, Danitza; Pereira, Elaine; Havranek, Thomas

    2015-01-01

    VACTERL (vertebral anomalies, anal atresia, cardiac defect, tracheoesophageal fistula, renal anomaly, limb anomalies) is an association of anomalies with a wide spectrum of phenotypic expression. While the majority of cases are sporadic, there is evidence of an inherited component in a small number of patients as well as the potential influence of nongenetic risk factors (maternal diabetes mellitus). Presence of hydrocephalus has been reported in VACTERL patients (VACTERL-H) in the past, with some displaying branchial arch anomalies. We report the unique case of an infant of diabetic mother with VACTERL association and a branchial arch anomaly—in the absence of hydrocephalus. PMID:26929876

  7. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  8. Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Drivas, Theodore D.

    2018-02-01

    We develop a first-principles theory of relativistic fluid turbulence at high Reynolds and Péclet numbers. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. We obtain results very similar to those for nonrelativistic turbulence, with hydrodynamic fields in the inertial range described as distributional or "coarse-grained" solutions of the relativistic Euler equations. These solutions do not, however, satisfy the naive conservation laws of smooth Euler solutions but are afflicted with dissipative anomalies in the balance equations of internal energy and entropy. The anomalies are shown to be possible by exactly two mechanisms, local cascade and pressure-work defect. We derive "4 /5 th-law" type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required for their not vanishing. We also investigate the Lorentz covariance of the inertial-range fluxes, which we find to be broken by our coarse-graining regularization but which is restored in the limit where the regularization is removed, similar to relativistic lattice quantum field theory. In the formal limit as speed of light goes to infinity, we recover the results of previous nonrelativistic theory. In particular, anomalous heat input to relativistic internal energy coincides in that limit with anomalous dissipation of nonrelativistic kinetic energy.

  9. Global accuracy estimates of point and mean undulation differences obtained from gravity disturbances, gravity anomalies and potential coefficients

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1979-01-01

    Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.

  10. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, C. R.; Nordgren, C. E.

    2009-05-01

    Gravitational lensing has become a powerful probe of cold dark matter substructure. Earlier work using anomalous flux ratios in four-image quasar lenses has shown that lensing is sensitive to substructure which raises the exciting prospect of constraining the mass function and spatial distribution of dark matter satellites in galaxies. We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time-delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131-1231 and B1422+231. The anomalies in RX J1131-1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time-delay anomalies in larger-separation image pairs in four additional lenses. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Our work argues for a large sample of strong lenses with precisely-measured time delays. The first of these objectives will be readily achievable as the next generation of optical and radio telescopes come online, while the second will require a dedicated one-meter class space-based observatory. Meeting these goals will make it possible to examine the properties of dark matter on sub-galactic scales, which is essential for distinguishing among the various dark matter candidates from particle physics. Part of this work was funded by NSF grant AST-0747311. ABC is currently supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.

  11. Delineating Potential Karst Water-Bearing Structures based on Resistivity Anomalies and Microtremor Analyses-A Case Study in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Gan, F.; Su, C.; Liu, W.; Zhao, W.

    2016-12-01

    Heterogeneity, anisotropy and rugged landforms become challenges for geophysicists to locate drilling site by water-bearing structure profiling in Karst region. If only one geophysical method is used to achieve this objective, low resistivity anomalies deduced to be water-rich zones could actually be zones rich in marl and shale. In this study, integrated geophysical methods were used to locate a favorable drilling position for the provision of karst water to Juede village, which had been experiencing severe water shortages over a prolonged period. According to site conditions and hydrogeological data, appropriate geophysical profiles were conducted, approximately perpendicular to the direction of groundwater flow. In general, significant changes in resistivity occur between water-filled caves/ fractures and competent rocks. Thus, electrical and electromagnetic methods have been widely applied to search for karst groundwater indirectly. First, electrical resistivity tomography was carried out to discern shallow resistivity distributions within the profile where the low resistivity anomalies were of most interest. Second, one short profile of audio-frequency magnetotelluric survey was used to ascertain the vertical and horizontal extent of these low resistivity anomalies. Third, the microtremor H/V spectral ratio method was applied to identify potential water-bearing structures from low resistivity anomalies and to differentiate these from the interference of marl and shale with low resistivity. Finally, anomalous depths were estimated by interpreting Schlumberger sounding data to determine an optimal drilling site. The study shows that karst hydrogeology and geophysical methods can be effectively integrated for the purposes of karst groundwater exploration.

  12. Congenital neurodevelopmental anomalies in pediatric and young adult cancer.

    PubMed

    Wong-Siegel, Jeannette R; Johnson, Kimberly J; Gettinger, Katie; Cousins, Nicole; McAmis, Nicole; Zamarione, Ashley; Druley, Todd E

    2017-10-01

    Congenital anomalies that are diagnosed in at least 120,000 US infants every year are the leading cause of infant death and contribute to disability and pediatric hospitalizations. Several large-scale epidemiologic studies have provided substantial evidence of an association between congenital anomalies and cancer risk in children, suggesting potential underlying cancer-predisposing conditions and the involvement of developmental genetic pathways. Electronic medical records from 1,107 pediatric, adolescent, and young adult oncology patients were reviewed. The observed number (O) of congenital anomalies among children with a specific pediatric cancer subtype was compared to the expected number (E) of anomalies based on the frequency of congenital anomalies in the entire study population. The O/E ratios were tested for significance using Fisher's exact test. The Kaplan-Meier method was used to compare overall and neurological malignancy survival rates following tumor diagnosis. Thirteen percent of patients had a congenital anomaly diagnosis prior to their cancer diagnosis. When stratified by congenital anomaly subtype, there was an excess of neurological anomalies among children with central nervous system tumors (O/E = 1.56, 95%CI 1.13-2.09). Male pediatric cancer patients were more likely than females to have a congenital anomaly, particularly those <5 years of age (O/E 1.35, 95%CI 0.97-1.82). Our study provides additional insight into the association between specific congenital anomaly types and pediatric cancer development. Moreover, it may help to inform the development of new screening policies and support hypothesis-driven research investigating mechanisms underlying tumor predisposition in children with congenital anomalies. © 2017 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.

  13. Visual analytics of anomaly detection in large data streams

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Sharma, Ratnesh K.; Mehta, Abhay

    2009-01-01

    Most data streams usually are multi-dimensional, high-speed, and contain massive volumes of continuous information. They are seen in daily applications, such as telephone calls, retail sales, data center performance, and oil production operations. Many analysts want insight into the behavior of this data. They want to catch the exceptions in flight to reveal the causes of the anomalies and to take immediate action. To guide the user in finding the anomalies in the large data stream quickly, we derive a new automated neighborhood threshold marking technique, called AnomalyMarker. This technique is built on cell-based data streams and user-defined thresholds. We extend the scope of the data points around the threshold to include the surrounding areas. The idea is to define a focus area (marked area) which enables users to (1) visually group the interesting data points related to the anomalies (i.e., problems that occur persistently or occasionally) for observing their behavior; (2) discover the factors related to the anomaly by visualizing the correlations between the problem attribute with the attributes of the nearby data items from the entire multi-dimensional data stream. Mining results are quickly presented in graphical representations (i.e., tooltip) for the user to zoom into the problem regions. Different algorithms are introduced which try to optimize the size and extent of the anomaly markers. We have successfully applied this technique to detect data stream anomalies in large real-world enterprise server performance and data center energy management.

  14. Overcoming numerical shockwave anomalies using energy balanced numerical schemes. Application to the Shallow Water Equations with discontinuous topography

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, A.; Murillo, J.

    2017-07-01

    When designing a numerical scheme for the resolution of conservation laws, the selection of a particular source term discretization (STD) may seem irrelevant whenever it ensures convergence with mesh refinement, but it has a decisive impact on the solution. In the framework of the Shallow Water Equations (SWE), well-balanced STD based on quiescent equilibrium are unable to converge to physically based solutions, which can be constructed considering energy arguments. Energy based discretizations can be designed assuming dissipation or conservation, but in any case, the STD procedure required should not be merely based on ad hoc approximations. The STD proposed in this work is derived from the Generalized Hugoniot Locus obtained from the Generalized Rankine Hugoniot conditions and the Integral Curve across the contact wave associated to the bed step. In any case, the STD must allow energy-dissipative solutions: steady and unsteady hydraulic jumps, for which some numerical anomalies have been documented in the literature. These anomalies are the incorrect positioning of steady jumps and the presence of a spurious spike of discharge inside the cell containing the jump. The former issue can be addressed by proposing a modification of the energy-conservative STD that ensures a correct dissipation rate across the hydraulic jump, whereas the latter is of greater complexity and cannot be fixed by simply choosing a suitable STD, as there are more variables involved. The problem concerning the spike of discharge is a well-known problem in the scientific community, also known as slowly-moving shock anomaly, it is produced by a nonlinearity of the Hugoniot locus connecting the states at both sides of the jump. However, it seems that this issue is more a feature than a problem when considering steady solutions of the SWE containing hydraulic jumps. The presence of the spurious spike in the discharge has been taken for granted and has become a feature of the solution. Even though

  15. Observing a scale anomaly and a universal quantum phase transition in graphene.

    PubMed

    Ovdat, O; Mao, Jinhai; Jiang, Yuhang; Andrei, E Y; Akkermans, E

    2017-09-11

    One of the most interesting predictions resulting from quantum physics, is the violation of classical symmetries, collectively referred to as anomalies. A remarkable class of anomalies occurs when the continuous scale symmetry of a scale-free quantum system is broken into a discrete scale symmetry for a critical value of a control parameter. This is an example of a (zero temperature) quantum phase transition. Such an anomaly takes place for the quantum inverse square potential known to describe 'Efimov physics'. Broken continuous scale symmetry into discrete scale symmetry also appears for a charged and massless Dirac fermion in an attractive 1/r Coulomb potential. The purpose of this article is to demonstrate the universality of this quantum phase transition and to present convincing experimental evidence of its existence for a charged and massless fermion in an attractive Coulomb potential as realized in graphene.When the continuous scale symmetry of a quantum system is broken, anomalies occur which may lead to quantum phase transitions. Here, the authors provide evidence for such a quantum phase transition in the attractive Coulomb potential of vacancies in graphene, and further envision its universality for diverse physical systems.

  16. Thermal Radiation Anomalies Associated with Major Earthquakes

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Kafatos, Menas C.; Taylor, Patrick

    2017-01-01

    Recent developments of remote sensing methods for Earth satellite data analysis contribute to our understanding of earthquake related thermal anomalies. It was realized that the thermal heat fluxes over areas of earthquake preparation is a result of air ionization by radon (and other gases) and consequent water vapor condensation on newly formed ions. Latent heat (LH) is released as a result of this process and leads to the formation of local thermal radiation anomalies (TRA) known as OLR (outgoing Longwave radiation, Ouzounov et al, 2007). We compare the LH energy, obtained by integrating surface latent heat flux (SLHF) over the area and time with released energies associated with these events. Extended studies of the TRA using the data from the most recent major earthquakes allowed establishing the main morphological features. It was also established that the TRA are the part of more complex chain of the short-term pre-earthquake generation, which is explained within the framework of a lithosphere-atmosphere coupling processes.

  17. Clustering and Recurring Anomaly Identification: Recurring Anomaly Detection System (ReADS)

    NASA Technical Reports Server (NTRS)

    McIntosh, Dawn

    2006-01-01

    This viewgraph presentation reviews the Recurring Anomaly Detection System (ReADS). The Recurring Anomaly Detection System is a tool to analyze text reports, such as aviation reports and maintenance records: (1) Text clustering algorithms group large quantities of reports and documents; Reduces human error and fatigue (2) Identifies interconnected reports; Automates the discovery of possible recurring anomalies; (3) Provides a visualization of the clusters and recurring anomalies We have illustrated our techniques on data from Shuttle and ISS discrepancy reports, as well as ASRS data. ReADS has been integrated with a secure online search

  18. Experimental Investigation into the Radar Anomalies on the Surface of Venus

    NASA Technical Reports Server (NTRS)

    Kohler, E.; Gavin, P.; Chevrier, V.; Johnson, Natasha M.

    2012-01-01

    Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions.

  19. Branchial anomalies in children.

    PubMed

    Bajaj, Y; Ifeacho, S; Tweedie, D; Jephson, C G; Albert, D M; Cochrane, L A; Wyatt, M E; Jonas, N; Hartley, B E J

    2011-08-01

    Branchial cleft anomalies are the second most common head and neck congenital lesions seen in children. Amongst the branchial cleft malformations, second cleft lesions account for 95% of the branchial anomalies. This article analyzes all the cases of branchial cleft anomalies operated on at Great Ormond Street Hospital over the past 10 years. All children who underwent surgery for branchial cleft sinus or fistula from January 2000 to December 2010 were included in this study. In this series, we had 80 patients (38 female and 42 male). The age at the time of operation varied from 1 year to 14 years. Amongst this group, 15 patients had first branchial cleft anomaly, 62 had second branchial cleft anomaly and 3 had fourth branchial pouch anomaly. All the first cleft cases were operated on by a superficial parotidectomy approach with facial nerve identification. Complete excision was achieved in all these first cleft cases. In this series of first cleft anomalies, we had one complication (temporary marginal mandibular nerve weakness. In the 62 children with second branchial cleft anomalies, 50 were unilateral and 12 were bilateral. In the vast majority, the tract extended through the carotid bifurcation and extended up to pharyngeal constrictor muscles. Majority of these cases were operated on through an elliptical incision around the external opening. Complete excision was achieved in all second cleft cases except one who required a repeat excision. In this subgroup, we had two complications one patient developed a seroma and one had incomplete excision. The three patients with fourth pouch anomaly were treated with endoscopic assisted monopolar diathermy to the sinus opening with good outcome. Branchial anomalies are relatively common in children. There are three distinct types, first cleft, second cleft and fourth pouch anomaly. Correct diagnosis is essential to avoid inadequate surgery and multiple procedures. The surgical approach needs to be tailored to the type

  20. Direct recovery of mean gravity anomalies from satellite to satellite tracking

    NASA Technical Reports Server (NTRS)

    Hajela, D. P.

    1974-01-01

    The direct recovery was investigated of mean gravity anomalies from summed range rate observations, the signal path being ground station to a geosynchronous relay satellite to a close satellite significantly perturbed by the short wave features of the earth's gravitational field. To ensure realistic observations, these were simulated with the nominal orbital elements for the relay satellite corresponding to ATS-6, and for two different close satellites (one at about 250 km height, and the other at about 900 km height) corresponding to the nominal values for GEOS-C. The earth's gravitational field was represented by a reference set of potential coefficients up to degree and order 12, considered as known values, and by residual gravity anomalies obtained by subtracting the anomalies, implied by the potential coefficients, from their terrestrial estimates. It was found that gravity anomalies could be recovered from strong signal without using any a-priori terrestrial information, i.e. considering their initial values as zero and also assigning them a zero weight matrix. While recovering them from weak signal, it was necessary to use the a-priori estimate of the standard deviation of the anomalies to form their a-priori diagonal weight matrix.

  1. Posterior fossa anomalies diagnosed with fetal MRI: associated anomalies and neurodevelopmental outcomes.

    PubMed

    Patek, Kyla J; Kline-Fath, Beth M; Hopkin, Robert J; Pilipenko, Valentina V; Crombleholme, Timothy M; Spaeth, Christine G

    2012-01-01

    The purpose of this study was to describe the relationship between intracranial and extracranial anomalies and neurodevelopmental outcome for fetuses diagnosed with a posterior fossa anomaly (PFA) on fetal MRI. Cases of Dandy-Walker malformation, vermian hypogenesis/hypoplasia, and mega cisterna magna (MCM) were identified through the Fetal Care Center of Cincinnati between January 2004 and December 2010. Parental interview and retrospective chart review were used to assess neurodevelopmental outcome. Posterior fossa anomalies were identified in 59 fetuses; 9 with Dandy-Walker malformation, 36 with vermian hypogenesis/hypoplasia, and 14 with MCM. Cases with isolated PFAs (14/59) had better outcomes than those with additional anomalies (p = 0.00016), with isolated cases of MCM all being neurodevelopmentally normal. Cases with additional intracranial anomalies had a worse outcome than those without intracranial anomalies (p = 0.00017). The presence of extracranial anomalies increased the likelihood of having a poor outcome (p = 0.00014) as did the identification of an abnormal brainstem (p = 0.00018). Intracranial and extracranial anomalies were good predictors of neurodevelopmental outcome in this study. The prognosis was poor for individuals with an abnormal brainstem, whereas those with isolated MCM had normal neurodevelopmental outcome. © 2012 John Wiley & Sons, Ltd.

  2. Correlation of cerium anomalies with indicators of paleoenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, K.G.; Irving, A.J.

    1996-09-01

    Among 21 whole-rock samples of the Upper Cretaceous Niobrara Formation from Colorado, the abundance of cerium relative to other rate earth elements (Ce anomaly), the weight percent organic carbon (%C{sub org}), and the intensity of bioturbation all covary. This covariation is provocative because %C{sub org} and intensity of bioturbation track changes in the concentration of oxygen in the local water column at the time of deposition (Savrda and Bottjer 1989). Ce anomalies in apatite-rich fractions of the Maastrichtian Zumaya-Algorta Formation from France and Spain and the Miocene Monterey Formation from California show changes that also may coincide with changes inmore » ancient oxygen levels. Results for the Niobrara samples are the closest correspondence demonstrated between paleo-redox conditions and Ce anomalies, but the authors cannot yet determine whether the correspondence reflects a cause-and-effect relationship. Variation in Ce anomalies is influenced by a number of factors, including terrigenous input, depositional environment, and diagenetic conditions. Potential interplay of these factors prevents a unique interpretation of the whole-rock data; dissecting whole-rock Ce anomalies through analysis of isolated sedimentary components, though, is a promising avenue of research.« less

  3. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  4. Implementation of a General Real-Time Visual Anomaly Detection System Via Soft Computing

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve; Ferrell, Bob; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The intelligent visual system detects anomalies or defects in real time under normal lighting operating conditions. The application is basically a learning machine that integrates fuzzy logic (FL), artificial neural network (ANN), and generic algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via ANN and GA techniques. FL provides a powerful framework for knowledge representation and overcomes uncertainty and vagueness typically found in image analysis. ANN provides learning capabilities, and GA leads to robust learning results. An application prototype currently runs on a regular PC under Windows NT, and preliminary work has been performed to build an embedded version with multiple image processors. The application prototype is being tested at the Kennedy Space Center (KSC), Florida, to visually detect anomalies along slide basket cables utilized by the astronauts to evacuate the NASA Shuttle launch pad in an emergency. The potential applications of this anomaly detection system in an open environment are quite wide. Another current, potentially viable application at NASA is in detecting anomalies of the NASA Space Shuttle Orbiter's radiator panels.

  5. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle

    USGS Publications Warehouse

    Blakely, R.J.; Brocher, T.M.; Wells, R.E.

    2005-01-01

    Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide. ?? 2005 Geological Society of America.

  6. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  7. Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Moroi, Takeo

    2000-05-01

    We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.

  8. Spacecraft Environmental Anomalies Handbook

    DTIC Science & Technology

    1989-08-01

    1989 4. TITLE AND SUBTITLE S. FUNDING NUMBERS SPACECRAFT ENVIRONMENTAL ANOMALIES HANDBOOK 282201AA PE: 63410F 6. AUTHOR(S) Paul A. Robinson, Jr 7...engineering solutions for mitigating the effects of environmental anomalies have been developed. Among the causes o, spacecraft anomalies are surface...have been discovered after years of investig!:tion, and engineering solutions for mitigating the effccts of environmental anomalies have been developed

  9. Development of anomaly detection models for deep subsurface monitoring

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.

    2017-12-01

    Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.

  10. Accumulating pyramid spatial-spectral collaborative coding divergence for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Zou, Huanxin; Zhou, Shilin

    2016-03-01

    Detection of anomalous targets of various sizes in hyperspectral data has received a lot of attention in reconnaissance and surveillance applications. Many anomaly detectors have been proposed in literature. However, current methods are susceptible to anomalies in the processing window range and often make critical assumptions about the distribution of the background data. Motivated by the fact that anomaly pixels are often distinctive from their local background, in this letter, we proposed a novel hyperspectral anomaly detection framework for real-time remote sensing applications. The proposed framework consists of four major components, sparse feature learning, pyramid grid window selection, joint spatial-spectral collaborative coding and multi-level divergence fusion. It exploits the collaborative representation difference in the feature space to locate potential anomalies and is totally unsupervised without any prior assumptions. Experimental results on airborne recorded hyperspectral data demonstrate that the proposed methods adaptive to anomalies in a large range of sizes and is well suited for parallel processing.

  11. Modeling And Detecting Anomalies In Scada Systems

    NASA Astrophysics Data System (ADS)

    Svendsen, Nils; Wolthusen, Stephen

    The detection of attacks and intrusions based on anomalies is hampered by the limits of specificity underlying the detection techniques. However, in the case of many critical infrastructure systems, domain-specific knowledge and models can impose constraints that potentially reduce error rates. At the same time, attackers can use their knowledge of system behavior to mask their manipulations, causing adverse effects to observed only after a significant period of time. This paper describes elementary statistical techniques that can be applied to detect anomalies in critical infrastructure networks. A SCADA system employed in liquefied natural gas (LNG) production is used as a case study.

  12. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  13. Diagnosing low earth orbit satellite anomalies using NOAA-15 electron data associated with geomagnetic perturbations

    NASA Astrophysics Data System (ADS)

    Ahmad, Nizam; Herdiwijaya, Dhani; Djamaluddin, Thomas; Usui, Hideyuki; Miyake, Yohei

    2018-05-01

    A satellite placed in space is constantly affected by the space environment, resulting in various impacts from temporary faults to permanent failures depending on factors such as satellite orbit, solar and geomagnetic activities, satellite local time, and satellite construction material. Anomaly events commonly occur during periods of high geomagnetic activity that also trigger plasma variation in the low Earth orbit (LEO) environment. In this study, we diagnosed anomalies in LEO satellites using electron data from the Medium Energy Proton and Electron Detector onboard the National Oceanic and Atmospheric Administration (NOAA)-15 satellite. In addition, we analyzed the fluctuation of electron flux in association with geomagnetic disturbances 3 days before and after the anomaly day. We selected 20 LEO anomaly cases registered in the Satellite News Digest database for the years 2000-2008. Satellite local time, an important parameter for anomaly diagnosis, was determined using propagated two-line element data in the SGP4 simplified general perturbation model to calculate the longitude of the ascending node of the satellite through the position and velocity vectors. The results showed that the majority of LEO satellite anomalies are linked to low-energy electron fluxes of 30-100 keV and magnetic perturbations that had a higher correlation coefficient ( 90%) on the day of the anomaly. The mean local time calculation for the anomaly day with respect to the nighttime migration of energetic electrons revealed that the majority of anomalies (65%) occurred on the night side of Earth during the dusk-to-dawn sector of magnetic local time.

  14. Life cycles of persistent anomalies. II - The development of persistent negative height anomalies over the North Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Dole, Randall M.; Black, Robert X.

    1990-01-01

    Consideration is given to the potential sources for the development of cases defined by strong and persistent negative height anomalies over the central North Pacific. The analyses of Dole (1986) are extended by providing a more complete synoptic description of the developments and additional diagnostic analysis to identify dynamical mechanisms responsible for the developments. The synoptic characteristics of the developments are reviewed and the barotropic and baroclinic processes of the developments are analyzed. The reproducibility and representativeness of the results are examined. The observed characteristics suggest that the large-scale flow anomalies develop as a result of an instability of three-dimensional wintertime mean flow.

  15. The effect of scale on the interpretation of geochemical anomalies

    USGS Publications Warehouse

    Theobald, P.K.; Eppinger, R.G.; Turner, R.L.; Shiquan, S.

    1991-01-01

    The purpose of geochemical surveys changes with scale. Regional surveys identify areas where mineral deposits are most likely to occur, whereas intermediate surveys identify and prioritize specific targets. At detailed scales specific deposit models may be applied and deposits delineated. The interpretation of regional geochemical surveys must take into account scale-dependent difference in the nature and objectives of this type of survey. Overinterpretation of regional data should be resisted, as should recommendations to restrict intermediate or detailed follow-up surveys to the search for specific deposit types or to a too limited suite of elements. Regional surveys identify metallogenic provinces within which a variety of deposit types and metals are most likely to be found. At intermediate scale, these regional provinces often dissipate into discrete clusters of anomalous areas. At detailed scale, individual anomalous areas reflect local conditions of mineralization and may seem unrelated to each other. Four examples from arid environments illustrate the dramatic change in patterns of anomalies between regional and more detailed surveys. On the Arabian Shield, a broad regional anomaly reflects the distribution of highly differentiated anorogenic granites. A particularly prominent part of the regional anomaly includes, in addition to the usual elements related to the granites, the assemblage of Mo, W and Sn. Initial interpretation suggested potential for granite-related, stockwork Mo deposits. Detailed work identified three separate sources for the anomaly: a metal-rich granite, a silicified and stockwork-veined area with scheelite and molybdenite, and scheelite/powellite concentrations in skarn deposits adjacent to a ring-dike complex. Regional geochemical, geophysical and remote-sensing data in the Sonoran Desert, Mexico, define a series of linear features interpreted to reflect fundamental, northeast-trending fractures in the crust that served as the prime

  16. Heat flow anomalies and their interpretation

    NASA Astrophysics Data System (ADS)

    Chapman, David S.; Rybach, Ladislaus

    1985-12-01

    geothermal systems have thermal anomalies 10 1 km wide and are capable of producing hundreds of megawatts of thermal energy. The smallest scale addressed in this paper is 10 1 km. Worldwide interest in exploiting geothermal systems has been responsible for a recent accumulation of heat flow data on the smallest of scales considered here. The exploration nature of the surveys involve 10's of drillholes and reveal thermal anomalies having widths of 10 0 km. These are almost certainly connected to surface and subsurface fluid discharge systems which, in spite of their restricted size, are typically delivering 10 MW of heat to the near surface environment.

  17. Energy dependence of nonlocal optical potentials

    NASA Astrophysics Data System (ADS)

    Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.

    2017-11-01

    Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.

  18. Lymphatic Anomalies Registry

    ClinicalTrials.gov

    2018-01-23

    Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis

  19. Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, Limb abnormalities) association.

    PubMed

    Solomon, Benjamin D; Raam, Manu S; Pineda-Alvarez, Daniel E

    2011-06-01

    The goal of this study was to describe a novel pattern of genitourinary (GU) anomalies in VACTERL association,which involves congenital anomalies affecting the vertebrae,anus, heart, trachea and esophagus, kidneys, and limbs.We collected clinical data on 105 patients diagnosed with VACTERL association and analyzed a subset of 89 patients who met more stringent inclusion criteria. Twenty-one percent of patients have GU anomalies, which are more severe (but not more frequent) in females. Anomalies were noted in patients without malformations affecting the renal, lower vertebral, or lower gastrointestinal systems. There should be a high index of suspicion for the presence of GU anomalies even in patients who do not have spatially similar malformations.

  20. Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Jonathan L.; Moroi, Takeo

    2000-05-01

    We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications formore » high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.« less

  1. Diffusivity anomaly in modified Stillinger-Weber liquids

    NASA Astrophysics Data System (ADS)

    Sengupta, Shiladitya; Vasisht, Vishwas V.; Sastry, Srikanth

    2014-01-01

    By modifying the tetrahedrality (the strength of the three body interactions) in the well-known Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a function of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pressure at constant temperature. We explore to what extent the structural and thermodynamic changes accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas reference value), and the pair correlation entropy, which provides an approximation to the excess entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liquids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below, with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess entropy and the pair correlation entropy at constant temperature go through maxima as a function of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic, and dynamical anomalies in the modified Stillinger-Weber liquids.

  2. Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo

    2010-05-01

    It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was

  3. Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, Limb abnormalities) association

    PubMed Central

    Solomon, Benjamin D.; Raam, Manu S.; Pineda-Alvarez, Daniel E.

    2010-01-01

    Purpose The goal of this study was to describe a novel pattern of genitourinary (GU) anomalies in VACTERL association, which involves congenital anomalies affecting the vertebrae, anus, heart, trachea and esophagus, kidneys, and limbs. Procedures We collected clinical data on 105 patients diagnosed with VACTERL association and analyzed a subset of 89 patients who met more stringent inclusion criteria. Findings Twenty-one percent of patients have GU anomalies, which are more severe (but not more frequent) in females. Anomalies were noted in patients without malformations affecting the renal, lower vertebral, or lower gastrointestinal systems. Conclusions There should be a high index of suspicion for the presence of GU anomalies even in patient who do not have spatially similar malformations. PMID:21235632

  4. Hawking radiation of a vector field and gravitational anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Keiju; Miyamoto, Umpei

    2007-10-15

    Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from themore » horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed.« less

  5. MAGSAT anomaly map and continental drift

    NASA Technical Reports Server (NTRS)

    Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  6. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance

    NASA Astrophysics Data System (ADS)

    dos Reis, R. D.; Ajeesh, M. O.; Kumar, N.; Arnold, F.; Shekhar, C.; Naumann, M.; Schmidt, M.; Nicklas, M.; Hassinger, E.

    2016-08-01

    Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion. These materials are now commonly dubbed Weyl semi-metals (WSM). One predicted property of Weyl fermions is the chiral or Adler-Bell-Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (MR). Here, we present experimental evidence that the observation of the chiral anomaly can be hindered by an effect called ‘current jetting’. This effect also leads to a strong apparent negative longitudinal MR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect. In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample. As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance. Our results on the MR of the Weyl semimetal candidate materials NbP, NbAs, TaAs, and TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced ‘zero resistance’ and a strong dependence of the ‘measured resistance’ on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a ‘negative resistance’. Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a negative longitudinal MR as evidence for the chiral anomaly in putative Weyl semimetals.

  7. Large scale anomalies in the microwave background: causation and correlation.

    PubMed

    Aslanyan, Grigor; Easther, Richard

    2013-12-27

    Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe.

  8. Potential Advantages of Reusing Potentially Contaminated Land for Renewable Energy Fact Sheet

    EPA Pesticide Factsheets

    EPA promotes the reuse of potentially contaminated lands and landfills for renewable energy. This strategy creates new markets for potentially contaminated lands, while providing a sustainable land development strategy for renewable energy.

  9. Investigating energy-saving potentials in the cloud.

    PubMed

    Lee, Da-Sheng

    2014-02-20

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit.

  10. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  11. Attention focusing and anomaly detection in systems monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by. In addition, to make the monitoring process efficient, and to avoid the potential for information overload on human operators, attention focusing must also be addressed. When an anomaly occurs, more often than not several sensors are affected, and the partially redundant information they provide can be confusing, particularly in a crisis situation where a response is needed quickly. The focus of this paper is a new technique for attention focusing. The technique involves reasoning about the distance between two frequency distributions, and is used to detect both anomalous system parameters and 'broken' causal dependencies. These two forms of information together isolate the locus of anomalous behavior in the system being monitored.

  12. Prevalence and distribution of selected dental anomalies among saudi children in Abha, Saudi Arabia.

    PubMed

    Yassin, Syed M

    2016-12-01

    Dental anomalies are not an unusual finding in routine dental examination. The effect of dental anomalies can lead to functional, esthetic and occlusal problems. The Purpose of the study was to determine the prevalence and distribution of selected developmental dental anomalies in Saudi children. The study was based on clinical examination and Panoramic radiographs of children who visited the Pediatric dentistry clinics at King Khalid University College of Dentistry, Saudi Arabia. These patients were examined for dental anomalies in size, shape, number, structure and position. Data collected were entered and analyzed using statistical package for social sciences version. Of the 1252 children (638 Boys, 614 girls) examined, 318 subjects (25.39%) presented with selected dental anomalies. The distribution by gender was 175 boys (27.42%) and 143 girls (23.28%). On intergroup comparison, number anomalies was the most common anomaly with Hypodontia (9.7%) being the most common anomaly in Saudi children, followed by hyperdontia (3.5%). The Prevalence of size anomalies were Microdontia (2.6%) and Macrodontia (1.8%). The prevalence of Shape anomalies were Talon cusp (1.4%), Taurodontism (1.4%), Fusion (0.8%).The prevalence of Positional anomalies were Ectopic eruption (2.3%) and Rotation (0.4%). The prevalence of structural anomalies were Amelogenesis imperfecta (0.3%) Dentinogenesis imperfecta (0.1%). A significant number of children had dental anomaly with Hypodontia being the most common anomaly and Dentinogenesis imperfecta being the rare anomaly in the study. Early detection and management of these anomalies can avoid potential orthodontic and esthetic problems in a child. Key words: Dental anomalies, children, Saudi Arabia.

  13. On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.; Butman, B.

    2006-01-01

    A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data. The total energy flux is shown to be the sum of the linear energy flux ??? u??? p??? dz (primes denote baroclinic quantities), plus contributions from the non-hydrostatic pressure anomaly and the self-advection of kinetic and available potential energy. Using highly resolved observations in Massachusetts Bay, it is shown that due to the presence of nonlinear internal waves periodically propagating in the area, ??? u??? p??? dz accounts for only half of the total flux. The same data show that equipartition of available potential and kinetic energy can be violated, especially when the nonlinear waves begin to interact with the bottom. ?? 2006 Cambridge University Press.

  14. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  15. 2D Potential Theory using Complex Algebra: New Perspectives for Interpretation of Marine Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Le Maire, P.; Munschy, M.

    2017-12-01

    Interpretation of marine magnetic anomalies enable to perform accurate global kinematic models. Several methods have been proposed to compute the paleo-latitude of the oceanic crust as its formation. A model of the Earth's magnetic field is used to determine a relationship between the apparent inclination of the magnetization and the paleo-latitude. Usually, the estimation of the apparent inclination is qualitative, with the fit between magnetic data and forward models. We propose to apply a new method using complex algebra to obtain the apparent inclination of the magnetization of the oceanic crust. For two dimensional bodies, we rewrite Talwani's equations using complex algebra; the corresponding complex function of the complex variable, called CMA (complex magnetic anomaly) is easier to use for forward modelling and inversion of the magnetic data. This complex equation allows to visualize the data in the complex plane (Argand diagram) and offers a new way to interpret data (curves to the right of the figure (B), while the curves to the left represent the standard display of magnetic anomalies (A) for the model displayed (C) at the bottom of the figure). In the complex plane, the effect of the apparent inclination is to rotate the curves, while on the standard display the evolution of the shape of the anomaly is more complicated (figure). This innovative method gives the opportunity to study a set of magnetic profiles (provided by the Geological Survey of Norway) acquired in the Norwegian Sea, near the Jan Mayen fracture zone. In this area, the age of the oceanic crust ranges from 40 to 55 Ma and the apparent inclination of the magnetization is computed.

  16. Visualizing the chiral anomaly in Dirac and Weyl semimetals with photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Behrends, Jan; Grushin, Adolfo G.; Ojanen, Teemu; Bardarson, Jens H.

    2016-02-01

    Quantum anomalies are the breaking of a classical symmetry by quantum fluctuations. They dictate how physical systems of diverse nature, ranging from fundamental particles to crystalline materials, respond topologically to external perturbations, insensitive to local details. The anomaly paradigm was triggered by the discovery of the chiral anomaly that contributes to the decay of pions into photons and influences the motion of superfluid vortices in 3He-A. In the solid state, it also fundamentally affects the properties of topological Weyl and Dirac semimetals, recently realized experimentally. In this work we propose that the most identifying consequence of the chiral anomaly, the charge density imbalance between fermions of different chirality induced by nonorthogonal electric and magnetic fields, can be directly observed in these materials with the existing technology of photoemission spectroscopy. With angle resolution, the chiral anomaly is identified by a characteristic note-shaped pattern of the emission spectra, originating from the imbalanced occupation of the bulk states and a previously unreported momentum dependent energy shift of the surface state Fermi arcs. We further demonstrate that the chiral anomaly likewise leaves an imprint in angle averaged emission spectra, facilitating its experimental detection. Thereby, our work provides essential theoretical input to foster the direct visualization of the chiral anomaly in condensed matter, in contrast to transport properties, such as negative magnetoresistance, which can also be obtained in the absence of a chiral anomaly.

  17. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  18. Isotopic anomalies and proton irradiation in the early solar system

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Dwek, E.; Woosley, S. E.

    1977-01-01

    Nuclear cross sections relevant to the various isotopic-abundance anomalies found in solar-system objects are evaluated in an attempt to set constraints on the hypothesized mechanism of irradiation of forming planetesimals by energetic protons from the young sun. A power-law proton spectrum is adopted, attention is restricted to proton energies less than about 20 MeV, and average cross sections are calculated for several reactions that might be expected to lead to the observed anomalies. The following specific anomalies are examined in detail: Al-26, Na-22, Xe-126, I-129, Kr-80, V-50, Nb-92, La-138, Ta-180, Hg-196, K-40, Ar-36, O-17, O-18, N-15, C-13, Li, Be, and B. It is suggested that the picture of presolar-grain carriers accounts for the facts more naturally than do irradiation models.

  19. First branchial groove anomaly.

    PubMed

    Kumar, M; Hickey, S; Joseph, G

    2000-06-01

    First branchial groove anomalies are very rare. We report a case of a first branchial groove anomaly presented as an infected cyst in an 11-month-old child. Management of such lesions is complicated because of their close association with the facial nerve. Surgical management must include identification and protection of the facial nerve. Embryology and facial nerve disposition in relation to the anomaly are reviewed.

  20. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  1. Familial polythelia associated with dental anomalies: a case report.

    PubMed

    Fonseca, Gabriel M; Cantín, Mario

    2014-01-01

    Polythelia has been defined as the presence of supernumerary nipples without accessory glandular tissue. Usually, these growths follow imaginary mammary lines running from the armpits to the groin. Although the presence of dental anomalies may occasion only a simple cosmetic problem with specific clinical considerations, the association with familial polythelia has been scarcely reported. This paper reports on a case of polythelia that is associated with dental anomalies in an Argentine family and discusses suggestions for a thorough dental history and medical consultation to prevent possible pathological conditions or potential malignant transformation of mammary tissues.

  2. A Distance Measure for Attention Focusing and Anomaly Detection in Systems Monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, R.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by. In addition, to make the monitoring process efficient, and to avoid the potential for information overload on human operators, attention focusing must also be addressed. When an anomaly occurs, more often than not several sensors are affected, and the partially redundant information they provide can be confusing, particularly in a crisis situation where a response is needed quickly. Previous results on extending traditional anomaly detection techniques are summarized. The focus of this paper is a new technique for attention focusing.

  3. IRETHERM: Magnetotelluric studies of Irish radiothermal granites and their geothermal energy potential

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Jones, A. G.; Muller, M. R.; Feely, M.

    2013-12-01

    The IRETHERM project seeks to develop a strategic understanding of Ireland's deep geothermal energy potential through integrated modeling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), heat-flow (HF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is of key importance in assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Leinster granite, the Galway granite and the buried Kentstown granite. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of an early 1980's EU-funded geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite. In the Galway granite batholith, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Ros a Mhil borehole. The lower heat-flow encountered at the Ros a Mhil borehole suggests that the associated high heat production does not extend to great depth. The buried Kentstown granite has associated with it a significant negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 485 m. Heat production has been measured at 2.4 μWm-3 in core samples taken from the weathered top 30m of the granite. The core of this study consists of an ambitious program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, extending over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite extend to depths of 2-5 km. Over the Galway granite, MT and AMT data have been collected at a total

  4. Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Drivas, Theodore D.

    2018-02-01

    We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.

  5. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, Adam N.; Lindsey, Cary R.; Fairley, Jerry P.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semiquantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, ID, USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which convection carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.

  6. The use of Compton scattering in detecting anomaly in soil-possible use in pyromaterial detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedin, Ahmad Firdaus Zainal; Ibrahim, Noorddin; Zabidi, Noriza Ahmad

    The Compton scattering is able to determine the signature of land mine detection based on dependency of density anomaly and energy change of scattered photons. In this study, 4.43 MeV gamma of the Am-Be source was used to perform Compton scattering. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of thallium-doped sodium iodide NaI(TI) was used for detecting gamma ray. There are 9 anomalies used in this simulation. The physical of anomaly is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measuredmore » 80 cm radius and 53.5 cm height. Monte Carlo methods indicated the scattering of photons is directly proportional to density of anomalies. The difference between detector response with anomaly and without anomaly namely contrast ratio values are in a linear relationship with density of anomalies. Anomalies of air, wood and water give positive contrast ratio values whereas explosive, sand, concrete, graphite, limestone and polyethylene give negative contrast ratio values. Overall, the contrast ratio values are greater than 2 % for all anomalies. The strong contrast ratios result a good detection capability and distinction between anomalies.« less

  7. Prevalence and distribution of selected dental anomalies among saudi children in Abha, Saudi Arabia

    PubMed Central

    2016-01-01

    Background Dental anomalies are not an unusual finding in routine dental examination. The effect of dental anomalies can lead to functional, esthetic and occlusal problems. The Purpose of the study was to determine the prevalence and distribution of selected developmental dental anomalies in Saudi children. Material and Methods The study was based on clinical examination and Panoramic radiographs of children who visited the Pediatric dentistry clinics at King Khalid University College of Dentistry, Saudi Arabia. These patients were examined for dental anomalies in size, shape, number, structure and position. Data collected were entered and analyzed using statistical package for social sciences version. Results Of the 1252 children (638 Boys, 614 girls) examined, 318 subjects (25.39%) presented with selected dental anomalies. The distribution by gender was 175 boys (27.42%) and 143 girls (23.28%). On intergroup comparison, number anomalies was the most common anomaly with Hypodontia (9.7%) being the most common anomaly in Saudi children, followed by hyperdontia (3.5%). The Prevalence of size anomalies were Microdontia (2.6%) and Macrodontia (1.8%). The prevalence of Shape anomalies were Talon cusp (1.4%), Taurodontism (1.4%), Fusion (0.8%).The prevalence of Positional anomalies were Ectopic eruption (2.3%) and Rotation (0.4%). The prevalence of structural anomalies were Amelogenesis imperfecta (0.3%) Dentinogenesis imperfecta (0.1%). Conclusions A significant number of children had dental anomaly with Hypodontia being the most common anomaly and Dentinogenesis imperfecta being the rare anomaly in the study. Early detection and management of these anomalies can avoid potential orthodontic and esthetic problems in a child. Key words:Dental anomalies, children, Saudi Arabia. PMID:27957258

  8. Expanding living kidney donor criteria with ex-vivo surgery for renal anomalies

    PubMed Central

    McGregor, Thomas B.; Rampersad, Christie; Patel, Premal

    2016-01-01

    Introduction: Renal transplantation remains the gold standard treatment for end-stage renal disease, with living donor kidneys providing the best outcomes in terms of allograft survival. As the number of patients on the waitlist continues to grow, solutions to expand the donor pool are ongoing. A paradigm shift in the eligibility of donors with renal anomalies has been looked at as a potential source to expand the living donor pool. We sought to determine how many patients presented with anatomic renal anomalies at our transplant centre and describe the ex-vivo surgical techniques used to render these kidneys suitable for transplantation. Methods: A retrospective review was performed of all patients referred for surgical suitability to undergo laparoscopic donor nephrectomy between January 2011 and January 2015. Patient charts were analyzed for demographic information, perioperative variables, urological histories, and postoperative outcomes. Results: 96 referrals were identified, of which 81 patients underwent laparoscopic donor nephrectomy. Of these patients, 11 (13.6%) were identified as having a renal anomaly that could potentially exclude them from the donation process. These anomalies included five patients with unilateral nephrolithiasis, four patients with large renal cysts (>4 cm diameter), one patient with an angiomyolipoma (AML) and one patient with a calyceal diverticulum filled with stones. A description of the ex-vivo surgical techniques used to correct these renal anomalies is provided. Conclusions: We have shown here that ex-vivo surgical techniques can safely and effectively help correct some of these renal anomalies to render these kidneys transplantable, helping to expand the living donor pool. PMID:27800047

  9. Using statistical anomaly detection models to find clinical decision support malfunctions.

    PubMed

    Ray, Soumi; McEvoy, Dustin S; Aaron, Skye; Hickman, Thu-Trang; Wright, Adam

    2018-05-11

    Malfunctions in Clinical Decision Support (CDS) systems occur due to a multitude of reasons, and often go unnoticed, leading to potentially poor outcomes. Our goal was to identify malfunctions within CDS systems. We evaluated 6 anomaly detection models: (1) Poisson Changepoint Model, (2) Autoregressive Integrated Moving Average (ARIMA) Model, (3) Hierarchical Divisive Changepoint (HDC) Model, (4) Bayesian Changepoint Model, (5) Seasonal Hybrid Extreme Studentized Deviate (SHESD) Model, and (6) E-Divisive with Median (EDM) Model and characterized their ability to find known anomalies. We analyzed 4 CDS alerts with known malfunctions from the Longitudinal Medical Record (LMR) and Epic® (Epic Systems Corporation, Madison, WI, USA) at Brigham and Women's Hospital, Boston, MA. The 4 rules recommend lead testing in children, aspirin therapy in patients with coronary artery disease, pneumococcal vaccination in immunocompromised adults and thyroid testing in patients taking amiodarone. Poisson changepoint, ARIMA, HDC, Bayesian changepoint and the SHESD model were able to detect anomalies in an alert for lead screening in children and in an alert for pneumococcal conjugate vaccine in immunocompromised adults. EDM was able to detect anomalies in an alert for monitoring thyroid function in patients on amiodarone. Malfunctions/anomalies occur frequently in CDS alert systems. It is important to be able to detect such anomalies promptly. Anomaly detection models are useful tools to aid such detections.

  10. Use of the space shuttle to avoid spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An existing data base covering 304 spacecraft of the U.S. space program was analyzed to determine the effect on individual spacecraft failures and other anomalies that the space shuttle might have had if it had been operational throughout the period covered by the data. By combining the results of this analysis, information on the prelaunch activities of selected spacecraft programs, and shuttle capabilities data, the potential impact of the space shuttle on future space programs was derived. The shuttle was found to be highly effective in the prevention or correction of spacecraft anomalies, with 887 of 1,230 anomalies analyzed being favorably impacted by full utilization of shuttle capabilities. The shuttle was also determined to have a far-reaching and favorable influence on the design, development, and test phases of future space programs. This is documented in 37 individual statements of impact.

  11. Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.

  12. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  13. Constraints on lithospheric structure from satellite potential field data: Africa and Asia. Analysis and interpretation of MAGSAT anomalies over North Africa

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1986-01-01

    Crustal anomaly detection with MAGSAT data is frustrated by the inherent resolving power of the data and by contamination from the external and core fields. The quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within the proposed resolution and crustal amplitude capabilities of the MAGSAT fields. To test this hypothesis, the north African hotspots associated with Ahaggar, Tibestia and Darfur have been modeled as magnetic induction anomalies due solely to shallower depth to the Curie isotherm surface beneath these features. The MAGSAT data were reduced by subtracting the external and core fields to isolate the scalar and vertical component crustal signals. The predicted model magnetic signal arising from the surface topography of the uplift and the Curie isotherm surface was calculated at MAGSAT altitudes by the Fourier transform technique modified to allow for variable magnetization. In summary it is suggested that the region beneath Ahaggar is associated with a strong thermal anomaly and the predicted anomaly best fits the associated MAGSAT anomaly if the African plate is moving in a northeasterly direction.

  14. Renewable Energy Technical Potential | Geospatial Data Science | NREL

    Science.gov Websites

    Technical Potential Renewable Energy Technical Potential The renewable energy technical potential level from Resource to Technical to Economic to Market. The benefit of assessing technical potential is potential-resource, technical, economic, and market-as shown in the graphic with key assumptions. Technical

  15. Reliability of CHAMP Anomaly Continuations

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.

    2003-01-01

    CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.

  16. Gravitational potential as a source of earthquake energy

    USGS Publications Warehouse

    Barrows, L.; Langer, C.J.

    1981-01-01

    Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.

  17. Anomaly Detection in Gamma-Ray Vehicle Spectra with Principal Components Analysis and Mahalanobis Distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tardiff, Mark F.; Runkle, Robert C.; Anderson, K. K.

    2006-01-23

    The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates andmore » probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources.« less

  18. First and second trimester screening for fetal structural anomalies.

    PubMed

    Edwards, Lindsay; Hui, Lisa

    2018-04-01

    Fetal structural anomalies are found in up to 3% of all pregnancies and ultrasound-based screening has been an integral part of routine prenatal care for decades. The prenatal detection of fetal anomalies allows for optimal perinatal management, providing expectant parents with opportunities for additional imaging, genetic testing, and the provision of information regarding prognosis and management options. Approximately one-half of all major structural anomalies can now be detected in the first trimester, including acrania/anencephaly, abdominal wall defects, holoprosencephaly and cystic hygromata. Due to the ongoing development of some organ systems however, some anomalies will not be evident until later in the pregnancy. To this extent, the second trimester anatomy is recommended by professional societies as the standard investigation for the detection of fetal structural anomalies. The reported detection rates of structural anomalies vary according to the organ system being examined, and are also dependent upon factors such as the equipment settings and sonographer experience. Technological advances over the past two decades continue to support the role of ultrasound as the primary imaging modality in pregnancy, and the safety of ultrasound for the developing fetus is well established. With increasing capabilities and experience, detailed examination of the central nervous system and cardiovascular system is possible, with dedicated examinations such as the fetal neurosonogram and the fetal echocardiogram now widely performed in tertiary centers. Magnetic resonance imaging (MRI) is well recognized for its role in the assessment of fetal brain anomalies; other potential indications for fetal MRI include lung volume measurement (in cases of congenital diaphragmatic hernia), and pre-surgical planning prior to fetal spina bifida repair. When a major structural abnormality is detected prenatally, genetic testing with chromosomal microarray is recommended over

  19. Renewable Energy Economic Potential | Geospatial Data Science | NREL

    Science.gov Websites

    Economic Potential Renewable Energy Economic Potential Economic potential, one measure of renewable electricity is less than the revenue available. Illustration that shows economic potential grow smaller at each level from Resource to Technical to Economic to Market. Estimating Renewable Energy Economic

  20. Total electron content anomalies associated with global VEI4 + volcanic eruptions during 2002-2015

    NASA Astrophysics Data System (ADS)

    Li, Wang; Guo, Jinyun; Yue, Jianping; Shen, Yi; Yang, Yang

    2016-10-01

    In previous studies, little attention has been paid to the total electron content (TEC) anomalies preceding the volcanic eruption. We analyze the coupling relationship between volcanic eruption and TEC anomalies, and discuss the spatial distribution of TEC anomalies associated with volcanic geographical location. We utilize the global ionosphere map (GIM) data from the Center for Orbit Determination in Europe (CODE) to analyze TEC variations before the global volcanic eruptions indicated by VEI (Volcanic Explosivity Index) 4 + from 2002 to 2015 with the sliding interquartile range method. The results indicate the occurrence rate of TEC anomalies before great volcanic eruptions is related with the volcanic type and geographical position. The occurrence rate of TEC anomalies before stratovolcano and caldera eruptions is higher than that before shield and pyroclastic shield eruptions, and the occurrence rate of TEC anomalies has a descending trend from low latitudes to high latitudes. The TEC anomalies before the volcanic eruptions in low-mid latitudes are within the volcanic affected areas, but do not coincide with the volcanic foci. The corresponding TEC anomalies could be observed in the conjugated region, and all the TEC anomalies in the volcanic affected areas are usually close to bounds of equatorial anomaly zones. However, the TEC anomalies preceding these eruptions in high latitudes usually surround the volcano, and no TEC anomalies appear in the conjugated region. These conclusions have potential applications to the prediction of great volcanic eruptions in the future.

  1. 6d, Coulomb branch anomaly matching

    NASA Astrophysics Data System (ADS)

    Intriligator, Kenneth

    2014-10-01

    6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.

  2. Familial Polythelia associated with dental anomalies: a case report

    PubMed Central

    Cantín, Mario

    2014-01-01

    Polythelia has been defined as the presence of supernumerary nipples without accessory glandular tissue. Usually, these growths follow imaginary mammary lines running from the armpits to the groin. Although the presence of dental anomalies may occasion only a simple cosmetic problem with specific clinical considerations, the association with familial polythelia has been scarcely reported. This paper reports on a case of polythelia that is associated with dental anomalies in an Argentine family and discusses suggestions for a thorough dental history and medical consultation to prevent possible pathological conditions or potential malignant transformation of mammary tissues. PMID:24970959

  3. Isostasy, Stress and Gravitational Potential Energy in the Southern Atlantic - Insights from Satellite Gravity Observations

    NASA Astrophysics Data System (ADS)

    Goetze, H. J.; Klinge, L.; Scheck-Wenderoth, M.; Dressel, I.; Sippel, J.

    2015-12-01

    New satellite gravity fields e.g. EGM2008, GoCo3S and very recently EIGEN-6C4 (Förste et al., 2014) provide high-accuracy and globally uniform information of the Earth's gravity field and partly of its gradients. The main goal of this study is to investigate the impact of this new gravity field and its processed anomalies (Bouguer, Free-air and Vening-Meinesz residual fields) on lithospheric modelling of passive plate margins in the area of the Southern Atlantic. In an area fixed by the latitudes 20° N - 50° S and longitudes 70° W - 20° E we calculated station-complete Bouguer anomalies (bathymetry/topography corrected) both on- and offshore and compared them with the gravity effect of a velocity model which bases on S - waves tomography (Schaeffer and Lebedev, 2013). The corresponding maps provide more insight in the abnormal mass distribution of oceanic lithosphere and the ocean-continent transition zones on both sides of the Atlantic Ocean than Free-air anomalies which are masked by bathymetry. In a next step we calculated isostatic residual fields (Vening-Meinesz isostasy with regard to different lithospheric rigidities) to remove global components (long wavelengths) from the satellite gravity. The Isostatic residual field will be compared with the GPE (gravitational potential energy). GPE variations in the Southern Atlantic, relative to the reference state, were calculated as ΔGPE. Often the oceanic lithosphere is characterized by negative ΔGPE values indicating that the ocean basin is in compression. Differences from this observation will be compared with the state of stress in the area of the passive margins of South America and South Africa and the oceanic lithosphere in between. Schaeffer, A. J. and S. Lebedev, Global shear-speed structure of the upper mantle and transition zone. Geophys. J. Int., 194 (1), 417-449, 2013. doi:10.1093/gji/ggt095

  4. What drives the Tibetan crust to the South East Asia? Role of upper mantle density discontinuities as inferred from the continental geoid anomalies

    NASA Astrophysics Data System (ADS)

    Rajesh, S.

    2012-04-01

    The Himalaya-Tibet orogen formed as a result of the northward convergence of India into the Asia over the past 55 Ma had caused the north south crustal shortening and Cenozoic upliftment of the Tibetan plateau, which significantly affected the tectonic and climatic framework of the Asia. Geodetic measurements have also shown eastward crustal extrusion of Tibet, especially along major east-southeast strike slip faults at a slip rate of 15-20 mm a-1 and around 40 mm a-1. Such continental scale deformations have been modeled as block rotation by fault boundary stresses developed due to the India-Eurasia collision. However, the Thin Sheet model explained the crustal deformation mechanism by considering varying gravitational potential energy arise out of varying crustal thickness of the viscous lithosphere. The Channel Flow model, which also suggests extrusion is a boundary fault guided flow along the shallow crustal brittle-ductile regime. Although many models have proposed, but no consensus in these models to explain the dynamics of measured surface geodetic deformation of the Tibetan plateau. But what remains conspicuous is the origin of driving forces that cause the observed Tibetan crustal flow towards the South East Asia. Is the crustal flow originated only because of the differential stresses that developed in the shallow crustal brittle-ductile regime? Or should the stress transfer to the shallow crustal layers as a result of gravitational potential energy gradient driven upper mantle flow also to be accounted. In this work, I examine the role of latter in the light of depth distribution of continental geoid anomalies beneath the Himalaya-Tibet across major upper mantle density discontinuities. These discontinuity surfaces in the upper mantle are susceptible to hold the plastic deformation that may occur as a result of the density gradient driven flow. The distribution of geoid anomalies across these density discontinuities at 220, 410 and 660 km depth in the

  5. Satellite GN and C Anomaly Trends

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Stoneking, Eric

    2003-01-01

    On-orbit anomaly records for satellites launched from 1990 through 2001 are reviewed to determine recent trends of un-manned space mission critical failures. Anomalies categorized by subsystems show that Guidance, Navigation and Control (GN&C) subsystems have a high number of anomalies that result in a mission critical failure when compared to other subsystems. A mission critical failure is defined as a premature loss of a satellite or loss of its ability to perform its primary mission during its design life. The majority of anomalies are shown to occur early in the mission, usually within one year from launch. GN&C anomalies are categorized by cause and equipment type involved. A statistical analysis of the data is presented for all anomalies compared with the GN&C anomalies for various mission types, orbits and time periods. Conclusions and recommendations are presented for improving mission success and reliability.

  6. Routine screening for fetal anomalies: expectations.

    PubMed

    Goldberg, James D

    2004-03-01

    Ultrasound has become a routine part of prenatal care. Despite this, the sensitivity and specificity of the procedure is unclear to many patients and healthcare providers. In a small study from Canada, 54.9% of women reported that they had received no information about ultrasound before their examination. In addition, 37.2% of women indicated that they were unaware of any fetal problems that ultrasound could not detect. Most centers that perform ultrasound do not have their own statistics regarding sensitivity and specificity; it is necessary to rely on large collaborative studies. Unfortunately, wide variations exist in these studies with detection rates for fetal anomalies between 13.3% and 82.4%. The Eurofetus study is the largest prospective study performed to date and because of the time and expense involved in this type of study, a similar study is not likely to be repeated. The overall fetal detection rate for anomalous fetuses was 64.1%. It is important to note that in this study, ultrasounds were performed in tertiary centers with significant experience in detecting fetal malformations. The RADIUS study also demonstrated a significantly improved detection rate of anomalies before 24 weeks in tertiary versus community centers (35% versus 13%). Two concepts seem to emerge from reviewing these data. First, patients must be made aware of the limitations of ultrasound in detecting fetal anomalies. This information is critical to allow them to make informed decisions whether to undergo ultrasound examination and to prepare them for potential outcomes.Second, to achieve the detection rates reported in the Eurofetus study, ultrasound examination must be performed in centers that have extensive experience in the detection of fetal anomalies.

  7. Behavioral economics without anomalies.

    PubMed Central

    Rachlin, H

    1995-01-01

    Behavioral economics is often conceived as the study of anomalies superimposed on a rational system. As research has progressed, anomalies have multiplied until little is left of rationality. Another conception of behavioral economics is based on the axiom that value is always maximized. It incorporates so-called anomalies either as conflicts between temporal patterns of behavior and the individual acts comprising those patterns or as outcomes of nonexponential time discounting. This second conception of behavioral economics is both empirically based and internally consistent. PMID:8551195

  8. Precursory Anomaly in VLF/LF Recordings Prior to the July 30th, 2009

    NASA Astrophysics Data System (ADS)

    Buyuksarac, Aydin; Pınar, Ali; Kosaroglu, Sinan

    2010-05-01

    An international project network consisting of five receivers for sampling LF and VLF radio signals has been going on to record the data in Europe from different transmission stations around the World. One of them was established in Resadiye, Turkey, located just on the North Anatolian Fault Zone. The receiver works in VLF (16.4, 21.75, 37.5 and 45.9 kHz) and LF (153, 180, 183, 216 and 270 kHz) bands monitoring ten frequencies with one minute sampling interval. An earthquake of Mw = 4.9 took place 225 km away from the VLF/LF station at the eastern tip of the Erzincan basin at 4 km depth on July 30, 2009. We observed some anomalies on the radio signals (37.5 and 153 kHz) that initiated about 7 days before the earthquake and disappeared soon after the earthquake. We attribute this anomaly to the Mw=4.9 earthquake as a seismo-electromagnetic precursor. The radio anomaly that appeared 7 days before the occurrence of the 2009 Erzincan earthquake is in good agreement with other results indicating precursory anomalies in the project network mostly observed in seismically active countries such as Italy and Greece. Several data processing stages were applied to the data. Firstly, we processed the time series of the radio signals to understand how the frequency content of the anomaly differs from that of the normal trend. For this purpose we selected two time windows; one covering the anomaly period and the other spanning a normal period. The selected time window length was a 6 day. The sampling interval and the length of the time window limit the observed spectra from 120 seconds to six days. We identified a significant bias (drop) for the signal energy of the anomaly period at the whole frequency band. Secondly, in order to clearly depict the anomaly we estimated the daily Rayleigh Energy of the calculated spectra following the Parseval's theorem. We initiated the estimations well before the anomaly period. Such calculations gave an obvious sign for the impending event

  9. Variant Carvajal syndrome with additional dental anomalies.

    PubMed

    Barber, Sophy; Day, Peter; Judge, Mary; Toole, Edell O'; Fayle, Stephen

    2012-09-01

    This paper aims to review the case of a girl who presented with a number of dental anomalies, in addition to unusual skin, nail and hair conditions. Tragically an undiagnosed cardiomyopathy caused unexpected sudden death. The case is discussed with reference to a number of dermatological and oral conditions which were considered as possible diagnoses. AW had been under long term dental care for prepubertal periodontitis, premature root resorption of primary teeth, soft tissue and dental anomalies, and angular cheilitis. Separately she had also been seen by several dermatologists with respect to palmar plantar keratosis, striae keratoderma, wiry hair and abnormal finger nails. Tragically the patient suffered a sudden unexpected death and the subsequent post mortem identified an undiagnosed dilated cardiomyopathy. The most likely diagnosis is that this case is a variant of Carvajal Syndrome with additional dental anomalies. To date we have been unable to identify mutations in the desoplakin gene. We aim to emphasise the importance of recognising these dental and dermatological signs when they present together as a potential risk factor for cardiac abnormalities. © 2012 The Authors. International Journal of Paediatric Dentistry © 2012 BSPD, IAPD and Blackwell Publishing Ltd.

  10. [Mass anomalies of the extremities in anurans].

    PubMed

    Kovalenko, E E

    2000-01-01

    The author analyses literature data on anomalies of limbs in Anura. It is shown that published data is usually not enough to discuss either conditions of appearance or the causes of anomalies. Traditional statistical methods does not adequately characterise the frequency of anomalies. The author suggests a new criteria for ascertaining the fact of appearance of mass anomalies. A number of experimental data don't correspond to current theoretical ideas about the nature of anomalies. It is considered to distinguish "background" and "mass" anomalies. "Background" anomalies can not be a good indicator of unfavourable condition of development.

  11. Four-parameter potential box with inverse square singular boundaries

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2018-03-01

    Using the Tridiagonal Representation Approach (TRA), we obtain solutions (energy spectrum and corresponding wavefunctions) for a four-parameter potential box with inverse square singularity at the boundaries. It could be utilized in physical applications to replace the widely used one-parameter infinite square potential well (ISPW). The four parameters of the potential provide an added flexibility over the one-parameter ISPW to control the physical features of the system. The two potential parameters that give the singularity strength at the boundaries are naturally constrained to avoid the inherent quantum anomalies associated with the inverse square potential.

  12. Simulated life cycles of persistent anticyclonic anomalies over the North Pacific: Role of synoptic-scale eddies

    NASA Technical Reports Server (NTRS)

    Higgins, R. W.; Schubert, S. D.

    1994-01-01

    This study examines the role of synoptic-scale eddies during the development of persistent anticyclonic height anomalies over the central North Pacific in a general circulation model under perpetual January conditions. The General Circulation Model (GCM) replicates the basic characteristics of the evolution of the anomaly patterns found in observations. The life cycle is characterized by the rapid establishment of the major anomaly center and considerably longer maintenance and decay phases, which include the development of downstream anomaly centers. The simulation also shows a realistic evolution of synoptic-scale activity beginning with enhanced activity off the east coast of Asia prior to onset, followed by a northward shift of the Pacific storm track, which lasts throughout the maintenance phase. The initial enhancement of synoptic-scale eddy activity is associated with a large-scale cyclonic anomaly that developes over Siberia several days prior to the onset of the main anticyclonic anomaly over the central North Pacific. The observations, however, show considerable interdecadel variability in the details of the composite onset behavior; it is unclear whether this variability is real or whether it reflects differences in the data assimilation systems. The role of the time mean flow and synoptic-scale eddies in the development of the persistent Pacific anomalies is studied within the context of a kinetic energy budget in which the flow is decomposed into the time-mean, low-frequency (timescales longer than 10 days), and synoptic (timescales less than 6 days) components. The budget, which is carried out for the simulation at 500 mb, shows that the initial growth of the persistent anticyclonic anomalies is associated with barotropic conversions of energy, with approximately equal contributions coming from the mean flow and the synoptic-scale eddies. After onset the barotropic conversion from the mean flow dominates, whereas the decay phase is associated with

  13. Congenital renal anomalies in cloacal exstrophy: Is there a difference?

    PubMed

    Suson, K D; Inouye, B; Carl, A; Gearhart, J P

    2016-08-01

    Cloacal exstrophy (CE) is the most severe manifestation of the epispadias-exstrophy spectrum. Previous studies have indicated an increased rate of renal anomalies in children with classic bladder exstrophy (CBE). Given the increased severity of the CE defect, it was hypothesized that there would be an even greater incidence among these children. The primary objective was to characterize renal anatomy in CE patients. Two secondary objectives were to compare these renal anatomic findings in male and female patients, and female patients with and without Müllerian anomalies. An Institutional Review Board-approved retrospective review of 75 patients from an institutional exstrophy database. Data points included: age at analysis, sex, and renal and Müllerian anatomy. Abnormal renal anatomy was defined as a solitary kidney, malrotation, renal ectopia, congenital cysts, duplication, and/or proven obstruction. Abnormal Müllerian anatomy was defined as uterine or vaginal duplication, obstruction, and/or absence. The Summary Table presents demographic data and renal anomalies. Males were more likely to have renal anomalies. Müllerian anomalies were present in 65.7% of female patients. Girls with abnormal Müllerian anatomy were 10 times more likely to have renal anomalies than those with normal Müllerian anatomy (95% CI 1.1-91.4, P = 0.027). Patients with CE had a much higher rate of renal anomalies than that reported for CBE. Males and females with Müllerian anomalies were at greater risk than females with normal uterine structures. Mesonephric and Müllerian duct interaction is required for uterine structures to develop normally. It has been proposed that women with both Müllerian and renal anomalies be classified separately from other uterine malformations on an embryonic basis. In these patients, an absent or dysfunctional mesonephric duct has been implicated as potentially causal. This provided an embryonic explanation for uterine anomalies in female CE patients

  14. Evaluation of Süleymanköy (Diyarbakir, Eastern Turkey) and Seferihisar (Izmir, Western Turkey) Self Potential Anomalies with Multilayer Perceptron Neural Networks

    NASA Astrophysics Data System (ADS)

    Kaftan, Ilknur; Sindirgi, Petek

    2013-04-01

    Self-potential (SP) is one of the oldest geophysical methods that provides important information about near-surface structures. Several methods have been developed to interpret SP data using simple geometries. This study investigated inverse solution of a buried, polarized sphere-shaped self-potential (SP ) anomaly via Multilayer Perceptron Neural Networks ( MLPNN ). The polarization angle ( α ) and depth to the centre of sphere ( h )were estimated. The MLPNN is applied to synthetic and field SP data. In order to see the capability of the method in detecting the number of sources, MLPNN was applied to different spherical models at different depths and locations.. Additionally, the performance of MLPNN was tested by adding random noise to the same synthetic test data. The sphere model successfully obtained similar parameters under different S/N ratios. Then, MLPNN method was applied to two field examples. The first one is the cross section taken from the SP anomaly map of the Ergani-Süleymanköy (Turkey) copper mine. MLPNN was also applied to SP data from Seferihisar Izmir (Western Turkey) geothermal field. The MLPNN results showed good agreement with the original synthetic data set. The effect of The technique gave satisfactory results following the addition of 5% and 10% Gaussian noise levels. The MLPNN results were compared to other SP interpretation techniques, such as Normalized Full Gradient (NFG), inverse solution and nomogram methods. All of the techniques showed strong similarity. Consequently, the synthetic and field applications of this study show that MLPNN provides reliable evaluation of the self potential data modelled by the sphere model.

  15. Anomalies and asymmetries in quark-gluon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O. V., E-mail: teryaev@theor.jinr.ru

    The manifestations of axial anomaly and related effects in heavy-ion collisions are considered. Special role is played by various asymmetries. The azimuthal correlational asymmetries of neutron pairs at NICA/FAIR energy range may probe the global rotation of strongly interacting matter. The conductivity is related to the angular asymmetries of dilepton pairs. The strong magnetic field generated in heavy-ion collisions leads to the excess of soft dileptons flying predominantly in the scattering plane.

  16. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  17. Apollo experience report: Flight anomaly resolution

    NASA Technical Reports Server (NTRS)

    Lobb, J. D.

    1975-01-01

    The identification of flight anomalies, the determination of their causes, and the approaches taken for corrective action are described. Interrelationships of the broad range of disciplines involved with the complex systems and the team concept employed to ensure timely and accurate resolution of anomalies are discussed. The documentation techniques and the techniques for management of anomaly resolution are included. Examples of specific anomalies are presented in the original form of their progressive documentation. Flight anomaly resolution functioned as a part of the real-time mission support and postflight testing, and results were included in the postflight documentation.

  18. Presentation and Treatment of Poland Anomaly.

    PubMed

    Buckwalter V, Joseph A; Shah, Apurva S

    2016-12-01

    Background: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral pectoral muscle agenesis and ipsilateral hand deformity. Methods: A comprehensive review of the medical literature on Poland anomaly was performed using a Medline search. Results: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral, simple syndactyly with ipsilateral limb hypoplasia and pectoralis muscle agenesis. Operative management of syndactyly in Poland anomaly is determined by the severity of hand involvement and the resulting anatomical dysfunction. Syndactyly reconstruction is recommended in all but the mildest cases because most patients with Poland anomaly have notable brachydactyly, and digital separation can improve functional length. Conclusions: Improved understanding the etiology and presentation of Poland anomaly can improve clinician recognition and management of this rare congenital condition.

  19. Presentation and Treatment of Poland Anomaly

    PubMed Central

    Buckwalter V, Joseph A.; Shah, Apurva S.

    2016-01-01

    Background: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral pectoral muscle agenesis and ipsilateral hand deformity. Methods: A comprehensive review of the medical literature on Poland anomaly was performed using a Medline search. Results: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral, simple syndactyly with ipsilateral limb hypoplasia and pectoralis muscle agenesis. Operative management of syndactyly in Poland anomaly is determined by the severity of hand involvement and the resulting anatomical dysfunction. Syndactyly reconstruction is recommended in all but the mildest cases because most patients with Poland anomaly have notable brachydactyly, and digital separation can improve functional length. Conclusions: Improved understanding the etiology and presentation of Poland anomaly can improve clinician recognition and management of this rare congenital condition. PMID:28149203

  20. System for closure of a physical anomaly

    DOEpatents

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  1. Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2015-01-01

    Investigations have revealed several instances of apparently isolated highs or lows in pore fluid potential in shallow (< ~ 1 km depth) argillaceous formations in intraplate settings. Formations with the pressure anomalies are distinguished by (1) smaller ratios of hydraulic conductivity to formation thickness and (2) smaller hydraulic (or pressure) diffusivities than those without anomalies. This is consistent with transient Darcian flow caused by strain at rates of ~ 10−17 to 10-16 s-1, by significant perturbing events in the past 104 to 106 annum or by some combination of the two. Plausible causes include erosional downwasting, tectonic strain, and glaciation. In this conceptualization the anomalies provide constraints on formation-scale flow properties, flow history, and local geological forcing in the last 106 annum and in particular indicate zones of low permeability (10−19–10−22 m2) that could be useful for isolation of nuclear waste.

  2. Road Anomalies Detection System Evaluation.

    PubMed

    Silva, Nuno; Shah, Vaibhav; Soares, João; Rodrigues, Helena

    2018-06-21

    Anomalies on road pavement cause discomfort to drivers and passengers, and may cause mechanical failure or even accidents. Governments spend millions of Euros every year on road maintenance, often causing traffic jams and congestion on urban roads on a daily basis. This paper analyses the difference between the deployment of a road anomalies detection and identification system in a “conditioned” and a real world setup, where the system performed worse compared to the “conditioned” setup. It also presents a system performance analysis based on the analysis of the training data sets; on the analysis of the attributes complexity, through the application of PCA techniques; and on the analysis of the attributes in the context of each anomaly type, using acceleration standard deviation attributes to observe how different anomalies classes are distributed in the Cartesian coordinates system. Overall, in this paper, we describe the main insights on road anomalies detection challenges to support the design and deployment of a new iteration of our system towards the deployment of a road anomaly detection service to provide information about roads condition to drivers and government entities.

  3. Fetal Urinary Tract Anomalies: Review of Pathophysiology, Imaging, and Management.

    PubMed

    Mileto, Achille; Itani, Malak; Katz, Douglas S; Siebert, Joseph R; Dighe, Manjiri K; Dubinsky, Theodore J; Moshiri, Mariam

    2018-05-01

    Common fetal anomalies of the kidneys and urinary tract encompass a complex spectrum of abnormalities that can be detected prenatally by ultrasound. Common fetal anomalies of the kidneys and urinary tract can affect amniotic fluid volume production with the development of oligohydramnios or anhydramnios, resulting in fetal pulmonary hypoplasia and, potentially, abnormal development of other fetal structures. We provide an overview of common fetal anomalies of the kidneys and urinary tract with an emphasis on sonographic patterns as well as pathologic and postnatal correlation, along with brief recommendations for postnatal management. Of note, we render an updated classification of fetal abnormalities of the kidneys and urinary tract based on the presence or absence of associated urinary tract dilation. In addition, we review the 2014 classification of urinary tract dilation based on the Linthicum multidisciplinary consensus panel.

  4. Associated congenital anomalies among cases with Down syndrome.

    PubMed

    Stoll, Claude; Dott, Beatrice; Alembik, Yves; Roth, Marie-Paule

    2015-12-01

    Down syndrome (DS) is the most common congenital anomaly widely studied for at least 150 years. However, the type and the frequency of congenital anomalies associated with DS are still controversial. Despite prenatal diagnosis and elective termination of pregnancy for fetal anomalies, in Europe, from 2008 to 2012 the live birth prevalence of DS per 10,000 was 10. 2. The objectives of this study were to examine the major congenital anomalies occurring in infants and fetuses with Down syndrome. The material for this study came from 402,532 consecutive pregnancies of known outcome registered by our registry of congenital anomalies between 1979 and 2008. Four hundred sixty seven (64%) out of the 728 cases with DS registered had at least one major associated congenital anomaly. The most common associated anomalies were cardiac anomalies, 323 cases (44%), followed by digestive system anomalies, 42 cases (6%), musculoskeletal system anomalies, 35 cases (5%), urinary system anomalies, 28 cases (4%), respiratory system anomalies, 13 cases (2%), and other system anomalies, 26 cases (3.6%). Among the cases with DS with congenital heart defects, the most common cardiac anomaly was atrioventricular septal defect (30%) followed by atrial septum defect (25%), ventricular septal defect (22%), patent ductus arteriosus (5%), coarctation of aorta (5%), and tetralogy of Fallot (3%). Among the cases with DS with a digestive system anomaly recorded, duodenal atresia (67%), Hirschsprung disease (14%), and tracheo-esophageal atresia (10%) were the most common. Fourteen (2%) of the cases with DS had an obstructive anomaly of the renal pelvis, including hydronephrosis. The other most common anomalies associated with cases with DS were syndactyly, club foot, polydactyly, limb reduction, cataract, hydrocephaly, cleft palate, hypospadias and diaphragmatic hernia. Many studies to assess the anomalies associated with DS have reported various results. There is no agreement in the literature as to

  5. Gravity Anomalies

    NASA Image and Video Library

    2015-04-15

    Analysis of radio tracking data have enabled maps of the gravity field of Mercury to be derived. In this image, overlain on a mosaic obtained by MESSENGER's Mercury Dual Imaging System and illuminated with a shape model determined from stereo-photoclinometry, Mercury's gravity anomalies are depicted in colors. Red tones indicate mass concentrations, centered on the Caloris basin (center) and the Sobkou region (right limb). Such large-scale gravitational anomalies are signatures of subsurface structure and evolution. The north pole is near the top of the sunlit area in this view. http://photojournal.jpl.nasa.gov/catalog/PIA19285

  6. Conformal anomaly of some 2-d Z (n) models

    NASA Astrophysics Data System (ADS)

    William, Peter

    1991-01-01

    We describe a numerical calculation of the conformal anomaly in the case of some two-dimensional statistical models undergoing a second-order phase transition, utilizing a recently developed method to compute the partition function exactly. This computation is carried out on a massively parallel CM2 machine, using the finite size scaling behaviour of the free energy.

  7. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  8. The relationship between mean anomaly block sizes and spherical harmonic representations. [of earth gravity

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1977-01-01

    The frequently used rule specifying the relationship between a mean gravity anomaly in a block whose side length is theta degrees and a spherical harmonic representation of these data to degree l-bar is examined in light of the smoothing parameter used by Pellinen (1966). It is found that if the smoothing parameter is not considered, mean anomalies computed from potential coefficients can be in error by about 30% of the rms anomaly value. It is suggested that the above mentioned rule should be considered only a crude approximation.

  9. Hamiltonian Anomalies from Extended Field Theories

    NASA Astrophysics Data System (ADS)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  10. Congenital hand anomalies in Upper Egypt

    PubMed Central

    Abulezz, Tarek; Talaat, Mohamed; Elsani, Asem; Allam, Karam

    2016-01-01

    Background: Congenital hand anomalies are numerous and markedly variant. Their significance is attributed to the frequent occurrence and their serious social, psychological and functional impacts on patient's life. Patients and Methods: This is a follow-up study of 64 patients with hand anomalies of variable severity. All patients were presented to Plastic Surgery Department of Sohag University Hospital in a period of 24 months. Results: This study revealed that failure of differentiation and duplication deformities were the most frequent, with polydactyly was the most common anomaly encountered. The mean age of presentation was 6 years and female to male ratio was 1.46:1. Hand anomalies were either isolated, associated with other anomalies or part of a syndrome. Conclusion: Incidence of congenital hand anomalies in Upper Egypt is difficult to be estimated due to social and cultural concepts, lack of education, poor registration and deficient medical survey. Management of hand anomalies should be individualised, carefully planned and started as early as possible to achieve the best outcome. PMID:27833283

  11. Global anomalies and effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golkar, Siavash; Sethi, Savdeep

    2016-05-17

    Here, we show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functionsmore » rather than eta invariants.« less

  12. FAST TRACK COMMUNICATION: Quantum anomalies and linear response theory

    NASA Astrophysics Data System (ADS)

    Sela, Itamar; Aisenberg, James; Kottos, Tsampikos; Cohen, Doron

    2010-08-01

    The analysis of diffusive energy spreading in quantized chaotic driven systems leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation, a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient D that is proportional to the intensity ɛ2 of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time tɛ, and a self-generated (intrinsic) dephasing process leads to nonlinear dependence of D on ɛ2.

  13. The True- and Eccentric-Anomaly Parameterizations of the Perturbed Kepler Motion

    NASA Astrophysics Data System (ADS)

    Gergely, László Á.; Perjés, Zoltán I.; Vasúth, Mátyás

    2000-01-01

    The true- and eccentric-anomaly parameterizations of the Kepler motion are generalized to quasi-periodic orbits, by considering perturbations of the radial part of the kinetic energy in the form of a series of negative powers of the orbital radius. A toolbox of methods for averaging observables as functions of the energy E and angular momentum L is developed. A broad range of systems governed by the generic Brumberg force, as well as recent applications in the theory of gravitational radiation, involve integrals of these functions over a period of motion. These integrals are evaluated by using the residue theorem. In the course of this work, two important questions emerge: (1) When do the true- and eccentric-anomaly parameters exist? (2) Under what circumstances, and why, are the poles in the origin? The purpose of this paper is to find the answer to these queries.

  14. Gerbes, M5-Brane Anomalies and E8 Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Jurco, Branislav

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.

  15. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  16. Complete second branchial cleft anomaly presenting as a fistula and a tonsillar cyst: an interesting congenital anomaly.

    PubMed

    Thottam, Prasad John; Bathula, Samba S; Poulik, Janet M; Madgy, David N

    2014-01-01

    Branchial cleft anomalies make up 30% of all pediatric neck masses, but complete second branchial cleft anomalies are extremely rare. We report an unusual case of a complete second branchial cleft anomaly that presented as a draining neck fistula and a tonsillar cyst in an otherwise healthy 3-month-old girl. At the age of 7 months, the patient had been experiencing feeding difficulties, and there was increasing concern about the risk of persistent infections. At that point, the anomaly was excised in its entirety. Our suspicion that the patient had a complete second branchial cleft anomaly was confirmed by imaging, surgical excision, and histopathologic analysis.

  17. Network Anomaly Detection Based on Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  18. Anomalies and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed.

  19. Energy potential of the modified excess sludge

    NASA Astrophysics Data System (ADS)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  20. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  1. Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs /AlGaAs Heterostructure

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2016-04-01

    We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs /AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.

  2. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  3. Toward Baseline Software Anomalies in NASA Missions

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  4. Oscillations of kinks on dislocation lines in crystals and low-temperature transport anomalies as a ``passport'' of newly-induced defects

    NASA Astrophysics Data System (ADS)

    Mezhov-Deglin, L. P.; Mukhin, S. I.

    2011-10-01

    The possible interpretation of experimental data on low-temperature anomalies in weakly deformed metallic crystals prepared form ultra-pure lead, copper, and silver, as well as in crystals of 4He is discussed within the previously proposed theoretical picture of dislocations with dynamical kinks. In the case of pure metals the theoretical predictions give a general picture of interaction of conduction electrons in a sample with newly-introduced dislocations, containing dynamic kinks in the Peierls potential relief. In the field of random stresses appearing due to plastic deformation of a sample, kinks on the dislocation line form a set of one-dimensional oscillators in potential wells of different shapes. In the low temperature region at low enough density of defects pinning kinks the inelastic scattering of electrons on kinks should lead to deviations from the Wiedemann-Franz law. In particular, the inelastic scattering on kinks should result in a quadratic temperature dependence of the thermal conductivity in a metallic sample along preferential directions of dislocation axes. In the plane normal to the dislocation axis the elastic large-angle scattering of electrons is prevalent. The kink pinning by a point defect or by additional dislocations as well as the sample annealing leading to the disappearance of kinks should induce suppression of transport anomalies. Thus, the energy interval for the spectrum of kink oscillations restricted by characteristic amplitude of the Peierls relief is a "passport of deformation history" for each specific sample. For instance, in copper the temperature/energy region of the order of 1 K corresponds to it. It is also planned to discuss in the other publication applicability of mechanism of phonon scattering on mobile dislocation kinks and pinning of kinks by impurities in order to explain anomalies of phonon thermal conductivity of 4He crystals and deformed crystals of pure lead in a superconducting state.

  5. Wind energy potential analysis in Al-Fattaih-Darnah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjahjana, Dominicus Danardono Dwi Prija, E-mail: danar1405@gmail.com; Salem, Abdelkarim Ali, E-mail: keemsalem@gmail.com; Himawanto, Dwi Aries, E-mail: dwiarieshimawanto@gmail.com

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity.more » The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.« less

  6. Branchial anomalies in the pediatric population.

    PubMed

    Schroeder, James W; Mohyuddin, Nadia; Maddalozzo, John

    2007-08-01

    We sought to review the presentation, evaluation, and treatment of branchial anomalies in the pediatric population and to relate these findings to recurrences and complications. We conducted a retrospective study at a tertiary care pediatric hospital. Ninety-seven pediatric patients who were treated for branchial anomalies over a 10-year period were reviewed. Patients were studied if they underwent surgical treatment for the branchial anomaly and had 1 year of postoperative follow-up; 67 children met criteria, and 74 anomalies were studied. Patients with cysts presented at a later age than did those with branchial anomaly fistulas or sinus branchial anomalies. 32% of branchial anomalies were previously infected. Of these, 71% had more than one preoperative infection. 18% of the BA were first arch derivatives, 69% were second arch derivatives and 7% were third arch derivatives. There were 22 branchial cysts, 31 branchial sinuses and 16 branchial fistulas. The preoperative and postoperative diagnoses differed in 17 cases. None of the excised specimens that contained a cystic lining recurred; all five recurrences had multiple preoperative infections. Recurrence rates are increased when there are multiple preoperative infections and when there is no epithelial lining identified in the specimen.

  7. Congenital basis of posterior fossa anomalies

    PubMed Central

    Cotes, Claudia; Bonfante, Eliana; Lazor, Jillian; Jadhav, Siddharth; Caldas, Maria; Swischuk, Leonard

    2015-01-01

    The classification of posterior fossa congenital anomalies has been a controversial topic. Advances in genetics and imaging have allowed a better understanding of the embryologic development of these abnormalities. A new classification schema correlates the embryologic, morphologic, and genetic bases of these anomalies in order to better distinguish and describe them. Although they provide a better understanding of the clinical aspects and genetics of these disorders, it is crucial for the radiologist to be able to diagnose the congenital posterior fossa anomalies based on their morphology, since neuroimaging is usually the initial step when these disorders are suspected. We divide the most common posterior fossa congenital anomalies into two groups: 1) hindbrain malformations, including diseases with cerebellar or vermian agenesis, aplasia or hypoplasia and cystic posterior fossa anomalies; and 2) cranial vault malformations. In addition, we will review the embryologic development of the posterior fossa and, from the perspective of embryonic development, will describe the imaging appearance of congenital posterior fossa anomalies. Knowledge of the developmental bases of these malformations facilitates detection of the morphological changes identified on imaging, allowing accurate differentiation and diagnosis of congenital posterior fossa anomalies. PMID:26246090

  8. Gravitational parity anomaly with and without boundaries

    NASA Astrophysics Data System (ADS)

    Kurkov, Maxim; Vassilevich, Dmitri

    2018-03-01

    In this paper we consider gravitational parity anomaly in three and four dimensions. We start with a re-computation of this anomaly on a 3D manifold without boundaries and with a critical comparison of our results to the previous calculations. Then we compute the anomaly on 4D manifolds with boundaries with local bag boundary conditions. We find, that gravitational parity anomaly is localized on the boundary and contains a gravitational Chern-Simons terms together with a term depending of the extrinsic curvature. We also discuss the main properties of the anomaly, as the conformal invariance, relations between 3D and 4D anomalies, etc.

  9. The paradoxical zero reflection at zero energy

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Sharma, Vibhu; Sharma, Mayank; Singhal, Ankush; Kaiwart, Rahul; Priyadarshini, Pallavi

    2017-03-01

    Usually, the reflection probability R(E) of a particle of zero energy incident on a potential which converges to zero asymptotically is found to be 1: R(0)=1. But earlier, a paradoxical phenomenon of zero reflection at zero energy (R(0)=0) has been revealed as a threshold anomaly. Extending the concept of half-bound state (HBS) of 3D, here we show that in 1D when a symmetric (asymmetric) attractive potential well possesses a zero-energy HBS, R(0)=0 (R(0)\\ll 1). This can happen only at some critical values q c of an effective parameter q of the potential well in the limit E\\to {0}+. We demonstrate this critical phenomenon in two simple analytically solvable models: square and exponential wells. However, in numerical calculations, even for these two models R(0)=0 is observed only as extrapolation to zero energy from low energies, close to a precise critical value q c. By numerical investigation of a variety of potential wells, we conclude that for a given potential well (symmetric or asymmetric), we can adjust the effective parameter q to have a low reflection at a low energy.

  10. Coronary Artery Anomalies in Animals

    PubMed Central

    Scansen, Brian A.

    2017-01-01

    Coronary artery anomalies represent a disease spectrum from incidental to life-threatening. Anomalies of coronary artery origin and course are well-recognized in human medicine, but have received limited attention in veterinary medicine. Coronary artery anomalies are best described in the dog, hamster, and cow though reports also exist in the horse and pig. The most well-known anomaly in veterinary medicine is anomalous coronary artery origin with a prepulmonary course in dogs, which limits treatment of pulmonary valve stenosis. A categorization scheme for coronary artery anomalies in animals is suggested, dividing these anomalies into those of major or minor clinical significance. A review of coronary artery development, anatomy, and reported anomalies in domesticated species is provided and four novel canine examples of anomalous coronary artery origin are described: an English bulldog with single left coronary ostium and a retroaortic right coronary artery; an English bulldog with single right coronary ostium and transseptal left coronary artery; an English bulldog with single right coronary ostium and absent left coronary artery with a prepulmonary paraconal interventricular branch and an interarterial circumflex branch; and a mixed-breed dog with tetralogy of Fallot and anomalous origin of all coronary branches from the brachiocephalic trunk. Coronary arterial fistulae are also described including a coronary cameral fistula in a llama cria and an English bulldog with coronary artery aneurysm and anomalous shunting vessels from the right coronary artery to the pulmonary trunk. These examples are provided with the intent to raise awareness and improve understanding of such defects. PMID:29056679

  11. The incidence of coronary anomalies on routine coronary computed tomography scans

    PubMed Central

    Karabay, Kanber Ocal; Yildiz, Abdulmelik; Bagirtan, Bayram; Geceer, Gurkan; Uysal, Ender

    2013-01-01

    Summary Objective This study aimed to assess the incidence of coronary anomalies using 64-multi-slice coronary computed tomography (MSCT). Methods The diagnostic MSCT scans of 745 consecutive patients were reviewed. Results The incidence of coronary anomalies was 4.96%. The detected coronary anomalies included the conus artery originating separately from the right coronary sinus (RCS) (n = 8, 1.07%), absence of the left main artery (n = 7, 0.93%), a superior right coronary artery (RCA) (n = 7, 0.93%), the circumflex artery (CFX) arising from the RCS (n = 4, 0.53%), the CFX originating from the RCA (n = 2, 0.26%), a posterior RCA (n = 1, 0.13%), a coronary fistula from the left anterior descending artery and RCA to the pulmonary artery (n = 1, 0.13%), and a coronary aneurysm (n = 1, 0.13%). Conclusions This study indicated that MSCT can be used to detect common coronary anomalies, and shows it has the potential to aid cardiologists and cardiac surgeons by revealing the origin and course of the coronary vessels. PMID:24042853

  12. Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki N.; Yamamoto, Tadateru I.; Tsunakawa, Hideo

    It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its 1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to 50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of 10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions

  13. The Statistical Mechanics of Solar Wind Hydroxylation at the Moon, Within Lunar Magnetic Anomalies, and at Phobos

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Hurley, D. M.; Esposito, V. J.; Mclain, J. L.; Zimmerman, M. I.

    2017-01-01

    We present a new formalism to describe the outgassing of hydrogen initially implanted by the solar wind protons into exposed soils on airless bodies. The formalism applies a statistical mechanics approach similar to that applied recently to molecular adsorption onto activated surfaces. The key element enabling this formalism is the recognition that the interatomic potential between the implanted H and regolith-residing oxides is not of singular value but possess a distribution of trapped energy values at a given temperature, F(U,T). All subsequent derivations of the outward diffusion and H retention rely on the specific properties of this distribution. We find that solar wind hydrogen can be retained if there are sites in the implantation layer with activation energy values exceeding 0.5eV. We especially examine the dependence of H retention applying characteristic energy values found previously for irradiated silica and mature lunar samples. We also apply the formalism to two cases that differ from the typical solar wind implantation at the Moon. First, we test for a case of implantation in magnetic anomaly regions where significantly lower-energy ions of solar wind origin are expected to be incident with the surface. In magnetic anomalies, H retention is found to be reduced due to the reduced ion flux and shallower depth of implantation. Second, we also apply the model to Phobos where the surface temperature range is not as extreme as the Moon. We find the H atom retention in this second case is higher than the lunar case due to the reduced thermal extremes (that reduces outgassing).

  14. Associated anomalies in cases with esophageal atresia.

    PubMed

    Stoll, Claude; Alembik, Yves; Dott, Beatrice; Roth, Marie-Paule

    2017-08-01

    Esophageal atresia (EA) is a common type of congenital anomaly. The etiology of esophageal atresia is unclear and its pathogenesis is controversial. Infants with esophageal atresia often have other non-EA associated congenital anomalies. The purpose of this investigation was to assess the prevalence and the types of these associated anomalies in a defined population. The associated anomalies in cases with EA were collected in all livebirths, stillbirths, and terminations of pregnancy during 29 years in 387,067 consecutive births in the area covered by our population-based registry of congenital malformations. Of the 116 cases with esophageal atresia, representing a prevalence of 2.99 per 10,000, 54 (46.6%) had associated anomalies. There were 9 (7.8%) cases with chromosomal abnormalities including 6 trisomies 18, and 20 (17.2%) nonchromosomal recognized dysmorphic conditions including 12 cases with VACTERL association and 2 cases with CHARGE syndrome. Twenty five (21.6%) of the cases had multiple congenital anomalies (MCA). Anomalies in the cardiovascular, the digestive, the urogenital, the musculoskeletal, and the central nervous systems were the most common other anomalies. The anomalies associated with esophageal atresia could be classified into a recognizable malformation syndrome or pattern in 29 out of 54 cases (53.7%). This study included special strengths: each affected child was examined by a geneticist, all elective terminations were ascertained, and the surveillance for anomalies was continued until 2 years of age. In conclusion the overall prevalence of associated anomalies, which was close to one in two cases, emphasizes the need for a thorough investigation of cases with EA. A routine screening for other anomalies may be considered in infants and in fetuses with EA. © 2017 Wiley Periodicals, Inc.

  15. Commensurability effects in one-dimensional Anderson localization: Anomalies in eigenfunction statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravtsov, V.E., E-mail: kravtsov@ictp.it; Landau Institute for Theoretical Physics, 2 Kosygina st., 117940 Moscow; Yudson, V.I., E-mail: yudson@isan.troitsk.ru

    Highlights: > Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. > Moments of inverse participation ratio are calculated. > Equation for generating function is derived at E = 0. > An exact solution for generating function at E = 0 is obtained. > Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/({lambda}{sub E}) , where a is the lattice constant and {lambda}{sub E} is the demore » Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions {psi}(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function {Phi}{sub r}(u, {phi}) (u and {phi} have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P{sub r}({phi}){identical_to}{Phi}{sub r}(u=0,{phi}) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component {Phi}(u, {phi}) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and {phi}. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for {Phi}(u, {phi}) explicitly in quadratures. Using this solution we computed moments I{sub m} = N< vertical bar {psi} vertical bar {sup 2m}> (m {>=} 1) for a chain of the length N {yields} {infinity} and found

  16. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  17. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    PubMed

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  18. Assessing the Potential for Renewable Energy on Public Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-02-01

    This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identifymore » BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.« less

  19. Electric and magnetic field modulated energy dispersion, conductivity and optical response in double quantum wire with spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-02-01

    We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.

  20. Tectonically Induced Anomalies Without Large Earthquake Occurrences

    NASA Astrophysics Data System (ADS)

    Shi, Zheming; Wang, Guangcai; Liu, Chenglong; Che, Yongtai

    2017-06-01

    In this study, we documented a case involving large-scale macroscopic anomalies in the Xichang area, southwestern Sichuan Province, China, from May to June of 2002, after which no major earthquake occurred. During our field survey in 2002, we found that the timing of the high-frequency occurrence of groundwater anomalies was in good agreement with those of animal anomalies. Spatially, the groundwater and animal anomalies were distributed along the Anninghe-Zemuhe fault zone. Furthermore, the groundwater level was elevated in the northwest part of the Zemuhe fault and depressed in the southeast part of the Zemuhe fault zone, with a border somewhere between Puge and Ningnan Counties. Combined with microscopic groundwater, geodetic and seismic activity data, we infer that the anomalies in the Xichang area were the result of increasing tectonic activity in the Sichuan-Yunnan block. In addition, groundwater data may be used as a good indicator of tectonic activity. This case tells us that there is no direct relationship between an earthquake and these anomalies. In most cases, the vast majority of the anomalies, including microscopic and macroscopic anomalies, are caused by tectonic activity. That is, these anomalies could occur under the effects of tectonic activity, but they do not necessarily relate to the occurrence of earthquakes.

  1. Distribution of branchial anomalies in a paediatric Asian population.

    PubMed

    Teo, Neville Wei Yang; Ibrahim, Shahrul Izham; Tan, Kun Kiaang Henry

    2015-04-01

    The objective of the present study was to review the distribution and incidence of branchial anomalies in an Asian paediatric population and highlight the challenges involved in the diagnosis of branchial anomalies. This was a retrospective chart review of all paediatric patients who underwent surgery for branchial anomalies in a tertiary paediatric hospital from August 2007 to November 2012. The clinical notes were correlated with preoperative radiological investigations, intraoperative findings and histology results. Branchial anomalies were classified based on the results of the review. A total of 28 children underwent surgery for 30 branchial anomalies during the review period. Two children had bilateral branchial anomalies requiring excision. Of the 30 branchial anomalies, 7 (23.3%) were first branchial anomalies, 5 (16.7%) were second branchial anomalies, 3 (10.0%) were third branchial anomalies, and 4 (13.3%) were fourth branchial anomalies (one of the four patients with fourth branchial anomalies had bilateral branchial anomalies). In addition, seven children had 8 (26.7%) branchial anomalies that were thought to originate from the pyriform sinus; however, we were unable to determine if these anomalies were from the third or fourth branchial arches. There was inadequate information on the remaining 3 (10.0%) branchial anomalies for classification. The incidence of second branchial anomalies appears to be lower in our Asian paediatric population, while that of third and fourth branchial anomalies was higher. Knowledge of embryology and the related anatomy of the branchial apparatus is crucial in the identification of the type of branchial anomaly.

  2. Distribution of branchial anomalies in a paediatric Asian population

    PubMed Central

    Teo, Neville Wei Yang; Ibrahim, Shahrul Izham; Tan, Kun Kiaang Henry

    2015-01-01

    INTRODUCTION The objective of the present study was to review the distribution and incidence of branchial anomalies in an Asian paediatric population and highlight the challenges involved in the diagnosis of branchial anomalies. METHODS This was a retrospective chart review of all paediatric patients who underwent surgery for branchial anomalies in a tertiary paediatric hospital from August 2007 to November 2012. The clinical notes were correlated with preoperative radiological investigations, intraoperative findings and histology results. Branchial anomalies were classified based on the results of the review. RESULTS A total of 28 children underwent surgery for 30 branchial anomalies during the review period. Two children had bilateral branchial anomalies requiring excision. Of the 30 branchial anomalies, 7 (23.3%) were first branchial anomalies, 5 (16.7%) were second branchial anomalies, 3 (10.0%) were third branchial anomalies, and 4 (13.3%) were fourth branchial anomalies (one of the four patients with fourth branchial anomalies had bilateral branchial anomalies). In addition, seven children had 8 (26.7%) branchial anomalies that were thought to originate from the pyriform sinus; however, we were unable to determine if these anomalies were from the third or fourth branchial arches. There was inadequate information on the remaining 3 (10.0%) branchial anomalies for classification. CONCLUSION The incidence of second branchial anomalies appears to be lower in our Asian paediatric population, while that of third and fourth branchial anomalies was higher. Knowledge of embryology and the related anatomy of the branchial apparatus is crucial in the identification of the type of branchial anomaly. PMID:25917471

  3. Energies of Screened Coulomb Potentials.

    ERIC Educational Resources Information Center

    Lai, C. S.

    1979-01-01

    This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)

  4. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  5. An analysis of the relationship between cloud anomalies and sea surface temperature anomalies in a global circulation model

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.

    1992-01-01

    The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.

  6. The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Josey, Simon A.; Hirschi, Joel J.-M.; Sinha, Bablu; Duchez, Aurélie; Grist, Jeremy P.; Marsh, Robert

    2018-01-01

    Cold ocean temperature anomalies have been observed in the mid- to high-latitude North Atlantic on interannual to centennial timescales. Most notably, a large region of persistently low surface temperatures accompanied by a sharp reduction in ocean heat content was evident in the subpolar gyre from the winter of 2013-2014 to 2016, and the presence of this feature at a time of pervasive warming elsewhere has stimulated considerable debate. Here, we review the role of air-sea interaction and ocean processes in generating this cold anomaly and place it in a longer-term context. We also discuss the potential impacts of surface temperature anomalies for the atmosphere, including the North Atlantic Oscillation and European heat waves; contrast the behavior of the Atlantic with the extreme warm surface event that occurred in the North Pacific over a similar timescale; and consider the possibility that these events represent a response to a change in atmospheric planetary wave forcing.

  7. Clinical Study of Second Branchial Cleft Anomalies.

    PubMed

    Lee, Dong Hoon; Yoon, Tae Mi; Lee, Joon Kyoo; Lim, Sang Chul

    2018-03-30

    The objective of this study was to review the clinical characteristics and surgical treatment outcomes of second branchial cleft anomalies, and to evaluate the usefulness and accuracy of preoperative fine-needle aspiration cytology (FNAC) in the diagnosis of branchial cleft cysts. A retrospective chart review was performed at Chonnam National University Hwasun Hospital from January 2010 to December 2016. Among 25 patients with second branchial cleft anomalies, in 23 patients (92.0%), these anomalies presented as cysts, and in the remaining 2 patients (8.0%), these anomalies presented as fistulas. Fine-needle aspiration cytology had a diagnostic sensitivity of 100%, a positive-predictive value of 100%, and accuracy of 100% for diagnosing second branchial cleft cyst. All patients of second branchial cleft anomalies were treated surgically under general anesthesia. No recurrence of second branchial cleft anomalies was observed. Branchial cleft cysts were the most common type of second branchial cleft anomalies. Preoperative FNAC is a useful and accurate method for preoperative evaluation of branchial cleft cysts. Surgical excision of second branchial cleft anomalies is the treatment of choice without any complications and with no recurrence.

  8. [Autopsies for fetal anomalies].

    PubMed

    Kidron, Debora; Eidel, Jouly; Aviram, Rami

    2013-06-01

    Fetal autopsies are effective in identifying the cause and/or mechanisms leading to death in cases of intrauterine fetal death. Autopsies for fetal anomalies are different. To summarize our experience with 569 autopsies of fetal anomalies which were performed during an 18-year period. A retrospective analysis of 569 autopsies of fetal anomalies was conducted, out of a total of 1067 fetal autopsies. The pregnancy weeks were 14 - 41. Among 569 cases, 88% were termination of pregnancies, 10% intrauterine death and 2% perinatal deaths. The diagnosis of a syndrome or disease process was made when a constellation of gross and/or histologic findings was met. Specific diagnoses were offered in cases of cystic diseases of kidneys, types of dwarfism, tumors and fetal hydrops. Teratogenic (acquired) processes, such as congenital infections, thrombosis and cerebral hemorrhages, were differentiated from malformations. In cases of multiple congenital anomalies, documentation of the entire spectrum of malformations facilitated the genetic counseling. First and foremost, the autopsy is performed in the interest of the parents, with their written consent and in accordance with limitations and requests which they pose. Autopsy results provide feedback to the prenatal imaging. They assist in focusing the genetic counseling. Autopsy reports provide tools of control for the health authorities. Autopsies for fetal anomalies are time consuming. They require skill and experience. They are helpfuL when the prenatal diagnosis raises differential diagnosis. They are Less helpful when the diagnosis is clear, i.e. chromosomal trisomy.

  9. Geoelectrical Characterization of the Punta Banda System: A Possible Structural Control for the Geothermal Anomalies

    NASA Astrophysics Data System (ADS)

    Arango-Galvan, C.; Flores-Marquez, E.; Prol-Ledesma, R.; Working Group, I.

    2007-05-01

    The lack of sufficient drinking water in México has become a very serious problem, especially in the northern desert regions of the country. In order to give a real solution to this phenomenon the IMPULSA research program has been created to develope novel technologies based on desalination of sea and brackish water using renewable sources of energy to face the problem. The Punta Banda geothermal anomaly is located towards the northern part of Baja California Peninsula (Mexico). High water temperatures in some wells along the coast depicted a geothermal anomaly. An audiomagnetotelluric survey was carried out in the area as a preliminary study, both to understand the process generating these anomalous temperatures and to assess its potential exploitation to supply hot water to desalination plants. Among the electromagnetic methods, the audiomagnetotellurics (AMT) method is appropriated for deep groundwater and geothermal studies. The survey consisted of 27 AMT stations covering a 5 km profile along the Agua Blanca Fault. The employed array allowed us to characterize the geoelectrical properties of the main structures up to 500 m depth. Two main geoelectrical zones were identified: 1) a shallow low resistivity media located at the central portion of the profile, coinciding with the Maneadero valley and 2) two high resitivity structures bordering the conductive zone possibly related to NS faulting, already identified by previous geophysical studies. These results suggest that the main geothermal anomalies are controlled by the dominant structural regime in the zone.

  10. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  11. Long wavelength magnetic anomalies over continental rifts in cratonic region

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Persaud, P.; Ferre, E. C.; Martín-Hernández, F.; Feinberg, J. M.

    2017-12-01

    New collections of unaltered mantle xenoliths shed light on potential upper mantle contributions to long wavelength magnetic anomalies (LWMA) in continental rifts in cratonic / shield areas. The new material originates from the East African Rift (Tanzania), the Rio Grande Rift (U.S.A.), the Rhine Rift (Germany), and the West Antarctic Rift (Antarctica). The xenoliths sample the uppermost (<80 km depth) lithospheric mantle in these regions in the spinel-peridotite and plagioclase-peridotite stability fields. The most common lithology by far (95% of samples) is a spinel-lherzolite indicating relatively low oxygen fugacities (FMQ -1). Chrome spinel in these peridotites is non-magnetic (Al + Mg > 0.2 or Fe < 0.3) and primary magnetite (Fe3O4) occurs only in trace amounts, typically yielding low natural remanent magnetizations (NRM < 10-2 A/m). The low Koenigsberger ratios (Qn < 1) of these materials, combined with high geotherms (>60ºC/km) that are characteristic of rifted regions preclude any contribution to LWMA at depths >10 km. Hence, only upper basalts and hypovolcanic mafic sills would constitute potential magnetic sources. In contrast, the margins of these rifted regions consist of refractory cratonic domains, often characterized by oxidized sublithospheric mantle that host significant concentrations of primary magnetite. The higher NRMs of these peridotites (up to 15 A/m, Qn > 2.5) combined with much lower geotherms (as low as 15ºC/km) allows for a 5 to 10 km layer of uppermost mantle to potentially contribute to LWMA. Assuming that Qn values in rift margins are also <1, the new data presented here suggests that relatively young rifts would display a central negative magnetic anomaly surrounded by two broad positive anomalies. The latitude of the rift is predicted to exert a primary control on the magnitude of such anomalies, while the steepness of the magnetic gradient across the rift would primarily reflect thermal equilibration over time.

  12. Gravity Anomaly Intersects Moon Basin

    NASA Image and Video Library

    2012-12-05

    A linear gravity anomaly intersecting the Crisium basin on the nearside of the moon has been revealed by NASA GRAIL mission. The GRAIL gravity gradient data are shown at left, with the location of the anomaly indicated.

  13. Geoid Anomalies and the Near-Surface Dipole Distribution of Mass

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Ockendon, J. R.

    1978-01-01

    Although geoid or surface gravity anomalies cannot be uniquely related to an interior distribution of mass, they can be related to a surface mass distribution. However, over horizontal distances greater than about 100 km, the condition of isostatic equilibrium above the asthenosphere is a good approximation and the total mass per unit column is zero. Thus the surface distribution of mass is also zero. For this case we show that the surface gravitational potential anomaly can be uniquely related to a surface dipole distribution of mass. Variations in the thickness of the crust and lithosphere can be expected to produce undulations in the geoid.

  14. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  15. Potential for energy recovery from humid air streams.

    Treesearch

    Howard H. Rosen

    1979-01-01

    The potential for energy recovery from the vent stream of dryers is examined by assuming the vent stream transfers its energy in a regenerative heat exchanger. Tables present energy recovery over a range of conditions. Example problems demonstrate the use of the energy recovery tables.

  16. Prevalence of dental anomalies in Saudi orthodontic patients.

    PubMed

    Al-Jabaa, Aljazi H; Aldrees, Abdullah M

    2013-07-01

    This study aimed to investigate the prevalence of dental anomalies and study the association of these anomalies with different types of malocclusion in a random sample of Saudi orthodontic patients. Six hundred and two randomly selected pretreatment records including orthopantomographs (OPG), and study models were evaluated. The molar relationship was determined using pretreatment study models, and OPG were examined to investigate the prevalence of dental anomalies among the sample. The most common types of the investigated anomalies were: impaction followed by hypodontia, microdontia, macrodontia, ectopic eruption and supernumerary. No statistical significant correlations were observed between sex and dental anomalies. Dental anomalies were more commonly found in class I followed by asymmetric molar relation, then class II and finally class III molar relation. No malocclusion group had a statistically significant relation with any individual dental anomaly. The prevalence of dental anomalies among Saudi orthodontic patients was higher than the general population. Although, orthodontic patients have been reported to have high rates of dental anomalies, orthodontists often fail to consider this. If not detected, dental anomalies can complicate dental and orthodontic treatment; therefore, their presence should be carefully investigated during orthodontic diagnosis and considered during treatment planning.

  17. Research on potential user identification model for electric energy substitution

    NASA Astrophysics Data System (ADS)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  18. Results from the direct combination of satellite and gravimetric data. [orbit analysis and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    Results have been obtained for the solution of 184 15-deg equal-area blocks directly from the analysis of satellite orbits, and from a combination of the satellite results with terrestrial gravity material. This test computation, made to verify the method, used 17,632 optical observations from ten satellites in 29 arcs averaging in length seven days. Analysis of the satellite results were made by comparing the solved for anomalies with the terrestrial anomaly set, and by developing the solved for anomalies into potential coefficients which were compared to the GEM 3 set of potential coefficients to degree 12. These comparisons indicated improvement in each solution as more arcs were added. The programs used in this solution can easily be used to solve for smaller size blocks and handle additional data types. The only limitation will be computer core availability and computer time.

  19. Heat flow anomalies caused by water circulation

    NASA Astrophysics Data System (ADS)

    Alföldi, L.; Gálfi, J.; Liebe, P.

    1985-12-01

    The practically important part of geothermal systems belongs to the convective type where the thermal energy is transported by movement of water or steam. Both geothermics and hydrology should be in very close cooperation at the interpretation of convective geothermal anomalies. In the first part of the study the parameters required for the calculation of water- and thermal-balance will be enumerated and their obtainable accuracy will be discussed based mainly on the praxis used in Hungary. In the second part, heat convection problems connected to subterranean water movement will be discussed, divided into three cases which have importance in praxis: — regional water-flow systems with great inflow and outflow areas; — mountainous — mainly karstic — areas of infiltration with springs at the foot of the mountain; — closed convective systems of circulation. For illustrating the conceptual examples given above, Hungarian case histories with characteristic data will be presented: The Transdanubian Middle Range, Spa of Budapest, Spa of Héviz, the Great Hungarian Plain and the Thermal Anomaly at Tiszakécske.

  20. The extended Lennard-Jones potential energy function: A simpler model for direct-potential-fit analysis

    NASA Astrophysics Data System (ADS)

    Hajigeorgiou, Photos G.

    2016-12-01

    An analytical model for the diatomic potential energy function that was recently tested as a universal function (Hajigeorgiou, 2010) has been further modified and tested as a suitable model for direct-potential-fit analysis. Applications are presented for the ground electronic states of three diatomic molecules: oxygen, carbon monoxide, and hydrogen fluoride. The adjustable parameters of the extended Lennard-Jones potential model are determined through nonlinear regression by fits to calculated rovibrational energy term values or experimental spectroscopic line positions. The model is shown to lead to reliable, compact and simple representations for the potential energy functions of these systems and could therefore be classified as a suitable and attractive model for direct-potential-fit analysis.

  1. Hawking radiation from dilatonic black holes via anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Qingquan; Cai Xu; Wu Shuangqing

    2007-03-15

    Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly equal to that of (1+1)-dimensional blackbody radiation at the Hawking temperature. In this paper, we attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically symmetric dilatonic black holes withmore » arbitrary coupling constant {alpha}, and that from the rotating Kaluza-Klein ({alpha}={radical}(3)) as well as the Kerr-Sen ({alpha}=1) black holes via an anomalous point of view. Our results support Robinson and Wilczek's opinion. In addition, the properties of the obtained physical quantities near the extreme limit are qualitatively discussed.« less

  2. The Feedback Between Continents and Compositional Anomalies in the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Lowman, J. P.; Trim, S. J.

    2014-12-01

    Findings from global seismic tomography studies suggest that the deep mantle may harbor a pair of broad, steep-sided, relatively dense compositionally anomalous provinces. The longevity and stability of these Large Low Shear-Wave Velocity Provinces (LLSVPs) has received considerable interest but their possible influence on surface motion has drawn lesser attention. Recent work using numerical mantle convection models investigated the feedback between oceanic plate motion and high density compositional anomalies. It was found that surface mobility is affected by the presence of compositional anomalies such that critical density contrasts and volumes of the enriched material produce a transition to stagnant-lid convection. For lesser volumes and density contrast (for example, volumes that are representative of the concentrations in the Earth's mantle) the presence of the compositional anomalies affects mean plate velocity and size when compared to the characteristics of systems in which the enriched material is absent. In addition, numerous studies and lines of evidence in the geologic record suggest that the presence of the density anomalies plays a role in determining the location of mantle upwellings, which in turn influence surface dynamics. In this study, we present the results from a study implementing a two-dimensional mantle convection model featuring an anomalously dense component and distinct continental and oceanic lithosphere. The mass, momentum, and energy conservation equations are solved using a hybrid spectral-finite difference code. Compositional variations are tracked using Lagrangian tracer particles. Mobile tectonic plates are modeled using a force-balance method and plate boundary locations evolve in response to interior stresses, plate velocity, age and lithospheric chemistry (i.e., oceanic versus continental). We examine the influence of continents on compositional anomaly morphology and longevity and the influence of compositional anomalies on

  3. Hawking radiation and covariant anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Rabin; Kulkarni, Shailesh

    2008-01-15

    Generalizing the method of Wilczek and collaborators we provide a derivation of Hawking radiation from charged black holes using only covariant gauge and gravitational anomalies. The reliability and universality of the anomaly cancellation approach to Hawking radiation is also discussed.

  4. Enabling NLDAS-2 Anomaly Analysis Using Giovanni

    NASA Astrophysics Data System (ADS)

    Loeser, C.; Rui, H.; Teng, W. L.; Vollmer, B.; Mocko, D. M.

    2017-12-01

    A newly implemented feature in Giovanni (GES DISC Interactive Online Visualization and Analysis Interface) allows users to explore and visualize anomaly data from the NLDAS-2 Primary Forcing and Noah model data sets. For a given measurement and location, an anomaly describes how conditions for a particular time period compare to normal conditions, based on long-term averages. Analyzing anomalies is important for monitoring droughts, determining weather trends, and studying land surface processes relevant for meteorology, hydrology, and climate. Using Giovanni to analyze anomalies for NLDAS-2 data allows for these studies to be efficiently conducted for the central North American region. Phase 2 of NLDAS (NLDAS-2) currently runs at an 1/8th degree resolution, in near-real time, with data sets extending back to January 1979. NLDAS-2 provides data for soil moisture, precipitation, temperature, and other hydrology measurements. Hourly, monthly, and 30-year (1980-2009) monthly climatology data are available for several land surface models and forcing data sets. The Giovanni anomaly tool calculates monthly anomalies, for a given user-defined variable, as the difference between the NLDAS-2 monthly climatology data and the monthly data. The resulting anomaly describes how a chosen month compares to the 30-year monthly average. The presentation will demonstrate the capabilities and usefulness of Giovanni's anomaly tool, detail the recently added NLDAS-2 variables for which anomalies are available, and show how users can access the data.

  5. Enabling NLDAS-2 Anomaly Analysis Using Giovanni

    NASA Technical Reports Server (NTRS)

    Loeser, Carlee; Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David

    2017-01-01

    A newly implemented feature in Giovanni (GES DISC Interactive Online Visualization and Analysis Interface) allows users to explore and visualize anomaly data from the NLDAS-2 Primary Forcing and Noah model data sets. For a given measurement and location, an anomaly describes how conditions for a particular time period compare to normal conditions, based on long-term averages. Analyzing anomalies is important for monitoring droughts, determining weather trends, and studying land surface processes relevant for meteorology, hydrology, and climate. Using Giovanni to analyze anomalies for NLDAS-2 data allows for these studies to be efficiently conducted for the central North American region. Phase 2 of NLDAS (NLDAS-2) currently runs at an 1/8th degree resolution, in near-real time, with data sets extending back to January 1979. NLDAS-2 provides data for soil moisture, precipitation, temperature, and other hydrology measurements. Hourly, monthly, and 30-year (1980-2009) monthly climatology data are available for several land surface models and forcing data sets. The Giovanni anomaly tool calculates monthly anomalies, for a given user-defined variable, as the difference between the NLDAS-2 monthly climatology data and the monthly data. The resulting anomaly describes how a chosen month compares to the 30-year monthly average. The presentation will demonstrate the capabilities and usefulness of Giovanni's anomaly tool, detail the recently added NLDAS-2 variables for which anomalies are available, and show how users can access the data.

  6. Prevalence of dental anomalies in Indian population.

    PubMed

    Patil, Santosh; Doni, Bharati; Kaswan, Sumita; Rahman, Farzan

    2013-10-01

    Developmental anomalies of the dentition are not infrequently observed by the dental practitioner. The aim of the present study was to determine the prevalence of dental anomalies in the Indian population. A retrospective study of 4133 panoramic radiographs of patients, who attended the Department of Oral Medicine and Radiology, Jodhpur Dental College General Hospital between September 2008 to December 2012 was done. The ages of the patients ranged from 13 to 38 years with a mean age of 21.8 years. The orthopantomographs (OPGs) and dental records were examined for any unusual finding such as congenitally missing teeth, impactions, ectopic eruption, supernumerary teeth, odontoma, dilacerations, taurodontism, dens in dente, germination and fusion, among others. 1519 (36.7%) patients had at least one dental anomaly. The congenitally missing teeth 673 (16.3%) had the highest prevalence, followed by impacted teeth 641 (15.5%), supernumerary teeth 51 (1.2%) and microdontia 41 (1.0%). Other anomalies were found at lower prevalence ranging from transposition 7 (0.1%) to ectopic eruption 30 (0.7%). The most prevalent anomaly in the Indian population was congenitally missing teeth (16.3%), and the second frequent anomaly was impacted teeth (15.5%), whereas, macrodontia, odontoma and transposition were the least frequent anomalies, with a prevalence of 0.2%, 0.2% and 0.1% respectively. While the overall prevalence of these anomalies may be low, the early diagnosis is imperative for the patient management and treatment planning. Key words:Dental anomaly, prevalence, panoramic radiography.

  7. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    PubMed Central

    Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin

    2016-01-01

    The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035

  8. Anomaly-specified virtual dimensionality

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yu; Paylor, Drew; Chang, Chein-I.

    2013-09-01

    Virtual dimensionality (VD) has received considerable interest where VD is used to estimate the number of spectral distinct signatures, denoted by p. Unfortunately, no specific definition is provided by VD for what a spectrally distinct signature is. As a result, various types of spectral distinct signatures determine different values of VD. There is no one value-fit-all for VD. In order to address this issue this paper presents a new concept, referred to as anomaly-specified VD (AS-VD) which determines the number of anomalies of interest present in the data. Specifically, two types of anomaly detection algorithms are of particular interest, sample covariance matrix K-based anomaly detector developed by Reed and Yu, referred to as K-RXD and sample correlation matrix R-based RXD, referred to as R-RXD. Since K-RXD is only determined by 2nd order statistics compared to R-RXD which is specified by statistics of the first two orders including sample mean as the first order statistics, the values determined by K-RXD and R-RXD will be different. Experiments are conducted in comparison with widely used eigen-based approaches.

  9. Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.

    PubMed

    Zahariev, Federico; Levy, Mel

    2017-01-12

    A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.

  10. Giant canine with dentine anomalies in oculo-facio-cardio-dental syndrome.

    PubMed

    Larhant, Matthieu; Sourice, Sophie; Grimaud, Fanny; Cordoba, Luis; Leveau, Sophie; Huet, Pascal; Corre, Pierre; Khonsari, Roman Hossein

    2014-06-01

    Radiculomegaly affecting incisors, canines or premolars is a rare radiological finding (Maden et al., 2010) but is pathognomomic of a rare x-linked dominant syndrome called oculo-facio-cardio-dental syndrome (OFCDS). As this syndrome includes cardiac malformations and can lead to blindness due to congenital glaucoma, oral and maxillofacial surgeons should be aware of the somatic anomalies potentially associated with radiculomegaly. We report a typical case of OFCDS and provide the first description of the microscopic dental anomalies associated with this syndrome. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. The magnetic anomaly of the Ivreazone

    NASA Technical Reports Server (NTRS)

    Albert, G.

    1979-01-01

    A magnetic field survey was made in the Ivreazone in 1969/70. The results were: significant anomaly of the vertical intensity is found. It follows the basic main part of the Ivrea-Verbano zone and continues to the south. The width of the anomaly is about 10 km, the maximum measures about +800 gamma. The model interpretation shows that possibly the anomaly belongs to an amphibolitic body, which in connection with the Ivrea-body was found by deep seismic sounding. Therefore, the magnetic anomaly provides further evidence for the conception that the Ivrea-body has to be regarded as a chip of earthmantle material pushed upward by tectonic processes.

  12. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.; Hirt, C.

    2015-10-01

    A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.

  13. EPA RE-Powering Mapper: Alternative Energy Potential at Cleanup Sites

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management??s (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.

  14. NEUTRON ENERGY LEVELS IN A DIFFUSE POTENTIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, A.; Sil, N.C.

    1960-06-01

    The energy eigenvalues of neutrons within the nucleus for a spherically symmetrical potential V(r) = --V/sub 0/STAl + exp{(r-- R)/a}!/sup -1/ are investigated by following a new method of Lanczos for solving the differential equation. The s- and p-state energy levels are calculated for atomic mass 200 with the values of parameters adopted by Feshbach et al. in their calculation of the neutron strength function with a similar potential. The results of the calculation agree closely with those of Malenka. (auth)

  15. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  16. The hydrogen anomaly in neutron Compton scattering: new experiments and a quantitative theoretical explanation

    NASA Astrophysics Data System (ADS)

    Karlsson, E. B.; Hartmann, O.; Chatzidimitriou-Dreismann, C. A.; Abdul-Redah, T.

    2016-08-01

    No consensus has been reached so far about the hydrogen anomaly problem in Compton scattering of neutrons, although strongly reduced H cross-sections were first reported almost 20 years ago. Over the years, this phenomenon has been observed in many different hydrogen-containing materials. Here, we use yttrium hydrides as test objects, YH2, YH3, YD2 and YD3, Y(H x D1-x )2 and Y(H x D1-x )3, for which we observe H anomalies increasing with transferred momentum q. We also observe reduced deuteron cross-sections in YD2 and YD3 and have followed those up to scattering angles of 140° corresponding to high momentum transfers. In addition to data taken using the standard Au-197 foils for neutron energy selection, the present work includes experiments with Rh-103 foils and comparisons were also made with data from different detector setups. The H and D anomalies are discussed in terms of the different models proposed for their interpretation. The ‘electron loss model’ (which assumes energy transfer to excited electrons) is contradicted by the present data, but it is shown here that exchange effects in scattering from two or more protons (or deuterons) in the presence of large zero-point vibrations, can explain quantitatively the reduction of the cross-sections as well as their q-dependence. Decoherence processes also play an essential role. In a scattering time representation, shake-up processes can be followed on the attosecond scale. The theory also shows that large anomalies can appear only when the neutron coherence lengths (determined by energy selection and detector geometry) are about the same size as the distance between the scatterers.

  17. The modulated annual cycle: an alternative reference frame for climate anomalies

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohua; Schneider, Edwin K.; Kirtman, Ben P.; Sarachik, E. S.; Huang, Norden E.; Tucker, Compton J.

    2008-12-01

    framework for anomaly can bypass the difficulty brought by concepts such as “decadal variability of summer (or winter) climate” for understanding the low-frequency variability of the climate system. The concept of an amplitude and frequency modulated annual cycle, a method to extract it, and its implications for the interpretation of physical processes, all may contribute potentially to a more consistent and fruitful way of examining past and future climate variability and change.

  18. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  19. Data cleaning in the energy domain

    NASA Astrophysics Data System (ADS)

    Akouemo Kengmo Kenfack, Hermine N.

    This dissertation addresses the problem of data cleaning in the energy domain, especially for natural gas and electric time series. The detection and imputation of anomalies improves the performance of forecasting models necessary to lower purchasing and storage costs for utilities and plan for peak energy loads or distribution shortages. There are various types of anomalies, each induced by diverse causes and sources depending on the field of study. The definition of false positives also depends on the context. The analysis is focused on energy data because of the availability of data and information to make a theoretical and practical contribution to the field. A probabilistic approach based on hypothesis testing is developed to decide if a data point is anomalous based on the level of significance. Furthermore, the probabilistic approach is combined with statistical regression models to handle time series data. Domain knowledge of energy data and the survey of causes and sources of anomalies in energy are incorporated into the data cleaning algorithm to improve the accuracy of the results. The data cleaning method is evaluated on simulated data sets in which anomalies were artificially inserted and on natural gas and electric data sets. In the simulation study, the performance of the method is evaluated for both detection and imputation on all identified causes of anomalies in energy data. The testing on utilities' data evaluates the percentage of improvement brought to forecasting accuracy by data cleaning. A cross-validation study of the results is also performed to demonstrate the performance of the data cleaning algorithm on smaller data sets and to calculate an interval of confidence for the results. The data cleaning algorithm is able to successfully identify energy time series anomalies. The replacement of those anomalies provides improvement to forecasting models accuracy. The process is automatic, which is important because many data cleaning processes

  20. Analysis of renal anomalies in VACTERL association.

    PubMed

    Cunningham, Bridget K; Khromykh, Alina; Martinez, Ariel F; Carney, Tyler; Hadley, Donald W; Solomon, Benjamin D

    2014-10-01

    VACTERL association refers to a combination of congenital anomalies that can include: vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula with esophageal atresia, renal anomalies (typically structural renal anomalies), and limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least three component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p = 0.22, p = 0.284, respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal ultrasound shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. © 2014 Wiley Periodicals, Inc.

  1. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT.

    PubMed

    Jang, J; Seo, J K

    2015-06-01

    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.

  2. The Dilemmas of Energy: Essential energy services and potentially fatal risks

    NASA Astrophysics Data System (ADS)

    Perkins, J. H.

    2018-01-01

    During their evolution, humans have made three energy transitions, each marked by the adoption of new ways of procuring energy with attendant changes in lifestyle. Modern civilization arose in the Third Energy Transition, and its major sources of energy come from coal, oil, gas, uranium, and hydropower. Unfortunately, despite its incalculable benefits, the Third Transition can’t provide sustainable energy services for the indefinite future. Climate change is the most serious problem. Criteria and standards for each of the currently available, nine primary energy sources indicate the potential feasibility of replacing most or all uses of coal, oil, gas, and uranium with hydropower, solar, wind, biomass, and geothermal. This is the Fourth Energy Transition, promotion of which is strongly supported by considerations of sustainability.

  3. The potential energy landscape contribution to the dynamic heat capacity

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; McCoy, John D.

    2011-05-01

    The dynamic heat capacity of a simple polymeric, model glassformer was computed using molecular dynamics simulations by sinusoidally driving the temperature and recording the resultant energy. The underlying potential energy landscape of the system was probed by taking a time series of particle positions and quenching them. The resulting dynamic heat capacity demonstrates that the long time relaxation is the direct result of dynamics resulting from the potential energy landscape. Moreover, the equilibrium (low frequency) portion of the potential energy landscape contribution to the heat capacity is found to increase rapidly at low temperatures and at high packing fractions. This increase in the heat capacity is explained by a statistical mechanical model based on the distribution of minima in the potential energy landscape.

  4. Distribution of female genital tract anomalies in two classifications.

    PubMed

    Heinonen, Pentti K

    2016-11-01

    This study assessed the distribution of Müllerian duct anomalies in two verified classifications of female genital tract malformations, and the presence of associated renal defects. 621 women with confirmed female genital tract anomalies were retrospectively grouped under the European (ESHRE/ESGE) and the American (AFS) classification. The diagnosis of uterine malformation was based on findings in hysterosalpingography, two-dimensional ultrasonography, endoscopies, laparotomy, cesarean section and magnetic resonance imaging in 97.3% of cases. Renal status was determined in 378 patients, including 5 with normal uterus and vagina. The European classification covered all 621 women studied. Uterine anomalies without cervical or vaginal anomaly were found in 302 (48.6%) patients. Uterine anomaly was associated with vaginal anomaly in 45.2%, and vaginal anomaly alone was found in 26 (4.2%) cases. Septate uterus was the most common (49.1%) of all genital tract anomalies, followed by bicorporeal uteri (18.2%). The American classification covered 590 (95%) out of the 621 women with genital tract anomalies. The American system did not take into account vaginal anomalies in 170 (34.7%) and cervical anomalies in 174 (35.5%) out of 490 cases with uterine malformations. Renal abnormalities were found in 71 (18.8%) out of 378 women, unilateral renal agenesis being the most common defect (12.2%), also found in 4 women without Müllerian duct anomaly. The European classification sufficiently covered uterine and vaginal abnormalities. The distribution of the main uterine anomalies was equal in both classifications. The American system missed cervical and vaginal anomalies associated with uterine anomalies. Evaluation of renal system is recommended for all patients with genital tract anomalies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Prevalence of dental developmental anomalies: a radiographic study.

    PubMed

    Ezoddini, Ardakani F; Sheikhha, M H; Ahmadi, H

    2007-09-01

    To determine the prevalence of developmental dental anomalies in patients attending the Dental Faculty of Medical University of Yazd, Iran and the gender differences of these anomalies. A retrospective study based on the panoramic radiographs of 480 patients. Patients referred for panoramic radiographs were clinically examined, a detailed family history of any dental anomalies in their first and second degree relatives was obtained and finally their radiographs were studied in detail for the presence of dental anomalies. 40.8% of the patients had dental anomalies. The more common anomalies were dilaceration (15%), impacted teeth (8.3%) and taurodontism (7.5%) and supernumerary teeth (3.5%). Macrodontia and fusion were detected in a few radiographs (0.2%). 49.1% of male patients had dental anomalies compared to 33.8% of females. Dilaceration, taurodontism and supernumerary teeth were found to be more prevalent in men than women, whereas impacted teeth, microdontia and gemination were more frequent in women. Family history of dental anomalies was positive in 34% of the cases.. Taurodontism, gemination, dens in dente and talon cusp were specifically limited to the patients under 20 year's old, while the prevalence of other anomalies was almost the same in all groups. Dilaceration, impaction and taurodontism were relatively common in the studied populaton. A family history of dental anomalies was positive in a third of cases.

  6. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to

  7. Relationships between Rwandan seasonal rainfall anomalies and ENSO events

    NASA Astrophysics Data System (ADS)

    Muhire, I.; Ahmed, F.; Abutaleb, K.

    2015-10-01

    This study aims primarily at investigating the relationships between Rwandan seasonal rainfall anomalies and El Niño-South Oscillation phenomenon (ENSO) events. The study is useful for early warning of negative effects associated with extreme rainfall anomalies across the country. It covers the period 1935-1992, using long and short rains data from 28 weather stations in Rwanda and ENSO events resourced from Glantz (2001). The mean standardized anomaly indices were calculated to investigate their associations with ENSO events. One-way analysis of variance was applied on the mean standardized anomaly index values per ENSO event to explore the spatial correlation of rainfall anomalies per ENSO event. A geographical information system was used to present spatially the variations in mean standardized anomaly indices per ENSO event. The results showed approximately three climatic periods, namely, dry period (1935-1960), semi-humid period (1961-1976) and wet period (1977-1992). Though positive and negative correlations were detected between extreme short rains anomalies and El Niño events, La Niña events were mostly linked to negative rainfall anomalies while El Niño events were associated with positive rainfall anomalies. The occurrence of El Niño and La Niña in the same year does not show any clear association with rainfall anomalies. However, the phenomenon was more linked with positive long rains anomalies and negative short rains anomalies. The normal years were largely linked with negative long rains anomalies and positive short rains anomalies, which is a pointer to the influence of other factors other than ENSO events. This makes projection of seasonal rainfall anomalies in the country by merely predicting ENSO events difficult.

  8. Gravity anomaly detection: Apollo/Soyuz

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Kahn, W. D.; Bryan, J. W.; Schmid, P. E.; Wells, W. T.; Conrad, D. T.

    1976-01-01

    The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown.

  9. Anomaly Resolution in the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, William A.

    2000-01-01

    Topics include post flight 2A status, groundrules, anomaly resolution, Early Communications Subsystem anomaly and resolution, Logistics and Maintenance plan, case for obscuration, case for electrical short, and manual fault isolation, and post mission analysis. Photographs from flight 2A.1 are used to illustrate anomalies.

  10. Geological reasons for change in intensity of linear magnetic anomalies of the Kursk magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Zhavoronkin, I. A.; Kopayev, V. V.

    1985-01-01

    The geological reasons for fluctuations in the anomalous field intensity along the polar axes were examined. The Kursk magnetic anomaly is used as the basis for the study. A geological-geophysical section was constructed which used the results of the interpretation of gravimagnetic anomalies.

  11. Pressure-strain energy redistribution in compressible turbulence: return-to-isotropy versus kinetic-potential energy equipartition

    NASA Astrophysics Data System (ADS)

    Lee, Kurnchul; Venugopal, Vishnu; Girimaji, Sharath S.

    2016-08-01

    Return-to-isotropy and kinetic-potential energy equipartition are two fundamental pressure-moderated energy redistributive processes in anisotropic compressible turbulence. Pressure-strain correlation tensor redistributes energy among various Reynolds stress components and pressure-dilatation is responsible for energy reallocation between dilatational kinetic and potential energies. The competition and interplay between these pressure-based processes are investigated in this study. Direct numerical simulations (DNS) of low turbulent Mach number dilatational turbulence are performed employing the hybrid thermal Lattice Boltzman method (HTLBM). It is found that a tendency towards equipartition precedes proclivity for isotropization. An evolution towards equipartition has a collateral but critical effect on return-to-isotropy. The preferential transfer of energy from strong (rather than weak) Reynolds stress components to potential energy accelerates the isotropization of dilatational fluctuations. Understanding of these pressure-based redistributive processes is critical for developing insight into the character of compressible turbulence.

  12. Re-examining Potential for Geothermal Energy in United States

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New technological initiatives, along with potential policy and economic incentives, could help to bring about a resurgence in geothermal energy development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable Energy and Energy Efficiency Caucuses, the Sustainable Energy Coalition, and the Environmental and Energy Study Institute. Among these initiatives is an ambitious program of the U.S. Department of Energy to expand existing geothermal energy fields and potentially create new fields through ``enhanced geothermal systems.'' In addition, a program of the Bush administration encourages geothermal development on some public lands, and current legislation would provide tax credits and other incentives for geothermal development.

  13. Lunar Bouguer gravity anomalies - Imbrian age craters

    NASA Technical Reports Server (NTRS)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  14. Intracranial developmental venous anomaly: is it asymptomatic?

    PubMed

    Puente, A Bolívar; de Asís Bravo Rodríguez, F; Bravo Rey, I; Romero, E Roldán

    2018-03-16

    Intracranial developmental venous anomalies are the most common vascular malformation. In the immense majority of cases, these anomalies are asymptomatic and discovered incidentally, and they are considered benign. Very exceptionally, however, they can cause neurological symptoms. In this article, we present three cases of patients with developmental venous anomalies that presented with different symptoms owing to complications derived from altered venous drainage. These anomalies were located in the left insula, right temporal lobe, and cerebellum. The exceptionality of the cases presented as well as of the images associated, which show the mechanism through which the symptoms developed, lies in the low incidence of symptomatic developmental venous anomalies reported in the literature. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Branchial Anomalies: Diagnosis and Management

    PubMed Central

    Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence. PMID:24772172

  16. Branchial anomalies: diagnosis and management.

    PubMed

    Prasad, Sampath Chandra; Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Bacciu, Andrea; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence.

  17. Potential of energy production from conserved forages

    USDA-ARS?s Scientific Manuscript database

    Forages have a potential role in meeting the demand for energy. Perennial forages are attractive for various reasons. One, both the monetary and energy cost of planting is spread over many years. Two, we already have the equipment for harvesting, storing and transporting this source of biomass. Thre...

  18. Modeling the small dark energy scale with a quintessential pseudoscalar boson

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.

    2014-03-01

    Democracy among the same type of particles is a useful paradigm in studying masses and interactions of particles with supersymmetry (SUSY) or without SUSY. This simple idea predicts the presence of massless particles. We attempt to use one of these massless pseudoscalar particles to generate the cosmological dark energy (DE) potential. To achieve the extremely shallow potential of DE, we require the pseudoscalar boson not couple to quantum chromodynamics (QCD) anomaly. Thus, we consider two pseudoscalars, one coupling to the QCD anomaly ( i.e., the QCD axion) and the other not coupling to the QCD anomaly. To obtain these two pseudoscalars, we introduce two approximate global U(1) symmetries to realize them as the pseudo-Goldstone bosons of the spontaneously broken U(1) symmetries. These global symmetries are dictated by a gravity-respecting discrete symmetry. Specifically, we consider an S 2( L) × S 2( R) × Z 10 R example and attempt to obtain the DE scale in terms of two observed fundamental mass scales, the grand unification scale M G and the electroweak scale υ ew.

  19. Estimation of anomaly location and size using electrical impedance tomography.

    PubMed

    Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun; Woo, Eung Je; Cho, Young Gu

    2003-01-01

    We developed a new algorithm that estimates locations and sizes of anomalies in electrically conducting medium based on electrical impedance tomography (EIT) technique. When only the boundary current and voltage measurements are available, it is not practically feasible to reconstruct accurate high-resolution cross-sectional conductivity or resistivity images of a subject. In this paper, we focus our attention on the estimation of locations and sizes of anomalies with different conductivity values compared with the background tissues. We showed the performance of the algorithm from experimental results using a 32-channel EIT system and saline phantom. With about 1.73% measurement error in boundary current-voltage data, we found that the minimal size (area) of the detectable anomaly is about 0.72% of the size (area) of the phantom. Potential applications include the monitoring of impedance related physiological events and bubble detection in two-phase flow. Since this new algorithm requires neither any forward solver nor time-consuming minimization process, it is fast enough for various real-time applications in medicine and nondestructive testing.

  20. CHAMP: a locally adaptive unmixing-based hyperspectral anomaly detection algorithm

    NASA Astrophysics Data System (ADS)

    Crist, Eric P.; Thelen, Brian J.; Carrara, David A.

    1998-10-01

    Anomaly detection offers a means by which to identify potentially important objects in a scene without prior knowledge of their spectral signatures. As such, this approach is less sensitive to variations in target class composition, atmospheric and illumination conditions, and sensor gain settings than would be a spectral matched filter or similar algorithm. The best existing anomaly detectors generally fall into one of two categories: those based on local Gaussian statistics, and those based on linear mixing moles. Unmixing-based approaches better represent the real distribution of data in a scene, but are typically derived and applied on a global or scene-wide basis. Locally adaptive approaches allow detection of more subtle anomalies by accommodating the spatial non-homogeneity of background classes in a typical scene, but provide a poorer representation of the true underlying background distribution. The CHAMP algorithm combines the best attributes of both approaches, applying a linear-mixing model approach in a spatially adaptive manner. The algorithm itself, and teste results on simulated and actual hyperspectral image data, are presented in this paper.

  1. Magnetosheath Flow Anomalies in 3-D

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; hide

    2000-01-01

    Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.

  2. Procedures and results related to the direct determination of gravity anomalies from satellite and terrestrial gravity data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    The equations needed for the incorporation of gravity anomalies as unknown parameters in an orbit determination program are described. These equations were implemented in the Geodyn computer program which was used to process optical satellite observations. The arc dependent parameter unknowns, 184 unknown 15 deg and coordinates of 7 tracking stations were considered. Up to 39 arcs (5 to 7 days) involving 10 different satellites, were processed. An anomaly solution from the satellite data and a combination solution with 15 deg terrestrial anomalies were made. The limited data samples indicate that the method works. The 15 deg anomalies from various solutions and the potential coefficients implied by the different solutions are reported.

  3. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  4. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field.

    PubMed

    Christiansen, Peter; Nielsen, Lars N; Steen, Kim A; Jørgensen, Rasmus N; Karstoft, Henrik

    2016-11-11

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45-90 m) than RCNN. RCNN has a similar performance at a short range (0-30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit).

  5. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    PubMed Central

    Christiansen, Peter; Nielsen, Lars N.; Steen, Kim A.; Jørgensen, Rasmus N.; Karstoft, Henrik

    2016-01-01

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit). PMID:27845717

  6. Anomaly-Induced Dynamical Refringence in Strong-Field QED

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Hebenstreit, F.; Berges, J.

    2016-08-01

    We investigate the impact of the Adler-Bell-Jackiw anomaly on the nonequilibrium evolution of strong-field quantum electrodynamics (QED) using real-time lattice gauge theory techniques. For field strengths exceeding the Schwinger limit for pair production, we encounter a highly absorptive medium with anomaly induced dynamical refractive properties. In contrast to earlier expectations based on equilibrium properties, where net anomalous effects vanish because of the trivial vacuum structure, we find that out-of-equilibrium conditions can have dramatic consequences for the presence of quantum currents with distinctive macroscopic signatures. We observe an intriguing tracking behavior, where the system spends longest times near collinear field configurations with maximum anomalous current. Apart from the potential relevance of our findings for future laser experiments, similar phenomena related to the chiral magnetic effect are expected to play an important role for strong QED fields during initial stages of heavy-ion collision experiments.

  7. Thermal Infrared Anomalies of Several Strong Earthquakes

    PubMed Central

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  8. Thermal infrared anomalies of several strong earthquakes.

    PubMed

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  9. Euro-African MAGSAT anomaly-tectonic observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Olivier, R.; Vonfrese, R. R. B.

    1985-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  10. Euro-african MAGSAT Anomaly-tectonic Observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  11. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    NASA Astrophysics Data System (ADS)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  12. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  13. Reactor antineutrino shoulder explained by energy scale nonlinearities?

    NASA Astrophysics Data System (ADS)

    Mention, G.; Vivier, M.; Gaffiot, J.; Lasserre, T.; Letourneau, A.; Materna, T.

    2017-10-01

    The Daya Bay, Double Chooz and RENO experiments recently observed a significant distortion in their detected reactor antineutrino spectra, being at odds with the current predictions. Although such a result suggests to revisit the current reactor antineutrino spectra modeling, an alternative scenario, which could potentially explain this anomaly, is explored in this letter. Using an appropriate statistical method, a study of the Daya Bay experiment energy scale is performed. While still being in agreement with the γ calibration data and 12B measured spectrum, it is shown that a O (1%) deviation of the energy scale reproduces the distortion observed in the Daya Bay spectrum, remaining within the quoted calibration uncertainties. Potential origins of such a deviation, which challenge the energy calibration of these detectors, are finally discussed.

  14. The prevalence of specific dental anomalies in a group of Saudi cleft lip and palate patients.

    PubMed

    Al-Kharboush, Ghada H; Al-Balkhi, Khalid M; Al-Moammar, Khalid

    2015-04-01

    The aims of this study were to investigate the prevalence and distribution of dental anomalies in a group of Saudi subjects with cleft lip and palate (CLP), to examine potential sex-based associations of these anomalies, and to compare dental anomalies in Saudi subjects with CLP with published data from other population groups. This retrospective study involved the examination of pre-treatment records obtained from three CLP centers in Riyadh, Saudi Arabia, in February and March 2010. The pre-treatment records of 184 subjects with cleft lip and palate were identified and included in this study. Pre-treatment maxillary occlusal radiographs of the cleft region, panoramic radiographs, and orthodontic study models of subjects with CLP were analyzed for dental anomalies. Orthopantomographs and occlusal radiographs may not be reliable for the accurate evaluation of root malformation anomalies. A total of 265 dental anomalies were observed in the 184 study subjects. Hypodontia was observed most commonly (66.8%), followed by microdontia (45.6%), intra-oral ectopic eruption (12.5%), supernumerary teeth (12.5%), intra-nasal ectopic eruption (3.2), and macrodontia (3.2%). No gender difference in the prevalence of these anomalies was observed. Dental anomalies were common in Saudi subjects with CLP type. This will complicate the health care required for the CL/P subjects. This study was conducted to epidemiologically explore the prevalence of dental anomalies among Saudi Arabian subjects with CLP.

  15. Forward Modelling of Long-wavelength Magnetic Anomaly Contributions from the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Idoko, C. M.; Conder, J. A.; Ferre, E. C.; Friedman, S. A.

    2016-12-01

    Towards the interpretation of the upcoming results from SWARM satellite survey, we develop a MATLAB-based geophysical forward-modeling of magnetic anomalies from tectonic regions with different upper mantle geotherms including subduction zones (Kamchaka island arcs), cratons (Siberian craton), and hotspots (Hawaii hotspots and Massif-central plumes). We constrain the modeling - using magnetic data measured from xenoliths collected across these regions. Over the years, the potency of the upper mantle in contributing to long-wavelength magnetic anomalies has been a topic of debate among geoscientists. However, recent works show that some low geotherm tectonic environments such as forearcs and cratons contain mantle xenoliths which are below the Curie-Temperature of magnetite and could potentially contribute to long-wavelength magnetic anomalies. The modeling pursued here holds the prospect of better understanding the magnetism of the upper mantle, and the resolution of the mismatch between observed long-wavelength anomalies and surface field anomaly upward continued to satellite altitude. The SWARM satellite survey provides a unique opportunity due to its capacity to detect more accurately the depth of magnetic sources. A preliminary model of a hypothetical craton of size 2000km by 1000km by 500km discretized into 32 equal and uniformly distributed prism blocks, using magnetic data from Siberian craton with average natural remanent magnetization value of 0.0829 A/m (randomnly oriented) for a magnetized mantle thickness of 75km, and induced magnetization, varying according to the Curie-Weiss law from surface to 500km depth with an average magnetization of 0.02 A/m, shows that the contributions of the induced and remanent phases of magnetizations- with a total-field anomaly amplitude of 3 nT may impart a measurable signal to the observed long-wavelength magnetic anomalies in low geotherm tectonic environments.

  16. Coronary artery anomalies in Turner Syndrome.

    PubMed

    Viuff, Mette H; Trolle, Christian; Wen, Jan; Jensen, Jesper M; Nørgaard, Bjarne L; Gutmark, Ephraim J; Gutmark-Little, Iris; Mortensen, Kristian H; Gravholt, Claus Højbjerg; Andersen, Niels H

    Congenital heart disease, primarily involving the left-sided structures, is often seen in patients with Turner Syndrome. Moreover, a few case reports have indicated that coronary anomalies may be more prevalent in Turner Syndrome than in the normal population. We therefore set out to systematically investigate coronary arterial anatomy by computed tomographic coronary angiography (coronary CTA) in Turner Syndrome patients. Fifty consecutive women with Turner Syndrome (mean age 47 years [17-71]) underwent coronary CTA. Patients were compared with 25 gender-matched controls. Coronary anomaly was more frequent in patients with Turner Syndrome than in healthy controls [20% vs. 4% (p = 0.043)]. Nine out of ten abnormal cases had an anomalous left coronary artery anatomy (absent left main trunk, n = 7; circumflex artery originating from the right aortic sinus, n = 2). One case had a tubular origin of the right coronary artery above the aortic sinus. There was no correlation between the presence of coronary arterial anomalies and karyotype, bicuspid aortic valve, or other congenital heart defects. Coronary anomalies are highly prevalent in Turner Syndrome. The left coronary artery is predominantly affected, with an absent left main coronary artery being the most common anomaly. No hemodynamically relevant coronary anomalies were found. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.

  17. Interpretation of Self-Potential anomalies for investigating fault using the Levenberg-Marquardt method: a study case in Pinggirsari, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Fajriani; Srigutomo, Wahyu; Pratomo, Prihandhanu M.

    2017-04-01

    Self-Potential (SP) method is frequently used to identify subsurface structures based on electrical properties. For fixed geometry problems, SP method is related to simple geometrical shapes of causative bodies such as a sphere, cylinder, and sheet. This approach is implemented to determine the value of parameters such as shape, depth, polarization angle, and electric dipole moment. In this study, the technique was applied for investigation of fault, where the fault is considered as resembling the shape of a sheet representing dike or fault. The investigated fault is located at Pinggirsari village, Bandung regency, West Java, Indonesia. The observed SP anomalies that were measured allegedly above the fault were inverted to estimate all the fault parameters through inverse modeling scheme using the Levenberg-Marquardt method. The inversion scheme was first tested on a synthetic model, where a close agreement between the test parameters and the calculated parameters was achieved. Finally, the schema was carried out to invert the real observed SP anomalies. The results show that the presence of the fault was detected beneath the surface having electric dipole moment K = 41.5 mV, half-fault dimension a = 34 m, depth of the sheet’s center h = 14.6 m, the location of the fault’s center xo = 478.25 m, and the polarization angle to the horizontal plane θ = 334.52° in a clockwise direction.

  18. Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability

    NASA Astrophysics Data System (ADS)

    Neelin, J.; Su, H.

    2004-05-01

    Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.

  19. Research for Key Techniques of Geophysical Recognition System of Hydrocarbon-induced Magnetic Anomalies Based on Hydrocarbon Seepage Theory

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hao, T.; Zhao, B.

    2009-12-01

    Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which

  20. Coexistence of bilateral first and second branchial arch anomalies

    PubMed Central

    Thakur, J S; Shekar, Vidya; Saluja, Manika; Mohindroo, N K

    2013-01-01

    Branchial arch anomalies are one of the most common congenital anomalies that are usually unilateral and bilateral presentation is rare. The simultaneous presence of bilateral second branchial arch anomalies along with bilateral first arch anomalies is extremely rare, with only three such cases reported in the literature. We present two non-syndromic cases of coexisting bilateral first and second arch anomalies. Developmental anomalies of the branchial apparatus account for 17% of all paediatric cervical masses and are the most common type of congenital cervical mass. They usually present in the paediatric age group. About 96–97% of these anomalies are unilateral. Bilateral presentation is seen in 2–3% having a strong familial association. Congenital syndromes also have been associated with first and second branchial arch anomalies. Thorough clinical examination and investigations should be done to rule out these syndromes. PMID:23580675

  1. Negative gravity anomalies on the moon

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1975-01-01

    Two kinds of negative gravity anomalies on the moon are distinguished - those which show a correspondence to lunar topography and those which appear to be unrelated to surface topography. The former appear to be due to mass deficiencies caused by the cratering process, in large part probably by ejection of material from the crater. Anomalies on the far side which do not correspond to topography are thought to have resulted from irregularities in the thickness of the lunar crust. Localized large negative anomalies adjacent to mascons are considered. Although structures on the moon having a half-wavelength of 800 km or less and large negative or positive gravity anomalies are not in isostatic equilibrium, many of these features have mass loadings of about 1000 kg/sq cm which can be statically sustained on the moon.

  2. On the importance of electroweak corrections for B anomalies

    NASA Astrophysics Data System (ADS)

    Feruglio, Ferruccio; Paradisi, Paride; Pattori, Andrea

    2017-09-01

    The growing experimental indication of Lepton Flavour Universality Violation (LFUV) both in charged- and neutral-current semileptonic B-decays, has triggered many theoretical interpretations of such non-standard phenomena. Focusing on popular scenarios where the explanation of these anomalies requires New Physics at the TeV scale, we emphasise the importance of including electroweak corrections to obtain trustable predictions for the models in question. We find that the most important quantum effects are the modifications of the leptonic couplings of the W and Z vector bosons and the generation of a purely leptonic effective Lagrangian. Although our results do not provide an inescapable no-go theorem for the explanation of the B anomalies, the tight experimental bounds on Z-pole observables and τ decays challenge an explanation of the current non-standard data. We illustrate how these effects arise, by providing a detailed discussion of the running and matching procedure which is necessary to derive the low-energy effective Lagrangian.

  3. Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes

    NASA Astrophysics Data System (ADS)

    Mahmood, Irfan; Iqbal, Muhammad Farooq; Shahzad, Muhammad Imran; Qaiser, Saddam

    2017-02-01

    The earthquake precursors' anomalies at diverse elevation ranges over the seismogenic region and prior to the seismic events are perceived using Satellite Remote Sensing (SRS) techniques and reanalysis datasets. In the current research, seismic precursors are obtained by analyzing anomalies in Outgoing Longwave Radiation (OLR), Air Temperature (AT), and Relative Humidity (RH) before the two strong Mw>7 earthquakes in Pakistan occurred on 8th October 2005 in Azad Jammu Kashmir with Mw 7.6, and 24th September 2013 in Awaran, Balochistan with Mw 7.7. Multi-parameter data were computed based on multi-year background data for anomalies computation. Results indicate significant transient variations in observed parameters before the main event. Detailed analysis suggests presence of pre-seismic activities one to three weeks prior to the main earthquake event that vanishes after the event. These anomalies are due to increase in temperature after release of gases and physical and chemical interactions on earth surface before the earthquake. The parameter variations behavior for both Kashmir and Awaran earthquake events are similar to other earthquakes in different regions of the world. This study suggests that energy release is not concentrated to a single fault but instead is released along the fault zone. The influence of earthquake events on lightning were also investigated and it was concluded that there is a significant atmospheric lightning activity after the earthquake suggesting a strong possibility for an earthquake induced thunderstorm. This study is valuable for identifying earthquake precursors especially in earthquake prone areas.

  4. Analysis on Potential of Electric Energy Market based on Large Industrial Consumer

    NASA Astrophysics Data System (ADS)

    Lin, Jingyi; Zhu, Xinzhi; Yang, Shuo; Xia, Huaijian; Yang, Di; Li, Hao; Lin, Haiying

    2018-01-01

    The implementation of electric energy substitution by enterprises plays an important role in promoting the development of energy conservation and emission reduction in china. In order to explore alternative energy potential of industrial enterprises, to simulate and analyze the process of industrial enterprises, identify high energy consumption process and equipment, give priority to alternative energy technologies, and determine the enterprise electric energy substitution potential predictive value, this paper constructs the evaluation model of the influence factors of the electric energy substitution potential of industrial enterprises, and uses the combined weight method to determine the weight value of the evaluation factors to calculate the target value of the electric energy substitution potential. Taking the iron and steel industry as an example, this method is used to excavate the potential. The results show that the method can effectively tap the potential of the electric power industry

  5. Eigensolutions, Shannon entropy and information energy for modified Tietz-Hua potential

    NASA Astrophysics Data System (ADS)

    Onate, C. A.; Onyeaju, M. C.; Ituen, E. E.; Ikot, A. N.; Ebomwonyi, O.; Okoro, J. O.; Dopamu, K. O.

    2018-04-01

    The Tietz-Hua potential is modified by the inclusion of De ( {{Ch - 1}/{1 - C_{h e^{{ - bh ( {r - re } )}} }}} )be^{{ - bh ( {r - re } )}} term to the Tietz-Hua potential model since a potential of such type is very good in the description and vibrational energy levels for diatomic molecules. The energy eigenvalues and the corresponding eigenfunctions are explicitly obtained using the methodology of parametric Nikiforov-Uvarov. By putting the potential parameter b = 0, in the modified Tietz-Hua potential quickly reduces to the Tietz-Hua potential. To show more applications of our work, we have computed the Shannon entropy and Information energy under the modified Tietz-Hua potential. However, the computation of the Shannon entropy and Information energy is an extension of the work of Falaye et al., who computed only the Fisher information under Tietz-Hua potential.

  6. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  7. Medicaid pregnancy termination funding and racial disparities in congenital anomaly-related infant deaths.

    PubMed

    Hutcheon, Jennifer A; Bodnar, Lisa M; Simhan, Hyagriv N

    2015-01-01

    To explore whether state restrictions on Medicaid funding for pregnancy termination of anomalous fetuses could be contributing to the black-white disparity in infant death resulting from congenital anomalies. Data on deaths resulting from anomalies were obtained from U.S. vital statistics records (1983-2004) and the Nationwide Inpatient Sample (2003-2007). We conducted an ecological study using Poisson and logistic regression to explore the association between state Medicaid funding for pregnancy terminations of anomalous fetuses and infant death resulting from anomalies by calendar time, race, and individual Medicaid status. Since 1983, a gap in anomaly-related infant death has developed between states without compared with those with Medicaid funding for pregnancy termination (rate ratio in 2004 1.21, 95% confidence interval [CI] 1.18-1.24; crude risks: 146.8 compared with 121.7/100,000). Blacks were significantly more likely than whites to be on Medicaid (60.2% compared with 29.2%) and to live in a state without Medicaid funding for pregnancy termination (65.8% compared with 59.6%). The increased risk of anomaly-related death associated with lack of state Medicaid funding for pregnancy termination was most pronounced among black women on Medicaid (relative risk 1.94, 95% CI 1.52-2.36; crude risks: 245.5 compared with 129.3/100,000). States without Medicaid funding for pregnancy termination of anomalous fetuses have higher rates of infant death resulting from anomalies than those with funding, and this difference is most pronounced among black women on Medicaid. Restrictions on Medicaid funding for termination of anomalous fetuses potentially could be contributing to the black-white disparity in anomaly-related infant death. II.

  8. Anomaly detection of flight routes through optimal waypoint

    NASA Astrophysics Data System (ADS)

    Pusadan, M. Y.; Buliali, J. L.; Ginardi, R. V. H.

    2017-01-01

    Deciding factor of flight, one of them is the flight route. Flight route determined by coordinate (latitude and longitude). flight routed is determined by its coordinates (latitude and longitude) as defined is waypoint. anomaly occurs, if the aircraft is flying outside the specified waypoint area. In the case of flight data, anomalies occur by identifying problems of the flight route based on data ADS-B. This study has an aim of to determine the optimal waypoints of the flight route. The proposed methods: i) Agglomerative Hierarchical Clustering (AHC) in several segments based on range area coordinates (latitude and longitude) in every waypoint; ii) The coefficient cophenetics correlation (c) to determine the correlation between the members in each cluster; iii) cubic spline interpolation as a graphic representation of the has connected between the coordinates on every waypoint; and iv). Euclidean distance to measure distances between waypoints with 2 centroid result of clustering AHC. The experiment results are value of coefficient cophenetics correlation (c): 0,691≤ c ≤ 0974, five segments the generated of the range area waypoint coordinates, and the shortest and longest distance between the centroid with waypoint are 0.46 and 2.18. Thus, concluded that the shortest distance is used as the reference coordinates of optimal waypoint, and farthest distance can be indicated potentially detected anomaly.

  9. In-Situ Hydraulic Conductivities of Soils and Anomalies at a Future Biofuel Production Site

    NASA Astrophysics Data System (ADS)

    Williamson, M. F.; Jackson, C. R.; Hale, J. C.; Sletten, H. R.

    2010-12-01

    Forested hillslopes of the Upper Coastal Plain at the Savannah River Site, SC, feature a shallow clay loam argillic layer with low median saturated hydraulic conductivity. Observations from a grid of shallow, maximum-rise piezometers indicate that perching on this clay layer is common. However, flow measurements from an interflow-interception trench indicate that lateral flow is rare and most soil water percolates through the clay layer. We hypothesize that the lack of frequent lateral flow is due to penetration of the clay layer by roots of pine trees. We used ground penetrating radar (GPR) to map the soil structure and potential anomalies, such as root holes, down to two meters depth at three 10×10-m plots. At each plot, a 1×10-m trench was later back-hoe excavated along a transect that showed the most anomalies on the GPR maps. Each trench was excavated at 0.5-m intervals until the clay layer was reached (two plots were excavated to a final depth of 0.875 m and the third plot was excavated to a final depth of 1.0 m). At each interval, compact constant-head permeameters (CCHPs) were used to measure in-situ hydraulic conductivities in the clay-loam matrix and in any visually apparent anomalies. Conductivity was also estimated using a second 1×10-m transect of CCHP measurements taken within randomly placed augur holes. Additional holes targeted GPR anomalies. The second transect was created in case the back-hoe impacted conductivity readings. High-conductivity anomalies were also visually investigated by excavating with a shovel. Photographs of soil wetness were taken at visually apparent anomalies with a multispectral camera. We discovered that all visually apparent anomalies found are represented on the GPR maps, but that not all of the predicted anomalies on the GPR maps are visually apparent. We discovered that tree root holes create anomalies, but that there were also many conductivity anomalies that could not be visually distinguished from low

  10. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    DOE PAGES

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; ...

    2016-01-20

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less

  11. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  12. Preliminary aeromagnetic anomaly map of California

    USGS Publications Warehouse

    Roberts, Carter W.; Jachens, Rober C.

    1999-01-01

    The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.

  13. Development of references of anomalies detection on P91 material using Self-Magnetic Leakage Field (SMLF) technique

    NASA Astrophysics Data System (ADS)

    Husin, Shuib; Afiq Pauzi, Ahmad; Yunus, Salmi Mohd; Ghafar, Mohd Hafiz Abdul; Adilin Sekari, Saiful

    2017-10-01

    This technical paper demonstrates the successful of the application of self-magnetic leakage field (SMLF) technique in detecting anomalies in weldment of a thick P91 materials joint (1 inch thickness). Boiler components such as boiler tubes, stub boiler at penthouse and energy piping such as hot reheat pipe (HRP) and H-balance energy piping to turbine are made of P91 material. P91 is ferromagnetic material, therefore the technique of self-magnetic leakage field (SMLF) is applicable for P91 in detecting anomalies within material (internal defects). The technique is categorized under non-destructive technique (NDT). It is the second passive method after acoustic emission (AE), at which the information on structures radiation (magnetic field and energy waves) is used. The measured magnetic leakage field of a product or component is a magnetic leakage field occurring on the component’s surface in the zone of dislocation stable slipbands under the influence of operational (in-service) or residual stresses or in zones of maximum inhomogeneity of metal structure in new products or components. Inter-granular and trans-granular cracks, inclusion, void, cavity and corrosion are considered types of inhomogeneity and discontinuity in material where obviously the output of magnetic leakage field will be shown when using this technique. The technique does not required surface preparation for the component to be inspected. This technique is contact-type inspection, which means the sensor has to touch or in-contact to the component’s surface during inspection. The results of application of SMLF technique on the developed P91 reference blocks have demonstrated that the technique is practical to be used for anomaly inspection and detection as well as identification of anomalies’ location. The evaluation of this passive self-magnetic leakage field (SMLF) technique has been verified by other conventional non-destructive tests (NDTs) on the reference blocks where simulated

  14. DSCS II. Battery Anomaly Investigation Satellites 9437 and 9438.

    DTIC Science & Technology

    1980-04-25

    Chronology Prior to Identifying the Anomaly 2-1 3 . ANOMALY OBSERVATIONS 3 -1 3.1 Satellite 9437 3 -1 3.1.1 State of the Batteries Prior to the Anomaly...Observation 3 -1 3.1.2 Anomalous Behavior 3 -1 3.2 Satellite 9438 3 -6 3.2.1 State of the Batteries Prior to the Anomaly Observation 3 -6 3.2.2 Anomalous...Behavior 3 -6 4. ANOMALY INVESTIGATIONS 4-1 4.1 Scope 4-1 4.2 Postulated Causes of the Anomaly 4-1 4.3 Cell Short Circuits 4-2 4.3.1 Evidence in Support of

  15. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies

    PubMed Central

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351

  16. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    PubMed

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  17. Quantum anomalies in nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  18. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  19. Achieving wood energy potentials: evidence in northeastern Minnesota.

    Treesearch

    Dennis P. Bradley; David C. Lothner

    1987-01-01

    A study of wood energy potential in northeastern Minnesota concludes that (1) the forests of the region could support a much larger wood energy harvest without significant cost increases for other forest products; (2) existing stands are predominantly overmature and cutting more now will enhance future wood supplies for all users; (3) converting to wood energy could...

  20. Predictable patterns of the May-June rainfall anomaly over East Asia

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin; Yim, So-Young; Ha, Kyung-Ja

    2017-02-01

    During early summer (May-June, MJ), East Asia (EA) subtropical front is a defining feature of Asian monsoon, which produces the most prominent precipitation band in the global subtropics. Here we show that dynamical prediction of early summer EA (20°N-45°N, 100°E-130°E) rainfall made by four coupled climate models' ensemble hindcast (1979-2010) yields only a moderate skill and cannot be used to estimate predictability. The present study uses an alternative, empirical orthogonal function (EOF)-based physical-empirical (P-E) model approach to predict rainfall anomaly pattern and estimate its potential predictability. The first three leading modes are physically meaningful and can be, respectively, attributed to (a) the interaction between the anomalous western North Pacific subtropical high and underlying Indo-Pacific warm ocean, (b) the forcing associated with North Pacific sea surface temperature (SST) anomaly, and (c) the development of equatorial central Pacific SST anomalies. A suite of P-E models is established to forecast the first three leading principal components. All predictors are 0 month ahead of May, so the prediction here is named as a 0 month lead prediction. The cross-validated hindcast results demonstrate that these modes may be predicted with significant temporal correlation skills (0.48-0.72). Using the predicted principal components and the corresponding EOF patterns, the total MJ rainfall anomaly was hindcasted for the period of 1979-2015. The time-mean pattern correlation coefficient (PCC) score reaches 0.38, which is significantly higher than dynamical models' multimodel ensemble skill (0.21). The estimated potential maximum attainable PCC is around 0.65, suggesting that the dynamical prediction models may have large rooms to improve. Limitations and future work are discussed.

  1. [Prevalence of selected congenital anomalies in the Czech Republic: congenital anomalies of the central nervous system and gastrointestinal tract].

    PubMed

    Šípek, A; Gregor, V; Horáček, J; Šípek, A; Klaschka, J; Malý, M

    2015-03-01

    Analysis of the prevalence of selected congenital anomalies in the Czech Republic in 1994-2009. Retrospective epidemiological analysis of the postnatal and overall (including prenatally diagnosed cases) prevalence of congenital anomalies from the database of the National Registry of Congenital Anomalies of the Czech Republic. Data from the National Registry of Congenital Anomalies (NRCA) maintained by the Institute of Health Information and Statistics of the Czech Republic (IHIS CR) were used. The analysis was carried out for the entire Czech Republic, based on the data from 1994 to 2009. Additional data on prenatally diagnosed anomalies were obtained from medical genetics centres and laboratories in the Czech Republic. This study analyzed the postnatal and overall (including prenatally diagnosed cases) prevalence of congenital anomalies. More detailed analysis was carried out for the following diagnoses: anencephaly, spina bifida, encephalocoele, congenital hydrocephalus, omphalocoele, gastroschisis, oesophageal atresia and stenosis, anorectal anomalies, and diaphragmatic hernia. Prevalence trends were analysed using Poisson regression. In 2009, a total of 118 348 live births were recorded in the Czech Republic, 60 368 boys and 57 980 girls. Of this total, 4 653, i.e. 2 745 boys and 1 908 girls, were diagnosed with congenital anomalies. In 2007-2009, the total of life births with congenital anomalies ranged between 4.6 and 4.8 thousand per year. The respective ranges in this three-year period were in the order of 2.7 and 2.8 thousand per year for boys and 1.9 thousand per year for girls. The prevalence of postnatally diagnosed anencephaly was minimal, as most cases were diagnosed prenatally, and the data did not vary significantly. The prevalence of postnatally diagnosed cases remained at the same level. The effectiveness of the prenatal diagnosis of spina bifida increased and thus the prevalence of postnatally diagnosed cases decreased. The prevalence of

  2. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  3. Field Line Mapping of the Polar Cap Neutral Density Anomaly

    NASA Astrophysics Data System (ADS)

    Sutton, E. K.; Lin, C. S.; Huang, C. Y.; Cooke, D. L.

    2016-12-01

    Polar cap neutral density anomaly (PCNDA) events of localized density enhancement with a half size around 700-1000 km had been frequently detected by CHAMP satellite at around 400 km during major magnetic storms with Dst < -100 nT. Density enhancement is probably produced via Joule heating of the thermosphere when a significant amount of energy is deposited in the polar cap. We have identified 12 PCNDA events measured by CHAMP during two major magnetic storms including one initiated by a large solar wind pressure pulse. Their density anomaly locations are found to scatter randomly within the polar circle of 80o magnetic latitude in the geomagnetic coordinate. However after transformed to the Geocentric Solar Wind (GSW) coordinates, their locations become aligned in the direction of solar wind velocity. To better understand the polar cap energy deposition we trace magnetic field lines to the magnetosphere up to 30 earth radii from the ionosphere at 400 km using the data-based Tsyganenko T95 and TS05 magnetic field models. Field line tracing is performed in the GSW coordinate along the CHAMP orbit as well as for the whole polar cap. Each traced magnetic field line is classified into one of the three categories, (1) magnetosphere closed field line (MC) crossing the equatorial plane within 30 earth radii, (2) open field line connected to the magnetopause (MP), or (3) open field line connected to the magnetotail lobe (MT). For nine PCNDA events among the 10 events that we are able to conduct tracing, field lines originated from the density anomaly regions are classified as MT. Only one outlier event in association with a very large IMF BZ is classified as MP. Furthermore the separation angle between the density anomaly peak and the MP-MT field line separation point at 400 km on the X- and Z-axes meridian plane varies from -4o to 16o. Based on these results we speculate that convective electric fields and field aligned currents in the ionosphere might be enhanced near

  4. Study of the potential of wave energy in Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  5. GBAS Ionospheric Anomaly Monitoring Based on a Two-Step Approach

    PubMed Central

    Zhao, Lin; Yang, Fuxin; Li, Liang; Ding, Jicheng; Zhao, Yuxin

    2016-01-01

    As one significant component of space environmental weather, the ionosphere has to be monitored using Global Positioning System (GPS) receivers for the Ground-Based Augmentation System (GBAS). This is because an ionospheric anomaly can pose a potential threat for GBAS to support safety-critical services. The traditional code-carrier divergence (CCD) methods, which have been widely used to detect the variants of the ionospheric gradient for GBAS, adopt a linear time-invariant low-pass filter to suppress the effect of high frequency noise on the detection of the ionospheric anomaly. However, there is a counterbalance between response time and estimation accuracy due to the fixed time constants. In order to release the limitation, a two-step approach (TSA) is proposed by integrating the cascaded linear time-invariant low-pass filters with the adaptive Kalman filter to detect the ionospheric gradient anomaly. The performance of the proposed method is tested by using simulated and real-world data, respectively. The simulation results show that the TSA can detect ionospheric gradient anomalies quickly, even when the noise is severer. Compared to the traditional CCD methods, the experiments from real-world GPS data indicate that the average estimation accuracy of the ionospheric gradient improves by more than 31.3%, and the average response time to the ionospheric gradient at a rate of 0.018 m/s improves by more than 59.3%, which demonstrates the ability of TSA to detect a small ionospheric gradient more rapidly. PMID:27240367

  6. Multi-sensor Integration of Space and Ground Observations of Pre-earthquake Anomalies Associated with M6.0, August 24, 2014 Napa, California

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Tramutoli, Valerio; Pulinets, Sergey; Liu, Tiger; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Petrov, Leonid; Kafatos, Menas

    2015-04-01

    We integrate multiple space-born and ground sensors for monitoring pre-earthquake geophysical anomalies that can provide significant early notification for earthquakes higher than M5.5 worldwide. The latest M6.0 event of August 24, 2014 in South Napa, California generated pre-earthquake signatures during our outgoing tests for California, and an experimental warning was documented about 17 days in advance. We process in controlled environment different satellite and ground data for California (and several other test areas) by using: a) data from the NPOES sensors recording OLR (Outgoing Longwave Radiation) in the infrared; b) 2/GNSS, FORMOSAT (GPS/TEC); c) Earth Observing System assimilation models from NASA; d) ground-based gas observations and meteorological data; e) TIR (Thermal Infrared) data from geostationary satellite (GOES). On Aug 4th, we detected (prospectively) a large anomaly of OLR transient field at the TOA over Northern California. The location was shifted in the northeast direction about 150 km from the Aug 23rd epicentral area. Compared to the reference field of August 2004 to 2014 the hotspot anomaly was the largest energy flux anomaly over the entire continental United States at this time. Based on the temporal and spatial estimates of the anomaly, on August 4th we issued an internal warning for a M5.5+ earthquake in Northern California within the next 1-4 weeks. TIR retrospective analysis showed significant (spatially extended and temporally persistent) sequences of TIR anomalies starting August 1st just in the future epicenter area and approximately in the same area affected by OLR anomalies in the following days. GPS/TEC retrospective analysis based on GIM and TGIM products show anomalies TEC variations 1-3 days, over region north form the Napa earthquake epicenter. The calculated index of atmospheric chemical potential based on the NASA numerical Assimilation weather model GEOS5 indicates for abnormal variations near the epicentral area days

  7. Response of African humid tropical forests to recent rainfall anomalies

    PubMed Central

    Asefi-Najafabady, Salvi; Saatchi, Sassan

    2013-01-01

    During the last decade, strong negative rainfall anomalies resulting from increased sea surface temperature in the tropical Atlantic have caused extensive droughts in rainforests of western Amazonia, exerting persistent effects on the forest canopy. In contrast, there have been no significant impacts on rainforests of West and Central Africa during the same period, despite large-scale droughts and rainfall anomalies during the same period. Using a combination of rainfall observations from meteorological stations from the Climate Research Unit (CRU; 1950–2009) and satellite observations of the Tropical Rainfall Measuring Mission (TRMM; 1998–2010), we show that West and Central Africa experienced strong negative water deficit (WD) anomalies over the last decade, particularly in 2005, 2006 and 2007. These anomalies were a continuation of an increasing drying trend in the region that started in the 1970s. We monitored the response of forests to extreme rainfall anomalies of the past decade by analysing the microwave scatterometer data from QuickSCAT (1999–2009) sensitive to variations in canopy water content and structure. Unlike in Amazonia, we found no significant impacts of extreme WD events on forests of Central Africa, suggesting potential adaptability of these forests to short-term severe droughts. Only forests near the savanna boundary in West Africa and in fragmented landscapes of the northern Congo Basin responded to extreme droughts with widespread canopy disturbance that lasted only during the period of WD. Time-series analyses of CRU and TRMM data show most regions in Central and West Africa experience seasonal or decadal extreme WDs (less than −600 mm). We hypothesize that the long-term historical extreme WDs with gradual drying trends in the 1970s have increased the adaptability of humid tropical forests in Africa to droughts. PMID:23878335

  8. Response of African humid tropical forests to recent rainfall anomalies.

    PubMed

    Asefi-Najafabady, Salvi; Saatchi, Sassan

    2013-01-01

    During the last decade, strong negative rainfall anomalies resulting from increased sea surface temperature in the tropical Atlantic have caused extensive droughts in rainforests of western Amazonia, exerting persistent effects on the forest canopy. In contrast, there have been no significant impacts on rainforests of West and Central Africa during the same period, despite large-scale droughts and rainfall anomalies during the same period. Using a combination of rainfall observations from meteorological stations from the Climate Research Unit (CRU; 1950-2009) and satellite observations of the Tropical Rainfall Measuring Mission (TRMM; 1998-2010), we show that West and Central Africa experienced strong negative water deficit (WD) anomalies over the last decade, particularly in 2005, 2006 and 2007. These anomalies were a continuation of an increasing drying trend in the region that started in the 1970s. We monitored the response of forests to extreme rainfall anomalies of the past decade by analysing the microwave scatterometer data from QuickSCAT (1999-2009) sensitive to variations in canopy water content and structure. Unlike in Amazonia, we found no significant impacts of extreme WD events on forests of Central Africa, suggesting potential adaptability of these forests to short-term severe droughts. Only forests near the savanna boundary in West Africa and in fragmented landscapes of the northern Congo Basin responded to extreme droughts with widespread canopy disturbance that lasted only during the period of WD. Time-series analyses of CRU and TRMM data show most regions in Central and West Africa experience seasonal or decadal extreme WDs (less than -600 mm). We hypothesize that the long-term historical extreme WDs with gradual drying trends in the 1970s have increased the adaptability of humid tropical forests in Africa to droughts.

  9. Distribution, Management Difficulty and Outcome of Branchial Anomalies.

    PubMed

    Sattar, M A; Sultana, M T; Ahmed, S

    2018-01-01

    Branchial arch anomalies are one of the most common congenital anomalies of the neck. Developmental anomalies of the branchial apparatus account for 17% of all pediatric cervical masses. This study aimed to focus on proper diagnosis of branchial anomaly and describe occurrence, presentation, management and outcome of usual and unusual types. This ten-year prospective observational study was conducted from November 2005 to November 2015 including 2-year postoperative follow-up of the patients in Department of ENT, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Total 89 patients were enrolled for this study. Information was recorded on Clinical examination, relevant investigation, Per-operative findings and Histo-pathological findings. After receiving Histo-pathological findings 61 cases were proved as branchial arch anomalies. Ultrasonography and Histopathology was done for every patient. Fistulogram and sinogram was done for patient of fistula and sinus respectively. CT scan was needed for 9 patients, MRI for 3 patients and 12 patient undergone FNAC. Outcomes of those patients were described in terms of Hospital stay, Complications and Follow up studies. Data analysis was done by Standard Statistical Method.Presentation of a number of participant's mimics Branchial arch anomalies; 4.91% was syndromal. Second branchial arch anomalies were the highest. Management was exclusively surgical. Recurrence rate was about 6.56%. Surgery is the tool for diagnosis, treatment, preventing complications, avoiding carcinoma for branchial arch anomalies.

  10. Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study

    PubMed Central

    Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860

  11. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  12. Global magnetic anomaly and aurora of Neptune

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates 'atmospheric drift shadows' within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora.

  13. Connecting thermodynamic and dynamical anomalies of water-like liquid-liquid phase transition in the Fermi-Jagla model

    NASA Astrophysics Data System (ADS)

    Higuchi, Saki; Kato, Daiki; Awaji, Daisuke; Kim, Kang

    2018-03-01

    We present a study using molecular dynamics simulations based on the Fermi-Jagla potential model, which is the continuous version of the mono-atomic core-softened Jagla model [J. Y. Abraham, S. V. Buldyrev, and N. Giovambattista, J. Phys. Chem. B 115, 14229 (2011)]. This model shows the water-like liquid-liquid phase transition between high-density and low-density liquids at the liquid-liquid critical point. In particular, the slope of the coexistence line becomes weakly negative, which is expected to represent one of the anomalies of liquid polyamorphism. In this study, we examined the density, dynamic, and thermodynamic anomalies in the vicinity of the liquid-liquid critical point. The boundaries of density, self-diffusion, shear viscosity, and excess entropy anomalies were characterized. Furthermore, these anomalies are connected according to Rosenfeld's scaling relationship between the excess entropy and the transport coefficients such as diffusion and viscosity. The results demonstrate the hierarchical and nested structures regarding the thermodynamic and dynamic anomalies of the Fermi-Jagla model.

  14. Improving the geological interpretation of magnetic and gravity satellite anomalies

    NASA Technical Reports Server (NTRS)

    Hinze, William J.; Braile, Lawrence W.; Vonfrese, Ralph R. B.

    1987-01-01

    Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions were made which make quantitative analysis more accurate. These include procedures for: screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; producing accurate gridded anomaly values at constant elevations from the orbital data by three-dimensional least squares collocation; increasing the stability of equivalent point source inversion and criteria for the selection of the optimum damping parameter; enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies. In addition, these techniques were utilized to investigate regional anomaly sources of North and South America and India and to provide constraints to continental reconstruction. Since the inception of this research study, eleven papers were presented with associated published abstracts, three theses were completed, four papers were published or accepted for publication, and an additional manuscript was submitted for publication.

  15. DOWN'S ANOMALY.

    ERIC Educational Resources Information Center

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  16. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies.

    PubMed

    Beste, A; Harrison, R J; Yanai, T

    2006-08-21

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.

  17. Warm Anomaly Effects on California Current Phytoplankton

    NASA Astrophysics Data System (ADS)

    Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.

    2016-02-01

    Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.

  18. Sharing AIS Related Anomalies (SARA)

    DTIC Science & Technology

    2016-03-01

    Maritime Integrated Command, Control and Communications IMO International Maritime Organization IQ Information Quality ISI Information Sharing...way to summarize level 1 anomalies, an Information Quality ( IQ ) approach was selected. One of the reasons to favour this approach is the option to...Ray [31], but with slightly different IQ dimensions. Six dimensions of IQ have been selected to describe level 2 anomalies (described in Table 3.1

  19. Deep-Water Acoustic Anomalies from Methane Hydrate in the Bering Sea

    USGS Publications Warehouse

    Wood, Warren T.; Barth, Ginger A.; Scholl, David W.; Lebedeva-Ivanova, Nina

    2015-01-01

    A recent expedition to the central Bering Sea, one of the most remote locations in the world, has yielded observations confirming gas and gas hydrates in this deep ocean basin. Significant sound speed anomalies found using inversion of pre-stack seismic data are observed in association with variable seismic amplitude anomalies in the thick sediment column. The anomalously low sound speeds below the inferred base of methane hydrate stability indicate the presence of potentially large quantities of gas-phase methane associated with each velocity-amplitude anomaly (VAMP). The data acquired are of such high quality that quantitative estimates of the concentrations of gas hydrates in the upper few hundred meters of sediment are also possible, and analyses are under way to make these estimates. Several VAMPs were specifically targeted in this survey; others were crossed incidentally. Indications of many dozens or hundreds of these features exist throughout the portion of the Bering Sea relevant to the U.S. extended continental shelf (ECS) consistent with the United Nations Convention on the Law of the Sea. 

  20. Potential energy hypersurface and molecular flexibility

    NASA Astrophysics Data System (ADS)

    Koča, Jaroslav

    1993-02-01

    The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.

  1. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil

    2016-06-01

    An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of

  2. Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B.

    1996-01-01

    This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).

  3. Prevalence and distribution of dental anomalies in orthodontic patients.

    PubMed

    Montasser, Mona A; Taha, Mahasen

    2012-01-01

    To study the prevalence and distribution of dental anomalies in a sample of orthodontic patients. The dental casts, intraoral photographs, and lateral panoramic and cephalometric radiographs of 509 Egyptian orthodontic patients were studied. Patients were examined for dental anomalies in number, size, shape, position, and structure. The prevalence of each dental anomaly was calculated and compared between sexes. Of the total study sample, 32.6% of the patients had at least one dental anomaly other than agenesis of third molars; 32.1% of females and 33.5% of males had at least one dental anomaly other than agenesis of third molars. The most commonly detected dental anomalies were impaction (12.8%) and ectopic eruption (10.8%). The total prevalence of hypodontia (excluding third molars) and hyperdontia was 2.4% and 2.8%, respectively, with similiar distributions in females and males. Gemination and accessory roots were reported in this study; each of these anomalies was detected in 0.2% of patients. In addition to genetic and racial factors, environmental factors could have more important influence on the prevalence of dental anomalies in every population. Impaction, ectopic eruption, hyperdontia, hypodontia, and microdontia were the most common dental anomalies, while fusion and dentinogenesis imperfecta were absent.

  4. Magnetic anomalies in the Cosmonauts Sea, off East Antarctica

    NASA Astrophysics Data System (ADS)

    Nogi, Y.; Hanyu, T.; Fujii, M.

    2017-12-01

    Identification of magnetic anomaly lineations and fracture zone trends in the Southern Indian Ocean, are vital to understanding the breakup of Gondwana. However, the magnetic spreading anomalies and fracture zones are not clear in the Southern Indian Ocean. Magnetic anomaly lineations in the Cosmonauts Sea, off East Antarctica, are key to elucidation of separation between Sri Lanka/India and Antarctica. No obvious magnetic anomaly lineations are observed from a Japanese/German aerogeophysical survey in the Cosmonauts Sea, and this area is considered to be created by seafloor spreading during the Cretaceous Normal Superchron. Vector magnetic anomaly measurements have been conducted on board the Icebreaker Shirase mainly to understand the process of Gondwana fragmentation in the Indian Ocean. Magnetic boundary strikes are derived from vector magnetic anomalies obtained in the Cosmonauts Sea. NE-SW trending magnetic boundary strikes are mainly observed along the several NW-SE oriented observation lines with magnetic anomaly amplitudes of about 200 nT. These NE-SW trending magnetic boundary strikes possibly indicate M-series magnetic anomalies that can not be detected from the aerogeophysical survey with nearly N-S observation lines. We will discuss the magnetic spreading anomalies and breakup process between Sri Lanka/India and Antarctica in the Cosmonauts Sea.

  5. Potential for natural evaporation as a reliable renewable energy resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre

    About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here in this paper we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. Wemore » estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.« less

  6. Potential for natural evaporation as a reliable renewable energy resource

    DOE PAGES

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; ...

    2017-09-26

    About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here in this paper we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. Wemore » estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.« less

  7. Shortening anomalies in supersymmetric theories

    DOE PAGES

    Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi; ...

    2017-01-17

    We present new anomalies in two-dimensional N = (2, 2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N = (2, 2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N = (2; 2). These anomalies explain why the conformal manifolds of the K 3 and T 4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why theremore » are no N = (2, 2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.« less

  8. Shortening anomalies in supersymmetric theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi

    We present new anomalies in two-dimensional N = (2, 2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N = (2, 2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N = (2; 2). These anomalies explain why the conformal manifolds of the K 3 and T 4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why theremore » are no N = (2, 2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.« less

  9. The Modulated Annual Cycle: An Alternative Reference Frame for Climate Anomalies

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2007-12-01

    In climate science, an anomaly is the deviation of a quantity from its annual cycle (AC). There are many ways to define annual cycle. Traditionally, the annual cycle is taken to be an exact repetition of itself year after year. This stationary annual cycle may not reflect well the intrinsic nonlinearity of the climate system, especially under external forcing. In this study, we have reexamined the reference frame for anomalies by reexamining the annual cycle. We propose an alternative reference frame, the modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining anomalies. In order for this alternative reference frame to be useful, we need to be able to define the instantaneous annual cycle. We therefore also introduce a new method to extract the MAC from climatic data. In the presence of an MAC, modulated in both amplitude and frequency, we can then define an alternative version of an anomaly, this time with respect to the instantaneous MAC rather than a permanent and unchanging AC. Based on this alternative definition of anomalies, we reexamine some familiar physical processes: in particular, the sea surface temperature (SST) reemergence and the ENSO phase locking to the annual cycle. We find that the re-emergence mechanism may be alternatively interpreted as an explanation of the change of the annual cycle instead of the interannual to interdecadal persistence of SST anomalies. We also find that the ENSO phase locking can largely be attributed to the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual cycle phase locked to the annual cycle itself. Two additional examples are also presented of the implications of using a MAC against which to define anomalies. We show that using MAC as a reference framework for anomaly can bypass the difficulty brought by concepts such

  10. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checkedmore » during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.« less

  11. Comparison of undulation difference accuracies using gravity anomalies and gravity disturbances. [for ocean geoid

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1980-01-01

    Errors in the outer zone contribution to oceanic undulation differences computed from a finite set of potential coefficients based on satellite measurements of gravity anomalies and gravity disturbances are analyzed. Equations are derived for the truncation errors resulting from the lack of high-degree coefficients and the commission errors arising from errors in the available lower-degree coefficients, and it is assumed that the inner zone (spherical cap) is sufficiently covered by surface gravity measurements in conjunction with altimetry or by gravity anomaly data. Numerical computations of error for various observational conditions reveal undulation difference errors ranging from 13 to 15 cm and from 6 to 36 cm in the cases of gravity anomaly and gravity disturbance data, respectively for a cap radius of 10 deg and mean anomalies accurate to 10 mgal, with a reduction of errors in both cases to less than 10 cm as mean anomaly accuracy is increased to 1 mgal. In the absence of a spherical cap, both cases yield error estimates of 68 cm for an accuracy of 1 mgal and between 93 and 160 cm for the lesser accuracy, which can be reduced to about 110 cm by the introduction of a perfect 30-deg reference field.

  12. Achieving Land, Energy, and Environmental Compatibility: Utility-Scale Solar Energy Potential and Land-Use in California

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Field, C. B.

    2013-12-01

    Solar energy is an archetype renewable energy technology with great potential to reduce greenhouse gas emissions when substituted for carbon-intensive energy. Utility-scale solar energy (USSE; i.e., > 1 MW) necessitates large quantities of space making the efficient use of land for USSE development critical to realizing its full potential. However, studies elucidating the interaction between land-use and utility-scale solar energy (USSE) are limited. In this study, we assessed 1) the theoretical and technical potential of terrestrial-based USSE systems, and 2) land-use and land-cover change impacts from actual USSE installations (> 20 MW; planned, under construction, operating), using California as a case study due to its early adoption of renewable energy systems, unique constraints on land availability, immense energy demand, and vast natural resources. We used topo-climatic (e.g., slope, irradiance), infrastructural (e.g., proximity to transmission lines), and ecological constraints (e.g., threatened and endangered species) to determine highly favorable, favorable, and unfavorable locations for USSE and to assess its technical potential. We found that the theoretical potential of photovoltaic (PV) and concentrating solar power (CSP) in California is 26,097 and 29,422 kWh/m2/day, respectively. We identified over 150 planned, under construction, and operating USSE installations in California, ranging in size from 20 to 1,000 MW. Currently, 29% are located on shrub- and scrublands, 23% on cultivated crop land, 13% on pasture/hay areas, 11% on grassland/herbaceous and developed open space, and 7% in the built environment. Understanding current land-use decisions of USSE systems and assessing its future potential can be instructive for achieving land, energy, and environmental compatibility, especially for other global regions that share similar resource demands and limitations.

  13. Long-term change of potential evapotranspiration over Southwest China and teleconnections with large-scale climate anomalies

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, X.; Li, Y.; Chen, Z.

    2017-12-01

    bstract: Potential evapotranspiration (PET) is a sensitive factor for atmospheric and ecological systems over Southwest China which is characterized by intensive karst geomorphology and fragile environment. Based on daily meteorological data of 94 stations during 1961-2013, the spatiotemporal characteristics of PET are analyzed. The changing characteristics of local meteorological factors and large-scale climatic features are also investigated to explain the potential reasons for changing PET. Study results are as follows: (1) The high-value center of PET with a mean value of 1097 mm/a locates in the south mainly resulted from the regional climatic features of higher air temperature (TEM), sunshine duration (SSD) and lower relative humidity (RHU); and the low-value center of PET with a mean value of 831 mm/a is in the northeast primarily attributed to higher RHU and weaker SSD. (2) Annual PET decreases at -10.04 mm decade-1 before the year 2000 but increases at 50.65 mm decade-1 thereafter; and the dominant factors of PET change are SSD, RHU and wind speed (WIN), with the relative contributions of 33.29%, 25.42% and 22.16%, respectively. (3) The abrupt change of PET in 2000 is strongly dominated by large-scale climatic anomalies. The strengthened 850hPa geostrophic wind (0.51 ms-1 decade-1), weakened total cloud cover (-2.25 % decade-1) and 500hPa water vapor flux (-2.85 % decade-1) have provided advantageous dynamic, thermal and dry conditions for PET over Southwest China since the 21st century.

  14. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  15. Teaching Potential Energy Functions and Stability with Slap Bracelets

    NASA Astrophysics Data System (ADS)

    Van Hook, Stephen J.

    2005-10-01

    The slap bracelet, an inexpensive child's toy, makes it easy to engage students in hands-on exploration of potential energy curves as well as of stable, unstable, and meta-stable states. Rather than just observing the teacher performing a demonstration, the students can manipulate the equipment themselves and make their own observations, which are then pooled to focus a class discussion on potential energy functions and stability.

  16. Esthetic dental anomalies as motive for bullying in schoolchildren

    PubMed Central

    Scheffel, Débora Lopes Salles; Jeremias, Fabiano; Fragelli, Camila Maria Bullio; dos Santos-Pinto, Lourdes Aparecida Martins; Hebling, Josimeri; de Oliveira, Osmir Batista

    2014-01-01

    Facial esthetics, including oral esthetics, can severely affect children's quality-of-life, causing physical, social and psychological impairment. Children and adolescents with esthetic-related dental malformations are potential targets for bullies. This study was aimed to present and discuss patients who suffered from bullying at school and family environment due to esthetic-related teeth anomalies. Providing an adequate esthetic dental treatment is an important step in their rehabilitation when the lack of esthetic is the main source of bullying. After dental treatment, we noted significant improvement in self-esteem, self-confidence, socialization and academic performance of all patients and improvement in parental satisfaction regarding the appearance of their children. It is imperative that both family and school care providers be constantly alert about bullying in order to prevent or interrupt aggressive and discriminatory practices against children and adolescents. Clearly, dental anomalies may be a motive for bullying. PMID:24966759

  17. Identification of Interplanetary Coronal Mass Ejections at 1 AU Using Multiple Solar Wind Plasma Composition Anomalies

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions

  18. Soil Moisture Anomaly as Predictor of Crop Yield Deviation in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Schwarze, Reimund; Meyer, Volker; Samaniego, Luis

    2016-04-01

    Natural hazards, such as droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany (COPA-COGECA 2003). Predicting crop yields allows to economize the mitigation of risks of weather extremes. Economic approaches for quantifying agricultural impacts of natural hazards mainly rely on temperature and related concepts. For instance extreme heat over the growing season is considered as best predictor of corn yield (Auffhammer and Schlenker 2014). However, those measures are only able to provide a proxy for the available water content in the root zone that ultimately determines plant growth and eventually crop yield. The aim of this paper is to analyse whether soil moisture has a causal effect on crop yield that can be exploited in improving adaptation measures. For this purpose, reduced form fixed effect panel models are developed with yield as dependent variable for both winter wheat and silo maize crops. The explanatory variables used are soil moisture anomalies, precipitation and temperature. The latter two are included to estimate the current state of the water balance. On the contrary, soil moisture provides an integrated signal over several months. It is also the primary source of water supply for plant growth. For each crop a single model is estimated for every month within the growing period to study the variation of the effects over time. Yield data is available for Germany as a whole on the level of administrative districts from 1990 to 2010. Station data by the German Weather Service are obtained for precipitation and temperature and are aggregated to the same spatial units. Simulated soil moisture computed by the mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) is transformed into Soil Moisture Index (SMI), which represents the monthly soil water quantile and hence accounts directly for the water content available to plants. The results

  19. Semiclassical anomalies of the quantum mechanical systems and their modifications for the asymptotic matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniz, Coskun, E-mail: coskun.deniz@ege.edu.tr

    JWKB solutions to the Initial Value Problems (IVPs) of the Time Independent Schrodinger's Equation (TISE) for the Simple Linear Potentials (SLPs) with a turning point parameter have been studied according to the turning points by graphical analysis to test the results of the JWKB solutions and suggested modifications. The anomalies happening in the classically inaccessible region where the SLP function is smaller than zero and the results of the suggested modifications, which are in consistent with the quantum mechanical theories, to remove these anomalies in this region have been presented. The origins of the anomalies and verifications of the suggestedmore » modifications showing a great success in the results have also been studied in terms of a suggested M{sub ij}=S{sup {approx}}{sub i-1,j} matrix elements made up of the JWKB expansion terms, S{sub i-1,j} (where i = 1, 2, 3 and j 1, 2). The results of the modifications for the IVPs and their application to the Bound State Problems (BSPs) with an example application of the Harmonic Oscillator (HO) have been presented and their generalization for any potential function have been discussed and classified accordingly.« less

  20. Conditional anomaly detection methods for patient–management alert systems

    PubMed Central

    Valko, Michal; Cooper, Gregory; Seybert, Amy; Visweswaran, Shyam; Saul, Melissa; Hauskrecht, Milos

    2010-01-01

    Anomaly detection methods can be very useful in identifying unusual or interesting patterns in data. A recently proposed conditional anomaly detection framework extends anomaly detection to the problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly always depends (is conditioned) on the value of remaining attributes. The work presented in this paper focuses on instance–based methods for detecting conditional anomalies. The methods rely on the distance metric to identify examples in the dataset that are most critical for detecting the anomaly. We investigate various metrics and metric learning methods to optimize the performance of the instance–based anomaly detection methods. We show the benefits of the instance–based methods on two real–world detection problems: detection of unusual admission decisions for patients with the community–acquired pneumonia and detection of unusual orders of an HPF4 test that is used to confirm Heparin induced thrombocytopenia — a life–threatening condition caused by the Heparin therapy. PMID:25392850

  1. Detailed gravity anomalies from Geos 3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1979-01-01

    Detailed gravity anomalies are computed from a combination of Geos 3 satellite altimeter and terrestrial gravity data using least-squares principles. The mathematical model used is based on the Stokes' equation modified for a nonglobal solution. Using Geos 3 data in the calibration area, the effects of several anomaly parameter configurations and data densities/distributions on the anomalies and their accuracy estimates are studied. The accuracy estimates for 1 deg x 1 deg mean anomalies from low density altimetry data are of the order of 4 mgal. Comparison of these anomalies with the terrestrial data and also with Rapp's data derived using collocation techniques show rms differences of 7.2 and 4.9 mgal, respectively. Indications are that the anomaly accuracies can be improved to about 2 mgal with high density data. Estimation of 30 in. x 30 in. mean anomalies indicates accuracies of the order of 5 mgal. Proper verification of these results will be possible only when accurate ground truth data become available.

  2. Application of Array Comparative Genomic Hybridization in Newborns with Multiple Congenital Anomalies.

    PubMed

    Szczałuba, Krzysztof; Nowakowska, Beata; Sobecka, Katarzyna; Smyk, Marta; Castaneda, Jennifer; Klapecki, Jakub; Kutkowska-Kaźmierczak, Anna; Śmigiel, Robert; Bocian, Ewa; Radkowski, Marek; Demkow, Urszula

    2016-01-01

    Major congenital anomalies are detectable in 2-3 % of the newborn population. Some of their genetic causes are attributable to copy number variations identified by array comparative genomic hybridization (aCGH). The value of aCGH screening as a first-tier test in children with multiple congenital anomalies has been studied and consensus adopted. However, array resolution has not been agreed upon, specifically in the newborn or infant population. Moreover, most array studies have been focused on mixed populations of intellectual disability/developmental delay with or without multiple congenital anomalies, making it difficult to assess the value of microarrays in newborns. The aim of the study was to determine the optimal quality and clinical sensitivity of high-resolution array comparative genomic hybridization in neonates with multiple congenital anomalies. We investigated a group of 54 newborns with multiple congenital anomalies defined as two or more birth defects from more than one organ system. Cytogenetic studies were performed using OGT CytoSure 8 × 60 K microarray. We found ten rearrangements in ten newborns. Of these, one recurrent syndromic microduplication was observed, whereas all other changes were unique. Six rearrangements were definitely pathogenic, including one submicroscopic and five that could be seen on routine karyotype analysis. Four other copy number variants were likely pathogenic. The candidate genes that may explain the phenotype were discussed. In conclusion, high-resolution array comparative hybridization can be applied successfully in newborns with multiple congenital anomalies as the method detects a significant number of pathogenic changes, resulting in early diagnoses. We hypothesize that small changes previously considered benign or even inherited rearrangements should be classified as potentially pathogenic at least until a subsequent clinical assessment would exclude a developmental delay or dysmorphism.

  3. Mass Energy Equivalence Formula Must Include Rotational and Vibrational Kinetuic Energies as Well As Potential Energies

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-11-01

    Originally Einstein proposed the the mass-energy equivalence at low speeds as E=mc^2 + 1/2 mv^2. However, a mass may also be rotating and vibrating as well as moving linearly. Although small, these kinetic energies must be included in formulating a true mathematical statement of the mass-energy equivalence. Also, gravitational, electromagneic and magnetic potential energies must be included in the mass-energy equivalence mathematical statement. While the kinetic energy factors may differ in each physical situation such as types of vibrations and rotations, the basic equation for the mass- energy equivalence is therefore E = m0c^2 + 1/2m0v^2 + 1/2I2̂+ 1/2kx^2 + WG+ WE+ WM.

  4. Dental and oral anomalies in incontinentia pigmenti: a systematic review.

    PubMed

    Minić, Snežana; Trpinac, Dušan; Gabriel, Heinz; Gencik, Martin; Obradović, Miljana

    2013-01-01

    Incontinentia pigmenti (IP) is an X-linked genodermatosis caused by a mutation of the IKBKG gene. The objective of this study was to present a systematic review of the dental and oral types of anomalies, to determine the total number and sex distribution of the anomalies, and to analyze possible therapies. We analyzed the literature data from 1,286 IP cases from the period 1993-2010. Dental and/or oral anomalies were diagnosed for 54.38% of the investigated IP patients. Most of the anomaly types were dental, and the most frequent of these were dental shape anomalies, hypodontia, and delayed dentition. The most frequent oral anomaly types were cleft palate and high arched palate. IKBKG exon 4-10 deletion was present in 86.36% of genetically confirmed IP patients. According to the frequency, dental and/or oral anomalies represent the most frequent and important IP minor criteria. The most frequent mutation was IKBKG exon 4-10 deletion. The majority of dental anomalies and some of the oral anomalies could be corrected. Because of the presence of cleft palate and high arched palate in IP patients, these two anomalies may be considered as diagnostic IP minor criteria as well.

  5. Realistic model for a fifth force explaining anomaly in Be8* →8Bee+e- decay

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; He, Xiao-Gang

    2017-06-01

    We propose a theoretical model to explain a 6.8 σ anomaly recently reported in the opening angle and invariant mass distributions of e+e- pairs produced in excited Be8* nuclear transition to its ground state 8B e. The anomaly is explained by a fifth force mediated by a 17 MeV X boson through the decay Be8* →8Be X followed by X →e+e-. The X boson comes from extension of the standard model with two additional U(1) gauge symmetries producing a protophobic pure vector current interaction with quarks. The model also contains axial-vector current interaction. Although the existent axial-vector current interactions are strongly constrained by the measurement of parity violation in e-quark scattering, their contributions cancel out in the iso-scalar interaction for Be8* →8Be X. It is remarkable that the model parameters need to explain the anomaly survive all known low energy experimental constraints. The model may also alleviate the long-standing (g - 2)μ anomaly problem and can be probed by the LHCb experiment.

  6. Debendox does not cause the Poland anomaly.

    PubMed Central

    David, T J

    1982-01-01

    The suggestion that Debendox may cause the Poland anomaly is refuted by a study of the antenatal drug exposure in 46 cases of the Poland anomaly and 32 cases of isolated absence of the pectoralis major. Debendox had been prescribed in one case of the Poland anomaly and in one case of isolated pectoralis absence, but in neither was the compound given during organogenesis. In none of the 78 cases could Debendox be causally implicated. PMID:7092316

  7. Feasibility of anomaly detection and characterization using trans-admittance mammography with 60 × 60 electrode array

    NASA Astrophysics Data System (ADS)

    Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong

    2014-10-01

    Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.

  8. Application of isostatic gravity anomaly in the Yellow Sea area

    NASA Astrophysics Data System (ADS)

    Hao, Z.; Qin, J.; Huang, W.; Wu, X.

    2017-12-01

    In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy

  9. Cascade of Quantum Transitions and Magnetocaloric Anomalies in an Open Nanowire

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Mitskan, V. A.; Shustin, M. S.

    2017-12-01

    A sequence of magnetocaloric anomalies occurring with the change in a magnetic field H is predicted for an open nanowire with the Rashba spin-orbit coupling and the induced superconducting pairing potential. The nature of such anomalies is due to the cascade of quantum transitions related to the successive changes in the fermion parity of the nanowire ground state with the growth of the magnetic field. It is shown that the critical H c values fall within the parameter range corresponding to the nontrivial values of the Z 2 topological invariant of the corresponding 1D band Hamiltonian characteristic of the D symmetry class. It is demonstrated that such features in the behavior of the open nanowire are retained even in the presence of Coulomb interactions.

  10. Topological Origin of the Network Dilation Anomaly in Ion-Exchanged Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Mengyi; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Bauchy, Mathieu

    2017-11-01

    Ion exchange is commonly used to strengthen oxide glasses. However, the resulting stuffed glasses usually do not reach the molar volume of as-melted glasses of similar composition—a phenomenon known as the network dilation anomaly. This behavior seriously limits the potential for the chemical strengthening of glasses and its origin remains one of the mysteries of glass science. Here, based on molecular dynamics simulations of sodium silicate glasses coupled with topological constraint theory, we show that the topology of the atomic network controls the extent of ion-exchange-induced dilation. We demonstrate that isostatic glasses do not show any network dilation anomaly. This is found to arise from the combined absence of floppy modes of deformation and internal eigenstress in isostatic atomic networks.

  11. First branchial cleft anomalies: otologic manifestations and treatment outcomes.

    PubMed

    Shinn, Justin R; Purcell, Patricia L; Horn, David L; Sie, Kathleen C Y; Manning, Scott C

    2015-03-01

    This study describes the presentation of first branchial cleft anomalies and compares outcomes of first branchial cleft with other branchial cleft anomalies with attention to otologic findings. Case series with chart review. Pediatric tertiary care facility. Surgical databases were queried to identify children with branchial cleft anomalies. Descriptive analysis defined sample characteristics. Risk estimates were calculated using Fisher's exact test. Queries identified 126 subjects: 27 (21.4%) had first branchial cleft anomalies, 80 (63.4%) had second, and 19 (15.1%) had third or fourth. Children with first anomalies often presented with otologic complications, including otorrhea (22.2%), otitis media (25.9%), and cholesteatoma (14.8%). Of 80 children with second branchial cleft anomalies, only 3 (3.8%) had otitis. Compared with children with second anomalies, children with first anomalies had a greater risk of requiring primary incision and drainage: 16 (59.3%) vs 2 (2.5%) (relative risk [RR], 3.5; 95% confidence interval [CI], 2.4-5; P<.0001). They were more likely to have persistent disease after primary excision: 7 (25.9%) vs 2 (2.5%) (RR, 3; 95% CI, 1.9-5; P=.0025). They were more likely to undergo additional surgery: 8 (29.6%) vs 3 (11.1%) (RR, 2.9; 95% CI, 1.8-4.7; P=.0025). Of 7 persistent first anomalies, 6 (85.7%) were medial to the facial nerve, and 4 (57.1%) required ear-specific surgery for management. Children with first branchial cleft anomalies often present with otologic complaints. They are at increased risk of persistent disease, particularly if anomalies lie medial to the facial nerve. They may require ear-specific surgery such as tympanoplasty. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  12. Dental anomalies in primary dentition and their corresponding permanent teeth.

    PubMed

    Gomes, R R; Fonseca, J A C; Paula, L M; Acevedo, A C; Mestrinho, H D

    2014-05-01

    The objectives of this paper are to estimate the prevalence of dental anomalies in primary dentition in a sample of 2- to 5-year-old Brazilian preschool children, determine their distribution, and investigate their occurrence in the succedaneous teeth of the sample compared with a control group of children with no dental anomalies in the primary dentition. The one-stage sample comprised 1,718 two to five-year-old children with fully erupted primary dentition clinically examined for dental anomalies. All children presenting dental anomalies underwent panoramic radiographs. Descriptive statistics were performed for the studied variables. A control group matched by sex and age was studied to compare the prevalence ratio for dental anomalies in the permanent dentition. The prevalence of dental anomalies in the primary dentition was 1.8 %, with no significant statistical difference between sexes. Double teeth were the most frequently observed. Dental anomalies on the succedaneous permanent teeth were diagnosed in 54.8 % of the children with affected primary dentition. The prevalence ratio (PR) for dental anomalies in the succedaneous permanent teeth was 17.1 (confidence interval (CI) 5.33-54.12) higher compared with the control group, higher in children with bilateral anomalies (PR = 31.2, CI 10.18-94.36). An association between anomalies of the permanent dentition and the presence of dental anomalies in primary teeth was observed, especially when they occur bilaterally. The results in the present study have a clinical relevance in the diagnosis of children with dental anomalies in primary dentition. Early identification of these anomalies can aid the dentist in planning dental treatment at the appropriate time.

  13. Thermodynamic potential of free energy for thermo-elastic-plastic body

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.; Pająk, J.

    2018-01-01

    The procedure of derivation of thermodynamic potential of free energy (Helmholtz free energy) for a thermo-elastic-plastic body is presented. This procedure concerns a special thermodynamic model of a thermo-elastic-plastic body with isotropic hardening characteristics. The classical thermodynamics of irreversible processes for material characterized by macroscopic internal parameters is used in the derivation. Thermodynamic potential of free energy may be used for practical determination of the level of stored energy accumulated in material during plastic processing applied, e.g., for industry components and other machinery parts received by plastic deformation processing. In this paper the stored energy for the simple stretching of austenitic steel will be presented.

  14. Gravity anomalies on Venus

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Phillips, R. J.; Birkeland, P. W.; Wimberly, R. N.

    1980-01-01

    Doppler radio tracking of the Pioneer Venus orbiter has provided gravity measures over a significant portion of Venus. Feature resolution is approximately 300-1000 km within an area extending from 10 deg S to 40 deg N latitude and from 70 deg W to 130 deg E longitude (approximately equal to 200 deg). Many anomalies were detected, and there is considerable correlation with radar altimetry topography (Pettengill et al., 1980). The amplitudes of the anomalies are relatively mild and similar to those on earth at this resolution. Calculations for isostatic adjustment reveal that significant compensation has occurred.

  15. Potential energy surface of cyclooctatetraene

    NASA Astrophysics Data System (ADS)

    Andrés, José L.; Castaño, Obis; Morreale, Antonio; Palmeiro, Raul; Gomperts, Roberto

    1998-01-01

    We present a theoretical study of the cyclooctatetraene (COT) molecule. Seven COT structures are located on the singlet ground state potential energy surface. Four of them, which present D2d (tub), Cs (bicyclo[4.2.0]octa-2,4,7-triene or BOT), C2h (chair) and D4 (crown) symmetries are stable species, and the other three are transition state structures showing Cs, D4h, and D8h symmetry. We discuss the symmetry of wave functions for these stationary points. Geometries, energies, and harmonic vibrational frequencies of these structures, and energy gaps between singlet-triplet states and low-lying singlets are presented. For the planar D4h and D8h structures, Jahn-Teller and tunneling effects have also been discussed. Ring inversion, bond shifting and valence isomerization reactive channels from the tub COT conformer are discussed from the point of view of the corresponding transition state structures. Where possible, in order to lend support to this theoretical information comparisons with recent transition state spectroscopy data are made.

  16. Energy-switching potential energy surface for ground-state C3

    NASA Astrophysics Data System (ADS)

    Rocha, C. M. R.; Varandas, A. J. C.

    2018-05-01

    The multiple energy switching scheme [J. Chem. Phys. 119 (2003) 2596] has been used to improve the double many-body expansion (DMBE II) potential energy surface of C3 near its linear global minima by morphing it with an accurate Taylor-series expansion [J. Chem. Phys. 144 (2016) 044307]. The final ES form attains the accuracy of the local form in reproducing the rovibrational spectrum of C3 while keeping unaltered all key attributes of the original DMBE II, namely conical intersection seams and dissociative channels. The ES form is therefore commended for adiabatic spectroscopic and reaction dynamics studies.

  17. [Rare umbilical anomalies].

    PubMed

    Kysucan, J; Malý, T; Neoral, C

    2010-12-01

    Umbilicus is a scar, which is the place of the previous merger of the fetus with the umbilical cord. After birth, it has no known function, however, unless the umbilical annulus is completely closed, umbilical hernia may occur. Umbilical scar is also an area where may occur a number of anomalies that may be present alone or together with umbilical hernia. Failure of involution leads to persistence of omphalomesenteric duct and urachal remnants. These embryonic remnants may cause more or less significant clinical problems, or may be completely asymptomatic and may be diagnosed at random. The authors present their own group of patients who were diagnosed and dealt with the defect omphalomesenteric duct or urachus. In past 7 years we observed 35 children with these abnormalities. A large group of patients represents incidental findings during elective surgery for umbilical hernia. Another large group are patients with symptomatic or asymptomatic Meckel's diverticulum. The anatomical observations, clinical manifestations, complications and treatment of these anomalies are mentioned. A total of 35 children were found with these birth defects. In 23 cases we observed omphalomesenteric duct disorders and 12 urachal remnants were reported. Of these, 12 abnormalities were found incidentally during elative procedure for umbilical hernia. Asymptomatic or symptomatic Meckel's diverticulum appeared in 16 cases. Surgical treatment included resection or exstirpation, if urachal anomaly was accompanied then partial resection of the bladder vertex was added. Postoperative complications emerged in 4 cases, three times it was ileus from adhesions 6 months after surgery, once postoperative cystitis appeared and was treated conservatively. Birth abnormalities of the umbilicus are relatively rare diseases that may occur in the pediatric population. Omfalomesenteric duct and urachal anomalies constitute a major group of these congenital disorders and are often associated with umbilical

  18. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  19. Whole exome sequence analysis of Peters anomaly

    PubMed Central

    Weh, Eric; Reis, Linda M.; Happ, Hannah C.; Levin, Alex V.; Wheeler, Patricia G.; David, Karen L.; Carney, Erin; Angle, Brad; Hauser, Natalie

    2015-01-01

    Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the frst study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly. PMID:25182519

  20. Domain walls and the C P anomaly in softly broken supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Draper, Patrick

    2018-04-01

    In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with Nfanomaly is associated with the existence of multiple domain wall trajectories through field space, including walls which support no nontrivial massless excitations. In cases with an anomaly such walls are forbidden, and their absence in the relevant SQCD theories can be seen directly from the geometry of the low energy field space. In the case Nf=N -1 , multiple approximately Bogomol'nyi-Prasad-Sommerfield walls connect the vacua. Corrections to their tensions can be computed at leading order in the soft breaking parameters, producing a phase diagram for the stable wall trajectory. We also comment on domain walls in the similar case of QCD with an adjoint and fundamental flavors, and on the impact of adding an axion in this theory.

  1. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies

    NASA Astrophysics Data System (ADS)

    Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing

    2017-11-01

    The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.

  2. Potential for natural evaporation as a reliable renewable energy resource.

    PubMed

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  3. Possible explanation of the atmospheric kinetic and potential energy spectra.

    PubMed

    Vallgren, Andreas; Deusebio, Enrico; Lindborg, Erik

    2011-12-23

    We hypothesize that the observed wave number spectra of kinetic and potential energy in the atmosphere can be explained by assuming that there are two related cascade processes emanating from the same large-scale energy source, a downscale cascade of potential enstrophy, giving rise to the k(-3) spectrum at synoptic scales and a downscale energy cascade giving rise to the k(-5/3) spectrum at mesoscales. The amount of energy which is going into the downscale energy cascade is determined by the rate of system rotation, with negligible energy going downscale in the limit of very fast rotation. We present a set of simulations of a system with strong rotation and stratification, supporting these hypotheses and showing good agreement with observations.

  4. Ionospheric winter anomaly and annual anomaly observed from Formosat-3/COSMIC Radio Occultation observations during the ascending phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sai Gowtam, V.; Tulasi Ram, S.

    2017-10-01

    Ionospheric winter and annual anomalies have been investigated during the ascending phase of solar cycle 24 using high-resolution global 3D - data of the FORMOSAT - 3/COSMIC (Formosa satellite - 3/Constellation Observing System for Meterology, Ionosphere and Climate) radio occultation observations. Our detailed analysis shows that the occurrence of winter anomaly at low-latitudes is confined only to the early morning to afternoon hours, whereas, the winter anomaly at mid-latitudes is almost absent at all local times during the ascending phase of solar cycle 24. Further, in the topside ionosphere (altitudes of 400 km and above), the winter anomaly is completely absent at all local times. In contrast, the ionospheric annual anomaly is consistently observed at all local times and altitudes during this ascending phase of solar cycle 24. The annual anomaly exhibits strong enhancements over southern EIA crest latitudes during day time and around Weddle Sea Anomaly (WSA) region during night times. The global mean annual asymmetry index is also computed to understand the altitudinal variation. The global mean AI maximizes around 300-500 km altitudes during the low solar active periods (2008-10), whereas it extends up to 600 km during moderate to high (2011) solar activity period. These findings from our study provide new insights to the current understanding of the annual anomaly.

  5. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.

    1984-01-01

    The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.

  6. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  7. Potential Energy Cost Savings from Increased Commercial Energy Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.

    2016-08-22

    An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed officemore » buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.« less

  8. Domain Anomaly Detection in Machine Perception: A System Architecture and Taxonomy.

    PubMed

    Kittler, Josef; Christmas, William; de Campos, Teófilo; Windridge, David; Yan, Fei; Illingworth, John; Osman, Magda

    2014-05-01

    We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifaceted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature. To illustrate some of its distinguishing features, in here the domain anomaly detection methodology is applied to the problem of anomaly detection for a video annotation system.

  9. B-decay anomalies in Pati-Salam SU(4)

    NASA Astrophysics Data System (ADS)

    Barbieri, Riccardo; Tesi, Andrea

    2018-03-01

    Attempts to incorporate in a coherent picture the B-decay anomalies presumably observed in b→ c and b→ s semi-leptonic decays have to face the absence of signals in other related experiments, both at low and at high energies. By extending and making more precise the content of Barbieri et al. (Eur Phys J C 77(1):8, 2017), we describe one such attempt based on the Pati-Salam SU(4) group, that unifies colour and the B- L charge, in the context of a new strongly interacting sector, equally responsible for producing a pseudo-Goldstone Higgs boson.

  10. Congenital anomalies of the limbs in mythology and antiquity.

    PubMed

    Mavrogenis, Andreas F; Markatos, Konstantinos; Nikolaou, Vasilios; Gartziou-Tatti, Ariadne; Soucacos, Panayotis N

    2018-04-01

    Congenital anomalies of the limbs have been observed since ancient human civilizations, capturing the imagination of ancient physicians and people. The knowledge of the era could not possibly theorize on the biologic aspects of these anomalies; however, from the very beginning of civilization the spiritual status of people attempted to find a logical explanation for the existence of such cases. The next logical step of the spiritual and religious system of the ancients was to correlate these anomalies with the Gods and to attribute them to a different level of existence in order to rationalize their existence. In these settings, the mythology and religious beliefs of ancient civilizations comprised several creatures that were related to the observed congenital anomalies in humans. The purpose of this historic review is to summarize the depiction of congenital anomalies of the limbs in mythology and antiquity, to present several mythological creatures with resemblance to humans with congenital anomalies of the limbs, to present the atmosphere of the era concerning the congenital anomalies, and to theorize on the anomaly and medical explanation upon which such creatures were depicted. Our aim is to put historic information in one place, creating a comprehensive review that the curious reader would find interesting and enjoyable.

  11. Regional prediction of long-term landfill gas to energy potential.

    PubMed

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The prevalence of dental anomalies in a turkish population.

    PubMed

    Aren, Gamze; Guven, Yeliz; Guney Tolgay, Ceren; Ozcan, Ilknur; Bayar, Ozlem Filiz; Kose, Taha Emre; Koyuncuoglu, Gulhan; Ak, Gulsum

    2015-01-01

    The aim of the present study was to investigate the prevalence of dental anomalies in a Turkish population according to the gender and age. A retrospective study was performed using panoramic radiographs of 2025 patients (885 males and 1140 females) ranging in age from 9 to 35 (mean age 25.61±10.04) years attending Department of Oral Radiology, University of Istanbul, Faculty of Dentistry. These patients were examined to determine the presence of developmental dental anomalies involving hypodontia, hyperdontia, microdontia, taurodontism and other root anomalies. The incidence of these anomalies were assessed according to the gender and age. Among the 2025 subjects, a total of 96 individuals (42 males and 54 females) showed at least one of the selected dental anomalies (4.74%). Tooth agenesis was the most common dental abnormality (1.77%) followed by taurodontism (1.18%), hyperdontia (0.79%), microdontia (0.54%) and root anomalies (0.44%), respectively. Tooth agenesis is the most common developmental dental anomaly in the studied Turkish population followed by taurodontism.

  13. Barium and neodymium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Mcculloch, M. T.; Wasserburg, G. J.

    1978-01-01

    The discovery of Ba and Nd isotopic anomalies in two inclusions from the Allende meteorite is reported. The inclusions are Ca-Al-rich objects typical of the type considered as high-temperature condensation products in the solar nebula and contain distinctive Mg and O isotopic anomalies of the FUN (mass Fractionation, Unknown Nuclear processes) type. Mass-spectrometry results are discussed which show that inclusion C1 has anomalies in Ba at masses 134 and 136, while inclusion EK1-4-1 exhibits large marked negative anomalies at 130, 132, 134, and 136, as well as a positive anomaly at 137. It is also found that inclusion EK1-4-1 shows marked negative anomalies in Nd at masses 142, 146, 148, and 150, in addition to a positive anomaly at 145. These isotopic shifts are attributed to addition of r-process nuclei rather than mass fractionation. It is suggested that an onion-shell supernova explosion followed by injection into the solar nebula is the most likely generic model that may explain the observations.

  14. San Jose, California: Evaluating Local Solar Energy Generation Potential (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    This fact sheet "San Jose, California: Evaluating Local Solar Energy Generation Potential" explains how the City of San Jose used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  15. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  16. Congenital anomalies

    PubMed Central

    Kunisaki, Shaun M.

    2012-01-01

    Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital anomalies diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital anomalies. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed. PMID:22986340

  17. An Unsupervised Deep Hyperspectral Anomaly Detector

    PubMed Central

    Ma, Ning; Peng, Yu; Wang, Shaojun

    2018-01-01

    Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background distribution and the detection of interesting local objects is not straightforward, and anomaly detectors may give false alarms. In this paper, a Deep Belief Network (DBN) based anomaly detector is proposed. The high-level features and reconstruction errors are learned through the network in a manner which is not affected by previous background distribution assumption. To reduce contamination by local anomalies, adaptive weights are constructed from reconstruction errors and statistical information. By using the code image which is generated during the inference of DBN and modified by adaptively updated weights, a local Euclidean distance between under test pixels and their neighboring pixels is used to determine the anomaly targets. Experimental results on synthetic and recorded HSI datasets show the performance of proposed method outperforms the classic global Reed-Xiaoli detector (RXD), local RX detector (LRXD) and the-state-of-the-art Collaborative Representation detector (CRD). PMID:29495410

  18. Magnetic and gravity anomalies in the Americas

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The cleaning and magnetic tape storage of spherical Earth processing programs are reported. These programs include: NVERTSM which inverts total or vector magnetic anomaly data on a distribution of point dipoles in spherical coordinates; SMFLD which utilizes output from NVERTSM to compute total or vector magnetic anomaly fields for a distribution of point dipoles in spherical coordinates; NVERTG; and GFLD. Abstracts are presented for papers dealing with the mapping and modeling of magnetic and gravity anomalies, and with the verification of crustal components in satellite data.

  19. Electromagnetic duality and entanglement anomalies

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Michel, Ben; Wall, Aron C.

    2017-08-01

    Duality is an indispensable tool for describing the strong-coupling dynamics of gauge theories. However, its actual realization is often quite subtle: quantities such as the partition function can transform covariantly, with degrees of freedom rearranged in a nonlocal fashion. We study this phenomenon in the context of the electromagnetic duality of Abelian p -forms. A careful calculation of the duality anomaly on an arbitrary D -dimensional manifold shows that the effective actions agree exactly in odd D , while in even D they differ by a term proportional to the Euler number. Despite this anomaly, the trace of the stress tensor agrees between the dual theories. We also compute the change in the vacuum entanglement entropy under duality, relating this entanglement anomaly to the duality of an "edge mode" theory in two fewer dimensions. Previous work on this subject has led to conflicting results; we explain and resolve these discrepancies.

  20. Familial polythelia without associated anomalies.

    PubMed

    Casey, H D; Chasan, P E; Chick, L R

    1996-01-01

    Of the many forms of supernumerary breast tissue, the most common form is the isolated presence of an accessory nipple, polythelia. While familial polythelia is recognized, it is extremely rare. In the past several years, polythelia has been noted to be associated with nephrourological anomalies. All reports of such a relationship are in random, nonfamilial cases of polythelia. We report three cases of polythelia in a family over two generations who had no urinary tract abnormalities. Discussion includes a comprehensive review of familial polythelia and its association with renal anomalies. From this review, the association of familial polythelia with nephrourological abnormalities will be delineated. Although in this report of a single family with polythelia we did not demonstrate any renal anomalies, we feel that a thorough physical exam, urine analysis, and renal ultrasound should be pursued in any patient with a significant familial history of polythelia.

  1. Solving the muon g -2 anomaly in deflected anomaly mediated SUSY breaking with messenger-matter interactions

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Wenyu; Yang, Jin Min

    2017-10-01

    We propose to introduce general messenger-matter interactions in the deflected anomaly mediated supersymmetry (SUSY) breaking (AMSB) scenario to explain the gμ-2 anomaly. Scenarios with complete or incomplete grand unified theory (GUT) multiplet messengers are discussed, respectively. The introduction of incomplete GUT mulitiplets can be advantageous in various aspects. We found that the gμ-2 anomaly can be solved in both scenarios under current constraints including the gluino mass bounds, while the scenarios with incomplete GUT representation messengers are more favored by the gμ-2 data. We also found that the gluino is upper bounded by about 2.5 TeV (2.0 TeV) in scenario A and 3.0 TeV (2.7 TeV) in scenario B if the generalized deflected AMSB scenarios are used to fully account for the gμ-2 anomaly at 3 σ (2 σ ) level. Such a gluino should be accessible in the future LHC searches. Dark matter (DM) constraints, including DM relic density and direct detection bounds, favor scenario B with incomplete GUT multiplets. Much of the allowed parameter space for scenario B could be covered by the future DM direct detection experiments.

  2. Topological responses from chiral anomaly in multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Huang, Ze-Min; Zhou, Jianhui; Shen, Shun-Qing

    2017-08-01

    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.

  3. Anomaly General Circulation Models.

    NASA Astrophysics Data System (ADS)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  4. Invesigation of prevalence of dental anomalies by using digital panoramic radiographs.

    PubMed

    Bilge, Nebiha Hilal; Yeşiltepe, Selin; Törenek Ağırman, Kübra; Çağlayan, Fatma; Bilge, Osman Murat

    2017-09-21

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 6 to 40 year-old patients by using panoramic radiographs. This cross-sectional study was conducted by analyzing digital panoramic radiographs of 1200 patients admitted to our clinic in 2014. Dental anomalies were examined under 5 types and 16 subtypes. Dental anomalies were divided into five types: (a) number (including hypodontia, oligodontia and hyperdontia); (b) size (including microdontia and macrodontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia); (d) position (including transposition, ectopia, displacement, impaction and inversion); (e) shape (including fusion-gemination, dilaceration and taurodontism); RESULTS: The prevalence of dental anomalies diagnosed by panoramic radiographs was 39.2% (men (46%), women (54%)). Anomalies of position (60.8%) and shape (27.8%) were the most common types of abnormalities and anomalies of size (8.2%), structure (0.2%) and number (17%) were the least in both genders. Anomalies of impaction (45.5%), dilacerations (16.3%), hypodontia (13.8%) and taurodontism (11.2%) were the most common subtypes of dental anomalies. Taurodontism was more common in the age groups of 13-19 years. The age range of the most frequent of all other anomalies was 20-29. Anomalies of tooth position were the most common type of dental anomalies and structure anomalies were the least in this Turkish dental population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies. Digital panoramic radiography is a very useful method for the detection of dental anomalies.

  5. Computer based extraction of phenoptypic features of human congenital anomalies from the digital literature with natural language processing techniques.

    PubMed

    Karakülah, Gökhan; Dicle, Oğuz; Koşaner, Ozgün; Suner, Aslı; Birant, Çağdaş Can; Berber, Tolga; Canbek, Sezin

    2014-01-01

    The lack of laboratory tests for the diagnosis of most of the congenital anomalies renders the physical examination of the case crucial for the diagnosis of the anomaly; and the cases in the diagnostic phase are mostly being evaluated in the light of the literature knowledge. In this respect, for accurate diagnosis, ,it is of great importance to provide the decision maker with decision support by presenting the literature knowledge about a particular case. Here, we demonstrated a methodology for automated scanning and determining of the phenotypic features from the case reports related to congenital anomalies in the literature with text and natural language processing methods, and we created a framework of an information source for a potential diagnostic decision support system for congenital anomalies.

  6. Potential energy surfaces of Polonium isotopes

    NASA Astrophysics Data System (ADS)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  7. Assessment of potential biomass energy production in China towards 2030 and 2050

    NASA Astrophysics Data System (ADS)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  8. Disparity : scalable anomaly detection for clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, N.; Bradshaw, R.; Lusk, E.

    2008-01-01

    In this paper, we describe disparity, a tool that does parallel, scalable anomaly detection for clusters. Disparity uses basic statistical methods and scalable reduction operations to perform data reduction on client nodes and uses these results to locate node anomalies. We discuss the implementation of disparity and present results of its use on a SiCortex SC5832 system.

  9. Numerical shockwave anomalies in presence of hydraulic jumps in the SWE with variable bed elevation.

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, Adrian; Murillo, Javier

    2017-04-01

    When solving the shallow water equations appropriate numerical solvers must allow energy-dissipative solutions in presence of steady and unsteady hydraulic jumps. Hydraulic jumps are present in surface flows and may produce significant morphological changes. Unfortunately, it has been documented that some numerical anomalies may appear. These anomalies are the incorrect positioning of steady jumps and the presence of a spurious spike of discharge inside the cell containing the jump produced by a non-linearity of the Hugoniot locus connecting the states at both sides of the jump. Therefore, this problem remains unresolved in the context of Godunov's schemes applied to shallow flows. This issue is usually ignored as it does not affect to the solution in steady cases. However, it produces undesirable spurious oscillations in transient cases that can lead to misleading conclusions when moving to realistic scenarios. Using spike-reducing techniques based on the construction of interpolated fluxes, it is possible to define numerical methods including discontinuous topography that reduce the presence of the aforementioned numerical anomalies. References: T. W. Roberts, The behavior of flux difference splitting schemes near slowly moving shock waves, J. Comput. Phys., 90 (1990) 141-160. Y. Stiriba, R. Donat, A numerical study of postshock oscillations in slowly moving shock waves, Comput. Math. with Appl., 46 (2003) 719-739. E. Johnsen, S. K. Lele, Numerical errors generated in simulations of slowly moving shocks, Center for Turbulence Research, Annual Research Briefs, (2008) 1-12. D. W. Zaide, P. L. Roe, Flux functions for reducing numerical shockwave anomalies. ICCFD7, Big Island, Hawaii, (2012) 9-13. D. W. Zaide, Numerical Shockwave Anomalies, PhD thesis, Aerospace Engineering and Scientific Computing, University of Michigan, 2012. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to

  10. The Department of Defense energy vulnerabilities: Potential problems and observations

    NASA Astrophysics Data System (ADS)

    Freiwald, D. A.; Berger, M. E.; Roach, J. F.

    1982-08-01

    The Department of Defense is almost entirely dependent on civilian energy supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of potential vulnerabilities to the continual and timely supply of energy to both the civilian and military sectors. These include denial of the energy resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of energy from the civilian sector to the military. General vulnerabilities of the existing energy supply system are identified, along with the potential for armed aggression (including terrorist and sabotage activities) against the energy network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.

  11. [Surgical treatment of first branchial cleft anomaly].

    PubMed

    Xiao, Hongjun; Kong, Weijia; Gong, Shusheng; Wang, Jibao; Liu, Shiying; Shi, Hong

    2005-10-01

    To identify the clinical and anatomical presentations and to discuss the guidelines for surgical management of anomalies of the first branchial cleft. Twenty-one patients with first branchial cleft anomalies were treated in our department between January 1994 and December 2004, their clinical data were retrospectively analysed. Surgery was performed on all patients. Among them 13 were males and 8 females, ranging in age from 1.5 to 33 years with an average of 15 years. Anatomically, 3 types of first branchial cleft anomalies were identified: fistulas (n = 17), cysts (n = 2), and fistula combined with cyst (n = 2). Before definitive surgery, soma patients (n = 4) underwent incision and drainage for infection owing to the difficulties in diagnosing this anomaly. Methylthioninium Chloride was used in almost all cases for tracking the fistulous during operation. Wide exposure is necessary in many cases,and a standard parotidectomy incision allows adequate exposure of the anomaly and preservation of the facial nerve. Complete removal without complications depends on a good understanding of regional embryogenesis, an awareness of the different anatomical presentations, and a readiness to identify and protect the facial nerve during resection.

  12. Advancements of Data Anomaly Detection Research in Wireless Sensor Networks: A Survey and Open Issues

    PubMed Central

    Rassam, Murad A.; Zainal, Anazida; Maarof, Mohd Aizaini

    2013-01-01

    Wireless Sensor Networks (WSNs) are important and necessary platforms for the future as the concept “Internet of Things” has emerged lately. They are used for monitoring, tracking, or controlling of many applications in industry, health care, habitat, and military. However, the quality of data collected by sensor nodes is affected by anomalies that occur due to various reasons, such as node failures, reading errors, unusual events, and malicious attacks. Therefore, anomaly detection is a necessary process to ensure the quality of sensor data before it is utilized for making decisions. In this review, we present the challenges of anomaly detection in WSNs and state the requirements to design efficient and effective anomaly detection models. We then review the latest advancements of data anomaly detection research in WSNs and classify current detection approaches in five main classes based on the detection methods used to design these approaches. Varieties of the state-of-the-art models for each class are covered and their limitations are highlighted to provide ideas for potential future works. Furthermore, the reviewed approaches are compared and evaluated based on how well they meet the stated requirements. Finally, the general limitations of current approaches are mentioned and further research opportunities are suggested and discussed. PMID:23966182

  13. The Effect of Microstructures in Magnetite on Remanent Magnetic Anomalies: Implications for Geophysical Exploration of Natural Resources

    NASA Astrophysics Data System (ADS)

    ter Maat, G. W.; Stange, M. F.; Church, N. S.; Fabian, K.; McEnroe, S. A.

    2016-12-01

    Understanding the nature and stability of magnetic minerals is of fundamental importance for mineral exploration using magnetic anomalies. When the remanence direction of the rock is close to that of the inducing field, a larger-than-expected anomaly can be found due to the addition of these components. However, strong anomalies are commonly attributed to coarse magnetite, thereby considering only the induced component, which potentially leads to inaccurate interpretations of subsurface features. Here we investigate the mineralogical causes of large remanent anomalies, and the microstructures within the magnetic oxides. Microstructures formed by processes such as exsolution change the shape, size, spacing, and composition of the magnetic carriers, with implications for stability and strength of remanence. An example of such a remanent anomaly is the Stardalur volcano (Iceland), which yields a large positive anomaly (27300 nT above background). The average NRM intensity is 61 A/m, 15 times stronger than similar Icelandic basalts (Kristjansson, 2002). Samples from a deep drill core have an average susceptibility of 0.07 SI and average Koenigsberger ratio of 23, indicating remanence controls the anomaly. Magnetite is the only remanence carrier (Kristjansson, 2002) and contains a pervasive oxy-exsolution microstructure which is studied here for its influence on remanence. To characterize the effect of the shape, size, and spacing of magnetic particles, 3D reconstructions of closely-spaced grains from the Stardalur basalts were acquired using the slice-and-view focused ion beam technique. These grain geometries were modeled using the MERRILL micromagnetics software to calculate realistic magnetization structures and infer the role of domain states and interactions between particles on bulk properties, including remanence. TEM studies will characterize these microstructures at the nanometer scale, acquire chemical maps, and quantify defects potentially associated with

  14. New parameter-free polarization potentials in low-energy positron collisions

    NASA Technical Reports Server (NTRS)

    Jain, Ashok

    1990-01-01

    The polarization potential plays a decisive role in shaping up the cross sections in low energy positron collisions with atoms and molecules. However, its inclusion without involving any adjustable parameter, is still a challenge. Various other techniques employed so far for positron collisions are summarized, and a new, nonadjustable and very simple form of the polarization potential for positron-atom (molecule) collisions below the threshold of positronium formation is discussed. This new recently proposed potential is based on the correlation energy of a single positron in a homogeneous electron gas. The correlation energy was calculated by solving the Schrodinger equation of the positron-electron system and fitted to an analytical form in various ranges of the density parameter. In the outside region, the correlation energy is joined smoothly with the correct asymptotic form. This new positron correlation polarization (PCOP) potential was tested on several atomic and molecular targets such as the Ar, CO, and CH4. The results on the total and differential cross sections on these targets are shown along with the experimental data where available.

  15. Minor Physical Anomalies as a Window into the Prenatal Origins of Pedophilia.

    PubMed

    Dyshniku, Fiona; Murray, Michelle E; Fazio, Rachel L; Lykins, Amy D; Cantor, James M

    2015-11-01

    Evidence is steadily accumulating to support a neurodevelopmental basis for pedophilia. This includes increased incidence of non-right-handedness, which is a result primarily of prenatal neural development and solidified very early in life. Minor physical anomalies (MPAs; superficial deviations from typical morphological development, such as un-detached earlobes) also develop only prenatally, suggesting them as another potential marker of atypical physiological development during the prenatal period among pedophiles. This study administered the Waldrop Physical Anomaly Scale to assess the prevalence of MPAs in a clinical sample of men referred for assessment following a sexual assault, or another illegal or clinically significant sexual behavior. Significant associations emerged between MPA indices and indicators of pedophilia, including penile responses to depictions of children, number of child victims, and possession of child pornography. Moreover, greater sexual attraction to children was associated with an elevated craniofacial-to-peripheral anomalies ratio. The overall sample demonstrated a greater number of MPAs relative to prior samples of individuals with schizophrenia as well as to healthy controls.

  16. Paleo-Pole Positions from Martian Magnetic Anomaly Data

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Frawley, James J.

    2003-01-01

    Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor s magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed four North and 3 South poles with two at approximately 60 degrees north latitude. These results suggest that during the existence of the Martian main magnetic field it experienced several reversals.

  17. Paleo-Pole Positions from Martian Magnetic Anomaly Data

    NASA Technical Reports Server (NTRS)

    Frawley, James J.; Taylor, Patrick T.

    2004-01-01

    Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor's magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed paleo-poles that were nearly equally divided between north, south and mid-latitudes. These results suggest that during the existence of the martian main magnetic field it experienced several reversals and excursions.

  18. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  19. Regional magnetic anomaly constraints on continental breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Frese, R.R.B.; Hinze, W.J.; Olivier, R.

    1986-01-01

    Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.

  20. Identification of Biomarkers for Patients With Vascular Anomalies

    ClinicalTrials.gov

    2018-02-12

    Vascular Anomaly; Generalized Lymphatic Anomaly; Kaposiform Hemangioendothelioma; Kaposiform Lymphangiomatosis; Gorham-Stout Disease; Klippel Trenaunay Syndrome; Congenital Lipomatous Overgrowth, Vascular Malformations, and Epidermal Nevi

  1. Discovering System Health Anomalies Using Data Mining Techniques

    NASA Technical Reports Server (NTRS)

    Sriastava, Ashok, N.

    2005-01-01

    We present a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an Integrated System Health Monitoring system. We specifically treat the problem of discovering anomalous features in the time series that may be indicative of a system anomaly, or in the case of a manned system, an anomaly due to the human. Identification of these anomalies is crucial to building stable, reusable, and cost-efficient systems. The framework consists of an analysis platform and new algorithms that can scale to thousands of sensor streams to discovers temporal anomalies. We discuss the mathematical framework that underlies the system and also describe in detail how this framework is general enough to encompass both discrete and continuous sensor measurements. We also describe a new set of data mining algorithms based on kernel methods and hidden Markov models that allow for the rapid assimilation, analysis, and discovery of system anomalies. We then describe the performance of the system on a real-world problem in the aircraft domain where we analyze the cockpit data from aircraft as well as data from the aircraft propulsion, control, and guidance systems. These data are discrete and continuous sensor measurements and are dealt with seamlessly in order to discover anomalous flights. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.

  2. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan.

    PubMed

    Onda, Satoki; Sano, Yuji; Takahata, Naoto; Kagoshima, Takanori; Miyajima, Toshihiro; Shibata, Tomo; Pinti, Daniele L; Lan, Tefang; Kim, Nak Kyu; Kusakabe, Minoru; Nishio, Yoshiro

    2018-03-19

    Geochemical monitoring of groundwater in seismically-active regions has been carried out since 1970s. Precursors were well documented, but often criticized for anecdotal or fragmentary signals, and for lacking a clear physico-chemical explanation for these anomalies. Here we report - as potential seismic precursor - oxygen isotopic ratio anomalies of +0.24‰ relative to the local background measured in groundwater, a few months before the Tottori earthquake (M 6.6) in Southwest Japan. Samples were deep groundwater located 5 km west of the epicenter, packed in bottles and distributed as drinking water between September 2015 and July 2017, a time frame which covers the pre- and post-event. Small but substantial increase of 0.07‰ was observed soon after the earthquake. Laboratory crushing experiments of aquifer rock aimed to simulating rock deformation under strain and tensile stresses were carried out. Measured helium degassing from the rock and 18 O-shift suggest that the co-seismic oxygen anomalies are directly related to volumetric strain changes. The findings provide a plausible physico-chemical basis to explain geochemical anomalies in water and may be useful in future earthquake prediction research.

  3. NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface.

    PubMed

    Ingebrigtsen, Trond S; Toxvaerd, Søren; Heilmann, Ole J; Schrøder, Thomas B; Dyre, Jeppe C

    2011-09-14

    An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to "entropic drift" of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid. © 2011 American Institute of Physics

  4. The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations

    NASA Astrophysics Data System (ADS)

    Zaba, K. D.; Rudnick, D. L.

    2016-02-01

    continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.

  5. Maternal abetalipoproteinemia resulting in multiple fetal anomalies.

    PubMed

    Seckeler, Michael D; Linden, Jennifer

    2008-01-01

    Abetalipoproteinemia is a rare genetic condition that results in an inability of the body to absorb dietary fats, including fat-soluble vitamins. Deficiencies of these vitamins are known to cause a wide range of clinical effects ranging from blindness to coagulopathy and neuropathy. We present the case of a child with multisystem anomalies born to a mother with abetalipoproteinemia and provide a brief review of the literature about vitamin A and fetal development. Mothers at high risk for vitamin deficiencies should be screened and counseled on the potential benefits, and risks, of vitamin supplementation. Copyright 2008 S. Karger AG, Basel.

  6. A Probability Model for Belady's Anomaly

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel E.; Anderson, Nicole

    2010-01-01

    In demand paging virtual memory systems, the page fault rate of a process varies with the number of memory frames allocated to the process. When an increase in the number of allocated frames leads to an increase in the number of page faults, Belady's anomaly is said to occur. In this paper, we present a probability model for Belady's anomaly. We…

  7. Type II first branchial cleft anomaly.

    PubMed

    Al-Mahdi, Akmam H; Al-Khurri, Luay E; Atto, Ghada Z; Dhaher, Ameer

    2013-01-01

    First branchial cleft anomaly is a rare disease of the head and neck. It accounts for less than 8% of all branchial abnormalities. It is classified into type I, which is thought to arise from the duplication of the membranous external ear canal and are composed of ectoderm only, and type II that have ectoderm and mesoderm. Because of its rarity, first branchial cleft anomaly is often misdiagnosed and results in inappropriate management. A 9-year-old girl presented to us with fistula in the submandibular region and discharge in the external ear. Under general anesthesia, complete surgical excision of the fistula tract was done through step-ladder approach, and the histopathologic examination confirmed the diagnosis of type II first branchial cleft anomaly.

  8. Frequency of developmental dental anomalies in the Indian population.

    PubMed

    Guttal, Kruthika S; Naikmasur, Venkatesh G; Bhargava, Puneet; Bathi, Renuka J

    2010-07-01

    To evaluate the frequency of developmental dental anomalies in the Indian population. This prospective study was conducted over a period of 1 year and comprised both clinical and radiographic examinations in oral medicine and radiology outpatient department. Adult patients were screened for the presence of dental anomalies with appropriate radiographs. A comprehensive clinical examination was performed to detect hyperdontia, talon cusp, fused teeth, gemination, concrescence, hypodontia, dens invaginatus, dens evaginatus, macro- and microdontia and taurodontism. Patients with syndromes were not included in the study. Of the 20,182 patients screened, 350 had dental anomalies. Of these, 57.43% of anomalies occurred in male patients and 42.57% occurred in females. Hyperdontia, root dilaceration, peg-shaped laterals (microdontia), and hypodontia were more frequent compared to other dental anomalies of size and shape. Dental anomalies are clinically evident abnormalities. They may be the cause of various dental problems. Careful observation and appropriate investigations are required to diagnose the condition and institute treatment.

  9. Could the Mantle Under Island Arcs Contribute to Long Wavelength Magnetic Anomalies?

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Ferre, E. C.; Martin-Hernandez, F.; Feinberg, J. M.; Conder, J. A.

    2016-12-01

    Some island arcs show significant long-wavelength positive magnetic anomalies with potential sources in the mantle wedge while others do not. Here we compare the magnetic properties of mantle xenoliths form metasomatized mantle wedges with counterparts from pristine unaltered mantle and we discuss the role mantle processes may play in producing these anomalies. Samples for this study originate from four localities displaying different degrees of metasomatism, as evidenced by the presence of phlogophite, pargasite, and secondary minerals (olv, cpx, opx): a) Five samples from Ichinomegata crater, Megata volcano, in NE Japan are characteristically lherzolitic with metasomatic pargasite present; b) Six samples from Kurose, SW Japan are mainly harzburgites that contain rare, late stage metasomatic sulfides; c) Ten samples from the Iraya volcano, Batan Island, in the Philippines are lherzolites, harzburgites, and dunites that contain metasomatic olivine, orthopyroxene, clinopyroxene and pargasite; and d) Ten samples from Avacha and Shiveluch volcanoes in Kamchatka, consists of unaltered harzburgites supported by an LOI <1%. Sample localities come from subduction zones of the western Pacific Ocean, where the angle of subduction varies (from 10° in SW Japan to 55° in the Kamchatka and Taiwan-Luzon arcs). When present, ferromagnetic minerals include stoichiometric magnetite with occasional pyrrhotite only in metasomatized samples. Ultimately, metasomatized mantle material has a Koenigsberger ratio less than 1.0 indicating it would not primarily contribute to satellite-altitude magnetic anomalies. While unaltered mantle material may produce a Koenigsberger ratio greater than 1.0, and would thus, contribute to long wavelength magnetic anomalies. The presence of both metasomatized and unaltered mantle material beneath island arcs would be supportive of the positive magnetic anomaly found in some subduction zones.

  10. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    NASA Astrophysics Data System (ADS)

    Khruschov, V. V.; Fomichev, S. V.; Titov, O. A.

    2016-09-01

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a 2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  11. Prediction of rainfall anomalies during the dry to wet transition season over the Southern Amazonia using machine learning tools

    NASA Astrophysics Data System (ADS)

    Shan, X.; Zhang, K.; Zhuang, Y.; Fu, R.; Hong, Y.

    2017-12-01

    Seasonal prediction of rainfall during the dry-to-wet transition season in austral spring (September-November) over southern Amazonia is central for improving planting crops and fire mitigation in that region. Previous studies have identified the key large-scale atmospheric dynamic and thermodynamics pre-conditions during the dry season (June-August) that influence the rainfall anomalies during the dry to wet transition season over Southern Amazonia. Based on these key pre-conditions during dry season, we have evaluated several statistical models and developed a Neural Network based statistical prediction system to predict rainfall during the dry to wet transition for Southern Amazonia (5-15°S, 50-70°W). Multivariate Empirical Orthogonal Function (EOF) Analysis is applied to the following four fields during JJA from the ECMWF Reanalysis (ERA-Interim) spanning from year 1979 to 2015: geopotential height at 200 hPa, surface relative humidity, convective inhibition energy (CIN) index and convective available potential energy (CAPE), to filter out noise and highlight the most coherent spatial and temporal variations. The first 10 EOF modes are retained for inputs to the statistical models, accounting for at least 70% of the total variance in the predictor fields. We have tested several linear and non-linear statistical methods. While the regularized Ridge Regression and Lasso Regression can generally capture the spatial pattern and magnitude of rainfall anomalies, we found that that Neural Network performs best with an accuracy greater than 80%, as expected from the non-linear dependence of the rainfall on the large-scale atmospheric thermodynamic conditions and circulation. Further tests of various prediction skill metrics and hindcasts also suggest this Neural Network prediction approach can significantly improve seasonal prediction skill than the dynamic predictions and regression based statistical predictions. Thus, this statistical prediction system could have

  12. Trends in congenital anomalies in Europe from 1980 to 2012

    PubMed Central

    Springett, Anna L.; Greenlees, Ruth; Loane, Maria; Addor, Marie-Claude; Arriola, Larraitz; Barisic, Ingeborg; Bergman, Jorieke E. H.; Csaky-Szunyogh, Melinda; Dias, Carlos; Draper, Elizabeth S.; Garne, Ester; Gatt, Miriam; Khoshnood, Babak; Klungsoyr, Kari; Lynch, Catherine; McDonnell, Robert; Nelen, Vera; Neville, Amanda J.; O'Mahony, Mary; Pierini, Anna; Queisser-Luft, Annette; Randrianaivo, Hanitra; Rankin, Judith; Rissmann, Anke; Kurinczuk, Jennifer; Tucker, David; Verellen-Dumoulin, Christine; Wellesley, Diana; Dolk, Helen

    2018-01-01

    Background Surveillance of congenital anomalies is important to identify potential teratogens. Methods This study analysed the prevalence of 61 congenital anomaly subgroups (excluding chromosomal) in 25 population-based EUROCAT registries (1980–2012). Live births, fetal deaths and terminations of pregnancy for fetal anomaly were analysed with multilevel random-effects Poisson regression models. Results Seventeen anomaly subgroups had statistically significant trends from 2003–2012; 12 increasing and 5 decreasing. Conclusions The annual increasing prevalence of severe congenital heart defects, single ventricle, atrioventricular septal defects and tetralogy of Fallot of 1.4% (95% CI: 0.7% to 2.0%), 4.6% (1.0% to 8.2%), 3.4% (1.3% to 5.5%) and 4.1% (2.4% to 5.7%) respectively may reflect increases in maternal obesity and diabetes (known risk factors). The increased prevalence of cystic adenomatous malformation of the lung [6.5% (3.5% to 9.4%)] and decreased prevalence of limb reduction defects [-2.8% (-4.2% to -1.5%)] are unexplained. For renal dysplasia and maternal infections, increasing trends may be explained by increased screening, and deceases in patent ductus arteriosus at term and increases in craniosynostosis, by improved follow up period after birth and improved diagnosis. For oesophageal atresia, duodenal atresia/stenosis and ano-rectal atresia/stenosis recent changes in prevalence appeared incidental when compared with larger long term fluctuations. For microcephaly and congenital hydronephrosis trends could not be interpreted due to discrepancies in diagnostic criteria. The trends for club foot and syndactyly disappeared once registries with disparate results were excluded. No decrease in neural tube defects was detected, despite efforts at prevention through folic acid supplementation. PMID:29621304

  13. Towards Reliable Evaluation of Anomaly-Based Intrusion Detection Performance

    NASA Technical Reports Server (NTRS)

    Viswanathan, Arun

    2012-01-01

    This report describes the results of research into the effects of environment-induced noise on the evaluation process for anomaly detectors in the cyber security domain. This research was conducted during a 10-week summer internship program from the 19th of August, 2012 to the 23rd of August, 2012 at the Jet Propulsion Laboratory in Pasadena, California. The research performed lies within the larger context of the Los Angeles Department of Water and Power (LADWP) Smart Grid cyber security project, a Department of Energy (DoE) funded effort involving the Jet Propulsion Laboratory, California Institute of Technology and the University of Southern California/ Information Sciences Institute. The results of the present effort constitute an important contribution towards building more rigorous evaluation paradigms for anomaly-based intrusion detectors in complex cyber physical systems such as the Smart Grid. Anomaly detection is a key strategy for cyber intrusion detection and operates by identifying deviations from profiles of nominal behavior and are thus conceptually appealing for detecting "novel" attacks. Evaluating the performance of such a detector requires assessing: (a) how well it captures the model of nominal behavior, and (b) how well it detects attacks (deviations from normality). Current evaluation methods produce results that give insufficient insight into the operation of a detector, inevitably resulting in a significantly poor characterization of a detectors performance. In this work, we first describe a preliminary taxonomy of key evaluation constructs that are necessary for establishing rigor in the evaluation regime of an anomaly detector. We then focus on clarifying the impact of the operational environment on the manifestation of attacks in monitored data. We show how dynamic and evolving environments can introduce high variability into the data stream perturbing detector performance. Prior research has focused on understanding the impact of this

  14. Prevalence and distribution of selected developmental dental anomalies in an Indian population.

    PubMed

    Gupta, Saurabh K; Saxena, Payal; Jain, Sandhya; Jain, Deshraj

    2011-06-01

    The purpose of this study was to determine the prevalence of developmental dental anomalies in an Indian population and to statistically analyze the distribution of these anomalies. The study was based on clinical examination, evaluation of dental casts, and panoramic radiographs of 1123 Indian subjects (572 males, 551 females), who visited the outpatient clinic at Government Dental College, Indore between November 2009 and September 2010, after obtaining their informed consent. These patients were examined for the following developmental dental anomalies: shape anomalies (microdontia, talon cusp, dens evaginatus, fusion, taurodontism), number anomalies (hypodontia, oligodontia, anodontia), structural anomalies (amelogenesis imperfecta, dentinogenesis imperfecta) and positional anomalies (ectopic eruption, rotation, impaction). The percentages of these anomalies were assessed for the whole group and compared using statistical analysis. Among the 1123 subjects, a total of 385 individuals (34.28%) presented with the selected developmental dental anomalies. The distribution by sex was 197 males (34.44%), and 188 females (34.06%). Out of the total 1123 individuals, 351 (31.26%) exhibited at least one anomaly, 28 (2.49 %) showed two anomalies and 6 (0.53%) displayed more than two anomalies. P values indicated that the dental anomalies were statistically independent of sex. On intergroup comparison, positional anomalies were significantly most prevalent (P < 0.05) in the Indian population. The most common developmental dental anomaly was rotation (10.24%), followed by ectopic eruption (7.93%). The next common group was number anomalies. The most common number anomaly was hypodontia (4.19%), which had a higher frequency than hyperdontia (2.40%). Analyzing the next prevalent group of shape anomalies, microdontia (2.58%) was found to be the most common, followed by taurodontism (2.49%), dens evaginatus (2.40%) and talon cusp (0.97%). Dentinogenesis imperfecta (0.09%) was

  15. Global Potential of Energy Efficiency Standards and Labeling Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds ofmore » policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under

  16. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  17. On the potential energy in a gravitationally bound two-body system

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2015-01-01

    The potential energy problem in a gravitationally bound two-body system is studied in the framework of a recently proposed impact model of gravity (Wilhelm et al., 2013). The concept of a closed system has been modified, before the physical processes resulting in the liberation of the potential energy can be described. The energy is extracted from the background flux of hypothetical interaction entities.

  18. Preliminary correlations of MAGSAT anomalies with tectonic features of Africa

    USGS Publications Warehouse

    Hastings, David A.

    1982-01-01

    An overview of the MAGSAT scalar anomaly map for Africa has suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Although a magnetic anomaly caused by a rectangular crustal block would be offset from the block's center by the effects of magnetic inclination, an anomaly caused by real crustal blocks of varying uplift, depression, and degree of regional metamorphism would be located nearer to the locus of greatest vertical movement and highest grade of metamorphism. Thus, the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.

  19. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  20. Enhanced detection and visualization of anomalies in spectral imagery

    NASA Astrophysics Data System (ADS)

    Basener, William F.; Messinger, David W.

    2009-05-01

    Anomaly detection algorithms applied to hyperspectral imagery are able to reliably identify man-made objects from a natural environment based on statistical/geometric likelyhood. The process is more robust than target identification, which requires precise prior knowledge of the object of interest, but has an inherently higher false alarm rate. Standard anomaly detection algorithms measure deviation of pixel spectra from a parametric model (either statistical or linear mixing) estimating the image background. The topological anomaly detector (TAD) creates a fully non-parametric, graph theory-based, topological model of the image background and measures deviation from this background using codensity. In this paper we present a large-scale comparative test of TAD against 80+ targets in four full HYDICE images using the entire canonical target set for generation of ROC curves. TAD will be compared against several statistics-based detectors including local RX and subspace RX. Even a perfect anomaly detection algorithm would have a high practical false alarm rate in most scenes simply because the user/analyst is not interested in every anomalous object. To assist the analyst in identifying and sorting objects of interest, we investigate coloring of the anomalies with principle components projections using statistics computed from the anomalies. This gives a very useful colorization of anomalies in which objects of similar material tend to have the same color, enabling an analyst to quickly sort and identify anomalies of highest interest.

  1. Expanding the clinical spectrum of ocular anomalies in Noonan syndrome: Axenfeld-anomaly in a child with PTPN11 mutation.

    PubMed

    Guerin, Andrea; So, Joyce; Mireskandari, Kamiar; Jougeh-Doust, Soghra; Chisholm, Caitlin; Klatt, Regan; Richer, Julie

    2015-02-01

    Ocular anomalies have been frequently reported in Noonan syndrome. Anterior segment anomalies have been described in 57% of PTPN11 positive patients, with the most common findings being corneal changes and in particular, prominent corneal nerves and cataracts. We report on a neonate with a confirmed PTPN11 mutation and ocular findings consistent with Axenfeld anomaly. The patient initially presented with non-immune hydrops and subsequently developed hypertrophic cardiomyopathy and dysmorphic features typical of Noonan syndrome. While a pathogenic mutation in PTPN11 was confirmed, prior testing for the two common genes associated with Axenfeld-Rieger syndrome, PITX2, and FOXC1 was negative. This finding expands the spectrum of anterior chamber anomalies seen in Noonan syndrome and perhaps suggests a common neural crest related mechanism that plays a critical role in the development of the eye and other organs. © 2014 Wiley Periodicals, Inc.

  2. On the origin of the Bangui magnetic anomaly, central African empire

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.

    1977-01-01

    A large magnetic anomaly was recognized in satellite magnetometer data over the Central African Empire in central Africa. They named this anomaly the Bangui magnetic anomaly due to its location near the capital city of Bangui, C.A.E. Because large crustal magnetic anomalies are uncommon, the origin of this anomaly has provoked some interest. The area of the anomaly was visited to make ground magnetic measurements, geologic observations, and in-situ magnetic susceptibility measurements. Some rock samples were also collected and chemically analyzed. The results of these investigations are presented.

  3. Branchial Cleft Anomalies

    PubMed Central

    McPhail, Neil; Mustard, Robert A.

    1966-01-01

    The embryology, anatomy and pathology of branchial cleft anomalies are discussed and 87 cases reviewed. The most frequent anomaly was branchial cleft cyst, of which there were 77 cases. Treatment in all cases consisted of complete excision. There were five cases of external branchial sinus and five cases of complete branchial fistula. Sinograms were helpful in demonstrating these lesions. Excision presented little difficulty. No proved case of branchiogenic carcinoma has been found in the Toronto General Hospital. Five cases are described in which the original diagnosis was branchiogenic carcinoma—in four of these a primary tumour has already been found. The authors believe that the diagnosis of branchiogenic carcinoma should never be accepted until repeated examinations over a period of at least five years have failed to reveal a primary tumour. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5 PMID:5901161

  4. Nonrelativistic trace and diffeomorphism anomalies in particle number background

    NASA Astrophysics Data System (ADS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2018-04-01

    Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the gravitational anomaly for a nonrelativistic scalar vanishes.

  5. The Prevalence of Congenital Hand and Upper Extremity Anomalies Based Upon the New York Congenital Malformations Registry.

    PubMed

    Goldfarb, Charles A; Shaw, Neil; Steffen, Jennifer A; Wall, Lindley B

    2017-03-01

    There have been few publications regarding the prevalence of congenital upper extremity anomalies and no recent reports from the United States. The purpose of this investigation was to examine the prevalence of congenital upper extremity anomalies in the total birth population of New York State over a 19-year period utilizing the New York Congenital Malformations Registry (NYCMR) database. The NYCMR includes children with at least 1 birth anomaly diagnosed by 2 years of age and listed by diagnosis code. We scrutinized these codes for specific upper extremity anomalies, including polydactyly, syndactyly, reduction defects, clubhand malformations, and syndromes with upper limb anomalies. We included children born between 1992 and 2010. There were a total of 4,883,072 live births in New York State during the study period. The overall prevalence of congenital upper extremity anomalies was 27.2 cases per 10,000 live births. Polydactyly was most common with 12,418 cases and a prevalence rate of 23.4 per 10,000 live births. The next most common anomalies included syndactyly with 627 cases affecting the hands (1498 total) and reduction defects (1111 cases). Specific syndromes were quite rare and were noted in a total of 215 live births. The prevalence of anomalies was higher in New York City compared with New York State populations at 33.0 and 21.9 per 10,000 live births, respectively. The NYCMR data demonstrate that congenital upper extremity anomalies are more common than previously reported. This is in large part due to the high prevalence of polydactyly. Although registries are imperfect, such data are helpful in monitoring prevalence rates over time, identifying potential causes or associations, and guiding health care planning and future research. Level I-diagnostic.

  6. Characteristics of chiral anomaly in view of various applications

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2018-01-01

    In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in particle physics also. It is first shown that Berry's phase (and its generalization) for the Weyl model H =vFσ →.p →(t ) assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic limit and vanishes in the high frequency limit of the Fourier transform of p →(t ) for bounded |p →(t )|. An effective action, which is consistent with the nonadiabatic limit of Berry's phase, combined with the Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which describes Berry's phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an artifact of the postulated monopole and not a consequence of Berry's phase. As for the recent application of the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics, which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption. Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and could lead to an effect without fermion number nonconservation.

  7. Experimental search for the "LSND anomaly" with the ICARUS detector in the CNGS neutrino beam

    NASA Astrophysics Data System (ADS)

    Antonello, M.; Baibussinov, B.; Benetti, P.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D. B.; Cocco, A. G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P. R.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H. G.; Yang, X.; Zalewska, A.; Zaremba, K.

    2013-03-01

    We report an early result from the ICARUS experiment on the search for a ν μ → ν e signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of ˜730 km. The LSND anomaly would manifest as an excess of ν e events, characterized by a fast energy oscillation averaging approximately to sin2(1.27Δ m2_{new}L/E_{ν})≈ 1/2 with probability P_{ν_{μ}→ νe} = 1/2 sin2(2θ_{new}). The present analysis is based on 1091 neutrino events, which are about 50 % of the ICARUS data collected in 2010-2011. Two clear ν e events have been found, compared with the expectation of 3.7±0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90 % and 99 % confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities < P_{ν_{μ}→ νe}rangle le 5.4 × 10^{-3} and < P_{ν_{μ}→ νe}rangle le 1.1 × 10^{-2} are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around (Δ m 2,sin2(2 θ))new=(0.5 eV2,0.005), where there is an overall agreement (90 % CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations.

  8. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  9. Method of Mapping Anomalies in Homogenous Material

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2016-01-01

    An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.

  10. Chemical Compositions and Anomalies in Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    In summary, as the papers cited here and in earlier reports demonstrate, this award has enabled us to obtain a fairly good picture of the abundance anomalies in stellar coronae. The "inverse FIP" effect in very active stars has now been fleshed out as a more complex anomaly depending on FIP, whereas before it appeared only in terms of a general metal paucity, the recent solar abundance assessment of Asplund et a1 will, if correct, challenge some of the older interpretations of coronal abundance anomalies since they imply quite different relative abundances of CNO compared with Fe, Mg and Si. Further investigations have been in into the possibility of modeling some of the recent coronal abundance anomaly results in terms of Alfven wave-driven separation of neutrals and ions in the upper chromosphere. This work still remains in the seed stage, and future funding from a different program will be requested to pursue it further.

  11. Brain anomalies in velo-cardio-facial syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitnick, R.J.; Bello, J.A.; Shprintzen, R.J.

    Magnetic resonance imaging of the brain in 11 consecutively referred patients with velo-cardio-facial syndrome (VCF) showed anomalies in nine cases including small vermis, cysts adjacent to the frontal horns, and small posterior fossa. Focal signal hyperintensities in the white matter on long TR images were also noted. The nine patients showed a variety of behavioral abnormalities including mild development delay, learning disabilities, and characteristic personality traits typical of this common multiple anomaly syndrome which has been related to a microdeletion at 22q11. Analysis of the behavorial findings showed no specific pattern related to the brain anomalies, and the patients withmore » VCF who did not have detectable brain lesions also had behavioral abnormalities consistent with VCF. The significance of the lesions is not yet known, but the high prevalence of anomalies in this sample suggests that structural brain abnormalities are probably common in VCF. 25 refs.« less

  12. Linking entanglement and discrete anomaly

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Yan; Wu, Yong-Shi; Zhou, Yang

    2018-05-01

    In 3 d Chern-Simons theory, there is a discrete one-form symmetry, whose symmetry group is isomorphic to the center of the gauge group. We study the `t Hooft anomaly associated to this discrete one-form symmetry in theories with generic gauge groups, A, B, C, D-types. We propose to detect the discrete anomaly by computing the Hopf state entanglement in the subspace spanned by the symmetry generators and develop a systematical way based on the truncated modular S matrix. We check our proposal for many examples.

  13. Meteoroid-Induced Anomalies on Spacecraft

    NASA Technical Reports Server (NTRS)

    Cooke, Bill

    2015-01-01

    Sporadic meteoroid background is directional (not isotropic) and accounts for 90 percent of the meteoroid risk to a typical spacecraft. Meteor showers get all the press, but account for only approximately10 percent of spacecraft risk. Bias towards assigning meteoroid cause to anomalies during meteor showers. Vast majority of meteoroids come from comets and have a bulk density of approximately 1 gram per cubic centimeter (ice). High speed meteoroids (approximately 50 kilometers per second) can induce electrical anomalies in spacecraft through discharging of charged surfaces (also EMP (electromagnetic pulse?).

  14. An immunity-based anomaly detection system with sensor agents.

    PubMed

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  15. Relationship between dental anomalies and orthodontic root resorption of upper incisors.

    PubMed

    Van Parys, Katrien; Aartman, Irene H A; Kuitert, Reinder; Zentner, Andrej

    2012-10-01

    The aim of this study was to examine the potential relationship between the occurrence of orthodontic root resorption and presence of dental anomalies such as tooth agenesis and pipette-shaped roots. Dental anomalies and root resorption were assessed on dental panoramic tomographs (DPT) of 88 subjects, 27 males and 61 females, mean age 28.4 (SD = 11.3 years), selected from orthodontic patients on the basis of the following exclusion criteria: previous fixed appliance treatment, bad quality of the DPTs and no visibility of the periodontal ligament of every tooth, and younger than 15 years of age at the onset of treatment with fixed edgewise appliance lasting at least 18 months. A pipette-shaped root was identified as defined by a drawing. Tooth agenesis was assessed on DPTs and from subjects' dental history. Root resorption was calculated as the difference between the root length before and after treatment, with and without a correction factor (crown length post-treatment/crown length pre-treatment). If one of the four upper incisors showed root resorption of ≥2.3 mm with both formulas, the patient was scored as having root resorption. Chi-square tests indicated that there was no relationship between orthodontic root resorption and agenesis (P = 0.885) nor between orthodontic root resorption and pipette-shaped roots (P = 0.800). There was no relationship between having one of the anomalies and root resorption either (P = 0.750). In the present study, it was not possible to confirm on DPTs a relationship between orthodontic root resorption and dental anomalies, such as agenesis and pipette-shaped roots.

  16. Repulsive nature of optical potentials for high-energy heavy-ion scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2010-10-15

    The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A=200-300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the {sup 12}C+{sup 12}C system in the energy range of E/A=100-400 MeV. The tensor forcemore » contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decompositions of the elastic-scattering amplitudes clarify the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements for the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.« less

  17. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying

  18. MOG without anomaly

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Ghaffary, Tooraj; Naimi, Yaghoob

    2018-03-01

    We obtain the action of Moffat's Modified Gravity (MOG), a scalar-tensor-vector theory of gravitation, by generalizing the Horava-Witten mechanism to fourteen dimensions. We show that the resulting theory is anomaly-free. We propose an extended version of MOG that includes fermionic fields.

  19. Seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies and Northern hemisphere climate

    NASA Astrophysics Data System (ADS)

    Sinha, Bablu; Blaker, Adam; Duchez, Aurelie; Grist, Jeremy; Hewitt, Helene; Hirschi, Joel; Hyder, Patrick; Josey, Simon; Maclachlan, Craig; New, Adrian

    2017-04-01

    A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control simulation is integrated from September 1 to 28 February and compared with a similar ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface (deeper than 180m) temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010, which is known to have re-emerged at the ocean surface in subsequent months. The perturbation is confined to the North Atlantic Ocean between the Equator and 65 degrees North. The model has 1/4 degree horizontal resolution in the ocean and the experiment is repeated for two atmosphere horizontal resolutions ( 60km and 25km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. The ensembles display a wide range of reemergence behaviour, in some cases re-emergence occurs by November, in others it is delayed or does not occur at all. A wide range of amplitudes of the re-emergent temperature anomalies is observed. In cases where re-emergence occurs, there is a marked effect on both the regional (North Atlantic and Europe) and hemispheric surface pressure and temperature patterns. The results highlight a potentially important process whereby ocean memory of conditions up to a year earlier can significantly enhance seasonal forecast skill.

  20. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    PubMed

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  1. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less

  2. Marine Magnetic Anomalies and the Reconstruction of the World

    NASA Technical Reports Server (NTRS)

    Heirtzler, James R.; Smith, David E. (Technical Monitor)

    2000-01-01

    Until the middle of the 20th century little was known about magnetic anomalies in the oceans. Then it was discovered that there are relatively large anomalies in most of the oceans and they were unrelated to any geological structure known at that time. In the early 1950's large anomalies had been found over the Mid-Atlantic Ridge, and linear anomalies over the eastern continental shelf of North America and, shortly after that, off the west coast. A survey of the ridge south of Iceland showed that the anomalies were linear, parallel to the ridge axis, and symmetrical about the axis. Using the theory that the anomalies were caused by geomagnetic field reversals and seafloor spreading it was possible to greatly extend the time scale of geomagnetic reversals, to determine the velocity of seafloor spreading and estimate the time of opening of the North Atlantic. Lamont had a world-wide collection of marine magnetic profiles. These were used, systematically, to determine the positions of most of the land masses of the world since the beginnings of the world's present oceans.

  3. A Bouguer Gravity Anomaly Map of Africa.

    DTIC Science & Technology

    A Bouguer Gravity Anomaly Map of Africa has been compiled using only terrestrial data. The map is a contoured representation of one degree x one...The anomaly pattern shown on the map is discussed and evaluated with respect to regional and local tectonic and geologic patterns. The entire Bouguer

  4. Chiral anomaly and anomalous finite-size conductivity in graphene

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  5. Interpretation of magnetic anomalies using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kaftan, İlknur

    2017-08-01

    A genetic algorithm (GA) is an artificial intelligence method used for optimization. We applied a GA to the inversion of magnetic anomalies over a thick dike. Inversion of nonlinear geophysical problems using a GA has advantages because it does not require model gradients or well-defined initial model parameters. The evolution process consists of selection, crossover, and mutation genetic operators that look for the best fit to the observed data and a solution consisting of plausible compact sources. The efficiency of a GA on both synthetic and real magnetic anomalies of dikes by estimating model parameters, such as depth to the top of the dike ( H), the half-width of the dike ( B), the distance from the origin to the reference point ( D), the dip of the thick dike ( δ), and the susceptibility contrast ( k), has been shown. For the synthetic anomaly case, it has been considered for both noise-free and noisy magnetic data. In the real case, the vertical magnetic anomaly from the Pima copper mine in Arizona, USA, and the vertical magnetic anomaly in the Bayburt-Sarıhan skarn zone in northeastern Turkey have been inverted and interpreted. We compared the estimated parameters with the results of conventional inversion methods used in previous studies. We can conclude that the GA method used in this study is a useful tool for evaluating magnetic anomalies for dike models.

  6. First branchial cleft anomalies have relevance in otology and more.

    PubMed

    Tham, Y S; Low, W K

    2005-05-01

    First branchial cleft anomalies account for less than 8% of all branchial abnormalities. Their rarity and diverse presentations have frequently led to misdiagnosis and inappropriate treatment. In a trend towards specialisation/subspecialisation, first branchial cleft duplication anomalies, with their varied clinical manifestations, may possibly present to an Otology, Head and Neck Surgery, Paediatric Otolaryngology, Maxillofacial or even a General Paediatric and General Surgery practice. There is a need to highlight the clinical features which can aid in accurate diagnosis. A case of an adult with Work Type 2 first branchial cleft duplication anomaly presenting as a collaural fistula is described. It first presented as a recurrent upper neck abscess in childhood. The diagnosis had previously been missed although the patient was able to clearly establish a correlation between digging of the ipsilateral ear and precipitation of the abscess. Instead of an epidermal web, a myringeal lesion in the form of a fibrous band-like was present. The lesion was completely excised with no further recurrence. This case highlights useful diagnostic features both from the history and physical examination. The specialist/subspecialist must be aware of this condition and be mindful of its possible cross specialty/subspecialty symptoms and signs. Together with a good understanding of the regional embryology and anatomy, the lesion can be diagnosed early at initial presentation with the potential for best treatment outcomes.

  7. Energy Efficiency Potential in the U.S. Single-Family Housing Stock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J.; Christensen, Craig B.; Horowitz, Scott G.

    Typical approaches for assessing energy efficiency potential in buildings use a limited number of prototypes, and therefore suffer from inadequate resolution when pass-fail cost-effectiveness tests are applied, which can significantly underestimate or overestimate the economic potential of energy efficiency technologies. This analysis applies a new approach to large-scale residential energy analysis, combining the use of large public and private data sources, statistical sampling, detailed building simulations, and high-performance computing to achieve unprecedented granularity - and therefore accuracy - in modeling the diversity of the single-family housing stock. The result is a comprehensive set of maps, tables, and figures showing themore » technical and economic potential of 50 plus residential energy efficiency upgrades and packages for each state. Policymakers, program designers, and manufacturers can use these results to identify upgrades with the highest potential for cost-effective savings in a particular state or region, as well as help identify customer segments for targeted marketing and deployment. The primary finding of this analysis is that there is significant technical and economic potential to save electricity and on-site fuel use in the single-family housing stock. However, the economic potential is very sensitive to the cost-effectiveness criteria used for analysis. Additionally, the savings of particular energy efficiency upgrades is situation-specific within the housing stock (depending on climate, building vintage, heating fuel type, building physical characteristics, etc.).« less

  8. Prevalence of Dental Anomalies among School Going Children in India.

    PubMed

    Kathariya, Mitesh D; Nikam, Atul Pralhad; Chopra, Kirti; Patil, Namrata N; Raheja, Hitesh; Kathariya, Renuka

    2013-10-01

    The purpose of the present study is to investigate the prevalence of dental anomalies according to gender among children. This cross-sectional study was conducted a group of 600 children, of them 293 (48.8%) were males and 275 (45.8%) females which were taken with proper sampling technique. Type III clinical examination was done to know the prevalence of dental anomalies. The Statistical software namely SPSS version 16.0 was used for data analysis. Chi-square test was used at p value of 0.05 or less. Impactions (39.2%) were the most common anomaly in this study and most of the impacted teeth were related to maxilla. A significant difference was seen in case of hypodontia, microdontia and talons cusp according to gender in which first two anomalies were more among females and last one among males. Children with one dental anomaly were 25.8%, and 13.4% were having more than one. The percentage of dental anomalies were high specially impaction and rotated teeth. So these anomalies should be treated earlier to avoid further complications. How to cite this article: Kathariya MD, Nikam AP, Chopra K, Patil NN, Raheja H, Kathariya R. Prevalence of Dental Anomalies among School Going Children in India. J Int Oral Health 2013; 5(5):10-4.

  9. Oceanic Residual Depth Anomalies Maintained by a Shallow Asthenospheric Channel

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Hoggard, M.; White, N.

    2016-12-01

    Oceanic residual depth anomalies vary on wavelengths of 800-2,000 km and have amplitudesof ±1 km. There is also evidence from glacio-isostatic adjustment, plate motions and seismicanisotropy studies for the existence of a low-viscosity asthenospheric channel immediately beneaththe lithospheric plates. Here, we investigate whether global residual depth anomalies are consistentwith temperature variations within a sub-plate channel. For a given channel thickness, we convertresidual depth anomalies into temperature anomalies, assuming thermal isostasy alone (i.e. no mantle flow). Using aparameterisation that is calibrated against stacked oceanic shear wave velocity profiles, we convertthese temperature anomalies into velocity variations. We then compare the inferred velocity vari-ations with published seismic tomographic models. We find that thermal anomalies of ±100 °Cwithin a 150 ± 50 km thick channel yield a good match to > 95% of global residual depth anoma-lies. These temperature variations are consistent with geochemical evidence from mid-oceanic ridgebasalts and oceanic crustal thicknesses. The apparent success of this simple isostatic approach sup-ports the existence of a low-viscosity asthenospheric channel that plays a key role in controllingresidual depth anomalies. Far from subduction zones and from plume conduits, dynamic topog-raphy in the oceanic realm appears to be primarily controlled by temperature-induced buoyancyvariations within this channel.

  10. Columbus Payloads Flow Rate Anomalies

    NASA Technical Reports Server (NTRS)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  11. Cloud-generated radiative heating and its generation of available potential energy

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  12. A model for anomaly classification in intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Ferreira, V. O.; Galhardi, V. V.; Gonçalves, L. B. L.; Silva, R. C.; Cansian, A. M.

    2015-09-01

    Intrusion Detection Systems (IDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. Anomaly detection has been widely used and its main advantage is the ability to detect new attacks. However, the analysis of anomalies generated can become expensive, since they often have no clear information about the malicious events they represent. In this context, this paper presents a model for automated classification of alerts generated by an anomaly based IDS. The main goal is either the classification of the detected anomalies in well-defined taxonomies of attacks or to identify whether it is a false positive misclassified by the IDS. Some common attacks to computer networks were considered and we achieved important results that can equip security analysts with best resources for their analyses.

  13. Detection of anomalies in radio tomography of asteroids: Source count and forward errors

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Kaasalainen, M.

    2014-09-01

    The purpose of this study was to advance numerical methods for radio tomography in which asteroid's internal electric permittivity distribution is to be recovered from radio frequency data gathered by an orbiter. The focus was on signal generation via multiple sources (transponders) providing one potential, or even essential, scenario to be implemented in a challenging in situ measurement environment and within tight payload limits. As a novel feature, the effects of forward errors including noise and a priori uncertainty of the forward (data) simulation were examined through a combination of the iterative alternating sequential (IAS) inverse algorithm and finite-difference time-domain (FDTD) simulation of time evolution data. Single and multiple source scenarios were compared in two-dimensional localization of permittivity anomalies. Three different anomaly strengths and four levels of total noise were tested. Results suggest, among other things, that multiple sources can be necessary to obtain appropriate results, for example, to distinguish three separate anomalies with permittivity less or equal than half of the background value, relevant in recovery of internal cavities.

  14. Fourth branchial complex anomalies: a case series.

    PubMed

    Shrime, Mark; Kacker, Ashutosh; Bent, John; Ward, Robert F

    2003-11-01

    Anomalies of the fourth branchial arch complex are exceedingly rare, with approximately forty cases reported in the literature since 1972. The authors report experience with six fourth arch anomalies. Retrospective chart review of six consecutive patients presenting to the pediatric otolaryngology service at a tertiary care center with anomalies referable to the fourth branchial arch. All six patients presented within the first or second decade of life. All six had left-sided disease. Four patients presented with recurrent neck infection, one with asymptomatic cervical masses, and one with a neck mass and respiratory compromise. One patient had prior surgery presented with a recurrence. Diagnosis of fourth arch anomalies was suggested or confirmed by computed tomography and flexible laryngoscopy. Treatment was surgical in five patients; one patient is awaiting surgery. Surgical procedures included resection of the mass and endoscopic cauterization of the inner opening of the cyst. The presentation of a cervical mass, especially with recurrent infections and especially on the left side, in a child in the first or second decade of life heightens suspicion for an anomaly of the fourth branchial arch. Diagnosis can be difficult, but is aided by the use of flexible laryngoscopy, Computed tomography (CT) scanning and ultrasonography. Surgical resection of the cyst and cauterization of its pyriform sinus opening should be undertaken to minimize recurrence.

  15. Hyperbolic Orbits and the Planetary Flylby Anomaly

    NASA Technical Reports Server (NTRS)

    Wilson, T.L.; Blome, H.J.

    2009-01-01

    Space probes in the Solar System have experienced unexpected changes in velocity known as the flyby anomaly [1], as well as shifts in acceleration referred to as the Pioneer anomaly [2-4]. In the case of Earth flybys, ESA s Rosetta spacecraft experienced the flyby effect and NASA s Galileo and NEAR satellites did the same, although MESSENGER did not possibly due to a latitudinal property of gravity assists. Measurements indicate that both anomalies exist, and explanations have varied from the unconventional to suggestions that new physics in the form of dark matter might be the cause of both [5]. Although dark matter has been studied for over 30 years, there is as yet no strong experimental evidence supporting it [6]. The existence of dark matter will certainly have a significant impact upon ideas regarding the origin of the Solar System. Hence, the subject is very relevant to planetary science. We will point out here that one of the fundamental problems in science, including planetary physics, is consistency. Using the well-known virial theorem in astrophysics, it will be shown that present-day concepts of orbital mechanics and cosmology are not consistent for reasons having to do with the flyby anomaly. Therefore, the basic solution regarding the anomalies should begin with addressing the inconsistencies first before introducing new physics.

  16. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  17. Upper Lithospheric Sources of Magnetic and Gravity Anomalies of The Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Korhonen, J. V.; Koistinen, T.; Working GroupFennoscandian Geophysical Maps

    Magnetic total intensity anomalies (DGRF-65), Bouguer anomalies (d=2670 kg/m3) and geological units from 3400 Ma to present of the Fennoscandian Shield have been digitally compiled and printed as maps 1:2 000 000. Insert maps 1:15,000,000 com- pare anomaly components in different source scales: pseudogravimetric anomaly ver- sus Bouguer anomaly, DGRF-65 anomaly versus pseudomagnetic anomaly, magnetic vertical derivative versus second derivative of Bouguer anomaly. Data on bulk density, total magnetisation and lithology of samples have been presented as scatter diagrams and distribution maps of the average petrophysical properties in space and time. In sample level, the bulk density correlates with the lithology and, together with mag- netisation, establishes four principal populations of petrophysical properties. The av- erage properties, calculated for 5 km x 5 km cells, correlate only weakly with av- erage Bouguer-anomaly and magnetic anomaly, revealing major deep seated sources of anomalies. Pseudogravimetric and Bouguer anomalies correlate only locally with each other. The correlation is negative in the area of felsic Palaeoproterozoic rocks in W- and NW-parts of the Shield. In 2D models the sources of gravity anomalies are explained by lateral variation of density in upper and lower crust. Smoothly varying regional components are explained by boundaries of the lower crust, the upper mantle and the astenosphere. Magnetic anomalies are explained by lateral variation of magnetisation in the upper crust. Re- gional components are due to the lateral variation of magnetisation in the lower crust and the boundaries of lower crust and mantle and the Curie isotherm of magnetite.

  18. Electroweak baryogenesis in two Higgs doublet models and B meson anomalies

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Kainulainen, Kimmo; Trott, Michael

    2011-11-01

    Motivated by 3.9 σ evidence of a CP-violating phase beyond the standard model in the like-sign dimuon asymmetry reported by D∅, we examine the potential for two Higgs doublet models (2HDMs) to achieve successful electroweak baryogenesis (EWBG) while explaining the dimuon anomaly. Our emphasis is on the minimal flavour violating 2HDM, but our numerical scans of model parameter space include type I and type II models as special cases. We incorporate relevant particle physics constraints, including electroweak precision data, b → sγ, the neutron electric dipole moment, R b , and perturbative coupling bounds to constrain the model. Surprisingly, we find that a large enough baryon asymmetry is only consistently achieved in a small subset of parameter space in 2HDMs, regardless of trying to simultaneously account for any B physics anomaly. There is some tension between simultaneous explanation of the dimuon anomaly and baryogenesis, but using a Markov chain Monte Carlo we find several models within 1 σ of the central values. We point out shortcomings with previous studies that reached different conclusions. The restricted parameter space that allows for EWBG makes this scenario highly predictive for collider searches. We discuss the most promising signatures to pursue at the LHC for EWBG-compatible models.

  19. The mineralogy of global magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1984-01-01

    Experimental and analytical data on magnetic mineralogy was provided as an aid to the interpretation of magnetic anomaly maps. An integrated program, ranging from the chemistry of materials from 100 or more km depth within the Earth, to an examination of the MAGSAT anomaly maps at about 400 km above the Earth's surface, was undertaken. Within this framework, a detailed picture of the pertinent mineralogical and magnetic relationships for the region of West Africa was provided. Efforts were directed toward: (1) examining the geochemistry, mineralogy, magnetic properties, and phases relations of magnetic oxides and metal alloys in rocks demonstrated to have originated in the lower crust of upper mantle, (2) examining the assumption that these rocks portray the nature of their source regions; and (3) examining the regional geology, tectonics, gravity field and the MAGSAT anomaly maps for West Africa.

  20. Post-Metamorphic Thermal Anomaly across the Nacimiento Block, Central California: a Hydrothermal Overprint?

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.

    2017-12-01

    The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.

  1. Steganography anomaly detection using simple one-class classification

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M.; Peterson, Gilbert L.; Agaian, Sos S.

    2007-04-01

    There are several security issues tied to multimedia when implementing the various applications in the cellular phone and wireless industry. One primary concern is the potential ease of implementing a steganography system. Traditionally, the only mechanism to embed information into a media file has been with a desktop computer. However, as the cellular phone and wireless industry matures, it becomes much simpler for the same techniques to be performed using a cell phone. In this paper, two methods are compared that classify cell phone images as either an anomaly or clean, where a clean image is one in which no alterations have been made and an anomalous image is one in which information has been hidden within the image. An image in which information has been hidden is known as a stego image. The main concern in detecting steganographic content with machine learning using cell phone images is in training specific embedding procedures to determine if the method has been used to generate a stego image. This leads to a possible flaw in the system when the learned model of stego is faced with a new stego method which doesn't match the existing model. The proposed solution to this problem is to develop systems that detect steganography as anomalies, making the embedding method irrelevant in detection. Two applicable classification methods for solving the anomaly detection of steganographic content problem are single class support vector machines (SVM) and Parzen-window. Empirical comparison of the two approaches shows that Parzen-window outperforms the single class SVM most likely due to the fact that Parzen-window generalizes less.

  2. Anomalies in bulk supercooled water at negative pressure

    PubMed Central

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A.; Aragones, Juan L.; Abascal, José L. F.; Valeriani, Chantal; Caupin, Frédéric

    2014-01-01

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144–6154], or emanate from a critical point terminating a liquid–liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727–737]. At positive pressure, the LMκT has escaped observation because it lies in the “no man’s land” beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man’s land at negative pressure. PMID:24843177

  3. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  4. The fourth branchial complex anomaly: a rare clinical entity.

    PubMed

    Patel, Alpen B; Hinni, Michael L

    2011-01-01

    Fourth branchial pouch anomalies are rare congenital disorders of the neck and are a consequence of abnormal development of the branchial apparatus during embryogenesis. Failure to appropriately recognize these anomalies may result in misdiagnosis, insufficient treatment, and continued recurrence. Here, we present an unique presentation of two cases, describe their diagnosis, clinical course, and management, and review the literature regarding these interesting anomalies.

  5. Statistical Traffic Anomaly Detection in Time-Varying Communication Networks

    DTIC Science & Technology

    2015-02-01

    methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Statistical Traffic Anomaly Detection in Time...our methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Index Terms—Statistical anomaly detection...anomaly detection but also for understanding the normal traffic in time-varying networks. C. Comparison with vanilla stochastic methods For both types

  6. Statistical Traffic Anomaly Detection in Time Varying Communication Networks

    DTIC Science & Technology

    2015-02-01

    methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Statistical Traffic Anomaly Detection in Time...our methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Index Terms—Statistical anomaly detection...anomaly detection but also for understanding the normal traffic in time-varying networks. C. Comparison with vanilla stochastic methods For both types

  7. Revised estimation of 550-km times 550-km mean gravity anomalies

    NASA Technical Reports Server (NTRS)

    Williamson, M. R.

    1977-01-01

    The calculation of 550-km x 550-km mean gravity anomalies from 1 degree x 1 degree mean free-air gravimetry data is discussed. The block estimate procedure developed by Kaula is used to obtain 1,504 of the 1,654 possible mean block anomalies. The estimated block anomalies calculated from 1 deg x 1 deg mean anomalies referred to the reference ellipsoid and from 1 degree x 1 degree mean anomalies referred to a 24th-degree-and-order field are compared.

  8. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khruschov, V. V., E-mail: khruschov-vv@nrcki.ru; Fomichev, S. V., E-mail: fomichev-sv@nrcki.ru; Titov, O. A., E-mail: titov-oa@nrcki.ru

    2016-09-15

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal active neutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilitiesmore » for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a{sub 2} type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.« less

  9. Evaluation of Anomaly Detection Method Based on Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Fontugne, Romain; Himura, Yosuke; Fukuda, Kensuke

    The number of threats on the Internet is rapidly increasing, and anomaly detection has become of increasing importance. High-speed backbone traffic is particularly degraded, but their analysis is a complicated task due to the amount of data, the lack of payload data, the asymmetric routing and the use of sampling techniques. Most anomaly detection schemes focus on the statistical properties of network traffic and highlight anomalous traffic through their singularities. In this paper, we concentrate on unusual traffic distributions, which are easily identifiable in temporal-spatial space (e.g., time/address or port). We present an anomaly detection method that uses a pattern recognition technique to identify anomalies in pictures representing traffic. The main advantage of this method is its ability to detect attacks involving mice flows. We evaluate the parameter set and the effectiveness of this approach by analyzing six years of Internet traffic collected from a trans-Pacific link. We show several examples of detected anomalies and compare our results with those of two other methods. The comparison indicates that the only anomalies detected by the pattern-recognition-based method are mainly malicious traffic with a few packets.

  10. Magnetic Anomalies Within Lunar Impact Basins: Constraints on the History of the Lunar Dynamo

    NASA Astrophysics Data System (ADS)

    Richmond, N. C.; Hood, L. L.

    2011-12-01

    Previous work has shown that lunar crustal magnetization has a combination of origins including shock remanent magnetization in transient magnetic fields and thermoremanent magnetization in a steady core dynamo magnetic field (e.g., Hood and Artemieva, Icarus, 2008; Richmond and Hood, JGR, 2008; Garrick-Bethell et al., Science, 2009; Hood, Icarus, 2011). In particular, magnetic anomalies within the interiors of lunar impact basins and large craters provide a potentially valuable means of constraining the history of the former dynamo (Halekas et al., MAPS, 2003; Hood, 2011). These anomalies likely have a thermoremanent origin owing to high subsurface temperatures reached at the time of impact and therefore require a long-lived, steady magnetic field to explain their magnetization. Central anomalies have previously been confirmed to be present using Lunar Prospector magnetometer (LP MAG) data within several Nectarian-aged basins (Moscoviense, Mendel-Rydberg, Crisium, and Humboldtianum), implying that a dynamo existed during this lunar epoch (Hood, 2011). Here, we further analyze low altitude LP MAG data for several additional basins, ranging in age from Nectarian to Imbrian. Results indicate that magnetic anomalies with a probable basin-related origin are present within at least two additional Nectarian-aged basins (Serenitatis and Humorum) and one Imbrian-aged basin (Schrodinger). No discernible anomalies are present within the largest Imbrian-aged basins, Imbrium and Orientale. While there is uncertainty regarding the age of the Schrodinger basin, it has been reported to be slightly more recent than Imbrium (Wilhelms, 1984). Our initial interpretation is therefore that a dynamo likely existed during the Imbrian epoch. The absence of anomalies within Imbrium and Orientale can be explained by insufficient conditions for acquisition of strong magnetization (e.g., inadequate concentrations of efficient remanence carriers) following these relatively large impacts.

  11. Relational databases for rare disease study: application to vascular anomalies.

    PubMed

    Perkins, Jonathan A; Coltrera, Marc D

    2008-01-01

    To design a relational database integrating clinical and basic science data needed for multidisciplinary treatment and research in the field of vascular anomalies. Based on data points agreed on by the American Society of Pediatric Otolaryngology (ASPO) Vascular Anomalies Task Force. The database design enables sharing of data subsets in a Health Insurance Portability and Accountability Act (HIPAA)-compliant manner for multisite collaborative trials. Vascular anomalies pose diagnostic and therapeutic challenges. Our understanding of these lesions and treatment improvement is limited by nonstandard terminology, severity assessment, and measures of treatment efficacy. The rarity of these lesions places a premium on coordinated studies among multiple participant sites. The relational database design is conceptually centered on subjects having 1 or more lesions. Each anomaly can be tracked individually along with their treatment outcomes. This design allows for differentiation between treatment responses and untreated lesions' natural course. The relational database design eliminates data entry redundancy and results in extremely flexible search and data export functionality. Vascular anomaly programs in the United States. A relational database correlating clinical findings and photographic, radiologic, histologic, and treatment data for vascular anomalies was created for stand-alone and multiuser networked systems. Proof of concept for independent site data gathering and HIPAA-compliant sharing of data subsets was demonstrated. The collaborative effort by the ASPO Vascular Anomalies Task Force to create the database helped define a common vascular anomaly data set. The resulting relational database software is a powerful tool to further the study of vascular anomalies and the development of evidence-based treatment innovation.

  12. Classical Trajectory Study of Collision Energy Transfer between Ne and C2H2 on a Full Dimensional Accurate Potential Energy Surface.

    PubMed

    Liu, Yang; Huang, Yin; Ma, Jianyi; Li, Jun

    2018-02-15

    Collision energy transfer plays an important role in gas phase reaction kinetics and relaxation of excited molecules. However, empirical treatments are generally adopted for the collisional energy transfer in the master equation based approach. In this work, classical trajectory approach is employed to investigate the collision energy transfer dynamics in the C 2 H 2 -Ne system. The entire potential energy surface is described as the sum of the C 2 H 2 potential and interaction potential between C 2 H 2 and Ne. It is highlighted that both parts of the entire potential are highly accurate. In particular, the interaction potential is fit to ∼41 300 configurations determined at the level of CCSD(T)-F12a/cc-pCVTZ-F12 with the counterpoise correction. Collision energy transfer dynamics are then carried out on this benchmark potential and the widely used Lennard-Jones and Buckingham interaction potentials. Energy transfers and related probability densities at different collisional energies are reported and discussed.

  13. Residential energy efficiency: Progress since 1973 and future potential

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  14. Gravity and magnetic anomalies of the Cyprus arc and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ergün, M.; Okay, S.; Sari, C.; Oral, E. Z.

    2003-04-01

    In present day, eastern Mediterranean is controlled by the collision of the African and Eurasian plates and displacements of Arabian, Anatolian and Aegean micro-plates. The boundary between African and Eurasian plates is delineated by the Hellenic arc and Pliny-Strabo trench in the west and the Cyprus arc and a diffuse fault system of the Eastern Anatolian Fault zone in the east. The available gravity and magnetic data from the easternmost Mediterranean allow to subdivide this basin into three provinces: the northeastern Mediterranean north of the Cyprus Arc; the Levant Basin south of the Cyprus Arc and east of the line that roughly continues the Suez rift trend toward the Gulf of Antalya, between Cyprus and Anaximander Mountains; and the Mediterranean Ridge, Herodotus Basin west of this line. High anomalies observed in Cyprus and the sea region at the south is prominent in the gravity data. The Bouguer gravity anomaly reaches its maximum values over Cyprus, where it is most probably caused by high dense Troodos ophiolites. The uplifted oceanic crust causes high Bouguer anomaly also seen in the vicinity of Eratosthenes Seamount. Another result obtained from gravity data is that the crust under Herodotos and Rhodes basins is somehow oceanic and Anaximander, Eratosthenes and Cyprus are continental fragments. There are no linear magnetic anomalies in the Mediterranean. But there are magnetic anomalies over the Eratosthenes seamount and as well as from Cyprus to the Antalya basin due to the ophiolitic bodies. In Cyprus, the last compressional deformations were defined near the Miocene/Pliocene boundary. The extensional deformation associated with the Antalya basin appears to be separated by a zone of the Florence rise and Anaximander Mountains affected by differential tectonic movements. Eratosthenes Seamount is a positive crustal feature in the process of collision with Cyprus along an active margin; there is clearly a potential tectonic relationship to the onland

  15. Metallic bionanocatalysts: potential applications as green catalysts and energy materials.

    PubMed

    Macaskie, Lynne E; Mikheenko, Iryna P; Omajai, Jacob B; Stephen, Alan J; Wood, Joseph

    2017-09-01

    Microbially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low-grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio-catalytic upgrading of oils and manufacturing 'drop-in fuel' precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. The mineralogy of global magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1981-01-01

    Progress is reported in developing predictive abilities to evaluate the potential stabilities of magnetic minerals in the Earth crust and mantle by: (1) computing oxidation state profiling as a function of temperature and pressure; (2) compiling data on basalts to establish validity of the oxidation state profiles; (3) determining Fe-Ni alloys in association with magnetitie as a function of temperature and oxidation state; and (4) acquiring large chemical data banks on the mineral ilmenite which decomposes to mineral spinel in the presence of high sulfur or carbonate environments in the lower crust upper mantle. In addition to acquiring these data which are related to constraining Curie isotherm depths, an excellent correlation was found between MAGSAT anomaly data and the geology of West Africa.

  17. Equilibrium Atmospheric Response to North Atlantic SST Anomalies.

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Held, Isaac M.

    1996-06-01

    The equilibrium general circulation model (GCM) response to sea surface temperature (SST) anomalies in the western North Atlantic region is studied. A coarse resolution GCM, with realistic lower boundary conditions including topography and climatological SST distribution, is integrated in perpetual January and perpetual October modes, distinguished from one another by the strength of the midlatitude westerlies. An SST anomaly with a maximum of 4°C is added to the climatological SST distribution of the model with both positive and negative polarity. These anomaly runs are compared to one another, and to a control integration, to determine the atmospheric response. In all cases warming (cooling) of the midlatitude ocean surface yields a warming (cooling) of the atmosphere over and to the east of the SST anomaly center. The atmospheric temperature change is largest near the surface and decreases upward. Consistent with this simple thermal response, the geopotential height field displays a baroclinic response with a shallow anomalous low somewhat downstream from the warm SST anomaly. The equivalent barotropic, downstream response is weak and not robust. To help interpret the results, the realistic GCM integrations are compared with parallel idealized model runs. The idealized model has full physics and a similar horizontal and vertical resolution, but an all-ocean surface with a single, permanent zonal asymmetry. The idealized and realistic versions of the GCM display compatible response patterns that are qualitatively consistent with stationary, linear, quasigeostrophic theory. However, the idealized model response is stronger and more coherent. The differences between the two model response patterns can be reconciled based on the size of the anomaly, the model treatment of cloud-radiation interaction, and the static stability of the model atmosphere in the vicinity of the SST anomaly. Model results are contrasted with other GCM studies and observations.

  18. Detecting anomalies in CMB maps: a new method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelakanta, Jayanth T., E-mail: jayanthtn@gmail.com

    2015-10-01

    Ever since WMAP announced its first results, different analyses have shown that there is weak evidence for several large-scale anomalies in the CMB data. While the evidence for each anomaly appears to be weak, the fact that there are multiple seemingly unrelated anomalies makes it difficult to account for them via a single statistical fluke. So, one is led to considering a combination of these anomalies. But, if we ''hand-pick'' the anomalies (test statistics) to consider, we are making an a posteriori choice. In this article, we propose two statistics that do not suffer from this problem. The statistics aremore » linear and quadratic combinations of the a{sub ℓ m}'s with random co-efficients, and they test the null hypothesis that the a{sub ℓ m}'s are independent, normally-distributed, zero-mean random variables with an m-independent variance. The motivation for considering multiple modes is this: because most physical models that lead to large-scale anomalies result in coupling multiple ℓ and m modes, the ''coherence'' of this coupling should get enhanced if a combination of different modes is considered. In this sense, the statistics are thus much more generic than those that have been hitherto considered in literature. Using fiducial data, we demonstrate that the method works and discuss how it can be used with actual CMB data to make quite general statements about the incompatibility of the data with the null hypothesis.« less

  19. A novel surgical management of hypopharyngeal branchial anomalies.

    PubMed

    Givens, Daniel J; Buchmann, Luke O; Park, Albert H

    2015-04-01

    To review our experience treating hypopharyngeal branchial anomalies utilizing an open transcervical approach that: (1) includes recurrent laryngeal nerve (RLN) monitoring and identification if needed; (2) resection of tract if present; and (3) a superiorly based sternothyroid muscle flap for closure. A retrospective chart review was performed to identify all patients at a tertiary level children's hospital with branchial anomalies from 2005 to 2014. The clinical presentation, evaluation, treatment and outcome were analyzed for those patients with hypopharyngeal branchial anomalies. Forty-seven patients who underwent excision of branchial anomalies with a known origin were identified. Thirteen patients had hypopharyngeal branchial anomalies. Six of these patients were treated by the authors of this study and are the focus of this analysis. All six underwent an open transcervical procedure with a sternothyroid muscle flap closure of a piriform sinus opening over a nine year period. Definitive surgery included a microlaryngoscopy and an open transcervical approach to close a fistula between the piriform sinus and neck with recurrent laryngeal nerve monitoring or dissection. A superiorly based sternothyroid muscle flap was used to close the sinus opening. There were no recurrences, recurrent laryngeal nerve injuries or other complications from these procedures. This study supports complete surgical extirpation of the fistula tract using an open cervical approach, recurrent laryngeal nerve monitoring or identification, and rotational muscle flap closure to treat patients with hypopharyngeal branchial anomalies. Published by Elsevier Ireland Ltd.

  20. The Fourth Branchial Complex Anomaly: A Rare Clinical Entity

    PubMed Central

    Patel, Alpen B.; Hinni, Michael L.

    2011-01-01

    Fourth branchial pouch anomalies are rare congenital disorders of the neck and are a consequence of abnormal development of the branchial apparatus during embryogenesis. Failure to appropriately recognize these anomalies may result in misdiagnosis, insufficient treatment, and continued recurrence. Here, we present an unique presentation of two cases, describe their diagnosis, clinical course, and management, and review the literature regarding these interesting anomalies. PMID:22937376