Science.gov

Sample records for potential energy curve

  1. Potential Energy Curves of Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Fallon, Robert J.; Vanderslice, Joseph T.; Mason, Edward A.

    1960-01-01

    Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here.

  2. Morphing ab initio potential energy curve of beryllium monohydride

    NASA Astrophysics Data System (ADS)

    Špirko, Vladimír

    2016-12-01

    Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.

  3. Global Expression for Representing Diatomic Potential-Energy Curves

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Schlosser, Herbert; Smith, John R.

    1991-01-01

    A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.

  4. Global Expression for Representing Diatomic Potential-Energy Curves

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Schlosser, Herbert; Smith, John R.

    1991-01-01

    A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.

  5. Spectroscopic constants and potential energy curves of PF

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1995-09-01

    Spectroscopic constants of low-lying bound electronic states and potential energy curves of 19 electronic states of PF arising from the valence dissociation limits are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods, which included up to 0.9 million configurations.

  6. Spectroscopic constants and potential energy curves of AsF

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1996-02-01

    Spectroscopic constants and potential energy curves of 21 electronic states of AsF are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) and multireference singles and doubles configuration interaction (MRSDCI) methods. The computed spectroscopic constants agree with the experimental values for the observed states.

  7. N2(+) bound quartet and sextet state potential energy curves

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Bauschlicher, C. W., Jr.; Stallcop, J. R.

    1985-01-01

    The N2(+) potential energies have been determined from a complete active space self-consistent field calculation with active 2s and 2p electrons. A (6s 4p 3d 1f) Gaussian basis set was used together with additional higher angular momentum and diffuse functions. The calculated potential energy curves for the states 4Sigma(mu)(+), 4Pi(g), and 6Sigma(g)(+), for which there are no spectroscopic observations, are presented. The corresponding spectroscopic constants have been determined from a polynomial curve fit to the computed energies near the well minima and are shown. The 6Sigma(g)(+) state is found to be significantly bound, with a minimum at 1.72 A.

  8. Spectroscopic constants and potential energy curves of GeF +

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Balasubramanian, K.

    1995-05-01

    Spectroscopic constants and potential energy curves of 27 electronic states of GeF + are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods that included up to 1.6 million configurations. Our computed spectroscopic constants of the 1Σ+ electronic state fit well with the experimentally observed X ground state. Other yet to be observed properties of several excited electronic states are reported.

  9. Spectroscopic constants and potential energy curves of SnF

    NASA Astrophysics Data System (ADS)

    Dai, Dingguo; Balasubramanian, K.

    1994-07-01

    Spectroscopic constants and potential energy curves of 20 electronic states of SnF arising from valence dissociation limits are computed using the complete active space MCSCF (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods, which included up to one million configurations. Our computed spectroscopic constants of five electronic states fit well with the experimentally observed X, A, a, and C states. The dipole moments and other yet to be observed properties of several electronic states are reported.

  10. Spectroscopic Properties and Potential Energy Curves of SnF +

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Xu, H.

    1995-06-01

    Spectroscopic properties and potential energy curves of several electronic states of SnF+ are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods that include up to 1.6 million configurations. Spin-orbit effects were incorporated using the relativistic configuration interaction (RCI) method. Spectroscopic properties of several excited electronic states of SnF+ are reported, none of which is observed at present.

  11. Spectroscopic Constants and Potential Energy Curves of PbI

    NASA Astrophysics Data System (ADS)

    Benavidesgarcia, M.; Balasubramanian, K.

    1993-10-01

    The spectroscopic constants and potential energy curves of the PbI diatomic were computed using complete active space SCF (CASSCF) followed by first-order CI (FOCI) and second-order CI (SOCI) calculations which included 607 000 configurations. Spin-orbit coupling was studied using the relativistic CI (RCI) method. The spectroscopic properties of the 2Π1/2 state are Re = 2.885 Å, ωe, = 153 cm-1, and De = 2.54(eV), while for the 2Π3/2 state the corresponding values are Re = 2.859 Å, ωe = 162 cm-1, and Te = 8255 cm-1. Our computed constants are in good agreement with experiment for the observed states. We also computed the properties and curves for several excited states which are yet to be observed.

  12. Spectroscopic Constants and Potential Energy Curves for GeF

    NASA Astrophysics Data System (ADS)

    Liao, D. W.; Balasubramanian, K.

    1994-01-01

    The spectroscopic constants of the electronic states of GeF lying below the 60000 cm -1 region are obtained using the complete active space multiconfiguration self-consistent field followed by first- and second-order configuration interaction (FOCI. SOCI) methods which included up to a million configurations. The potential energy curves of the low-lying electronic states are also computed. The computed spectroscopic constants confirm the assignments of the X, A, a, C, C', and D' states of GeF. In addition the spectroscopic constants of several electronic states of GeF are predicted which are yet to be observed.

  13. Spectroscopic constants and potential energy curves for TaH

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Balasubramanian, K.

    1991-09-01

    Spectroscopic constants and potential energy curves of 21 electronic states of the diatomic TaH are computed using complete active space multiconfiguration self-consistent field (CASSCF) followed by second-order configuration interaction (SOCI) calculations. In addition spin-orbit effects were included using the relativistic configuration interaction method (RCI). The ground state of TaH was found to be a 0 + state, which is a mixture of 5Δ(0 +), 5Π(0 +), 3Σ -(0 +), and 3Π(0 +). The spin-orbit effects were found to be significant for TaH. Several spectroscopic transitions are predicted for TaH none of which is observed.

  14. Spectroscopic Constants and Potential Energy Curves for GeBr

    NASA Astrophysics Data System (ADS)

    Liao, D. W.; Balasubramanian, K.

    1993-12-01

    Spectroscopic constants and potential energy curves of several low-lying electronic states of the GeBr radical are computed using the complete active space multiconfiguration self-consistent filed (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods which included up to a million configurations. Our computed spectroscopic constants confirm the assignments of X, A, A‧, B, and C states. Spectroscopic properties of several other electronic states below 30 000 cm-1 are predicted, which are yet to be observed.

  15. Spectroscopic constants and potential energy curves of yttrium carbide (YC).

    PubMed

    Suo, Bingbing; Balasubramanian, Krishnan

    2007-06-14

    The potential energy curves of the low-lying electronic states of yttrium carbide (YC) and its cation are calculated at the complete active space self-consistent field and the multireference single and double excitation configuration interaction (MRSDCI) levels of theory. Fifteen low-lying electronic states of YC with different spin and spatial symmetries were identified. The X (4)Sigma- state prevails as the ground state of YC, and a low-lying excited A (4)Pi state is found to be 1661 cm(-1) higher at the MRSDCI level. The computations of the authors support the assignment of the observed spectra to a B (4)Delta(Omega=72)<--A (4)Pi(Omega=52) transition with a reinterpretation that the A (4)Pi state is appreciably populated under the experimental conditions as it is less than 2000 cm(-1) of the X (4)Sigma- ground state, and the previously suggested (4)Pi ground state is reassigned to the first low-lying excited state of YC. The potential energy curves of YC+ confirm a previous prediction by Seivers et al. [J. Chem. Phys. 105, 6322 (1996)] that the ground state of YC+ is formed through a second pathway at higher energies. The calculated ionization energy of YC is 6.00 eV, while the adiabatic electron affinity is 0.95 eV at the MRSDCI level. The computed ionization energy of YC and dissociation energy of YC+ confirm the revised experimental estimates provided by Seivers et al. although direct experimental measurements yielded results with greater errors due to uncertainty in collisional cross sections for YC+ formation.

  16. Potential energy curves and collision integrals of air components

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  17. Potential energy curves and collision integrals of air components

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  18. Spectroscopic constants and potential energy curves of HfH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Das, Kalyan K.

    1991-01-01

    Complete active space multiconfiguration self-consistent field (CAS-MCSFC) followed by full second-roder CI (SOCI) and relativistic configuration interaction (RCI) including spin-orbit coupling calculations are carried out on 14 λ- s and 10 ω-ω states of HfH. The spectroscopic constants ( re, Te, ωe, μe, De) of these states are computed. The potential energy curves of these states are also reported. We find several electronic transitions in the IR-UV regions for HfH which are yet to be observed. The ground state of HfH is found to be a {3}/{2} state (82% 2Δ, 8% 2Π) with r e = 1.854 Å, ωe = 1704 cm -1 and μe = 0.66 D. The spin-orbit effects are found to be very significant for HfH.

  19. Spectroscopic constants and potential energy curves of tungsten carbide

    SciTech Connect

    Balasubramanian, K.

    2000-05-01

    Spectroscopic constants (R{sub e},{omega}{sub e},T{sub e},{mu}{sub e}) and potential energy curves for 40 low-lying electronic states of the diatomic tungsten carbide (WC) were obtained using the complete active space multiconfiguration self-consistent field followed by the multireference singles+doubles configuration interaction and full first- and second-order configuration interaction calculations that included up to 6.4 mil configurations. Spin-orbit effects were included through the enhanced relativistic configuration interaction method described here for 28 electronic states of WC lying below {approx}20 000 cm-1. The spin-orbit splitting of the ground state of WC was found to be very large (4394 cm-1). The ground and excited electronic states of the W atom were also computed and were found to be in good agreement with the experimental data. The nature of bonding was analyzed through the composition of orbitals, leading configurations, Mulliken populations, and dipole moments. The dissociation energy of WC was computed including spin-orbit and electron correlation effects. The recent photoelectron spectra of WC{sup -} were assigned on the basis of our computed results. (c) 2000 American Institute of Physics.

  20. RKRV potential energy curves and dissociation energies of NH and PH

    NASA Astrophysics Data System (ADS)

    Reddy, R. R.; Viswanath, R.

    1989-05-01

    The turning points of the potential energy curves for the ground states of NH and PH molecules were calculated using the approach of Rydberg-Klein-Rees modified by Vanderslice et al. (1960), together with the energy values obtained from the Lippincott potential function. These values were compared with those obtained by Jarmain (1960). The values of the dissociation energies of the NH and PH were estimated to be about 3.45 and 3.16, respectively.

  1. Potential energy curves and dissociation energy of group IIA diatomic fluorides

    NASA Astrophysics Data System (ADS)

    Varma, M. P.; Ishwar, N. B.; Jha, B. L.

    1982-04-01

    Reliable (RKRV) potential energy curves have been constructed for different experimentally observed electronic states of BeF, MgF, CaF, SrF and BaF molecules from the latest spectroscopic data using the method of Rao and Venkateswarlu. Using a three-parameters Lippincott potential function the precise values of ground state dissociation energies of these molecules have been obtained. Values so obtained are found to be in close agreement with the experimental results.

  2. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    PubMed

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-07

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  3. Spectroscopic constants and potential energy curves for OsH

    NASA Astrophysics Data System (ADS)

    Benavides-Garcia, M.; Balasubramanian, K.

    1991-11-01

    Complete active space (CASSCF) followed by first-order configuration interaction (FOCI) and second-order CI (SOCI) are carried out on 21 low-lying electronic states of OsH. Spin-orbit effects are investigated using the relativistic CI (RCI) methodology. The ground state of OsH is found to be 4Π symmetry with R e = 1.606 Å, ωe = 2138 cm -1, De = 2.317 eV, and μe = -1.651 D in the absence of spin-orbit interactions, while the ground state is found to be a strong mixture of 4Π( {5}/{2}) and 4Δ( {5}/{2}) including spin-orbit coupling. Potential energy surfaces for 21 low-lying electronic states are reported. Allowed electronic transitions from the ground X4Π and some other low-lying states are predicted. The nature and bonding of the low-lying electronic states are analyzed through Mulliken populations.

  4. Potential Energy Curves and Associated Line Shape of Alkali-Metal and Noble-Gas Interactions

    DTIC Science & Technology

    2014-10-20

    Potential Energy Curves and Associated Line Shape of Alkali - Metal and Noble-Gas Interactions DISSERTATION Larry Aaron Blank, Civ AFIT-ENP-DS-14-D-51...OF ALKALI - METAL AND NOBLE-GAS INTERACTIONS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of...ENP-DS-14-D-51 POTENTIAL ENERGY CURVES AND ASSOCIATED LINE SHAPE OF ALKALI - METAL AND NOBLE-GAS INTERACTIONS Larry Aaron Blank, B.S., M.S. Civ Approved

  5. Up and away in the potential landscape of diatomic molecule potential energy curves

    NASA Astrophysics Data System (ADS)

    Stwalley, William C.

    2016-12-01

    The understanding of the potential curves of a given molecule has expanded in many ways during my last 52 years as an experimental and theoretical molecular chemist/physicist in graduate school in Chemistry at Harvard and in both the Chemistry and Physics Departments at University of Iowa and University of Connecticut. This expansion has been up in energy and vibrational and rotational quantum numbers and away from Re to long range as well. It is clear that Prof. Robert Le Roy, who I have known since the late 1960s, has made many important and greatly appreciated contributions to the landscape I describe below from my personal perspective, especially with regard to long range molecules and solution of the radial Schrödinger equations and related calculations.

  6. Accurate potential energy curves for F(-)-Rg (Rg = He-Rn): spectroscopy and transport coefficients.

    PubMed

    Gray, Benjamin R; Wright, Timothy G; Wood, Erin L; Viehland, Larry A

    2006-11-07

    High-quality ab initio potential energy curves are presented for the F(-)-Rg series (Rg = He-Rn). Calculations are performed at the CCSD(T) level of theory, employing d-aug-cc-pV5Z quality basis sets, with "small core" relativistic effective core potentials being used for Kr-Rn. The quality of the curves is judged by agreement with recent high-level calculations in the case of F(-)-He and F(-)-Ne and by excellent agreement with mobility data for the systems F(-)-Rg (Rg = He-Xe). Except for these recent high-level calculations on the two lightest systems, we are able to deduce that all other previous potentials for the whole set of these systems are inadequate. We also present spectroscopic information for the titular species, derived from our potential energy curves.

  7. Germanium monochloride (GeCl). Spectroscopic constants and potential energy curves

    NASA Astrophysics Data System (ADS)

    Liao, Dai-Wei; Balasubramanian, K.

    1993-10-01

    The electronic states, potential energy curves and spectroscopic properties of the GeCl radical were calculated by means of the relativistic ab initio complete active space multiconfiguration self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods which included up to a million configurations. Our computed spectroscopic constants are in good agreement with the experiment for the observed states. Spectroscopic constants and potential energy curves of several other electronic states are computed which are yet to be observed. We also show that a previous rotational analysis of the B—X system is incorrect.

  8. The Calculation of Potential Energy Curves of Diatomic Molecules: The RKR Method.

    ERIC Educational Resources Information Center

    Castano, F.; And Others

    1983-01-01

    The RKR method for determining accurate potential energy curves is described. Advantages of using the method (compared to Morse procedure) and a TRS-80 computer program which calculates the classical turning points by an RKR method are also described. The computer program is available from the author upon request. (Author/JN)

  9. The Calculation of Potential Energy Curves of Diatomic Molecules: The RKR Method.

    ERIC Educational Resources Information Center

    Castano, F.; And Others

    1983-01-01

    The RKR method for determining accurate potential energy curves is described. Advantages of using the method (compared to Morse procedure) and a TRS-80 computer program which calculates the classical turning points by an RKR method are also described. The computer program is available from the author upon request. (Author/JN)

  10. Controlled dynamics at an avoided crossing interpreted in terms of dynamically fluctuating potential energy curves.

    PubMed

    Scheit, Simona; Arasaki, Yasuki; Takatsuka, Kazuo

    2012-03-22

    The nonadiabatic nuclear wavepacket dynamics on the coupled two lowest (1)Σ(+) states of the LiF molecule under the action of a control pulse is investigated. The control is achieved by a modulation of the characteristics of the potential energy curves using an infrared field with a cycle duration comparable to the time scale of nuclear dynamics. The transition of population between the states is interpreted on the basis of the coupled nuclear wavepacket dynamics on the effective potential curves, which are transformed from the adiabatic potential curves with use of a diabatic representation that diagonalizes the dipole-moment matrix of the relevant electronic states. The basic feature of the transition dynamics is characterized in terms of the notion of the collision between the dynamical crossing point and nuclear wavepackets running on such modulated potential curves, and the transition amplitude is mainly dominated by the off-diagonal matrix element of the time-independent electronic Hamiltonian in the present diabatic representation. The importance of the geometry dependence of the intrinsic dipole moments as well as of the diabatic coupling potential is illustrated both theoretically and numerically. © 2011 American Chemical Society

  11. Spectroscopic constants and potential energy curves of Bi2 and Bi - 2

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Liao, Dai-Wei

    1991-09-01

    We compute the spectroscopic constants of 26 electronic states of Bi2 and six electronic states of Bi-2. In addition, the potential energy curves of electronic states of Bi2 dissociating into Bi(4S)+Bi(4S), Bi(4S)+Bi(2D), Bi(4S)+Bi(2P), Bi(2D)+Bi(2D), and Bi(4S)+Bi(4P) limits are computed. We use a complete active space multiconfiguration self-consistent field (CAS-MCSCF) followed by first-order configuration interaction (FOCI) and second-order configuration interaction (SOCI) methods. In addition, the spin-orbit effects are included through the relativistic configuration interaction (RCI) method. Our computed spectroscopic properties facilitate the assignment of recently observed negative ion photodetachment spectra as well as the electronic spectra accumulated up to now. The observed lifetime and transition moment dependence on internuclear distance are also explained based on computed potential energy curves.

  12. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  13. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  14. Potential energy curves crossing and low-energy charge transfer dynamics in (BeH2O)2+ complex

    NASA Astrophysics Data System (ADS)

    Sun, QiXiang; Yan, Bing

    2012-07-01

    The singlet rigid Be—O dissociation potential energy curves correlating to the first four molecular limits of (BeH2O)2+ complex were calculated using the multi-reference single and double excitation configuration interaction theory. The radial couplings of three low-lying 1A1 states were calculated and combined with adiabatic potential energy curves to investigate and charge-transfer collision dynamics by using quantum-mechanical molecular orbital close-coupling methods. It is found that the total charge-transfer cross sections are dominated by the Be+(2S)+H2O+(Ã2A1) channel. The rate coefficients in the range of 10-17-10-12 cm3/s are very sensitive to temperature below 1000 K. The complexation energy without charge-transfer was determined to be 143.6 kcal/mol, including zero-point vibration energy corrections. This is in good agreement with the previous results.

  15. Spectroscopic constants and potential energy curves for 16 electronic states of AsH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Nannegari, V.

    1989-12-01

    Relativistic complete active space multi-configuration SCF (CASSCF) followed by full secondorder configuration interaction (SOCI) calculations are carried out on 16 electronic states of AsH. Among these are found 11 bound states for which spectroscopic constants are reported. Potential energy curves of all 16 electronic states are computed. Spectroscopic constants of nine new electronic states of AsH which are yet to be observed are reported. The experimentally observed predissociation and Λ-doubling in the A3Π ← X3Σ - system are explained based on theoretical potential energy curves. The dipole moment curves for the low-lying states are presented. The nature of the lowlying electronic states is analyzed through CI wave functions and Mulliken population analyses. The theoretical spectroscopic constants of the X3Σ - state are R e = 1.528 Å, ωe = 2194 cm -1, De = 2.71 eV, μe = 0.18 D, in excellent agreement with the experimental values of R e = 1.535 Å, ωe = 2130 cm -1, and De = 2.80 eV.

  16. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    SciTech Connect

    Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  17. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers.

    PubMed

    Fedorov, Dmitry A; Derevianko, Andrei; Varganov, Sergey A

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X(1)Σ(+) electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm(-1) for LiNa and by no more than 114 cm(-1) for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm(-1), and the discrepancies for the anharmonic correction are less than 0.1 cm(-1). We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  18. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitry A.; Derevianko, Andrei; Varganov, Sergey A.

    2014-05-01

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X1Σ+ electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm-1 for LiNa and by no more than 114 cm-1 for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm-1, and the discrepancies for the anharmonic correction are less than 0.1 cm-1. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  19. A study of potential energy curves from the model space quantum Monte Carlo method

    SciTech Connect

    Ohtsuka, Yuhki; Ten-no, Seiichiro

    2015-12-07

    We report on the first application of the model space quantum Monte Carlo (MSQMC) to potential energy curves (PECs) for the excited states of C{sub 2}, N{sub 2}, and O{sub 2} to validate the applicability of the method. A parallel MSQMC code is implemented with the initiator approximation to enable efficient sampling. The PECs of MSQMC for various excited and ionized states are compared with those from the Rydberg-Klein-Rees and full configuration interaction methods. The results indicate the usefulness of MSQMC for precise PECs in a wide range obviating problems concerning quasi-degeneracy.

  20. Interatomic Coulombic decay in a He dimer: Ab initio potential-energy curves and decay widths

    SciTech Connect

    Kolorenc, Premysl; Kryzhevoi, Nikolai V.; Sisourat, Nicolas; Cederbaum, Lorenz S.

    2010-07-15

    The energy gained by either of the two helium atoms in a helium dimer through simultaneous ionization and excitation can be efficiently transferred to the other helium atom, which then ionizes. The respective relaxation process called interatomic Coulombic decay (ICD) is the subject of the present paper. Specifically, we are interested in ICD of the lowest of the ionized excited states, namely, the He{sup +}(n=2)He states, for which we calculated the relevant potential-energy curves and the interatomic decay widths. The full-configuration interaction method was used to obtain the potential-energy curves. The decay widths were computed by utilizing the Fano ansatz, Green's-function methods, and the Stieltjes imaging technique. The behavior of the decay widths with the interatomic distance is examined and is elucidated, whereby special emphasis is given to the asymptotically large interatomic separations. Our calculations show that the electronic ICD processes dominate over the radiative decay mechanisms over a wide range of interatomic distances. The ICD in the helium dimer has recently been measured by Havermeier et al. [Phys. Rev. Lett. 104, 133401 (2010)]. The impact of nuclear dynamics on the ICD process is extremely important and is discussed by Sisourat et al. [Nat. Phys. 6, 508 (2010)] based on the ab initio data computed in the present paper.

  1. Resonance energies, lifetimes and complex energy potential curves from standard wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod

    2012-05-01

    We show here for a simple model system that the wavepacket dynamics in the interaction region can be described by a superposition of the non-Hermitian exponential divergent eigenfunctions of the physical Hamiltonian. We demonstrate how it is possible to obtain the complex eigenvalues and also the corresponding resonance eigenfunctions from the propagation of the wavepacket within the framework of the standard formalism of quantum mechanics. The general results demonstrated here for a simple model can lead to two different types of computational applications: (i) for systems where one can obtain the resonance energies and lifetimes as well as their corresponding eigenfunctions it is possible to study the evolution of the physical properties solely based on the initially populated resonance states without the need to propagate the wavepacket; (ii) for molecular systems where it is quite difficult to solve the non-Hermitian time-independent Schrödinger equation and obtain molecular resonance energies and functions. For this type of problem, the methods presented here enable one to evaluate the topology of complex potential energy surfaces from the wavepacket propagation and facilitate the study of the nuclear dynamics of ionizing molecular systems.

  2. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations.

    PubMed

    Goel, Satyender; Masunov, Artëm E

    2008-12-07

    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence.

  3. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations

    NASA Astrophysics Data System (ADS)

    Goel, Satyender; Masunov, Artëm E.

    2008-12-01

    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence.

  4. Supply curves of conserved energy

    NASA Astrophysics Data System (ADS)

    Meier, A. K.

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes.

  5. Balanced Basis Sets in the Calculation of Potential Energy Curves for Diatomic Molecules.

    NASA Astrophysics Data System (ADS)

    Barclay, V. J.

    "Balanced" basis sets, which describe the internuclear region as well as the nuclear region, are examined in the context of an ab initio selection-extrapolation configuration -interaction method (MRD-CI). The sets are balanced by adding bond functions (BF's), which are s, p and d-type orbitals at the bond mid-point, to atomic-centred molecular basis sets, which have double and triple sets of valence -shell orbitals (DZ and TZ) and one or two sets of polarization functions (PF's). Potential energy curves and spectroscopic constants were calculated for the ground states of the hydrides H _2, OH, NaH, MgH, MH, SiH, PH, SH, HCl, and for the ionized species OH^+ and OH^{++}, and for the A^3Sigma_{u}, w^3Delta_{u} and B^3Pi_{g} excited states of N_2. The basis sets containing bond functions gave curves and constants superior to the DZP and (where calculated) TZPP results, and of quality similar to large basis set calculations in the literature. The single and double ionization potentials of OH, and the term energies of the N_2 excited states had error at the atomic asymptotes for all basis sets. The dissociation energies of the ground states of ten first-row diatomics (C_2, N_2, O_2, F_2, CN, CO, CF, NO, NF, and FO) were studied using balanced basis sets. A correlation was found to exist between the actual bond order of a species, and the number and kinds of orbitals which comprise the optimum BF. For MRD-CI diatomic calculations, the following BF's should be added to a DZP basis set (sp) (for a bond order of 1); 2(sp) (B. O. 1.5); (spd) (B. O. 2); 3(sp) (B. O. 2.5); 2(spd) (B. O. 3). The prescribed BF basis method was tested on the 26 second-row congeners Si _2, P_2, S _2, Cl_2, SiP, SiS, SiCl, PS, PCl, and ClS, and mixed-row congeners SiN, SiO, SiF, PO, PF, SF, SiC, PN, SO, ClF, CP, CS, CCl, NS, NCl, and ClO. An average error of 6% and a maximum error of 10% relative to known experimental D_{e }'s was found: compared to an average error of 18% for TZPP calculations

  6. Spectroscopic constants and potential energy curves of electronic states of LaH

    NASA Astrophysics Data System (ADS)

    Das, Kalyan D.; Balasubramanian, K.

    1990-09-01

    Spectroscopic parameters ( re, Te, ω e, D3, μ e) and potential energy curves are computed for the low-lying states of LaH using complete active space MCSCF (CASSCF) followed by second-order configuration interaction (SOCI) calculations. Relativistic CI (RCI) calculations were carried out to study the effect of spin—orbit coupling on five low-lying λ—s states. The ground state of LaH is found to be of 1Σ + symmetry with re = 2.08 Å, ω e=1433 cm -1, De=2.60 eV, and μ e=2.42 D. The experimentally observed B↔ C→A, and b↔a band systems are reassigned as B 1Π(II)↔X 1Σ +, C 1Π(III)→X 1Σ +, and b 3Δ(III)↔a 3Π transitions.

  7. Spectroscopic Properties and Potential Energy Curves for 21 Electronic States of CrH

    NASA Astrophysics Data System (ADS)

    Dai, D. G.; Balasubramanian, K.

    1993-10-01

    Spectroscopic constants and potential energy curves of 21 electronic states of CrH are obtained using the all-electron complete active space multiconfiguration self-consistent field (CASMCSCF) followed by first-order configuration interaction (FOCI) and full second-order CI (SOCI) and multireference CI including Rydberg states calculations. The ground state of CrH is found to be of 6Σ+ symmetry with re = 1.690 Å, ωe = 1592 cm-1, De = 2.11 eV, and μe = 3.864 D at the SOCI level. Several optical transitions for CrH are predicted. Our computations support the reassignment of the state perturbing the A-X system to 4Σ+ suggested by Ram et al. Our computed spectroscopic constants for the A, X, and a 4Σ+ state are in excellent agreement with the experimental values reported by Ram et al.

  8. Calculating potential energy curves with fixed-node diffusion Monte Carlo: CO and N2

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2016-12-01

    This study reports on the prospect for the routine use of Quantum Monte Carlo (QMC) for the electronic structure problem, applying fixed-node Diffusion Monte Carlo (DMC) to generate highly accurate Born-Oppenheimer potential energy curves (PECs) for small molecular systems. The singlet ground electronic states of CO and N2 were used as test cases. The PECs obtained by DMC employing multiconfigurational trial wavefunctions were compared with those obtained by conventional high-accuracy electronic structure methods such as multireference configuration interaction and/or the best available empirical spectroscopic curves. The goal was to test whether a straightforward procedure using available QMC codes could be applied robustly and reliably. Results obtained with DMC codes were found to be in close agreement with the benchmark PECs, and the n3 scaling with the number of electrons (compared with n7 or worse for conventional high-accuracy quantum chemistry) could be advantageous depending on the system size. Due to a large pre-factor in the scaling, for the small systems tested here, it is currently still much more computationally intensive to compute PECs with QMC. Nevertheless, QMC algorithms are particularly well-suited to large-scale parallelization and are therefore likely to become more relevant for future massively parallel hardware architectures.

  9. A new [ital ab initio] potential energy curve for the helium dimer

    SciTech Connect

    van Mourik, T.; Dunning, T.H. Jr. )

    1999-11-01

    The He[sub 2] interaction potential has been computed employing augmented correlation-consistent basis sets and several methods beyond those commonly used to recover electron correlation, namely fifth-order Mo/ller[endash]Plesset perturbation theory (MP5), coupled cluster theory with full triple excitations (CCSDT), and full configuration interaction (FCI). Calculations employing the largest basis sets were not feasible for the most sophisticated methods (MP5, CCSDT, and FCI). Nonetheless, because of the rapid convergence of the calculated interaction energy [ital differences] with basis set, it was possible to obtain reliable estimates of the complete basis set MP5, CCSDT, and FCI results. The MP5 method is predicted to yield a well depth of 10.67[plus minus]0.03 hthinsp;K at the complete basis set (CBS) limit. Thus, the accuracy of the MP5 method is comparable to that of the CCSD(T) method which yields a D[sub e] of 10.68[plus minus]0.02 hthinsp;K. The CCSDT method yields an estimated well depth of 10.98[plus minus]0.03 hthinsp;K. Thus, the [ital full] effect of connected triple excitations on the He[sub 2] well depth is 1.74 K (CCSDT-CCSD). Comparing the basis set dependence of the CCSDT and FCI well depths, the effect of [ital connected] quadruple excitations on the well depth is estimated to be just 0.015[endash]0.020 K. Thus, the current calculations predict the FCI He[sub 2] well depth to be 11.00[plus minus]0.03 hthinsp;K, in excellent agreement with the recent quantum Monte Carlo calculations of Anderson [ital et al.] [J. Chem. Phys. [bold 99], 345 (1993)]. Taking advantage of the rapid convergence of the full triples and quadruples correlation corrections to the CCSD(T) interaction energy with basis set, an estimated FCI/CBS potential energy curve has been constructed for He[sub 2] from 3.5 to 15.0 a[sub 0]. The resulting curve lies between the HFD-B3-FCI1 and SAPT2 semi-empirical potentials of Aziz [ital et al.], being closer to the SAPT2 potential

  10. A new {ital ab initio} potential energy curve for the helium dimer

    SciTech Connect

    van Mourik, T.; Dunning, T.H. Jr.

    1999-11-01

    The He{sub 2} interaction potential has been computed employing augmented correlation-consistent basis sets and several methods beyond those commonly used to recover electron correlation, namely fifth-order Mo/ller{endash}Plesset perturbation theory (MP5), coupled cluster theory with full triple excitations (CCSDT), and full configuration interaction (FCI). Calculations employing the largest basis sets were not feasible for the most sophisticated methods (MP5, CCSDT, and FCI). Nonetheless, because of the rapid convergence of the calculated interaction energy {ital differences} with basis set, it was possible to obtain reliable estimates of the complete basis set MP5, CCSDT, and FCI results. The MP5 method is predicted to yield a well depth of 10.67{plus_minus}0.03&hthinsp;K at the complete basis set (CBS) limit. Thus, the accuracy of the MP5 method is comparable to that of the CCSD(T) method which yields a D{sub e} of 10.68{plus_minus}0.02&hthinsp;K. The CCSDT method yields an estimated well depth of 10.98{plus_minus}0.03&hthinsp;K. Thus, the {ital full} effect of connected triple excitations on the He{sub 2} well depth is 1.74 K (CCSDT-CCSD). Comparing the basis set dependence of the CCSDT and FCI well depths, the effect of {ital connected} quadruple excitations on the well depth is estimated to be just 0.015{endash}0.020 K. Thus, the current calculations predict the FCI He{sub 2} well depth to be 11.00{plus_minus}0.03&hthinsp;K, in excellent agreement with the recent quantum Monte Carlo calculations of Anderson {ital et al.} [J. Chem. Phys. {bold 99}, 345 (1993)]. Taking advantage of the rapid convergence of the full triples and quadruples correlation corrections to the CCSD(T) interaction energy with basis set, an estimated FCI/CBS potential energy curve has been constructed for He{sub 2} from 3.5 to 15.0 a{sub 0}. The resulting curve lies between the HFD-B3-FCI1 and SAPT2 semi-empirical potentials of Aziz {ital et al.}, being closer to the SAPT2 potential

  11. Quantum Monte Carlo with density matrix: potential energy curve derived properties.

    PubMed

    Bonfim, Víctor S; Borges, Nádia M; Martins, João B L; Gargano, Ricardo; Politi, José Roberto Dos S

    2017-04-01

    In this work, we used diffusion quantum Monte Carlo with density matrix (d-DMC) and variational quantum Monte Carlo (d-VMC) to determine the potential energy curve (PEC) and obtain the spectroscopic constants of H2 molecule in the ground state, in order to evaluate the capability of these methods to provide an accurate PEC description. These quantum Monte Carlo methods build with density matrix are new approaches to conventional quantum Monte Carlo methods based on wave function formed by product of α and β determinants. To investigate the robustness of d-DMC, we performed calculations with two different basis sets and analyzed the influence of the size of these sets on results. To the best of our knowledge, this is the first study that shows the dissociation energy and rotational constant obtained from d-QMC. We found that the quality of PEC described by the d-DMC is essentially coincident with the most accurate results available in the literature, regardless of the complexity of basis set employed.

  12. Conformational landscape, stability, potential energy curves and vibrations of 1,2,3,4 tetrahydroquinoline

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhijit; Das, Lakshmikanta

    2017-05-01

    The twisted conformer with the equatorial hydrogen of the NH group is computed to be the most stable conformer of tetrahydroquinoline in S0 and S1 states at various levels of quantum chemical computations. The planar structure for equatorial orientation of H atom is found to be higher by 4000 ± 800 cm-1 in S0 and ∼3000 cm-1 in S1. For the axial orientation of H atom the barrier is 9500 ± 300 cm-1 in S0 and ∼8000 cm-1 in S1. The twisting angle for the optimized conformer is 29° ± 2° in S0. Observed IR spectra corroborate well with the theoretical calculations. The characteristic low-frequency vibrations appear at 97 cm-1 and 154 cm-1 in S0. The excited state structure differs from S0 and is termed ;half-twist;. Potential energy curves corresponding to twisting and bending motions, as well as the one connecting the two motions are found out. Frontier molecular orbital calculations associated with the electron density plots clearly identify the changes on the density on excitation. Molecular electrostatic potential is calculated and the sites of electrophilic interactions are noted. Hardnesses' and electrophilicities are calculated for all the conformers to check their relative stability. The maximum hardness principle and minimum electrophilicity principles are not valid for most of the conformers. Transition state is found to obey the minimum electrophilicity principle.

  13. Potential energy curves of Li+2 from all-electron EA-EOM-CCSD calculations

    NASA Astrophysics Data System (ADS)

    Musiał, Monika; Medrek, Magdalena; Kucharski, Stanisław A.

    2015-10-01

    The electron attachment (EA) equation-of-motion coupled-cluster theory provides description of the states obtained by the attachment of an electron to the reference system. If the reference is assumed to be a doubly ionised cation, then the EA results relate to the singly ionised ion. In the current work, the above scheme is applied to the calculations of the potential energy curves (PECs) of the Li+2 cation adopting the doubly ionised Li2 +2 structure as the reference system. The advantage of such computational strategy relies on the fact that the closed-shell Li2 +2 reference dissociates into closed-shell fragments (Li2 +2 ⇒ Li+ + Li+), hence the RHF (restricted Hartree-Fock) function can be used as the reference in the whole range of interatomic distances. This scheme offers the first principle method without any model or effective potential parameters for the description of the bond-breaking processes. In this study, the PECs and selected spectroscopic constants for 18 electronic states of the Li+2 ion were computed and compared with experimental and other theoretical results. †In honour of Professor Sourav Pal on the occasion of an anniversary in his private and scientific life.

  14. Potential energy curves for the interaction of Ag({5}{s}) and Ag({5}{p}) with noble gas atoms

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Sadeghpour, H. R.; Dalgarno, A.

    2013-02-01

    We investigate the interaction of ground and excited states of a silver atom with noble gases (NG), including helium. Born-Oppenheimer potential energy curves are calculated with quantum chemistry methods and spin-orbit effects in the excited states are included by assuming a spin-orbit splitting independent of the internuclear distance. We compare our results with experimentally available spectroscopic data, as well as with previous calculations. Because of strong spin-orbit interactions, excited Ag-NG potential energy curves cannot be fitted to Morse-like potentials. We find that the labeling of the observed vibrational levels has to be shifted by one unit.

  15. Potential energy curves for the ground and low-lying excited states of CuAg

    SciTech Connect

    Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  16. Supply Curves of Conserved Energy

    SciTech Connect

    Meier, Alan Kevin

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

  17. M + Ng potential energy curves including spin-orbit coupling for M = K, Rb, Cs and Ng = He, Ne, Ar.

    PubMed

    Blank, L; Weeks, David E; Kedziora, Gary S

    2012-03-28

    The X(2)Σ(1/2)(+), A(2)Π(1∕2), A(2)Π(3∕2), and B(2)Σ(1/2)(+) potential energy curves and associated dipole matrix elements are computed for M + Ng at the spin-orbit multi-reference configuration interaction level, where M = K, Rb, Cs and Ng = He, Ne, Ar. Dissociation energies and equilibrium positions for all minima are identified and corresponding vibrational energy levels are computed. Difference potentials are used together with the quasistatic approximation to estimate the position of satellite peaks of collisionally broadened D2 lines. The comparison of potential energy curves for different alkali atom and noble gas atom combinations is facilitated by using the same level of theory for all nine M + Ng pairs.

  18. Excited Li and Na in He(n): influence of the dimer potential energy curves.

    PubMed

    Dell'Angelo, David; Guillon, Grégoire; Viel, Alexandra

    2012-03-21

    The X(2)Σ ground and the A(2)Π and B(2)Σ first two excited states of Li-He and Na-He are determined using high level complete active space self-consistent field-multireference configuration interaction ab initio method. The obtained potentials differ from the ones proposed by Pascale [Phys. Rev. A 28, 632 (1983)], more strongly for the ground than for the excited states. Quantum diffusion Monte Carlo studies of small Li(∗)He(n) and Na(∗)He(n) with n ≤ 5 are performed using a diatomics-in-molecule approach to model the non-pair additive interaction potential. The sensitivity of our results to the A(2)Π and B(2)Σ potentials used is assessed by an analysis of the structure and of the energetics of the clusters. For these small clusters, the physical conclusions are essentially independent of the diatomic curves employed.

  19. Analytic functions for potential energy curves, dipole moments, and transition dipole moments of LiRb molecule.

    PubMed

    You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi

    2016-01-15

    The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analytic functions for potential energy curves, dipole moments, and transition dipole moments of LiRb molecule

    NASA Astrophysics Data System (ADS)

    You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi

    2016-01-01

    The analytic potential energy functions (APEFs) of the X1Σ+, 21Σ+, a3Σ+, and 23Σ+ states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations.

  1. The influence of the molecular charge on potential energy curves for the proton transfer in electronic ground and excited states

    NASA Astrophysics Data System (ADS)

    Kowal, Marek; Roszak, Szczepan; Leszczynski, Jerzy

    2001-05-01

    The potential energy curves were studied for the proton transfer in the electronic ground and excited states for the model systems H3O2-, H4O2, and H5O2+. The complete active space self-consistent-field calculations were performed for the ground state optimized structures. The potential energy curves for the proton transfer in the excited states undergo a dramatic change due to the different electronic density distribution as an effect of electronic excitations. In all cases of the studied excited states, the electron population on the transferred proton is higher compared to that in the ground state. The total charge of the system greatly influences the potential curves. Energy separation between ground and excited states is decreased due to the negative charge of the system and is increased when the studied species are positively charged. The vertical excitations of the complex are similar to those in the monomers, but the proton relaxation leads to significant energetical (energy barriers) and structural (H+ position) changes.

  2. Subsystem-DFT potential-energy curves for weakly interacting systems.

    PubMed

    Schlüns, Danny; Klahr, Kevin; Mück-Lichtenfeld, Christian; Visscher, Lucas; Neugebauer, Johannes

    2015-06-14

    Kohn-Sham density-functional theory (DFT) within the local-density approximation (LDA) or the generalized-gradient approximation (GGA) is known to fail for the correct description of London dispersion interactions. Often, not even bound potential-energy surfaces are obtained for van der Waals complexes, unless special correction schemes are employed. In contrast to that, there has been some evidence for the fact that subsystem-based density functional theory produces interaction energies for weakly bound systems which are superior to Kohn-Sham DFT results without dispersion corrections. This is usually attributed to an error cancellation between the approximate exchange-correlation and non-additive kinetic-energy functionals employed in subsystem DFT. Here, we investigate the accuracy of subsystem DFT for weakly interacting systems in detail, paying special attention to the shape of the potential-energy surfaces (PESs). Our test sets include the extensive S22x5 and S66x8 data sets. Our results indicate that subsystem DFT PESs strongly vary depending on the functional. LDA results are usually quite good, but behave differently from their KS counterparts. GGA results from the popular Perdew-Wang (PW91) set of functionals produce PESs that are often, but not in general overbinding. Results from Becke-Perdew (BP86) GGAs, by contrast, show the typical problems known from the corresponding KS results. We provide some preliminary results for empirical corrections for both PW91 and BP86 in subsystem DFT.

  3. Time-dependent density functional study of the electronic potential energy curves and excitation spectrum of the oxygen molecule.

    PubMed

    Guan, Jingang; Wang, Fan; Ziegler, Tom; Cox, Hazel

    2006-07-28

    Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O(2) are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-epsilon(HOMO)) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B(88X)+P(86C)), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0 to 1.8 A are divided into three groups according to the electron configurations. The 1pi(u) (4)1pi(g) (2) electron configuration gives rise to the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states; the 1pi(u) (3)1pi(g) (3) electron configuration gives rise to the c (1)Sigma(u) (-), C (3)Delta(u), and A (3)Sigma(u) (+) states; and the B (3)Sigma(u) (-), A (1)Delta(u), and f (1)Sigma(u) (+) states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B(88X)+P(86C) functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72 eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42 eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength

  4. Spin-orbit configuration interaction calculation of the potential energy curves of iodine oxide

    SciTech Connect

    Roszak, S.; Krauss, M.; Alekseyev, A.B.; Liebermann, H.P.; Buenker, R.J.

    2000-04-06

    An ab initio configuration interaction (CI) study including spin-orbit coupling is carried out for the ground and excited states of the IO radical by employing relativistic effective core potentials. The computed spectroscopic constants are in good agreement with available experimental data, with some tendency to underestimate the strength of bonding. The first excited state, a{sup 4}{Sigma}{sup {minus}}, which has not yet been observed experimentally, is predicted to be bound by 30.1 kJ/mol and to have a significantly larger equilibrium distance than the ground state. It is split by spin-orbit interaction into 1/2 and 3/2 components, with the 1/2 component being the lower one with a calculated spin-orbit splitting of 210 cm{sup {minus}1}. The most interesting state in the low-energy IO spectrum, A{sub 1}{sup 2}{Pi}{sub 3/2}, is shown to be predissociated due to interaction with a number of repulsive electronic states. Predissociation of the A{sup 1}, {nu}{prime} = 0, 1 vibrational levels is attributed to a fairly weak spin-orbit coupling with the {sup 2}{Delta}{sub 3/2} state, while rotationally dependent predissociation of the {nu}{prime} = 2 level is explained by the coupling with the 1/2(III) state having mainly {sup 2}{Sigma}{sup {minus}} character. Strong predissociation of the {nu}{prime} {ge} 4 levels is attributed to interaction with the higher-lying {Omega} = 3/2 states, with predominantly {sup 4}{Sigma}{sup +} and {sup 4}{Delta} origin.

  5. Potential energy curves for Mo2: multi-component symmetry-projected Hartree-Fock and beyond

    NASA Astrophysics Data System (ADS)

    Bytautas, Laimutis; Jiménez-Hoyos, Carlos A.; Rodríguez-Guzmán, R.; Scuseria, Gustavo E.

    2014-07-01

    The molybdenum dimer is an example of a transition metal system with a formal sextuple bond that constitutes a challenging case for ab initio quantum chemistry methods. In particular, the complex binding pattern in the Mo2 molecule requires a high-quality description of non-dynamic and dynamic electron correlation in order to yield the correct shape of the potential energy curve. The present study examines the performance of a recently implemented multi-component symmetry projected Hartree-Fock (HF) approach. In this work, the spin and spatial symmetries of a trial wavefunction written in terms of non-orthogonal Slater determinants are deliberately broken and then restored in a variation-after-projection framework. The resulting symmetry-projected HF wavefunctions, which possess well-defined quantum numbers, can account for static and some dynamic correlations. A single symmetry-projected configuration in a D∞hS-UHF or a D∞hKS-UHF framework offers a reasonable description of the potential energy curve of Mo2, though the binding energy is too small for the former. Our multi-component strategy offers a way to improve on the single configuration result in a systematic way towards the exact wavefunction: in the def2-TZVP basis set considered in this study, a 7-determinant multi-component D∞hS-UHF approach yields a bond length of 2.01 Å, in good agreement with experimental results, while the predicted binding energy is 39.2 mhartree. The results of this exploratory study suggest that a multi-component symmetry-projected HF stategy is a promising alternative in a high-accuracy description of the electronic structure of challenging systems. We also present and discuss some benchmark calculations based on the CEEIS-FCI (correlation energy extrapolation by intrinsic scaling - full configuration interaction) method for selected geometries.

  6. Spectroscopic constants and potential energy curves of GaAs, GaAs +, and GaAs -

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1990-02-01

    Twenty electronic states of GaAs, 12 electronic states of GaAs +, and 13 electronic states of GaAs - are investigated using relativistic ab initio complete active space MCSCF (CASSCF) followed by large-scale configuration interaction calculations which included up to 700 000 configurations. Potential energy curves and spectroscopic constants of all these states of three radicals are obtained. Spectroscopic constants of low-lying states of GaAs are in very good agreement with both experiment and all-electron results. Two nearly-degenerate states of 2Σ +, 2Π ( 2Σ + lower) symmetries are found as candidates for the ground state of GaAs -. The GaAs - negative ion is found to be more stable compared to the neutral GaAs ( De(GaAs -) = 3 eV). The electron affinity of GaAs is computed as 0.89 and 1.3 eV at the FOCI and SOCI levels of theory, respectively. Calculated potential energy curves of GaAs are in accord with the experimentally observed predissociation in the 3Π( III) - X3Σ- system.

  7. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  8. A theoretical study of the potential energy curves and spectroscopic constants of TaC and TaC +

    NASA Astrophysics Data System (ADS)

    Majumdar, D.; Balasubramanian, K.

    1998-02-01

    Potential energy curves for the various low-lying electronic states of TaC and TaC + have been studied using the complete active space multiconfiguration self-consistent field method (CASMCSCF) followed by first-order and restricted second-order configuration (FOCI, SOCI) interaction calculations. The effect of spin-orbit interactions has been studied using the relativistic configuration interaction method. The ground state of TaC has been found to be 2Σ + whereas two nearly degenerate states ( 1Σ +, 3Σ +) are found as candidates for the ground state of TaC +. Inclusion of spin-orbit effect yields a state 1/2 as the ground state of TaC, while in case of TaC + 1 and 0 - states are very close in energy.

  9. Comment on the relation between the nonadiabatic coupling and the complex intersection of potential energy curves

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1977-01-01

    Simple relations are discussed that provide a correspondence between the complex intersection of two potential surfaces and the nonadiabatic coupling matrix element between those surfaces. These are key quantities in semiclassical and quantum mechanical theories of collision induced electronic transitions. Within the two state approximation, the complex intersection is shown to be directly related to the location and magnitude of the peak in the nonadiabatic coupling. Two cases are considered: the avoided crossing between two potential surfaces; and the spin orbit interaction due to a P-2 halogen atom. Comparisons are made between the results of the two-state model and the results of ab initio quantum chemical calculations.

  10. Spectroscopic properties and potential energy curves of low-lying electronic states of RuC.

    PubMed

    Guo, Rui; Balasubramanian, K

    2004-04-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multiconfiguration self-consistent field followed by multireference configuration interaction methods that included up to 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38,000 cm(-1). We find two very closely low-lying electronic states for RuC, viz., 1Sigma+ and 3Delta with the 1Sigma+ being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound 1Sigma+ state with a large dipole moment which is most likely the experimentally observed ground state and an energetically close 3Delta state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18,000 cm(-1) agree quite well with those of the corresponding observed states.

  11. Spectroscopic Properties and Potential Energy Curves of Low-lying electronic States of RuC

    SciTech Connect

    Balasubramanian, K; Guo, R

    2003-12-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multi-configuration self-consistent field (CASSCF) followed by multireference configuration interaction (MRCI) methods that included up 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38 000 cm{sup -1}. We find two very closely low-lying electronic states for RuC, viz., {sup 1}{Sigma}{sup +} and {sup 3}{Delta} with the {sup 1}{Sigma}{sup +} being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound X{sup 1}{Sigma}{sup +} state with a large dipole moment and an energetically close {sup 3}{Delta} state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18000 cm{sup -1} agree quite well with those of the corresponding observed states.

  12. Comment on the relation between the nonadiabatic coupling and the complex intersection of potential energy curves

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1977-01-01

    Simple relations are discussed that provide a correspondence between the complex intersection of two potential surfaces and the nonadiabatic coupling matrix element between those surfaces. These are key quantities in semiclassical and quantum-mechanical theories of collision-induced electronic transitions. Within the two-state approximation, the complex intersection is shown to be directly related to the location and magnitude of the peak in the nonadiabatic coupling. Two cases have been considered: (1) the avoided crossing between two potential surfaces, and (2) the spin-orbit interaction due to a 2P halogen atom. Comparisons are made between the results of the two-state model and the results of ab initio quantum chemical calculations.

  13. Spectroscopic properties and potential energy curves of thirty-six electronic states of ZrH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Wang, J. Z.

    1989-02-01

    Complete active space MCSCF (CASSCF) followed by second-order configuration interaction (SOCI) and relativistic configuration interaction (RCI) calculations are carried out on thirty-six electronic states of ZrH. The spectroscopic properties of these states are calculated which lie below 14000 cm -1. The ground state is found to be a 2Δ 3/2 state with low-lying 2Δ 5/2, 2Π 1/23/2 and 4Φ 3/2, 5/2, 7/2, 9/2 states. The dissociation energy of ZrH is calculated to be 2.64 eV. The ZrH bonding exhibits considerable ionic character and 4d5s5p hybridization in all the electronic states.

  14. Electronic states and potential energy curves of ZrH + and NbH +

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Balasubramanian, K.

    1991-07-01

    State-averaged complete active space MCSCF (CASSCF) followed by second-order configuration interaction (SOCI) calculations are carried out on several low-lying electronic states of ZrH + and NbH +. The ground state of ZrH + is found to be a 3Δ state ( r e = 1.825 Å, ωe = 1752 cm -1) with a very low-lying excited state of 3Φ symmetry ( r e = 1.841 Å, ωe = 1714 cm -1). The NbH + ion has 4Δ state as the ground state ( r e = 1.746 Å, ωe = 1841 cm -1) with a nearly degenerate state of the 4Π symmetry ( r e = 1.768 Å, ωe = 1826 cm -1). The dissociation energies D0 (ZrH +) D0 (NbH +) are calculated to be 56.8 and 54 kcal/mol, compared to experimental values of 54 ± 3 and 53 ± 3 for ZrH + and NbH +, respectively. The nature of low-lying states is analyzed.

  15. Ab initio transition dipole moments and potential energy curves for the low-lying electronic states of CaH

    NASA Astrophysics Data System (ADS)

    Shayesteh, Alireza; Alavi, S. Fatemeh; Rahman, Moloud; Gharib-Nezhad, Ehsan

    2017-01-01

    Ab initio potential energy curves have been calculated for the X2Σ+, A2Π, B2Σ+, 12Δ, E2Π and D2Σ+ states of CaH using the multi-reference configuration interaction method with large active space and basis sets. Transition dipole moments were calculated at Ca-H distances from 2.0 a0 to 14.0 a0, and excited state lifetimes were obtained. Our theoretical transition dipole moments can be combined with the available experimental data on the X2Σ+, A2Π and B2Σ+ states to calculate Einstein A coefficients for all rovibronic transitions of CaH appearing in solar and stellar spectra.

  16. Classical and Mexican hat-type potential energy curve for the hydrogen molecule from a confined Kratzer oscillator

    NASA Astrophysics Data System (ADS)

    van Hooydonk, G.

    2016-03-01

    We review harmonic oscillator theory for closed, stable quantum systems. The H2 potential energy curve (PEC) of Mexican hat-type, calculated with a confined Kratzer oscillator, is better than the Rydberg-Klein-Rees (RKR) H2 PEC. Compared with QM, the theory of chemical bonding is simplified, since a confined Kratzer oscillator can also lead to the long sought for universal function, once called the Holy Grail of Molecular Spectroscopy. This is validated by reducing PECs for different bonds H2, HF, I2, N2 and O2 to a single one. The equal probability for H2, originating either from HA + HB or HB + HA, is quantified with a Gauss probability density function. At the Bohr scale, a confined harmonic oscillator behaves properly at the extremes of bound two-nucleon quantum systems.

  17. Ab initio projected-unrestricted Hartree-Fock calculation of some potential energy curves for carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Schug, J. C.; Phillips, D. H.

    1980-01-01

    Some potential energy curves for CF2O were calculated using projected-unrestricted Hartree-Fock (PUHF) theory. The calculations employed a contracted (4s 3p) Gaussian-type atomic orbital basis set. Bound states were found for the X-tilde 1A1 and 1,3A2 states while the 1,3B1 and 1,3B2 states were repulsive in the valence representation. The merits of the PUHF treatment for excited states are discussed. The results are discussed in terms of available experimental information and previous calculations with particular emphasis on the question of the photolysis channels open in the solar spectral region.

  18. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    SciTech Connect

    Karali, Nihan; Park, Won Young; McNeil, Michael A.

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  19. Relativistic four-component potential energy curves for the lowest 23 covalent states of molecular bromine (Br2).

    PubMed

    Gomes, José da Silva; Gargano, Ricardo; Martins, João B L; M de Macedo, Luiz Guilherme

    2014-08-07

    The covalent excited states and ground state of the Br2 molecule has been investigated by using four-component relativistic COSCI and MRCISD methods. These methods were performed for all covalent states in the representation Ω((±)). Calculated potential energy curves (PECs) were obtained at the four-component COSCI level, and spectroscopic constants (R(e), D(e), D0, ω(e), ω(e)x(e), ω(e)y(e), B(e), α(e), γ(e), Te, Dv) for bounded states are reported. The vertical excitations for all covalent states are reported at COSCI, MRCISD, and MRCISD+Q levels. We also present spectroscopic constants for two weakly bounded states (A':(1)2u and B':(1)0(-)u) not yet reported in the literature, as well as accurate analytical curves for all five relativistic molecular bounded sates [the ground state X:0 g(+) and the excited states A:(1)1(u), B:(1)0(u)(+), C:(2)1(u), and B':(1)0(u)(-)] found in this work.

  20. Probing calculated O2+ potential-energy curves with an XUV-IR pump-probe experiment

    NASA Astrophysics Data System (ADS)

    Cörlin, Philipp; Fischer, Andreas; Schönwald, Michael; Sperl, Alexander; Mizuno, Tomoya; Thumm, Uwe; Pfeifer, Thomas; Moshammer, Robert

    2015-04-01

    We study dissociative photoionization of molecular oxygen in a kinematically complete XUV-IR pump-probe experiment. Detecting charged fragments and photoelectrons in coincidence using a reaction microscope, we observe a pump-probe delay-dependent yield of very low energetic O+ ions which oscillates with a period of 40 fs . This feature is caused by a time-dependent vibrational wave packet in the potential of the binding O2+(a Π4u) state, which is probed by resonant absorption of a single infrared photon to the weakly repulsive O2+(f Π4g) state. By quantitative comparison of the experimental kinetic-energy-release (KER) and quantum-beat (QB) spectra with the results of a coupled-channel simulation, we are able to discriminate between the calculated adiabatic O2+ potential-energy curves (PECs) of Marian et al. [Marian, Marian, Peyerimhoff, Hess, Buenker, and Seger, Mol. Phys. 46, 779 (1982), 10.1080/00268978200101591] and Magrakvelidze et al. [Magrakvelidze, Aikens, and Thumm, Phys. Rev. A 86, 023402 (2012), 10.1103/PhysRevA.86.023402]. In general, we find a good agreement between experimental and simulated KER and QB spectra. However, we could not reproduce all features of the experimental data with these PECs. In contrast, adjusting a Morse potential to the experimental data, most features of the experimental spectra are well reproduced by our simulation. By comparing this Morse potential to theoretically predicted PECs, we demonstrate the sensitivity of our experimental method to small changes in the shape of the binding potential.

  1. Excitation energies and potential energy curves for the 19 excited electronic terms of CH: Efficiency examination of the multireference first-order polarization propagator approximation

    NASA Astrophysics Data System (ADS)

    Seleznev, Alexey O.; Khrustov, Vladimir F.; Stepanov, Nikolay F.

    2013-11-01

    The attainability of a uniform precision level for estimates of electronic transition characteristics through the multireference first-order polarization propagator approximation (MR-FOPPA) was examined under extension of a basis set, using the CH ion as an example. The transitions from the ground electronic state to the 19 excited electronic terms were considered. Balanced approximations for (i) transition energies to the studied excited states and (ii) forms and relative dispositions of their potential energy curves were attained in the 3-21G and 6-311G (d,p) basis sets. In both the basis sets, a balanced approximation for the corresponding transition moments was not achieved.

  2. The /A 1 Sigma +/ - /X 1 Sigma +/ system of the isotopic lithium hydrides - The molecular constants, potential energy curves, and their adiabatic corrections

    NASA Technical Reports Server (NTRS)

    Vidal, C. R.; Stwalley, W. C.

    1982-01-01

    The molecular constants and their adiabatic corrections have been determined for the (A 1 Sigma +) - (X 1 Sigma +) system of the isotopic lithium hydrides: (Li-6)H, (Li-7)H, (Li-6)D, and (Li-7)D. Using a fully quantum mechanical variational method, the potential energy curves (IPA potentials) are determined. Extending the variational method, we have obtained for the first time adiabatic corrections of potential energy curves from isotopic spectroscopic data. A significant difference between the potential energy curves of the lithium hydrides and the lithium deuterides has been observed. When Li-6 was replaced by Li-7, a significant difference was only observed for the (A 1 Sigma +) state, but not for the (X 1 Sigma +) state.

  3. Potential energy curves and lifetimes of low-lying excited electronic states of CSe studied by configuration interaction method.

    PubMed

    Li, Rui; Sun, Erping; Jin, Mingxing; Xu, Haifeng; Yan, Bing

    2014-04-10

    In this work, we performed a high level ab initio study on the low-lying electronic states of CSe, utilizing MRCI+Q (the internally contracted multireference configuration interaction, and Davidson's correction) method with scalar relativistic and spin-orbit coupling effects taken into account. The potential energy curves of 18 Λ-S states associated with the lowest dissociation limit of CSe molecule, as well as those of 50 Ω states generated from the Λ-S states were computed. The spectroscopic parameters of bound states were evaluated, which agree well with existing theoretical and experimental results. With the aid of calculated spin-orbit matrix elements and the Λ-S compositional variation of the Ω states, the spin-orbit perturbations of low-lying states to the A(1)Π and a(3)Π states are analyzed. Finally, the transition dipole moments of A(1)Π, A'(1)Σ(+), a(3)Π0+, and a(3)Π1 to the ground X(1)Σ(+) state as well as the lifetimes of the four excited states were evaluated.

  4. Binding Energy and Dissociation Barrier: Experimental Determination of the Key Parameters of the Potential Energy Curve of Diethyl Ether on Si(001).

    PubMed

    Reutzel, Marcel; Lipponer, Marcus; Dürr, Michael; Höfer, Ulrich

    2015-10-01

    The key parameters of the potential energy curve of organic molecules on semiconductor surfaces, binding energy of the intermediate state and dissociation barrier, were experimentally investigated for the model system of diethyl ether (Et2O) on Si(001). Et2O adsorbs via a datively bonded intermediate from which it converts via ether cleavage into a covalently attached final state. This thermally activated conversion into the final state was followed in real-time by means of optical second-harmonic generation (SHG) at different temperatures and the associated energy barrier ϵa = 0.38 ± 0.05 eV and pre-exponential factor νa = 10(4±1) s(-1) were determined. From molecular beam experiments on the initial sticking probability, the difference between the desorption energy ϵd and ϵa was extracted and thus the binding energy of the intermediate state was determined (0.62 ± 0.08 eV). The results are discussed in terms of general chemical trends as well as with respect to a wider applicability on adsorbate reactions on semiconductor surfaces.

  5. Spectroscopic constants of diatomic molecules computed correcting Hartree-Fock or general-valence-bond potential-energy curves with correlation-energy functionals

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.; San-Fabián, Emilio; Moscardó, Federico

    1992-04-01

    The Kohn-Sham energy with exact exchange [using the exact Hartree-Fock (HF) exchange but an approximate correlation-energy functional] may be computed very accurately by adding the correlation obtained from the HF density to the total HF energy. Three density functionals are used: local spin density (LSD), LSD with self-interaction correction, and LSD with generalized gradient correction. This scheme has been extended (Lie-Clementi, Colle-Salvetti, and Moscardo-San-Fabian) to be used with general-valence-bond (GVB) energies and wave functions, so that the extra correlation included in the GVB energy is not counted again. The effect of all these approximate correlations on HF or GVB spectroscopic constants (Re,ωe, and De) is studied. Approximate relations showing how correlation affects them are derived, and may be summarized as follows: (1) the effect on Re and ωe depends only on the correlation derivative at Re, and (2) the effect on De depends mainly on the correlation difference between quasidissociated and equilibrium geometries. A consequence is that all the correlation corrections tested here give larger ωe and De and shorter Re than the uncorrected HF or GVB values. This trend is correct for De for both HF and GVB. For Re and ωe, it is correct in most cases for GVB, but it often fails for the HF cases. A comparison is made with Kohn-Sham calculations with both exchange and correlation approximated. As a final conclusion, it is found that, within the present scheme, a qualitatively correct HF or GVB potential-energy curve, together with a correlation-energy approximation with correct dissociation behavior, is crucial for obtaining good estimates of spectroscopic constants.

  6. Ab initio investigation of potential energy curves of the 23 electronic states of IBr correlating to neutral (2)P atoms.

    PubMed

    Patchkovskii, Serguei

    2006-02-28

    Potential energy surfaces for all Born-Oppenheimer electronic states of IBr molecule correlating to the neutral (2)P ((2)P(3/2) and (2)P(1/2)) iodine and bromine are calculated for the first time. Electric dipole and polarizability curves (static and transition) are also determined. Calculations include scalar and spin-orbit relativistic effects within all-electron Douglas-Kroll two-component Hamiltonian. Electron correlation is treated with quasi-degenerate multi-reference second-order perturbation theory. Seven adiabatic electronic states (X (1)Sigma(+), A'(3)Pi(2), A (3)Pi(1), 1 (3)Pi(0-), B (3)Pi(0+), B'(3)Sigma, and 2 (3)Pi(0+)) exhibit significant covalent bonding, and can support vibrational states. Calculated spectroscopic parameters agree with experiment to better than 1000 cm(-1) (T(e)), 10 cm(-1) (omega(e)), and 0.05 Angstrom (r(e)). A new 1 (3)Pi(0-) state correlating to ground-state atoms is predicted at T(e) approximately 14 000 cm(-1), omega(e) approximately 80 cm(-1), and r(e) approximately 3.0 Angstrom. The second new state (2 (3)Pi(0+)) correlates to excited iodine atom, with T(e) approximately 20 000 cm(-1), omega(e) approximately 115 cm(-1), and r(e) approximately 3.3 Angstrom. Non-adiabatic coupling parameters are calculated for the four avoided crossings, which arise due to electronic spin-orbit interaction. Estimated parameters of the B (3)Pi(0+)/B'(3)Sigma crossing (R(c) approximately 3.32 Angstrom; V approximately 120 cm(-1)) agree with experimental values. The previously unsuspected 2 (3)Pi(0-)/1 (1)Sigma(-) crossing of two repulsive surfaces provides a new collisional deactivation channel for Br* atoms at relative velocities above 1000 m s(-1). Several repulsive states (including 1 (1)Pi(1) and 2 (3)Pi(1)) intersect the B/B' system near the avoided crossing point, and may affect dynamics of IBr in strong laser fields.

  7. Double-well potential energy curve of cadmium-krypton molecule in the B1(5(3)P1) excited state.

    PubMed

    Lukomski, M; Koperski, J; Czajkowski, M

    2002-06-01

    The real shape of a double-well B1(5(3)P1)-state potential in CdKr van der Waals molecule was reconstructed applying both the experimental data, using a Birge-Sponer method-based analysis of the B1 <-- X0+(5(1)S0) transition in excitation spectrum, and theoretical result of recent ab initio calculation. An inverse perturbation approach method was used for defining an accurate B1-state potential energy curve.

  8. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    PubMed

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  9. Ab initio study of the RbSr electronic structure: Potential energy curves, transition dipole moments, and permanent electric dipole moments

    SciTech Connect

    Pototschnig, Johann V. Krois, Günter; Lackner, Florian; Ernst, Wolfgang E.

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm{sup −1}. We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) and Rb (5p {sup 2}P°) + Sr (5s{sup 2} {sup 1}S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  10. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  11. Potential energy curves of diatomic molecular ions from high-resolution photoelectron spectroscopy. III. The low-lying ungerade states of Kr2+

    NASA Astrophysics Data System (ADS)

    Wüest, A.; Merkt, F.

    2005-05-01

    Spectra of the v+ = 55 - 74 vibrational levels of the I(1/2u) ground electronic state and the v+ = 0 - 9 levels of the II(1/2u) excited electronic state of and 84Kr-86Kr+ have been measured by pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy. The spectra were recorded following (2+1' ) resonance-enhanced multiphoton excitation via several vibrational levels of the TMPH1285math002 Rydberg state of Kr2 located below the Kr(1S0) + Kr*(4p55p[1/2](J = 0)) dissociation limit. A combination of these results with earlier measurements of the vibrational level structure of the I(1/2u), I(3/2u) and II(1/2u) states of TMPH1285math003 was used to determine two sets of analytical potential energy curves for the first three electronic states of ungerade (u) symmetry of TMPH1285math004. The first set of curves was obtained without explicit consideration of the spin-orbit interaction by adjusting the potential parameters of three independent curves to fit the experimental data. The second set of curves was determined using a global potential model with explicit treatment of the spin-orbit interaction by adjusting the potential parameters of the TMPH1285math005 electronic states and assuming an R-independent spin-orbit coupling constant. Both sets of curves reproduce the experimental observations to within 8 cm-1. Although better agreement between calculated and observed vibronic energy levels was obtained with the former set of curves, this set requires a larger number of adjustable potential parameters (up to 12) and only accounts implicitly for the spin-orbit coupling. The latter set of curves offers the advantages of a global treatment of the u states, a much reduced number of adjustable parameters (only six), an explicit treatment of the spin-orbit interaction, and is in better agreement with ab initio quantum chemical predictions in the repulsive part of the potentials.

  12. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.

    PubMed

    Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha

    2004-09-22

    Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.

  13. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F{sub 2} using selected configuration interaction trial wavefunctions

    SciTech Connect

    Giner, Emmanuel; Scemama, Anthony; Caffarel, Michel

    2015-01-28

    The potential energy curve of the F{sub 2} molecule is calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC) using Configuration Interaction (CI)-type trial wavefunctions. To keep the number of determinants reasonable and thus make FN-DMC calculations feasible in practice, the CI expansion is restricted to those determinants that contribute the most to the total energy. The selection of the determinants is made using the CIPSI approach (Configuration Interaction using a Perturbative Selection made Iteratively). The trial wavefunction used in FN-DMC is directly issued from the deterministic CI program; no Jastrow factor is used and no preliminary multi-parameter stochastic optimization of the trial wavefunction is performed. The nodes of CIPSI wavefunctions are found to reduce significantly the fixed-node error and to be systematically improved upon increasing the number of selected determinants. To reduce the non-parallelism error of the potential energy curve, a scheme based on the use of a R-dependent number of determinants is introduced. Using Dunning’s cc-pVDZ basis set, the FN-DMC energy curve of F{sub 2} is found to be of a quality similar to that obtained with full configuration interaction/cc-pVQZ.

  14. Ab initio potential curves of the fragments and diatomics-in-molecules potential energy surfaces for the SH⋯Kr complex

    NASA Astrophysics Data System (ADS)

    Nemukhin, A. V.; Grigorenko, B. L.; Granovsky, A. A.

    1999-02-01

    Potential curves of the SH, KrH and KrS molecules needed for the diatomics-in-molecules (DIM) treatment of the ground and excited states of the SH(X,A)⋯Kr complex have been computed at the SOCI/CASSCF level. The ionic and ion-pair states of these diatomic fragments which play an essential role in the DIM model of intermolecular interactions have been considered as well. The new results for the ion-pair states of SH are compared to the corresponding data for OH. The curves for KrS and XeS [M. Yamanishi, K. Hirao, K. Yamashita, J. Chem. Phys. 108 (1998) 1514] are discussed. The main features of the empirical potential surfaces of the SH⋯Kr complex are reproduced by the DIM technique.

  15. Two-electron R-matrix approach to calculations of potential-energy curves of long-range Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Čurík, Roman

    2016-05-01

    We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. The method is based on a two-electron R-matrix approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via a multichannel version of the Coulomb Green's function. This approach is applied to a study of Rydberg states of Rb2 for internuclear separations R from 40 to 320 bohrs and energies corresponding to n from 7 to 30. We report bound states associated with the low-lying 3Po resonance and with the virtual state of the rubidium atom that turn into ion-pair-like bound states in the Coulomb potential of the atomic Rydberg core. The results are compared with previous calculations based on single-electron models employing a zero-range contact-potential and short-range modele potential. Czech Science Foundation (Project No. P208/14-15989P).

  16. State-of-the-art ab initio potential energy curve for the xenon atom pair and related spectroscopic and thermophysical properties

    NASA Astrophysics Data System (ADS)

    Hellmann, Robert; Jäger, Benjamin; Bich, Eckard

    2017-07-01

    A new ab initio interatomic potential energy curve for two ground-state xenon atoms is presented. It is based on supermolecular calculations at the coupled-cluster level with single, double, and perturbative triple excitations [CCSD(T)] employing basis sets up to sextuple-zeta quality, which were developed as part of this work. In addition, corrections were determined for higher coupled-cluster levels up to CCSDTQ as well as for scalar and spin-orbit relativistic effects at the CCSD(T) level. A physically motivated analytical function was fitted to the calculated interaction energies and used to compute the vibrational spectrum of the dimer, the second virial coefficient, and the dilute gas transport properties. The agreement with the best available experimental data for the investigated properties is excellent; the new potential function is superior not only to previous ab initio potentials but also to the most popular empirical ones.

  17. Full Empirical Potential Curves and Improved Dissociation Energies for the X ^1Σ^+ and a ^1Π States of CH^+

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Le Roy, Robert

    2014-06-01

    CH^+ has been a species of interest since the dawn of molecular astrophysics,and it is an important intermediate in combustion processes. In the domain of `conventional' spectroscopy there have been a number of studies of low v' and v" portions of the A ^1Π-X ^1Σ^+ band system of various isotopologues, and Amano recently reported microwave measurements of the ground-state R(0) lines of 12CH^+, 13CH^+ and 12CD^+. used photodissociation spectroscopy to observe transitions to very high-J' tunneling-predissociation levels (shape resonances) involving v(A)=0-10, for many of which they also measured the photo-fragment kinetic energy release. More recently Hechtfischer et al. used photodissociation spectroscopy of `Feschbach resonance' levels at very high v'(A) and low J' to obtain the first direct measurement of the 12CH^+ dissociation energy with near-spectroscopic accuracy (± 1.1 cm-1). However, to date, all analyses of the data for this system had been performed using traditional band-constant or Dunham-expansion fits to data for the lowest vibrational levels, and there have been no attempts to combine the `conventional' low-v data with the high-J' and high-v' photodissociation data in a single treatment. The present work has addressed this problem by performing a Direct-Potential-Fit (DPF) analysis that obtains full analytic potential energy functions for the X ^1Σ^+ and A ^1Π states of CH^+ that are able to account for all of the available data (on average) within their uncertainties. A.E. Douglas and G. Herzberg, Astrophys. J. 94, 381 (1941). T. Amano, Astrophys. J. Lett. {716}, L1 (2010) H. Helm, P.C. Crosby, M.M. Graff and J.T. Mosley, Phys. Rev. A 25, 304 (1982) U. Hechtfischer and C. J. Williams, M. Lange, J. Linkemann, D. Schwalm, R. Wester, A. Wolf and D. Zajfman, J.Chem.Phys. 117, 8754 (2002). H.S.P. Müller, Astron. Astrophys. 514, L7 (2010)

  18. Benchmark Calculations with Correlated Molecular Wave Functions. XIII. Potential Energy Curves for He-2, Ne-2, and Ar-2 Using Correlation Consistent Basis Sets Through Augmented Sextuple Zeta.

    SciTech Connect

    Mourik, Van Tonja; Wilson, Angela K.; Dunning, Thomas H.

    1999-02-20

    The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Moller Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)].

  19. Transmission of wave energy in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  20. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal.

    PubMed

    Tachikawa, Hiroto; Iyama, Tetsuji

    2004-10-25

    One-dimensional potential energy curves for the isomerization of protonated Schiff base of retinal (PSBR) in bacteriorhodopsin (bR), i.e., isomerization from all-trans- to 13-cis-forms, have been calculated by means of time-dependent density functional theory (TD-DFT) calculations, in order to elucidate the mechanism of initial step in photo-absorption. The transition state of the isomerization in the first excited state is located at theta(13-14)=58 degrees , where theta(13-14) means twist angle around the C(13)=C(14) double bond of PSBR The potential barrier is formed by the avoided crossing between S(1) (B(u)-like) and S(2) (A(g)-like) states. The mechanism of the isomerization was discussed on the basis of theoretical results.

  1. Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2

    SciTech Connect

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; Windus, Theresa L.

    2013-12-07

    The diatomic carbon molecule has a complex electronic structure with a large number of low-lying electronic excited states. In this work, the potential energy curves (PECs) of the four lowest lying singlet states (X-1 Sigma(+)(g), A(1)Pi(u), B-1 Delta(g), and B'(1)Sigma(+)(g)) were obtained by high-level ab initio calculations. Valence electron correlation was accounted for by the correlation energy extrapolation by intrinsic scaling (CEEIS) method. Additional corrections to the PECs included core-valence correlation and relativistic effects. Spin-orbit corrections were found to be insignificant. The impact of using dynamically weighted reference wave functions in conjunction with CEEIS was examined and found to give indistinguishable results from the even weighted method. The PECs showed multiple curve crossings due to the B-1 Delta(g) state as well as an avoided crossing between the two (1)Sigma(+)(g) states. Vibrational energy levels were computed for each of the four electronic states, as well as rotational constants and spectroscopic parameters. Comparison between the theoretical and experimental results showed excellent agreement overall. Equilibrium bond distances are reproduced to within 0.05 %. The dissociation energies of the states agree with experiment to within similar to 0.5 kcal/mol, achieving "chemical accuracy." Vibrational energy levels show average deviations of similar to 20 cm(-1) or less. The B-1 Delta(g) state shows the best agreement with a mean absolute deviation of 2.41 cm(-1). Calculated rotational constants exhibit very good agreement with experiment, as do the spectroscopic constants.

  2. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  3. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-01

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  4. Caesium hydride: MS-CASPT2 potential energy curves and A1Σ+ →X1Σ+ absorption/emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Škoviera, Ján; Neogrády, Pavel; Louis, Florent; PitoÅák, Michal; Černušák, Ivan

    2017-03-01

    Correlated ab initio methods (CASPT2 and CCSD(T)) in conjunction with the ANO-RCC basis sets were used to calculate potential energy curves (PECs) of the ground, valence, and Rydberg electronic states of CsH with the inclusion of the scalar relativistic effects. The spectroscopic constants of bound states were calculated from the PECs and compared with previous theoretical and/or available experimental data. Absorption and emission spectra arising from the transition between X1Σ+ and A1Σ+ states were modelled using vibrational and rotational energy levels and corresponding nuclear wave functions obtained via the direct numerical integration of one-dimensional rovibrational Schrödinger equation in the CASPT2/ANO-RCC electronic potentials. The anharmonic shape of the A1Σ+ potential and the shape of the pertinent vibrational wave functions have an interesting impact on the final shape of the spectrum and result in the complicated fine structure of individual emission bands.

  5. A Jeziorski-Monkhorst fully uncontracted multi-reference perturbative treatment. I. Principles, second-order versions, and tests on ground state potential energy curves

    NASA Astrophysics Data System (ADS)

    Giner, Emmanuel; Angeli, Celestino; Garniron, Yann; Scemama, Anthony; Malrieu, Jean-Paul

    2017-06-01

    The present paper introduces a new multi-reference perturbation approach developed at second order, based on a Jeziorski-Mokhorst expansion using individual Slater determinants as perturbers. Thanks to this choice of perturbers, an effective Hamiltonian may be built, allowing for the dressing of the Hamiltonian matrix within the reference space, assumed here to be a CAS-CI. Such a formulation accounts then for the coupling between the static and dynamic correlation effects. With our new definition of zeroth-order energies, these two approaches are strictly size-extensive provided that local orbitals are used, as numerically illustrated here and formally demonstrated in the Appendix. Also, the present formalism allows for the factorization of all double excitation operators, just as in internally contracted approaches, strongly reducing the computational cost of these two approaches with respect to other determinant-based perturbation theories. The accuracy of these methods has been investigated on ground-state potential curves up to full dissociation limits for a set of six molecules involving single, double, and triple bond breaking together with an excited state calculation. The spectroscopic constants obtained with the present methods are found to be in very good agreement with the full configuration interaction results. As the present formalism does not use any parameter or numerically unstable operation, the curves obtained with the two methods are smooth all along the dissociation path.

  6. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Gou, Dezhi; Kuang, Xiaoyu Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  7. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    NASA Astrophysics Data System (ADS)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  8. Coupled-Channel Analysis of the D ^1Π - d ^3Π Complex in NaK; Potential Energy Curves and Spin-Orbit Functions

    NASA Astrophysics Data System (ADS)

    Drozdova, Anastasia; Ross, Amanda J.; Stolyarov, Andrey V.; Jastrzȩbski, Wlodzimierz; Kowalczyk, Paweł

    2010-06-01

    Two-colour polarization labeling experiments measuring the D ← X system of NaK have characterised more than 99 % of the potential well of the D 1Π state of NaK, the last observed level being located 7 cm-1 below the Na(3p ^2P3/2) + K(4s) atomic asymptote. The vibrational progressions all exhibit irregular intervals, because of strong interactions with the nearby d ^3Π state. A comprehensive analysis has now been made of all available data concerning the {D 1Π} and {d 3Π} states. The potential curves are represented by Morse/Lennard Jones analytical functions, with ab initio constraints on the long-range part of V(R). Morse functions are also used to represent the R-dependent diagonal and off-diagonal spin-orbit terms. Initial values for the spin-orbit coupling matrix elements were extracted from quasi-relativistic ab initio calculations. In total, 29 parameters were required to recalculate 95 % of the 1400 observed term energies to within experimental uncertainty, giving an unweighted standard deviation 0.03 cm-1. A Adohi-Krou et al. J. Mol. Spectrosc. 250 27 (2008) P. Kowalczyk J. Mol. Spectrosc. 136 1 (1989)

  9. Structure and spectroscopic properties of the beryllium hydride ion BeH+: potential energy curves, spectroscopic constants, vibrational levels and permanent dipole moments

    NASA Astrophysics Data System (ADS)

    Farjallah, Mohamed; Ghanmi, Chedli; Berriche, Hamid

    2013-11-01

    Ab initio calculations are performed for the beryllium hydride ion BeH+ dissociating into Be+(2 s, 2 p, 3s, 3 p and 3 d) + H (1 s, 2 s and 2 p) and Be (2 s 2, 2 s2 p, 2 s3 s, 2 p 2, 2 s3 p and 2 s3 d) + H+. We have used a standard quantum chemistry approach based on pseudopotential for atomic core representation Be2+, Gaussian basis sets, effective core polarization potentials, and full configuration interaction calculations. Potential energy curves and their spectroscopic constants for the ground state and the first 44 excited electronic states of 1,3Σ+, 1,3 Π and 1,3 Δ symmetries are determined. Their accuracy is discussed by comparing our well depths and equilibrium positions with the previous experimental and theoretical works. A very good agreement with the theoretical calculations and the few available experimental data is observed. Moreover, we localised and analysed numerous avoided crossings between the electronic states of 1,3Σ+ and 1,3 Π symmetries. Their existence are related to the interaction between electronic states and to the charge transfer process between the two ionic systems Be+H and BeH+. In addition, the vibrational energy level spacings are presented and compared with the available experimental and theoretical results. The permanent dipole moments for several electronic states of 1,3Σ+, 1,3 Π and 1,3 Δ symmetries are determined as function of the internuclear distance.

  10. Excited state calculations using phaseless auxiliary-field quantum Monte Carlo: Potential energy curves of low-lying C(2) singlet states.

    PubMed

    Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2009-03-07

    We show that the recently developed phaseless auxiliary-field quantum Monte Carlo (AFQMC) method can be used to study excited states, providing an alternative to standard quantum chemistry methods. The phaseless AFQMC approach, whose computational cost scales as M(3)-M(4) with system size M, has been shown to be among the most accurate many-body methods in ground state calculations. For excited states, prevention of collapse into the ground state and control of the Fermion sign/phase problem are accomplished by the approximate phaseless constraint with a trial wave function. Using the challenging C(2) molecule as a test case, we calculate the potential energy curves of the ground and two low-lying singlet excited states. The trial wave function is obtained by truncating complete active space wave functions, with no further optimization. The phaseless AFQMC results using a small basis set are in good agreement with exact full configuration-interaction calculations, while those using large basis sets are in good agreement with experimental spectroscopic constants.

  11. Symmetry-adapted-cluster configuration interaction study of the doublet states of HCl+: Potential energy curves, dipole moments, and transition dipole moments

    NASA Astrophysics Data System (ADS)

    Gurin, Valerij S.; Korolkov, Mikhail V.; Matulis, Vitaly E.; Rakhmanov, Sergei K.

    2007-03-01

    The electronic structure of the HCl+ molecular ion has been calculated using the general-R symmetry-adapted-cluster configuration interaction (SAC-CI) method. The authors present the potential energy curves, dipole moments, and transition dipole moments for a series of doublet states. The data are compared with the previous CASSCF and MCSCF calculations. The SAC-CI results reproduce quite well the data available in literature and extend the knowledge on the HCl+ electronic structure for several higher states. The calculated R-dependent behavior of both dipole moments and transition dipole moments for a series of bound and unbound states reveals an intricate dissociation process at intermediate distances (R>Re). The pronounced maxima in transition dipole moment (TDM) describing transitions into high electronic states (XΠ2→3Π2, XΠ2→3Σ2, 2Π2→3Π2, 3Π2→4Π2) occur at different interatomic separations. Such TDM features are promising for selection of excitation pathways and, consequently, for an optimal control of the dissociation products.

  12. Spectroscopic constants and potential energy curves of 47 electronic states of InSb, InSb + , and InSb -

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1990-07-01

    Spectroscopic constants and potential energy curves of 26 electronic states of InSb, 12 electronic states of InSb+, and 9 electronic states of InSb- are obtained using complete active space self-consistent field, first-order configuration interaction, second-order configuration interaction, and relativistic configuration interaction methods (CASSCF/FOCI/SOCI/RCI), including spin-orbit interaction. The SOCI calculations included up to 700 000 configurations. Spectroscopic constants obtained predict several allowed electronic transitions for InSb, InSb+, and InSb- which are yet to be observed. The ground states of InSb, InSb+, and InSb- are found to be X 3Σ-0+, X 4Σ-1/2, and X 2Σ+1/2 with the constants InSb X 3Σ-0+:Re =3.02 Å, ωe =121 cm-1, De =1.35 eV; X 3Σ-1 : Re =3.03 Å, ωe =136 cm-1, Te =494 cm-1; InSb+ X 4Σ-1/2 : Re =3.351 Å, ωe =63 cm-1, De =0.37 eV; and InSb- X 2Π3/2 : Re =2.695 Å, ωe =191 cm-1, De =2.5 eV. The adiabatic ionization potential and electron affinity of InSb are calculated as 6.33 and 1.41 eV, respectively. Analogous to the recently observed A 3Π-X3Σ- system of GaAs, spectral bands in the 20 200 cm-1 region are predicted for InSb. Another 3Π(II)-X3Σ- system is predicted at 15 830 cm-1. Both the 3Π states in these systems are found to be predissociated through crossing of a repulsive 5Σ- curve. The two low-lying electronic states of InSb- (2Σ+1/2, 2Π1/2) undergo relativistic avoided crossing.

  13. Energy dissipation in flows through curved spaces

    PubMed Central

    Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2017-01-01

    Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces. PMID:28195148

  14. Energy dissipation in flows through curved spaces

    NASA Astrophysics Data System (ADS)

    Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2017-02-01

    Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces.

  15. Accurate calculations on 9 Λ-S and 28 Ω states of NSe radical in the gas phase: Potential energy curves, spectroscopic parameters and spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Li, Peiling; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of 28 Ω states generated from 9 Λ-S states (X2Π, 14Π, 16Π, 12Σ+, 14Σ+, 16Σ+, 14Σ-, 24Π and 14Δ) are studied for the first time using an ab initio quantum chemical method. All the 9 Λ-S states correlate to the first two dissociation limits, N(4Su) + Se(3Pg) and N(4Su) + Se(3Dg), of NSe radical. Of these Λ-S states, the 16Σ+, 14Σ+, 16Π, 24Π and 14Δ are found to be rather weakly bound states. The 12Σ+ is found to be unstable and has double wells. And the 16Σ+, 14Σ+, 14Π and 16Π are found to be the inverted ones with the SO coupling included. The PEC calculations are made by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification. The spin-orbit coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. The convergence of the present calculations is discussed with respect to the basis set and the level of theory. Core-valence correlation corrections are included with a cc-pCVTZ basis set. Scalar relativistic corrections are calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of spin-orbit coupling constants is discussed in brief for some Λ-S states with one shallow well on each PEC. The spectroscopic parameters of 9 Λ-S and 28 Ω states are determined by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation with Numerov's method. The splitting energy in the X2Π Λ-S state is determined to be about 864.92 cm-1, which agrees favorably with the measurements of 891.80 cm-1. Moreover, other spectroscopic parameters of Λ-S and Ω states involved here are also in fair agreement with available measurements. It

  16. Theoretical calculations on 12 Λ-S and 23 Ω states of CBr+ cation in the gas phase: Potential energy curves, spectroscopic parameters and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of X1Σ+, a3Π, 13Σ+, 13Δ, 11Δ, 11Σ-, 13Σ-, 11Π, 21Σ+, 23Π, 21Π and 23Σ+ Λ-S states of CBr+ cation and corresponding 23 Ω states are calculated for the first time using the CASSCF method, which is followed by the internally contracted MRCI approach with the aug-cc-pVQZ basis set. All the Λ-S states involved are found to be bound and dissociate into the first dissociation limit of CBr+ cation. Of these Λ-S states, only the 13Σ+ and 13Σ- are inverted ones. The spin-orbit (SO) coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. Core-valence correlation is included by a cc-pCVTZ basis set. Relativistic correction is calculated with the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVQZ basis set. To obtain more reliable results, the PECs obtained by the MRCI calculations are corrected for size-extensivity errors by means of the Davidson modification. The PEC crossings of different Λ-S states are studied. With these PECs, the spectroscopic parameters of all the Λ-S and Ω states involved are obtained by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation using the Numerov's method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and available measurements. In particular, the energy separation of 352.26 cm-1 between the a3Π0+ and the a3Π1 Ω states agrees well with the measurements of 369±8 cm-1, and the ωe results of 907.45 and 907.08 cm-1 for the a3Π0+ and a3Π1 Ω states are in excellent agreement with the measurements of 906±2 and 903±6 cm-1, respectively. These show that the spectroscopic parameters obtained in the present paper can be expected to be reliable predicted ones.

  17. ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE

    SciTech Connect

    Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp

    2015-04-01

    A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.

  18. Nonadiabatic transitions at potential curve crossings

    SciTech Connect

    Nakamura, Hiroki; Zhu, Chaoyuan

    1996-12-31

    Recently, the Landau-Zener-Stueckelberg problems have been completely solved in a form convenient for various applications. A summary of the results will be reported. Other related subjects such as multi-level curve crossing and conical intersection problems will also be briefly touched upon.

  19. An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S.

    PubMed

    Sherrill, C David; Takatani, Tait; Hohenstein, Edward G

    2009-09-24

    Large, correlation-consistent basis sets have been used to very closely approximate the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] complete basis set potential energy curves of several prototype nonbonded complexes, the sandwich, T-shaped, and parallel-displaced benzene dimers, the methane-benzene complex, the H2S-benzene complex, and the methane dimer. These benchmark potential energy curves are used to assess the performance of several methods for nonbonded interactions, including various spin-component-scaled second-order perturbation theory (SCS-MP2) methods, the spin-component-scaled coupled-cluster singles and doubles method (SCS-CCSD), density functional theory empirically corrected for dispersion (DFT-D), and the meta-generalized-gradient approximation functionals M05-2X and M06-2X. These approaches generally provide good results for the test set, with the SCS methods being somewhat more robust. M05-2X underbinds for the test cases considered, while the performances of DFT-D and M06-2X are similar. Density fitting, dual basis, and local correlation approximations all introduce only small errors in the interaction energies but can speed up the computations significantly, particulary when used in combination.

  20. Locating gravitational potential energy

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2017-01-01

    Where does gravitational potential energy reside when a ball is in the air? The perfectly correct answer is that it is located in the ball-Earth system. Still, mechanical energy conservation problems are routinely solved by assigning a potential energy to the ball alone. Provided here is a proof that such an assignment introduces only an entirely undetectable error.

  1. Spin-orbit configuration interaction study of potential energy curves and transition probabilities of the mercury hydride molecule and tests of relativistic effective core potentials for Hg, Hg + , and Hg2 +

    NASA Astrophysics Data System (ADS)

    Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Buenker, Robert J.; Hirsch, Gerhard

    1996-03-01

    Ab initio CI calculations have been carried out for the low-energy states of the mercury hydride molecule HgH and its isotopomers. A relativistic effective core potential (RECP) given by Ross et al. [J. Chem. Phys. 93, 6654 (1990)] is employed to describe all but the Hg 5d and 6s valence electrons. Tests for a series of low-lying states of Hg, Hg+, and Hg2+ demonstrate that 0.1 eV accuracy is obtained at the SCF level with a high-quality basis set for this RECP in comparison with all-electron Dirac-Fock results up to 32 eV excitation energy. The DF values are themselves in error by 1-3 eV on the average compared to experiment, but the present CI calculations based on this RECP lead to considerably higher accuracy because of the importance of correlation effects in such determinations. Energy differences (12 cases) between states with the same number of electrons are computed to an accuracy of 0.1-0.2 eV in all cases after the spin-orbit interaction is included. These results compare favorably with those obtained by Häussermann et al. [Mol. Phys. 78, 1211 (1993)] with a ... 5s2 5p6 5d10 6s2 RECP and a corresponding larger AO basis to describe the more tightly bound electrons. Good agreement is found for the spectroscopic constants of the HgH molecule in its lowest four electronic states: X 2Σ+1/2, A1 2Π1/2, A2 2Π3/2, and B 2Σ+1/2 (maximal errors of 1000 cm-1 for Te, 0.03 Å for re and 150 cm-1 for ωe). An RKR curve reported for the A1 state is shown to be in error beyond r=4.0 a0 because of its failure to describe a key avoided crossing with the B state. Radiative lifetimes computed for the A 2Π multiplets are both found to agree with values deduced from experiment to within 40%. The calculations find no difference in the HgH and HgD radiative lifetimes for either the A1 or the A2 states, whereas a large distinction in the measured A1 lifetimes of the two isotopomers is observed, thereby supporting the previous experimental conclusion that strong

  2. Potential energy curve of the X0 +( 1Σ ++) ground state of HgAr determined from A0 +( 3Π) → X0 +andB1( 3Σ + → X0 + fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Koperski, J.

    1996-11-01

    A0 +( 3Π) → X0 +( 1Σ +) andB1( 3Σ +) → X0 +( 1Σ +) fluorescence spectra of HgAr van der Waals molecules were previously produced in a pulsed supersonic molecular beam crossed with a pulsed dye-laser beam, following excitation of single vibronic levels. The dispersed fluorescence displayed characteristic Condon internal diffraction (CID) patterns consisting of bound-free reflection type, continuous spectra, and also bound-bound discrete features. An analysis of the A O+ → X0 + and B1 → X O+ bound-bound spectra indicates that a Morese function is an adequate representatation of the X0 + potential energy (PE) curve below the dissociation limit. In simulation of the A O+ → X0 + bound-free spectra of the Morse, Lennard-Jones ( n - 6) and Maitland-Smith functions were tested, and the Maitland-Smith potential was found to be a good representation of the repulsive wall of the X0 + PE curve above the dissociation limit over the internuclear separation range R = 2.8-3.5 Å.

  3. Spectroscopic constants and potential energy curve of the iodine weakly bound 1u state correlating with the I(2P1/2) + I(2P1/2) dissociation limit

    NASA Astrophysics Data System (ADS)

    Akopyan, M. E.; Baturo, V. V.; Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.

    2015-01-01

    The stepwise three-step three-color laser population of the I2(β1g, νβ, Jβ) rovibronic states via the B0u+, νB, JB rovibronic states and rovibronic levels of the 1u(bb) and 0g+(bb) states mixed by hyperfine interaction is used for determination of rovibronic level energies of the weakly bound I2(1u(bb)) state. Dunham coefficients of the state, Yi0 (i = 0-3), Yi1 (i = 0-2), Y02 and Y12 for the {{v}{{1u}}} = 1-5, 8, 10, 15 and {{J}{{1u}}} ≈ 9-87 ranges, the dissociation energy of the state, De, and equilibrium I-I distance, Re, as well as the potential energy curve are determined. There are aperiodicities in the excitation spectrum corresponding to the β, νβ = 23, Jβ ← 1u(bb), ν1u = 4, 5, J1u progressions in the I2 + Rg = He, Ar mixture, namely, a great number of lines which do not coincide with the R or P line progressions. Their positions conflict with the ΔJ-even selection rule. Furthermore, they do not correspond to the ΔJ-odd progression.

  4. Factors Affecting the Shape of Current-Potential Curves.

    ERIC Educational Resources Information Center

    Maloy, J. T.

    1983-01-01

    Voltammetry, the fundamental electrochemical experiment, is the measurement of the current which flows at an electrode as a function of the potential applied to the electrode. Such an experiment is discussed, focusing on factors which influence the shape of the current potential curve. (JN)

  5. Global expression for representing cohesive-energy curves. II

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Ferrante, John

    1993-01-01

    Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.

  6. Global expression for representing cohesive-energy curves. II

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Ferrante, John

    1993-01-01

    Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.

  7. The determination of potential energy curve and dipole moment of the (5)0{sup +} electronic state of {sup 85}Rb{sup 133}Cs molecule by high resolution photoassociation spectroscopy

    SciTech Connect

    Yuan, Jinpeng; Zhao, Yanting Ji, Zhonghua; Li, Zhonghao; Xiao, Liantuan; Jia, Suotang; Kim, Jin-Tae

    2015-12-14

    We present the formation of ultracold {sup 85}Rb{sup 133}Cs molecules in the (5)0{sup +} electronic state by photoassociation and their detection via resonance-enhanced two-photon ionization. Up to v = 47 vibrational levels including the lowest v = 0 vibrational and lowest J = 0 levels are identified with rotationally resolved high resolution photoassociation spectra. Precise Dunham coefficients are determined for the (5)0{sup +} state with high accuracy, then the Rydberg-Klein-Rees potential energy curve is derived. The electric dipole moments with respect to the vibrational numbers of the (5)0{sup +} electronic state of {sup 85}Rb{sup 133}Cs molecule are also measured in the range between 1.9 and 4.8 D. These comprehensive studies on previously unobserved rovibrational levels of the (5)0{sup +} state are helpful to understand the molecular structure and discover suitable transition pathways for transferring ultracold atoms to deeply bound rovibrational levels of the electronic ground state.

  8. Ab initio calculations on potential energy curves and radiative lifetimes for the band systems A(2)Π-X(2)Σ(+) of magnesium monohalides MgX (X=F, Cl, Br, I).

    PubMed

    Wu, Dong-lan; Tan, Bin; Qin, Jiu-ying; Wan, Hui-jun; Xie, An-dong; Yan, Bing; Ding, Da-jun

    2015-11-05

    Ab initio calculations on potential energy curves (PECs), spectroscopic constants, transition dipole moments, radiative transition probabilities and lifetimes for the ground state (X(2)Σ(+)) and the first excited state (A(2)Π) of MgX (X=F, Cl, Br, I) molecules are determined by high-level internally contracted multi-reference configuration interaction (ic-MRCI) method. In order to improve the calculation, the Davidson modification (+Q) and scalar relativistic correction are included. The present results show that most of spectroscopic constants are in accordance with the measurements, the equilibrium internuclear distance Re increases while the other spectroscopic constants reduce along with the increasing of the atomic number of the halogen from F to I. Diagonal vibrational transitions are found to be dominant for the A(2)Π→X(2)Σ(+) system of MgX molecules. The corresponding radiative lifetimes of ν'=0 are computed to be 7.24, 9.98, 18.94 and 22.72 ns for MgF, MgCl, MgBr, and MgI, respectively. The calculated result of MgF molecule is in good agreement with the recent theoretical result of 7.16 ns, with a small relative error percent of 1.11%.

  9. A generalized method for the inversion of cohesive energy curves from isotropic and anisotropic lattice expansions.

    PubMed

    Schmidt, Kevin M; Vasquez, Victor R

    2015-09-28

    Cohesive energy curves contain important information about energetics of atomic interactions in crystalline materials, and these are more often obtained using ab initio methods such as density functional theory. Decomposing these curves into the different interatomic contributions is of great value to evaluate and characterize the energetics of specific types of atom-atom interactions. In this work, we present and discuss a generalized method for the inversion of cohesive energy curves of crystalline materials for pairwise interatomic potentials extraction using detailed geometrical descriptions of the atomic interactions to construct a list of atomic displacements and degeneracies, which is modified using a Gaussian elimination process to isolate the pairwise interactions. The proposed method provides a more general framework for cohesive energy inversions that is robust and accurate for systems well-described by pairwise potential interactions. Results show very good reproduction of cohesive energies with the same or better accuracy than current approaches with the advantage that the method has broader applications.

  10. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  11. Analysis of the 1^3δ Potential Curve of NaK

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael; Peet Hickman, A.

    2007-10-01

    The process of determining energy levels from a given potential is relatively straightforward; however, the inverse process, given certain energy levels how to determine the potential is more difficult. In this study, a potential curve of the 1^3δ state of NaK was created based on experimentally determined energy levels. The goal in this research was to suppress the unphysical wiggles at high internuclear separations found in a previous analysis by using a different method that would better determine the physical shape of the potential of the 1^3δ state of NaK. The potential fitting program DPotFit 1.1 by Robert J. Le Roy was used with a modified expanded Morse oscillator (EMO) potential. The modification made to the EMO potential was that a dispersion term, Vdispersion, was added to account for the behavior of the well at high internuclear separations. The modified EMO potential did not eliminate the wiggles, but it did reduce them. The rms deviation between the calculated and experimental energy levels was 0.021 cm-1 for the new fit, compared to 0.026 cm-1 for the previous fit. The use of parameters in fitting energy levels is essential; here, the number of fitting parameters was reduced from the previous study. The employment of the modified EMO potential allowed for a better fit to the experimental energy levels and a more realistic potential function for the 1^3δ state of NaK.

  12. Economic growth and energy regulation in the environmental Kuznets curve.

    PubMed

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.

  13. Absolute energy curves from late B-type supergiants

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1981-01-01

    Energy curves were determined for six late B and early A type supergiants using IUE data and other ultraviolet and ground based photometry. Effective temperatures and angular diameters are presented as well as estimates of the outflow velocity of the wind. All six stars show a strong Balmer continuum in emission; the Ia supergiants also show an infrared excess which reaches into the visible range. Evidence is found for the presence of a warm mantle as well as for wind from the Ia stars.

  14. Diatomic interhalogens - Systematics and implications of spectroscopic interatomic potentials and curve crossings

    NASA Technical Reports Server (NTRS)

    Child, M. S.; Bernstein, R. B.

    1973-01-01

    Spectroscopically derived potential curves for the low-lying excited states of homonuclear and heteronuclear diatomic interhalogens are systematized by the spin-orbit state of their dissociation products. The implications of spectroscopic interatomic potentials and curve crossings are discussed.

  15. Diatomic interhalogens - Systematics and implications of spectroscopic interatomic potentials and curve crossings

    NASA Technical Reports Server (NTRS)

    Child, M. S.; Bernstein, R. B.

    1973-01-01

    Spectroscopically derived potential curves for the low-lying excited states of homonuclear and heteronuclear diatomic interhalogens are systematized by the spin-orbit state of their dissociation products. The implications of spectroscopic interatomic potentials and curve crossings are discussed.

  16. Stability Curve Prediction of Homologous Proteins Using Temperature-Dependent Statistical Potentials

    PubMed Central

    Pucci, Fabrizio; Rooman, Marianne

    2014-01-01

    The unraveling and control of protein stability at different temperatures is a fundamental problem in biophysics that is substantially far from being quantitatively and accurately solved, as it requires a precise knowledge of the temperature dependence of amino acid interactions. In this paper we attempt to gain insight into the thermal stability of proteins by designing a tool to predict the full stability curve as a function of the temperature for a set of 45 proteins belonging to 11 homologous families, given their sequence and structure, as well as the melting temperature () and the change in heat capacity () of proteins belonging to the same family. Stability curves constitute a fundamental instrument to analyze in detail the thermal stability and its relation to the thermodynamic stability, and to estimate the enthalpic and entropic contributions to the folding free energy. In summary, our approach for predicting the protein stability curves relies on temperature-dependent statistical potentials derived from three datasets of protein structures with targeted thermal stability properties. Using these potentials, the folding free energies () at three different temperatures were computed for each protein. The Gibbs-Helmholtz equation was then used to predict the protein's stability curve as the curve that best fits these three points. The results are quite encouraging: the standard deviations between the experimental and predicted 's, 's and folding free energies at room temperature () are equal to 13 , 1.3 ) and 4.1 , respectively, in cross-validation. The main sources of error and some further improvements and perspectives are briefly discussed. PMID:25032839

  17. Stability curve prediction of homologous proteins using temperature-dependent statistical potentials.

    PubMed

    Pucci, Fabrizio; Rooman, Marianne

    2014-07-01

    The unraveling and control of protein stability at different temperatures is a fundamental problem in biophysics that is substantially far from being quantitatively and accurately solved, as it requires a precise knowledge of the temperature dependence of amino acid interactions. In this paper we attempt to gain insight into the thermal stability of proteins by designing a tool to predict the full stability curve as a function of the temperature for a set of 45 proteins belonging to 11 homologous families, given their sequence and structure, as well as the melting temperature (Tm) and the change in heat capacity (ΔCP) of proteins belonging to the same family. Stability curves constitute a fundamental instrument to analyze in detail the thermal stability and its relation to the thermodynamic stability, and to estimate the enthalpic and entropic contributions to the folding free energy. In summary, our approach for predicting the protein stability curves relies on temperature-dependent statistical potentials derived from three datasets of protein structures with targeted thermal stability properties. Using these potentials, the folding free energies (ΔG) at three different temperatures were computed for each protein. The Gibbs-Helmholtz equation was then used to predict the protein's stability curve as the curve that best fits these three points. The results are quite encouraging: the standard deviations between the experimental and predicted Tm's, ΔCP's and folding free energies at room temperature (ΔG25) are equal to 13° C, 1.3 kcal/(mol° C) and 4.1 kcal/mol, respectively, in cross-validation. The main sources of error and some further improvements and perspectives are briefly discussed.

  18. Potential advantages of curve sawing non-straight hardwood logs

    Treesearch

    Philip A. Araman

    2007-01-01

    Curve sawing is not new to the softwood industry. Softwood sawmill managers think about how fast they can push logs through their sawmill to maximize the yield of 1x and 2x lumber. Curve sawing helps mills maximize yield when sawing non-straight logs. Hardwood sawmill managers don’t want to push logs through their sawmills, because they want to maximize lumber value...

  19. Uncertainty of the potential curve minimum for diatomic molecules extrapolated from Dunham type coefficients

    NASA Astrophysics Data System (ADS)

    Ilieva, T.; Iliev, I.; Pashov, A.

    2016-12-01

    In the traditional description of electronic states of diatomic molecules by means of molecular constants or Dunham coefficients, one of the important fitting parameters is the value of the zero point energy - the minimum of the potential curve or the energy of the lowest vibrational-rotational level - E00 . Their values are almost always the result of an extrapolation and it may be difficult to estimate their uncertainties, because they are connected not only with the uncertainty of the experimental data, but also with the distribution of experimentally observed energy levels and the particular realization of set of Dunham coefficients. This paper presents a comprehensive analysis based on Monte Carlo simulations, which aims to demonstrate the influence of all these factors on the uncertainty of the extrapolated minimum of the potential energy curve U (Re) and the value of E00 . The very good extrapolation properties of the Dunham coefficients are quantitatively confirmed and it is shown that for a proper estimate of the uncertainties, the ambiguity in the composition of the Dunham coefficients should be taken into account.

  20. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  1. LHC Physics Potential versus Energy

    SciTech Connect

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  2. Energy potential of geothermal energy in Germany

    SciTech Connect

    Kayser, M.; Kaltschmitt, M.

    2000-06-01

    The use of terrestrial heat could fulfill certain energy demands. For the evaluation of the possibilities in the energy system of Germany, the available potentials are one of the most important criteria. Within this context, in the past only the available resources and the reserves have been discussed. But these data have hardly practical relevance for the energy-political and energy-economic discussions, since they do not consider the conditions in the corresponding energy system. In this article, therefore, explanations additional to the overall existing amount of heat in underground portions are shown, which could be used also from a technical point of view. In addition, the demand-side restrictions are considered and the share of the available heat is pointed out which can be used within the energy system of Germany. The explanations show that consideration of the demand side is necessary to make relevant statements. The investigations also make clear that terrestrial heat will never be able to cover more than just a part of the energy demand for warmth in Germany.

  3. Curve crossing for low energy elastic scattering of He (plus) by Ne

    NASA Technical Reports Server (NTRS)

    Bobbio, S. M.; Doverspike, L. D.; Champion, R. L.

    1972-01-01

    The perturbation seen in the experimental differential elastic scattering cross section for the 40 eV He(+) + Ne system was attributed to a single crossing of two intermolecular potential energy curves. A new theoretical treatment of the curve crossing problem, that of Delos and Thorson, is employed to obtain the crossing probabilities and phases associated with the crossing. These are determined by utilizing ab initio potentials involved in the crossing and are further used in a partial wave calculation of the cross section, which is compared with our experiment. The origin of the oscillatory structure observed in the differential cross section is discussed in semiclassical terms by defining the problem in terms of two pseudo-deflection functions. A rainbow effect is shown to be related to a particular feature (a maximum rather than a minimum) of these deflection functions.

  4. Relativity, potential energy, and mass

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2016-11-01

    This paper is an exploration of the concept of energy, illuminated by the transformative insights of the special theory of relativity. Focusing on potential energy (PE), it will be shown that PE as presently defined is in conflict with the tenets of special relativity. Even though PE remains an indispensable theoretical device its actual physicality is questionable. Moreover its ontological status is quite different from that of both kinetic energy and mass, a significant point that is not widely appreciated. We will establish that PE is a theoretical concept as opposed to an empirical one; it is a descriptor of mass-energy without a detectable physical presence of its own. PE is a measure of energy stored, it is not the energy stored.

  5. The Wind Energy Potential of Kurdistan, Iran.

    PubMed

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms.

  6. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  7. Solubility curves and nucleation rates from molecular dynamics for polymorph prediction - moving beyond lattice energy minimization.

    PubMed

    Parks, Conor; Koswara, Andy; DeVilbiss, Frank; Tung, Hsien-Hsin; Nere, Nandkishor K; Bordawekar, Shailendra; Nagy, Zoltan K; Ramkrishna, Doraiswami

    2017-02-15

    Current polymorph prediction methods, known as lattice energy minimization, seek to determine the crystal lattice with the lowest potential energy, rendering it unable to predict solvent dependent metastable form crystallization. Facilitated by embarrassingly parallel, multiple replica, large-scale molecular dynamics simulations, we report on a new method concerned with predicting crystal structures using the kinetics and solubility of the low energy polymorphs predicted by lattice energy minimization. The proposed molecular dynamics simulation methodology provides several new predictions to the field of crystallization. (1) The methodology is shown to correctly predict the kinetic preference for β-glycine nucleation in water relative to α- and γ-glycine. (2) Analysis of nanocrystal melting temperatures show γ- nanocrystals have melting temperatures up to 20 K lower than either α- or β-glycine. This provides a striking explanation of how an energetically unstable classical nucleation theory (CNT) transition state complex leads to kinetic inaccessibility of γ-glycine in water, despite being the thermodynamically preferred polymorph predicted by lattice energy minimization. (3) The methodology also predicts polymorph-specific solubility curves, where the α-glycine solubility curve is reproduced to within 19% error, over a 45 K temperature range, using nothing but atomistic-level information provided from nucleation simulations. (4) Finally, the methodology produces the correct solubility ranking of β- > α-glycine. In this work, we demonstrate how the methodology supplements lattice energy minimization with molecular dynamics nucleation simulations to give the correct polymorph prediction, at different length scales, when lattice energy minimization alone would incorrectly predict the formation of γ-glycine in water from the ranking of lattice energies. Thus, lattice energy minimization optimization algorithms are supplemented with the necessary solvent

  8. Very Low-energy Supernovae: Light Curves and Spectra of Shock Breakout

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth; Woosley, S. E.; Zhang, Weiqun

    2017-08-01

    The brief transient emitted as a shock wave erupts through the surface of a pre-supernova star carrying information about the stellar radius and explosion energy. Here, the CASTRO code, which treats radiation transport using multigroup flux-limited diffusion, is used to simulate the light curves and spectra of shock breakout in very low-energy supernovae (VLE SNe), explosions in giant stars with final kinetic energy much less than 1051 erg. VLE SN light curves, computed here with the KEPLER code, are distinctively faint, red, and long-lived, making them challenging to find with transient surveys. The accompanying shock breakouts are brighter, though briefer, and potentially easier to detect. Previous analytic work provides general guidance, but numerical simulations are challenging, due to the range of conditions and lack of equilibration between color and effective temperatures. We consider previous analytic work and extend discussions of color temperature and opacity to the lower energy range explored by these events. Since this is the first application of the CASTRO code to shock breakout, test simulations of normal energy shock breakout of SN 1987A are carried out and compared with the literature. A set of breakout light curves and spectra are then calculated for VLE SNe with final kinetic energies in the range {10}47{--}{10}50 erg for red supergiants with main-sequence masses of 15 and 25 {M}⊙ . The importance of uncertainties in stellar atmosphere model, opacity, and ambient medium is discussed, as are observational prospects with current and forthcoming missions.

  9. Assessment of Triton Potential Energy

    NASA Astrophysics Data System (ADS)

    Friar, J. L.; Payne, G. L.

    1995-12-01

    An assessment is made of the dominant features contributing to the triton potential energy, with the objective of understanding qualitatively their origins and sensitivities. Relativistic effects, short-range repulsion, and OPEP dominance are discussed. A determination of the importance of various regions of nucleon-nucleon separation is made numerically.

  10. Energies of Screened Coulomb Potentials.

    ERIC Educational Resources Information Center

    Lai, C. S.

    1979-01-01

    This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)

  11. Analysis of Potential Energy Surfaces.

    ERIC Educational Resources Information Center

    Fernandez, G. M.; And Others

    1988-01-01

    Introduces different methodological strategies in analyzing potential energy surfaces (PES) used in chemical reactivity studies. Discusses the theory of PES and gives examples to be used for student work. Provides procedures for calculating normal coordinates and vibrational properties of an activated complex. (ML)

  12. Analysis of Potential Energy Surfaces.

    ERIC Educational Resources Information Center

    Fernandez, G. M.; And Others

    1988-01-01

    Introduces different methodological strategies in analyzing potential energy surfaces (PES) used in chemical reactivity studies. Discusses the theory of PES and gives examples to be used for student work. Provides procedures for calculating normal coordinates and vibrational properties of an activated complex. (ML)

  13. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  14. Examining the Potential of Renewable Energy

    SciTech Connect

    Not Available

    2006-09-01

    This outreach document goes to potential partners for NREL's Renewable Energy Potential Initiative, which will explore the long-term potential of Renewable Energy to meet a substantial share of U.S. energy needs.

  15. The potential of renewable energy

    SciTech Connect

    Not Available

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  16. Accurate ab initio potential energy curves for the classic Li-F ionic-covalent interaction by extrapolation to the complete basis set limit and modeling of the radial nonadiabatic coupling.

    PubMed

    Varandas, A J C

    2009-09-28

    Multireference configuration interaction calculations using large correlation consistent basis sets and full configuration interaction calculations with the smallest of such basis are utilized to describe the ionic-neutral curve crossing for the title system. The results of the former calculations have then been extrapolated to the complete basis set limit using the uniform singlet- and triplet-pair extrapolation scheme. A recent suggestion for locating the nonadiabatic matrix terms at the point where the dynamical correlation split vanishes has also been tested. Additionally, a consistent formalism is suggested to model the radial dependence of the nonadiabatic matrix terms that warrants an overlap dependence away from the crossing. When applied to LiF, the overall approach yields results in excellent agreement with the commonly accepted values for the geometric and energetic attributes at both the equilibrium and diabatic crossing regions.

  17. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    PubMed

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NOx) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  18. Linear and Nonlinear Anderson Localization in a Curved Potential

    NASA Astrophysics Data System (ADS)

    Claudio, Conti

    2014-03-01

    Disorder induced localization in the presence of nonlinearity and curvature is investigated. The time-resolved three-dimensional expansion of a wave packet in a bent cigar shaped potential with a focusing Kerr-like interaction term and Gaussian disorder is numerically analyzed. A self-consistent analytical theory, in which randomness, nonlinearity and geometry are determined by a single scaling parameter, is reported, and it is shown that curvature enhances localization.

  19. Control scheme of nonadiabatic transitions with the dynamical shift of potential curve crossing

    SciTech Connect

    Scheit, Simona; Arasaki, Yasuki Takatsuka, Kazuo

    2014-06-28

    We investigate how the nuclear dynamics at an avoided crossing is affected and can be controlled by the introduction of a laser field whose cycle is comparable to the time-scale of the nuclear dynamics. By introducing the concepts of light-induced effective potential energy curves and dynamical avoided crossing, we describe the laser controlled nuclear dynamics and present basic control scenarios, giving a detailed explanation of the underlying dynamical mechanisms. The scenarios presented allow for examples to understand from a different perspective the results of dynamic Stark control experiments. The proposed interpretation is applied to the laser-controlled nonadiabatic dynamics between the two lowest {sup 1}Σ{sup +} states of LiF, where the usefulness of the concepts developed is elucidated.

  20. Diuretic potential of energy drinks.

    PubMed

    Riesenhuber, A; Boehm, M; Posch, M; Aufricht, C

    2006-07-01

    Recent literature suggests that both caffeine and taurine can induce diuresis and natriuresis in rat and man. Although they act via different cellular mechanisms, their diuretic actions might be additive. This is of considerable interest, as several commercially available energy drinks contain both substances. In this study we examined the possible diuretic effects of caffeine and taurine in a cross-over-design in which 12 healthy male volunteers received each of 4 different test drinks (750 ml of energy drink containing 240 mg caffeine and 3 g taurine, the three other test drinks either lacked caffeine, taurine or both) after restraining from fluids for 12 h. Mixed model analyses demonstrated that urinary output and natriuresis were significantly increased by caffeine (mean differences 243 ml and 27 mmol; both p < 0.001) and that there were no such effects of taurine (mean differences 59 ml and -4 mmol). Additionally, urinary osmolarity at baseline was significantly related to the urinary output (p < 0.001). Urine osmolarity values at baseline and in the 6 h urine collection did not differ significantly between treatments. Taken together, our study demonstrates that diuretic and natriuretic effects of the tested energy drink were largely mediated by caffeine. Taurine played no significant role in the fluid balance in moderately dehydrated healthy young consumers. Consequently, the diuretic potential of energy drinks will not differ significantly from other caffeine containing beverages.

  1. Finding reaction paths using the potential energy as reaction coordinate.

    PubMed

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-14

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.

  2. Transient structure in the high-energy X-ray light curve of NP 0532

    NASA Technical Reports Server (NTRS)

    Ryckman, S. G.; Ricker, G. R.; Scheepmaker, A.; Ballintine, J. E.; Doty, J. P.; Downey, P. M.; Lewin, W. H. G.

    1977-01-01

    The paper reports the observation of pulsed fractions in the primary and secondary peaks, as well as in the interpulse region, of the high-energy X-ray light curve of NP 0532. A statistical analysis of light-curve data is performed, and a similar analysis is carried out using simulated data. It is concluded that a previously reported third peak in the light curve was transient in nature.

  3. Potential energy surface of cyclooctatetraene

    NASA Astrophysics Data System (ADS)

    Andrés, José L.; Castaño, Obis; Morreale, Antonio; Palmeiro, Raul; Gomperts, Roberto

    1998-01-01

    We present a theoretical study of the cyclooctatetraene (COT) molecule. Seven COT structures are located on the singlet ground state potential energy surface. Four of them, which present D2d (tub), Cs (bicyclo[4.2.0]octa-2,4,7-triene or BOT), C2h (chair) and D4 (crown) symmetries are stable species, and the other three are transition state structures showing Cs, D4h, and D8h symmetry. We discuss the symmetry of wave functions for these stationary points. Geometries, energies, and harmonic vibrational frequencies of these structures, and energy gaps between singlet-triplet states and low-lying singlets are presented. For the planar D4h and D8h structures, Jahn-Teller and tunneling effects have also been discussed. Ring inversion, bond shifting and valence isomerization reactive channels from the tub COT conformer are discussed from the point of view of the corresponding transition state structures. Where possible, in order to lend support to this theoretical information comparisons with recent transition state spectroscopy data are made.

  4. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  5. Shape similarity of charge-transfer (CT) excitation energy curves in a series of donor-acceptor complexes and its description with a transferable energy of CT orbital

    NASA Astrophysics Data System (ADS)

    Gritsenko, O. V.

    2017-08-01

    A simple nature of charge-transfer (CT) in the prototype complexes Dp -F2 (Dp =NH3 , H2O) manifests itself in a very close shape of their CT excitation energy curves ωCT (R) along the donor-acceptor separation R. It affords a simple orbital description in terms of the CT orbitals (CTOs) obtained with a transformation of the virtual orbitals of the standard local density approximation (LDA). The transferable energy of the relevant CTO as a function of R closely approximates the common shape of ωCT (R) , while the height of the individual curve is determined with the ionization potential of Dp .

  6. The ratios of partition functions at different temperatures - Sensitivity to potential energy shape II

    NASA Astrophysics Data System (ADS)

    Buchowiecki, Marcin

    2016-05-01

    The ratios of partition functions at different temperatures are calculated and its dependence on potential energy shape is analyzed. The role of anharmonicity and non-rigidity of rotations is discussed in the context of the angular frequency and the shape of potential energy curve. A role of inflection point of potential energy curve for the quality of rigid rotor harmonic oscillator and rigid rotor Morse oscillator is elucidated.

  7. Binding energy curves from nonempirical density functionals. I. Covalent bonds in closed-shell and radical molecules.

    PubMed

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2005-12-08

    Binding or potential energy curves have been calculated for the ground-state diatomics H(2)(+), He(2)(+), LiH(+), H(2), N(2), and C(2), for the transition state H(3), and for the triplet first excited state of H(2) using the nonempirical density functionals from the first three rungs of a ladder of approximations: the local spin density (LSD) approximation, the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the Tao-Perdew-Staroverov-Scuseria (TPSS) meta GGA. Good binding energy curves in agreement with coupled cluster or configuration interaction calculations are found from the PBE GGA and especially from the TPSS meta GGA. Expected exceptions are the symmetric radicals H(2)(+) and He(2)(+), where the functionals suffer from self-interaction error, and the exotically bonded C(2). Although the energy barrier for the reaction H(2) + H --> H + H(2) is better in PBE than in TPSS, the transition state H(3) is a more properly positioned and curved saddle point of the energy surface in TPSS. The triplet first excited state of H(2) obeys the Aufbau principle and thus is one of the exceptional excited states that are computable in principle from the ground-state functional. The PBE GGA and TPSS meta GGA are useful not only for chemical applications but also for the construction of higher-rung nonempirical functionals that can further improve the binding energy curves.

  8. A triangular element based on generalized potential energy concepts

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1976-01-01

    Stiffness equations are formulated for a doubly-curved triangular thin shell finite element. The strain energy component of the potential energy is first expressed in terms of displacements and displacement gradients with the aid of consistent deep shell strain-displacement equations. The element in-plane and normal displacement fields are approximated by complete cubic polynomials. These functions do not satisfy the interelement displacement admissibility conditions. Satisfaction is forced by the imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Some numerical results for a pinched cylinder, a cylindrical sphere, and a pinched sphere are examined.

  9. A triangular element based on generalized potential energy concepts

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1976-01-01

    Stiffness equations are formulated for a doubly-curved triangular thin shell finite element. The strain energy component of the potential energy is first expressed in terms of displacements and displacement gradients with the aid of consistent deep shell strain-displacement equations. The element in-plane and normal displacement fields are approximated by complete cubic polynomials. These functions do not satisfy the interelement displacement admissibility conditions. Satisfaction is forced by the imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Some numerical results for a pinched cylinder, a cylindrical sphere, and a pinched sphere are examined.

  10. Thermophotovoltaic energy conversion: Technology and market potential

    SciTech Connect

    Ostrowski, L.J.; Pernisz, U.C.; Fraas, L.M.

    1996-02-01

    This report contains material displayed on poster panels during the Conference. The purpose of the contribution was to present a summary of the business overview of thermophotovoltaic generation of electricity and its market potential. The market analysis has shown that the TPV market, while currently still in an early nucleation phase, is evolving into a range of small niche markets out of which larger-size opportunities can emerge. Early commercial applications on yachts and recreational vehicles which require a quiet and emission-free compact electrical generator fit the current TPV technology and economics. Follow-on residential applications are attractive since they can combine generation of electricity with space and hot water heating in a co-generation system. Development of future markets in transportation, both private and communal or industrial, will be driven by legislation requiring emission-free vehicles, and by a reduction in TPV systems cost. As a result of {open_quote}{open_quote}moving down the learning curve,{close_quote}{close_quote} growing power and consumer markets are predicted to come into reach of TPV systems, a development favored by high overall energy conversion efficiency due to high radiation energy density and to high electric conversion efficiency available with photovoltaic cells. {copyright} {ital 1996 American Institute of Physics.}

  11. Thermophotovoltaic energy conversion: Technology and market potential

    NASA Astrophysics Data System (ADS)

    Ostrowski, Leon J.; Pernisz, Udo C.; Fraas, Lewis M.

    1996-02-01

    This report contains material displayed on poster panels during the Conference. The purpose of the contribution was to present a summary of the business overview of thermophotovoltaic generation of electricity and its market potential. The market analysis has shown that the TPV market, while currently still in an early nucleation phase, is evolving into a range of small niche markets out of which larger-size opportunities can emerge. Early commercial applications on yachts and recreational vehicles which require a quiet and emission-free compact electrical generator fit the current TPV technology and economics. Follow-on residential applications are attractive since they can combine generation of electricity with space and hot water heating in a co-generation system. Development of future markets in transportation, both private and communal or industrial, will be driven by legislation requiring emission-free vehicles, and by a reduction in TPV systems cost. As a result of ``moving down the learning curve,'' growing power and consumer markets are predicted to come into reach of TPV systems, a development favored by high overall energy conversion efficiency due to high radiation energy density and to high electric conversion efficiency available with photovoltaic cells.

  12. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  13. Solvent free energy curves for electron transfer reactions: A nonlinear solvent response model

    NASA Astrophysics Data System (ADS)

    Ichiye, Toshiko

    1996-05-01

    Marcus theory for electron transfer assumes a linear response of the solvent so that both the reactant and product free energy curves are parabolic functions of the solvent polarization, each with the same solvent force constant k characterizing the curvature. Simulation data by other workers indicate that the assumption of parabolic free energy curves is good for the Fe2+-Fe3+ self-exchange reaction but that the k of the reactant and product free energy curves are different for the reaction D0+A0→D1-+A1+. However, the fluctuations sampled in these simulations were not large enough to reach the activation barrier region, which was thus treated either by umbrella sampling or by parabolic extrapolation. Here, we present free energy curves calculated from a simple model of ionic solvation developed in an earlier paper by Hyun, Babu, and Ichiye, which we refer to here as the HBI model. The HBI model describes the nonlinearity of the solvent response due to the orientation of polar solvent molecules. Since it is a continuum model, it may be considered the first-order nonlinear correction to the linear response Born model. Moreover, in the limit of zero charge or infinite radius, the Born model and the Marcus relations are recovered. Here, the full free energy curves are calculated using analytic expressions from the HBI model. The HBI reactant and product curves have different k for D0+A0→D1-+A1+ as in the simulations, but examining the full curves shows they are nonparabolic due to the nonlinear response of the solvent. On the other hand, the HBI curves are close to parabolic for the Fe2+-Fe3+ reaction, also in agreement with simulations, while those for another self-exchange reaction D0-A1+ show greater deviations from parabolic behavior than the Fe2+-Fe3+ reaction. This indicates that transitions from neutral to charged species will have the largest deviations. Thus, the second moment of the polarization is shown to be a measure of the deviation from Marcus

  14. Contrast curves for low energy electron exposures of an EUV resist in a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Bhattarai, Suchit; Neureuther, Andrew R.; Naulleau, Patrick P.

    2017-03-01

    We present an experimental technique for determining the energy delivery efficiency of secondary electrons in an EUV resist, by directly exposing a positive tone chemically amplified resist with 29- 91 eV electrons created by utilizing the deceleration technology in a scanning electron microscope. Charging is an important problem associated with thin film exposure experiments. We assess the feasibility of using the SEM frame rate as a knob for controlling charging related artifacts. Preliminary measurements of secondary electron emission signal from an unexposed region in the resist provide clues about the time domain surface potentials that may form while the sample charges during exposures. These signals are found to change as a function of the SEM frame rate and landing energies. We provide contrast curve data for resist exposures with 29 eV, 49 eV and 91 eV electrons at three frame rates of 33 ms/frame, 8 s/frame and 30 s/frame. The energy delivery efficiency of electrons estimated for all three frame rates are also provided.

  15. Energy restriction and potential energy restriction mimetics.

    PubMed

    Nikolai, Sibylle; Pallauf, Kathrin; Huebbe, Patricia; Rimbach, Gerald

    2015-12-01

    Energy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.

  16. Examining CCS deployment potential in China via application of an integrated CCS cost curve

    SciTech Connect

    Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

    2013-06-01

    Cost curves focusing on CO2 transport and storage have been previously published and used to help establish the large potential for CCS technologies to deploy in China. This paper examines the results from recent work to incorporate the costs of CO2 capture and compression within integrated cost curves that better reflect the complete costs and therefore possible value of CCS. Results show that significant potential exists for large-scale deployment of CCS at costs less than $70/tCO2. Mapping of the cost curve results confirms that the majority of existing CO2 point sources may be able to utilize CCS technologies, and that - except for many sources in southern China - onshore storage capacity appears accessible and sufficient for decades of large-scale deployment.

  17. Potential distribution and transmission characteristics in a curved quadrupole ion guide.

    PubMed

    Zhou, Xiaoyu; Xiong, Caiqiao; Xu, Gaoping; Liu, Hao; Tang, Yin; Zhu, Zhiqiang; Chen, Rui; Qiao, Haoxue; Tseng, Yao-Hsin; Peng, Wen-Ping; Nie, Zongxiu; Chen, Yi

    2011-02-01

    The potential distribution in the curved quadrupole is exactly characterized by the Laplace equation, and an approximate solution to the Laplace equation is calculated. We represent the Laplace equation under the coordinates named minimal rotation frame (MRF) and derive an expression on the hexapole and octopole superposition. Our conclusion is in agreement with the results by the numerical (SIMION) method. Based on the Poincare-Lighthill-Kuo (PLK) method reported in our previous work, the nonlinear effects of ion motion are investigated in detail. The frequency shift of ion motion can be well eliminated by coupling the hexapole component with a positive octopole component, and the transmission efficiency of ions is found to decrease dramatically with the increase of the ionic kinetic energy in the z-direction. Furthermore, the transmission characteristics of ions are discussed with regards to the phase-space theory. The results show that the centrifugally introduced axis shift is mainly responsible for the ion losses. A modified direct current (dc) voltage supply pattern is hence proposed to compensate for this effect.

  18. Reciprocal changes in input-output curves of motor evoked potentials while learning motor skills.

    PubMed

    Suzuki, Makoto; Kirimoto, Hikari; Onishi, Hideaki; Yamada, Sumio; Tamaki, Hiroyuki; Maruyama, Atsuo; Yamamoto, Jun-ichi

    2012-09-14

    Reciprocal inhibition of antagonist muscles is crucial for motor skill learning in humans. However, the changes in reciprocal inhibition function during the motor learning process are unknown. The aim of this study was to systematically observe the changes in reciprocal inhibition function. We investigated the optimal coil position for simultaneously eliciting motor evoked potentials (MEPs) of reciprocal muscles, and the reciprocal changes in input-output (IO) curves during motor skill training. From ten healthy volunteers, the IO curves of MEPs were measured for the midpoint between the center of gravity (CoG) of the extensor carpi radialis (ECR) and the flexor carpi radialis (FCR) muscles, for the CoG of ECR, and for the FCR muscles using transcranial magnetic stimulation (TMS). In addition, the IO curves of the ECR and the FCR muscles were measured before and after the motor skill training of rapid wrist extension. The IO curves measured at the midpoint between the CoGs of the ECR and the FCR muscles and the CoG of each muscle were homogenous. However, after training to perform rapid wrist extension, the IO curve of the agonist (ECR) muscle was increased, while the antagonist (FCR) muscle was decreased. The present findings validate the IO curves simultaneously measured for reciprocal muscles, and suggest that motor skill training could induce reciprocal change in corticospinal excitability. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  20. Evaluation of the efficiency curve of a Cadmiun Telluride detector for low-energy photon spectrometry.

    PubMed

    Correia, Amanda Ribeiro; Iwahara, Akira; da Cruz, Paulo Alberto Lima; da Silva, Carlos José; Tauhata, Luiz; Poledna, Roberto; da Silva, Ronaldo Lins; de Queiroz Filho, Pedro Pacheco; Lopes, Ricardo Tadeu

    2016-10-01

    The performance of a Cadmiun Telluride (CdTe) detector for low energy photon spectrometry was evaluated. Collected data were analyzed using the basic software package available with the CdTe detector system and the COLEGRAM code developed for photopeak deconvolution at LNHB/France. Several calibrated point sources were used to determine the energy versus efficiency curve. The efficiency curve was used in the determination of main X-ray intensities of (153)Sm and (177)Lu. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Guide for Conducting Energy Efficiency Potential Studies

    EPA Pesticide Factsheets

    The Guide for Conducting Energy Efficiency Potential Studies is provided to assist state officials, regulators, legislators, and others in implementing the recommendations of the National Action Plan for Energy Efficiency.

  2. The dispersed fluorescence spectrum of NaAr - Ground and excited state potential curves

    NASA Technical Reports Server (NTRS)

    Tellinghuisen, J.; Ragone, A.; Kim, M. S.; Auerbach, D. J.; Smalley, R. E.; Wharton, L.; Levy, D. H.

    1979-01-01

    Potential curves for the ground state and the first excited state of NaAr were determined. The van der Waals molecule NaAr was prepared by supersonic free jet expansion of a mixture of sodium, argon, and helium. The electronic transition from the ground state to the first excited state A2pi was excited by a tunable dye laser and the resulting fluorescence was studied. The dispersed fluorescence spectra show discrete and diffuse features, corresponding to transitions from excited vibrational levels of the A state to bound and unbound levels of the x state. The characteristic reflection structure in the bound-free spectra permits an unambiguous assignment of the vibrational numbering in the A state, and this assignment together with previously measured spectroscopic constants are used to calculate the potential curve of the A state. The discrete structure in the fluorescence spectra is used to determine the potential curve of the x state in the well region, and the repulsive part of the X curve is then deduced through trial-and-error simulation of the bound-free spectra.

  3. Local ζ -functions, stress-energy tensor, field fluctuations, and all that, in curved static spacetime

    NASA Astrophysics Data System (ADS)

    Moretti, Valter

    This is a quick review on some technology concerning the local zeta function applied to Quantum Field Theory in curved static (thermal) spacetime to regularize the stress energy tensor and the field fluctuations. Dedicated to Prof. Emilio Elizalde on the occasion of his 60th birthday.

  4. Cosmological constant problem and renormalized vacuum energy density in curved background

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Matsui, Hiroki

    2017-06-01

    The current vacuum energy density observed as dark energy ρdarksimeq 2.5×10-47 GeV4 is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρvacuumsimeq m2H2 where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derive this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρvacuumsimeq m2H2 appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m lesssim MPl.

  5. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    NASA Astrophysics Data System (ADS)

    Myrzakulov, R.; Mamyrbekova, G. K.; Nugmanova, G. N.; Yesmakhanova, K. R.; Lakshmanan, M.

    2014-06-01

    Motion of curves and surfaces in R3 lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota-Maxwell-Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability.

  6. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  7. Potential Water and Energy Savings from Showerheads

    SciTech Connect

    Biermayer, Peter J.

    2005-09-28

    This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize potential water and energy saving scenarios regarding showerheads, six scenarios were analyzed for their potential water and energy savings and the associated dollar savings to the consumer.

  8. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  9. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  10. Variation of sensitometric curves of radiographic films in high energy photon beams.

    PubMed

    Danciu, C; Proimos, B S; Rosenwald, J C; Mijnheer, B J

    2001-06-01

    Film dosimetry is an important tool for the verification of irradiation techniques. The shape of the sensitometric curve depends on the type of film as well as on the irradiation and processing conditions. Existing data concerning the influence of irradiation geometry on the sensitometric curve are conflicting. In particular the variation of optical density, OD, with field size and depth in a phantom shows large differences in magnitude between various authors. This variation, as well as the effect of beam energy and film plane orientation on OD, was therefore investigated for two types of film, Kodak X-Omat V and Agfa Structurix D2. Films were positioned in a solid phantom, either perpendicular or (almost) parallel to the beam axis, and irradiated to different dose levels using various photon beams (Co-60, 6 MV, 15 MV, 18 MV, 45 MV). It was found that the sensitometric curves of the Kodak film derived at different depths are almost identical for the four x-ray beams. For the Kodak film the differences in OD with depth are less than 2%, except for the Co-60 beam, where the difference is about 4% at 10 cm depth for a 15 cm x 15 cm field. The slope of the sensitometric curve of the Agfa film is somewhat more dependent on photon beam energy, depth and field size. The sensitometric curves of both types of film are almost independent of the film plane orientation, except for shallow depths. For Co-60 and for the same dose, the Kodak and Agfa films gave at dose maximum an OD lower by 4% and 6%, respectively, for the parallel compared to the perpendicular geometry. Good dosimetric results can be obtained if films from the same batch are irradiated with small to moderate field sizes (up to about 15 cm x 15 cm), at moderate depths (up to about 15 cm), using a single calibration curve, e.g., for a 10 cm x 10 cm field.

  11. a Canonical Approach to Generate Multidimensional Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Walton, Jay R.; Rivera-Rivera, Luis A.; Lucchese, Robert R.

    2017-06-01

    Previously adaptions of canonical approaches were applied to algebraic forms of the classic Morse, Lennard-Jones, and Kratzer potentials. Using the classic Morse, Lennard-Jones, or Kratzer potential as reference, inverse canonical transformations allow the accurate generation of Born-Oppenheimer potentials for H_2^+ ion, neutral covalently bound H_2, van der Waals bound Ar_2, and the hydrogen bonded 1-dimensional dissociative coordinate in water dimer. This methodology is now extending to multidimensional potential energy surfaces, and as a proof-of-concept, it is applied to the 3-dimensional water molecule potential surface. Canonical transformations previously developed for diatomic molecules are used to construct accurate approximations to the 3-dimensional potential surface of the water molecule from judiciously chosen 1-dimensional planar slices that are shown to have the same canonical shape as the classical Lennard-Jones potential curve. Spline interpolation is then used to piece together the 1-dimensional canonical potential curves, to obtain the full 3-dimensional potential surface of water molecule with a relative error less than 0.008.

  12. Activation energy of the low-load NaCl transition from nanoindentation loading curves.

    PubMed

    Kaupp, Gerd

    2014-01-01

    Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures.

  13. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Lad, R. A.

    1956-01-01

    The lattice summations of the potential energy of importance in the graphite system have been computed by direct summation assuming a Lennard-Jones 6-12 potential between carbon atoms. From these summations, potential energy curves were constructed for interactions between a carbon atom and a graphite monolayer, between a carbon atom and a graphite surface, between a graphite monolayer and a semi-infinite graphite crystal and between two graphite semi-infinite crystals. Using these curves, the equilibrium distance between two isolated physically interacting carbon atoms was found to be 2.70 a, where a is the carbon-carbon distance in a graphite sheet. The distance between a surface plane and the rest of the crystal was found to be 1.7% greater than the interlayer spacing. Theoretical values of the energy of cohesion and the compressibility were calculated from the potential curve for the interaction between two semi-infinite crystals. They were (delta)E(sub c) = -330 ergs/sq cm and beta =3.18x10(exp -12)sq cm/dyne, respectively. These compared favorably with the experimental values of (delta)E(sub c) = -260 ergs/sq cm and beta = 2.97 X 10(exp -2) sq cm/dyne.

  14. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  15. Quantum motion of a point particle in the presence of the Aharonov–Bohm potential in curved space

    SciTech Connect

    Silva, Edilberto O.; Ulhoa, Sérgio C.; Andrade, Fabiano M.; Filgueiras, Cleverson; Amorim, R.G.G.

    2015-11-15

    The nonrelativistic quantum dynamics of a spinless charged particle in the presence of the Aharonov–Bohm potential in curved space is considered. We chose the surface as being a cone defined by a line element in polar coordinates. The geometry of this line element establishes that the motion of the particle can occur on the surface of a cone or an anti-cone. As a consequence of the nontrivial topology of the cone and also because of two-dimensional confinement, the geometric potential should be taken into account. At first, we establish the conditions for the particle describing a circular path in such a context. Because of the presence of the geometric potential, which contains a singular term, we use the self-adjoint extension method in order to describe the dynamics in all space including the singularity. Expressions are obtained for the bound state energies and wave functions. -- Highlights: •Motion of particle under the influence of magnetic field in curved space. •Bound state for Aharonov–Bohm problem. •Particle describing a circular path. •Determination of the self-adjoint extension parameter.

  16. Probing calculated O 2 + potential curves with an XUV-IR pump-probe experiment

    NASA Astrophysics Data System (ADS)

    Coerlin, Philipp; Fischer, Andreas; Schoenwald, Michael; Sperl, Alexander; Mizuno, Tomoya; Pfeifer, Thomas; Moshammer, Robert; Thumm, Uwe

    2015-05-01

    We study dissociative photo-ionization of O2 in a kinematically complete XUV-IR pump-probe experiment, preparing a vibrational wave packet in the potential of the binding O2+(a4Πu)state by ionization with a single XUV photon. After a variable time-delay the wave packet is promoted to the repulsive O2+(f4Πg)state by a weak IR probe pulse. Comparing the results of a coupled-channel simulation with the experimental kinetic-energy-release and quantum-beat spectra, we are able to discriminate between the adiabatic O2+potential-energy curves (PECs) calculated by. The overall agreement between simulated and experimental results is good; however, not all features of the experimental spectra could be reproduced using these PECs. Using a Morse potential adjusted to the experimental data instead, most features of the experimental spectra are well reproduced by our simulation. This optimized Morse potential is remarkably similar to the theoretically predicted PECs, demonstrating the sensitivity of our experimental method to small changes in the shape of the binding potential. Supported by the DoE, NSF, and Alexander von Humboldt foundation.

  17. Divergence identities in curved space-time a resolution of the stress-energy problem

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hüseyin

    1989-03-01

    It is noted that the joint use of two basic differential identities in curved space-time, namely, 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the "field stress-energy" problem of the gravitational theory. (A tribute to Eugene P. Wigner's 1957 presidential address to the APS)

  18. A heuristic rule for classification of classical fluids: Master curves for Mie, Yukawa and square-well potentials

    NASA Astrophysics Data System (ADS)

    Orea, Pedro; Varga, Szabolcs; Odriozola, Gerardo

    2015-07-01

    A shift of the vapor-liquid coexistence curves by the critical value of the reduced second virial coefficient yields striking data collapses to define master curves. This is observed for the Mie, Yukawa and square-well fluids of different attractive ranges. This modification of the extended corresponding-states law of Noro and Frenkel strongly improves the outcomes from the van der Waals principle. Moreover, this shifted extended principle makes the master curves from Mie and Yukawa potentials to be one on top of the other. The square-well potential forms two well defined master curves, each one corresponding to different effective critical exponents.

  19. Wind energy in China: Estimating the potential

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9-14% of China's projected energy demand by 2030.

  20. A guidance manual for assessing scour potential using the South Carolina bridge-scour envelope curves

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.; Feaster, Toby D.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations of bridge scour in order to better understand regional trends of scour within South Carolina. The studies collected historic-scour data at approximately 200 riverine bridges including measurements of clear-water abutment, contraction, and pier scour, as well as live-bed contraction and pier scour. These investigations provided valuable insights for regional scour trends and yielded bridge-scour envelope curves for assessing scour potential associated with all components of scour at riverine bridges in South Carolina. The application and limitations of these envelop cureves were documents in three reports, Each repoort addresses different components of bridge scour and this, there is a need to develop an integrated procedure for applying the South Carolina bridge-scour envelope curves. To address this need, the U.S. Geological Survey and the South Carolina Department of Transportation initiated a cooperative effort to develop an integrated procedure and document the method in a guidance manual. In addition to developing the integrated procedure, field data from other investigations outside of South Carolina were used to verify the South Carolina bridge-source envelope curves.

  1. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  2. Energy technologies evaluated against climate targets using a cost and carbon trade-off curve.

    PubMed

    Trancik, Jessika E; Cross-Call, Daniel

    2013-06-18

    Over the next few decades, severe cuts in emissions from energy will be required to meet global climate-change mitigation goals. These emission reductions imply a major shift toward low-carbon energy technologies, and the economic cost and technical feasibility of mitigation are therefore highly dependent upon the future performance of energy technologies. However, existing models do not readily translate into quantitative targets against which we can judge the dynamic performance of technologies. Here, we present a simple, new model for evaluating energy-supply technologies and their improvement trajectories against climate-change mitigation goals. We define a target for technology performance in terms of the carbon intensity of energy, consistent with emission reduction goals, and show how the target depends upon energy demand levels. Because the cost of energy determines the level of adoption, we then compare supply technologies to one another and to this target based on their position on a cost and carbon trade-off curve and how the position changes over time. Applying the model to U.S. electricity, we show that the target for carbon intensity will approach zero by midcentury for commonly cited emission reduction goals, even under a high demand-side efficiency scenario. For Chinese electricity, the carbon intensity target is relaxed and less certain because of lesser emission reductions and greater variability in energy demand projections. Examining a century-long database on changes in the cost-carbon space, we find that the magnitude of changes in cost and carbon intensity that are required to meet future performance targets is not unprecedented, providing some evidence that these targets are within engineering reach. The cost and carbon trade-off curve can be used to evaluate the dynamic performance of existing and new technologies against climate-change mitigation goals.

  3. Theoretical studies of potential energy surfaces

    SciTech Connect

    Harding, L.B.

    1995-07-01

    MRCI (configuration interaction) calculations were used to examine possible pathways for the O{sub 2} + CCH reaction. The H{sub 2} + CN potential surface was examined. An initial survey was made of the HCl + CN potential energy surface at a low level of theory.

  4. Potential energy savings from aquifer thermal energy storage

    SciTech Connect

    Anderson, M.R.; Weijo, R.O.

    1988-07-01

    Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

  5. Applying supersymmetry to energy dependent potentials

    SciTech Connect

    Yekken, R.; Lassaut, M.; Lombard, R.J.

    2013-11-15

    We investigate the supersymmetry properties of energy dependent potentials in the D=1 dimensional space. We show the main aspects of supersymmetry to be preserved, namely the factorization of the Hamiltonian, the connections between eigenvalues and wave functions of the partner Hamiltonians. Two methods are proposed. The first one requires the extension of the usual rules via the concept of local equivalent potential. In this case, the superpotential becomes depending on the state. The second method, applicable when the potential depends linearly on the energy, is similar to what has been already achieved by means of the Darboux transform. -- Highlights: •Supersymmetry extended to energy dependent potentials. •Generalization of the concept of superpotential. •An alternative method used for linear E-dependence leads to the same results as Darboux transform.

  6. Vestibular Evoked Myogenic Potential (VEMP) Testing: Normative Threshold Response Curves and Effects of Age

    PubMed Central

    Janky, Kristen L.; Shepard, Neil

    2009-01-01

    Background Vestibular Evoked Myogenic Potential (VEMP) testing has gained increased interest in the diagnosis of a variety of vestibular etiologies. Comparisons of P13 / N23 latency, amplitude and threshold response curves have been used to compare pathologic groups to normal controls. Appropriate characterization of these etiologies requires normative data across the frequency spectrum and age range. Purpose The objective of the current study was to test the hypothesis that significant changes in VEMP responses occur as a function of increased age across all test stimuli as well as characterize the VEMP threshold response curve across age. Research Design This project incorporated a prospective study design using a sample of convenience. Openly recruited subjects were assigned to groups according to age. Study Sample Forty-six normal controls ranging between 20 and 76 years of age participated in the study. Participants were separated by decade into 5 age categories from 20 to 60 plus years. Normal participants were characterized by having normal hearing sensitivity, no history of neurologic or balance/dizziness involvement and negative results on a direct office vestibular examination. Intervention VEMP responses were measured at threshold to click and 250, 500, 750, and 1000 Hz tone burst stimuli and at a suprathreshold level to 500 Hz toneburst stimuli at123 dBSPL. Data Collection and Analysis A mixed group factorial ANOVA and linear regression were performed to examine the effects of VEMP characteristics upon age. Results There were no significant differences between ears for any of the test parameters. There were no significant differences between age groups for n23 latency or amplitude in response to any of the stimuli. Significant mean differences did exist between age groups for p13 latency (250, 750, and 1000 Hz) and threshold (500 and 750 Hz). Age was significantly correlated with VEMP parameters. VEMP threshold was positively correlated (250, 500, 750

  7. Reconstructing Folding Energy Landscape Profiles from Nonequilibrium Pulling Curves with an Inverse Weierstrass Integral Transform

    NASA Astrophysics Data System (ADS)

    Engel, Megan C.; Ritchie, Dustin B.; Foster, Daniel A. N.; Beach, Kevin S. D.; Woodside, Michael T.

    2014-12-01

    The energy landscapes that drive structure formation in biopolymers are difficult to measure. Here we validate experimentally a novel method to reconstruct landscape profiles from single-molecule pulling curves using an inverse Weierstrass transform (IWT) of the Jarzysnki free-energy integral. The method was applied to unfolding measurements of a DNA hairpin, replicating the results found by the more-established weighted histogram (WHAM) and inverse Boltzmann methods. Applying both WHAM and IWT methods to reconstruct the folding landscape for a RNA pseudoknot having a stiff energy barrier, we found that landscape features with sharper curvature than the force probe stiffness could not be recovered with the IWT method. The IWT method is thus best for analyzing data from stiff force probes such as atomic force microscopes.

  8. Correspondence between energy levels and evolution curves of fixed points in nonlinear Landau-Zener model

    NASA Astrophysics Data System (ADS)

    Liu, Xuan-Zuo; Tian, Dong-Ping; Chong, Bo

    2016-06-01

    Liu et al. [Phys. Rev. Lett. 90(17), 170404 (2003)] proved that the characters of transition probabilities in the adiabatic limit should be entirely determined by the topology of energy levels and the stability of fixed points in the classical Hamiltonian system, according to the adiabatic theorem. In the special case of nonlinear Landau-Zener model, we simplify their results to be that the properties of transition probabilities in the adiabatic limit should just be determined by the attributes of fixed points. It is because the topology of energy levels is governed by the behavior and symmetries of fixed points, and intuitively this fact is represented as a correspondence between energy levels and evolution curves of the fixed points which can be quantitatively described as the same complexity numbers.

  9. Amino acid tautomerization reactions in aqueous solution via concerted and assisted mechanisms using free energy curves from MD simulation.

    PubMed

    Tolosa, Santiago; Hidalgo, Antonio; Sansón, Jorge A

    2012-11-01

    A theoretical study is described of chemical reactions in solution by means of molecular dynamics simulations, with solute-solvent interaction potentials derived from AMBER van der Waals parameters and QM/MM electrostatic charges in solution. The solvent is used as the reaction coordinate, and the free energy curves to calculate the properties related to the reaction mechanism. The proposed scheme is applied to the tautomerization process in aqueous solution for some amino acids H(2)NCHR-COOH (with R = H being glycine, R = CH(3) alanine, R = CH(2)OH serine, and R = CH(2)COOH aspartic acid), focusing on the role of the solvent in the reaction (assisted versus unassisted mechanisms) and on the effect of the hydrophilic/hydrophobic character of the radical R on the activation and reaction energies.

  10. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions.

    PubMed

    Li, Y J; Wang, Y G; An, B; Xu, H; Liu, Y; Zhang, L C; Ma, H Y; Wang, W M

    2016-01-01

    A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials.

  11. Biomass resource potential using energy crops

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Martin, S.A.

    1993-09-01

    Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

  12. Environmental costs and renewable energy: re-visiting the Environmental Kuznets Curve.

    PubMed

    López-Menéndez, Ana Jesús; Pérez, Rigoberto; Moreno, Blanca

    2014-12-01

    The environmental costs of economic development have received increasing attention during the last years. According to the World Energy Outlook (2013) sustainable energy policies should be promoted in order to spur economic growth and environmental protection in a global context, particularly in terms of reducing greenhouse gas emissions that contribute to climate change. Within this framework, the European Union aims to achieve the "20-20-20" targets, including a 20% reduction in EU greenhouse gas emissions from 1990 levels, a raise in the share of EU energy consumption produced from renewable resources to 20% and a 20% improvement in the EU's energy efficiency. Furthermore, the EU "Energy Roadmap 2050" has been recently adopted as a basis for developing a long-term European energy framework, fighting against climate change through the implementation of energy efficiency measures and the reduction of emissions. This paper focuses on the European context and attempts to explain the impact of economic growth on CO2 emissions through the estimation of an Environmental Kuznets Curve (EKC) using panel data. Moreover, since energy seems to be at the heart of the environmental problem it should also form the core of the solution, and therefore we provide some extensions of the EKC by including renewable energy sources as explanatory variables in the proposed models. Our data sets are referred to the 27 countries of the European Union during the period 1996-2010. With this information, our empirical results provide some interesting evidence about the significant impacts of renewable energies on CO2 emissions, suggesting the existence of an extended EKC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Potential energy function for the hydroperoxyl radical

    SciTech Connect

    Lemon, W.J.; Hase, W.L.

    1987-03-12

    A switching function formalism is used to derive an analytic potential energy surface for the O + OH in equilibrium HO/sub 2/ in equilibrium H + O/sub 2/ reactive system. Both experimental and ab initio data are used to derive parameters for the potential energy surface. Trajectory calculations for highly excited HO/sub 2/ are performed on this surface. From these trajectories quasi-periodic eigentrajectories are found for vibrational levels near the HO/sub 2/ dissociation threshold with small amounts of quanta in the OH stretch mode and large amounts of quanta in the OO stretch mode.

  14. Potential energy surfaces for cluster emitting nuclei

    SciTech Connect

    Poenaru, Dorin N.; Gherghescu, Radu A.; Greiner, Walter

    2006-01-15

    Potential energy surfaces are calculated by use of the most advanced asymmetric two-center shell model that allows us to obtain shell-and-pairing corrections that are added to the Yukawa-plus-exponential model deformation energy. Shell effects are of crucial importance for the experimental observation of spontaneous disintegration by heavy-ion emission. Results for {sup 222}Ra, {sup 232}U, {sup 236}Pu, and {sup 242}Cm illustrate the main ideas and show for the first time, for a cluster emitter, a potential barrier obtained by use of the macroscopic-microscopic method.

  15. Potential reduction of DSN uplink energy cost

    NASA Technical Reports Server (NTRS)

    Dolinsky, S.; Degroot, N. F.

    1982-01-01

    DSN Earth stations typically transmit more power than that required to meet minimum specifications for uplink performance. Energy and cost savings that could result from matching the uplink power to the amount required for specified performance are studied. The Galileo mission was selected as a case study. Although substantial reduction in transmitted energy is possible, potential savings in source energy (oil or electricity) savings are much less. This is because of the rising inefficiency in power conversion and radio frequency power generation that accompanies reduced power output.

  16. Potential reduction of DSN uplink energy cost

    NASA Technical Reports Server (NTRS)

    Dolinsky, S.; Degroot, N. F.

    1982-01-01

    DSN Earth stations typically transmit more power than that required to meet minimum specifications for uplink performance. Energy and cost savings that could result from matching the uplink power to the amount required for specified performance are studied. The Galileo mission was selected as a case study. Although substantial reduction in transmitted energy is possible, potential savings in source energy (oil or electricity) savings are much less. This is because of the rising inefficiency in power conversion and radio frequency power generation that accompanies reduced power output.

  17. Potential energy sputtering of EUVL materials

    SciTech Connect

    Pomeroy, J M; Ratliff, L P; Gillaspy, J D; Bajt, S

    2004-07-02

    Of the many candidates employed for understanding the erosion of critical Extreme Ultraviolet Lithography (EUVL) components, potential energy damage remains relatively uninvestigated. Unlike the familiar kinetic energy sputtering, which is a consequence of the momentum transferred by an ion to atoms in the target, potential energy sputtering occurs when an ion rapidly collects charge from the target as it neutralizes. Since the neutralization energy of a singly charged ion is typically on the order of 10 eV, potential energy effects are generally neglected for low charge state ions, and hence the bulk of the sputtering literature. As an ion's charge state is increased, the potential energy (PE) increases rapidly, e.g. PE(Xe{sup 1+})= 11 eV, PE(Xe{sup 10+}) = 810 eV, PE(Xe{sup 20+}) = 4.6 keV, etc. By comparison, the binding energy of a single atom on a surface is typically about 5 eV, so even relatively inefficient energy transfer mechanisms can lead to large quantities of material being removed, e.g. 25% efficiency for Xe{sup 10+} corresponds to {approx} 40 atoms/ion. By comparison, singly charged xenon ions with {approx} 20 keV of kinetic energy sputter only about 5 atoms/ion at normal incidence, and less than 1 atom/ion at typical EUV source energies. EUV light sources are optimized for producing approximately 10{sup 16} xenon ions per shot with an average charge state of q=10 in the core plasma. At operational rates of {approx}10 kHz, the number of ions produced per second becomes a whopping 10{sup 20}. Even if only one in a billion ions reaches the collector, erosion rates could reach {approx}10{sup 12} atoms per second, severely reducing the collector lifetime (for an average yield of 10 atoms/ion). In addition, efforts to reduce contamination effects may contribute to reduced neutralization and even larger potential energy damages rates (discussed further below). In order to provide accurate estimates for collector lifetimes and to develop mitigation schemes

  18. Investigation of the energy dependence of the orbital light curve in LS 5039

    NASA Astrophysics Data System (ADS)

    Chang, Z.; Zhang, S.; Ji, L.; Chen, Y. P.; Kretschmar, P.; Kuulkers, E.; Collmar, W.; Liu, C. Z.

    2016-11-01

    LS 5039 is so far the best-studied γ-ray binary system at multiwavelength energies. A time-resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing International Gamma-Ray Astrophysics Laboratory (INTEGRAL)/INTEGRAL on-board Imager/INTEGRAL Soft Gamma-Ray Imager observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the γ-ray band, we carried out orbital phase-resolved analysis of Fermi-Large Area Telescope (LAT) data between 30 MeV and 10 GeV in five different energy bands. We found that, at ≲100 MeV and ≳1 TeV the peak of the γ-ray emission is near orbital phase 0.7, while between ˜100 MeV and ˜1 GeV it moves close to orbital phase 1.0 in an orbital anticlockwise manner. This result suggests that the transition region in the SED at soft γ-rays (below a hundred MeV) is related to the orbital phase interval of 0.5-1.0 but not to the one of 0.0-0.5, when the compact object is `behind' its companion. Another interesting result is that between 3 and 20 GeV no orbital modulation is found, although Fermi-LAT significantly (˜18σ) detects LS 5039. This is consistent with the fact that at these energies, the contributions to the overall emission from the inferior conjunction phase region (INFC, orbital phase 0.45-0.9) and from the superior conjunction phase region (orbital phase 0.9-0.45) are equal in strength. At TeV energies the power output is again dominant in the INFC region and the flux peak occurs at phase ˜0.7.

  19. A Potential of Rail Vehicle Having Bolster with Side Bearers for Improving Curving Performance on Sharp Curves Employing Link-Type Forced Steering Mechanism

    NASA Astrophysics Data System (ADS)

    Tanifuji, Katsuya; Yaegashi, Naoki; Soma, Hitoshi

    The air spring of bolsterless bogie trucks, which have been widely employed in railway vehicles in recent years, undergoes a large distortion when the vehicles negotiate sharp curves in lines such as subway lines, and this can deteriorate the durability of air springs. Furthermore, bolsterless trucks tend to suffer from increased wheel lateral force around sharp curves with a radius of 100 m or less. In this paper we discuss the application of a link-type forced steering mechanism to bogie trucks with a bolster as a countermeasure against the above-mentioned situation. A numerical simulation is carried out using a MBS software, SIMPACK. As a result, under the condition of reduced longitudinal stiffness in the primary suspension, a bolster truck with the link-type steering mechanism exhibits the potential to suppress the wheel lateral force occurring around sharp curves. Also, the deterioration in running stability due to the application of the steering mechanism can be recovered by adding moderate lateral damping in the secondary suspension. In addition, the obtained wear index shows that the forced steering truck has decreased flange wear resulting from passing through sharp curves.

  20. Formation of a two-component Bose condensate during the chemical-potential curve crossing

    SciTech Connect

    Kayali, M.A.; Sinitsyn, N.A.

    2003-04-01

    In this paper, we study the coherent dissociation of a molecular condensate into a multiple-mode atomic condensate during the chemical-potential curve crossing beyond the mean-field approximation. We show that the problem can be reduced to the dissociation of a molecular condensate into a two-mode atomic one. We employ the time-dependent Landau-Zener theory and derive analytical expression for the transition amplitudes. We calculate the number of produced atoms and show that they exist in squeezed state. We also study the formation of multiple-mode atomic condensate by inelastic scatterings of atoms in a single-mode atomic condensate. We show that the problem is also a Landau-Zener-like and exact solution can be found by imposing an additional symmetry.

  1. Assessing potential scour using the South Carolina bridge-scour envelope curves

    USGS Publications Warehouse

    Benedict, Stephen T.; Feaster, Toby D.; Caldwell, Andral

    2016-09-30

    SummaryBridge-scour equations presented in the Federal Highway Administration Hydraulic Engineering Circular No. 18 reflect the current state-of-the practice for predicting scour at bridges. Although these laboratory-derived equations provide an important resource for assessing scour potential, there is a measure of uncertainty when applying these equations to field conditions. The uncertainty and limitations have been acknowledged by laboratory researchers and confirmed in field investigations.Because of the uncertainty associated with bridge-scour equations, HEC-18 recommends that engineers evaluate the computed scour depths obtained from the equations and modify the resulting data if they appear unreasonable. Perhaps the best way to evaluate the reasonableness of predicted scour is to compare it to field measurements of historic scour. Historic field data show scour depths resulting from high flows and provide a reference for evaluating predicted scour. It is rare, however, that such data are available at or near a site of interest, making the evaluation of predicted scour as compared to field data difficult if not impossible. Realizing the value of historic scour measurements, the U.S. Geological Survey (USGS), in cooperation with the South Carolina Department of Transportation (SCDOT), conducted a series of three field investigations to collect historic scour data with the goal of understanding regional trends of scour at riverine bridges in South Carolina.Historic scour measurements, including measurements of clear-water abutment, contraction, and pier scour, as well as live-bed contraction and pier scour, were made at more than 200 bridges. These field investigations provided valuable insights into regional scour trends and yielded regional bridge-scour envelope curves that can be used as supplementary tools for assessing all components of scour at riverine bridges in South Carolina.The application and limitations of these envelope curves were documented in

  2. Residential energy efficiency: Progress since 1973 and future potential

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  3. Potential Energy Cost Savings from Increased Commercial Energy Code Compliance

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Cohan, David F.

    2016-08-22

    An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed office buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.

  4. Divacancy binding energy, formation energy and surface energy of BCC transition metals using MEAM potentials

    NASA Astrophysics Data System (ADS)

    Uniyal, Shweta; Chand, Manesh; Joshi, Subodh; Semalty, P. D.

    2016-05-01

    The modified embedded atom method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy and surface energies for low index planes in bcc transition metals. The calculated results of divacancy binding energy and vacancy formation energy compare well with experimental and other available calculated results.

  5. Divacancy binding energy, formation energy and surface energy of BCC transition metals using MEAM potentials

    SciTech Connect

    Uniyal, Shweta Chand, Manesh Joshi, Subodh Semalty, P. D.

    2016-05-06

    The modified embedded atom method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy and surface energies for low index planes in bcc transition metals. The calculated results of divacancy binding energy and vacancy formation energy compare well with experimental and other available calculated results.

  6. Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy model.

    PubMed

    Díaz Alonso, Fernando; González Ferradás, Enrique; Sánchez Pérez, Juan Francisco; Miñana Aznar, Agustín; Ruiz Gimeno, José; Martínez Alonso, Jesús

    2006-09-21

    A number of models have been proposed to calculate overpressure and impulse from accidental industrial explosions. When the blast is produced by ignition of a vapour cloud, the TNO Multi-Energy model is widely used. From the curves given by this model, data are fitted to obtain equations showing the relationship between overpressure, impulse and distance. These equations, referred herein as characteristic curves, can be fitted by means of power equations, which depend on explosion energy and charge strength. Characteristic curves allow the determination of overpressure and impulse at each distance.

  7. Potential energy hypersurface and molecular flexibility

    NASA Astrophysics Data System (ADS)

    Koča, Jaroslav

    1993-02-01

    The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.

  8. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  9. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  10. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  11. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  12. Potential energy surfaces of Polonium isotopes

    NASA Astrophysics Data System (ADS)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  13. The Wind Energy Potential of Iceland

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  14. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  15. Potential energy landscapes of tetragonal pyramid molecules

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuichiro; Sato, Hirofumi; Morgan, John W. R.; Wales, David J.

    2016-11-01

    Hiraoka et al. have developed a self-assembling system referred to as a nanocube (Hiraoka et al., 2008). In the present contribution a coarse-grained model for this system is analysed, focusing on how the potential energy landscape for self-assembly is related to the geometry of the building blocks. We find that six molecules assemble to form various clusters, with cubic and sheet structures the most stable. The relative stability is determined by the geometry of the building blocks.

  16. Astrophysical molecules of A1H and CaH - RKR potential and dissociation energies

    NASA Astrophysics Data System (ADS)

    Narasimhamurthy, B.; Rajamanickam, N.

    1983-03-01

    The true potential energy curves for the electronic ground states of astrophysically important AlH and CaH molecules are constructed by the Rydberg-Klein-Rees method. Empirical potential functions, of three-parameters by Lippincott, of five-parameters by Hulburt and Hirschfelder and, of electronegativity by Szöke and Baitz, are examined for the adequacy to represent the true curve. From the best-fitting function, the dissociation energies D00 of AlH and CaH molecules are estimated to be 2.99±0.08 and 2.72±0.06 eV respectively.

  17. Potential Energy Surfaces and Dynamics of High Energy Species

    DTIC Science & Technology

    2009-04-13

    such calculations with dynamics and condensed phase models, and (b) apply these methods to design and evaluate potentially new high energy species. The...IBM SP2 at the Maui High Performance Computation Center, the heat of formation for 1 is predicted to be 456.8 kcallmol. This translates to an l sp...which numerical derivatives become trivially parallel in a coarse-grained sense by having each function evaluation performed on a different node. If

  18. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin E-mail: kirshner@cfa.harvard.edu

    2009-08-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sup +0.066} {sub -0.068} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  19. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves

    SciTech Connect

    Hicken, Malcolm; Wood-Vasey, W.Michael; Blondin, Stephane; Challis, Peter; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-06

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sub -0.068}{sup +0.066} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {Delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  20. Characterizing high-energy light curves of Fermi/LatGRBs - Oral Presentation

    SciTech Connect

    Gillette, Jarred

    2015-08-23

    A systematic analysis of the light curves of Gamma-Ray Burst (GRBs) with redshift and detected at high-energy (> 100 MeV) by Fermi/LAT has never been done before our work, because there were only a handful of detections. Now we have 20 of those, which we can use to characterize the GRBs in their rest frame. We compared a characteristic decay times Tc of GRBs with redshifts using the new "Pass8" data, and used a Crystal Ball function to parametrize GRB characteristics. An unexpected anti-correlation between Tc and the peak flux was observed. This means that brighter peaked GRBs have shorter durations. There is also no correlation between Tc and the decay index, which is one of the competing hypothesis on the origin of the high-energy emission. We did not observe any bimodality, which is seen in GRBs at lower energies.

  1. Characterizing high-energy light curves of Fermi/Lat GRBs

    SciTech Connect

    Gillette, Jarred

    2015-08-21

    A systematic analysis of the light curves of Gamma-Ray Burst (GRBs) with redshift and detected at high-energy (> 100 MeV) by Fermi/LAT has never been done before our work, because there were only a handful of detections. Now we have 20 of those, which we can use to characterize the GRBs in their rest frame. We compared a characteristic decay times Tc of GRBs with redshifts using the new “Pass 8” data, and used a Crystal Ball function to parametrize GRB characteristics. An unexpected anti-correlation between Tc and the peak flux was observed. This means that brighter peaked GRBs have shorter durations. There is also no correlation between the Tc and the decay index, which makes the anti-correlation with brightness more clear. This results appears to be consistent with the External Shock model, which is one of the competing hypothesis on the origin of the high-energy emission. We did not observe any bimodality, which is seen in GRBs at lower energies.

  2. Part-load performance characterization and energy savings potential of the RTU challenge unit: Carrier weather expert

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Taasevigen, Danny J.

    2015-09-29

    This report documents the development of part-load performance curves and there use with the EnergyPlus simulation tool to estimate the potential savings from the use of WeatherExpert units compared to other standard options.

  3. Evidence for Attentional Gradient in the Serial Position Memory Curve from Event-related Potentials

    PubMed Central

    Azizian, Allen; Polich, John

    2009-01-01

    The occurrence of primacy versus recency effects in free recall is suggested to reflect either two distinct memory systems, or the operation of a single system that is modulated by allocation of attention and less vulnerable to interference. Behavioral and event-related brain potential (ERPs) measures were used to investigate the encoding substrates of the serial position curve and subsequent recall in young adults. Participants were instructed to remember lists of words consisting of 12 common nouns each presented once every 1.5 sec, with a recall signal following the last word to indicate that all remembered items should be written on paper. This procedure was repeated for 20 different word lists. Both performance and late ERP amplitudes reflected classic recall serial position effects. Greater recall and larger late positive component amplitudes were obtained for the primacy and recency items, with less recall and smaller amplitudes for the middle words. The late positive component was larger for recalled compared to unrecalled primacy items, but it did not differ between memory performance outcomes for the recency items. The close relationship between the enhanced amplitude and primacy retrieval supports the view that this positive component reflects one of a process series related to attentional gradient and encoding of events for storage in memory. Recency effects appear to index operations determined by the anticipation of the last stimulus presentation, which occurred for both recalled and unrecalled memory items. Theoretical implications are discussed. PMID:17892393

  4. Configuration interaction calculations of potential curves and annihilation rates for positronic complexes of alkali monoxides.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2009-09-21

    Ab initio multireference single- and double-excitation configuration interaction calculations have been carried out to compute the potential curves and annihilation rates (ARs) of positronic molecular complexes of a series of alkali monoxides. The dissociation limit for the lowest states of these systems consists of the positive alkali ion ground state (M(+)) and the OPs (e(+)O(-)) complex formed by attaching the positron to O(-), even though the ground state of the corresponding neutral molecule always correlates with uncharged fragments (M+O). The positron affinity of the neutral oxide (2)Pi state is greater than that of (2)Sigma(+) in each case, so that the e(+)MO ground state always has (3,1)Pi symmetry, despite the fact that both KO and RbO have (2)Sigma(+) ground states. The bonding in the positronic systems is highly ionic at all internuclear distances and this causes their ARs to decrease gradually as the positive alkali ion approaches the OPs fragment.

  5. Curved Space Quantum Field Theory of the 1970S Elucidates Boundary Casimir Energy Today

    NASA Astrophysics Data System (ADS)

    Fulling, S. A.

    2017-03-01

    Results of investigations of the divergent vacuum energy at reflecting boundaries in quantum field theory are summarized. The boundary is modeled by a soft rapidly increasing potential barrier such as a power wall. In the model without pressure anomaly and the principle of virtual work is fulfilled.

  6. The Efficacy of Interactive Analogical Models in the Instruction of Bond Energy Curves in Undergraduate Chemistry

    ERIC Educational Resources Information Center

    Shahani, Vijay M.; Jenkinson, Jodie

    2016-01-01

    We explored analogies used for introducing students to the concept of potential energy wells. Two analogy systems were developed, a spring system and a novel system consisting of electrostatic spheres. These two, distinct analogies were housed within an interactive tool that allowed students to manipulate the analogous systems and witness changes…

  7. The Efficacy of Interactive Analogical Models in the Instruction of Bond Energy Curves in Undergraduate Chemistry

    ERIC Educational Resources Information Center

    Shahani, Vijay M.; Jenkinson, Jodie

    2016-01-01

    We explored analogies used for introducing students to the concept of potential energy wells. Two analogy systems were developed, a spring system and a novel system consisting of electrostatic spheres. These two, distinct analogies were housed within an interactive tool that allowed students to manipulate the analogous systems and witness changes…

  8. Effects of Incident Electron Fluence and Energy on the Election Yield Curves and Emission Spectra of Dielectrics

    NASA Technical Reports Server (NTRS)

    Sim, Alec; Dennison, J. R.; Thomson, Clint

    2005-01-01

    We present an experimental study of evolution of electron emission yields and spectra as a result of internal charge build up due to electron dose. Reliable total, backscattered and secondary yield curves and electron emission spectra for un-charged insulators using a low fluence, pulsed electron beam (= or < 5 microsec at = or < 3 nA/sq mm or = or < 10(exp 5) e/sq mm per pulse) with low energy electron and UV flooding to neutralize the charging between pulses. Quantifiable changes in yield curves are observed due to < 100 fC/sq mm fluences for several excellent dielectric thin film materials. We find good agreement with a phenomenological argument based on insulator charging predicted by the yield curve; this includes an approximately linear decrease in the magnitude of the yield as incident energies approach the crossover energies and an exponential decrease in yield as accumulated internal charge reduces the landing energy to asymptotically approach a steady state surface charge and unity yield. We also find that the exponential decay of yield curves with fluence exhibit an energy dependent decay constant, alpha(E), over a broad range of incident energies below, between and above the crossover energies. Finally, we present some preliminary physics-based models for this energy dependence and attempt to relate our charging measurements to knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and transport, and how the profile of trapped charge affects the transport and emission of charges from insulators.

  9. California's biomass and its energy potential

    SciTech Connect

    Lucarelli, F.B. Jr.

    1980-04-01

    The potentials for using California's biomass for energy have been assessed. The study relies on the recent work of Amory Lovins and Lawrence Berkeley Laboratory's (LBL) Distributed Energy System's Project to specify an energy future for Californians. These works identify transportation fuels as the most valuable energy conversion for biomass. Within this context, the extent of five categories of terrestial biomass is estimated, in addition to the environmental impacts and monetary cost of collecting and transporting each biomass category. Estimates of the costs of transforming biomass into different fuels as well as a survey of government's role in a biomass energy program are presented. The major findings are summarized below. (1) California's existing biomass resources are sufficient to provide only 20 percent of its future liquid fuel requirements. (2) Meeting the full transportation demand with biomass derived fuels will require the development of exotic biomass sources such as kelp farms and significant reductions in automobile travel in the State. (3) Under assumptions of moderate increases in gasoline prices and without major new government incentives, the cost of transforming biomass into transport fuels will be competitive with the price of gasoline on a Btu basis by the year 1990. (4) The environmental impacts of collecting most forms of biomass are beneficial and should reduce air pollution from agricultural burning and water pollution from feedlot and dairy farm runoff. Moreover, the collection of logging residues should improve timber stand productivity and the harvest of chaparral should reduce the risk of wildfire in the State. (5) The institutional context for implementing biomass energy projects is complex and fragmented.

  10. Consequences of dietary energy source and energy level on energy balance, lactogenic hormones, and lactation curve characteristics of cows after a short or omitted dry period.

    PubMed

    van Hoeij, R J; Dijkstra, J; Bruckmaier, R M; Gross, J J; Lam, T J G M; Remmelink, G J; Kemp, B; van Knegsel, A T M

    2017-10-01

    Omitting the dry period (DP) generally reduces milk production in the subsequent lactation. The aim of this study was to evaluate the effect of dietary energy source-glucogenic (G) or lipogenic (L)-and energy level-standard (std) or low-on milk production; energy balance (EB); lactogenic hormones insulin, insulin-like growth factor 1 (IGF-1), and growth hormone (GH); and lactation curve characteristics between wk 1 and 44 postpartum in cows after a 0-d or 30-d DP. Cows (n = 110) were assigned randomly to 3 transition treatments: a 30-d DP with a standard energy level required for expected milk yield [30-d DP(std)], a 0-d DP with the same energy level as cows with a 30-d DP [0-d DP(std)], and a 0-d DP with a low energy level [0-d DP(low)]. In wk 1 to 7, cows were fed the same basal ration but the level of concentrate increased to 6.7 kg/d for cows fed the low energy level and to 8.5 kg/d for cows fed the standard energy level in wk 4. From wk 8 postpartum onward, cows received a G ration (mainly consisting of corn silage and grass silage) or an L ration (mainly consisting of grass silage and sugar beet pulp) with the same energy level contrast (low or std) as in early lactation. Cows fed the G ration had greater milk, lactose, and protein yields, lower milk fat percentage, greater dry matter and energy intakes, and greater plasma IGF-1 concentration compared with cows fed the L ration. Dietary energy source did not affect EB or lactation curve characteristics. In cows with a 0-d DP, the reduced energy level decreased energy intake, EB, and weekly body weight gain, but did not affect milk production or lactation curve characteristics. A 30-d DP resulted in a greater total predicted lactation yield, initial milk yield after calving, peak milk yield, energy intake, energy output in milk, days to conception [only when compared with 0-d DP(low)], plasma GH concentration [only when compared with 0-d DP(std)], and decreased weekly body weight gain compared with a 0-d DP. A

  11. Application of Direct Current Potential Drop for the J-integral vs. Crack Growth Resistance Curve Characterization

    SciTech Connect

    Chen, Xiang; Nanstad, Randy K; Sokolov, Mikhail A

    2014-01-01

    The direct current potential drop (DCPD) technique has been applied to derive the J-integral vs. crack growth resistance curve (J-R curve) for fracture toughness characterization of structural materials. The test matrix covered three materials including type 316LN stainless steels, Ni-based alloy 617, and one ferritic-martensitic steel, three specimen configurations including standard compact, single edge bending, and disk-shaped compact specimens, and temperatures ranging from 20 C to 650 C. When compared with baseline J-R curves derived from the ASTM normalization method, the original J-R curves from the DCPD technique yielded much smaller Jq values due to the influence of crack blunting, plastic deformation, etc. on potential drop. To counter these effects, a new procedure for adjusting DCPD J-R curves was proposed. After applying the new adjustment procedure, the average difference in Jq between the DCPD technique and the normalization method was only 5.2% and the difference in tearing modulus was 7.4%. The promising result demonstrates the applicability of the DCPD technique for the J-R curve characterization especially in extreme environments, such as elevated temperatures, where the conventional elastic unloading compliance method faces considerable challenges.

  12. Theoretical studies of potential energy surfaces

    SciTech Connect

    Harding, L.B.

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  13. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  14. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  15. Triton Binding Energy of Kharkov Potential

    NASA Astrophysics Data System (ADS)

    Kamada, H.; Shebeko, O.; Arslanaliev, A.

    2017-03-01

    The Kharkov potential is a recent field theoretical model of nucleon-nucleon (NN) interaction that has been built up in the framework of the instant form of relativistic dynamics starting with the total Hamiltonian of interacting meson and nucleon fields and using the method of unitary clothing transformations. The latter connect the representation of "bare" particles and the representation of "clothed" particles, i.e., the particles with physical properties. Unlike many available NN potentials each of which is the kernel of the corresponding nonrelativistic Lippmann-Schwinger (LS) equation this potential being dependent in momentum space on the Feynman-like propagators and covariant cutoff factors at the meson-nucleon vertices is the kernel of relativistic integral equations for the NN bound and scattering states. Therefore we do not need to invent any transform of a given nonrelativistic potential to its relativistic counterpart. As a feasible study, we have started with the so-called 5ch Faddeev calculation for three-nucleon bound state (triton) and obtained a reasonable value of its binding energy (-7.42 MeV).

  16. Potential energy surfaces of superheavy nuclei

    SciTech Connect

    Bender, M.; Rutz, K.; Maruhn, J.A.; Greiner, W.; Reinhard, P.-G. Rutz, K.; Maruhn, J.A.; Greiner, W.

    1998-10-01

    We investigate the structure of the potential energy surfaces of the superheavy nuclei {sub 158}{sup 258}Fm{sub 100}, {sub 156}{sup 264}Hs{sub 108}, {sub 166}{sup 278}112, {sub 184}{sup 298}114, and {sub 172}{sup 292}120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers. {copyright} {ital 1998} {ital The American Physical Society}

  17. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole.

    PubMed

    Li, Shaohong L; Xu, Xuefei; Hoyer, Chad E; Truhlar, Donald G

    2015-09-03

    Diabatization of potential energy surfaces is a technique that enables convenient molecular dynamics simulations of electronically nonadiabatic processes, but diabatization itself is nonunique and can be inconvenient; the best methods to achieve diabatization are still under study. Here, we present the diabatization of two electronic states of thioanisole in the S-CH3 bond stretching and C-C-S-C torsion two-dimensional nuclear coordinate space containing a conical intersection. We use two systematic methods: the (orbital-dependent) 4-fold way and the (orbital-free) Boys localization diabatization method. These very different methods yield strikingly similar diabatic potential energy surfaces that cross at geometries where the adiabatic surfaces are well separated and do not exhibit avoided crossings, and the contours of the diabatic gap and diabatic coupling are similar for the two methods. The validity of the diabatization is supported by comparing the nonadiabatic couplings calculated from the diabatic matrix elements to those calculated by direct differentiation of the adiabatic states.

  18. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions

    PubMed Central

    Li, Y. J.; Wang, Y. G.; An, B.; Xu, H.; Liu, Y.; Zhang, L. C.; Ma, H. Y.; Wang, W. M.

    2016-01-01

    A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials. PMID:26771194

  19. A vertical-energy-thresholding procedure for data reduction with multiple complex curves.

    PubMed

    Jung, Uk; Jeong, Myong K; Lu, Jye-Chyi

    2006-10-01

    Due to the development of sensing and computer technology, measurements of many process variables are available in current manufacturing processes. It is very challenging, however, to process a large amount of information in a limited time in order to make decisions about the health of the processes and products. This paper develops a "preprocessing" procedure for multiple sets of complicated functional data in order to reduce the data size for supporting timely decision analyses. The data type studied has been used for fault detection, root-cause analysis, and quality improvement in such engineering applications as automobile and semiconductor manufacturing and nanomachining processes. The proposed vertical-energy-thresholding (VET) procedure balances the reconstruction error against data-reduction efficiency so that it is effective in capturing key patterns in the multiple data signals. The selected wavelet coefficients are treated as the "reduced-size" data in subsequent analyses for decision making. This enhances the ability of the existing statistical and machine-learning procedures to handle high-dimensional functional data. A few real-life examples demonstrate the effectiveness of our proposed procedure compared to several ad hoc techniques extended from single-curve-based data modeling and denoising procedures.

  20. DOE standard guidelines for use of probabilistic seismic hazard curves at Department of Energy sites

    SciTech Connect

    Not Available

    1992-12-28

    This Standard is intended to provide guidance in the use of the seismic hazard curves developed by the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute (EPRI). Experience to-date has shown that application of these methodologies can yield significantly different results. In response to this issue, a Seismic Working Group (SWG) has been formed at the Department of Energy (DOE) Headquarters to coordinate the application of these methodologies within DOE in a consistent manner. The position developed by the SWG and contained in this Standard is intended for immediate use in developing seismic hazard estimates at DOE sites for the evaluation of new and existing, nuclear and non-nuclear DOE facilities. This Standard is needed not only to address the LLNL/EPRI issue but also to assure that state-of-the-art seismic hazard methods are incorporated into DOE standards as soon as possible. The DOE is currently involved in a joint program with the Nuclear Regulatory Commission and EPRI to evaluate these existing probabilistic seismic hazard methodologies and to develop recommendations for an improved methodology for the 1990`s. The final product of this effort is expected to result in more stable hazard estimates and will supersede this Standard in approximately two years.

  1. HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates.

    PubMed

    Tristram-Nagle, Stephanie; Nagle, John F

    2007-09-15

    A crucial step in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T-cell membrane, which must involve intermediate membrane states with high curvature. Our main result from diffuse x-ray scattering is that the bending modulus K(C) is greatly reduced upon addition of the HIV fusion peptide FP-23 to lipid bilayers. A smaller bending modulus reduces the free energy barriers required to achieve and pass through the highly curved intermediate states and thereby facilitates fusion and HIV infection. The reduction in K(C) is by a factor of 13 for the thicker, stiffer 1,2-sn-dierucoylphosphatidylcholine bilayers and by a factor of 3 for 1,2-sn-dioleoylphosphatidylcholine bilayers. The reduction in K(C) decays exponentially with concentration of FP-23, and the 1/e concentration is <1 mol % peptide/lipid, which is well within the physiological range for a fusion site. A secondary result is, when FP-23 is added to the samples which consist of stacks of membranes, that the distance between membranes increases and eventually becomes infinite at full hydration (unbinding); we attribute this both to electrostatic repulsion of the positively charged arginine in the FP-23 and to an increase in the repulsive fluctuation interaction brought about by the smaller K(C). Although this latter interaction works against membrane fusion, our results show that the energy that it requires of the fusion protein machinery to bring the HIV envelope membrane and the target T-cell membrane into close contact is negligible.

  2. Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.

    PubMed

    Koseki, Shiro; Matsushita, Takeshi; Gordon, Mark S

    2006-02-23

    The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.

  3. Bohm's quantum potential as an internal energy

    NASA Astrophysics Data System (ADS)

    Dennis, Glen; de Gosson, Maurice A.; Hiley, Basil J.

    2015-06-01

    We pursue our discussion of Fermi's surface initiated by Dennis, de Gosson and Hiley and show that Bohm's quantum potential can be viewed as an internal energy of a quantum system, giving further insight into its role in stationary states. This implies that the 'particle' referred to in Bohm's theory is not a classical point-like object but rather has an extended structure in phase space which can be linked to the notion of a symplectic capacity, a topological feature of the underlying symplectic geometry. This structure provides us with a new, physically motivated derivation of Schrödinger's equation provided we interpret Gleason's theorem as a derivation of the Born rule from fundamental assumptions about quantum probabilities.

  4. Effects of the dark energy and flat rotation curve on the gravitational time delay of particle with non-zero mass

    NASA Astrophysics Data System (ADS)

    Sarkar, Tamal; Ghosh, Shubhrangshu; Bhadra, Arunava

    2016-07-01

    The effects of several dark energy models on gravitational time delay of particles with non-zero mass are investigated and analytical expressions for the same are obtained at the first order accuracy. Also the expression for gravitational time delay under the influence of conformal gravity potential that well describes the flat rotation curve of spiral galaxies is derived. The findings suggest that (i) the conformal gravity description of dark matter reduces the net time delay in contrast to the effect of normal dark matter, and therefore in principle the models can be discriminated using gravitational time delay observations, and (ii) the effect of dark energy/flat rotation curve may be revealed from high-precision measurements of gravitational time delay of particles involving the megaparsec and beyond distance scale.

  5. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  6. Evolution of the Electron Yield Curves of Insulators as a Function of Impinging Electron Fluence and Energy

    NASA Technical Reports Server (NTRS)

    Sim, Alec; Dennison, J. R.; Thomson, Clint

    2005-01-01

    Electron emission and concomitant change accumulation near the surface of insulators in central to understanding spacecraft charging. We present a study of changes in electron emission yields as a result of internal charge build up due to electron dose. Evolution of total, backscattered and secondary yield results over a broad range of incident energies are presented for two representative insulators, Kapton(trademark) and Al2O3. Reliable yield curves for uncharged insulators are measured and quantifiable changes in yield are observed due to < 100 fC/sq mm fluences. We find excellent agreement with a phenomenological argument based on insulator charging predicted by the yield curve; this includes a decrease in the rate of change of the yield as incident energies approach the crossover energies and as accumulated internal charge reduces the landing energy to asymptotically approach a steady state surface charge and unity yield. We also find that the exponential decay of yield curves with fluence exhibit an energy dependent decay constant, alpha(E). Finally, we discuss physics based models for this energy dependence. To understand fluence and energy dependence of these charging processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators.

  7. A Laboratory Simulation of Urban Runoff and the Potential for Hydrograph Prediction with Curve Numbers

    USDA-ARS?s Scientific Manuscript database

    Urban drainages are mosaics of pervious and impervious surfaces, and prediction of runoff hydrology with a lumped modeling approach using the NRCS curve number may be appropriate. However, the prognostic capability of such a lumped approach is complicated by routing and connectivity amongst infiltra...

  8. Exploring the Potential Diversity of Early Type Ia Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2016-07-01

    During the first several days after explosion, Type Ia supernova light curves probe the outer layers of the exploding star, and therefore provide important clues for identifying their progenitors. We investigate how both the shallow 56Ni distribution and the presence of circumstellar material shape these early light curves. This is performed using a series of numerical experiments with parameterized properties for systematic exploration. Although not all of the considered models may be realized in nature (and indeed there are arguments why some of them should not occur), the spirit of this work is to provide a broader exploration of the diversity of possibilities. We find that shallower 56Ni leads to steeper, bluer light curves. Differences in the shape of the rise can introduce errors in estimating the explosion time, and thus impact efforts to infer upper limits on the progenitor or companion radius from a lack of observed shock cooling emission. Circumstellar material can lead to significant luminosity during the first few days, but its presence can be difficult to identify depending on the degree of nickel mixing. In some cases, the hot emission of circumstellar material may even lead to a signature similar to an interaction with a companion, and thus in the future additional diagnostics should be gathered for properly assessing early light curves.

  9. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  10. [Correlation of changes in compound action potential (CAP) tuning curves and cochlear lesion in guinea pigs after explosion].

    PubMed

    Han, D

    1989-01-01

    The purpose of the present study was to investigate the sensitivity of compound action potential (CAP) tuning curves to changes of the cochlear status in guinea pigs after explosion and their ability to reflect specific histological variations. The results were as follows: 1. The CAP tuning curves were abnormally broad and the Q 10 dB values were reduced by a factor of 1 after explosion, indicating wider tuning. 2. The degree of broadening of the CAP tuning curves seemed to increase as the hair cell loss increased. 3. After explosion, the tip of the tuning curve shifted to frequencies significantly higher or lower than that of the signal, it might be related to the location of hair cell loss in the cochlea. 4. In animals for which damage was restricted to only three rows of outer hair cells, changes of the CAP tuning curves were observed. It provides further evidence that the tuning properties of cochlear nerve fibers are dependent upon the integrity of the outer hair cells even though the great majority of fibers innervate inner hair cells only.

  11. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  12. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  13. Ab initio studies of low-lying 3Sigma(-), 3Pi, and 5Sigma(-) states of NH. I - Potential curves and dipole moment functions

    NASA Technical Reports Server (NTRS)

    Goldfield, Evelyn M.; Kirby, Kate P.

    1987-01-01

    Configuration interaction wave functions, potential energy curves, and dipole moment functions have been calculated for the four lowest 3Sigma(-) and the three lowest 3Pi states and 5Sigma(-) states of NH. The electronic wave functions were constructed to give a balanced description of valence-Rydberg interactions. Two repulsive states have been identified as important photodissociation pathways. Spectroscopic constants are presented for the bound states, and results are compared to other theoretical and experimental work. The possible predissociation of the A 3Pi state by the 1 5Sigma(-) state is discussed.

  14. Assessment of Standard Force Field Models against High-Quality ab initio Potential Curves for Prototypes of pi-pi, CH/pi, and SH/pi Interactions

    SciTech Connect

    Sumpter, Bobby G; Sherrill, David; Sinnokrot, Mutasem O; Marshall, Michael S.; Hohenstein, Edward G.; Walker, Ross; Gould, Ian R

    2009-01-01

    Several popular force fields, namely, CHARMM, AMBER, OPLS-AA, and MM3, have been tested for their ability to reproduce highly accurate quantum mechani- cal potential energy curves for noncovalent interactions in the benzene dimer, the benzene-CH4 complex, and the benzene-H2S complex. All of the force fields are semi-quantitatively correct, but none of them is consistently reliable quantitatively. Re-optimization of Lennard-Jones parameters and symmetry-adapted perturbation theory analysis for the benzene dimer suggests that better agreement cannot be expected unless more flexible functional forms (particularly for the electrostatic contributions)are employed for the empirical force fields.

  15. Potential shift correction in multivariate curve resolution of voltammetric data. General formulation and application to some experimental systems.

    PubMed

    Alberich, Arístides; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2008-01-01

    A new mathematical algorithm is proposed to correct the progressive potential shift of some voltammetric signals that decrease the linearity of the data. The corrected data matrix can be further analysed by Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) and the vector including the potential shift corrections can be fitted to specific equations such as that by DeFord-Hume. A detailed discussion is given on the different cases of potential shift correction, and, in some of them, mathematical simulation is made or experimental systems [Cd(ii)-glutathione and Zn(ii)-glycine] are analysed.

  16. Spectroscopic properties and potential energy surfaces of GeH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Li, Junqing

    1988-04-01

    MCSCF (complete active space SCF) followed by configuration interaction calculations are carried out on 12 electronic states of GeH. Relativistic configuration interaction calculations are carried out with the objective of computing the spin-orbit corrections for the low-lying states. These calculations reveal the existence of 10 bound electronic states of GeH for which spectroscopic properties are computed. The three experimentally observed bands ( a- X, A- X, B- X) are assigned and the uncertainties in the experimental Te and ωe values of these states are corrected. In addition, the spectroscopic properties of 8 states are calculated which are yet to be observed. The spin-orbit coupling constant for the ground state X( 2Π) is calculated to be 869 cm -1. An accurate dissociation energy of 2.81 eV was obtained using {MCSCF}/{SOCI} calculation which employed a large Gaussian basis set questioning the experimental De of ˜3.3 eV obtained from the predissociation in the A2Δ state. It is shown that the intersection of the repulsive 4Π curve which dissociates into the ground state atoms causes predissociation in the A( 2Δ) , B( 2Σ +) , 2Σ +(III), and 2Π(II) states. The potential energy surfaces of a few excited states contain barriers. The calculated ground state dipole moment of 0.098 D is in disagreement with an experimental value of 1.24 D, questioning the experimental dipole moment.

  17. An ab initio method for locating potential energy minima

    SciTech Connect

    Bock, Nicolas; Peery, Travis; Venneri, Giulia; Chisolm, Eric; Wallace, Duane; Lizarraga, Raquel; Holmstrom, Erik

    2009-01-01

    We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.

  18. Renewable Energy Potential for New Mexico

    EPA Pesticide Factsheets

    RE-Powering America's Land: Renewable Energy on Contaminated Land and Mining Sites was presented by Penelope McDaniel, during the 2008 Brown to Green: Make the Connection to Renewable Energy workshop.

  19. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas

    2016-03-01

    Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.

  20. Energy savings potential from energy-conserving irrigation systems

    SciTech Connect

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  1. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.

    PubMed

    Valero, Rosendo; Truhlar, Donald G; Jasper, Ahren W

    2008-06-26

    The development of spin-coupled diabatic representations for theoretical semiclassical treatments of photodissociation dynamics is an important practical goal, and some of the assumptions required to carry this out may be validated by applications to simple systems. With this objective, we report here a study of the photodissociation dynamics of the prototypical HBr system using semiclassical trajectory methods. The valence (spin-free) potential energy curves and the permanent and transition dipole moments were computed using high-level ab initio methods and were transformed to a spin-coupled diabatic representation. The spin-orbit coupling used in the transformation was taken as that of atomic bromine at all internuclear distances. Adiabatic potential energy curves, nonadiabatic couplings and transition dipole moments were then obtained from the diabatic ones and were used in all the dynamics calculations. Nonadiabatic photodissociation probabilities were computed using three semiclassical trajectory methods, namely, coherent switching with decay of mixing (CSDM), fewest switches with time uncertainty (FSTU), and its recently developed variant with stochastic decoherence (FTSU/SD), each combined with semiclassical sampling of the initial vibrational state. The calculated branching fraction to the higher fine-structure level of the bromine atom is in good agreement with experiment and with more complete theoretical treatments. The present study, by comparing our new calculations to wave packet calculations with distance-dependent ab initio spin-orbit coupling, validates the semiclassical trajectory methods, the semiclassical initial state sample scheme, and the use of a distance-independent spin-orbit coupling for future applications to polyatomic photodissociation. Finally, using LiBr(+) as a model system, it is shown that accurate spin-coupled potential curves can also be constructed for odd-electron systems using the same strategy as for HBr.

  2. Cuckoo Search with Lévy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175

  3. Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting.

    PubMed

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  4. Clustering of LAT light curves: a clue to the origin of high-energy emission in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Nava, L.; Vianello, G.; Omodei, N.; Ghisellini, G.; Ghirlanda, G.; Celotti, A.; Longo, F.; Desiante, R.; Barniol Duran, R.

    2014-10-01

    The physical origin of the >0.1 GeV emission detected from gamma-ray bursts (GRBs) by the Fermi satellite has not yet been completely understood. In this work, we consider the GeV light curves of 10 GRBs with measured redshift detected by the Fermi Large Area Telescope (LAT). These light curves are characterized by a long-lived (≳102 seconds) emission, whose luminosity decays in time as a power law. While the decay rate is similar for all GRBs (i.e. LLAT ∝ t-1.2), the normalization spans about two orders of magnitude in luminosity. However, after re-normalizing the luminosities to the prompt energetics Eprompt the light curves overlap. We consider the scenario in which the temporally extended LAT emission is dominated by synchrotron radiation from electrons accelerated at the forward external shock. According to this model, at high energies (i.e. above the typical synchrotron frequencies) a small dispersion of the Eprompt-normalized light curves is expected. The fact that the LAT temporally extended emission follows this behaviour reinforces its interpretation in terms of afterglow radiation from external shocks. Assuming this scenario, we argue that the parameters ɛe and ηγ (i.e. the fraction of shock-dissipated energy gained by the electrons, and the efficiency of the mechanism producing the prompt radiation, respectively) must be narrowly distributed.

  5. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  6. The Potential Energy of an Autoencoder.

    PubMed

    Kamyshanska, Hanna; Memisevic, Roland

    2015-06-01

    Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient inference. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units, the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative classifier based on class-specific autoencoders is presented.

  7. Energy in America: Progress and Potential.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…

  8. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    SciTech Connect

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  9. Energy in America: Progress and Potential.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…

  10. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  11. Marginal abatement cost curves for NOx that account for renewable electricity, energy efficiency, and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  12. Marginal abatement cost curves for NOx that account for renewable electricity, energy efficiency, and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  13. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  14. Potential Advantages of Reusing Potentially Contaminated Land for Renewable Energy Fact Sheet

    EPA Pesticide Factsheets

    EPA promotes the reuse of potentially contaminated lands and landfills for renewable energy. This strategy creates new markets for potentially contaminated lands, while providing a sustainable land development strategy for renewable energy.

  15. The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems.

    PubMed

    Luu, Quoc T; DuChateau, Paul

    2009-07-01

    Experiments have established that different radiation types have different magnitudes of biological response. When biological response is defined in terms of the Relative Biologic Effectiveness (RBE) and different radiation type is characterized by Linear Energy Transfer (LET), the plot of the RBE versus LET (RBE-LET) curve shows RBE to increase with increasing LET, to reach a maximum, and to decrease with further increasing LET. Perhaps due to the descriptive nature of biology, most quantitative models for the RBE-LET curve ignore the reality of the underlying molecular biology. On the other hand, the molecular basis for the RBE-LET curve is not completely known despite recent efforts. Here we introduce a differential equation formulation for a signal-and-system model that sees cells as systems, different radiation types as input, and cellular responses as output. Because of scant knowledge of the underlying biochemical network, the current version is necessarily a work in progress. It explains the RBE-LET curve using not just input parameters but also systems internal state parameters. These systems internal state parameters represent parts of a biochemical network within a cell. Although multiple biochemical parts may well be involved, the shape of the RBE-LET curve is reproduced when only three system parameters are related to three biochemical parts: the molecular machinery for DNA double strand break repair; the molecular pathways for handling oxidative stress; and the radiolytic products of the cellular water. Despite being a simplified ''toy model,'' changes in the systems state parameters lead to model curves that are refutable in a modern molecular biology laboratory. As the parts in the biochemical network of the radiation response are being further elucidated, this model can incorporate new systems state parameters to allow a more accurate fit.

  16. Møller's Energy-Momentum Complex for a Spacetime Geometry on a Noncommutative Curved D3-Brane

    NASA Astrophysics Data System (ADS)

    Radinschi, I.; Grammenos, T.

    2008-05-01

    Møller’s energy-momentum complex is employed in order to determine the energy and momentum distributions for a spacetime described by a “generalized Schwarzschild” geometry in (3+1)-dimensions on a noncommutative curved D3-brane in an effective, open bosonic string theory. The geometry considered is obtained by an effective theory of gravity coupled with a nonlinear electromagnetic field and depends only on the generalized (effective) mass and charge which incorporate corrections of first order in the noncommutativity parameter.

  17. Langevin power curve analysis for numerical wind energy converter models with new insights on high frequency power performance

    NASA Astrophysics Data System (ADS)

    Mücke, Tanja A.; Wächter, Matthias; Milan, Patrick; Peinke, Joachim

    2015-11-01

    Based on the Langevin equation it has been proposed to obtain power curves for wind turbines from high frequency data of wind speed measurements u(t) and power output P (t). The two parts of the Langevin approach, power curve and drift field, give a comprehensive description of the conversion dynamic over the whole operating range of the wind turbine. The method deals with high frequent data instead of 10 min means. It is therefore possible to gain a reliable power curve already from a small amount of data per wind speed. Furthermore, the method is able to visualize multiple fixed points, which is e.g. characteristic for the transition from partial to full load or in case the conversion process deviates from the standard procedures. In order to gain a deeper knowledge it is essential that the method works not only for measured data but also for numerical wind turbine models and synthetic wind fields. Here, we characterize the dynamics of a detailed numerical wind turbine model and calculate the Langevin power curve for different data samplings. We show, how to get reliable results from synthetic data and verify the applicability of the method for field measurements with ultra-sonic, cup and Lidar measurements. The independence of the fixed points on site specific turbulence effects is also confirmed with the numerical model. Furthermore, we demonstrate the potential of the Langevin approach to detect failures in the conversion process and thus show the potential of the Langevin approach for a condition monitoring system.

  18. Multi-model assessment of potential changes in Intensity-Duration-Frequency curves over Canada

    NASA Astrophysics Data System (ADS)

    Rasmussen, P. F.

    2013-12-01

    Climate change is expected to modify precipitation patterns across the globe, but there are considerable differences between climate models in their projections of change amplitude for individual locations. Most climate change studies focus on changes in mean precipitation, yet in many hydrological applications extreme precipitation is the main interest. In this study, we examine and compare the statistical properties of extreme precipitation in observational records and in output from the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models, focusing specifically on Canada. Climate models have significant biases in extreme precipitation statistics which tend to be relatively more important for shorter-duration rainfall. We propose to deal with this issue by exploiting the fact that extreme rainfall events obey certain temporal scaling laws that we assume will remain largely unaltered in future climates, even if the frequency of these events change. This hypothesis is used to develop IDF curves for different regions of Canada. The general conclusion is that there is evidence of more extreme precipitation in future climates and these changes tend to be relatively more important for shorter durations and for higher return periods. However, the multi-model approach also indicates that the exact amount of change is subject to considerable uncertainties.

  19. Electrochemistry of cations in diopsidic melt - Determining diffusion rates and redox potentials from voltammetric curves

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.; Crane, Daniel

    1990-01-01

    Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.

  20. Electrochemistry of cations in diopsidic melt - Determining diffusion rates and redox potentials from voltammetric curves

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.; Crane, Daniel

    1990-01-01

    Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.

  1. Potential for energy recovery from humid air streams.

    Treesearch

    Howard H. Rosen

    1979-01-01

    The potential for energy recovery from the vent stream of dryers is examined by assuming the vent stream transfers its energy in a regenerative heat exchanger. Tables present energy recovery over a range of conditions. Example problems demonstrate the use of the energy recovery tables.

  2. Dissociative Recombination without a Curve Crossing

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1994-01-01

    Ab initio calculations show that a curve crossing is not always needed for a high dissociative- recombination cross section. For HeH(+), in which no neutral states cross the ion potential curve, dissociative recombination is driven by the nuclear kinetic-energy operator on adiabatic potential curves. The kinetic-energy derivative operator allows for capture into repulsive curves that are outside of the classical turning points for the nuclear motion. The dominant dissociative route is the C (2)Sigma(+) state leading to H(n = 2) atoms. An analogous mechanism is proposed for the dissociative recombination of H3(+).

  3. Solar Energy: Potential Powerhouse for Jobs

    ERIC Educational Resources Information Center

    McCallion, Tom

    1976-01-01

    Components of solar energy systems are described, the development of the solar industry discussed, and implications are drawn for employment opportunities in industries (which may expand into new, solar-related areas) and in the professions, from law to sales, upon the advent of solar heating. (AJ)

  4. Energy Consumption and Renewable Energy Development Potential on Indian Lands

    EIA Publications

    2000-01-01

    Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the potential for renewable resources development of Indian lands.

  5. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  6. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  7. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  8. Wood Energy Potential in Northwestern South Carolina

    Treesearch

    James W. McMinn

    1986-01-01

    The quantity of unused wood in an Ill-county area in northwestern South Carolina was projected to be more than 16 million tons annually. Wood that is unsuitable for products other than fuel amounts to nearly 9 million tons annually.The most likely energy demand by industrial plants that are good candidates for wood fuel systems is 1.5 million tons annually.Maximum...

  9. Superintegrable deformations of the KC and HO potentials on curved spaces

    NASA Astrophysics Data System (ADS)

    Latini, D.; Ragnisco, O.

    2016-09-01

    This is a paper written to celebrate the 70th birthday of our dear colleague Gaetano Vilasi where we collect some recent results about a couple of maximally superintegrable systems. Both the classical and the quantum version will be considered, and the corresponding solution techniques will be illustrated: namely, the spectrum generating algebra (SGA) for the classical systems and the shape invariance potentials approach (SIP) for the quantum case.

  10. Framework for State-Level Renewable Energy Market Potential Studies

    EPA Pesticide Factsheets

    This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study.

  11. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  12. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  13. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  14. A MAPLE Package for Energy-Momentum Tensor Assessment in Curved Space-Time

    SciTech Connect

    Murariu, Gabriel; Praisler, Mirela

    2010-01-21

    One of the most interesting problem which remain unsolved, since the birth of the General Theory of Relativity (GR), is the energy-momentum localization. All our reflections are within the Lagrange formalism of the field theory. The concept of the energy-momentum tensor for gravitational interactions has a long history. To find a generally accepted expression, there have been different attempts. This paper is dedicated to the investigation of the energy-momentum problem in the theory of General Relativity. We use Einstein [1], Landau-Lifshitz [2], Bergmann-Thomson [3] and Moller's [4] prescriptions to evaluate energy-momentum distribution. In order to cover the huge volume of computation and, bearing in mind to make a general approaching for different space-time configurations, a MAPLE application to succeed in studying the energy momentum tensor was built. In the second part of the paper for two space-time configuration, the comparative results were presented.

  15. Achieving wood energy potentials: evidence in northeastern Minnesota.

    Treesearch

    Dennis P. Bradley; David C. Lothner

    1987-01-01

    A study of wood energy potential in northeastern Minnesota concludes that (1) the forests of the region could support a much larger wood energy harvest without significant cost increases for other forest products; (2) existing stands are predominantly overmature and cutting more now will enhance future wood supplies for all users; (3) converting to wood energy could...

  16. Evaluation of one-dimensional potential energy surfaces for prediction of spectroscopic properties of hydrogen bonds in linear bonded complexes.

    PubMed

    Jouypazadeh, Hamidreza; Farrokhpour, Hossein; Solimannejad, Mohammad

    2017-05-01

    This work evaluated the reliability of the one-dimensional potential energy surface for calculating the spectroscopic properties (rovibrational constants and rotational line energies) of hydrogen bonds in linear bonded complexes by comparing theoretical results with the corresponding experimental results. For this purpose, two hydrogen bonded complexes were selected: the HCN···HCN homodimer and the HCN···HF heterodimer. The one-dimensional potential energy surfaces related to the hydrogen bonds in these complexes were calculated using different computational methods and basis sets. The calculated potential curve of each complex was fitted to an analytical one-dimensional potential function to obtain the potential parameters. The obtained analytical potential function of each complex was used in a two-particle Schrödinger equation to obtain the rovibrational energy levels of the hydrogen bond. Using the calculated rovibrational levels, the rovibrational spectra and constants of each complex were calculated and compared with experimental data available from the literature. Compared with experimental data, the calculated one-dimensional potential energy surface at the QCISD/aug-cc-pVDZ level of theory was found to predict the spectroscopic properties of hydrogen bonds better than the potential curves obtained using other computational methods, especially for the HCN···HCN homodimer complex. Generally, the results obtained for the HCN···HCN homodimer complex were closer to experimental data than those obtained for the HCN···HF heterodimer complex. The investigation performed in this work showed that the one-dimensional potential curve related to the hydrogen bond between two linear molecules can be used to predict the spectroscopic constants of hydrogen bonds. Graphical abstract Potential energy curves of HCN···HCN and HCN···HF complexes calculated at the different computational levels.

  17. Potential energy changes and the Boussinesq approximation in stratified fluids

    NASA Astrophysics Data System (ADS)

    Seshadri, K.; Rottman, J. W.; Nomura, K. K.; Stretch, D. D.

    2002-11-01

    The evolution of the potential energy of an ideal binary fluid mixture that is initially stably stratified is re-examined. The initial stable stratification evolves to a state of uniform density under the influence of molecular diffusion. We derive the appropriate governing equations using either a mass-averaged or a volume-averaged definition of velocity, and develop an energy budget describing the changes between kinetic, potential and internal energies without invoking the Boussinesq approximation. We compare the energy evolution equations with those based on the commonly used Boussinesq approximation and clarify some subtleties associated with the exchanges between the different forms of energy in this problem. In particular, we show that the mass-averaged velocity is nonzero and that all of the increase in potential energy comes from the initial kinetic energy.

  18. Model Building Using Linear Free Energy Relationship Parameters-Eliminating Calibration Curves for Optical Analysis of Enantiomeric Excess.

    PubMed

    Lin, Chung-Yon; Lim, Stephanie; Anslyn, Eric V

    2016-07-06

    Linear free energy relationship (LFER) parameters are routinely used to parametrize physicochemical effects while investigating reaction mechanisms. In this Communication, we describe an alternate application for LFERs: training sets for model building in an analytical application. In this study, the sterics, quantified by Charton parameters (Δv), of nine secondary chiral alcohol analytes were correlated to the circular dichroism output from a chiral alcohol optical sensor. To test the validity of the model, the correlative linear model was applied to determine the enantiomeric excess of samples of two alcohols without a priori knowledge of a calibration curve. The error in this method was comparable to those of previous experimental methods (<5%).

  19. Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2015-11-01

    In this paper, we investigate effects of counterion connectivity (i.e., association of the counterions into a chain molecule) on the electrostatic potential of mean force (EPMF) between two similarly charged cylinder rods in a primitive model electrolyte solution by solving a classical density functional theory. The main findings include the following: (i) The counterion connectivity helps in inducing a like-charge-attractionlike (LCA-like) phenomenology even in a monovalent counterion solution wherein the LCA-like observation generally does not occur without the counterion connectivity. (ii) For divalent counterion solutions, the counterion connectivity can reinforce or weaken the LCA-like observation depending on the chain length N , and simply increases the equilibrium nearest surface separation of the rods corresponding to the minimum EPMF to nearly three times the counterion site diameter, whether N is large or small. (iii) If N is large enough, the LCA-like strength tends to be negatively correlated with the electrolyte concentration c over the entire range of the rod surface charge magnitude | σ*| considered; whereas if N drops, the correlation tends to become positive with decrease of the | σ*| value, and particularly for modest | σ*| values, the correlation relationship exhibits an extreme value phenomenon. (iv) In the case of a 1:1 electrolyte, the EPMF effects of the diameters of counterion and coion sites are similar in both situations with and without the counterion connectivity. All of these findings can be explained self-consistently by a recently proposed hydrogen-bonding style mechanism reinforced by one additional concept: flexibility of the counterion chain and the factors affecting it, like N and counterion site valence.

  20. Potential Energy Surfaces and Charge Transfer of PAH-Sodium-PAH Complexes.

    PubMed

    Hjertenaes, Eirik; Andersson, Stefan; Koch, Henrik

    2016-09-19

    To further understanding of the role of sodium in carbon cathode degradation in Hall-Héroult cells, potential-energy surfaces and charge-transfer curves are presented for finite-size complexes of sodium intercalated between various polycyclic aromatic hydrocarbons. Calculations for lithium and potassium are included to highlight the disparate intercalation behaviour of the alkali metals in graphite intercalation compounds. Static energy barriers from DFT are used to compute macroscopic diffusion coefficients according to transition-state theory. Comparing the calculated diffusion coefficient to experimental values from the literature sheds light on the role of lattice diffusion of sodium-graphite intercalation compounds in sodium intrusion in graphitic carbon cathodes.

  1. Potential for energy recovery from solid wastes

    SciTech Connect

    Velzy, C.O.

    1983-01-01

    This paper discusses the technologies, opportunities, and problems of energy-from-refuse systems. Topics considered include the direct combustion of as-received refuse, the mass-burn systems, the combustion of refuse-derived fuel, and the production of methane gas from the organic and cellulosic fraction of solid waste. A DOE-sponsored methane plant operated by Waste Management is now being evaluated at Pompano Beach, Florida. The Europeans have moved ahead so rapidly in the beneficial use of heat from the combustion of their solid waste because of the availability of a ready market for the heat in municipal facilities and/or town district heating systems. It is suggested that the use of the heat from the combustion of solid waste should be broadened to include district heating and cooling, complementary municipal functions (e.g. the disposal of sludges from wastewater treatment), integration in power generation facilities in uses other than direct production of power (e.g. boiler feedwater heating), and in industrial processing.

  2. Potential environmental problems of photovoltaic energy technology

    SciTech Connect

    Hendrey, G.R.; Moskowitz, P.D.; Patten, D.; Berry, W.; Conway, H.L.

    1980-01-01

    Separate abstracts were prepared for the ten papers of this proceedings of a workshop held at Brookhaven National Laboratory in 1980. The purposes of this proceedings are to provide a preliminary identificaton and assessment of environmental hazards which might be realistically associated with growth of the photovoltaic industry, and to provide a reference for environmental considerations by obtaining a 1980 state-of-the-art assessment of growth anticipated for the industry. Currently the industry is considered to be in the early stages of development and several possible technological options are available for large-scale manufacturing as the industry grows. Estimates of the industrial emissions of materials considered to be potentially harmful in the environment were obtained by several different analytical methods. (KRM)

  3. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  4. Molecular potential energies in dodecahedron cell of methane hydrate and dispersion correction for DFT.

    PubMed

    Du, Qi-Shi; Li, Da-Peng; Liu, Peng-Jun; Huang, Ri-Bo

    2008-09-01

    The interaction potential energies of water-water and water-methane in structure-I unit cell of methane hydrate are calculated from 2.1 to 8.0A using density functional theory (DFT) B3LYP/TZVP. The curves of potential energies are corrected for basis set superposition error (BSSE) and dispersion interaction using a 4-term L-J (4,6-8,12) correction equation, which is derived from CCSD(T)/cc-pVTZ calculations of water-water and water-methane molecular pairs, using least squares curve-fitting. The methane hydrate unit cell is a regular water dodecahedron cell consisting of 20 water molecules with a methane molecule in the center. The geometries of water and methane are optimized at CCSD(T)/cc-pVTZ level. The BSSE-corrections are calculated for water-water and water-methane interaction energies as functions of the side length, l, of the dodecahedron cell at B3LYP/TZVP level in the range from 2.1 to 8.0A. The BSSE CP-corrected and dispersion-corrected potential energy surfaces (PES) of water-water and water-methane are useful for molecular dynamics simulation of gas clathrate-hydrates.

  5. Independence of calibration curves for EBT Gafchromic films of the size of high-energy X-ray fields.

    PubMed

    Cheung, Tsang; Butson, Martin J; Yu, Peter K N

    2006-09-01

    The EBT Gafchromic radiochromic film is a relatively new product designed specifically for dosimetry in radiation therapy. Due to the weak dependence of its response on the photon energy (variations are below 10% in the 50 kVp-10 MVp range), the film is ideal for dosimetry when the photon energy spectrum may be changing or unknown. In order to convert a map of optical densities into a map of absorbed radiation doses, a calibration curve constructed on the basis of standard calibration films is necessary. Our results have shown that, with the EBT Gafchromic film, one can use the same calibration curve for 6-MV X-ray fields of any size in the range from 5 x 5 cm(2) up to 40 x 40 cm(2). This is not the case for radiographic films, such as Kodak X-Omat V, whose response to the same dose varies approximately by 10% depending on the field size in this range. This insensitivity of the EBT Gafchromic film to size of the radiation field makes it possible to assess doses delivered by small radiation fields. With the help of this film, it was shown that the output factor for a 0.5 x 0.5 cm(2) field is 0.60+/-0.03 (2SD) relative to the 10 x 10 cm(2) field.

  6. Quark-novae Occurring in Massive Binaries : A Universal Energy Source in Superluminous Supernovae with Double-peaked Light Curves

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico

    2016-02-01

    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq (http://www.quarknova.ca/LCGallery.html). In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 1052 erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (i.e., second) CE and the previously ejected H-rich (i.e., first) CE.

  7. QUARK-NOVAE OCCURRING IN MASSIVE BINARIES: A UNIVERSAL ENERGY SOURCE IN SUPERLUMINOUS SUPERNOVAE WITH DOUBLE-PEAKED LIGHT CURVES

    SciTech Connect

    Ouyed, Rachid; Leahy, Denis; Koning, Nico

    2016-02-10

    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq (http://www.quarknova.ca/LCGallery.html). In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 10{sup 52} erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (i.e., second) CE and the previously ejected H-rich (i.e., first) CE.

  8. Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems

    NASA Astrophysics Data System (ADS)

    Kundin, Julia; Choudhary, Muhammad Ajmal

    2016-07-01

    The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007), 10.1103/PhysRevB.75.064107] to study the effect of the curved, diffuse solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy is to be evaluated by using the concept of equimolar dividing surface (re) and the minimization of the interfacial energy (rs). The comparison of the results based on both radii shows that the difference re-rs is always positive and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real nucleation barrier for small cluster sizes, which is defined as a function of the radius rs, and compared it with the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical Tolman formula with a positive Tolman length.

  9. Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems.

    PubMed

    Kundin, Julia; Choudhary, Muhammad Ajmal

    2016-07-01

    The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007)PRBMDO1098-012110.1103/PhysRevB.75.064107] to study the effect of the curved, diffuse solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy is to be evaluated by using the concept of equimolar dividing surface (r^{e}) and the minimization of the interfacial energy (r^{s}). The comparison of the results based on both radii shows that the difference r^{e}-r^{s} is always positive and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real nucleation barrier for small cluster sizes, which is defined as a function of the radius r^{s}, and compared it with the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical Tolman formula with a positive Tolman length.

  10. Assessing the Potential for Renewable Energy on Public Lands

    SciTech Connect

    Not Available

    2003-02-01

    This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identify BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.

  11. Brush potential curve tracer

    DOEpatents

    Finch, H.A.

    1985-06-21

    A device for analyzing commutating characteristics of a motor or generator includes a holder for supporting a plurality of probes adjacent a brush of the motor or generator. Measurements of electrical current characteristics of the probes provides information useful in analyzing operation of the machine. Methods for employing a device in accordance with the invention are also disclosed.

  12. Excimer Potential Curves

    DTIC Science & Technology

    1979-03-01

    n: la*2(r!3ff2lj742jr a’E*: Iff^ff^ Salir * I’E*: i<T*2ff*3ff*lir4 . (2) (3) (4) D. Polarization configuration interaction...r,i H M N M A’ -41. THIS PAi £ IS BSST QUALITYPRACTICASLI T i IT * * « L’ r « r, * L. « r 4 ’A V ■c r M c II N O m

  13. Excimer Potential Curves

    DTIC Science & Technology

    1980-01-01

    411110 o )JZZll~ll~a % 4ZZ 11 a 11J 44+-Nom 0o-~ e a OOF 4o 444.aa *MP, :00Nm Mos.*4 4 a .4~~~~~~~~~~~~~~~4~~~~ a 0 )9a.- a aaaa~i ~ a-- a , ). 9 ZO.N

  14. Intermolecular potential energy surface for CS2 dimer.

    PubMed

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. Copyright © 2010 Wiley Periodicals, Inc.

  15. Biomass energy: the scale of the potential resource.

    PubMed

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.

  16. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  17. Saint Paul Energy Park: the potential for district heating

    SciTech Connect

    Lee, C.; Kron, R.; Davis, H.

    1980-03-01

    The results of ANL's study of the energy and economic aspects of using district heating in the St. Paul Energy Park are summarized. The Energy Park is a 6 million ft/sup 2/ residential, commercial office, and light industrial complex to be built in the midway area of St. Paul, Minnesota. Space heating and cooling design loads for the park were calculated assuming that the ASHRAE's 90-75 energy-conserving construction standards would be used in constructing the park's buildings. Based in part on this assumption, ANL estimated the costs and energy use characteristics of six possible energy system options for supplying Energy Park's space heating, space cooling, and domestic hot water heating needs. The results indicate that in today's economy, a central heating and cooling plant with natural gas boilers and electrically driven centrifugal chillers with thermal storage has good potential for energy and economic savings and clearly merits further consideration.

  18. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  19. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    PubMed

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the (3)A″ state of SH2, which facilitates the SH + H ↔ S((3)P) + H2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10(2)) of ab initio points, but it needs substantially more points (∼1 × 10(3)) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  20. Semiclassical energy levels and the corresponding potentials in nonhydrogenic ions

    NASA Astrophysics Data System (ADS)

    Pankratov, P.; Meyer-Ter-Vehn, J.

    1992-11-01

    A semiclassical expression is derived for the potential seen by an nl-shell electron in a nonhydrogenic ion. Corresponding energies Enl are compared with experimental values and with results of self-consistent-field calculations.

  1. Potential energy stored by planets and grand minima events

    NASA Astrophysics Data System (ADS)

    Cionco, Rodolfo G.

    2012-07-01

    Recently, Wolff & Patrone (2010), have developed a simple but very interesting model by which the movement of the Sun around the barycentre of the Solar system could create potential energy that could be released by flows pre-existing inside the Sun. The authors claim that it is the first mechanism showing how planetary movements can modify internal structure in the Sun that can be related to solar cycle. In this work we point out limitations of mentioned mechanism (which is based on interchange arguments), which could be inapplicable to a real star. Then, we calculate the temporal evolution of potential energy stored in zones of Sun's interior in which the potential energy could be most efficiently stored taking into account detailed barycentric Sun dynamics. We show strong variations of potential energy related to Maunder Minimum, Dalton Minimum and the maximum of Cycle 22, around 1990. We discuss briefly possible implications of this putative mechanism to solar cycle specially Grand Minima events.

  2. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  3. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    PubMed

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  4. Possible explanation of the atmospheric kinetic and potential energy spectra.

    PubMed

    Vallgren, Andreas; Deusebio, Enrico; Lindborg, Erik

    2011-12-23

    We hypothesize that the observed wave number spectra of kinetic and potential energy in the atmosphere can be explained by assuming that there are two related cascade processes emanating from the same large-scale energy source, a downscale cascade of potential enstrophy, giving rise to the k(-3) spectrum at synoptic scales and a downscale energy cascade giving rise to the k(-5/3) spectrum at mesoscales. The amount of energy which is going into the downscale energy cascade is determined by the rate of system rotation, with negligible energy going downscale in the limit of very fast rotation. We present a set of simulations of a system with strong rotation and stratification, supporting these hypotheses and showing good agreement with observations.

  5. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    SciTech Connect

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-02-15

    We describe the potential energy landscapes of elemental S{sub 8}, Se{sub 8}, and Te{sub 8} clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se{sub 8}. We also map the potential energy landscapes of heterogeneous Se{sub n}(S,Te){sub 8-n} clusters, which offer insights into the structure of heterogeneous chalcogen glasses.

  6. Curvature-based interaction potential between a micro/nano curved surface body and a particle on the surface of the body.

    PubMed

    Wang, Dan; Yin, Yajun; Wu, Jiye; Wang, Xugui; Zhong, Zheng

    2016-01-01

    The interaction potential between a curved surface body and a particle located on the surface of the body is studied in this paper. Based on the negative exponential pair potential (1/R(n)) between particles, the interaction potential is proved to be of the curvature-based form, i.e., it can be written as a function of curvatures of the surface. Idealized numerical experiments are designed to test the accuracy of curvature-based potential. Based on the curvature-based potential, propositions below are confirmed: a highly curved surface body will induce driving forces on the particle located on the surface, and curvatures and the gradients of curvatures are essential factors forming the driving forces. In addition, the tangent driving force acting on the particle from the curved surface body is studied. Based on duality, the following rule is proved: for a convex or concave curved body sharing the same curved surface, the curvature-based interaction potential between them and a particle on the surface can make up the potential of a particle in the whole space.

  7. Energy potential of municipal solid waste is limited

    SciTech Connect

    1994-09-01

    Energy recovery from municipal solid waste has the potential for making only a limited contribution to the nation`s overall energy production. Although the current contribution of waste-derived energy production is less than one-half of 1 percent of the nation`s total energy Supply, DOE has set a goal for energy from waste at 2 percent of the total supply by 2010. The industry`s estimates show a smaller role for waste as an energy source in the future. The energy potential from waste is limited not only by the volume and energy content of the waste itself, but also by the factors affecting the use of waste disposal options, including public opposition and the availability of financing. Energy production from waste combustors and from landfill gases generates pollutants, although these are reduced through current regulations that require the use of emissions control technology and define operational criteria for the facilities. Although DOE estimates that one-third of the energy available from waste is available in the form of energy savings through the recycling of materials, the Department`s research in this area is ongoing.

  8. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  9. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    DTIC Science & Technology

    2012-05-23

    output • Uses the organic portion of solid waste (such as food waste , paper products, and agricultural waste ) to fuel an anaerobic digestion ...Sustainability Symposium & Exhibition Anaerobic Digestion • What does it do? • Offers sustainability by addressing renewable energy, waste ... Waste to Energy Potential – A High Concentration Anaerobic Bioreactor Presenter: Scott Murphy & Rebecca Robbennolt ARCADIS/Malcolm Pirnie Date

  10. Gravitational potential as a source of earthquake energy

    USGS Publications Warehouse

    Barrows, L.; Langer, C.J.

    1981-01-01

    Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.

  11. Numerical approaches to determine the interface tension of curved interfaces from free energy calculations

    NASA Astrophysics Data System (ADS)

    Tröster, A.; Oettel, M.; Block, B.; Virnau, P.; Binder, K.

    2012-02-01

    A recently proposed method to obtain the surface free energy σ(R) of spherical droplets and bubbles of fluids, using a thermodynamic analysis of two-phase coexistence in finite boxes at fixed total density, is reconsidered and extended. Building on a comprehensive review of the basic thermodynamic theory, it is shown that from this analysis one can extract both the equimolar radius Re as well as the radius Rs of the surface of tension. Hence the free energy barrier that needs to be overcome in nucleation events where critical droplets and bubbles are formed can be reliably estimated for the range of radii that is of physical interest. It is found that the conventional theory of nucleation, where the interface tension of planar liquid-vapor interfaces is used to predict nucleation barriers, leads to a significant overestimation, and this failure is particularly large for bubbles. Furthermore, different routes to estimate the effective radius-dependent Tolman length δ(Rs) from simulations in the canonical ensemble are discussed. Thus we obtain an instructive exemplification of the basic quantities and relations of the thermodynamic theory of metastable droplets/bubbles using simulations. However, the simulation results for δ(Rs) employing a truncated Lennard-Jones system suffer to some extent from unexplained finite size effects, while no such finite size effects are found in corresponding density functional calculations. The numerical results are compatible with the expectation that δ(Rs → ∞) is slightly negative and of the order of one tenth of a Lennard-Jones diameter, but much larger systems need to be simulated to allow more precise estimates of δ(Rs → ∞).

  12. J-R Curve Determination for Disk-shaped Compact Specimens Based on the Normalization Method and Direct Current Potential Drop Technique

    SciTech Connect

    Chen, Xiang; Nanstad, Randy K; Sokolov, Mikhail A

    2014-01-01

    Material ductile fracture toughness can be described by J-integral versus crack extension relationship (J-R curve). As a conventional J-R curve measurement method, unloading compliance (UC) becomes impractical in elevated temperature testing due to relaxation of the material and a friction induced back-up shape of the J-R curve. In addition, the UC method may underpredict the crack extension for standard disk-shaped compact (DC(T)) specimens. In order to address these issues, the normalization method and direct current potential drop (DCPD) technique were applied for determining J-R curves at 24 C and 500 C for 0.18T DC(T) specimens made from type 316L stainless steel. For comparison purchase, the UC method was also applied in 24 C tests. The normalization method was able to yield valid J-R curves in all tests. The J-R curves from the DCPD technique need adjustment to account for the potential drop induced by plastic deformation, crack blunting, etc. and after applying a newly-developed DCPD adjustment procedure, the post-adjusted DCPD J-R curves essentially matched J-R curves from the normalization method. In contrast, the UC method underpredicted the crack extension in all tests resulting in substantial deviation in the derived J-R curves manifested by high Jq values than the normalization or DCPD method. Only for tests where the UC method underpredicted the crack extension by a very small value, J-R curves determined by the UC method were similar to those determined by the normalization or DCPD method.

  13. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  14. Separable representation of energy-dependent optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  15. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  16. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  17. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  18. Metallic bionanocatalysts: potential applications as green catalysts and energy materials.

    PubMed

    Macaskie, Lynne E; Mikheenko, Iryna P; Omajai, Jacob B; Stephen, Alan J; Wood, Joseph

    2017-08-22

    Microbially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low-grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio-catalytic upgrading of oils and manufacturing 'drop-in fuel' precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Potential of energy farms in the Dominican Republic

    SciTech Connect

    Newman, L.C.; Park, W.R.; Trehan, R.K.

    1980-12-01

    This report assesses the potential of biomass energy farms to supply feedstock for electrical energy needs in the Dominican Republic. That part of the dry forest area not used for agriculture production (1.3 million acres) is found to have a production potential of 200 MW to 1400 MW, depending upon the level of management and choice of species. A biomass energy farm design and conversion facility is described and the economics of operating a wood fired facility of 50 MW, 20 MW, 5 MW, and 2 MW is compared to 50 MW and 20 MW.

  20. Investigating energy-saving potentials in the cloud.

    PubMed

    Lee, Da-Sheng

    2014-02-20

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit.

  1. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  2. Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule

    NASA Astrophysics Data System (ADS)

    Wan, Ming-Jie; Jin, Cheng-Guo; Yu, You; Huang, Duo-Hui; Shao, Ju-Xiang

    2017-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11647075), the Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 14ZB0284), and the Scientific Research Key Project of Yibin University, China (Grant No. 2013QD09).

  3. Energy Potential Analysis of Zero Velocity Curves in the Restricted Three-Body Problem

    DTIC Science & Technology

    1993-05-01

    imagine watching a pottery wheel spin. Say the surface is covered with frictionless ice and a hockey puck is placed on the wheel. The puck will...orbits in the plane of motion established by the primaries. Among many other practical applications, these restrictions form a rough approximation to the...gravitational and inertial forces of the primaries in their circular motion . Three-dimensional computer graphics are used to illustrate the surfaces that are

  4. Numerical Methods for the Preparation of Potential Energy Curves of Diatomic Molecules.

    DTIC Science & Technology

    1983-03-01

    U 4 3 4 8 0 N - P 8 ) - 01 17A,. A. A. . 8 .0U U. a l5 0 0 0 0 41 A. .8U m 0 C 1 N. 40 o SU ~ t 0~~. SS S SO SOceg tvoe * F-*O * * 0*Al0Ana Y a n a f...C. L; C U .r I u u U . C) L . IV.c &u w .U - .s - .s.. C- su 41 V; 1 ha a * * e . . . . . g *Do* I.g . * * . . .DO . 8 * ** * . .; . .I . a...EllEEEEEEllEEE IIIIIIIEEEEEEE 9 . I 8 ŕ 0I -z II, 5- m1 * I -4 .a - AIR UNIVERSITY UNITED STATES AIR FORCE 4 UMERICAL METHODS FOR THE PREPARATION I

  5. Spectroscopic properties and potential energy curves of 28 electronic states of NbH

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Balasubramanian, K.

    1990-12-01

    State-averaged complete active space MCSCF (CASSCF) followed by second-order configuration interaction (SOCI) calculations are carried out on 28 low-lying electronic states of NbH. The ground state of NbH is found to be of 5Δ symmetry ( R e = 1.787 Å, ωe = 1750 cm -1, μe = 2.20 D, De = 2.67 eV) with a very low-lying excited state of 5Π symmetry ( Te = 720 cm -1). There are 14 low-lying bound states below 10 000 cm -1. Many dipole-allowed transitions are predicted for NbH which are yet to be observed. An intense 5Δ(II) ↔ 5Δ transition is predicted in the 21 000 ± 2000 cm -1 region. Mulliken population analyses reveal that the low-lying electronic states of NbH are very ionic (Nb +H -).

  6. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data.

    PubMed

    Kanski, Mikael; Arvidsson, Per M; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2015-12-20

    Measurement of intracardiac kinetic energy (KE) provides new insights into cardiac hemodynamics and may improve assessment and understanding of heart failure. We therefore aimed to investigate left ventricular (LV) KE time curves in patients with heart failure and in controls. Patients with heart failure (n = 29, NYHA class I-IV) and controls (n = 12) underwent cardiovascular magnetic resonance (CMR) including 4D flow. The vortex-ring boundary was computed using Lagrangian coherent structures. The LV endocardium and vortex-ring were manually delineated and KE was calculated as ½mv(2) of the blood within the whole LV and the vortex ring, respectively. The systolic average KE was higher in patients compared to controls (2.2 ± 1.4 mJ vs 1.6 ± 0.6 mJ, p = 0.048), but lower when indexing to EDV (6.3 ± 2.2 μJ/ml vs 8.0 ± 2.1 μJ/ml, p = 0.025). No difference was seen in diastolic average KE (3.2 ± 2.3 mJ vs 2.0 ± 0.8 mJ, p = 0.13) even when indexing to EDV (9.0 ± 4.4 μJ/ml vs 10.2 ± 3.3 μJ/ml, p = 0.41). In patients, a smaller fraction of diastolic average KE was observed inside the vortex ring compared to controls (72 ± 6% vs 54 ± 9%, p < 0.0001). Three distinctive KE time curves were seen in patients which were markedly different from findings in controls, and with a moderate agreement between KE time curve patterns and degree of diastolic dysfunction (Cohen's kappa = 0.49), but unrelated to NYHA classification (p = 0.12), or 6-minute walk test (p = 0.72). Patients with heart failure exhibit higher systolic average KE compared to controls, suggesting altered intracardiac blood flow. The different KE time curves seen in patients may represent a conceptually new approach for heart failure classification.

  7. A grouping strategy for autoconvolution summation in the stochastic theory for energy straggling and narrow resonance excitation curve calculations

    NASA Astrophysics Data System (ADS)

    Vickridge, Ian; Amsel, Georges

    1992-02-01

    The direct construction of solutions to the stochastic equations for energy loss straggling and narrow resonance excitation curve calculations requires the weighted summing of the autoconvolutions of a probability density f( u) corresponding to the energy loss u in a single atomic encounter. Whilst conceptually simple, this involves considerable computational overhead since a new f( u) and numerically calculated autoconvolutions are required for each particle/energy/substrate combination. We deem it desirable to maintain the conceptual simplicity of the direct construction of solutions, and so have sought ways of reducing the computational overhead whilst retaining the essential features of the method. We have found that it is not necessary to include all of the autoconvolutions in the weighted summing and have devised an algorithm for deciding, on the basis of an acceptable level of approximation, which autoconvolutions are really necessary, and a method for calculating the corresponding weights. Since we can decide in advance which autoconvolutions are necessary, we can calculate, store and sum only those that we need, and it is this that is the basis for the improvement in computational efficiency. We demonstrate by comparison of complete calculations, in which all the autoconvolutions are included, with calculations employing our grouping strategy, that for a negligibly small sacrifice in accuracy a large gain in computational power is possible.

  8. Study of the potential of wave energy in Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  9. Kappa distribution in the presence of a potential energy

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2015-02-01

    The present paper develops the theory and formulations of the kappa distributions that describe particle systems characterized by a nonzero potential energy. As yet, kappa distributions were used for the statistical description of the velocity or kinetic energy of particles but not of the potential energy. With the results provided here, it is straightforward to use the developed kappa distributions to describe any particle population of space plasmas subject to a nonnegligible potential energy. Starting from the kappa distribution of the Hamiltonian function, we develop the distributions that describe either the complete phase space or the marginal spaces of positions and velocities. The study shows, among others: (a) The kappa distributions of velocities that describe space plasmas can be vastly different from the standard formulation of the kappa distribution, because of the presence of a potential energy; the correct formulation should be given by the marginal kappa distribution of velocities by integrating the distribution of the Hamiltonian over the potential energy. (b) The long-standing problem of the divergence of the Boltzmannian exponential distribution for bounded radial potentials is solved using kappa distributions of negative kappa index. (c) Anisotropic distributions of velocities can exist in the presence of a velocity-dependent potential. (d) A variety of applications, including derivations/verifications of the following: (i) the Jeans', the most frequent, and the maximum radii in spherical/linear gravitational potentials; (ii) the Virial theorem for power law potentials; (iii) the generalized barometric formula, (iv) the plasma density profiles in Saturnian magnetosphere, and (v) the average electron magnetic moment in Earth's magnetotail.

  10. New Methods for Exploring QM:MM Potential Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2010-06-01

    In recent years, the applicability of quantum chemical methods for large system studies has been greatly enhanced by the development of hybrid QM:MM techniques. Despite these advancements, exploring the associated potential energy surfaces continues to present two key challenges. First, the QM energy and derivative evaluations may be too costly for simulations; and second, the system size for many QM:MM cases are too large to effectively store or use second-order information, an approach often used in QM studies to allow for larger integration steps and fewer QM evaluations of the potential energy surface. Our most recent work is focused on overcoming both computational bottlenecks. Using surface fitting models together with direct Hessian-vector and diagonalization algorithms, we are developing models that can accurately and efficiently explore QM:MM potential energy landscapes for very large systems. Our current development status and results from initial applications will be described.

  11. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    PubMed

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.

  12. Potential for energy conservation in the glass industry

    SciTech Connect

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  13. Calculation of molecular free energies in classical potentials

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Singh, Bipin

    2016-02-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.

  14. [Theoretical volt-ampere input curve of a neuron with NC-dendrites after a uniform shift in clamped potential of the soma].

    PubMed

    Butrimas, P; Gutman, A

    1981-01-01

    Dendritic membrane current-voltage curve (CVC) was estimated from motoneuron input CVC. The effect of the clamped potential shifting rate on NC-dendrite input CVC was analyzed. The influence of the membrane negative conductivity upon the input curve hysteresis was calculated. We propose the combined use of hysteresis and nonstationarity features of the negative resistance part of neuron input CVC for crucial experimental solution of ohmic or N-dendrite controversy.

  15. Fusion at deep subbarrier energies: potential inversion revisited

    SciTech Connect

    Hagino, K.; Rowley, N.

    2009-03-04

    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.

  16. Polar cap potential saturation: An energy conservation perspective

    NASA Astrophysics Data System (ADS)

    Liu, W. William

    2007-07-01

    In the long run, energy entering the magnetosphere from the solar wind must be balanced by energy dissipation in or escape from the system. It then follows that the Joule heating rate in the ionosphere statistically should be bounded from the upside by the solar wind energy input function (e.g., the Perrault-Akasofu parameter). We show that this energy constraint, coupled with some observationally motivated assumptions about the behavior of the auroral oval under escalating solar wind conditions, leads to the prediction of polar cap potential saturation.

  17. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  18. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  19. Studying Current-Potential Curves Using a Bipotentiometric Lodometric Back-Titration for the Determination of Ascorbic Acid in Fruits and Vegetables

    ERIC Educational Resources Information Center

    Verdini, Roxana A.; Lagier, Claudia M.

    2004-01-01

    Voltammetry principles are introduced to students by means of a bipotentiometric method to determine vitamin C in fruits and vegetables. The aim is to draw attention to voltammetric methods, particular to the study of current-potential curves, stressing the potential applicability in areas of food quality control.

  20. Studying Current-Potential Curves Using a Bipotentiometric Lodometric Back-Titration for the Determination of Ascorbic Acid in Fruits and Vegetables

    ERIC Educational Resources Information Center

    Verdini, Roxana A.; Lagier, Claudia M.

    2004-01-01

    Voltammetry principles are introduced to students by means of a bipotentiometric method to determine vitamin C in fruits and vegetables. The aim is to draw attention to voltammetric methods, particular to the study of current-potential curves, stressing the potential applicability in areas of food quality control.

  1. Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa

    SciTech Connect

    Cowlin, S. C.; Heimiller, D.; Bilello, D.; Renne, D.

    2008-01-01

    This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).

  2. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs.

    PubMed

    Shen, Lin; Peterson, Susan; Sedaghat, Ahmad R; McMahon, Moira A; Callender, Marc; Zhang, Haili; Zhou, Yan; Pitt, Eleanor; Anderson, Karen S; Acosta, Edward P; Siliciano, Robert F

    2008-07-01

    Highly active antiretroviral therapy (HAART) can control HIV-1 replication, but suboptimal treatment allows for the evolution of resistance and rebound viremia. A comparative measure of antiviral activity under clinically relevant conditions would guide drug development and the selection of regimens that maximally suppress replication. Here we show that current measures of antiviral activity, including IC(50) and inhibitory quotient, neglect a key dimension, the dose-response curve slope. Using infectivity assays with wide dynamic range, we show that this slope has noteworthy effects on antiviral activity. Slope values are class specific for antiviral drugs and define intrinsic limitations on antiviral activity for some classes. Nucleoside reverse transcriptase inhibitors and integrase inhibitors have slopes of approximately 1, characteristic of noncooperative reactions, whereas non-nucleoside reverse transcriptase inhibitors, protease inhibitors and fusion inhibitors unexpectedly show slopes >1. Instantaneous inhibitory potential (IIP), the log reduction in single-round infectivity at clinical drug concentrations, is strongly influenced by slope and varies by >8 logs for anti-HIV drugs. IIP provides a more accurate measure of antiviral activity and in general correlates with clinical outcomes. Only agents with slopes >1 achieve high-level inhibition of single-round infectivity, a finding with profound implications for drug and vaccine development.

  3. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  4. Similarity Laws for the Lines of Ideal Free Energy and Chemical Potential in Supercritical Fluids.

    PubMed

    Apfelbaum, E M; Vorob'ev, V S

    2017-09-21

    We have found the curves on the density-temperature plane, along which the values of free energy and chemical potential correspond to ideal gas quantities. At first, we have applied the van der Waals equation to construct them and to derive their equations. Then we have shown that the same lines for real substances (Ar, N2, CH4, SF6, H2, H2O) and for the model Lennard-Jones system constructed on the basis of the measurements data and calculations are well matched with the derived equations. The validity and deviations from the obtained similarity laws are discussed.

  5. Warm body temperature facilitates energy efficient cortical action potentials.

    PubMed

    Yu, Yuguo; Hill, Adam P; McCormick, David A

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+) channel inactivation, resulting in a marked reduction in overlap of the inward Na(+), and outward K(+), currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+) entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  6. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  7. Potential for natural evaporation as a reliable renewable energy resource.

    PubMed

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  8. Wind energy potential analysis in Al-Fattaih-Darnah

    SciTech Connect

    Tjahjana, Dominicus Danardono Dwi Prija Salem, Abdelkarim Ali Himawanto, Dwi Aries

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  9. Wind energy potential analysis in Al-Fattaih-Darnah

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Salem, Abdelkarim Ali; Himawanto, Dwi Aries

    2016-03-01

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth's surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  10. Global Onshore Wind Energy Potential and Its Uncertainties

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Clarke, L.; Luckow, P.; Smith, S.

    2011-12-01

    Wind power, a clean and renewable energy resource, can play an important role in providing energy and reducing greenhouse gas emissions. Yet there are substantial and important uncertainties about the potential costs and supplies of wind that influence our ability to understand today the strategic role of wind power in the future. A detailed global assessment of onshore wind energy potential and its uncertainties will help decision-makers develop policies and strategies to meet energy and environmental goals. In this study, we assess the technical and economic potential of onshore wind energy and its spatial distribution using reanalysis wind speed data from the National Centers for Environmental Modeling (Figure 1). The study focuses in particular in exploring a range of uncertainties that impact the economic potential of wind power by constructing quantitative scenarios for eight key physical and economic parameters. We present quantification of the impact of uncertainties in these parameters, focusing on areas relevant to geoscience research (Figure 2). The amount of economic potential of wind energy depends strongly on several uncertain parameters such as wind speed, turbine cost, and land-suitability. The distribution of wind speed at fine temporal and spatial scales is a key parameter, but is not well quantified in many regions of the world. Reanalysis datasets with more accurate wind fields are a first step, along with computationally tractable downscaling methodologies. Another key assumption is land-suitability, which is the fraction of a particular land-cover type assumed to be available for wind farm development. There is currently little scientific basis for land-suitability assumptions. While some of the data needed for progress in these areas is readily available, such as high-resolution land-cover and terrain data, further advances are likely to require new methodologies and inter-disciplinary collaboration. We outline a number of areas where further

  11. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  12. The metabolic energy cost of action potential velocity

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Sangrey, Thomas; Levy, William

    2006-03-01

    Voltage changes in neurons and other active cells are caused by the passage of ions across the cell membrane. These ionic currents depend on the transmembrane ion concentration gradients, which in unmyelinated axons are maintained during rest and restored after electrical activity by an ATPase sodium-potassium exchanger in the membrane. The amount of ATP consumed by this exchanger can be taken as the metabolic energy cost of any electrical activity in the axon. We use this measure, along with biophysical models of voltage-gated sodium and potassium ion channels, to quantify the energy cost of action potentials propagating in squid giant axons. We find that the energy of an action potential can be naturally divided into three separate components associated with different aspects of the action potential. We calculate these energy components as functions of the ion channel densities and axon diameters and find that the component associated with the rising phase and velocity of the action potential achieves a minimum near the biological values of these parameters. This result, which is robust with respect to other parameters such as temperature, suggests that evolution has optimized the axon for the energy of the action potential wavefront.

  13. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  14. Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Marazza, Diego; Contin, Andrea

    2015-04-01

    The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.

  15. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve.

    PubMed

    Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Perejón, Antonio; Criado, José M

    2013-02-05

    This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.

  16. Cost curves for the navigation between families of low energy Fast Periodic Transfer Orbits in the Earth-Moon planar circular restricted Three Body Problem.

    NASA Astrophysics Data System (ADS)

    Marcuzzi, J. P.; Leiva, A. M.; Briozzo, C. B.

    Using characteristic curves of low energy fast periodic transfer orbits in the Earth-Moon planar circular restricted three body problem we constructed cost curves that enable the study of maneuvers between them. In an appropiate surface of section the numerical diagrams show regions where transfer maneuvers involve lower costs and that would allow determine family members which make the propelent minimum for these maneuvers. FULL TEXT IN SPANISH.

  17. Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface

    NASA Astrophysics Data System (ADS)

    Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C.; van der Avoird, Ad

    2008-03-01

    A six-dimensional interaction potential for the water dimer has been fitted to ab initio interaction energies computed at 2510 dimer configurations. These energies were obtained by combining the supermolecular second-order energies extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The energies have been fitted using an analytic form with the induction component represented by a polarizable term, making the potential directly transferable to clusters and the bulk phase. Geometries and energies of stationary points on the potential surface agree well with the results of high-level ab initio geometry optimizations.

  18. Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.

  19. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  20. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    NASA Astrophysics Data System (ADS)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.

    2016-08-01

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  1. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  2. Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.

  3. Low-energy K- optical potentials: deep or shallow?

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K- optical potential in the nuclear medium is evaluated self consistently from a free-space K-Nt matrix constructed within a coupled-channel chiral approach. The fit of model parameters gives a good description of the low-energy data plus the available K- atomic data. The resulting optical potential is relatively `shallow' in contradiction to the potentials obtained from phenomenological analysis. The calculated (Kstop-,π) hypernuclear production rates are very sensitive to the details of kaonic bound state wave function. The (Kstop-,π) reaction could thus serve as a suitable tool to distinguish between shallow and deep K- optical potentials.

  4. Reference pressure changes and available potential energy in isobaric coordinates

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.

    1985-01-01

    A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.

  5. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials

    SciTech Connect

    Brokaw, Jason B.; Haas, Kevin R.; Chu, Jhih-wei

    2009-08-11

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C₇eq-to-Cax isomerization of an alanine dipeptide, the ⁴C₁- to-¹C₄ transition of an α-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a

  6. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials.

    PubMed

    Brokaw, Jason B; Haas, Kevin R; Chu, Jhih-Wei

    2009-08-11

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C7eq-to-Cax isomerization of an alanine dipeptide, the (4)C1-to-(1)C4 transition of an α-d-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path

  7. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.

    1975-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.

  8. Reference pressure changes and available potential energy in isobaric coordinates

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.

    1985-01-01

    A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.

  9. Evaluation of five lactation curve models fitted for fat:protein ratio of milk and daily energy balance.

    PubMed

    Buttchereit, N; Stamer, E; Junge, W; Thaller, G

    2010-04-01

    Selection for milk yield increases the metabolic load of dairy cows. The fat:protein ratio of milk (FPR) could serve as a measure of the energy balance status and might be used as a selection criterion to improve metabolic stability. The fit of different fixed and random regression models describing FPR and daily energy balance was tested to establish appropriate models for further genetic analyses. In addition, the relationship between both traits was evaluated for the best fitting model. Data were collected on a dairy research farm running a bull dam performance test. Energy balance was calculated using information on milk yield, feed intake per day, and live weight. Weekly FPR measurements were available. Three data sets were created containing records of 577 primiparous cows with observations from lactation d 11 to 180 as well as records of 613 primiparous cows and 96 multiparous cows with observations from lactation d 11 to 305. Five well-established parametric functions of days in milk (Ali and Schaeffer, Guo and Swalve, Wilmink, Legendre polynomials of third and fourth degree) were chosen for modeling the lactation curves. Evaluation of goodness of fit was based on the corrected Akaike information criterion, the Bayesian information criterion, correlation between the real observation and the estimated value, and on inspection of the residuals plotted against days in milk. The best model was chosen for estimation of correlations between both traits at different lactation stages. Random regression models were superior compared with the fixed regression models. In general, the Ali and Schaeffer function appeared most suitable for modeling both the fixed and the random regression part of the mixed model. The FPR is greatest in the initial lactation period when energy deficit is most pronounced. Energy balance stabilizes at the same point as the decrease in FPR stops. The inverted patterns indicate a causal relationship between the 2 traits. A common pattern was

  10. Energy and water potential of the Southeastern Anatolia Project (GAP)

    SciTech Connect

    Kaygusuz, K.

    1999-12-01

    This article gives an overview of energy and water potential of the Southeastern Anatolia Project (GAP) in Turkey. This integrated socioeconomic development project is one of the largest of its kind in the world. The GAP region is rich in water and soil resources. The Euphrates and Tigris Rivers represent over 28% of the nation's water supply by rivers, and the economically irrigatable areas in the region make up 20% of those for the entire country. On the other hand, the GAP region is the richest region of the country in terms of its hydroelectric potential as well as its oil and asphalt reserves. The GAP region has a 22% share of the country's total hydroelectric potential, with plans for 22 dams and 19 hydropower plants. Once completed, 27 billion kWh of electricity will be generated. In addition to this hydropower and oil potential, the GAP region is also the richest region of Turkey as far as solar energy production is concerned. In meeting the energy requirements of the developing regions worldwide and in Turkey, solar energy is being taken into account as an important renewable source of energy.

  11. Kappa distribution in the presence of a potential energy

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.

    2016-12-01

    Kappa distributions were used for the statistical description of the velocity or kinetic energy of particles but not of the potential energy. However, understanding the statistical origin of kappa distributions was the cornerstone of important theoretical developments and applications, one of which is the generalization to phase-space kappa distribution of a Hamiltonian with non-zero potentials. We present the theory behind the phase-space kappa distributions, and three characteristic applications in geophysical and space collisionless plasmas: (i) derivation of polytropic relation; (ii) barometric relation (i.e., pressure vs. altitude); and (iii) Plasma magnetization.

  12. Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces.

    PubMed

    Evenhuis, Christian R; Manthe, Uwe

    2008-07-14

    A potential energy interpolation approach based on modified Shepard interpolation and specifically designed for calculation of vibrational states is presented. The importance of the choice of coordinates for the rate of convergence is demonstrated. Studying the vibrational states of the water molecule as a test case, a coordinate system comprised of inverse bond distances and trigonometric functions of the bond angle is found to be particularly efficient. Different sampling schemes used to locate the reference points in the modified Shepard interpolation are investigated. A final scheme is recommended, which allows the construction of potential energy surfaces to sub-wave-number accuracy.

  13. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  14. Energy savings potential in air conditioners and chiller systems

    DOE PAGES

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  15. LHC Physics Potential vs. Energy: Considerations for the 2011 Run

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2011-02-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I quantify the advantage of increasing the beam energy from 3.5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u {bar d}, qq, and gq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes. This note extends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/.

  16. Potential function and dissociation energy of alkali halide

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhay P.; Pandey, Anjani K.; Pandey, Brijesh K.

    2016-05-01

    Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L5 potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.

  17. Potential function and dissociation energy of alkali halide

    SciTech Connect

    Srivastava, Abhay P.; Pandey, Brijesh K.; Pandey, Anjani K.

    2016-05-06

    Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L{sub 5} potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.

  18. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  19. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under

  20. Energy harvesting potential of tuned inertial mass electromagnetic transducers

    NASA Astrophysics Data System (ADS)

    Asai, Takehiko; Araki, Yoshikazu; Ikago, Kohju

    2017-02-01

    The demand for developing renewable energy technologies has been growing in today's society. As one of promising renewable energy sources, large-scale energy harvesting from structural vibrations employing electromagnetic transducers has recently been proposed and considerable effort has been devoted to increase the power generation capability. In this paper, we introduce the mechanism of a tuned inertial mass electromagnetic transducer (TIMET), which can absorb vibratory energy more efficiently by tuning the parameters to adjust the system. Then we propose a new vibratory energy harvester with the TIMET and determine the parameter values for the device with a simple static admittance (SA) control law to maximize the energy harvested from a stationary stochastic disturbance. To investigate the energy harvesting potential of the TIMET further, the performance-guaranteed (PG) control and the LQG control proposed in the literature are applied as well. Then the numerical simulation studies are carried out and the effectiveness of the proposed energy harvester is examined by comparing the traditional electromagnetic transducers.

  1. Potential of Using Solar Energy for Drinking Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  2. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  3. Potential Energy Surface Database of Group II Dimer

    National Institute of Standards and Technology Data Gateway

    SRD 143 NIST Potential Energy Surface Database of Group II Dimer (Web, free access)   This database provides critical atomic and molecular data needed in order to evaluate the feasibility of using laser cooled and trapped Group II atomic species (Mg, Ca, Sr, and Ba) for ultra-precise optical clocks or quantum information processing devices.

  4. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  5. Teaching Field Concept and Potential Energy at A-Level.

    ERIC Educational Resources Information Center

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  6. Teaching Field Concept and Potential Energy at A-Level.

    ERIC Educational Resources Information Center

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  7. Assessing the potential for biomass energy development in South Carolina

    Treesearch

    Roger C. Conner; Tim O. Adams; Tony G. Johnson

    2009-01-01

    An assessment of the potential for developing a sustainable biomass energy industry in South Carolina was conducted. Biomass as defined by Forest Inventory and Analysis is the aboveground dry weight of wood in the bole and limbs of live trees ≥1-inch diameter at breast height, and excludes tree foliage, seedlings, and understory...

  8. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  9. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    SciTech Connect

    LePoire, David

    2014-03-20

    Societal prosperity is linked to sustainable energy and a healthy environment. But, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Furthermore, other environmental resources and impacts may be nearing environmental thresholds as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1) energy efficiency to bridge the transition to a renewable energy economy, (2) continued research, development, and assessment of new technologies, (3) improved understanding of environment impacts including natural capital use and degradation, (4) exploration of GDP alternative measures that include both economic production and environmental impacts, and (5) international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.

  10. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    DOE PAGES

    LePoire, David

    2014-03-20

    Societal prosperity is linked to sustainable energy and a healthy environment. But, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Furthermore, other environmental resources and impacts may be nearing environmental thresholds as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1) energy efficiency to bridge the transitionmore » to a renewable energy economy, (2) continued research, development, and assessment of new technologies, (3) improved understanding of environment impacts including natural capital use and degradation, (4) exploration of GDP alternative measures that include both economic production and environmental impacts, and (5) international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.« less

  11. The Yukawa potential: ground state energy and critical screening

    NASA Astrophysics Data System (ADS)

    Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria A.; Weber, Axel

    2017-08-01

    We study the ground state energy and the critical screening parameter of the Yukawa potential in nonrelativistic quantum mechanics. After a short review of the existing literature on these quantities, we apply fifth-order perturbation theory to the calculation of the ground state energy, using the exact solutions of the Coulomb potential together with a cutoff on the principal number summations. We also perform a variational calculation of the ground state energy using a Coulomb-like radial wave function and the exact solution of the corresponding minimization condition. For not too large values of the screening parameter, close agreement is found between the perturbative and variational results. For the critical screening parameter, we devise a novel method that permits us to determine it to 10 digits. This is the most precise calculation of this quantity to date, and allows us to resolve some discrepancies between previous results.

  12. Global interior eddy available potential energy diagnosed from Argo floats

    NASA Astrophysics Data System (ADS)

    Roullet, Guillaume; Capet, Xavier; Maze, Guillaume

    2014-03-01

    By combining all Argo profiles for the period 2002 to present, a cumulative density function is constructed on a 3-D grid of the global ocean. This function quantifies the statistics of isopycnals: time-averaged density, root-mean square of isopycnal displacement, and eddy available potential energy (EAPE). EAPE is the analogue of the eddy kinetic energy, but for the potential energy reservoir. Because it is essentially tied to the spatial structure and magnitude of mesoscale activity, EAPE is an important quantity that should be useful to evaluate eddy resolving/permitting model turbulence and circulation. Among other striking features are the turbulent behavior of Pacific and southern Atlantic Tsuchiya jets and subsurface EAPE maxima in some parts of the ocean, particularly in the Southern Ocean.

  13. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  14. Three-dimensional potential energy surface of Ar-CO.

    PubMed

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar-CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  15. Three-dimensional potential energy surface of Ar–CO

    SciTech Connect

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  16. Understanding Potential Climate Variability Impacts on the Offshore Energy Industry

    NASA Astrophysics Data System (ADS)

    Stear, J.

    2014-12-01

    Climate variability may have important implications for the offshore energy industry. Scenarios of increased storm activity and changes in sea level could require the retrofit of existing offshore platforms and coastal infrastructure, the decommissioning of facilities for which upgrade or relocation is not economically viable, and the development of new methods and equipment which are removed from or less sensitive to environmental loads. Over the past years the energy industry has been actively involved in collaborative research efforts with government and academia to identify the potential changes in the offshore operating environment, and corresponding risk implications. This presentation will review several of these efforts, and for several of the hypothetical climate variation scenarios, review the potential impacts on and possible mitigations for offshore and coastal energy infrastructure and operations.

  17. Testing excited-state energy-density functionals and potentials with the ionization potential theorem

    NASA Astrophysics Data System (ADS)

    Harbola, Manoj; Myneni, Hemanadhan; Shamim, Md.

    2014-03-01

    The modified local spin density functional and the related local potential for excited-states are tested by employing the ionization potential theorem. The functional is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding potential is given by analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital energy ɛmax accurately, the potential is corrected for its asymptotic behavior by employing the van Leeuwen-Barends correction to it. The highest occupied orbital energy ɛmax thus obtained is then compared with the ΔSCF ionization energy calculated using the excited-state functional. It is shown that the two match quite accurately, demonstrating thereby that our approach of constructing excited-state functional is on sound footing.

  18. Flight evaluation of a simple total energy-rate system with potential wind-shear application

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Hueschen, R. M.; Hellbaum, R. F.; Creedon, J. F.

    1981-01-01

    Wind shears can create havoc during aircraft terminal area operations and have been cited as the primary cause of several major aircraft accidents. A simple sensor, potentially having application to the wind-shear problem, was developed to rapidly measure aircraft total energy relative to the air mass. Combining this sensor with either a variometer or a rate-of-climb indicator provides a total energy-rate system which was successfully applied in soaring flight. The measured rate of change of aircraft energy can potentially be used on display/control systems of powered aircraft to reduce glide-slope deviations caused by wind shear. The experimental flight configuration and evaluations of the energy-rate system are described. Two mathematical models are developed: the first describes operation of the energy probe in a linear design region and the second model is for the nonlinear region. The calculated total rate is compared with measured signals for many different flight tests. Time history plots show the tow curves to be almost the same for the linear operating region and very close for the nonlinear region.

  19. Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures.

    PubMed

    Chatzieleftheriou, Stavros; Adendorff, Matthew R; Lagaros, Nikos D

    2016-10-24

    The potential energy of molecules and nanostructures is commonly calculated in the molecular mechanics formalism by superimposing bonded and nonbonded atomic energy terms, i.e. bonds between two atoms, bond angles involving three atoms, dihedral angles involving four atoms, nonbonded terms expressing the Coulomb and Lennard-Jones interactions, etc. In this work a new, generalized numerical simulation is presented for studying the mechanical behavior of three-dimensional nanostructures at the atomic scale. The energy gradient and Hessian matrix of such assemblies are usually computed numerically; a potential energy finite element model is proposed herein where these two components are expressed analytically. In particular, generalized finite elements are developed that express the interactions among atoms in a manner equivalent to that invoked in simulations performed based on the molecular dynamics method. Thus, the global tangent stiffness matrix for any nanostructure is formed as an assembly of the generalized finite elements and is directly equivalent to the Hessian matrix of the potential energy. The advantages of the proposed model are identified in terms of both accuracy and computational efficiency. In the case of popular force fields (e.g., CHARMM), the computation of the Hessian matrix by implementing the proposed method is of the same order as that of the gradient. This analysis can be used to minimize the potential energy of molecular systems under nodal loads in order to derive constitutive laws for molecular systems where the entropy and solvent effects are neglected and can be approximated as solids, such as double stranded DNA nanostructures. In this context, the sequence dependent stretch modulus for some typical base pairs step is calculated.

  20. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  1. Cooling Curve Analysis of Micro- and Nanographite Particle-Embedded Salt-PCMs for Thermal Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Sudheer, R.; Prabhu, K. N.

    2017-08-01

    In recent years, the focus of phase change materials (PCM) research was on the development of salt mixtures with particle additives to improve their thermal energy storage (TES) functionalities. The effect of addition of microsized (50 μm) and nanosized (400 nm) graphite particles on TES parameters of potassium nitrate was analyzed in this work. A novel technique of computer-aided cooling curve analysis was employed here to study the suitability of large inhomogeneous PCM samples. The addition of graphite micro- and nanoparticles reduced the solidification time of the PCM significantly enhancing the heat removal rates, in the first thermal cycle. The benefits of dispersing nanoparticles diminished in successive 10 thermal cycles, and its performance was comparable to the microparticle-embedded PCM thereafter. The decay of TES functionalities on thermal cycling is attributed to the agglomeration of nanoparticles which was observed in SEM images. The thermal diffusivity property of the PCM decreased with addition of graphite particles. With no considerable change in the cooling rates and a simultaneous decrease in thermal diffusivity, it is concluded that the addition of graphite particles increased the specific heat capacity of the PCM. It is also suggested that the additive concentration should not be greater than 0.1% by weight of the PCM sample.

  2. Impacts of different SNLS3 light-curve fitters on cosmological consequences of interacting dark energy models

    NASA Astrophysics Data System (ADS)

    Hu, Yazhou; Li, Miao; Li, Nan; Wang, Shuang

    2016-08-01

    We explore the cosmological consequences of interacting dark energy (IDE) models using the SNLS3 supernova samples. In particular, we focus on the impacts of different SNLS3 light-curve fitters (LCF; referred to in this paper as SALT2, SiFTO and combined sample). Firstly, making use of the three SNLS3 data sets, as well as the Planck distance priors data and the galaxy clustering data, we constrain the parameter spaces of three IDE models. Then, we study the cosmic evolutions of Hubble parameter H(z), deceleration diagram q(z), statefinder hierarchy S(1)3(z) and S(1)4(z), and check whether or not these dark energy diagnosis can distinguish the differences among the results of different SNLS3 LCF. Finally, we perform a high redshift cosmic age test using three old high redshift objects (OHRO), and explore the fate of the Universe. We find that the impacts of different SNLS3 LCF are rather small, and can not be distinguished using H(z), q(z), S(1)3(z), S(1)4(z), and the age data of OHRO. In addition, we infer, from the current observations, how far we are from a cosmic doomsday in the worst case, and find that the combined sample always gives the largest 2σ lower limit of the time interval between "big rip" and today, while the results given by the SALT2 and the SiFTO sample are similar. These conclusions are insensitive to a specific form of dark sector interaction. Our method can be used to distinguish the differences among various cosmological observations.

  3. An exploration of the ozone dimer potential energy surface

    SciTech Connect

    Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve

    2014-06-28

    The (O{sub 3}){sub 2} dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O{sub 3} monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm{sup −1}. In addition to the five minima, 11 higher-order stationary points are identified.

  4. Detailed study of the water trimer potential energy surface

    SciTech Connect

    Fowler, J.E.; Schaefer, H.F. III )

    1995-01-11

    The potential energy surface of the water trimer has been studied through the use of ab initio quantum mechanical methods. Five stationary points were located, including one minimum and two transition states. All geometries were optimized at levels up to the double-[Zeta] plus polarization plus diffuse (DZP + diff) single and double excitation coupled cluster (CCSD) level of theory. CCSD single energy points were obtained for the minimum, two transition states, and the water monomer using the triple-[Zeta] plus double polarization plus diffuse (TZ2P + diff) basis at the geometries predicted by the DZP + diff CCSD method. Reported are the following: geometrical parameters, total and relative energies, harmonic vibrational frequencies and infrared intensities for the minimum, and zero point vibrational energies for the minimum, two transition states, and three separated water molecules. 27 refs., 5 figs., 10 tabs.

  5. Novel mixture model for the representation of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Tien Lam; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Dam, Hieu Chi

    2016-10-01

    We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the generative Gaussian mixture model, physically meaningful patterns of atomic local chemical environments can be detected automatically. Based on the obtained information regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model for estimating the atomic potential energy. Our experiments show that the proposed mixture model significantly improves the accuracy of the prediction of the potential energy surface for complex systems that possess a large diversity in their local structures.

  6. Intermolecular potential energy surface and thermophysical properties of propane

    NASA Astrophysics Data System (ADS)

    Hellmann, Robert

    2017-03-01

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  7. Combined-hyperbolic-inverse-power-representation of potential energy surfaces: a preliminary assessment for H3 and HO2.

    PubMed

    Varandas, A J C

    2013-02-07

    The purpose is to fit an accurate smooth function of the many-body expansion type to a multidimensional large data set using a basis-set type method. By adopting a combined-hyperbolic-inverse-power-representation for the basis, the novel approach is tested in detail for the ground electronic state of tri-hydrogen and hydroperoxyl systems, assuming that their potential energy surfaces are single-sheeted representable. It is also shown that the method can be easily applicable to potential energy curves by considering as prototypes molecular oxygen and the hydroxyl radical.

  8. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  9. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  10. Humidity and temperature doubly shifted fracture energy master curves for the prediction of sealant adhesion to aluminum under climate induced cyclic strain

    SciTech Connect

    Shephard, N.E.; Wightman, J.P.

    1996-12-31

    The objective of this research was to construct fracture energy master curves for the sealant/aluminum interphase using a 45{degrees} peel test; and use these curves to predict the annual crack growth of a sealant/aluminum butt Joint exposed to various climates. The shifting variables were humidity and temperature. The crack speed vs. fracture energy was measured using a 45{degrees} peel test and master curves were constructed. The location and mechanism of the failure zone was related to the shifting variables. For the butt joint, a pure shear (a thin long butt joint) adhesion test was used to measure the crack speed vs. strain energy as a function of temperature, relative humidity was held constant. An equation was constructed which relates the crack speed in the butt joint to the strain energy, temperature and relative humidity using the shift factor equation from the peel test. Climate data for Wittman, Arizona and Miami, Florida was used to determine the daily strain energy, temperature and relative humidity for the hypothetical butt joint. Finally, this data was combined with the master curve equations and butt joint equations to calculate the crack length at any time for the two climates.

  11. Geochemical energy potentially available to organisms in martian hydrothermal systems.

    NASA Astrophysics Data System (ADS)

    Varnes, E. S.; Jakosky, B. M.; McCollom, T. M.

    2001-11-01

    Although a global average of energy available to potentially support life from chemosynthesis on Mars has been estimated, issues of how the energy is distributed and which environments have the greatest potential to support life remain unresolved. We have begun to address these questions by developing numerical geochemical models of martian hydrothermal systems using the software package EQ3/6. In order to model hydrothermal systems, the elemental composition of the initial fluid (the groundwater) and the initial host rock with which it interacts must be defined. The host rock was defined using the composition of LEW 88516, which is similar to the martian mantle. This host rock was reacted at high temperature (350 deg C) with a series of groundwaters. Groundwaters are either pure water in equilibrium with present martian atmosphere or in equilibrium with Pathfinder-composition soils and the atmosphere. The hot fluid resulting from the rock/groundwater reaction was then reacted with increments of fresh groundwater, simulating the mixing that occurs in hydrothermal systems. During mixing, oxidation and reduction reactions are kinetically inhibited; organisms may exploit this inhibition to derive metabolic energy. The maximum amount of energy an organism can obtain from a given reaction is determined from the Gibbs free energy of that reaction. For each model run, we have calculated the Gibbs free energy of reactions that are important for terrestrial chemosynthetic organisms and likely representative for putative martians. Our results indicate that substantial amounts of energy may be derived from these reactions, but they depend sensitively on the oxidation state of the groundwater and whether saturated species precipitate to equilibrium. Thus, it is unknown whether sufficient energy is available to support martian life, although it is likely that suitable environments exist.

  12. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  13. Molecular structure and analytical potential energy function of SeCO

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Tian, Duan-Liang; Yan, Shi-Ying

    2014-09-01

    The density functional method (B3P86/6-311G) is used for calculating the possible structures of SeC, SeO, and SeCO molecules. The result shows that the ground state of the SeC molecule is 1Σ, the equilibrium nuclear distance is RSeC = 0.1699 nm, and the dissociation energy is De = 8.7246 eV. The ground state of the SeO molecule is 3Σ, with equilibrium nuclear distance RSeO = 0.1707 nm and dissociation energy De = 7.0917 eV. There are two structures for the ground state of the SeCO molecule: Se=C=O and Se=O=C. The linear Se=C=O is 1Σ. Its equilibrium nuclear distances and dissociation energy are RSeC = 0.1715 nm, RCO = 0.1176 nm and 18.8492 eV, respectively. The other structure Se=O=C is 1Σ. Its equilibrium nuclear distances and dissociation energy are RCO = 0.1168 nm, RSeO = 0.1963 nm and 15.5275 eV, respectively. The possible dissociative limit of the SeCO molecule is analyzed. The potential energy function for the SeCO molecule has been obtained from the many-body expansion theory. The contour of the potential energy curve describes the structure characters of the SeCO molecule. Furthermore, contours of the molecular stretching vibration based on this potential energy function are discussed.

  14. A generalization of CAPE into potential-energy convertibility

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Chaboureau, Jean-Pierre; Guichard, Françoise

    2005-04-01

    The concept of the potential-energy convertibility (PEC) is proposed as a generalization of convective available potential energy (CAPE). It is defined as a vertical integral of buoyancy weighted by a non-dimensional normalized vertical momentum. This is a measure of convertibility of potential energy into kinetic energy in the sense that the actual conversion rate is recovered when PEC evaluated by the convective-scale local buoyancy and vertical momentum, as available from cloud-resolving model (CRM) simulations, is multiplied by the normalization factor for the vertical momentum. It reduces to CAPE, when the standard parcel-lifted buoyancy and a unit value for the normalized vertical momentum are used. It is equivalent to Arakawas-Schubert's cloud work function, when the buoyancy and the vertical momentum profile for an entraining plume are used. PEC evaluated from locally defined buoyancy and vertical momentum in CRM simulations correlates better with the convective precipitation than CAPE. The evaluation of PEC within a convective parametrization may be possible with an appropriate definition of the effective entrainment rate, for example, which is expected to improve CAPE-based convective parametrizations.

  15. Meson energies and the dual superconducting QCD potential

    SciTech Connect

    Fulcher, L.P.

    1995-04-01

    Baker, Ball and Zachariasen (BBZ) have derived an effective quark-antiquark potential from the dual QCD Lagrangian by eliminating the gluon fields and the Higgs field in favor of quark variables for heavy slow-moving quarks. Their potential includes a central part, a spin-orbit part, a spin-spin part, and a velocity-dependent, spin-independent part. Their original tests of the potential were carried out in charmonium and the upsilon system, where the Schroedinger equation may be used for the eigenvalue calculations. A new procedure for solving the spinless Salpeter equation, which is based on the Rayleigh-Ritz-Galerkin method, is used to determine the energy eigenvalues for the B and the D mesons. First order perturbation theory is used to consider the effects of the velocity-dependent spin-independent part. The Yukawa parts of the potential are treated with a matrix approach that exploits analytic expressions for the matrix elements of the linear potential and the Coulomb potential. The results are compared with spin averages of the measured energies.

  16. Study of chirally motivated low-energy K - optical potentials

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K - optical potential in the nuclear medium is evaluated self consistently from a free-space K -N t matrix constructed within a coupled-channel chiral approach to the low-energy K¯N data. The chiral-model parameters are fitted to a select subset of the low-energy data plus the K - atomic data throughout the periodic table. The resulting attractive K - optical potentials are relatively 'shallow', with central depth of the real part about 55 MeV, for a fairly reasonable reproduction of the atomic data with χ2/ N≈2.2. Relatively 'deep' attractive potentials of depth about 180 MeV, which result in other phenomenological approaches with χ2/ N≈1.5, are ruled out within chirally motivated models. Different physical data input is required to distinguish between shallow and deep K - optical potentials. The (K -stop, π) reaction could provide such a test, with exclusive rates differing by over a factor of three for the two classes of potentials. Finally, forward (K -,p) differential cross sections for the production of relatively narrow deeply bound K -nuclear states are evaluated for deep K - optical potentials, yielding values considerably lower than those estimated before.

  17. A test of H2-He potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Thibault, Franck; Wcisło, Piotr; Ciuryło, Roman

    2016-11-01

    The close-coupling method is used to calculate purely rotational relaxation rates and pressure broadening and shifting coefficients for H2-He collisions, in order to test various potential energy surfaces. Downward rate coefficients k3→1(T) and k2→0(T) are compared with experimental data, but the subtle differences in the potential energy surfaces are hardly reflected in these rates. Helium pressure broadening and shifting generalized cross sections for the isotropic Raman Q(1) lines of the fundamental bands of D2 and H2 as well as the purely rotational Stokes S0(1) line of H2 are therefore also considered. While these spectroscopic characteristics are much more sensitive to the precise form of the interaction potential, a proper validation cannot be performed without taking into account the influence of the translational motion on the molecular line shapes. After including this, it is found that the potential energy surface of Bakr, Smith and Patkowski [B.W. Bakr, D.G.A. Smith, K. Patkowski, J. Chem. Phys. 139, 144305 (2013)] allows the best reproduction of the experimental data.

  18. Potential Energies, Permanent and Transition Dipole Moments for Numerous Electronic Excited States of NaK

    NASA Astrophysics Data System (ADS)

    Magnier, S.; Aubert-Frécon, M.; Millié, Ph.

    2000-03-01

    Recent experimental works have been devoted to the spectroscopy of highly excited states of NaK, confirming the accuracy of our previous calculations [S. Magnier and Ph. Millié, Phys. Rev. A: Gen. Phys. 54, 204 (1996)] of spectroscopic constants and potential curves. Among them, [E. Laub, I. Mazsa, S. C. Webb, J. La Civita, I. Prodan, Z. J. Zabbour, R. K. Namiotka, and J. Huennekens, J. Mol. Spectrosc. 193, 376 (1999)] have deduced from their measurements the variation of the transition dipole moment with the interatomic distance for the transition X1Σ+ → (3)1Π. They have shown that a large discrepancy was observed with the previous ab initio calculations currently used as a guide for spectroscopic experiments. Upon request of several experimentalists, we have computed again potential curves for electronic states correlated up to Na(4p) + K(4s) as well as relevant permanent and transition dipole moments. We present extensive predictions for the electronic structure of NaK (potential energies, dipole moments) for which numerical data have been listed in a data base available as supplementary data.

  19. Potential Energies, Permanent and Transition Dipole Moments for Numerous Electronic Excited States of NaK.

    PubMed

    Magnier; Aubert-Frécon; Millié

    2000-03-01

    Recent experimental works have been devoted to the spectroscopy of highly excited states of NaK, confirming the accuracy of our previous calculations [S. Magnier and Ph. Millié, Phys. Rev. A: Gen. Phys. 54, 204 (1996)] of spectroscopic constants and potential curves. Among them, [E. Laub, I. Mazsa, S. C. Webb, J. La Civita, I. Prodan, Z. J. Zabbour, R. K. Namiotka, and J. Huennekens, J. Mol. Spectrosc. 193, 376 (1999)] have deduced from their measurements the variation of the transition dipole moment with the interatomic distance for the transition X(1)Sigma+ --> (3)(1)Pi. They have shown that a large discrepancy was observed with the previous ab initio calculations currently used as a guide for spectroscopic experiments. Upon request of several experimentalists, we have computed again potential curves for electronic states correlated up to Na(4p) + K(4s) as well as relevant permanent and transition dipole moments. We present extensive predictions for the electronic structure of NaK (potential energies, dipole moments) for which numerical data have been listed in a data base available as supplementary data. Copyright 2000 Academic Press.

  20. Using peat for energy: Potential environmental restraints. Overview

    NASA Astrophysics Data System (ADS)

    Reed, R. M.; Voorhees, L. D.; Mulholland, P. J.

    Serious consideration is being given to using peat as an energy resource in Minnesota, North Carolina, Florida, and some New England States. Potential environmental constraints for using peat as an energy resource are associated with disruption of important regional wetland ecosystems. Mining peatlands may significantly modify ground and surface water hydrology, degrade water quality in downstream receiving systems, contribute to the deterioration of local air quality, disrupt or eliminate plant and animal populations having specialized requirements and limited distributions, and destroy unique wetland ecosystems representing important scientific and educational resources. Careful selection of peatlands to be developed and application of appropriate mitigation and monitoring programs will be necessary to offset these impacts.

  1. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    PubMed

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  2. Assessment of Tidal Stream Energy Potential for the United States

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.

    2010-12-01

    Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well

  3. The H 2O ++ Ground State Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Bunker, P. R.; Bludsky, Ota; Jensen, Per; Wesolowski, S. S.; Van Huis, T. J.; Yamaguchi, Y.; Schaefer, H. F.

    1999-12-01

    At the correlation-consistent polarized-valence quadruple-zeta complete active space self-consistent field second-order configuration interaction level of ab initio theory (cc-pVQZ CASSCF-SOCI), we calculated 129 points on the ground electronic state potential energy surface of the water dication H2O++; this calculation includes the energy of X3Σ- OH+ at equilibrium and the energy of the triplet oxygen atom. We determined the parameters in an analytical function that represents this surface out to the (OH+ + H+) and (O + 2H+) dissociation limits, for bending angles from 70 to 180°. There is a metastable minimum in this surface, at an energy of 43 600 cm-1 above the H+ + OH+ dissociation energy, and the geometry at this minimum is linear (D∞h), with an OH bond length of 1.195 Å. On the path to dissociation to H+ + OH+, there is a saddle point at an energy of 530 cm-1 above the minimum, and the geometry at the saddle point is linear (C∞ Kv) with OH bond lengths of 1.121 and 1.489 Å. Using the stabilization method, we calculated the lowest resonance on this surface. Relative to the metastable local minimum on the potential energy surface, the position of the lowest resonance for H2O++, D2O++, and T2O++ is 1977(85), 1473(25), and 1249(10) cm-1, respectively, where the width of each resonance (in cm-1) is given in parentheses.

  4. The Potential For Energy Efficiency In The State of Iowa

    SciTech Connect

    Hadley, SW

    2001-12-05

    The purpose of this study was to do an initial estimate of the potential for energy savings in the state of Iowa. Several methods for determining savings were examined, including existing programs, surveys, savings calculators, and economic simulation. Each method has advantages and disadvantages, trading off between detail of information, accuracy of results, and scope. This paper concentrated on using economic simulation (the NEMS model (EIA 2000a)) to determine market potential for energy savings for the residential and commercial sectors. The results of surveys were used to calculate the economic potential for savings in the industrial sector. The NEMS model is used by the Energy Information Administration to calculate twenty-year projections of energy use for every region of the country. The results of the Annual Energy Outlook 2000 were used as the Base case (EIA 1999a). Two alternative cases were created to simulate energy savings policies. Voluntary, market-related programs were simulated by lowering the effective discount rates that end-users use when making decisions on equipment purchases. Standards programs in the residential sector were simulated by eliminating the availability of low efficiency equipment in future years. The parameters for these programs were based on the Moderate scenario from the DOE Clean Energy Futures study (Interlaboratory Working Group 2000), which assumed increased concern by society on energy efficiency but not to the point of fiscal policies such as taxes or direct subsidies. The study only considered a subset of the various programs, policies, and technologies that could reduce energy use. The major end-uses in the residential sector affected by the policies were space cooling (20% savings by 2020) and water heating (14% savings by 2020.) Figure S-1 shows the space cooling savings when voluntary programs and minimum efficiency standards were implemented. Refrigerators, freezers, and clothes dryers saw slight improvements

  5. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  6. Mashreq Arab interconnected power system potential for economic energy trading

    SciTech Connect

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.

  7. The Potential for Energy Efficiency and Renewable Energy in North Carolina

    SciTech Connect

    Hadley, SW

    2003-08-06

    As many states have restructured their electric power industry, they have established a ''systems benefit charge'' to help fund those activities that will no longer be funded by utilities in the new structure. Examples include weatherization of low-income housing, efficiency programs, and renewable energy development. Varying amounts have been collected and allocated depending on state needs and abilities. One question that arises is what are the potential results of funding the different types of programs. What is the potential for energy efficiency or for renewable power, and what would be accomplished given the amount of funding that the system benefit charge may provide? The purpose of this project is to provide an initial estimate of the potential for energy efficiency and renewable energy in North Carolina. This potential could be funded by a public benefits fund resulting from a green power program being considered in the state. It concentrates on electric energy savings and production. Savings in buildings can include improvements to space conditioning as well as improvements to lighting or other appliances. Distributed power potential, through use of combined heat and power and renewables such as photovoltaic, wind, and biomass were examined. The goal is to provide information to decision makers who are developing a green power program in North Carolina. It will not be a complete and detailed study of all efficiency potentials but is more of a scoping exercise to determine the relative impacts and begin the process for a more definitive study at a later date. Statewide energy savings potential cannot be directly measured but must be calculated. First, the word ''potential'' means that the savings have not occurred yet. Second, the savings are often only indirectly measured by estimating what energy use there would have been without the changes in technology or behavior. Calculations through sampling and statistical analysis or by simulation are a necessary

  8. The potential impact of hydrogen energy use on the atmosphere

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  9. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1993-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  10. Energy splitting in a finite periodic multiple-well potential

    NASA Astrophysics Data System (ADS)

    Song, Dae-Yup

    2017-09-01

    The low-lying states for a one-dimensional potential consisting of N identical wells are considered, assuming that the wells are parabolic around the minima. The N localized approximate eigenfunctions, each of which matches an eigenfunction of the simple harmonic oscillator in one of the wells, are constructed, relying on the WKB approximation. Diagonalizing the Hamiltonian in the subspace spanned by the approximate eigenfunctions, a formula for the energy eigenvalues is obtained. The present work will be useful for introducing Bloch wave functions in a periodic potential to undergraduate and graduate students. It is shown that the formula for the eigenvalues can reproduce a known rigorous expression on the Mathieu equation.

  11. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1992-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  12. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1993-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  13. Free energy generalization of the Peierls potential in iron.

    PubMed

    Gilbert, M R; Schuck, P; Sadigh, B; Marian, J

    2013-08-30

    In body-centered-cubic (bcc) crystals, 1/2<111> screw dislocations exhibit high intrinsic lattice friction as a consequence of their nonplanar core structure, which results in a periodic energy landscape known as the Peierls potential U(P). The main features determining plastic flow, including its stress and temperature dependences, can be derived directly from this potential, hence its importance. In this Letter, we use thermodynamic integration to provide a full thermodynamic extension of U(P) for bcc Fe. We compute the Peierls free energy path as a function of stress and temperature and show that the critical stress vanishes at 700 K, supplying the qualitative elements that explain plastic behavior in the athermal limit.

  14. The Potential of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Sakipova, S.; Jakovics, A.; Gendelis, S.

    2016-02-01

    The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  15. CO dimer: new potential energy surface and rovibrational calculations.

    PubMed

    Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2013-08-15

    The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new potential energy surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio potential energy surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The potential has two nonpolar minima giving rise to a complicated set of energy level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction energy even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation energy (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated energy levels were compared to 105 J ≤ 10 levels from experiment. The rms error for 68 levels with J ≤ 6 is only 0.29 cm(-1). The calculated energy levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an energy lower than many previously known stacks and may be observable.

  16. Geothermal Energy Potential of Turkey: Inferred from the Aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Ates, Abdullah; Bilim, Funda; Buyuksarac, Aydin; Bektas, Ozcan

    2010-05-01

    Geothermal energy potential of Turkey is well known. There are lots of hot springs with over 30° C water temperatures. However, the significance of these geothermal energy potential of Turkey is not adequately understood. We believe that the main reason for this; is the lack of exploration methods and tools in a wide area as large as Turkey. We exploited a well known physical property of rocks to estimate the geothermal energy potential. Physically, substances lose their magnetization above a temperature known as the Curie that is the 580° C for magnetite. Properties of the Curie temperature have been exploited to observe the bottom depth of the magnetization. That is the depth where the heat reaches to 580° C. In another word, there is no magnetization below this depth. In normal crust this depth is about 22-24 km. Thus, investigation of the bottom depth of magnetization by using aeromagnetic anomalies can lead to information that if there are any anomalous regions well above the normal crust. The aeromagnetic anomalies of whole of Turkey were surveyed by the Mineral Research and Exploration (MTA) of Turkey. The survey was completed during late 1980's. Five kilometers grid data were available and used for regional exploration purposes. Exploration of the geothermal energy potential of Turkey was done from west to east in the similar way to search for shallow high temperature regions. These are from west to east; i.) Western Turkey: Two major shallow depth regions were determined at the west of Kutahya and the north-east of Denizli. The Curie Point Depths (CPDs) were calculated as about 7 km and about 9 km in Kutahya and Denizli, respectively. Also, high heat flow values and crustal thinning (about 32 km from gravity anomalies of western Turkey) were calculated for western Turkey. ii.) Central Turkey: A CPD depth of 8 km was calculated. This gives us a temperature gradient of 0.073° C/m. Geothermal energy potential was studied using water chemistry and isotopic

  17. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect

    Ruedenberg, K.

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  18. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.

  19. MCSCF potential energy surface for photodissociation of formaldehyde

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Morokuma, K.

    1976-01-01

    The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.

  20. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.

  1. MCSCF potential energy surface for photodissociation of formaldehyde

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Morokuma, K.

    1976-01-01

    The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.

  2. Characterization of the potential energy landscape of an antiplasticized polymer.

    PubMed

    Riggleman, Robert A; Douglas, Jack F; de Pablo, Juan J

    2007-07-01

    The nature of the individual transitions on the potential energy landscape (PEL) associated with particle motion are directly examined for model fragile glass-forming polymer melts, and the results are compared to those of an antiplasticized polymer system. In previous work, we established that the addition of antiplasticizer reduces the fragility of glass formation so that the antiplasticized material is a stronger glass former. In the present work, we find that the antiplasticizing molecules reduce the energy barriers for relaxation compared to the pure polymer, implying that the antiplasticized system has smaller barriers to overcome in order to explore its configuration space. We examine the cooperativity of segmental motion in these bulk fluids and find that more extensive stringlike collective motion enables the system to overcome larger potential energy barriers, in qualitative agreement with both the Stillinger-Weber and Adam-Gibbs views of glass formation. Notably, the stringlike collective motion identified by our PEL analysis corresponds to incremental displacements that occur within larger-scale stringlike particle displacement processes associated with PEL metabasin transitions that mediate structural relaxation. These "substrings" nonetheless seem to exhibit changes in relative size with antiplasticization similar to those observed in "superstrings" that arise at elevated temperatures. We also study the effects of confinement on the energy barriers in each system. Film confinement makes the energy barriers substantially smaller in the pure polymer, while it has little effect on the energy barriers in the antiplasticized system. This observation is qualitatively consistent with our previous studies of stringlike motion in these fluids at higher temperatures and with recent experimental measurements by Torkelson and co-workers.

  3. Potential energy surfaces of quintet and singlet O4.

    PubMed

    Paukku, Yuliya; Yang, Ke R; Varga, Zoltan; Song, Guoliang; Bender, Jason D; Truhlar, Donald G

    2017-07-21

    We present global ground-state potential energy surfaces for the quintet and singlet spin states of the O4 system that are suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic, spin-conserving O2-O2 collisions. The surfaces are based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation. The active space has 16 electrons in 12 orbitals. The calculations cover nine kinds of geometrical arrangements corresponding to dissociative diatom-diatom collisions of O2, geometries corresponding to O3-O, geometries identified by running trajectories, and geometries along linear synchronous transit paths. The global ground-state potential energy surfaces were obtained by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction to 12 684 electronic structure data points for the singlet and 10 543 electronic structure data points for the quintet. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions.

  4. Potential energy surfaces of quintet and singlet O4

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Yang, Ke R.; Varga, Zoltan; Song, Guoliang; Bender, Jason D.; Truhlar, Donald G.

    2017-07-01

    We present global ground-state potential energy surfaces for the quintet and singlet spin states of the O4 system that are suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic, spin-conserving O2-O2 collisions. The surfaces are based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation. The active space has 16 electrons in 12 orbitals. The calculations cover nine kinds of geometrical arrangements corresponding to dissociative diatom-diatom collisions of O2, geometries corresponding to O3-O, geometries identified by running trajectories, and geometries along linear synchronous transit paths. The global ground-state potential energy surfaces were obtained by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction to 12 684 electronic structure data points for the singlet and 10 543 electronic structure data points for the quintet. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions.

  5. Infinite swapping in curved spaces

    NASA Astrophysics Data System (ADS)

    Curotto, E.; Mella, Massimo

    2014-01-01

    We develop an extension of the infinite swapping and partial infinite swapping techniques [N. Plattner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, and J. E. Gubernatis, J. Chem. Phys. 135, 134111 (2011)] to curved spaces. Furthermore, we test the performance of infinite swapping and partial infinite swapping in a series of flat spaces characterized by the same potential energy surface model. We develop a second order variational algorithm for general curved spaces without the extended Lagrangian formalism to include holonomic constraints. We test the new methods by carrying out NVT classical ensemble simulations on a set of multidimensional toroids mapped by stereographic projections and characterized by a potential energy surface built from a linear combination of decoupled double wells shaped purposely to create rare events over a range of temperatures.

  6. Infinite swapping in curved spaces.

    PubMed

    Curotto, E; Mella, Massimo

    2014-01-07

    We develop an extension of the infinite swapping and partial infinite swapping techniques [N. Plattner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, and J. E. Gubernatis, J. Chem. Phys. 135, 134111 (2011)] to curved spaces. Furthermore, we test the performance of infinite swapping and partial infinite swapping in a series of flat spaces characterized by the same potential energy surface model. We develop a second order variational algorithm for general curved spaces without the extended Lagrangian formalism to include holonomic constraints. We test the new methods by carrying out NVT classical ensemble simulations on a set of multidimensional toroids mapped by stereographic projections and characterized by a potential energy surface built from a linear combination of decoupled double wells shaped purposely to create rare events over a range of temperatures.

  7. Energy conservation potential of the US Department of Energy interim commercial building standards

    SciTech Connect

    Hadley, D.L.; Halverson, M.A.

    1993-12-01

    This report describes a project conducted to demonstrate the whole-building energy conservation potential achievable from full implementation of the US Department of Energy (DOE) Interim Energy Conservation Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings. DOE`s development and implementation of energy performance standards for commercial buildings were established by the Energy Conservation Standards for New Buildings Act of 1976, as amended, Public Law (PL) 94-385, 42 USC 6831 et seq., hereinafter referred to as the Act. In accordance with the Act, DOE was to establish performance standards for both federal and private sector buildings ``to achieve the maximum practicable improvements in energy efficiency and use of non-depletable resources for all new buildings``.

  8. Molecular potential energy surfaces for interstellar chemistry and fusion applications

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Huang, Xinchuan; Jin, Zhong; Xie, Zhen; Zhang, Xiubin; Bowman, Joel M.; Sharma, Amit Raj; Scheider, Ralf

    2006-04-01

    In the Born-Oppenheimer approximation the electronic Schr"odinger equation is solved given the nuclear positions as parameters, and this defines the potential energy surface. We have used computational invariant theory and the MAGMA computer algebra system as an aid to develop representations for the potential energy and dipole moment surfaces that are fully invariant under permutations of like nuclei, extending an approach that for 3-body and 4-body systems has a long history, e.g. [J. N. Murrell et al. Molecular Potential Energy Functions, Wiley, 1984]. A many-body (cluster) expansion is used to describe reaction complexes. The methods have been applied in an almost routine way for systems of up to 7 nuclei, including several molecules that are of interest for interstellar chemistry and for the issue of hydrocarbon breakdown in fusion edge plasma: H5^+, CH5, CH5^+, C2H3^+, and their fragments, with C2H5^+ on the way. The mathematical and computional methods and the hydrocarbon applications will be presented.

  9. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  10. A satellite investigation of energy flux and inferred potential drop in auroral electron energy spectra

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Burch, J. L.

    1981-01-01

    The relationship between auroral electron energy flux and the inferred accelerating potential drop for accelerated Maxwellian distributions is investigated on the basis of Atmospheric Explorer D spectral measurements. An analytical approximation for the total downward energy flux carried by an isotropic Maxwellian electron population accelerated by a field-aligned electrostatic potential drop is derived which is valid for values of the electron energy/characteristic accelerated Maxwellian distribution energy which are less than the difference between the ratio of the magnetic field strengths at the altitude of observation and the altitude of potential drop, and unity. Data from the Low Energy Electron Experiment on board AE D obtained on both the dayside and the nightside during periods of significant inverted-V type electron precipitation shows that the 455 energy spectra considered, 160 of them, obtained between 60 and 85 deg invariant latitude, could be fit to accelerated Maxwellian distributions. The 160 Maxwellian spectra are then shown to be in agreement with the predictions of the accelerated Maxwellian model. Finally, analysis of individual spectra suggests that the altitude of the inferred potential drop is at a maximum near the center of the inverted-V structures.

  11. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    PubMed

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  12. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    SciTech Connect

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  13. Gravitational potential energy of the earth - A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain energy in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of energy. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.

  14. Gravitational potential energy of the earth - A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain energy in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of energy. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.

  15. Metabolic Energy of Action Potentials Modulated by Spike Frequency Adaptation

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-01-01

    Spike frequency adaptation (SFA) exists in many types of neurons, which has been demonstrated to improve their abilities to process incoming information by synapses. The major carrier used by a neuron to convey synaptic signals is the sequences of action potentials (APs), which have to consume substantial metabolic energies to initiate and propagate. Here we use conductance-based models to investigate how SFA modulates the AP-related energy of neurons. The SFA is attributed to either calcium-activated K+ (IAHP) or voltage-activated K+ (IM) current. We observe that the activation of IAHP or IM increases the Na+ load used for depolarizing membrane, while produces few effects on the falling phase of AP. Then, the metabolic energy involved in Na+ current significantly increases from one AP to the next, while for K+ current it is less affected. As a consequence, the total energy cost by each AP gets larger as firing rate decays down. It is also shown that the minimum Na+ charge needed for the depolarization of each AP is unaffected during the course of SFA. This indicates that the activation of either adaptation current makes APs become less efficient to use Na+ influx for their depolarization. Further, our simulations demonstrate that the different biophysical properties of IM and IAHP result in distinct modulations of metabolic energy usage for APs. These investigations provide a fundamental link between adaptation currents and neuronal energetics, which could facilitate to interpret how SFA participates in neuronal information processing. PMID:27909394

  16. Metabolic Energy of Action Potentials Modulated by Spike Frequency Adaptation.

    PubMed

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-01-01

    Spike frequency adaptation (SFA) exists in many types of neurons, which has been demonstrated to improve their abilities to process incoming information by synapses. The major carrier used by a neuron to convey synaptic signals is the sequences of action potentials (APs), which have to consume substantial metabolic energies to initiate and propagate. Here we use conductance-based models to investigate how SFA modulates the AP-related energy of neurons. The SFA is attributed to either calcium-activated K(+) (IAHP) or voltage-activated K(+) (IM) current. We observe that the activation of IAHP or IM increases the Na(+) load used for depolarizing membrane, while produces few effects on the falling phase of AP. Then, the metabolic energy involved in Na(+) current significantly increases from one AP to the next, while for K(+) current it is less affected. As a consequence, the total energy cost by each AP gets larger as firing rate decays down. It is also shown that the minimum Na(+) charge needed for the depolarization of each AP is unaffected during the course of SFA. This indicates that the activation of either adaptation current makes APs become less efficient to use Na(+) influx for their depolarization. Further, our simulations demonstrate that the different biophysical properties of IM and IAHP result in distinct modulations of metabolic energy usage for APs. These investigations provide a fundamental link between adaptation currents and neuronal energetics, which could facilitate to interpret how SFA participates in neuronal information processing.

  17. Intrinsic potential for immediate biodegradation of toluene in a pristine, energy-limited aquifer.

    PubMed

    Herzyk, Agnieszka; Maloszewski, Piotr; Qiu, Shiran; Elsner, Martin; Griebler, Christian

    2014-06-01

    Pristine and energy-limited aquifers are considered to have a low resistance and resilience towards organic pollution. An experiment in an indoor aquifer system revealed an unexpected high intrinsic potential for the attenuation of a short-term toluene contamination. A 30 h pulse of 486 mg of toluene, used as a model contaminant, and deuterated water (D2O) through an initially pristine, oxic, and organic carbon poor sandy aquifer revealed an immediate aerobic toluene degradation potential. Based on contaminant and tracer break-through curves, as well as mass balance analyses and reactive transport modelling, a contaminant removal of 40 % over a transport distance of only 4.2 m in less than one week of travel time was obtained. The mean first-order degradation rate constant was λ = 0.178 day(-1), corresponding to a half-life time constant T1/2 of 3.87 days. Toluene-specific stable carbon isotope analysis independently proved that the contaminant mass removal can be attributed to microbial biodegradation. Since average doubling times of indigenous bacterial communities were in the range of months to years, the aerobic biodegradation potential observed is assumed to be present and active in the pristine, energy-limited groundwater ecosystems at any time. Follow-up experiments and field studies will help to quantify the immediate natural attenuation potential of aquifers for selected priority contaminants and will try to identify the key-degraders within the autochthonous microbial communities.

  18. GIS Assessment of Wind Energy Potential in California and Florida

    NASA Astrophysics Data System (ADS)

    Snow, R. K.; Snow, M. M.

    2008-05-01

    Energy efficiency coupled with renewable energy technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative energy sector is wind power, which is now one of the largest sources of new power generation in the U.S. creating jobs and revenue for rural communities while powering our economy with an emissions-free source of energy. In 2006, wind turbines capable of generating more than 2,400 megawatts of electricity were installed in the U.S. and by 2007 this number had risen to 3,000 megawatts. The U.S. generated 31 billion kilowatt-hours of wind power in 2007, which is enough electricity to power the equivalent of nearly 3 million average homes. It is estimated that generating the same amount of electricity would require burning 16 million tons of coal or 50 million barrels of oil. This study examines the wind power potential of sites near populated areas in Florida and California to determine the practicability of installing wind turbines at these locations. A GIS was developed in order to conduct a spatial analysis of these sites based on mean annual wind speed measured in meters per second and wind power density ratings measured in watts per square meter. The analysis indicates that coastal areas of Cocoa Beach, Key West, Hollywood, and West Palm Beach, respectively, possess the greatest potential for wind energy in Florida with mean annual wind speeds of 4.9 m/s and average wind power density ratings of 171 w/m2 peaking at Cocoa Beach followed by wind speeds of 4.64 m/s and wind power ratings of 115 w/m2 at Key West. California wind energy potential is even greater than that of Florida with Fairfield exhibiting mean annual wind speeds of 5.9 m/s and average wind power density ratings of 327 w/m2 followed by the Mojave and Palmdale areas with mean annual wind speeds of

  19. Quantifying potential future impacts of energy resource development

    NASA Astrophysics Data System (ADS)

    Martinez, C.; Haines, S. S.; Semmens, D. J.; Diffendorfer, J.; Bagstad, K.; Garman, S.

    2016-12-01

    Modeling the potential development of subsurface energy resources and the interplay with surface resources is challenging for a number of reasons. There is a lack of knowledge about the exact location(s) where future development is likely to occur, the associated development footprint, and the type and condition of co-located surface resources. The level of information available for modeling any of these components can range from limited to highly detailed, or somewhere in between, requiring a consistent and robust approach that is insensitive to data abundance.A Monte Carlo simulation approach for assessing the potential impacts of future resource development will be demonstrated. The approach uses standardized, peer-reviewed U.S. Geological Survey (USGS) continuous oil and gas assessments and data on ecological resources. USGS probabilistic assessments provide insight into the regional or basinal occurrence, accumulation, and volume of oil gas resources as well as related geologic uncertainties, while environmental and ecological data provide insight into the levels and patterns of ecosystem services in a region.Linking these multidisciplinary data and models at various scales through quantifiable relationships provides a mechanism for the assessment of multiple natural resources regardless of the level of information available. The approach provides reproducible estimates of the potential impacts of resource extraction that are consistent with the probabilistic nature of USGS energy resource assessments. This presentation will focus on application of the method with an illustration for potential development of continuous oil and gas resources in the Piceance Basin of western Colorado.

  20. An ab initio potential energy surface and vibrational energy levels of ZnH2.

    PubMed

    Huang, Zheng Guo; Yu, Lei; Dai, Yu Mei

    2010-04-15

    A three-dimensional potential energy surface of the electronic ground state of ZnH(2) (X1 Sigma(g)+) molecule is constructed from more than 7500 ab initio points calculated at the internally contracted multireference configuration interaction with the Davidson correction (icMRCI+Q) level employing large basis sets. The calculated relative energies of various dissociation reactions are in good agreement with the previous theoretical/experimental values. Low-lying vibrational energy levels of ZnH(2), ZnD(2), and HZnD are calculated on the three-dimensional potential energy surface using the Lanczos algorithm, and found to be in good agreement with the available experimental band origins and the previous theoretical values. 2009 Wiley Periodicals, Inc.