Neural network approach in multichannel auditory event-related potential analysis.
Wu, F Y; Slater, J D; Ramsay, R E
1994-04-01
Even though there are presently no clearly defined criteria for the assessment of P300 event-related potential (ERP) abnormality, it is strongly indicated through statistical analysis that such criteria exist for classifying control subjects and patients with diseases resulting in neuropsychological impairment such as multiple sclerosis (MS). We have demonstrated the feasibility of artificial neural network (ANN) methods in classifying ERP waveforms measured at a single channel (Cz) from control subjects and MS patients. In this paper, we report the results of multichannel ERP analysis and a modified network analysis methodology to enhance automation of the classification rule extraction process. The proposed methodology significantly reduces the work of statistical analysis. It also helps to standardize the criteria of P300 ERP assessment and facilitate the computer-aided analysis on neuropsychological functions.
Frishkoff, Gwen; Sydes, Jason; Mueller, Kurt; Frank, Robert; Curran, Tim; Connolly, John; Kilborn, Kerry; Molfese, Dennis; Perfetti, Charles; Malony, Allen
2011-01-01
We present MINEMO (Minimal Information for Neural ElectroMagnetic Ontologies), a checklist for the description of event-related potentials (ERP) studies. MINEMO extends MINI (Minimal Information for Neuroscience Investigations)to the ERP domain. Checklist terms are explicated in NEMO, a formal ontology that is designed to support ERP data sharing and integration. MINEMO is also linked to an ERP database and web application (the NEMO portal). Users upload their data and enter MINEMO information through the portal. The database then stores these entries in RDF (Resource Description Framework), along with summary metrics, i.e., spatial and temporal metadata. Together these spatial, temporal, and functional metadata provide a complete description of ERP data and the context in which these data were acquired. The RDF files then serve as inputs to ontology-based labeling and meta-analysis. Our ultimate goal is to represent ERPs using a rich semantic structure, so results can be queried at multiple levels, to stimulate novel hypotheses and to promote a high-level, integrative account of ERP results across diverse study methods and paradigms. PMID:22180824
Multiple Component Event-Related Potential (mcERP) Estimation
NASA Technical Reports Server (NTRS)
Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)
2002-01-01
We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.
Clayson, Peter E; Miller, Gregory A
2017-01-01
Generalizability theory (G theory) provides a flexible, multifaceted approach to estimating score reliability. G theory's approach to estimating score reliability has important advantages over classical test theory that are relevant for research using event-related brain potentials (ERPs). For example, G theory does not require parallel forms (i.e., equal means, variances, and covariances), can handle unbalanced designs, and provides a single reliability estimate for designs with multiple sources of error. This monograph provides a detailed description of the conceptual framework of G theory using examples relevant to ERP researchers, presents the algorithms needed to estimate ERP score reliability, and provides a detailed walkthrough of newly-developed software, the ERP Reliability Analysis (ERA) Toolbox, that calculates score reliability using G theory. The ERA Toolbox is open-source, Matlab software that uses G theory to estimate the contribution of the number of trials retained for averaging, group, and/or event types on ERP score reliability. The toolbox facilitates the rigorous evaluation of psychometric properties of ERP scores recommended elsewhere in this special issue. Copyright © 2016 Elsevier B.V. All rights reserved.
Clayson, Peter E; Miller, Gregory A
2017-01-01
Failing to consider psychometric issues related to reliability and validity, differential deficits, and statistical power potentially undermines the conclusions of a study. In research using event-related brain potentials (ERPs), numerous contextual factors (population sampled, task, data recording, analysis pipeline, etc.) can impact the reliability of ERP scores. The present review considers the contextual factors that influence ERP score reliability and the downstream effects that reliability has on statistical analyses. Given the context-dependent nature of ERPs, it is recommended that ERP score reliability be formally assessed on a study-by-study basis. Recommended guidelines for ERP studies include 1) reporting the threshold of acceptable reliability and reliability estimates for observed scores, 2) specifying the approach used to estimate reliability, and 3) justifying how trial-count minima were chosen. A reliability threshold for internal consistency of at least 0.70 is recommended, and a threshold of 0.80 is preferred. The review also advocates the use of generalizability theory for estimating score dependability (the generalizability theory analog to reliability) as an improvement on classical test theory reliability estimates, suggesting that the latter is less well suited to ERP research. To facilitate the calculation and reporting of dependability estimates, an open-source Matlab program, the ERP Reliability Analysis Toolbox, is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Neural Dynamics Underlying Event-Related Potentials
NASA Technical Reports Server (NTRS)
Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.
2003-01-01
There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.
Tracking the voluntary control of auditory spatial attention with event-related brain potentials.
Störmer, Viola S; Green, Jessica J; McDonald, John J
2009-03-01
A lateralized event-related potential (ERP) component elicited by attention-directing cues (ADAN) has been linked to frontal-lobe control but is often absent when spatial attention is deployed in the auditory modality. Here, we tested the hypothesis that ERP activity associated with frontal-lobe control of auditory spatial attention is distributed bilaterally by comparing ERPs elicited by attention-directing cues and neutral cues in a unimodal auditory task. This revealed an initial ERP positivity over the anterior scalp and a later ERP negativity over the parietal scalp. Distributed source analysis indicated that the anterior positivity was generated primarily in bilateral prefrontal cortices, whereas the more posterior negativity was generated in parietal and temporal cortices. The anterior ERP positivity likely reflects frontal-lobe attentional control, whereas the subsequent ERP negativity likely reflects anticipatory biasing of activity in auditory cortex.
Cong, Fengyu; Leppänen, Paavo H T; Astikainen, Piia; Hämäläinen, Jarmo; Hietanen, Jari K; Ristaniemi, Tapani
2011-09-30
The present study addresses benefits of a linear optimal filter (OF) for independent component analysis (ICA) in extracting brain event-related potentials (ERPs). A filter such as the digital filter is usually considered as a denoising tool. Actually, in filtering ERP recordings by an OF, the ERP' topography should not be changed by the filter, and the output should also be able to be modeled by the linear transformation. Moreover, an OF designed for a specific ERP source or component may remove noise, as well as reduce the overlap of sources and even reject some non-targeted sources in the ERP recordings. The OF can thus accomplish both the denoising and dimension reduction (reducing the number of sources) simultaneously. We demonstrated these effects using two datasets, one containing visual and the other auditory ERPs. The results showed that the method including OF and ICA extracted much more reliable components than the sole ICA without OF did, and that OF removed some non-targeted sources and made the underdetermined model of EEG recordings approach to the determined one. Thus, we suggest designing an OF based on the properties of an ERP to filter recordings before using ICA decomposition to extract the targeted ERP component. Copyright © 2011 Elsevier B.V. All rights reserved.
Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo
2013-01-01
Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.
Single-trial event-related potential extraction through one-unit ICA-with-reference
NASA Astrophysics Data System (ADS)
Lih Lee, Wee; Tan, Tele; Falkmer, Torbjörn; Leung, Yee Hong
2016-12-01
Objective. In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. Approach. In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Main results. Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. Significance. In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application.
Single-trial event-related potential extraction through one-unit ICA-with-reference.
Lee, Wee Lih; Tan, Tele; Falkmer, Torbjörn; Leung, Yee Hong
2016-12-01
In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application.
NASA Technical Reports Server (NTRS)
Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.
1989-01-01
The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.
Zou, Ling; Chen, Shuyue; Sun, Yuqiang; Ma, Zhenghua
2010-08-01
In this paper we present a new method of combining Independent Component Analysis (ICA) and Wavelet de-noising algorithm to extract Evoked Related Potentials (ERPs). First, the extended Infomax-ICA algorithm is used to analyze EEG signals and obtain the independent components (Ics); Then, the Wave Shrink (WS) method is applied to the demixed Ics as an intermediate step; the EEG data were rebuilt by using the inverse ICA based on the new Ics; the ERPs were extracted by using de-noised EEG data after being averaged several trials. The experimental results showed that the combined method and ICA method could remove eye artifacts and muscle artifacts mixed in the ERPs, while the combined method could retain the brain neural activity mixed in the noise Ics and could extract the weak ERPs efficiently from strong background artifacts.
[Spatiotemporal pattern analysis of event-related potentials elicited by emotional Stroop task].
Liu, Qi; Liu, Ling; He, Hui; Zhou, Shu
2007-05-01
To investigate the spatiotemporal pattern of event-related potentials (ERPs) induced by emotional Stroop task. The ERPs of 19 channels were recorded from 13 healthy subjects while performing emotional Stroop task by pressing the buttons representing the colors in which the words denoting different emotions were displayed. A repeated-measures factorial design was adopted with three levels (word valence: positive, neutral and negative). The result of ERP analysis was presented in the form of statistical parametric mapping (SPM) of F value. No significant difference was found in either reaction time or accuracy. The SPM of ERPs suggested significant emotional valence effects in the occipital region (200-220 ms), the left and central frontal regions (270-300 ms), and the bilateral temporal and parietal cortex (560-580 and 620-630 ms, respectively). Processing of task-irrelevant emotional valence information involves the dynamic operation of extensive brain regions. The ERPs are more sensitive than the behavioral indices in emotional evaluation.
Event-Related Brain Potential Correlates of Emotional Face Processing
ERIC Educational Resources Information Center
Eimer, Martin; Holmes, Amanda
2007-01-01
Results from recent event-related brain potential (ERP) studies investigating brain processes involved in the detection and analysis of emotional facial expression are reviewed. In all experiments, emotional faces were found to trigger an increased ERP positivity relative to neutral faces. The onset of this emotional expression effect was…
O'Reilly, Christian; Plamondon, Réjean; Landou, Mohamed K; Stemmer, Brigitte
2013-01-01
This article presents an exploratory study investigating the possibility of predicting the time occurrence of a motor event related potential (ERP) from a kinematic analysis of human movements. Although the response-locked motor potential may link the ERP components to the recorded response, to our knowledge no previous attempt has been made to predict a priori (i.e. before any contact with the electroencephalographic data) the time occurrence of an ERP component based only on the modeling of an overt response. The proposed analysis relies on the delta-lognormal modeling of velocity, as proposed by the kinematic theory of rapid human movement used in several studies of motor control. Although some methodological aspects of this technique still need to be fine-tuned, the initial results showed that the model-based kinematic analysis allowed the prediction of the time occurrence of a motor command ERP in most participants in the experiment. The average map of the motor command ERPs showed that this signal was stronger in electrodes close to the contra-lateral motor area (Fz, FCz, FC1, and FC3). These results seem to support the claims made by the kinematic theory that a motor command is emitted at time t(0), the time reference parameter of the model. This article proposes a new time marker directly associated with a cerebral event (i.e. the emission of a motor command) that can be used for the development of new data analysis methodologies and for the elaboration of new experimental protocols based on ERP. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M; Graversen, Carina; Sørensen, Helge B D; Bastlund, Jesper F
2017-04-01
Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.
Szucs, Dénes; Soltész, Fruzsina
2010-05-01
We dissociated ERP markers of semantic (numerical distance) vs. syntactic (place value) incongruence in the domain of arithmetic. Participants verified additions with four-digit numbers. Semantic incongruencies elicited the N400 ERP effect. A centro-parietal (putative P600) effect to place value violations was not related to arithmetic syntax. Rather, this effect was an enlarged P3b reflecting different surprise values of place value vs. non-place value violations. This potential confound should be considered in numerical cognition experiments. The latency of the N400 and P3a effects were differentially affected by place value analysis. The amplitude of the P3a and that of a fronto-central positive effect (FP600) was sensitive to place value analysis and digit content. Results suggest that ERPs can index the syntactical analysis of multi-digit numbers. Both ERP and behavioral data confirmed that multi-digit numbers were decomposed into their constituent digits, rather than evaluated holistically. Copyright 2010 Elsevier B.V. All rights reserved.
A graphical user interface for infant ERP analysis.
Kaatiala, Jussi; Yrttiaho, Santeri; Forssman, Linda; Perdue, Katherine; Leppänen, Jukka
2014-09-01
Recording of event-related potentials (ERPs) is one of the best-suited technologies for examining brain function in human infants. Yet the existing software packages are not optimized for the unique requirements of analyzing artifact-prone ERP data from infants. We developed a new graphical user interface that enables an efficient implementation of a two-stage approach to the analysis of infant ERPs. In the first stage, video records of infant behavior are synchronized with ERPs at the level of individual trials to reject epochs with noncompliant behavior and other artifacts. In the second stage, the interface calls MATLAB and EEGLAB (Delorme & Makeig, Journal of Neuroscience Methods 134(1):9-21, 2004) functions for further preprocessing of the ERP signal itself (i.e., filtering, artifact removal, interpolation, and rereferencing). Finally, methods are included for data visualization and analysis by using bootstrapped group averages. Analyses of simulated and real EEG data demonstrated that the proposed approach can be effectively used to establish task compliance, remove various types of artifacts, and perform representative visualizations and statistical comparisons of ERPs. The interface is available for download from http://www.uta.fi/med/icl/methods/eeg.html in a format that is widely applicable to ERP studies with special populations and open for further editing by users.
Event-related potentials, cognition, and behavior: a biological approach.
Kotchoubey, Boris
2006-01-01
The prevailing cognitive-psychological accounts of event-related brain potentials (ERPs) assume that ERP components manifest information processing operations leading from stimulus to response. Since this view encounters numerous difficulties already analyzed in previous studies, an alternative view is presented here that regards cortical control of behavior as a repetitive sensorimotor cycle consisting of two phases: (i) feedforward anticipation and (ii) feedback cortical performance. This view allows us to interpret in an integrative manner numerous data obtained from very different domains of ERP studies: from biophysics of ERP waves to their relationship to the processing of language, in which verbal behavior is viewed as likewise controlled by the same two basic control processes: feedforward (hypothesis building) and feedback (hypothesis checking). The proposed approach is intentionally simplified, explaining numerous effects on the basis of few assumptions and relating several levels of analysis: neurophysiology, macroelectrical processes (i.e. ERPs), cognition and behavior. It can, therefore, be regarded as a first approximation to a general theory of ERPs.
Hatem, S M; Hu, L; Ragé, M; Gierasimowicz, A; Plaghki, L; Bouhassira, D; Attal, N; Iannetti, G D; Mouraux, A
2012-12-01
To assess the clinical usefulness of an automated analysis of event-related potentials (ERPs). Nociceptive laser-evoked potentials (LEPs) and non-nociceptive somatosensory electrically-evoked potentials (SEPs) were recorded in 37 patients with syringomyelia and 21 controls. LEP and SEP peak amplitudes and latencies were estimated using a single-trial automated approach based on time-frequency wavelet filtering and multiple linear regression, as well as a conventional approach based on visual inspection. The amplitudes and latencies of normal and abnormal LEP and SEP peaks were identified reliably using both approaches, with similar sensitivity and specificity. Because the automated approach provided an unbiased solution to account for average waveforms where no ERP could be identified visually, it revealed significant differences between patients and controls that were not revealed using the visual approach. The automated analysis of ERPs characterized reliably and objectively LEP and SEP waveforms in patients. The automated single-trial analysis can be used to characterize normal and abnormal ERPs with a similar sensitivity and specificity as visual inspection. While this does not justify its use in a routine clinical setting, the technique could be useful to avoid observer-dependent biases in clinical research. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Spatial-temporal discriminant analysis for ERP-based brain-computer interface.
Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2013-03-01
Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.
ERPLAB: an open-source toolbox for the analysis of event-related potentials
Lopez-Calderon, Javier; Luck, Steven J.
2014-01-01
ERPLAB toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP) data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB’s EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB’s tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user’s guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations. PMID:24782741
ERPLAB: an open-source toolbox for the analysis of event-related potentials.
Lopez-Calderon, Javier; Luck, Steven J
2014-01-01
ERPLAB toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP) data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB's EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB's tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user's guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations.
Early differential processing of material images: Evidence from ERP classification.
Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R
2014-06-24
Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.
Topographic ERP analyses: a step-by-step tutorial review.
Murray, Micah M; Brunet, Denis; Michel, Christoph M
2008-06-01
In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.
Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.
Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng
2015-01-01
In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.
van Vliet, Marijn; Manyakov, Nikolay V.; Storms, Gert; Fias, Wim; Wiersema, Jan R.; Van Hulle, Marc M.
2014-01-01
This study examines the influence of a button response task on the event-related potential (ERP) in a semantic priming experiment. Of particular interest is the N400 component. In many semantic priming studies, subjects are asked to respond to a stimulus as fast and accurately as possible by pressing a button. Response time (RT) is recorded in parallel with an electroencephalogram (EEG) for ERP analysis. In this case, the response occurs in the time window used for ERP analysis and response-related components may overlap with stimulus-locked ones such as the N400. This has led to a recommendation against such a design, although the issue has not been explored in depth. Since studies keep being published that disregard this issue, a more detailed examination of influence of response-related potentials on the ERP is needed. Two experiments were performed in which subjects pressed one of two buttons with their dominant hand in response to word-pairs with varying association strength (AS), indicating a personal judgement of association between the two words. In the first experiment, subjects were instructed to respond as fast and accurately as possible. In the second experiment, subjects delayed their button response to enforce a one second interval between the onset of the target word and the button response. Results show that in the first experiment a P3 component and motor-related potentials (MRPs) overlap with the N400 component, which can cause a misinterpretation of the latter. In order to study the N400 component, the button response should be delayed to avoid contamination of the ERP with response-related components. PMID:24516556
NASA Astrophysics Data System (ADS)
Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M.; Graversen, Carina; Sørensen, Helge B. D.; Bastlund, Jesper F.
2017-04-01
Objective. Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.
Latency correction of event-related potentials between different experimental protocols
NASA Astrophysics Data System (ADS)
Iturrate, I.; Chavarriaga, R.; Montesano, L.; Minguez, J.; Millán, JdR
2014-06-01
Objective. A fundamental issue in EEG event-related potentials (ERPs) studies is the amount of data required to have an accurate ERP model. This also impacts the time required to train a classifier for a brain-computer interface (BCI). This issue is mainly due to the poor signal-to-noise ratio and the large fluctuations of the EEG caused by several sources of variability. One of these sources is directly related to the experimental protocol or application designed, and may affect the amplitude or latency of ERPs. This usually prevents BCI classifiers from generalizing among different experimental protocols. In this paper, we analyze the effect of the amplitude and the latency variations among different experimental protocols based on the same type of ERP. Approach. We present a method to analyze and compensate for the latency variations in BCI applications. The algorithm has been tested on two widely used ERPs (P300 and observation error potentials), in three experimental protocols in each case. We report the ERP analysis and single-trial classification. Main results. The results obtained show that the designed experimental protocols significantly affect the latency of the recorded potentials but not the amplitudes. Significance. These results show how the use of latency-corrected data can be used to generalize the BCIs, reducing the calibration time when facing a new experimental protocol.
Adjectives That Aren't: An ERP-Theoretical Analysis of Adjectives in Spanish
ERIC Educational Resources Information Center
Bartlett, Laura B.
2013-01-01
This thesis investigates the syntactic status of adjectives in Spanish through a crossdisciplinary perspective, incorporating methodologies from both theoretical linguistics and neurolinguistics, specifically, event-related potentials (ERPs). It presents conflicting theories about the syntax of adjectives and explores the ways that the processing…
Ghodrati, Masoud; Ghodousi, Mahrad; Yoonessi, Ali
2016-01-01
Humans are fast and accurate in categorizing complex natural images. It is, however, unclear what features of visual information are exploited by brain to perceive the images with such speed and accuracy. It has been shown that low-level contrast statistics of natural scenes can explain the variance of amplitude of event-related potentials (ERP) in response to rapidly presented images. In this study, we investigated the effect of these statistics on frequency content of ERPs. We recorded ERPs from human subjects, while they viewed natural images each presented for 70 ms. Our results showed that Weibull contrast statistics, as a biologically plausible model, explained the variance of ERPs the best, compared to other image statistics that we assessed. Our time-frequency analysis revealed a significant correlation between these statistics and ERPs' power within theta frequency band (~3-7 Hz). This is interesting, as theta band is believed to be involved in context updating and semantic encoding. This correlation became significant at ~110 ms after stimulus onset, and peaked at 138 ms. Our results show that not only the amplitude but also the frequency of neural responses can be modulated with low-level contrast statistics of natural images and highlights their potential role in scene perception.
Ghodrati, Masoud; Ghodousi, Mahrad; Yoonessi, Ali
2016-01-01
Humans are fast and accurate in categorizing complex natural images. It is, however, unclear what features of visual information are exploited by brain to perceive the images with such speed and accuracy. It has been shown that low-level contrast statistics of natural scenes can explain the variance of amplitude of event-related potentials (ERP) in response to rapidly presented images. In this study, we investigated the effect of these statistics on frequency content of ERPs. We recorded ERPs from human subjects, while they viewed natural images each presented for 70 ms. Our results showed that Weibull contrast statistics, as a biologically plausible model, explained the variance of ERPs the best, compared to other image statistics that we assessed. Our time-frequency analysis revealed a significant correlation between these statistics and ERPs' power within theta frequency band (~3–7 Hz). This is interesting, as theta band is believed to be involved in context updating and semantic encoding. This correlation became significant at ~110 ms after stimulus onset, and peaked at 138 ms. Our results show that not only the amplitude but also the frequency of neural responses can be modulated with low-level contrast statistics of natural images and highlights their potential role in scene perception. PMID:28018197
Parks, Nathan A.; Gannon, Matthew A.; Long, Stephanie M.; Young, Madeleine E.
2016-01-01
Analysis of event-related potential (ERP) data includes several steps to ensure that ERPs meet an appropriate level of signal quality. One such step, subject exclusion, rejects subject data if ERP waveforms fail to meet an appropriate level of signal quality. Subject exclusion is an important quality control step in the ERP analysis pipeline as it ensures that statistical inference is based only upon those subjects exhibiting clear evoked brain responses. This critical quality control step is most often performed simply through visual inspection of subject-level ERPs by investigators. Such an approach is qualitative, subjective, and susceptible to investigator bias, as there are no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe a standardized and objective method for quantifying waveform quality in individual subjects and establishing criteria for subject exclusion. The approach uses bootstrap resampling of ERP waveforms (from a pool of all available trials) to compute a signal-to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion. SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates the need for subjective evaluation of waveform quality by the investigator. We detail the SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo simulations, and demonstrate its utility in practice when applied to ERP datasets. PMID:26903849
NASA Technical Reports Server (NTRS)
Wickens, C.; Gill, R.; Kramer, A.; Ross, W.; Donchin, E.
1981-01-01
Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP.
Multi-class ERP-based BCI data analysis using a discriminant space self-organizing map.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.
How stimulation speed affects Event-Related Potentials and BCI performance.
Höhne, Johannes; Tangermann, Michael
2012-01-01
In most paradigms for Brain-Computer Interfaces (BCIs) that are based on Event-Related Potentials (ERPs), stimuli are presented with a pre-defined and constant speed. In order to boost BCI performance by optimizing the parameters of stimulation, this offline study investigates the impact of the stimulus onset asynchrony (SOA) on ERPs and the resulting classification accuracy. The SOA is defined as the time between the onsets of two consecutive stimuli, which represents a measure for stimulation speed. A simple auditory oddball paradigm was tested in 14 SOA conditions with a SOA between 50 ms and 1000 ms. Based on an offline ERP analysis, the BCI performance (quantified by the Information Transfer Rate, ITR in bits/min) was simulated. A great variability in the simulated BCI performance was observed within subjects (N=11). This indicates a potential increase in BCI performance (≥ 1.6 bits/min) for ERP-based paradigms, if the stimulation speed is specified for each user individually.
High density event-related potential data acquisition in cognitive neuroscience.
Slotnick, Scott D
2010-04-16
Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.
Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder.
Johnstone, Stuart J; Barry, Robert J; Clarke, Adam R
2013-04-01
This article reviews the event-related potential (ERP) literature in relation to attention-deficit/hyperactivity disorder (AD/HD) over the years 2002-2012. ERP studies exploring various aspects of brain functioning in children and adolescents with AD/HD are reviewed, with a focus on group effects and interpretations in the domains of attention, inhibitory control, performance monitoring, non-pharmacological treatments, and ERP/energetics interactions. There has been a distinct shift in research intensity over the past 10 years, with a large increase in ERP studies conducted in the areas of inhibitory control and performance monitoring. Overall, the research has identified a substantial number of ERP correlates of AD/HD. Robust differences from healthy controls have been reported in early orienting, inhibitory control, and error-processing components. These data offer potential to improve our understanding of the specific brain dysfunction(s) which contribute to the disorder. The literature would benefit from a more rigorous approach to clinical group composition and consideration of age effects, as well as increased emphasis on replication and extension studies using exacting participant, task, and analysis parameters. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Durato, M. V.; Albano, A. M.; Rapp, P. E.; Nawang, S. A.
2015-06-01
The validity of ERPs as indices of stable neurophysiological traits is partially dependent on their stability over time. Previous studies on ERP stability, however, have reported diverse stability estimates despite using the same component scoring methods. This present study explores a novel approach in investigating the longitudinal stability of average ERPs—that is, by treating the ERP waveform as a time series and then applying Euclidean Distance and Kolmogorov-Smirnov analyses to evaluate the similarity or dissimilarity between the ERP time series of different sessions or run pairs. Nonlinear dynamical analysis show that in the absence of a change in medical condition, the average ERPs of healthy human adults are highly longitudinally stable—as evaluated by both the Euclidean distance and the Kolmogorov-Smirnov test.
Approximate entropy analysis of event-related potentials in patients with early vascular dementia.
Xu, Jin; Sheng, Hengsong; Lou, Wutao; Zhao, Songzhen
2012-06-01
This study investigated differences in event-related potential (ERP) parameters among early vascular dementia (VD) patients, healthy elder controls (ECs), and young controls (YCs). A visual "oddball" color identification task was performed while individuals' electroencephalograms (EEGs) were recorded. Approximate entropy (ApEn), a nonlinear measure, along with P300 latencies and amplitudes were used to analyze ERP data and compare these three groups. The patients with VD showed more complex ERP waveforms and higher ApEn values than did ECs while performing the visual task. It was further found that patients with VD showed reduced P300 amplitudes and increased latencies. The results indicate that patients with VD have fewer attention resources to devote to processing stimuli, lower speed of stimulus classification, and lower synchrony in their cortical activity during the response period. We suggest that ApEn, as a measure of ERP complexity, is a promising marker for early diagnosis of VD.
2011-01-01
Background Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile. Methods We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis. Results Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits. Conclusions Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time. PMID:21635741
Cong, Fengyu; Lin, Qiu-Hua; Astikainen, Piia; Ristaniemi, Tapani
2014-10-30
It is well-known that data of event-related potentials (ERPs) conform to the linear transform model (LTM). For group-level ERP data processing using principal/independent component analysis (PCA/ICA), ERP data of different experimental conditions and different participants are often concatenated. It is theoretically assumed that different experimental conditions and different participants possess the same LTM. However, how to validate the assumption has been seldom reported in terms of signal processing methods. When ICA decomposition is globally optimized for ERP data of one stimulus, we gain the ratio between two coefficients mapping a source in brain to two points along the scalp. Based on such a ratio, we defined a relative mapping coefficient (RMC). If RMCs between two conditions for an ERP are not significantly different in practice, mapping coefficients of this ERP between the two conditions are statistically identical. We examined whether the same LTM of ERP data could be applied for two different stimulus types of fearful and happy facial expressions. They were used in an ignore oddball paradigm in adult human participants. We found no significant difference in LTMs (based on ICASSO) of N170 responses to the fearful and the happy faces in terms of RMCs of N170. We found no methods for straightforward comparison. The proposed RMC in light of ICA decomposition is an effective approach for validating the similarity of LTMs of ERPs between experimental conditions. This is very fundamental to apply group-level PCA/ICA to process ERP data. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatiotemporal patterns of ERP based on combined ICA-LORETA analysis
NASA Astrophysics Data System (ADS)
Zhang, Jiacai; Guo, Taomei; Xu, Yaqin; Zhao, Xiaojie; Yao, Li
2007-03-01
In contrast to the FMRI methods widely used up to now, this method try to understand more profoundly how the brain systems work under sentence processing task map accurately the spatiotemporal patterns of activity of the large neuronal populations in the human brain from the analysis of ERP data recorded on the brain scalp. In this study, an event-related brain potential (ERP) paradigm to record the on-line responses to the processing of sentences is chosen as an example. In order to give attention to both utilizing the ERPs' temporal resolution of milliseconds and overcoming the insensibility of cerebral location ERP sources, we separate these sources in space and time based on a combined method of independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. ICA blindly separate the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. And then the spatial maps associated with each ICA component are analyzed, with use of LORETA to uniquely locate its cerebral sources throughout the full brain according to the assumption that neighboring neurons are simultaneously and synchronously activated. Our results show that the cerebral computation mechanism underlies content words reading is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, and activate at distinct time intervals and are grouped into different statistically independent components. Thus ICA-LORETA analysis provides an encouraging and effective method to study brain dynamics from ERP.
Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping
2015-01-01
A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.
Mokhtari, Mohammadreza; Narayanan, Balaji; Hamm, Jordan P; Soh, Pauline; Calhoun, Vince D; Ruaño, Gualberto; Kocherla, Mohan; Windemuth, Andreas; Clementz, Brett A; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Pearlson, Godfrey D
2016-05-01
The complex molecular etiology of psychosis in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is not well defined, presumably due to their multifactorial genetic architecture. Neurobiological correlates of psychosis can be identified through genetic associations of intermediate phenotypes such as event-related potential (ERP) from auditory paired stimulus processing (APSP). Various ERP components of APSP are heritable and aberrant in SZ, PBP and their relatives, but their multivariate genetic factors are less explored. We investigated the multivariate polygenic association of ERP from 64-sensor auditory paired stimulus data in 149 SZ, 209 PBP probands, and 99 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Multivariate association of 64-channel APSP waveforms with a subset of 16 999 single nucleotide polymorphisms (SNPs) (reduced from 1 million SNP array) was examined using parallel independent component analysis (Para-ICA). Biological pathways associated with the genes were assessed using enrichment-based analysis tools. Para-ICA identified 2 ERP components, of which one was significantly correlated with a genetic network comprising multiple linearly coupled gene variants that explained ~4% of the ERP phenotype variance. Enrichment analysis revealed epidermal growth factor, endocannabinoid signaling, glutamatergic synapse and maltohexaose transport associated with P2 component of the N1-P2 ERP waveform. This ERP component also showed deficits in SZ and PBP. Aberrant P2 component in psychosis was associated with gene networks regulating several fundamental biologic functions, either general or specific to nervous system development. The pathways and processes underlying the gene clusters play a crucial role in brain function, plausibly implicated in psychosis. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Vaucouleur, Sebastien
2011-02-01
We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.
Bostanov, Vladimir; Kotchoubey, Boris
2006-12-01
This study was aimed at developing a method for extraction and assessment of event-related brain potentials (ERP) from single-trials. This method should be applicable in the assessment of single persons' ERPs and should be able to handle both single ERP components and whole waveforms. We adopted a recently developed ERP feature extraction method, the t-CWT, for the purposes of hypothesis testing in the statistical assessment of ERPs. The t-CWT is based on the continuous wavelet transform (CWT) and Student's t-statistics. The method was tested in two ERP paradigms, oddball and semantic priming, by assessing individual-participant data on a single-trial basis, and testing the significance of selected ERP components, P300 and N400, as well as of whole ERP waveforms. The t-CWT was also compared to other univariate and multivariate ERP assessment methods: peak picking, area computation, discrete wavelet transform (DWT) and principal component analysis (PCA). The t-CWT produced better results than all of the other assessment methods it was compared with. The t-CWT can be used as a reliable and powerful method for ERP-component detection and testing of statistical hypotheses concerning both single ERP components and whole waveforms extracted from either single persons' or group data. The t-CWT is the first such method based explicitly on the criteria of maximal statistical difference between two average ERPs in the time-frequency domain and is particularly suitable for ERP assessment of individual data (e.g. in clinical settings), but also for the investigation of small and/or novel ERP effects from group data.
Ouyang, Guang; Sommer, Werner; Zhou, Changsong; Aristei, Sabrina; Pinkpank, Thomas; Abdel Rahman, Rasha
2016-11-01
Overt articulation produces strong artifacts in the electroencephalogram and in event-related potentials (ERPs), posing a serious problem for investigating language production with these variables. Here we describe the properties of articulation-related artifacts and propose a novel correction procedure. Experiment 1 co-recorded ERPs and trajectories of the articulators with an electromagnetic articulograph from a single participant. The generalization of the findings from the single participant to standard picture naming was investigated in Experiment 2. Both experiments provided evidence that articulation-induced artifacts may start up to 300 ms or more prior to voice onset or voice key onset-depending on the specific measure; they are highly similar in topography across many different phoneme patterns and differ mainly in their time course and amplitude. ERPs were separated from articulation-related artifacts with residue iteration decomposition (RIDE). After obtaining the artifact-free ERPs, their correlations with the articulatory trajectories dropped near to zero. Artifact removal with independent component analysis was less successful; while correlations with the articulatory movements remained substantial, early components prior to voice onset were attenuated in reconstructed ERPs. These findings offer new insights into the nature of articulation artifacts; together with RIDE as method for artifact removal the present report offers a fresh perspective for ERP studies requiring overt articulation.
Richardson, John; Di Fabio, Francesco; Clarke, Hannah; Bajalan, Mohammed; Davids, Joe; Abu Hilal, Mohammed
2015-01-01
The adoption of laparoscopy for distal pancreatectomy has proven to substantially improve short-term outcomes. Stress response after major surgery can be further minimized within an enhanced recovery programme (ERP). However, data on the potential benefit of an ERP for laparoscopic distal pancreatectomy are still lacking. The aim was to assess the feasibility, safety and cost of ERP for patients undergoing laparoscopic distal pancreatectomy. This is a case-control study from a Tertiary University Hospital. Sixty-six consecutive patients who underwent laparoscopic distal pancreatectomy were analyzed. Twenty-two patients were enrolled for the ERP and compared with previous consecutive 44 patients managed traditionally (1:2 ratio). Operative details, post-operative outcome and cost analysis were compared in the two groups. Patients enrolled in the ERP had similar intraoperative blood loss (median 165 ml vs. 200 ml; p = 0.176), operation time (225 min vs. 210 min; p = 0.633), time to remove naso-gastric tube (1 vs. 1 day; p = 0.081) but significantly shorter time to mobilization (median 1 vs. 2 days; p = 0.0001), start solid diet (2 vs. 3 days; p = 0004), and pass stools (3 vs. 5 days; p = 0.002) compared to the control group. Median length of stay was significantly shorter in the ERP group (3 vs. 6 days; p < 0.0001). No significant difference in readmission or complication rate was observed. Cost analysis was significantly in favor of the ERP group (p = 0.0004). Implementation of ERP optimizes outcomes for laparoscopic distal pancreatectomy with significant earlier return to normal gut function, reduced length of stay and cost saving. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Steinhauer, Karsten
2014-01-01
This article provides a selective overview of recent event-related brain potential (ERP) studies in L2 morpho-syntax, demonstrating that the ERP evidence supporting the critical period hypothesis (CPH) may be less compelling than previously thought. The article starts with a general introduction to ERP methodology and language-related ERP profiles…
Assessing the internal consistency of the event-related potential: An example analysis
Thigpen, Nina; Kappenman, Emily; Keil, Andreas
2017-01-01
Event-related potentials (ERPs) are widely and increasingly used to address questions in Psychophysiological research. As discussed in this special issue, a renewed focus on questions of reliability and stability marks the need for intuitive, quantitative descriptors that allow researchers to communicate the robustness of ERP measures used in a given study. This report argues that well-established indices of internal consistency and effect size meet this need and can be easily extracted from most ERP data sets, as demonstrated with example analyses using a representative data set from a feature-based visual selective attention task. We demonstrate how to measure the internal consistency of three aspects commonly considered in ERP studies: Voltage measurements for specific time ranges at selected sensors, voltage dynamics across all time points of the ERP waveform, and the distribution of voltages across the scalp. We illustrate methods for quantifying the robustness of experimental condition differences, by calculating effect size for different indices derived from the ERP. The number of trials contributing to the ERP waveform was manipulated to examine the relationship between signal-to-noise ratio, internal consistency, and effect size. In the present example data set, satisfactory consistency (Cronbach’s alpha > 0.7) of individual voltage measurements was reached at lower trial counts than were required to reach satisfactory effect sizes for differences between experimental conditions. Comparing different metrics of robustness, we conclude that the SNR, internal consistency, and effect size of ERP findings greatly depend on the quantification strategy, the comparisons and analyses performed, and the signal-to-noise ratio. PMID:28000264
Escobar-Rodriguez, Tomas; Bartual-Sopena, Lourdes
Enterprise resources planning (ERP) systems enable central and integrative control over all processes throughout an organisation by ensuring one data entry point and the use of a common database. T his paper analyses the attitude of healthcare personnel towards the use of an ERP system in a Spanish public hospital, identifying influencing factors. This research is based on a regression analysis of latent variables using the optimisation technique of partial least squares. We propose a research model including possible relationships among different constructs using the technology acceptance model. Our results show that the personal characteristics of potential users are key factors in explaining attitude towards using ERP systems.
Gheza, Davide; Paul, Katharina; Pourtois, Gilles
2017-11-24
Evaluative feedback provided during performance monitoring (PM) elicits either a positive or negative deflection ~250-300ms after its onset in the event-related potential (ERP) depending on whether the outcome is reward-related or not, as well as expected or not. However, it remains currently unclear whether these two deflections reflect a unitary process, or rather dissociable effects arising from non-overlapping brain networks. To address this question, we recorded 64-channel EEG in healthy adult participants performing a standard gambling task where valence and expectancy were manipulated in a factorial design. We analyzed the feedback-locked ERP data using a conventional ERP analysis, as well as an advanced topographic ERP mapping analysis supplemented with distributed source localization. Results reveal two main topographies showing opposing valence effects, and being differently modulated by expectancy. The first one was short-lived and sensitive to no-reward irrespective of expectancy. Source-estimation associated with this topographic map comprised mainly regions of the dorsal anterior cingulate cortex. The second one was primarily driven by reward, had a prolonged time-course and was monotonically influenced by expectancy. Moreover, this reward-related topographical map was best accounted for by intracranial generators estimated in the posterior cingulate cortex. These new findings suggest the existence of dissociable brain systems depending on feedback valence and expectancy. More generally, they inform about the added value of using topographic ERP mapping methods, besides conventional ERP measurements, to characterize qualitative changes occurring in the spatio-temporal dynamic of reward processing during PM. Copyright © 2017 Elsevier B.V. All rights reserved.
Qiu, Jiang; Su, Yanhua; Li, Hong; Wei, Dongtao; Tu, Shen; Zhang, Qinglin
2010-11-01
Event-related brain potentials (ERPs) were measured when 24 Chinese subjects performed the classical Stroop task. All of subjects had experienced the great Sichuan earthquake (5/12), with 12 people in each of the Far (Chengdu city) and the Close (Deyang city) earthquake experience groups. The behavioral data showed that the Stroop task yielded a robust Stroop interference effect as indexed by longer RT for incongruent than congruent color words in both the Chengdu and Deyang groups. Scalp ERP data showed that incongruent stimuli elicited a more negative ERP deflection (N400-600; Stroop interference effect) than did congruent stimuli between 400-600 ms in the Chengdu group, while the Stroop interference ERP effect was not found in the Deyang group. Dipole source analysis localized the generator of the N400-600 in the right prefrontal cortex (PFC) and was possibly related to conflict monitoring and cognitive control. Copyright © 2010 Society for Psychophysiological Research.
Seven years follow-up of early repolarisation patterns in French elite special forces.
Roche, Nicolas-Charles; Massoure, Pierre-Laurent; Deharo, Jean-Claude; Paule, Philippe; Fourcade, Laurent
2018-06-01
The early repolarization pattern (ERP) may be a marker of increased risk for sudden cardiac death (SCD). Influence of ethnicity on the ERP has not been extensively studied. The aim of this study was to evaluate the epidemiology of ERP in a male multiethnic population. ECG analysis was performed among consecutive recruits from the French Foreign Legion. ERP was characterized by a J-point elevation ≥0.1 mV in two continuous inferior-lateral leads, and high amplitude early repolarization (HAER-potentially malignant pattern) by an elevation ≥0.2 mV. Ethnical affiliation and level of physical activity were recorded. A total of 2508 healthy men (24 ± 5 years old) from 105 different native countries were divided into three ethnic groups: 1689 Whites, 388 Afro-Caribbean, and 431 Asians. ERP was found in 489 recruits (19%), 14% in Whites, 33% in Afro-Caribbeans, and 27% in Asians without any difference according to age and physical activity. Sub-Saharan Africans or Caribbeans had the highest rate of ERP (30%), and Hispanics the lowest (8%). People from occidental countries, Middle East, Central Asia or India had a rate of 12%-18%, East and South-Asia 20%-25%. Madagascar was an exception with only 16% of ERP. HAER (2.9%) was more frequent among Asian recruits. After 5 ± 2 years of follow up, one SCD occurred in the ERP group (p = 0.042). This study reports a large multiethnic analysis of ERP. HAER was more frequent in recruits from East and South-East Asia where sudden unexplained nocturnal death syndrome is endemic. © 2018 Wiley Periodicals, Inc.
Warp-averaging event-related potentials.
Wang, K; Begleiter, H; Porjesz, B
2001-10-01
To align the repeated single trials of the event-related potential (ERP) in order to get an improved estimate of the ERP. A new implementation of the dynamic time warping is applied to compute a warp-average of the single trials. The trilinear modeling method is applied to filter the single trials prior to alignment. Alignment is based on normalized signals and their estimated derivatives. These features reduce the misalignment due to aligning the random alpha waves, explaining amplitude differences in latency differences, or the seemingly small amplitudes of some components. Simulations and applications to visually evoked potentials show significant improvement over some commonly used methods. The new implementation of the dynamic time warping can be used to align the major components (P1, N1, P2, N2, P3) of the repeated single trials. The average of the aligned single trials is an improved estimate of the ERP. This could lead to more accurate results in subsequent analysis.
Deprivation selectively modulates brain potentials to food pictures.
Stockburger, Jessica; Weike, Almut I; Hamm, Alfons O; Schupp, Harald T
2008-08-01
Event-related brain potentials (ERPs) were used to examine whether the processing of food pictures is selectively modulated by changes in the motivational state of the observer. Sixteen healthy male volunteers were tested twice 1 week apart, either after 24 hr of food deprivation or after normal food intake. ERPs were measured while participants viewed appetitive food pictures as well as standard emotional and neutral control pictures. Results show that the ERPs to food pictures in a hungry, rather than satiated, state were associated with enlarged positive potentials over posterior sensor sites in a time window of 170-310 ms poststimulus. Minimum-norm analysis suggests the enhanced processing of food cues primarily in occipito-temporo-parietal regions. In contrast, processing of standard emotional and neutral pictures was not modulated by food deprivation. Considered from the perspective of motivated attention, the selective change of food cue processing may reflect a state-dependent change in stimulus salience.
Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai
2012-10-01
Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.
MANGALATHU-ARUMANA, J.; BEARDSLEY, S. A.; LIEBENTHAL, E.
2012-01-01
The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post- central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI. PMID:22377443
Event-related potential markers of brain changes in preclinical familial Alzheimer disease
Ally, B.A.; Celone, K.; McKeever, J.; Ruiz-Rizzo, A.L.; Lopera, F.; Stern, C.E.; Budson, A.E.
2011-01-01
Objectives: Event-related potentials (ERPs) can reflect differences in brain electrophysiology underlying cognitive functions in brain disorders such as dementia and mild cognitive impairment. To identify individuals at risk for Alzheimer disease (AD) we used high-density ERPs to examine brain physiology in young presymptomatic individuals (average age 34.2 years) who carry the E280A mutation in the presenilin-1 (PSEN1) gene and will go on to develop AD around the age of 45. Methods: Twenty-one subjects from a Colombian population with familial AD participated: 10 presymptomatic subjects positive for the PSEN1 mutation (carriers) and 11 siblings without the mutation (controls). Subjects performed a visual recognition memory test while 128-channel ERPs were recorded. Results: Despite identical behavioral performance, PSEN1 mutation carriers showed less positivity in frontal regions and more positivity in occipital regions, compared to controls. These differences were more pronounced during the 200–300 msec period. Discriminant analysis at this time interval showed promising sensitivity (72.7%) and specificity (81.8%) of the ERP measures to predict the presence of AD pathology. Conclusions: Presymptomatic PSEN1 mutation carriers show changes in brain physiology that can be detected by high-density ERPs. The relative differences observed showing greater frontal positivity in controls and greater occipital positivity in carriers indicates that control subjects may use frontally mediated processes to distinguish between studied and unstudied visual items, whereas carriers appear to rely more upon perceptual details of the items to distinguish between them. These findings also demonstrate the potential usefulness of ERP brain correlates as preclinical markers of AD. PMID:21775732
Kirchner, Elsa A; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.
Kirchner, Elsa A.; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660
Khalifian, Negin; Stites, Mallory C; Laszlo, Sarah
2016-09-01
In the cognitive, computational, neuropsychological, and educational literatures, it is established that children approach text in unique ways, and that even adult readers can differ in the strategies they bring to reading. In the developmental event-related potential (ERP) literature, however, children with differing degrees of reading ability are, the majority of the time, placed in monolithic groups such as 'normal' and 'dyslexic' (e.g. Araújo et al., 2012) and analyzed only at the group level. This is likely done due to methodological concerns - such as low sample size or a lack of statistical power - that can make it difficult to perform analysis at the individual level. Here, we collected ERPs and behavior from > 100 children in grades pre-K-7, as they read unconnected text silently to themselves. This large sample, combined with the statistical power of the Linear Mixed Effects Regression (LMER) technique, enables us to address individual differences in ERP component effects due to reading ability at an unprecedented level of detail. Results indicate that it is possible to predict reading-related report card scores from ERP component amplitudes - especially that of the N250, a component pertaining to sublexical processing (including phonological decoding). Results also reveal relationships between behavioral measures of reading ability and ERP component effects that have previously been elusive, such as the relationship between vocabulary and N400 mean amplitude (cf. Henderson et al., 2011). We conclude that it is possible to meaningfully examine reading-related ERP effects at the single subject level in developing readers, and that this type of analysis can provide novel insights into both behavior and scholastic achievement. © 2015 John Wiley & Sons Ltd.
Auditory Evoked Potentials as a Function of Sleep Deprivation and Recovery Sleep
1985-09-29
present research: They relate to the effects of: a) 48-hours of sleep deprivation on endogenous event related potentials (ERPs); b) circadian rhythms on...the study were: decreases in amplitude for N2, P3 and N2P3 across the reprivation period; a circadian rhythm was apparent for both ERP recordings and...of cortical evoked response potentials (ERPs)? 2) How do circadian rhythms affect ERPS under conditions of sleep deprivation? 3) How do different
Analysis and visualization of single-trial event-related potentials
NASA Technical Reports Server (NTRS)
Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.
2001-01-01
In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image visualization to the analysis of sets of single trials from event-related EEG (or MEG) experiments can increase the information available from ERP (or ERF) data. Copyright 2001 Wiley-Liss, Inc.
Carbine, Kaylie A; Rodeback, Rebekah; Modersitzki, Erin; Miner, Marshall; LeCheminant, James D; Larson, Michael J
2018-05-19
Daily dietary decisions have the potential to impact our physical, mental, and emotional health. Event-related potentials (ERPs) can provide insight into cognitive processes, such as attention, working memory, and inhibitory control, that may influence the food-related decisions we make on a daily basis. We conducted a systematic review of the food-related cognition and ERP research in order to summarize the extant literature, identify future research questions, synthesize how food-related ERP components relate to eating habits and appetite, and demonstrate the utility of ERPs in examining food-related cognition. Forty-three articles were systematically extracted. In general, results indicated food cues compared to less palatable foods or neutral cues elicited greater ERP amplitudes reflecting early or late attention allocation (e.g., increased P2, P3, late positive potential amplitudes). Food cues were associated with increased frontocentral P3 and N2 ERP amplitudes compared to neutral or less palatable food cues, suggesting increased recruitment of inhibitory control and conflict monitoring resources. However, there was significant heterogeneity in the literature, as experimental tasks, stimuli, and examined ERP components varied widely across studies, and therefore replication studies are needed. In-depth research is also needed to establish how food-related ERPs differ by BMI groups and relate to real-world eating habits and appetite, in order to establish the ecological validity. Copyright © 2018. Published by Elsevier Ltd.
Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI
Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.
2018-01-01
Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611
ERP Energy and Cognitive Activity Correlates
NASA Astrophysics Data System (ADS)
Schillaci, Michael Jay; Vendemia, Jennifer M. C.
2014-03-01
We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.
Balconi, Michela; Pozzoli, Uberto
2007-09-01
The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.
Analysis of the interaction of calcitriol with the disulfide isomerase ERp57
NASA Astrophysics Data System (ADS)
Gaucci, Elisa; Raimondo, Domenico; Grillo, Caterina; Cervoni, Laura; Altieri, Fabio; Nittari, Giulio; Eufemi, Margherita; Chichiarelli, Silvia
2016-11-01
Calcitriol, the active form of vitamin D3, can regulate the gene expression through the binding to the nuclear receptor VDR, but it can also display nongenomic actions, acting through a membrane-associated receptor, which has been discovered as the disulfide isomerase ERp57. The aim of our research is to identify the binding sites for calcitriol in ERp57 and to analyze their interaction. We first studied the interaction through bioinformatics and fluorimetric analyses. Subsequently, we focused on two protein mutants containing the predicted interaction domains with calcitriol: abb’-ERp57, containing the first three domains, and a’-ERp57, the fourth domain only. To consolidate the achievements we used the calorimetric approach to the whole protein and its mutants. Our results allow us to hypothesize that the interaction with the a’ domain contributes to a greater extent than the other potential binding sites to the dissociation constant, calculated as a Kd of about 10-9 M.
Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng
2009-01-01
Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240
Electrocortical changes associated with minocycline treatment in fragile X syndrome.
Schneider, Andrea; Leigh, Mary Jacena; Adams, Patrick; Nanakul, Rawi; Chechi, Tasleem; Olichney, John; Hagerman, Randi; Hessl, David
2013-10-01
Minocycline normalizes synaptic connections and behavior in the knockout mouse model of fragile X syndrome (FXS). Human-targeted treatment trials with minocycline have shown benefits in behavioral measures and parent reports. Event-related potentials (ERPs) may provide a sensitive method of monitoring treatment response and changes in coordinated brain activity. Measurement of electrocortical changes due to minocycline was done in a double-blind, placebo-controlled crossover treatment trial in children with FXS. Children with FXS (Meanage 10.5 years) were randomized to minocycline or placebo treatment for 3 months then changed to the other treatment for 3 months. The minocycline dosage ranged from 25-100 mg daily, based on weight. Twelve individuals with FXS (eight male, four female) completed ERP studies using a passive auditory oddball paradigm. Current source density (CSD) and ERP analysis at baseline showed high-amplitude, long-latency components over temporal regions. After 3 months of treatment with minocycline, the temporal N1 and P2 amplitudes were significantly reduced compared with placebo. There was a significant amplitude increase of the central P2 component on minocycline. Electrocortical habituation to auditory stimuli improved with minocycline treatment. Our study demonstrated improvements of the ERP in children with FXS treated with minocycline, and the potential feasibility and sensitivity of ERPs as a cognitive biomarker in FXS treatment trials.
Individual differences in the recognition of facial expressions: an event-related potentials study.
Tamamiya, Yoshiyuki; Hiraki, Kazuo
2013-01-01
Previous studies have shown that early posterior components of event-related potentials (ERPs) are modulated by facial expressions. The goal of the current study was to investigate individual differences in the recognition of facial expressions by examining the relationship between ERP components and the discrimination of facial expressions. Pictures of 3 facial expressions (angry, happy, and neutral) were presented to 36 young adults during ERP recording. Participants were asked to respond with a button press as soon as they recognized the expression depicted. A multiple regression analysis, where ERP components were set as predictor variables, assessed hits and reaction times in response to the facial expressions as dependent variables. The N170 amplitudes significantly predicted for accuracy of angry and happy expressions, and the N170 latencies were predictive for accuracy of neutral expressions. The P2 amplitudes significantly predicted reaction time. The P2 latencies significantly predicted reaction times only for neutral faces. These results suggest that individual differences in the recognition of facial expressions emerge from early components in visual processing.
Probabilistic delay differential equation modeling of event-related potentials.
Ostwald, Dirk; Starke, Ludger
2016-08-01
"Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.
An automated approach towards detecting complex behaviours in deep brain oscillations.
Mace, Michael; Yousif, Nada; Naushahi, Mohammad; Abdullah-Al-Mamun, Khondaker; Wang, Shouyan; Nandi, Dipankar; Vaidyanathan, Ravi
2014-03-15
Extracting event-related potentials (ERPs) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP need not conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5 ± 6.5, 76.7 ± 12.8, 90.0 ± 4.1] and [92.6 ± 6.3, 86.0 ± 9.0, 29.8 ± 12.3] (mean ± 1 std) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required. Copyright © 2013 Elsevier B.V. All rights reserved.
A Multi-Dimensional Functional Principal Components Analysis of EEG Data
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A.; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-01-01
Summary The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. PMID:28072468
A multi-dimensional functional principal components analysis of EEG data.
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-09-01
The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal, and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. © 2017, The International Biometric Society.
Age Effects in L2 Grammar Processing as Revealed by ERPs and How (Not) to Study Them
Meulman, Nienke; Wieling, Martijn; Sprenger, Simone A.; Schmid, Monika S.
2015-01-01
In this study we investigate the effect of age of acquisition (AoA) on grammatical processing in second language learners as measured by event-related brain potentials (ERPs). We compare a traditional analysis involving the calculation of averages across a certain time window of the ERP waveform, analyzed with categorical groups (early vs. late), with a generalized additive modeling analysis, which allows us to take into account the full range of variability in both AoA and time. Sixty-six Slavic advanced learners of German listened to German sentences with correct and incorrect use of non-finite verbs and grammatical gender agreement. We show that the ERP signal depends on the AoA of the learner, as well as on the regularity of the structure under investigation. For gender agreement, a gradual change in processing strategies can be shown that varies by AoA, with younger learners showing a P600 and older learners showing a posterior negativity. For verb agreement, all learners show a P600 effect, irrespective of AoA. Based on their behavioral responses in an offline grammaticality judgment task, we argue that the late learners resort to computationally less efficient processing strategies when confronted with (lexically determined) syntactic constructions different from the L1. In addition, this study highlights the insights the explicit focus on the time course of the ERP signal in our analysis framework can offer compared to the traditional analysis. PMID:26683335
Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs.
Larson, Michael J; Clayson, Peter E; Clawson, Ann
2014-09-01
Cognitive control theory suggests that goal-directed behavior is governed by a dynamic interplay between areas of the prefrontal cortex. Critical to cognitive control is the detection and resolution of competing stimulus or response representations (i.e., conflict). Event-related potential (ERP) research provides a window into the nature and precise temporal sequence of conflict monitoring. We critically review the research on conflict-related ERPs, including the error-related negativity (ERN), Flanker N2, Stroop N450 and conflict slow potential (conflict SP or negative slow wave [NSW]), and provide an analysis of how these ERPs inform conflict monitoring theory. Overall, there is considerable evidence that amplitude of the ERN is sensitive to the degree of response conflict, consistent with a role in conflict monitoring. It remains unclear, however, to what degree contextual, individual, affective, and motivational factors influence ERN amplitudes and how ERN amplitudes are related to regulative changes in behavior. The Flanker N2, Stroop N450, and conflict SP ERPs represent distinct conflict-monitoring processes that reflect conflict detection (N2, N450) and conflict adjustment or resolution processes (N2, conflict SP). The investigation of conflict adaptation effects (i.e., sequence or sequential trial effects) shows that the N2 and conflict SP reflect post-conflict adjustments in cognitive control, but the N450 generally does not. Conflict-related ERP research provides a promising avenue for understanding the effects of individual differences on cognitive control processes in healthy, neurologic and psychiatric populations. Comparisons between the major conflict-related ERPs and suggestions for future studies to clarify the nature of conflict-related neural processes are provided. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatiotemporal mapping of sex differences during attentional processing.
Neuhaus, Andres H; Opgen-Rhein, Carolin; Urbanek, Carsten; Gross, Melanie; Hahn, Eric; Ta, Thi Minh Tam; Koehler, Simone; Dettling, Michael
2009-09-01
Functional neuroimaging studies have increasingly aimed at approximating neural substrates of human cognitive sex differences elicited by visuospatial challenge. It has been suggested that females and males use different behaviorally relevant neurocognitive strategies. In females, greater right prefrontal cortex activation has been found in several studies. The spatiotemporal dynamics of neural events associated with these sex differences is still unclear. We studied 22 female and 22 male participants matched for age, education, and nicotine with 29-channel-electroencephalogram recorded under a visual selective attention paradigm, the Attention Network Test. Visual event-related potentials (ERP) were topographically analyzed and neuroelectric sources were estimated. In absence of behavioral differences, ERP analysis revealed a novel frontal-occipital second peak of visual N100 that was significantly increased in females relative to males. Further, in females exclusively, a corresponding central ERP component at around 220 ms was found; here, a strong correlation between stimulus salience and sex difference of the central ERP component amplitude was observed. Subsequent source analysis revealed increased cortical current densities in right rostral prefrontal (BA 10) and occipital cortex (BA 19) in female subjects. This is the first study to report on a tripartite association between sex differences in ERPs, visual stimulus salience, and right prefrontal cortex activation during attentional processing. 2009 Wiley-Liss, Inc.
Chaotic time series analysis of vision evoked EEG
NASA Astrophysics Data System (ADS)
Zhang, Ningning; Wang, Hong
2010-01-01
To investigate the human brain activities for aesthetic processing, beautiful woman face picture and ugly buffoon face picture were applied. Twelve subjects were assigned the aesthetic processing task while the electroencephalogram (EEG) was recorded. Event-related brain potential (ERP) was required from the 32 scalp electrodes and the ugly buffoon picture produced larger amplitudes for the N1, P2, N2, and late slow wave components. Average ERP from the ugly buffoon picture were larger than that from the beautiful woman picture. The ERP signals shows that the ugly buffoon elite higher emotion waves than the beautiful woman face, because some expression is on the face of the buffoon. Then, chaos time series analysis was carried out to calculate the largest Lyapunov exponent using small data set method and the correlation dimension using G-P algorithm. The results show that the largest Lyapunov exponents of the ERP signals are greater than zero, which indicate that the ERP signals may be chaotic. The correlations dimensions coming from the beautiful woman picture are larger than that from the ugly buffoon picture. The comparison of the correlations dimensions shows that the beautiful face can excite the brain nerve cells. The research in the paper is a persuasive proof to the opinion that cerebrum's work is chaotic under some picture stimuli.
Flohr, Elena L R; Boesveldt, Sanne; Haehner, Antje; Iannilli, Emilia; Sinding, Charlotte; Hummel, Thomas
2015-03-01
Habituation of responses to chemosensory signals has been explored in many ways. Strong habituation and adaptation processes can be observed at the various levels of processing. For example, with repeated exposure, amplitudes of chemosensory event-related potentials (ERP) decrease over time. However, long-term habituation has not been investigated so far and investigations of differences in habituation between trigeminal and olfactory ERPs are very rare. The present study investigated habituation over a period of approximately 80 min for two olfactory and one trigeminal stimulus, respectively. Habituation was examined analyzing the N1 and P2 amplitudes and latencies of chemosensory ERPs and intensity ratings. It was shown that amplitudes of both components - and intensity ratings - decreased from the first to the last block. Concerning ERP latencies no effects of habituation were seen. Amplitudes of trigeminal ERPs diminished faster than amplitudes of olfactory ERPs, indicating that the habituation of trigeminal ERPs is stronger than habituation of olfactory ERPs. Amplitudes of trigeminal ERPs were generally higher than amplitudes of olfactory ERPs, as it has been shown in various studies before. The results reflect relatively selective central changes in response to chemosensory stimuli over time. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Violino, Bob
2008-01-01
This article discusses the enterprise resource planning (ERP) system. Deploying an ERP system is one of the most extensive--and expensive--IT projects a college or university can undertake. The potential benefits of ERP are significant: a more smoothly running operation with efficiencies in virtually every area of administration, from automated…
Gender Differences in Memory Processing: Evidence from Event-Related Potentials to Faces
ERIC Educational Resources Information Center
Guillem, F.; Mograss, M.
2005-01-01
This study investigated gender differences on memory processing using event-related potentials (ERPs). Behavioral data and ERPs were recorded in 16 males and 10 females during a recognition memory task for faces. The behavioral data results showed that females performed better than males. Gender differences on ERPs were evidenced over anterior…
Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling
2017-01-01
In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies. PMID:28529472
Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling
2017-01-01
In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies.
A meta-analysis investigating factors underlying attrition rates in infant ERP studies.
Stets, Manuela; Stahl, Daniel; Reid, Vincent M
2012-01-01
In this meta-analysis, we examined interrelationships between characteristics of infant event-related potential (ERP) studies and their attrition rates. One-hundred and forty-nine published studies provided information on 314 experimental groups of which 181 provided data on attrition. A random effects meta-analysis revealed a high average attrition rate of 49.2%. Additionally, we used meta-regression for 178 groups with attrition data to analyze which variables best explained attrition variance. Our main findings were that the nature of the stimuli-visual, auditory, or combined as well as if stimuli were animated-influenced exclusion rates from the final analysis and that infant age did not alter attrition rates.
A frontal cortex event-related potential driven by the basal forebrain
Nguyen, David P; Lin, Shih-Chieh
2014-01-01
Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497
Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime
2014-10-15
Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe. Copyright © 2014 Elsevier Inc. All rights reserved.
Portella, Claudio; Machado, Sergio; Paes, Flávia; Cagy, Mauricio; Sack, Alexander T; Sandoval-Carrillo, Ada; Salas-Pacheco, Jose; Silva, Adriana Cardoso; Piedade, Roberto; Ribeiro, Pedro; Nardi, Antonio Egídio; Arias-Carrión, Oscar
2014-01-01
The human brain is a system consisting of various interconnected neural networks, with functional specialization coexisting with functional integration occurring both; temporally and spatially at many levels. The current study ranked and compared fast and slow participants in processing information by assessing latency and amplitude of early and late Event-Related Potential (ERP) components, including P200, N200, Premotor Potential (PMP) and P300. In addition, the Reaction Time (RT) of participants was compared and related to the respective ERP components. For this purpose, twenty right-handed and healthy individuals were subjected to a classical ERP "Oddball" paradigm. Principal Component Analysis (PCA) and Discriminant Function analyses (DFA) used PRE components and the Reaction Time (RT) to classify individuals. Our results indicate that latencies of P200 (O2 electrode), N200 (O2), PMP (C3) and P300 (Pz) components are significantly reduced in the group of fast responding participants. In addition, the P200 amplitude is significantly increased in the group of fast responding participants. Based on these findings, we suggest that the ERP is able to detect even minimal impairments, in the processing of somatosensory information and cognitive and motor stages. Hence, the study of ERP might also be capable of assessing sensorimotor dysfunctions in healthy old-aged people and in neuropsychiatric patients (suffering from dementia, Parkinson's disease, and other neurological disorders).
Han, Changwoo; Park, Minkyung; Lee, Jun-Young; Jung, Hee Yeon; Park, Su Mi; Choi, Jung-Seok
2018-06-01
Acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) may occur after traumatic event and also cause significant life time impairment. P300 event-related potential (ERP) is a potential biological marker for PTSD and can reflect cognitive impairment in information processing and attention. Despite the usefulness of ERP, there are few attempts to reveal relationships between ASD and P300. In the present study, we aimed to determine if the P300 of the patients who were the victims of sexual abuse reflected the quantitative trait of ASD or if P300 is applicable as a state marker for predicting the risk of PTSD.Fifteen female victims of sexual abuse diagnosed with ASD and 18 healthy controls (HCs) without trauma exposure participated in this study. We investigated the P300 ERPs in patients with ASD to compare them with those of HCs. ERPs were acquired from female adults during an auditory oddball task. Between-group differences in amplitudes or latencies of P300 were investigated using repeated-measures analysis of variance.The ASD groups showed reduced P300 amplitudes at the midline centroparietal site as well as reduced accuracy rates during an auditory oddball task compared with the HCs.These results indicate that ASD have abnormalities in the P300 compared to those in HCs. Moreover, the reduction in P300 could be considered a candidate neurophysiological marker for ASD.
Li, Ya; Wang, Yongchun; Zhang, Baoqiang; Wang, Yonghui; Zhou, Xiaolin
2018-01-01
Dynamically evaluating the outcomes of our actions and thoughts is a fundamental cognitive ability. Given its excellent temporal resolution, the event-related potential (ERP) technology has been used to address this issue. The feedback-related negativity (FRN) component of ERPs has been studied intensively with the averaged linked mastoid reference method (LM). However, it is unknown whether FRN can be induced by an expectancy violation in an antonym relations context and whether LM is the most suitable reference approach. To address these issues, the current research directly compared the ERP components induced by expectancy violations in antonym expectation and gambling tasks with a within-subjects design and investigated the effect of the reference approach on the experimental effects. Specifically, we systematically compared the influence of the LM, reference electrode standardization technique (REST) and average reference (AVE) approaches on the amplitude, scalp distribution and magnitude of ERP effects as a function of expectancy violation type. The expectancy deviation in the antonym expectation task elicited an N400 effect that differed from the FRN effect induced in the gambling task; this difference was confirmed by all the three reference methods. Both the amplitudes of the ERP effects (N400 and FRN) and the magnitude as the expectancy violation increased were greater under the LM approach than those under the REST approach, followed by those under the AVE approach. Based on the statistical results, the electrode sites that showed the N400 and FRN effects critically depended on the reference method, and the results of the REST analysis were consistent with previous ERP studies. Combined with evidence from simulation studies, we suggest that REST is an optional reference method to be used in future ERP data analysis. PMID:29615858
NASA Astrophysics Data System (ADS)
Leu, Jun-Der; Lee, Larry Jung-Hsing
2017-09-01
Enterprise resource planning (ERP) is a software solution that integrates the operational processes of the business functions of an enterprise. However, implementing ERP systems is a complex process. In addition to the technical issues, companies must address problems associated with business process re-engineering, time and budget control, and organisational change. Numerous industrial studies have shown that the failure rate of ERP implementation is high, even for well-designed systems. Thus, ERP projects typically require a clear methodology to support the project execution and effectiveness. In this study, we propose a theoretical model for ERP implementation. The value engineering (VE) method forms the basis of the proposed framework, which integrates Six Sigma tools. The proposed framework encompasses five phases: knowledge generation, analysis, creation, development and execution. In the VE method, potential ERP problems related to software, hardware, consultation and organisation are analysed in a group-decision manner and in relation to value, and Six Sigma tools are applied to avoid any project defects. We validate the feasibility of the proposed model by applying it to an international manufacturing enterprise in Taiwan. The results show improvements in customer response time and operational efficiency in terms of work-in-process and turnover of materials. Based on the evidence from the case study, the theoretical framework is discussed together with the study's limitations and suggestions for future research.
ERP correlates of error processing during performance on the Halstead Category Test.
Santos, I M; Teixeira, A R; Tomé, A M; Pereira, A T; Rodrigues, P; Vagos, P; Costa, J; Carrito, M L; Oliveira, B; DeFilippis, N A; Silva, C F
2016-08-01
The Halstead Category Test (HCT) is a neuropsychological test that measures a person's ability to formulate and apply abstract principles. Performance must be adjusted based on feedback after each trial and errors are common until the underlying rules are discovered. Event-related potential (ERP) studies associated with the HCT are lacking. This paper demonstrates the use of a methodology inspired on Singular Spectrum Analysis (SSA) applied to EEG signals, to remove high amplitude ocular and movement artifacts during performance on the test. This filtering technique introduces no phase or latency distortions, with minimum loss of relevant EEG information. Importantly, the test was applied in its original clinical format, without introducing adaptations to ERP recordings. After signal treatment, the feedback-related negativity (FRN) wave, which is related to error-processing, was identified. This component peaked around 250ms, after feedback, in fronto-central electrodes. As expected, errors elicited more negative amplitudes than correct responses. Results are discussed in terms of the increased clinical potential that coupling ERP information with behavioral performance data can bring to the specificity of the HCT in diagnosing different types of impairment in frontal brain function. Copyright © 2016. Published by Elsevier B.V.
A novel BCI based on ERP components sensitive to configural processing of human faces
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej
2012-04-01
This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.
A novel BCI based on ERP components sensitive to configural processing of human faces.
Zhang, Yu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2012-04-01
This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min(-1) using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.
Empirical models of scalp-EEG responses using non-concurrent intracranial responses
NASA Astrophysics Data System (ADS)
Kaur, Komalpreet; Shih, Jerry J.; Krusienski, Dean J.
2014-06-01
Objective. This study presents inter-subject models of scalp-recorded electroencephalographic (sEEG) event-related potentials (ERPs) using intracranially recorded ERPs from electrocorticography and stereotactic depth electrodes in the hippocampus, generally termed as intracranial EEG (iEEG). Approach. The participants were six patients with medically-intractable epilepsy that underwent temporary placement of intracranial electrode arrays to localize seizure foci. Participants performed one experimental session using a brain-computer interface matrix spelling paradigm controlled by sEEG prior to the iEEG electrode implantation, and one or more identical sessions controlled by iEEG after implantation. All participants were able to achieve excellent spelling accuracy using sEEG, four of the participants achieved roughly equivalent performance in the iEEG sessions, and all participants were significantly above chance accuracy for the iEEG sessions. The sERPs were modeled using a linear combination of iERPs using two different optimization criteria. Main results. The results indicate that sERPs can be accurately estimated from the iERPs for the patients that exhibited stable ERPs over the respective sessions, and that the transformed iERPs can be accurately classified with an sERP-derived classifier. Significance. The resulting models provide a new empirical representation of the formation and distribution of sERPs from underlying composite iERPs. These new insights provide a better understanding of ERP relationships and can potentially lead to the development of more robust signal processing methods for noninvasive EEG applications.
ERPS to Monitor Non-conscious Mentation
NASA Technical Reports Server (NTRS)
Donchin, E.
1984-01-01
Event Related Brain Potentials (or ERPs) are extracted from the EEG that can be recorded between a pair of electrodes placed on a person's scalp. The EEG is recorded as a continual fluctuation in voltage. It is the results of the integration of the potential fields generated by a multitude of neuronal ensembles that are active as the brain goes about its business. Within this ongoing signal it is possible to distinguish voltage fluctuations that are triggered in neural structures by the occurrence of specific events. This activity, evoked as it is by an external event, is known as the Evoked, or Event Related, Potential. The ERPs provide a unique opportunity to monitor non-conscious mentation. The inferences that can be based on ERP data are described and the limits of these inferences are emphasized. This, however, will not be an exhaustive review of the use of ERPs in Engineering Psychology. The application, its scope, and its limitations will be illustrated by means of one example. This example is preceded by a brief technical introduction to the methodology used in the study of ERPs. The manner in which ERPs are used to study cognition is described.
NASA Technical Reports Server (NTRS)
Stern, John A.
1988-01-01
The study of probe event related potentials (probe ERPs) is reviewed. Several recent experiments are described which seem to leave in doubt the usefulness of applying ERP to simulation and field conditions as well as laboratory situations. Relatively minor changes in the experimental paradigm can produce major shifts in ERP findings, for reasons that are not clear. However, task-elicited ERPs might be used on a flight simulator if the experimenter takes time of arrival of the eyes on a particular instrument as one variable of concern and dwell time on the instrument as a second variable. One can then look at ERPs triggered by saccade termination for fixation pauses of specified durations. It may well be that ERP to a momentarily important display will differ from that elicited by routine instrument check.
Farquhar, J; Hill, N J
2013-04-01
Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.
Data of ERPs and spectral alpha power when attention is engaged on visual or verbal/auditory imagery
Villena-González, Mario; López, Vladimir; Rodríguez, Eugenio
2016-01-01
This article provides data from statistical analysis of event-related brain potentials (ERPs) and spectral power from 20 participants during three attentional conditions. Specifically, P1, N1 and P300 amplitude of ERP were compared when participant׳s attention was oriented to an external task, to a visual imagery and to an inner speech. The spectral power from alpha band was also compared in these three attentional conditions. These data are related to the research article where sensory processing of external information was compared during these three conditions entitled “Orienting attention to visual or verbal/auditory imagery differentially impairs the processing of visual stimuli” (Villena-Gonzalez et al., 2016) [1]. PMID:27077090
ERIC Educational Resources Information Center
Beste, Christian; Heil, Martin; Konrad, Carsten
2010-01-01
The cognitive process of imaging an object turning around is called mental rotation. Many studies have been put forward analyzing mental rotation by means of event-related potentials (ERPs). Event-related potentials (ERPs) were measured during mental rotation of characters in a sample (N = 82) with a sufficient size to obtain even small effects. A…
Incorporating an ERP Project into Undergraduate Instruction
Nyhus, Erika; Curtis, Nancy
2016-01-01
Electroencephalogram (EEG) is a relatively non-invasive, simple technique, and recent advances in open source analysis tools make it feasible to implement EEG as a component in undergraduate neuroscience curriculum. We have successfully led students to design novel experiments, record EEG data, and analyze event-related potentials (ERPs) during a one-semester laboratory course for undergraduates in cognitive neuroscience. First, students learned how to set up an EEG recording and completed an analysis tutorial. Students then learned how to set up a novel EEG experiment; briefly, they formed groups of four and designed an EEG experiment on a topic of their choice. Over the course of two weeks students collected behavioral and EEG data. Each group then analyzed their behavioral and ERP data and presented their results both as a presentation and as a final paper. Upon completion of the group project students reported a deeper understanding of cognitive neuroscience methods and a greater appreciation for the strengths and weaknesses of the EEG technique. Although recent advances in open source software made this project possible, it also required access to EEG recording equipment and proprietary software. Future efforts should be directed at making publicly available datasets to learn ERP analysis techniques and making publicly available EEG recording and analysis software to increase the accessibility of hands-on research experience in undergraduate cognitive neuroscience laboratory courses. PMID:27385925
Assessing the internal consistency of the event-related potential: An example analysis.
Thigpen, Nina N; Kappenman, Emily S; Keil, Andreas
2017-01-01
ERPs are widely and increasingly used to address questions in psychophysiological research. As discussed in this special issue, a renewed focus on questions of reliability and stability marks the need for intuitive, quantitative descriptors that allow researchers to communicate the robustness of ERP measures used in a given study. This report argues that well-established indices of internal consistency and effect size meet this need and can be easily extracted from most ERP datasets, as demonstrated with example analyses using a representative dataset from a feature-based visual selective attention task. We demonstrate how to measure the internal consistency of three aspects commonly considered in ERP studies: voltage measurements for specific time ranges at selected sensors, voltage dynamics across all time points of the ERP waveform, and the distribution of voltages across the scalp. We illustrate methods for quantifying the robustness of experimental condition differences, by calculating effect size for different indices derived from the ERP. The number of trials contributing to the ERP waveform was manipulated to examine the relationship between signal-to-noise ratio (SNR), internal consistency, and effect size. In the present example dataset, satisfactory consistency (Cronbach's alpha > 0.7) of individual voltage measurements was reached at lower trial counts than were required to reach satisfactory effect sizes for differences between experimental conditions. Comparing different metrics of robustness, we conclude that the internal consistency and effect size of ERP findings greatly depend on the quantification strategy, the comparisons and analyses performed, and the SNR. © 2016 Society for Psychophysiological Research.
ERP-based detection of brain pathology in rat models for preclinical Alzheimer's disease
NASA Astrophysics Data System (ADS)
Nouriziabari, Seyed Berdia
Early pathological features of Alzheimer's disease (AD) include the accumulation of hyperphosphorylated tau protein (HP-tau) in the entorhinal cortex and progressive loss of basal forebrain (BF) cholinergic neurons. These pathologies are known to remain asymptomatic for many years before AD is clinically diagnosed; however, they may induce aberrant brain processing which can be captured as an abnormality in event-related potentials (ERPs). Here, we examined cortical ERPs while a differential associative learning paradigm was applied to adult male rats with entorhinal HP-tau, pharmacological blockade of muscarinic acetylcholine receptors, or both conditions. Despite no impairment in differential associative and reversal learning, each pathological feature induced distinct abnormality in cortical ERPs to an extent that was sufficient for machine classifiers to accurately detect a specific type of pathology based on these ERP features. These results highlight a potential use of ERPs during differential associative learning as a biomarker for asymptomatic AD pathology.
Iidaka, Tetsuya; Matsumoto, Atsushi; Haneda, Kaoruko; Okada, Tomohisa; Sadato, Norihiro
2006-03-01
Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments were conducted in the same group of subjects and with an identical task paradigm to investigate a possible relationship between hemodynamic and electrophysiological responses within the brain. The subjects were instructed to judge whether visually presented stimuli were faces or houses and then press the corresponding button. Functional MRI identified face- and house-related regions in the lateral and medial part of the fusiform gyrus, respectively, while ERP showed significantly greater N170 negativity for face than for house stimuli in the temporo-occipital electrodes. Correlation analysis between the BOLD signal in the fusiform gyrus and ERP parameters demonstrated a close relationship between the signal and both latency and amplitude of N170 across the subjects. These correlations may indicate that the variation in cognitive demand and hemodynamic responses during the face/house discrimination task is coupled with the variation of N170 peak latency/amplitude across the subjects. Thus, integrative analysis of spatial and temporal information obtained from the two experimental modalities may help in studying neural correlates involved in a particular cognitive task.
Balz, Johanna; Roa Romero, Yadira; Keil, Julian; Krebber, Martin; Niedeggen, Michael; Gallinat, Jürgen; Senkowski, Daniel
2016-01-01
Recent behavioral and neuroimaging studies have suggested multisensory processing deficits in patients with schizophrenia (SCZ). Thus far, the neural mechanisms underlying these deficits are not well understood. Previous studies with unisensory stimulation have shown altered neural oscillations in SCZ. As such, altered oscillations could contribute to aberrant multisensory processing in this patient group. To test this assumption, we conducted an electroencephalography (EEG) study in 15 SCZ and 15 control participants in whom we examined neural oscillations and event-related potentials (ERPs) in the sound-induced flash illusion (SIFI). In the SIFI multiple auditory stimuli that are presented alongside a single visual stimulus can induce the illusory percept of multiple visual stimuli. In SCZ and control participants we compared ERPs and neural oscillations between trials that induced an illusion and trials that did not induce an illusion. On the behavioral level, SCZ (55.7%) and control participants (55.4%) did not significantly differ in illusion rates. The analysis of ERPs revealed diminished amplitudes and altered multisensory processing in SCZ compared to controls around 135 ms after stimulus onset. Moreover, the analysis of neural oscillations revealed altered 25–35 Hz power after 100 to 150 ms over occipital scalp for SCZ compared to controls. Our findings extend previous observations of aberrant neural oscillations in unisensory perception paradigms. They suggest that altered ERPs and altered occipital beta/gamma band power reflect aberrant multisensory processing in SCZ. PMID:27999553
Folmer, Robert L; Billings, Curtis J; Diedesch-Rouse, Anna C; Gallun, Frederick J; Lew, Henry L
2011-10-01
Traumatic brain injuries are often associated with damage to sensory and cognitive processing pathways. Because evoked potentials (EPs) and event-related potentials (ERPs) are generated by neuronal activity, they are useful for assessing the integrity of neural processing capabilities in patients with traumatic brain injury (TBI). This review of somatosensory, auditory and visual ERPs in assessments of TBI patients is provided with the hope that it will be of interest to clinicians and researchers who conduct or interpret electrophysiological evaluations of this population. Because this article reviews ERP studies conducted in three different sensory modalities, involving patients with a wide range of TBI severity ratings and circumstances, it is difficult to provide a coherent summary of findings. However, some general trends emerge that give rise to the following observations and recommendations: 1) bilateral absence of somatosensory evoked potentials (SEPs) is often associated with poor clinical prognosis and outcome; 2) the presence of normal ERPs does not guarantee favorable outcome; 3) ERPs evoked by a variety of sensory stimuli should be used to evaluate TBI patients, especially those with severe injuries; 4) time since onset of injury should be taken into account when conducting ERP evaluations of TBI patients or interpreting results; 5) because sensory deficits (e.g., vision impairment or hearing loss) affect ERP results, tests of peripheral sensory integrity should be conducted in conjunction with ERP recordings; and 6) patients' state of consciousness, physical and cognitive abilities to respond and follow directions should be considered when conducting or interpreting ERP evaluations. Published by Elsevier B.V.
Rosburg, Timm; Weigl, Michael; Thiel, Ronja; Mager, Ralph
2018-05-01
Mismatch negativity (MMN) represents an event-related potential (ERP) component which is elicited by deviant sound events in an otherwise regular, repetitive stimulation. The MMN amplitude typically decreases when two identical deviants are presented in direct succession, but it remains stable when the two deviants vary from the standard in different features. Less is known about such repetition effects on another ERP component, the P3a, which usually follows the MMN. In the current study, we investigated how the P3a was affected by identical and non-identical repetitions of sound deviants. The ERP analysis revealed that the P3a amplitudes were strongly diminished when the repeated deviants were identical, but the P3a remained stable when the repeated deviants varied. The findings suggest that not only the deviance detection system, as reflected in the MMN, but also subsequent attention switch systems, as reflected in the P3a, operate independently across different sound features.
An event-related potential study of deception to self preferences.
Tu, Shen; Li, Hong; Jou, Jerwen; Zhang, Qinglin; Wang, Ting; Yu, Caiyun; Qiu, Jiang
2009-01-09
The spatiotemporal analysis of brain activation during the execution of deceptive decision-making was performed in 14 normal young adult subjects by using high-density event-related brain potentials (ERPs) with a delayed-response paradigm (subjects were required to hide their true attitudes for a moment). Our results showed that between 400 and 700 ms after stimulus onset, Deceptive items elicited a more negative ERP deflection (N400-700) than Truthful items, and between 1000 and 2000 ms, Deceptive items elicited a more positive ERP deflection (P1000-2000) than Truthful items. Analyses using dipole locations indicated that: (1) the generators of N400-700 were localized in the medial frontal gyrus (GFM) and middle temporal gyrus (GTM), which might be involved in conflict detection and control during deceptive decision-making; and (2) the generators of P1000-2000 were localized near the cuneus (CU) and the cingulate gyrus, which might be involved in conflict coordination in working memory due to deception.
ERP evidence for telicity effects on syntactic processing in garden-path sentences
Malaia, Evguenia; Wilbur, Ronnie B.; Weber-Fox, Christine
2009-01-01
Verbs contain multifaceted information about both the semantics of an action, and potential argument structures. Linguistic theory classifies verbs according to whether the denoted action has an inherent (telic) end-point (fall, awaken), or whether it is considered homogenous, or atelic (read, worship). The aim of our study was to examine how this distinction influences online sentence processing, investigating the effects of verbal telicity on the ease of syntactic re-analysis of Object reduced relative clauses. Event-related brain potentials (ERPs) were recorded from 22 English speakers as they read sentences in which the main verb was either telic or atelic, e.g., “The actress awakened/worshippedby the writer left in a hurry”. ERPs elicited by telic and atelic verbs, the preposition “by” introducing the second argument (Agent), and the second argument itself, e.g., “writer”, were compared. Additionally, participants were grouped according to receptive syntactic proficiency: normal (NP) or high (HP). ERPs from the NP group first diverged at the second argument, with the atelic condition eliciting larger amplitude negativity at the N100, and continuing to the P200 interval. In contrast, ERPs from the HP group first diverged earlier in the sentence, on the word “by”. ERPs elicited by “by” in the atelic condition were also characterized by increased negativity, in this case significant at P200 and Anterior Negativity between 320-500ms post stimulus onset. Our results support the postulated conceptual/semantic distinction underlying the two verb categories, and demonstrate that world-knowledge about actions designated by verbs and syntactic proficiency are reflected in on-line processing of sentence structure. PMID:18945484
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)
1998-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.
NASA Technical Reports Server (NTRS)
Trejo, L. J.; Shensa, M. J.
1999-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.
Trust at first sight: evidence from ERPs.
Marzi, Tessa; Righi, Stefania; Ottonello, Sara; Cincotta, Massimo; Viggiano, Maria Pia
2014-01-01
We used event-related potentials (ERPs) to tap the temporal dynamics of first impressions based on face appearance. Participants were asked to evaluate briefly presented faces for trustworthiness and political choice. Behaviorally, participants were better at discriminating faces that were pre-rated as untrustworthy. The ERP results showed that the P100 component was enhanced for untrustworthy faces, consistently with the view that signals of potential threat are given precedence in neural processing. The enhanced ERP responses to untrustworthy faces persisted throughout the processing sequence and the amplitude of early posterior negativity (EPN), and subsequent late positive potential (LPP) was increased with respect to trustworthy faces which, in contrast, elicited an enhanced positivity around 150 ms on frontal sites. These ERP patterns were found specifically for the trustworthiness evaluation and not for the political decision task. Political decision yielded an increase in the N170 amplitude, reflecting a more demanding and taxing structural encoding. Similar ERP responses, as previously reported in the literature for facial expressions processing, were found throughout the entire time course specifically elicited by faces explicitly judged as untrustworthy. One possibility might be that evolution has provided the brain with a 'special toolkit' for trust evaluation that is fast and triggers ERPs related to emotional processing.
Relationship between neural response and adaptation selectivity to form and color: an ERP study.
Rentzeperis, Ilias; Nikolaev, Andrey R; Kiper, Daniel C; van Leeuwen, Cees
2012-01-01
Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERPs). ERPs were evoked by the presentation of colored Glass patterns in a form discrimination task. Response selectivities to form and, to some extent, color of the patterns were reflected in the C1 and N1 ERP components. Adaptation selectivity to color was reflected in N1 and was followed by a late (300-500 ms after stimulus onset) effect of form adaptation. Thus for form, response and adaptation selectivity were manifested in non-overlapping intervals. These results indicate that adaptation and response selectivity can be associated with different processes. Therefore, inferring selectivity from an adaptation paradigm requires analysis of both adaptation and neural response data.
Cognition and event-related potentials in adult-onset non-demented myotonic dystrophy type 1.
Tanaka, H; Arai, M; Harada, M; Hozumi, A; Hirata, K
2012-02-01
To clarify the cognitive and event-related potentials (ERPs) profiles of adult-onset genetically-proven non-demented myotonic dystrophy type 1 (DM1). Fourteen DM1 patients and matched 14 normal controls were enrolled. DM1 patients were compared with normal controls, using a variety of neuropsychological tests; an auditory "oddball" counting paradigm for the ERPs, and low-resolution brain electromagnetic tomography (LORETA). For patients, ERPs and neuropsychological parameters were correlated with CTG repeat size, duration of illness, grip strength, and arterial blood gas analysis. Frontal lobe dysfunction, prolonged N1 latency, and attenuated N2/P3 amplitudes were observed in DM1. Longer CTG repeat size was associated with fewer categories achieved on Wisconsin Card Sorting Test. Greater grip strength was associated with better scores on color-word "interference" of Stroop test. P3 latency was negatively correlated with PaO(2). LORETA revealed significant hypoactivities at the orbitofrontal and medial temporal lobe, cingulate, and insula. There was no correlation between ERPs and CTG expansion. Adult-onset non-demented DM1 presented frontal lobe dysfunction. Absence of correlations between CTG repeat size and objective ERP parameters suggested CTG expansion in lymphocytes does not directly contribute to cognitive dysfunction. CTG expansion in lymphocytes does not directly contribute to cognitive dysfunction of adult-onset non-demented DM1. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Multivariate assessment of event-related potentials with the t-CWT method.
Bostanov, Vladimir
2015-11-05
Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.
Li, S N; Zhang, K Y
1992-11-01
Effects of dauricine (Dau) on the action potentials (AP), the slow action potentials (SAP), and the slow inward currents (Isi) of guinea pig ventricular papillary muscles were observed by means of intracellular microelectrode and single sucrose gap voltage clamp technique. In the early stage, Dau shortened action potential duration 100 (APD100) and effective refractory period (ERP) (ERP/APD < 1; P < 0.01), but did not affect APD20 and other parameters. In the late stage, Dau prolonged APD100, ERP, and APD20, significantly decreased action potential amplitude (APA), maximum velocity (Vmax), and overshot (OS) (ERP/APD > 1; P < 0.01), greatly diminished APA and OS of SAP induced by isoprenaline (P < 0.01), and remarkably inhibited Isi (P < 0.01). The results suggested that Dau exerted an inhibitory effect on Na+, Ca2+, and K+ channels.
Real, Ruben G. L.; Kotchoubey, Boris; Kübler, Andrea
2014-01-01
This study aimed at evaluating the performance of the Studentized Continuous Wavelet Transform (t-CWT) as a method for the extraction and assessment of event-related brain potentials (ERP) in data from a single subject. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of the t-CWT were assessed and compared to a variety of competing procedures using simulated EEG data at six low signal-to-noise ratios. Results show that the t-CWT combines high sensitivity and specificity with favorable PPV and NPV. Applying the t-CWT to authentic EEG data obtained from 14 healthy participants confirmed its high sensitivity. The t-CWT may thus be well suited for the assessment of weak ERPs in single-subject settings. PMID:25309308
Real, Ruben G L; Kotchoubey, Boris; Kübler, Andrea
2014-01-01
This study aimed at evaluating the performance of the Studentized Continuous Wavelet Transform (t-CWT) as a method for the extraction and assessment of event-related brain potentials (ERP) in data from a single subject. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of the t-CWT were assessed and compared to a variety of competing procedures using simulated EEG data at six low signal-to-noise ratios. Results show that the t-CWT combines high sensitivity and specificity with favorable PPV and NPV. Applying the t-CWT to authentic EEG data obtained from 14 healthy participants confirmed its high sensitivity. The t-CWT may thus be well suited for the assessment of weak ERPs in single-subject settings.
Semantic relatedness between words in each individual brain: an event-related potential study.
Hata, Masahiro; Homae, Fumitaka; Hagiwara, Hiroko
2011-08-26
The relationship between 2 words is judged by the meanings of words. Here, we examined how the semantic relatedness of words is structured in each individual brain. During measurements of event-related potentials (ERPs), participants performed semantic-relatedness judgments of word pairs. For each participant, we divided word pairs into 2 groups--related and unrelated pairs--and compared their ERPs. All of the participants showed a significant N400 effect. However, when we applied an identical grouping of pairs, this effect was observed only in half the number of the participants. These results show that our single-subject analysis of N400 extracted semantic relatedness of words in the individual brain. Future studies using this analysis will clarify the organization of the mental lexicon. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Lin, Yen-Feng; Chen, Chia-Yen; Öngür, Dost; Betensky, Rebecca; Smoller, Jordan W; Blacker, Deborah; Hall, Mei-Hua
2018-05-16
Event-related potential (ERP) components have been used to assess cognitive functions in patients with psychotic illness. Evidence suggests that among patients with psychosis there is a distinct heritable neurophysiologic phenotypic subtype captured by impairments across a range of ERP measures. In this study, we investigated the genetic basis of this "globally impaired" ERP cluster and its relationship to psychosis and cognitive abilities. We applied K-means clustering to six ERP measures to re-derive the globally impaired (n = 60) and the non-globally impaired ERP clusters (n = 323) in a sample of cases with schizophrenia (SCZ = 136) or bipolar disorder (BPD = 121) and healthy controls (n = 126). We used genome-wide association study (GWAS) results for SCZ, BPD, college completion, and childhood intelligence as the discovery datasets to derive polygenic risk scores (PRS) in our study sample and tested their associations with globally impaired ERP. We conducted mediation analyses to estimate the proportion of each PRS effect on severity of psychotic symptoms that is mediated through membership in the globally impaired ERP. Individuals with globally impaired ERP had significantly higher PANSS-positive scores (β = 3.95, P = 0.005). The SCZ-PRS was nominally associated with globally impaired ERP (unadjusted P = 0.01; R 2 = 3.07%). We also found a significant positive association between the college-PRS and globally impaired ERP (FDR-corrected P = 0.004; R 2 = 6.15%). The effect of college-PRS on PANSS positivity was almost entirely (97.1%) mediated through globally impaired ERP. These results suggest that the globally impaired ERP phenotype may represent some aspects of brain physiology on the path between genetic influences on educational attainment and psychotic symptoms.
Kernel PLS Estimation of Single-trial Event-related Potentials
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.
2004-01-01
Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.
NASA Astrophysics Data System (ADS)
Zeng, Yajun; Skibniewski, Miroslaw J.
2013-08-01
Enterprise resource planning (ERP) system implementations are often characterised with large capital outlay, long implementation duration, and high risk of failure. In order to avoid ERP implementation failure and realise the benefits of the system, sound risk management is the key. This paper proposes a probabilistic risk assessment approach for ERP system implementation projects based on fault tree analysis, which models the relationship between ERP system components and specific risk factors. Unlike traditional risk management approaches that have been mostly focused on meeting project budget and schedule objectives, the proposed approach intends to address the risks that may cause ERP system usage failure. The approach can be used to identify the root causes of ERP system implementation usage failure and quantify the impact of critical component failures or critical risk events in the implementation process.
Combination of PCA and LORETA for sources analysis of ERP data: an emotional processing study
NASA Astrophysics Data System (ADS)
Hu, Jin; Tian, Jie; Yang, Lei; Pan, Xiaohong; Liu, Jiangang
2006-03-01
The purpose of this paper is to study spatiotemporal patterns of neuronal activity in emotional processing by analysis of ERP data. 108 pictures (categorized as positive, negative and neutral) were presented to 24 healthy, right-handed subjects while 128-channel EEG data were recorded. An analysis of two steps was applied to the ERP data. First, principal component analysis was performed to obtain significant ERP components. Then LORETA was applied to each component to localize their brain sources. The first six principal components were extracted, each of which showed different spatiotemporal patterns of neuronal activity. The results agree with other emotional study by fMRI or PET. The combination of PCA and LORETA can be used to analyze spatiotemporal patterns of ERP data in emotional processing.
Memory timeline: Brain ERP C250 (not P300) is an early biomarker of short-term storage.
Chapman, Robert M; Gardner, Margaret N; Mapstone, Mark; Dupree, Haley M; Antonsdottir, Inga M
2015-04-16
Brain event-related potentials (ERPs) offer a quantitative link between neurophysiological activity and cognitive performance. ERPs were measured while young adults performed a task that required storing a relevant stimulus in short-term memory. Using principal components analysis, ERP component C250 (maximum at 250 ms post-stimulus) was extracted from a set of ERPs that were separately averaged for various task conditions, including stimulus relevancy and stimulus sequence within a trial. C250 was more positive in response to task-specific stimuli that were successfully stored in short-term memory. This relationship between C250 and short-term memory storage of a stimulus was confirmed by a memory probe recall test where the behavioral recall of a stimulus was highly correlated with its C250 amplitude. ERP component P300 (and its subcomponents of P3a and P3b, which are commonly thought to represent memory operations) did not show a pattern of activation reflective of storing task-relevant stimuli. C250 precedes the P300, indicating that initial short-term memory storage may occur earlier than previously believed. Additionally, because C250 is so strongly predictive of a stimulus being stored in short-term memory, C250 may provide a strong index of early memory operations. Copyright © 2015 Elsevier B.V. All rights reserved.
Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie
2013-01-01
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652
He, Yi; Johnson, Marcia K; Dovidio, John F; McCarthy, Gregory
2009-01-01
The neural correlates of the perception of faces from different races were investigated. White participants performed a gender identification task in which Asian, Black, and White faces were presented while event-related potentials (ERPs) were recorded. Participants also completed an implicit association task for Black (IAT-Black) and Asian (IAT-Asian) faces. ERPs evoked by Black and White faces differed, with Black faces evoking a larger positive ERP that peaked at 168 ms over the frontal scalp, and White faces evoking a larger negative ERP that peaked at 244 ms. These Black/White ERP differences significantly correlated with participants' scores on the IAT-Black. ERPs also differentiated White from Asian faces and a significant correlation was obtained between the White-Asian ERP difference waves at approximately 500 ms and the IAT-Asian. A positive ERP at 116 ms over occipital scalp differentiated all three races, but was not correlated with either IAT. In addition, a late positive component (around 592 ms) was greater for the same race compared to either other race faces, suggesting potentially more extended or deeper processing of the same race faces. Taken together, the ERP/IAT correlations observed for both other races indicate the influence of a race-sensitive evaluative process that may include early more automatic and/or implicit processes and relatively later more controlled processes.
He, Yi; Johnson, Marcia K.; Dovidio, John F.; McCarthy, Gregory
2009-01-01
The neural correlates of the perception of faces from different races were investigated. White participants performed a gender identification task in which Asian, Black, and White faces were presented while event-related potentials (ERPs) were recorded. Participants also completed an implicit association task for Black (IAT-Black) and Asian (IAT-Asian) faces. ERPs evoked by Black and White faces differed, with Black faces evoking a larger positive ERP that peaked at 168 ms over the frontal scalp, and White faces evoking a larger negative ERP that peaked at 244 ms. These Black/White ERP differences significantly correlated with participants’ scores on the IAT-Black. ERPs also differentiated White from Asian faces and a significant correlation was obtained between the White-Asian ERP difference waves at ~500 ms and the IAT-Asian. A positive ERP at 116 ms over occipital scalp differentiated all three races, but was not correlated with either IAT. In addition, a late positive component (around 592 ms) was greater for the same race compared to either other race faces, suggesting potentially more extended or deeper processing of the same race faces. Taken together, the ERP/IAT correlations observed for both other races indicate the influence of a race-sensitive evaluative process that may include early more automatic and/or implicit processes and relatively later more controlled processes. PMID:19562628
Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred
2016-01-01
Aging is usually accompanied by alterations of cognitive control functions such as conflict processing. Recent research suggests that aging effects on cognitive control seem to vary with degree and source of conflict, and conflict specific aging effects on performance measures as well as neural activation patterns have been shown. However, there is sparse information whether and how aging affects different stages of conflict processing as indicated by event related potentials (ERPs) such as the P2, N2 and P3 components. In the present study, 19 young and 23 elderly adults performed a combined Flanker conflict and stimulus-response-conflict (SRC) task. Analysis of the reaction times (RTs) revealed an increased SRC related conflict effect in elderly. ERP analysis furthermore demonstrated an age-related increase of the P2 amplitude in response to the SRC task. In addition, elderly adults exhibited an increased P3 amplitude modulation induced by incongruent SRC and Flanker conflict trials.
Accelerating Computation of DCM for ERP in MATLAB by External Function Calls to the GPU.
Wang, Wei-Jen; Hsieh, I-Fan; Chen, Chun-Chuan
2013-01-01
This study aims to improve the performance of Dynamic Causal Modelling for Event Related Potentials (DCM for ERP) in MATLAB by using external function calls to a graphics processing unit (GPU). DCM for ERP is an advanced method for studying neuronal effective connectivity. DCM utilizes an iterative procedure, the expectation maximization (EM) algorithm, to find the optimal parameters given a set of observations and the underlying probability model. As the EM algorithm is computationally demanding and the analysis faces possible combinatorial explosion of models to be tested, we propose a parallel computing scheme using the GPU to achieve a fast estimation of DCM for ERP. The computation of DCM for ERP is dynamically partitioned and distributed to threads for parallel processing, according to the DCM model complexity and the hardware constraints. The performance efficiency of this hardware-dependent thread arrangement strategy was evaluated using the synthetic data. The experimental data were used to validate the accuracy of the proposed computing scheme and quantify the time saving in practice. The simulation results show that the proposed scheme can accelerate the computation by a factor of 155 for the parallel part. For experimental data, the speedup factor is about 7 per model on average, depending on the model complexity and the data. This GPU-based implementation of DCM for ERP gives qualitatively the same results as the original MATLAB implementation does at the group level analysis. In conclusion, we believe that the proposed GPU-based implementation is very useful for users as a fast screen tool to select the most likely model and may provide implementation guidance for possible future clinical applications such as online diagnosis.
Accelerating Computation of DCM for ERP in MATLAB by External Function Calls to the GPU
Wang, Wei-Jen; Hsieh, I-Fan; Chen, Chun-Chuan
2013-01-01
This study aims to improve the performance of Dynamic Causal Modelling for Event Related Potentials (DCM for ERP) in MATLAB by using external function calls to a graphics processing unit (GPU). DCM for ERP is an advanced method for studying neuronal effective connectivity. DCM utilizes an iterative procedure, the expectation maximization (EM) algorithm, to find the optimal parameters given a set of observations and the underlying probability model. As the EM algorithm is computationally demanding and the analysis faces possible combinatorial explosion of models to be tested, we propose a parallel computing scheme using the GPU to achieve a fast estimation of DCM for ERP. The computation of DCM for ERP is dynamically partitioned and distributed to threads for parallel processing, according to the DCM model complexity and the hardware constraints. The performance efficiency of this hardware-dependent thread arrangement strategy was evaluated using the synthetic data. The experimental data were used to validate the accuracy of the proposed computing scheme and quantify the time saving in practice. The simulation results show that the proposed scheme can accelerate the computation by a factor of 155 for the parallel part. For experimental data, the speedup factor is about 7 per model on average, depending on the model complexity and the data. This GPU-based implementation of DCM for ERP gives qualitatively the same results as the original MATLAB implementation does at the group level analysis. In conclusion, we believe that the proposed GPU-based implementation is very useful for users as a fast screen tool to select the most likely model and may provide implementation guidance for possible future clinical applications such as online diagnosis. PMID:23840507
Electrophysiological Evidence for Domain-General Processes in Task-Switching
Capizzi, Mariagrazia; Ambrosini, Ettore; Arbula, Sandra; Mazzonetto, Ilaria; Vallesi, Antonino
2016-01-01
The ability to flexibly switch between tasks is a hallmark of cognitive control. Despite previous studies that have investigated whether different task-switching types would be mediated by distinct or overlapping neural mechanisms, no definitive consensus has been reached on this question yet. Here, we aimed at directly addressing this issue by recording the event-related potentials (ERPs) elicited by two types of task-switching occurring in the context of spatial and verbal cognitive domains. Source analysis was also applied to the ERP data in order to track the spatial dynamics of brain activity underlying task-switching abilities. In separate blocks of trials, participants had to perform either spatial or verbal switching tasks both of which employed the same type of stimuli. The ERP analysis, which was carried out through a channel- and time-uninformed mass univariate approach, showed no significant differences between the spatial and verbal domains in the modulation of switch and repeat trials. Specifically, relative to repeat trials, switch trials in both domains were associated with a first larger positivity developing over left parieto-occipital electrodes and with a subsequent larger negativity distributed over mid-left fronto-central sites. The source analysis reconstruction for the two ERP components complemented these findings by highlighting the involvement of left-lateralized prefrontal areas in task-switching. Overall, our results join and extend recent research confirming the existence of left-lateralized domain-general task-switching processes. PMID:27047366
75 FR 3729 - Environmental Impact Statements and Regulations; Availability of EPA Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... to address downstream water quality impairment, and funding. Rating LO. EIS No. 20090403, ERP No. D... concerns about this project's potential air quality impacts, and recommended additional information and analysis regarding potential air quality impacts and mitigation be included in the FEIS. Rating EC1. EIS No...
Electrophysiological correlates of retrieval orientation in reality monitoring.
Rosburg, Timm; Mecklinger, Axel; Johansson, Mikael
2011-02-14
Retrieval orientation describes the modulation in the processing of retrieval cues by the nature of the targeted material in memory. Retrieval orientation is usually investigated by analyzing the cortical responses to new (unstudied) material when different memory contents are targeted. This approach avoids confounding effects of retrieval success. We investigated the neural correlates of retrieval orientation in reality monitoring with event-related potentials (ERPs) and assessed the impact of retrieval accuracy on obtained ERP measures. Thirty-two subjects studied visually presented object names that were followed either by a picture of that object (perceived condition) or by the instruction to mentally generate such a picture (imagine condition). Subsequently, subjects had to identify object names of one study condition and reject object names of the second study condition together with newly presented object names. The data analysis showed that object names were more accurately identified when they had been presented in the perceived condition. Two topographically distinct ERP effects of retrieval orientation were revealed: From 600 to 1100 ms after stimulus representation, ERPs were more positive at frontal electrode sites when object names from the imagine condition were targeted. The analysis of response-locked ERP data revealed an additional effect at posterior electrode sites, with more negative ERPs shortly after response onset when items from the imagine condition were targeted. The ERP effect at frontal electrode sites, but not at posterior electrode sites was modulated by relative memory accuracy, with stronger effects in subjects who had lower memory accuracy for items of the imagine condition. The findings are suggestive for a contribution of frontal brain areas to retrieval orientation processes in reality monitoring and indicate that neural correlates of retrieval orientation can be modulated by retrieval effort, with stronger activation of these correlates with increasing task demands. Copyright © 2010 Elsevier Inc. All rights reserved.
Spatial and Time Domain Feature of ERP Speller System Extracted via Convolutional Neural Network.
Yoon, Jaehong; Lee, Jungnyun; Whang, Mincheol
2018-01-01
Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain-computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects' ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.
Spatial and Time Domain Feature of ERP Speller System Extracted via Convolutional Neural Network
2018-01-01
Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain–computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects' ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.
Event-related potential evidence of accessing gender stereotypes to aid source monitoring.
Leynes, P Andrew; Crawford, Jarret T; Radebaugh, Anne M; Taranto, Elizabeth
2013-01-23
Source memory for the speaker's voice (male or female) was investigated when semantic knowledge (gender stereotypes) could and could not inform the episodic source judgment while event-related potentials (ERPs) were recorded. Source accuracy was greater and response times were faster when stereotypes could predict the speaker's voice at test. Recollection supported source judgments in both conditions as indicated by significant parietal "old/new" ERP effects (500-800ms). Prototypical late ERP effects (the right frontal "old/new" effect and the late posterior negativity, LPN) were evident when source judgment was based solely on episodic memory. However, these two late ERP effects were diminished and a novel, frontal-negative ERP with left-central topography was observed when stereotypes aided source judgments. This pattern of ERP activity likely reflects activation of left frontal or left temporal lobes when semantic knowledge, in the form of a gender stereotype, is accessed to inform the episodic source judgment. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Hong; Ji, Ming; Luo, Xiaomin; Shen, Jianhua; Huang, Xiaoqin; Hua, Weiyi; Jiang, Hualiang; Chen, Kaixian
2002-07-04
Class III antiarrhythmic agents selectively delay the effective refractory period (ERP) and increase the transmembrane action potential duration (APD). Using dofetilide (2) as a template of class III antiarrhythmic agents, we designed and synthesized 16 methylsulfonamido phenylethylamine analogues (4a-d and 5a-l). Pharmacological assay indicated that all of these compounds showed activity for increasing the ERP in isolated animal atrium; among them, the effective concentration of compound 4a is 1.6 x 10(-8) mol/L in increasing ERP by 10 ms, slightly less potent than that of 2, 1.1 x 10(-8) mol/L. Compound 4a also produced a slightly lower change in ERP at 10(-5) M, DeltaERP% = 17.5% (DeltaERP% = 24.0% for dofetilide). On the basis of this bioassay result, these 16 compounds together with dofetilide were investigated by the three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques of comparative molecular field analysis (CoMFA), comparative molecular similarity index analysis (CoMSIA), and the hologram QSAR (HQSAR). The 3D-QSAR models were tested with another 11 compounds (4e-h and 5m-s) that we synthesized later. Results revealed that the CoMFA, CoMSIA, and HQSAR predicted activities for the 11 newly synthesized compounds that have a good correlation with their experimental value, r(2) = 0.943, 0.891, and 0.809 for the three QSAR models, respectively. This indicates that the 3D-QSAR models proved a good predictive ability and could describe the steric, electrostatic, and hydrophobic requirements for recognition forces of the receptor site. On the basis of these results, we designed and synthesized another eight new analogues of methanesulfonamido phenylethyamine (6a-h) according to the clues provided by the 3D-QSAR analyses. Pharmacological assay indicated that the effective concentrations of delaying the ERP by 10 ms of these newly designed compounds correlated well with the 3D-QSAR predicted values. It is remarkable that the percent change of delaying ERP at 10(-5) M compound 6c is much higher than that of dofetilide; the effective concentration of compound 6c is 5.0 x 10(-8)mol/L in increasing the ERP by 10 ms, which is slightly lower than that of 2. The results showed that the 3D-QSAR models are reliable and can be extended to design new antiarrhythmic agents.
Beres, Anna M
2017-12-01
The discovery of electroencephalography (EEG) over a century ago has changed the way we understand brain structure and function, in terms of both clinical and research applications. This paper starts with a short description of EEG and then focuses on the event-related brain potentials (ERPs), and their use in experimental settings. It describes the typical set-up of an ERP experiment. A description of a number of ERP components typically involved in language research is presented. Finally, the advantages and disadvantages of using ERPs in language research are discussed. EEG has an extensive use in today's world, including medical, psychology, or linguistic research. The excellent temporal resolution of EEG information allows one to track a brain response in milliseconds and therefore makes it uniquely suited to research concerning language processing.
Training and testing ERP-BCIs under different mental workload conditions
NASA Astrophysics Data System (ADS)
Ke, Yufeng; Wang, Peiyuan; Chen, Yuqian; Gu, Bin; Qi, Hongzhi; Zhou, Peng; Ming, Dong
2016-02-01
Objective. As one of the most popular and extensively studied paradigms of brain-computer interfaces (BCIs), event-related potential-based BCIs (ERP-BCIs) are usually built and tested in ideal laboratory settings in most existing studies, with subjects concentrating on stimuli and intentionally avoiding possible distractors. This study is aimed at examining the effect of simultaneous mental activities on ERP-BCIs by manipulating various levels of mental workload during the training and/or testing of an ERP-BCI. Approach. Mental workload was manipulated during the training or testing of a row-column P300-speller to investigate how and to what extent the spelling performance and the ERPs evoked by the oddball stimuli are affected by simultaneous mental workload. Main results. Responses of certain ERP components, temporal-occipital N200 and the late reorienting negativity evoked by the oddball stimuli and the classifiability of ERP features between targets and non-targets decreased with the increase of mental workload encountered by the subject. However, the effect of mental workload on the performance of ERP-BCI was not always negative but depended on the conditions where the ERP-BCI was built and applied. The performance of ERP-BCI built under an ideal lab setting without any irrelevant mental activities declined with the increasing mental workload of the testing data. However, the performance was significantly improved when an ERP-BCI was built under an appropriate mental workload level, compared to that built under speller-only conditions. Significance. The adverse effect of concurrent mental activities may present a challenge for ERP-BCIs trained in ideal lab settings but which are to be used in daily work, especially when users are performing demanding mental processing. On the other hand, the positive effects of the mental workload of the training data suggest that introducing appropriate mental workload during training ERP-BCIs is of potential benefit to the performance in practical applications.
Attention-dependent sound offset-related brain potentials.
Horváth, János
2016-05-01
When performing sensory tasks, knowing the potentially occurring goal-relevant and irrelevant stimulus events allows the establishment of selective attention sets, which result in enhanced sensory processing of goal-relevant events. In the auditory modality, such enhancements are reflected in the increased amplitude of the N1 ERP elicited by the onsets of task-relevant sounds. It has been recently suggested that ERPs to task-relevant sound offsets are similarly enhanced in a tone-focused state in comparison to a distracted one. The goal of the present study was to explore the influence of attention on ERPs elicited by sound offsets. ERPs elicited by tones in a duration-discrimination task were compared to ERPs elicited by the same tones in not-tone-focused attentional setting. Tone offsets elicited a consistent, attention-dependent biphasic (positive-negative--P1-N1) ERP waveform for tone durations ranging from 150 to 450 ms. The evidence, however, did not support the notion that the offset-related ERPs reflected an offset-specific attention set: The offset-related ERPs elicited in a duration-discrimination condition (in which offsets were task relevant) did not significantly differ from those elicited in a pitch-discrimination condition (in which the offsets were task irrelevant). Although an N2 reflecting the processing of offsets in task-related terms contributed to the observed waveform, this contribution was separable from the offset-related P1 and N1. The results demonstrate that when tones are attended, offset-related ERPs may substantially overlap endogenous ERP activity in the postoffset interval irrespective of tone duration, and attention differences may cause ERP differences in such postoffset intervals. © 2016 Society for Psychophysiological Research.
James, Clara E.; Oechslin, Mathias S.; Michel, Christoph M.; De Pretto, Michael
2017-01-01
This original research focused on the effect of musical training intensity on cerebral and behavioral processing of complex music using high-density event-related potential (ERP) approaches. Recently we have been able to show progressive changes with training in gray and white matter, and higher order brain functioning using (f)MRI [(functional) Magnetic Resonance Imaging], as well as changes in musical and general cognitive functioning. The current study investigated the same population of non-musicians, amateur pianists and expert pianists using spatio-temporal ERP analysis, by means of microstate analysis, and ERP source imaging. The stimuli consisted of complex musical compositions containing three levels of transgression of musical syntax at closure that participants appraised. ERP waveforms, microstates and underlying brain sources revealed gradual differences according to musical expertise in a 300–500 ms window after the onset of the terminal chords of the pieces. Within this time-window, processing seemed to concern context-based memory updating, indicated by a P3b-like component or microstate for which underlying sources were localized in the right middle temporal gyrus, anterior cingulate and right parahippocampal areas. Given that the 3 expertise groups were carefully matched for demographic factors, these results provide evidence of the progressive impact of training on brain and behavior. PMID:29163017
Joliot, Marc; Leroux, Gaëlle; Dubal, Stéphanie; Tzourio-Mazoyer, Nathalie; Houdé, Olivier; Mazoyer, Bernard; Petit, Laurent
2009-08-01
We combined event-related potential (ERP) and magnetoencephalography (MEG) acquisition and analysis to investigate the electrophysiological markers of the inhibitory processes involved in the number/length interference in a Piaget-like numerical task. Eleven healthy subjects performed four gradually interfering conditions with the heuristic "length equals number" to be inhibited. Low resolution tomography reconstruction was performed on the combined grand averaged electromagnetic data at the early (N1, P1) and late (P2, N2, P3(early) and P3(late)) latencies. Every condition was analyzed at both scalp and regional brain levels. The inhibitory processes were visible on the late components of the electromagnetic brain activity. A right P2-related frontal orbital activation reflected the change of strategy in the inhibitory processes. N2-related SMA/cingulate activation revealed the first occurrence of the stimuli processing to be inhibited. Both P3 components revealed the working memory processes operating in a medial temporal complex and the mental imagery processes subtended by the precuneus. Simultaneous ERP and MEG signal acquisition and analysis allowed to describe the spatiotemporal patterns of neural networks involved in the inhibition of the "length equals number" interference. Combining ERP and MEG ensured a sensitivity which could be reached previously only through invasive intracortical recordings.
James, Clara E; Oechslin, Mathias S; Michel, Christoph M; De Pretto, Michael
2017-01-01
This original research focused on the effect of musical training intensity on cerebral and behavioral processing of complex music using high-density event-related potential (ERP) approaches. Recently we have been able to show progressive changes with training in gray and white matter, and higher order brain functioning using (f)MRI [(functional) Magnetic Resonance Imaging], as well as changes in musical and general cognitive functioning. The current study investigated the same population of non-musicians, amateur pianists and expert pianists using spatio-temporal ERP analysis, by means of microstate analysis, and ERP source imaging. The stimuli consisted of complex musical compositions containing three levels of transgression of musical syntax at closure that participants appraised. ERP waveforms, microstates and underlying brain sources revealed gradual differences according to musical expertise in a 300-500 ms window after the onset of the terminal chords of the pieces. Within this time-window, processing seemed to concern context-based memory updating, indicated by a P3b-like component or microstate for which underlying sources were localized in the right middle temporal gyrus, anterior cingulate and right parahippocampal areas. Given that the 3 expertise groups were carefully matched for demographic factors, these results provide evidence of the progressive impact of training on brain and behavior.
Empirical Analysis of EEG and ERPs for Psychophysiological Adaptive Task Allocation
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Pope, Alan T.; Freeman, Frederick G.; Scerbo, Mark W.; Mikulka, Peter J.
2001-01-01
The present study was designed to test the efficacy of using Electroencephalogram (EEG) and Event-Related Potentials (ERPs) for making task allocation decisions. Thirty-six participants were randomly assigned to an experimental, yoked, or control group condition. Under the experimental condition, a tracking task was switched between task modes based upon the participant's EEG. The results showed that the use of adaptive aiding improved performance and lowered subjective workload under negative feedback as predicted. Additionally, participants in the adaptive group had significantly lower RMSE and NASA-TLX ratings than participants in either the yoked or control group conditions. Furthermore, the amplitudes of the N1 and P3 ERP components were significantly larger under the experimental group condition than under either the yoked or control group conditions. These results are discussed in terms of the implications for adaptive automation design.
Self-reflection modulates the outcome evaluation process: Evidence from an ERP study.
Zhu, Xiangru; Gu, Ruolei; Wu, Haiyan; Luo, Yuejia
2015-12-01
Recent research demonstrated structural overlap between reward and self processing, but the functional relationship that explains how self processing influences reward processing remains unclear. The present study used an experimentally constrained reflection task to investigate whether individuals' outcome evaluations in a gambling task are modulated by task-unrelated self- and other-reflection processes. The self- and other-reflection task contained descriptions of the self or others, and brain event-related potentials (ERPs) were recorded while 16 normal adults performed a gambling task. The ERP analysis focused on the feedback-related negativity (FRN) component. We found that the difference wave of FRN increased in the self-reflection condition compared with the other-reflection condition. The present findings provide direct evidence that self processing can influence reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P
2010-07-15
Within the past decade computational approaches adopted from the field of machine learning have provided neuroscientists with powerful new tools for analyzing neural data. For instance, previous studies have applied pattern classification algorithms to electroencephalography data to predict the category of presented visual stimuli, human observer decision choices and task difficulty. Here, we quantitatively compare the ability of pattern classifiers and three ERP metrics (peak amplitude, mean amplitude, and onset latency of the face-selective N170) to predict variations across individuals' behavioral performance in a difficult perceptual task identifying images of faces and cars embedded in noise. We investigate three different pattern classifiers (Classwise Principal Component Analysis, CPCA; Linear Discriminant Analysis, LDA; and Support Vector Machine, SVM), five training methods differing in the selection of training data sets and three analyses procedures for the ERP measures. We show that all three pattern classifier algorithms surpass traditional ERP measurements in their ability to predict individual differences in performance. Although the differences across pattern classifiers were not large, the CPCA method with training data sets restricted to EEG activity for trials in which observers expressed high confidence about their decisions performed the highest at predicting perceptual performance of observers. We also show that the neural activity predicting the performance across individuals was distributed through time starting at 120ms, and unlike the face-selective ERP response, sustained for more than 400ms after stimulus presentation, indicating that both early and late components contain information correlated with observers' behavioral performance. Together, our results further demonstrate the potential of pattern classifiers compared to more traditional ERP techniques as an analysis tool for modeling spatiotemporal dynamics of the human brain and relating neural activity to behavior. Copyright 2010 Elsevier Inc. All rights reserved.
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin
2016-08-01
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
van der Stelt, O; van der Molen, M; Boudewijn Gunning, W; Kok, A
2001-10-01
In order to gain insight into the functional and macroanatomical loci of visual selective processing deficits that may be basic to attention-deficit hyperactivity disorder (ADHD), the present study examined multi-channel event-related potentials (ERPs) recorded from 7- to 11-year-old boys clinically diagnosed as having ADHD (n=24) and age-matched healthy control boys (n=24) while they performed a visual (color) selective attention task. The spatio-temporal dynamics of several ERP components related to attention to color were characterized using topographic profile analysis, topographic mapping of the ERP and associated scalp current density distributions, and spatio-temporal source potential modeling. Boys with ADHD showed a lower target hit rate, a higher false-alarm rate, and a lower perceptual sensitivity than controls. Also, whereas color attention induced in the ERPs from controls a characteristic early frontally maximal selection positivity (FSP), ADHD boys displayed little or no FSP. Similarly, ADHD boys manifested P3b amplitude decrements that were partially lateralized (i.e., maximal at left temporal scalp locations) as well as affected by maturation. These results indicate that ADHD boys suffer from deficits at both relatively early (sensory) and late (semantic) levels of visual selective information processing. The data also support the hypothesis that the visual selective processing deficits observed in the ADHD boys originate from deficits in the strength of activation of a neural network comprising prefrontal and occipito-temporal brain regions. This network seems to be actively engaged during attention to color and may contain the major intracerebral generating sources of the associated scalp-recorded ERP components.
Method for exploratory cluster analysis and visualisation of single-trial ERP ensembles.
Williams, N J; Nasuto, S J; Saddy, J D
2015-07-30
The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. We propose a complete pipeline for the cluster analysis of ERP data. To increase the signal-to-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA) to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). After validating the pipeline on simulated data, we tested it on data from two experiments - a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership. Our analysis operates on denoised single-trials, the number of clusters are determined in a principled manner and the results are presented through an intuitive visualisation. Given the cluster structure in some experimental conditions, we suggest application of cluster analysis as a preliminary step before ensemble averaging. Copyright © 2015 Elsevier B.V. All rights reserved.
Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M
2000-01-01
Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.
ERPs and Eye Movements Reflect Atypical Visual Perception in Pervasive Developmental Disorder
ERIC Educational Resources Information Center
Kemner, Chantal; van Engeland, Herman
2006-01-01
Many studies of eye tracking or event-related brain potentials (ERPs) in subjects with Pervasive Developmental Disorder (PDD) have yielded inconsistent results on attentional processing. However, recent studies have indicated that there are specific abnormalities in early processing that are probably related to perception. ERP amplitudes in…
Enhancement of event related potentials by iterative restoration algorithms
NASA Astrophysics Data System (ADS)
Pomalaza-Raez, Carlos A.; McGillem, Clare D.
1986-12-01
An iterative procedure for the restoration of event related potentials (ERP) is proposed and implemented. The method makes use of assumed or measured statistical information about latency variations in the individual ERP components. The signal model used for the restoration algorithm consists of a time-varying linear distortion and a positivity/negativity constraint. Additional preprocessing in the form of low-pass filtering is needed in order to mitigate the effects of additive noise. Numerical results obtained with real data show clearly the presence of enhanced and regenerated components in the restored ERP's. The procedure is easy to implement which makes it convenient when compared to other proposed techniques for the restoration of ERP signals.
Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia
2016-01-01
Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes. Discussion. These results are supported by previous findings regarding activation of neural structures that underlie sustained attention. Our findings may indicate a better-controlled attention in skilled athletes, which suggests that expertise can improve effectiveness in allocation of attentional resources during the first stages of cognitive processing during combat.
Zhang, Ye; Song, Weiqun; Du, Jubao; Huo, Su; Shan, Guixiang; Li, Ran
2017-01-01
The electrophysiological evidence supporting the therapeutic efficacy of multiple transcranial direct current stimulation (tDCS) sessions on consciousness improvement in patients with prolonged disorders of consciousness (DOCs) has not been firmly established. To assess the effects of repeated tDCS in patients with prolonged DOCs by Coma Recovery Scale-Revised (CRS-R) score and event-related potential (ERP). Using a sham-controlled randomized double-blind design, 26 patients were randomly assigned to either a real [five vegetative state (VS) and eight minimally conscious state (MCS) patients] or sham (six VS and seven MCS patients) stimulation group. The patients in the real stimulation group underwent 20 anodal tDCS sessions of the left dorsolateral prefrontal cortex (DLPFC) over 10 consecutive working days. The CRS-R score and P300 amplitude and latency in a hierarchical cognitive assessment were recorded to evaluate the consciousness level before tDCS and immediately after the 20 sessions. The intra-group CRS-R analysis revealed a clinically significant improvement in the MCS patients in the real stimulation group. The inter-group CRS-R analysis showed a significant difference in CRS-R between VS and MCS patients at baseline in both the real and sham stimulation groups. The intra-group ERP analysis revealed a significant increase in P300 amplitude after tDCS in the MCS patients in the real stimulation group, but no significant differences in P300 latency. For the inter-group ERP analysis, we observed significant differences regarding the presence of P300 at baseline between the VS and MCS patients in both groups. The repeated anodal tDCS of the left DLPFC could produce clinically significant improvements in MCS patients. The observed tDCS-related consciousness improvements might be related to improvements in attention resource allocation (reflected by the P300 amplitude). The findings support the use of tDCS in clinical practice and ERP might serve as an efficient electrophysiological assessment tool in patients with DOCs.
Research in China on event-related potentials in patients with schizophrenia
Wang, Jijun; Guo, Qian
2012-01-01
Abstract Event-related potentials (ERPs) are objective electrophysiological indicators that can be used to assess cognitive processes in the human brain. Psychiatric researchers in China have applied this method to study schizophrenia since the early 1980s. ERP measures used in the study of schizophrenia include contingent negative variation (CNV), P300, mismatch negativity (MMN), error-related negativity (ERN) and auditory P50 inhibition. This review summarizes the main findings of ERP research in patients with schizophrenia reported by Chinese investigators. PMID:25324605
From episodic to habitual prospective memory: ERP-evidence for a linear transition
Meier, Beat; Matter, Sibylle; Baumann, Brigitta; Walter, Stefan; Koenig, Thomas
2014-01-01
Performing a prospective memory task repeatedly changes the nature of the task from episodic to habitual. The goal of the present study was to investigate the neural basis of this transition. In two experiments, we contrasted event-related potentials (ERPs) evoked by correct responses to prospective memory targets in the first, more episodic part of the experiment with those of the second, more habitual part of the experiment. Specifically, we tested whether the early, middle, or late ERP-components, which are thought to reflect cue detection, retrieval of the intention, and post-retrieval processes, respectively, would be changed by routinely performing the prospective memory task. The results showed a differential ERP effect in the middle time window (450–650 ms post-stimulus). Source localization using low resolution brain electromagnetic tomography analysis suggests that the transition was accompanied by an increase of activation in the posterior parietal and occipital cortex. These findings indicate that habitual prospective memory involves retrieval processes guided more strongly by parietal brain structures. In brief, the study demonstrates that episodic and habitual prospective memory tasks recruit different brain areas. PMID:25071519
Kawasaki, Toshihiko; Tanaka, Shin; Wang, Jijun; Hokama, Hiroto; Hiramatsu, Kenichi
2004-02-01
The purpose of the present study was to investigate the neural substrates underlying event-related potential (ERP) abnormalities, with respect to the generators of the ERP components in depressed patients. Using an oddball paradigm, ERP from auditory stimuli were recorded from 22 unmedicated patients with current depressive episodes and compared with those from 22 age- and gender-matched normal controls. Cortical current densities of the N100 and P300 components were analyzed using low-resolution electromagnetic tomography (LORETA). Group differences in cortical current density were mapped on a 3-D cortex model. The results revealed that N100 cortical current densities did not differ between the two groups, while P300 cortical current densities were significantly lower in depressed patients over the bilateral temporal lobes, the left frontal region, and the right temporal-parietal area. Furthermore, the cortical area in which the group difference in P300 current density had been identified was remarkably larger over the right than the left hemisphere, thus supporting the hypothesis of right hemisphere dysfunction in depression.
Kim, Kyung Hwan; Kim, Ja Hyun
2006-02-20
The aim of this study was to compare spatiotemporal cortical activation patterns during the visual perception of Korean, English, and Chinese words. The comparison of these three languages offers an opportunity to study the effect of written forms on cortical processing of visually presented words, because of partial similarity/difference among words of these languages, and the familiarity of native Koreans with these three languages at the word level. Single-character words and pictograms were excluded from the stimuli in order to activate neuronal circuitries that are involved only in word perception. Since a variety of cerebral processes are sequentially evoked during visual word perception, a high-temporal resolution is required and thus we utilized event-related potential (ERP) obtained from high-density electroencephalograms. The differences and similarities observed from statistical analyses of ERP amplitudes, the correlation between ERP amplitudes and response times, and the patterns of current source density, appear to be in line with demands of visual and semantic analysis resulting from the characteristics of each language, and the expected task difficulties for native Korean subjects.
ERIC Educational Resources Information Center
Havas, Viktoria; Rodriguez-Fornells, Antoni; Clahsen, Harald
2012-01-01
This study investigates brain potentials to derived word forms in Spanish. Two experiments were performed on derived nominals that differ in terms of their productivity and semantic properties but are otherwise similar, an acceptability judgment task and a reading experiment using event-related brain potentials (ERPs) in which correctly and…
Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings
Singh, Nilkamal; Telles, Shirley
2015-01-01
Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479
Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings.
Singh, Nilkamal; Telles, Shirley
2015-01-01
Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.
Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Akopjana, Inara; Tars, Kaspars
2015-05-01
Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing. B. burgdorferi B31 contains three proteins that belong to the Erp (OspE/F-related) protein family and are capable of binding CFH and some CFHRs, namely ErpA, ErpC and ErpP. We have determined the crystal structure of ErpP at 2.53Å resolution and the crystal structure of ErpC at 2.15Å resolution. Recently, the crystal structure of the Erp family member OspE from B. burgdorferi N40 was determined in complex with CFH domains 19-20, revealing the residues involved in the complex formation. Despite the high sequence conservation between ErpA, ErpC, ErpP and the homologous protein OspE (78-80%), the affinity for CFH and CFHRs differs markedly among the Erp family members, suggesting that ErpC may bind only CFHRs but not CFH. A comparison of the binding site in OspE with those of ErpC and ErpP revealed that the extended loop region, which is only observed in the potential binding site of ErpC, plays an important role by preventing the binding of CFH. These results can explain the inability of ErpC to bind CFH, whereas ErpP and ErpA still possess the ability to bind CFH. Copyright © 2015 Elsevier B.V. All rights reserved.
Karakaş, H M; Karakaş, S; Ozkan Ceylan, A; Tali, E T
2009-08-01
Event-related potentials (ERPs) have high temporal resolution, but insufficient spatial resolution; the converse is true for the functional imaging techniques. The purpose of the study was to test the utility of a multimodal EEG/ERP-MRI technique which combines electroencephalography (EEG) and magnetic resonance imaging (MRI) for a simultaneously high temporal and spatial resolution. The sample consisted of 32 healthy young adults of both sexes. Auditory stimuli were delivered according to the active and passive oddball paradigms in the MRI environment (MRI-e) and in the standard conditions of the electrophysiology laboratory environment (Lab-e). Tasks were presented in a fixed order. Participants were exposed to the recording environments in a counterbalanced order. EEG data were preprocessed for MRI-related artifacts. Source localization was made using a current density reconstruction technique. The ERP waveforms for the MRI-e were morphologically similar to those for the Lab-e. The effect of the recording environment, experimental paradigm and electrode location were analyzed using a 2x2x3 analysis of variance for repeated measures. The ERP components in the two environments showed parametric variations and characteristic topographical distributions. The calculated sources were in line with the related literature. The findings indicated effortful cognitive processing in MRI-e. The study provided preliminary data on the feasibility of the multimodal EEG/ERP-MRI technique. It also indicated lines of research that are to be pursued for a decisive testing of this technique and its implementation to clinical practice.
Electrophysiological Correlates of Impaired Reading in Dyslexic Pre-Adolescent Children
ERIC Educational Resources Information Center
Araujo, Susana; Bramao, Ines; Faisca, Luis; Petersson, Karl Magnus; Reis, Alexandra
2012-01-01
In this study, event related potentials (ERPs) were used to investigate the extent to which dyslexics (aged 9-13 years) differ from normally reading controls in early ERPs, which reflect prelexical orthographic processing, and in late ERPs, which reflect implicit phonological processing. The participants performed an implicit reading task, which…
Temporal Dynamics of Awareness for Facial Identity Revealed with ERP
ERIC Educational Resources Information Center
Genetti, Melanie; Khateb, Asaid; Heinzer, Severine; Michel, Christoph M.; Pegna, Alan J.
2009-01-01
In this study, we investigated the scalp recorded event-related potential (ERP) responses related to visual awareness. A backward masking procedure was performed while high-density EEG recordings were carried out. Subjects were asked to detect a familiar face, presented at durations that varied parametrically between 16 and 266 ms. ERPs were…
Mahajan, Yatin; McArthur, Genevieve
2011-05-01
To determine if an audible movie soundtrack has a degrading effect on the auditory P1, N1, P2, N2, or mismatch negativity (MMN) event-related potentials (ERPs) in children, adolescents, or adults. The auditory ERPs of 36 children, 32 young adolescents, 19 older adolescents, and 10 adults were measured while they watched a movie in two conditions: with an audible soundtrack and with a silent soundtrack. In children and adolescents, the audible movie soundtrack had a significant impact on amplitude, latency or split-half reliability of the N1, P2, N2, and MMN ERPs. The audible soundtrack had minimal impact on the auditory ERPs of adults. These findings challenge previous claims that an audible soundtrack does not degrade the auditory ERPs of children. Further, the reliability of the MMN is poorer than P1, N1, P2, and N2 peaks in both sound-off and sound-on conditions. Researchers should be cautious about using an audible movie soundtrack when measuring auditory ERPs in younger listeners. Copyright © 2010 International Federation of Clinical Neurophysiology. All rights reserved.
An electrophysiological index of changes in risk decision-making strategies.
Zhang, Dandan; Gu, Ruolei; Wu, Tingting; Broster, Lucas S; Luo, Yi; Jiang, Yang; Luo, Yue-jia
2013-07-01
Human decision-making is significantly modulated by previously experienced outcomes. Using event-related potentials (ERPs), we examined whether ERP components evoked by outcome feedbacks could serve as biomarkers to signal the influence of current outcome evaluation on subsequent decision-making. In this study, 18 adult volunteers participated in a simple monetary gambling task, in which they were asked to choose between two options that differed in risk. Their decisions were immediately followed by outcome presentation. Temporospatial principle component analysis (PCA) was applied to the outcome-onset locked ERPs in the 200-1000 ms time window. The PCA factors that approximated classical ERP components (P2, feedback-related negativity, P3a, and P3b) in terms of time course and scalp distribution were tested for their association with subsequent decision-making strategies. Our results revealed that a fronto-central PCA factor approximating the classical P3a was related to changes of decision-making strategies on subsequent trials. The decision to switch between high- and low-risk options resulted in a larger P3a relative to the decision to retain the same choice. According to the results, we suggest that the amplitude of the fronto-central P3a is an electrophysiological index of the influence of current outcome on subsequent risk decision-making. Furthermore, the ERP source analysis indicated that the activations of the frontopolar cortex and sensorimotor cortex were involved in subsequent changes of strategies, which enriches our understanding of the neural mechanisms of adjusting decision-making strategies based on previous experience. Copyright © 2013 Elsevier Ltd. All rights reserved.
An electrophysiological index of changes in risk decision-making strategies
Zhang, Dandan; Gu, Ruolei; Wu, Tingting; Broster, Lucas S.; Luo, Yi; Jiang, Yang; Luo, Yue-jia
2014-01-01
Human decision-making is significantly modulated by previously experienced outcomes. Using event-related potentials (ERPs), we examined whether ERP components evoked by outcome feedbacks could serve as biomarkers to signal the influence of current outcome evaluation on subsequent decision-making. In this study, eighteen adult volunteers participated in a simple monetary gambling task, in which they were asked to choose between two options that differed in risk. Their decisions were immediately followed by outcome presentation. Temporospatial principle component analysis (PCA) was applied to the outcome-onset locked ERPs in the -200 – 1000 ms time window. The PCA factors that approximated classical ERP components (P2, feedback-related negativity, P3a, & P3b) in terms of time course and scalp distribution were tested for their association with subsequent decision-making strategies. Our results revealed that a fronto-central PCA factor approximating the classical P3a was related to changes of decision-making strategies on subsequent trials. The decision to switch between high- and low-risk options resulted in a larger P3a relative to the decision to retain the same choice. According to the results, we suggest the amplitude of the fronto-central P3a is an electrophysiological index of the influence of current outcome on subsequent risk decision-making. Furthermore, the ERP source analysis indicated that the activations of the frontopolar cortex and sensorimotor cortex were involved in subsequent changes of strategies, which enriches our understanding of the neural mechanisms of adjusting decision-making strategies based on previous experience. PMID:23643796
NASA Astrophysics Data System (ADS)
Kaufmann, Tobias; Kübler, Andrea
2014-10-01
Objective. The speed of brain-computer interfaces (BCI), based on event-related potentials (ERP), is inherently limited by the commonly used one-stimulus paradigm. In this paper, we introduce a novel paradigm that can increase the spelling speed by a factor of 2, thereby extending the one-stimulus paradigm to a two-stimulus paradigm. Two different stimuli (a face and a symbol) are presented at the same time, superimposed on different characters and ERPs are classified using a multi-class classifier. Here, we present the proof-of-principle that is achieved with healthy participants. Approach. Eight participants were confronted with the novel two-stimulus paradigm and, for comparison, with two one-stimulus paradigms that used either one of the stimuli. Classification accuracies (percentage of correctly predicted letters) and elicited ERPs from the three paradigms were compared in a comprehensive offline analysis. Main results. The accuracies slightly decreased with the novel system compared to the established one-stimulus face paradigm. However, the use of two stimuli allowed for spelling at twice the maximum speed of the one-stimulus paradigms, and participants still achieved an average accuracy of 81.25%. This study introduced an alternative way of increasing the spelling speed in ERP-BCIs and illustrated that ERP-BCIs may not yet have reached their speed limit. Future research is needed in order to improve the reliability of the novel approach, as some participants displayed reduced accuracies. Furthermore, a comparison to the most recent BCI systems with individually adjusted, rapid stimulus timing is needed to draw conclusions about the practical relevance of the proposed paradigm. Significance. We introduced a novel two-stimulus paradigm that might be of high value for users who have reached the speed limit with the current one-stimulus ERP-BCI systems.
Children from socioeconomically disadvantaged families are at risk for malnutrition, learning disabilities, and many other problems associated with poverty. Increasing application of event-related potentials (ERP) methods has been made in studies of aberrant development, although...
Analysis of earth rotation solution from Starlette
NASA Technical Reports Server (NTRS)
Schutz, B. E.; Cheng, M. K.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.
1989-01-01
Earth rotation parameter (ERP) solutions were derived from the Starlette orbit analysis during the Main MERIT Campaign, using a technique of a consider-covariance analysis to assess the effects of errors on the polar motion solutions. The polar motion solution was then improved through the simultaneous adjustment of some dynamical parameters representing identified dominant perturbing sources (such as the geopotential and ocean-tide coefficients) on the polar motion solutions. Finally, an improved ERP solution was derived using the gravity field model, PTCF1, described by Tapley et al. (1986). The accuracy of the Starlette ERP solution was assessed by a comparison with the LAGEOS-derived ERP solutions.
Britz, Juliane; Pitts, Michael A
2011-11-01
We used an intermittent stimulus presentation to investigate event-related potential (ERP) components associated with perceptual reversals during binocular rivalry. The combination of spatiotemporal ERP analysis with source imaging and statistical parametric mapping of the concomitant source differences yielded differences in three time windows: reversals showed increased activity in early visual (∼120 ms) and in inferior frontal and anterior temporal areas (∼400-600 ms) and decreased activity in the ventral stream (∼250-350 ms). The combination of source imaging and statistical parametric mapping suggests that these differences were due to differences in generator strength and not generator configuration, unlike the initiation of reversals in right inferior parietal areas. These results are discussed within the context of the extensive network of brain areas that has been implicated in the initiation, implementation, and appraisal of bistable perceptual reversals. Copyright © 2011 Society for Psychophysiological Research.
Scudder, Mark R.; Federmeier, Kara D.; Raine, Lauren B.; Direito, Artur; Boyd, Jeremy K.; Hillman, Charles H.
2014-01-01
Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children’s aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513
Study of target and non-target interplay in spatial attention task.
Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree
2018-02-01
Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.
Amodio, David M.; Ito, Tiffany A.
2014-01-01
Event-related potential (ERP) approaches to social cognitive and affective neuroscience (SCAN) are not as widely used as other neuroimaging techniques, yet they offer several unique advantages. In particular, the high temporal resolution of ERP measures of neural activity make them ideally suited for studying the dynamic interplay of rapidly unfolding cognitive and affective processes. In this article, we highlight the utility of ERP methods for scientists investigating questions of SCAN. We begin with a brief description of the physiological basis of ERPs and discussion of methodological practices. We then discuss how ERPs may be used to address a range of questions concerning social perception, social cognition, attitudes, affect and self-regulation, with examples of research that has used the ERP approach to contribute important theoretical advances in these areas. Whether used alone or in combination with other techniques, the ERP is an indispensable part of the social and affective neuroscientist’s methodological toolkit. PMID:24319116
Amodio, David M; Bartholow, Bruce D; Ito, Tiffany A
2014-03-01
Event-related potential (ERP) approaches to social cognitive and affective neuroscience (SCAN) are not as widely used as other neuroimaging techniques, yet they offer several unique advantages. In particular, the high temporal resolution of ERP measures of neural activity make them ideally suited for studying the dynamic interplay of rapidly unfolding cognitive and affective processes. In this article, we highlight the utility of ERP methods for scientists investigating questions of SCAN. We begin with a brief description of the physiological basis of ERPs and discussion of methodological practices. We then discuss how ERPs may be used to address a range of questions concerning social perception, social cognition, attitudes, affect and self-regulation, with examples of research that has used the ERP approach to contribute important theoretical advances in these areas. Whether used alone or in combination with other techniques, the ERP is an indispensable part of the social and affective neuroscientist's methodological toolkit.
Guillem, Francois; Chouinard, Sylvie; Poulin, Julie; Godbout, Roger; Lalonde, Pierre; Melun, Pierre; Bentaleb, Lahcen Ait; Stip, Emmanuel
2006-07-01
Studies have reported beneficial effects of cholinergic enhancers, e.g., rivastigmine, on memory in schizophrenia but others have not. Possibly, these discrepancies are related to the lack of specificity of the tests used. This study investigated the effect of rivastigmine on memory in schizophrenia using event-related potentials (ERPs). Eighteen patients treated with atypical antipsychotic received rivastigmine adjuvant therapy in a randomized, crossover design. They were assessed at baseline (T1) and on two subsequent occasions (T2 and T3), where one half of the subjects were taken rivastigmine and the other half not. ERPs were recorded during a recognition memory task on each session. Behavioral and ERP data were analyzed using mixed ANOVA models first at T1 to detect potential group differences and for the trial (T1-T2) to determine the influence of rivastigmine, i.e., sessionxgroup interactions. The results showed no group difference at T1 except a trend for one group to be less efficient than the other on RT measures. When controlling for this difference the results on the trial data showed a trend for a benefit of rivastigmine on the RT memory effect. ERP analysis revealed that rivastigmine affects the amplitudes of two components elicited within 150-300 ms over posterior (reduced N2b) and frontal sites (enhanced P2a). It also enhances the magnitude of the memory (old/new) effect on two later components over posterior (N400) and frontal sites (F-N400). These results suggest that rivastigmine improves selective attention by enhancing interference inhibition processes (P2a) and lowering the reactivity to incoming stimulus (N2b). It also improves the integration of information with knowledge (N400) and with its context (F-N400). Generally, this study showed that the beneficial effect of rivastigmine on memory is not unitary but rather comes from its action at different time points within information processing cascade.
ERIC Educational Resources Information Center
Mietz, Anja; Toepel, Ulrike; Ischebeck, Anja; Alter, Kai
2008-01-01
The current study on German investigates Event-Related brain Potentials (ERPs) for the perception of sentences with intonations which are infrequent (i.e. vocatives) or inadequate in daily conversation. These ERPs are compared to the processing correlates for sentences in which the syntax-to-prosody relations are congruent and used frequently…
Increased Error-Related Negativity (ERN) in Childhood Anxiety Disorders: ERP and Source Localization
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Dahl, Ronald E.; Birmaher, Boris; Axelson, David A.; Ryan, Neal D.
2006-01-01
Background: In this study we used event-related potentials (ERPs) and source localization analyses to track the time course of neural activity underlying response monitoring in children diagnosed with an anxiety disorder compared to age-matched low-risk normal controls. Methods: High-density ERPs were examined following errors on a flanker task…
Development of Action Monitoring through Adolescence into Adulthood: ERP and Source Localization
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Dahl, Ronald E.; Carter, Cameron S.
2007-01-01
In this study we examined the development of three action monitoring event-related potentials (ERPs)--the error-related negativity (ERN/Ne), error positivity (P[subscript E]) and the N2--and estimated their neural sources. These ERPs were recorded during a flanker task in the following groups: early adolescents (mean age = 12 years), late…
Neural Correlates of Encoding Predict Infants' Memory in the Paired-Comparison Procedure
ERIC Educational Resources Information Center
Snyder, Kelly A.
2010-01-01
The present study used event-related potentials (ERPs) to monitor infant brain activity during the initial encoding of a previously novel visual stimulus, and examined whether ERP measures of encoding predicted infants' subsequent performance on a visual memory task (i.e., the paired-comparison task). A late slow wave component of the ERP measured…
The Impact of Enterprise Resource Planning Systems on Small and Medium Enterprises
ERIC Educational Resources Information Center
Buleje, Miguel A.
2014-01-01
Enterprise resource planning (ERP) systems are considered the price of entry in today's business environment, and the number of small and medium-sized enterprises (SME) retiring legacy systems in favor of ERP systems is increasing exponentially. However, there is a lack of knowledge and awareness of ERP systems and their potential benefit and…
Nguyen, Hai M.; Matsumoto, Jumpei; Tran, Anh H.; Ono, Taketoshi; Nishijo, Hisao
2014-01-01
Previous studies have reported that multiple brain regions are activated during spatial navigation. However, it is unclear whether these activated brain regions are specifically associated with spatial updating or whether some regions are recruited for parallel cognitive processes. The present study aimed to localize current sources of event related potentials (ERPs) associated with spatial updating specifically. In the control phase of the experiment, electroencephalograms (EEGs) were recorded while subjects sequentially traced 10 blue checkpoints on the streets of a virtual town, which were sequentially connected by a green line, by manipulating a joystick. In the test phase of the experiment, the checkpoints and green line were not indicated. Instead, a tone was presented when the subjects entered the reference points where they were then required to trace the 10 invisible spatial reference points corresponding to the checkpoints. The vertex-positive ERPs with latencies of approximately 340 ms from the moment when the subjects entered the unmarked reference points were significantly larger in the test than in the control phases. Current source density analysis of the ERPs by standardized low-resolution brain electromagnetic tomography (sLORETA) indicated activation of brain regions in the test phase that are associated with place and landmark recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial cortices, fusiform, and lingual gyri), detecting self-motion (posterior cingulate and posterior insular cortices), motor planning (superior frontal gyrus, including the medial frontal cortex), and regions that process spatial attention (inferior parietal lobule). The present results provide the first identification of the current sources of ERPs associated with spatial updating, and suggest that multiple systems are active in parallel during spatial updating. PMID:24624067
Estimating and Testing the Sources of Evoked Potentials in the Brain.
ERIC Educational Resources Information Center
Huizenga, Hilde M.; Molenaar, Peter C. M.
1994-01-01
The source of an event-related brain potential (ERP) is estimated from multivariate measures of ERP on the head under several mathematical and physical constraints on the parameters of the source model. Statistical aspects of estimation are discussed, and new tests are proposed. (SLD)
Meyberg, Susann; Sommer, Werner; Dimigen, Olaf
2017-05-01
Covert shifts of attention that follow the presentation of a cue are associated with lateralized components in the event-related potential (ERP): the "early directing attention negativity" (EDAN) and the "anterior directing attention negativity" (ADAN). Traditionally, these shifts are thought to take place while gaze is fixated and, thus, in the absence of saccades. However, microsaccades of small amplitude (<1°) occur frequently and involuntarily also during fixation and are closely correlated with spatial attention. To investigate potential links between microsaccades and lateralized ERP components, we simultaneously recorded eye movements and ERPs in a spatial cueing task. As a first major result, we show that both the posterior EDAN and the orientation of microsaccades align more strongly with the location of the task-relevant part of the cue stimulus than with the direction of the attention shift indicated by that cue. A coupling between microsaccades and EDAN was also present on the single-trial level: The EDAN was largest when microsaccades were oriented toward the relevant cue, but absent when microsaccades were oriented away from it, suggesting that EDAN and microsaccades are generated by the same neural network, which selects relevant stimuli and orients behavior toward them. As a second major result, we show that small corneoretinal artifacts from microsaccades, which fall below conventional EOG rejection thresholds, contaminate the measurement of the ADAN. After correcting the EEG for microsaccade-related artifacts with an optimized variant of independent component analysis, ADAN was abolished at frontal sites, but a genuine ADAN was still present at central sites. Thus, the combined measurement of microsaccades and lateralized ERPs sheds new light onto cue-elicited shifts of covert attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cognitive aspects of nociception and pain: bridging neurophysiology with cognitive psychology.
Legrain, V; Mancini, F; Sambo, C F; Torta, D M; Ronga, I; Valentini, E
2012-10-01
The event-related brain potentials (ERPs) elicited by nociceptive stimuli are largely influenced by vigilance, emotion, alertness, and attention. Studies that specifically investigated the effects of cognition on nociceptive ERPs support the idea that most of these ERP components can be regarded as the neurophysiological indexes of the processes underlying detection and orientation of attention toward the eliciting stimulus. Such detection is determined both by the salience of the stimulus that makes it pop out from the environmental context (bottom-up capture of attention) and by its relevance according to the subject's goals and motivation (top-down attentional control). The fact that nociceptive ERPs are largely influenced by information from other sensory modalities such as vision and proprioception, as well as from motor preparation, suggests that these ERPs reflect a cortical system involved in the detection of potentially meaningful stimuli for the body, with the purpose to respond adequately to potential threats. In such a theoretical framework, pain is seen as an epiphenomenon of warning processes, encoded in multimodal and multiframe representations of the body, well suited to guide defensive actions. The findings here reviewed highlight that the ERPs elicited by selective activation of nociceptors may reflect an attentional gain apt to bridge a coherent perception of salient sensory events with action selection processes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Kaganovich, Natalya; Schumaker, Jennifer
2016-01-01
Sensitivity to the temporal relationship between auditory and visual stimuli is key to efficient audiovisual integration. However, even adults vary greatly in their ability to detect audiovisual temporal asynchrony. What underlies this variability is currently unknown. We recorded event-related potentials (ERPs) while participants performed a simultaneity judgment task on a range of audiovisual (AV) and visual-auditory (VA) stimulus onset asynchronies (SOAs) and compared ERP responses in good and poor performers to the 200 ms SOA, which showed the largest individual variability in the number of synchronous perceptions. Analysis of ERPs to the VA200 stimulus yielded no significant results. However, those individuals who were more sensitive to the AV200 SOA had significantly more positive voltage between 210 and 270 ms following the sound onset. In a follow-up analysis, we showed that the mean voltage within this window predicted approximately 36% of variability in sensitivity to AV temporal asynchrony in a larger group of participants. The relationship between the ERP measure in the 210-270 ms window and accuracy on the simultaneity judgment task also held for two other AV SOAs with significant individual variability - 100 and 300 ms. Because the identified window was time-locked to the onset of sound in the AV stimulus, we conclude that sensitivity to AV temporal asynchrony is shaped to a large extent by the efficiency in the neural encoding of sound onsets. PMID:27094850
Kayser, Jürgen; Tenke, Craig E.
2015-01-01
Despite the recognition that the surface Laplacian may counteract adverse effects of volume conduction and recording reference for surface potential data, electrophysiology as a discipline has been reluctant to embrace this approach for data analysis. The reasons for such hesitation are manifold but often involve unfamiliarity with the nature of the underlying transformation, as well as intimidation by a perceived mathematical complexity, and concerns of signal loss, dense electrode array requirements, or susceptibility to noise. We revisit the pitfalls arising from volume conduction and the mandated arbitrary choice of EEG reference, describe the basic principle of the surface Laplacian transform in an intuitive fashion, and exemplify the differences between common reference schemes (nose, linked mastoids, average) and the surface Laplacian for frequently-measured EEG spectra (theta, alpha) and standard event-related potential (ERP) components, such as N1 or P3. We specifically review common reservations against the universal use of the surface Laplacian, which can be effectively addressed by employing spherical spline interpolations with an appropriate selection of the spline flexibility parameter and regularization constant. We argue from a pragmatic perspective that not only are these reservations unfounded but that the continued predominant use of surface potentials poses a considerable impediment on the progress of EEG and ERP research. PMID:25920962
Wang, Jing; Han, Weiwei
2015-01-01
When examining a buying process, changes in human brain signals and their event-related potential (ERP) components can be considered a reflection of the consumers’ emotions. In this experiment, participants were shown 12 products and related services that were available for purchase. After recording ERP components, we used a questionnaire to measure the individuals’ emotional involvement toward the services (i.e. the same services shown in the stimuli) of the 12 products to measure the emotional valence of the services. The emotional ERP components and the late positive potential (LPP) were elicited under the service conditions and distributed over the left frontal regions. We determined that the services may evoke an LPP and that services with a high emotional value may evoke a larger LPP, which suggests that positive emotion may be measured using the LPP amplitude in the left frontal regions. This result helps elucidate whether positive emotions are stimulated during the product-service system decision-making process and helps understand the emotional valences of different services. Our analysis of the emotional motivation of the consumer suggests that the LPP may be useful as an emotional indicator for measuring consumers’ evaluation of services that provides a neural view of product-service system buying decisions. PMID:26457370
Zhao, Meina; Wang, Jing; Han, Weiwei
2015-12-02
When examining a buying process, changes in human brain signals and their event-related potential (ERP) components can be considered a reflection of the consumers' emotions. In this experiment, participants were shown 12 products and related services that were available for purchase. After recording ERP components, we used a questionnaire to measure the individuals' emotional involvement toward the services (i.e. the same services shown in the stimuli) of the 12 products to measure the emotional valence of the services. The emotional ERP components and the late positive potential (LPP) were elicited under the service conditions and distributed over the left frontal regions. We determined that the services may evoke an LPP and that services with a high emotional value may evoke a larger LPP, which suggests that positive emotion may be measured using the LPP amplitude in the left frontal regions. This result helps elucidate whether positive emotions are stimulated during the product-service system decision-making process and helps understand the emotional valences of different services. Our analysis of the emotional motivation of the consumer suggests that the LPP may be useful as an emotional indicator for measuring consumers' evaluation of services that provides a neural view of product-service system buying decisions.
The Development of Selective Attention as Reflected by Event-Related Brain Potentials.
ERIC Educational Resources Information Center
Berman, Steven; Friedman, David
1995-01-01
Assessed development of auditory selective attention using event-related brain potentials (ERPs) and behavioral measures. Subjects heard tones or consonant-vowel sequences to detect deviant targets. Found that Nd difference (ERP difference between unattended and attended standard) showed effect of selective attention. For both tones and…
Repetition and brain potentials when recognizing natural scenes: task and emotion differences
Bradley, Margaret M.; Codispoti, Maurizio; Karlsson, Marie; Lang, Peter J.
2013-01-01
Repetition has long been known to facilitate memory performance, but its effects on event-related potentials (ERPs), measured as an index of recognition memory, are less well characterized. In Experiment 1, effects of both massed and distributed repetition on old–new ERPs were assessed during an immediate recognition test that followed incidental encoding of natural scenes that also varied in emotionality. Distributed repetition at encoding enhanced both memory performance and the amplitude of an old–new ERP difference over centro-parietal sensors. To assess whether these repetition effects reflect encoding or retrieval differences, the recognition task was replaced with passive viewing of old and new pictures in Experiment 2. In the absence of an explicit recognition task, ERPs were completely unaffected by repetition at encoding, and only emotional pictures prompted a modestly enhanced old–new difference. Taken together, the data suggest that repetition facilitates retrieval processes and that, in the absence of an explicit recognition task, differences in old–new ERPs are only apparent for affective cues. PMID:22842817
How L2-Learners' Brains React to Code-Switches: An ERP Study with Russian Learners of German
ERIC Educational Resources Information Center
Ruigendijk, Esther; Hentschel, Gerd; Zeller, Jan Patrick
2016-01-01
This Event Related Potentials (ERP) study investigates auditory processing of sentences with so-called code-switches in Russian learners of German. It has often been argued that switching between two languages results in extra processing cost, although it is not completely clear yet what exactly causes these costs. ERP presents a good method to…
An ERP Study of Emotional Face Processing in the Adult and Infant Brain
ERIC Educational Resources Information Center
Leppanen, Jukka M.; Moulson, Margaret C.; Vogel-Farley, Vanessa K.; Nelson, Charles A.
2007-01-01
To examine the ontogeny of emotional face processing, event-related potentials (ERPs) were recorded from adults and 7-month-old infants while viewing pictures of fearful, happy, and neutral faces. Face-sensitive ERPs at occipital-temporal scalp regions differentiated between fearful and neutral/happy faces in both adults (N170 was larger for fear)…
Balconi, Michela; Canavesio, Ylenia
2013-03-01
The present research firstly investigated the neural correlates (ERPs, event-related potentials) of attitudes to engage in prosocial-helping behaviors, and secondly, it analyzed the relation between these brain-based potentials and personal profile (high vs. low empathic profile). It was considered the subjects' behavior in response to specific emotional situations (positive vs. negative) in case it was required a possible prosocial intervention. Thirty-one subjects were invited to empathize with the emotional contexts (videotapes that reproduced two person's exchanges) and to decide whether to intervene or not to support these persons. BEES questionnaire for empathic behavior was submitted to the subjects after the experimental session. ERP acquisition and LORETA source analysis revealed a negative ongoing deflection (N200 effect) more prefrontally distributed (dorsolateral prefrontal cortex) in response to prosocial intervention options mainly for negative and positive contexts. Moreover, a significant positive correlation was found between high-empathic profiles, intervention behaviors (higher frequency of interventions) and N200 amplitude (higher peak). These results highlight the role of emotions in prosocial behavior, since the N200 effect was considered a marker of the emotional significance of the interpersonal situation. Secondly, the empathic trait may explain the prosocial decisional processes: Higher empathic trait contributes to induce subject's intervention behavior which in turn appears to be directly related to the cortical responsiveness within the prefrontal areas.
Do resting brain dynamics predict oddball evoked-potential?
2011-01-01
Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP) is still not clear. This study explored the relationship between resting electroencephalography (EEG) and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS) was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection. PMID:22114868
Test-retest reliability of infant event related potentials evoked by faces.
Munsters, N M; van Ravenswaaij, H; van den Boomen, C; Kemner, C
2017-04-05
Reliable measures are required to draw meaningful conclusions regarding developmental changes in longitudinal studies. Little is known, however, about the test-retest reliability of face-sensitive event related potentials (ERPs), a frequently used neural measure in infants. The aim of the current study is to investigate the test-retest reliability of ERPs typically evoked by faces in 9-10 month-old infants. The infants (N=31) were presented with neutral, fearful and happy faces that contained only the lower or higher spatial frequency information. They were tested twice within two weeks. The present results show that the test-retest reliability of the face-sensitive ERP components is moderate (P400 and Nc) to substantial (N290). However, there is low test-retest reliability for the effects of the specific experimental manipulations (i.e. emotion and spatial frequency) on the face-sensitive ERPs. To conclude, in infants the face-sensitive ERP components (i.e. N290, P400 and Nc) show adequate test-retest reliability, but not the effects of emotion and spatial frequency on these ERP components. We propose that further research focuses on investigating elements that might increase the test-retest reliability, as adequate test-retest reliability is necessary to draw meaningful conclusions on individual developmental trajectories of the face-sensitive ERPs in infants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The dissociable neural dynamics of cognitive conflict and emotional conflict control: An ERP study.
Xue, Song; Li, Yu; Kong, Xia; He, Qiaolin; Liu, Jia; Qiu, Jiang
2016-04-21
This study investigated differences in the neural time-course of cognitive conflict and emotional conflict control, using event-related potentials (ERPs). Although imaging studies have provided some evidence that distinct, dissociable neural systems underlie emotional and nonemotional conflict resolution, no ERP study has directly compared these two types of conflict. Therefore, the present study used a modified face-word Stroop task to explore the electrophysiological correlates of cognitive and emotional conflict control. The behavioral data showed that the difference in response time of congruency (incongruent condition minus the congruent condition) was larger in the cognitive conflict task than in the emotional conflict task, which indicated that cognitive conflict was stronger than the emotional conflict in the present tasks. Analysis of the ERP data revealed a main effect of task type on N2, which may be associated with top-down attention. The N450 results showed an interaction between cognitive and emotional conflict, which might be related to conflict detection. In addition, we found the incongruent condition elicited a larger SP than the congruent condition, which might be related to conflict resolution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field
Hahn, David; Boers, Frank; Shah, N. Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538
Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.
Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.
Valente, Andrea; Bürki, Audrey; Laganaro, Marina
2014-01-01
A major effort in cognitive neuroscience of language is to define the temporal and spatial characteristics of the core cognitive processes involved in word production. One approach consists in studying the effects of linguistic and pre-linguistic variables in picture naming tasks. So far, studies have analyzed event-related potentials (ERPs) during word production by examining one or two variables with factorial designs. Here we extended this approach by investigating simultaneously the effects of multiple theoretical relevant predictors in a picture naming task. High density EEG was recorded on 31 participants during overt naming of 100 pictures. ERPs were extracted on a trial by trial basis from picture onset to 100 ms before the onset of articulation. Mixed-effects regression models were conducted to examine which variables affected production latencies and the duration of periods of stable electrophysiological patterns (topographic maps). Results revealed an effect of a pre-linguistic variable, visual complexity, on an early period of stable electric field at scalp, from 140 to 180 ms after picture presentation, a result consistent with the proposal that this time period is associated with visual object recognition processes. Three other variables, word Age of Acquisition, Name Agreement, and Image Agreement influenced response latencies and modulated ERPs from ~380 ms to the end of the analyzed period. These results demonstrate that a topographic analysis fitted into the single trial ERPs and covering the entire processing period allows one to associate the cost generated by psycholinguistic variables to the duration of specific stable electrophysiological processes and to pinpoint the precise time-course of multiple word production predictors at once.
Pharmacokinetics and electrophysiological effects of sotalol hydrochloride in horses.
Broux, B; De Clercq, D; Decloedt, A; Vera, L; Devreese, M; Gehring, R; Croubels, S; van Loon, G
2018-05-01
Arrhythmias in horses may require long-term anti-arrhythmic therapy. Unfortunately, oral anti-arrhythmic drugs for use in horses are currently scarce. In human patients and small animals, sotalol, a β-blocker with class III anti-arrhythmic properties, is often used for long-term treatment. To determine the pharmacokinetics of sotalol at multiple oral dosages in unfasted horses, as well as the effects on electro- and echocardiographic measurements, right atrial and ventricular monophasic action potential (MAP) and effective refractory period (ERP). Placebo controlled, double-blinded experiment. Six healthy, unfasted Warmblood horses were given either 0, 2, 3 or 4 mg/kg bodyweight (bwt) sotalol orally (PO) twice daily (bid) for 9 days in a randomised cross-over design. Echocardiography and surface electrocardiography were performed and plasma concentrations of sotalol and right atrial and right ventricular MAPs and ERPs were determined at steady-state conditions. Statistical analysis was performed using a repeated measures univariate analysis with post hoc Bonferroni corrections. Calculated mean steady-state plasma concentrations determined by nonlinear mixed-effect modelling were 287 (range 234-339), 409 (359-458) and 543 (439-646) ng/mL for 2, 3 and 4 mg/kg bwt sotalol PO bid respectively. Sotalol significantly increased the QT interval and ERPs, but, despite increasing plasma concentrations, higher dosages did not result in a progressive increase in QT interval or ERPs. Echocardiographic and other electrocardiographic measurements did not change significantly. MAP durations at 90% repolarisation were not significantly different during sotalol treatment. Besides transient local sweating, no side effects were noted. Study size and ad libitum feeding of hay. Sotalol at a dose of 2, 3 and 4 mg/kg bwt PO bid increases the QT interval and ERP and might be a useful drug for long-term anti-arrhythmic therapy in horses. © 2017 EVJ Ltd.
Deeny, Sean; Chicoine, Caitlin; Hargrove, Levi; Parrish, Todd; Jayaraman, Arun
2014-01-01
Common goals in the development of human-machine interface (HMI) technology are to reduce cognitive workload and increase function. However, objective and quantitative outcome measures assessing cognitive workload have not been standardized for HMI research. The present study examines the efficacy of a simple event-related potential (ERP) measure of cortical effort during myoelectric control of a virtual limb for use as an outcome tool. Participants trained and tested on two methods of control, direct control (DC) and pattern recognition control (PRC), while electroencephalographic (EEG) activity was recorded. Eighteen healthy participants with intact limbs were tested using DC and PRC under three conditions: passive viewing, easy, and hard. Novel auditory probes were presented at random intervals during testing, and significant task-difficulty effects were observed in the P200, P300, and a late positive potential (LPP), supporting the efficacy of ERPs as a cognitive workload measure in HMI tasks. LPP amplitude distinguished DC from PRC in the hard condition with higher amplitude in PRC, consistent with lower cognitive workload in PRC relative to DC for complex movements. Participants completed trials faster in the easy condition using DC relative to PRC, but completed trials more slowly using DC relative to PRC in the hard condition. The results provide promising support for ERPs as an outcome measure for cognitive workload in HMI research such as prosthetics, exoskeletons, and other assistive devices, and can be used to evaluate and guide new technologies for more intuitive HMI control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.C.; Benson, S.B.; Beeler, D.A.
The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The remedial investigation is entering Phase 2, which has the following items as its objectives: define the nature and extent of the contamination in areas downstream from the DOE ORR, evaluate the human health and ecological risks posed by these contaminants, and perform preliminary identification and evaluation of potential remediationmore » alternatives. This plan describes the requirements, responsibilities, and roles of personnel during sampling, analysis, and data review for the Clinch River Environmental Restoration Program (CR-ERP). The purpose of the plan is to formalize the process for obtaining analytical services, tracking sampling and analysis documentation, and assessing the overall quality of the CR-ERP data collection program to ensure that it will provide the necessary building blocks for the program decision-making process.« less
Brain Event-Related Potential Correlates of Concept Learning.
ERIC Educational Resources Information Center
Federico, Pat-Anthony
An irrelevant auditory probe procedure was used to evoke brain event-related potentials (ERPs) in 56 Navy recruits while they learned pulsed radar concepts presented to them in study booklets. A mastery test was administered to assess concept acquisition. The research issue was whether brain ERPs recorded while students are in the process of…
An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas
ERIC Educational Resources Information Center
Huang, Chin-Fei; Liu, Chia-Ju
2012-01-01
The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…
Familiarity or Conceptual Priming: Event-Related Potentials in Name Recognition
ERIC Educational Resources Information Center
Stenberg, Georg; Hellman, Johan; Johansson, Mikael; Rosen, Ingmar
2009-01-01
Recent interest has been drawn to the separate components of recognition memory, as studied by event-related potentials (ERPs). In ERPs, recollection is usually accompanied by a late, parietal positive deflection. An earlier, frontal component has been suggested to be a counterpart, accompanying recognition by familiarity. However, this component,…
Event-related potential indices of workload in a single task paradigm
NASA Technical Reports Server (NTRS)
Horst, R. L.; Munson, R. C.; Ruchkin, D. S.
1984-01-01
Many previous studies of both behavioral and physiological correlates of cognitive workload have burdened subjects with a contrived secondary task in order to assess the workload of a primary task. The present study investigated event-related potential (ERP) indices of workload in a single task paradigm. Subjects monitored changing digital readouts for values that went 'out-of-bounds'. The amplitude of a long-latency positivity in the ERPs elicited by readout changes increased with the number of readouts being monitored. This effect of workload on ERPs is reported, along with plans for additional analyses to address theoretical implications.
[Progress on neuropsychology and event-related potentials in patients with brain trauma].
Dong, Ri-xia; Cai, Wei-xiong; Tang, Tao; Huang, Fu-yin
2010-02-01
With the development of information technology, as one of the research frontiers in neurophysiology, event-related potentials (ERP) is concerned increasingly by international scholars, which provides a feasible and objective method for exploring cognitive function. There are many advances in neuropsychology due to new assessment tool for the last years. The basic theories in the field of ERP and neuropsychology were reviewed in this article. The research and development in evaluating cognitive function of patients with syndrome after brain trauma were focused in this review, and the perspectives for the future research of ERP was also explored.
Saar-Ashkenazy, Rotem; Shalev, Hadar; Kanthak, Magdalena K; Guez, Jonathan; Friedman, Alon; Cohen, Jonathan E
2015-08-30
Patients with posttraumatic stress disorder (PTSD) display abnormal emotional processing and bias towards emotional content. Most neurophysiological studies in PTSD found higher amplitudes of event-related potentials (ERPs) in response to trauma-related visual content. Here we aimed to characterize brain electrical activity in PTSD subjects in response to non-trauma-related emotion-laden pictures (positive, neutral and negative). A combined behavioral-ERP study was conducted in 14 severe PTSD patients and 14 controls. Response time in PTSD patients was slower compared with that in controls, irrespective to emotional valence. In both PTSD and controls, response time to negative pictures was slower compared with that to neutral or positive pictures. Upon ranking, both control and PTSD subjects similarly discriminated between pictures with different emotional valences. ERP analysis revealed three distinctive components (at ~300, ~600 and ~1000 ms post-stimulus onset) for emotional valence in control subjects. In contrast, PTSD patients displayed a similar brain response across all emotional categories, resembling the response of controls to negative stimuli. We interpret these findings as a brain-circuit response tendency towards negative overgeneralization in PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cognitive processing of visual images in migraine populations in between headache attacks.
Mickleborough, Marla J S; Chapman, Christine M; Toma, Andreea S; Handy, Todd C
2014-09-25
People with migraine headache have altered interictal visual sensory-level processing in between headache attacks. Here we examined the extent to which these migraine abnormalities may extend into higher visual processing such as implicit evaluative analysis of visual images in between migraine events. Specifically, we asked two groups of participants--migraineurs (N=29) and non-migraine controls (N=29)--to view a set of unfamiliar commercial logos in the context of a target identification task as the brain electrical responses to these objects were recorded via event-related potentials (ERPs). Following this task, participants individually identified those logos that they most liked or disliked. We applied a between-groups comparison of how ERP responses to logos varied as a function of hedonic evaluation. Our results suggest migraineurs have abnormal implicit evaluative processing of visual stimuli. Specifically, migraineurs lacked a bias for disliked logos found in control subjects, as measured via a late positive potential (LPP) ERP component. These results suggest post-sensory consequences of migraine in between headache events, specifically abnormal cognitive evaluative processing with a lack of normal categorical hedonic evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of a novel dynamic red blindness in human by event-related brain potentials.
Zhang, Jiahua; Kong, Weijia; Yang, Zhongle
2010-12-01
Dynamic color is an important carrier that takes information in some special occupations. However, up to the present, there are no available and objective tests to evaluate dynamic color processing. To investigate the characteristics of dynamic color processing, we adopted two patterns of visual stimulus called "onset-offset" which reflected static color stimuli and "sustained moving" without abrupt mode which reflected dynamic color stimuli to evoke event-related brain potentials (ERPs) in primary color amblyopia patients (abnormal group) and subjects with normal color recognition ability (normal group). ERPs were recorded by Neuroscan system. The results showed that in the normal group, ERPs in response to the dynamic red stimulus showed frontal positive amplitudes with a latency of about 180 ms, a negative peak at about 240 ms and a peak latency of the late positive potential (LPP) in a time window between 290 and 580 ms. In the abnormal group, ERPs in response to the dynamic red stimulus were fully lost and characterized by vanished amplitudes between 0 and 800 ms. No significant difference was noted in ERPs in response to the dynamic green and blue stimulus between the two groups (P>0.05). ERPs of the two groups in response to the static red, green and blue stimulus were not much different, showing a transient negative peak at about 170 ms and a peak latency of LPP in a time window between 350 and 650 ms. Our results first revealed that some subjects who were not identified as color blindness under static color recognition could not completely apperceive a sort of dynamic red stimulus by ERPs, which was called "dynamic red blindness". Furthermore, these results also indicated that low-frequency ERPs induced by "sustained moving" may be a good and new method to test dynamic color perception competence.
Larson, Michael J; Clayson, Peter E; Primosch, Mark; Leyton, Marco; Steffensen, Scott C
2015-01-01
Studies using medications and psychiatric populations implicate dopamine in cognitive control and performance monitoring processes. However, side effects associated with medication or studying psychiatric groups may confound the relationship between dopamine and cognitive control. To circumvent such possibilities, we utilized a randomized, double-blind, placebo-controlled, within-subjects design wherein participants were administered a nutritionally-balanced amino acid mixture (BAL) and an amino acid mixture deficient in the dopamine precursors tyrosine (TYR) and phenylalanine (PHE) on two separate occasions. Order of sessions was randomly assigned. Cognitive control and performance monitoring were assessed using response times (RT), error rates, the N450, an event-related potential (ERP) index of conflict monitoring, the conflict slow potential (conflict SP), an ERP index of conflict resolution, and the error-related negativity (ERN) and error positivity (Pe), ERPs associated with performance monitoring. Participants were twelve males who completed a Stroop color-word task while ERPs were collected four hours following acute PHE and TYR depletion (APTD) or balanced (BAL) mixture ingestion in two separate sessions. N450 and conflict SP ERP amplitudes significantly differentiated congruent from incongruent trials, but did not differ as a function of APTD or BAL mixture ingestion. Similarly, ERN and Pe amplitudes showed significant differences between error and correct trials that were not different between APTD and BAL conditions. Findings indicate that acute dopamine precursor depletion does not significantly alter cognitive control and performance monitoring ERPs. Current results do not preclude the role of dopamine in these processes, but suggest that multiple methods for dopamine-related hypothesis testing are needed.
Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe; Bastlund, Jesper Frank
2014-01-01
P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related to several psychiatric and neurological diseases, e.g., Alzheimer's disease (AD). However, only a very limited number of rodent studies have addressed the back-translational validity of the P3-like ERPs as suitable markers of cognition. Thus, the potential of rodent P3-like ERPs to predict pro-cognitive effects in humans remains to be fully validated. The current study characterizes P3-like ERPs in the 192-IgG-SAP (SAP) rat model of the cholinergic degeneration associated with AD. Following training in a combined auditory oddball and lever-press setup, rats were subjected to bilateral intracerebroventricular infusion of 1.25 μg SAP or PBS (sham lesion) and recording electrodes were implanted in hippocampal CA1. Relative to sham-lesioned rats, SAP-lesioned rats had significantly reduced amplitude of P3-like ERPs. P3 amplitude was significantly increased in SAP-treated rats following pre-treatment with 1 mg/kg donepezil. Infusion of SAP reduced the hippocampal choline acetyltransferase activity by 75%. Behaviorally defined cognitive performance was comparable between treatment groups. The present study suggests that AD-like deficits in P3-like ERPs may be mimicked by the basal forebrain cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup.
Design Patterns Application in the ERP Systems Improvements
NASA Astrophysics Data System (ADS)
Jovičić, Bojan; Vlajić, Siniša
Design patterns application have long been present in software engineering. The same is true for ERP systems in business software. Is it possible that ERP systems do not have a good maintenance score? We have found out that there is room for maintenance improvement and that it is possible to improve ERP systems using design patterns. We have conducted comparative analysis of ease of maintenance of the ERP systems. The results show that the average score for our questions is 64%, with most answers for ERP systems like SAP, Oracle EBS, Dynamics AX. We found that 59% of ERP system developer users are not familiar with design patterns. Based on this research, we have chosen Dynamics AX as the ERP system for examination of design patterns improvement possibilities. We used software metrics to measure improvement possibility. We found that we could increase the Conditional Complexity score 17-fold by introducing design patterns.
ERIC Educational Resources Information Center
Zuijen, Titia L.; Plakas, Anna; Maassen, Ben A. M.; Maurits, Natasha M.; van der Leij, Aryan
2013-01-01
Dyslexia is heritable and associated with phonological processing deficits that can be reflected in the event-related potentials (ERPs). Here, we recorded ERPs from 2-month-old infants at risk of dyslexia and from a control group to investigate whether their auditory system processes /bAk/ and /dAk/ changes differently. The speech sounds were…
Lin, Huiyan; Schulz, Claudia; Straube, Thomas
2016-10-01
Previous studies have shown that event-related potentials (ERPs) to facial expressions are modulated by expectation (congruency) and that the ERP effects of expectation congruency are altered by cognitive tasks during the expectation phase. However, it is as yet unknown whether the congruency ERP effects can be modulated by the amount of cognitive load during the expectation phase. To address this question, electroencephalogram (EEG) was acquired when participants viewed fearful and neutral facial expressions. Before the presentation of facial expressions, a cue indicating the expression of a face and subsequently, an expectation interval without any cues were presented. Facial expressions were congruent with the cues in 75% of all trials. During the expectation interval, participants had to solve a cognitive task, in which several letters were presented for target letter detection. The letters were all the same under low load, but differed under high load. Event-related potential (ERP) results showed that the amount of cognitive load during the expectation phase altered the congruency effect in N2 and EPN amplitudes for fearful faces. Congruent as compared to incongruent fearful expressions elicited larger N2 and smaller EPN amplitudes under low load, but these congruency effects were not observed under high load. For neutral faces, a congruency effect in late positive potential (LPP) amplitudes was modulated by cognitive load during the expectation phase. The LPP was more positive for incongruent as compared to congruent faces under low load, but the congruency effect was not evident under high load. The findings indicate that congruency effects on ERPs are modulated by the amount of cognitive load the expectation phase and that this modulation is altered by facial expression. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Background The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects. Methods Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0. Results In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients. Conclusions This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials. PMID:21542917
An empirical analysis of ERP adoption by oil and gas firms
NASA Astrophysics Data System (ADS)
Romero, Jorge
2005-07-01
Despite the growing popularity of enterprise-resource-planning (ERP) systems for the information technology infrastructure of large and medium-sized businesses, there is limited empirical evidence on the competitive benefits of ERP implementations. Case studies of individual firms provide insights but do not provide sufficient evidence to draw reliable inferences and cross-sectional studies of firms in multiple industries provide a broad-brush perspective of the performance effects associated with ERP installations. To narrow the focus to a specific competitive arena, I analyze the impact of ERP adoption on various dimensions of performance for firms in the Oil and Gas Industry. I selected the Oil and Gas Industry because several companies installed a specific type of ERP system, SAP R/3, during the period from 1990 to 2002. In fact, SAP was the dominant provider of enterprise software to oil and gas companies during this period. I evaluate performance of firms that implemented SAP R/3 relative to firms that did not adopt ERP systems in the pre-implementation, implementation and post-implementation periods. My analysis takes two different approaches, the first from a financial perspective and the second from a strategic perspective. Using the Sloan (General Motors) model commonly applied in financial statement analysis, I examine changes in performance for ERP-adopting firms versus non-adopting firms along the dimensions of asset utilization and return on sales. Asset utilization is more closely aligned with changes in leanness of operations, and return on sales is more closely aligned with customer-value-added. I test hypotheses related to the timing and magnitude of the impact of ERP implementation with respect to leanness of operations and customer value added. I find that SAP-adopting companies performed relatively better in terms of asset turnover than non-SAP-adopting companies during both the implementation and post-implementation periods and that SAP-adopting firms outperformed non-SAP-adopting firms in terms of return on sales during the post-implementation period. These findings indicate that the impact of ERP implementation on return on sales occurred after an assimilation period. I perform an analysis of the impact of ERP in the Oil and Gas Industry using strategic performance metrics described in Banker et al. (1996) including profitability, productivity, price recovery, product mix, and capacity utilization. My results show that the benefits obtained from ERP implementation in terms of productivity and capacity utilization are persistently positive during and after the installation.
Barrès, Victor; Simons, Arthur; Arbib, Michael
2013-01-01
Our previous work developed Synthetic Brain Imaging to link neural and schema network models of cognition and behavior to PET and fMRI studies of brain function. We here extend this approach to Synthetic Event-Related Potentials (Synthetic ERP). Although the method is of general applicability, we focus on ERP correlates of language processing in the human brain. The method has two components: Phase 1: To generate cortical electro-magnetic source activity from neural or schema network models; and Phase 2: To generate known neurolinguistic ERP data (ERP scalp voltage topographies and waveforms) from putative cortical source distributions and activities within a realistic anatomical model of the human brain and head. To illustrate the challenges of Phase 2 of the methodology, spatiotemporal information from Friederici's 2002 model of auditory language comprehension was used to define cortical regions and time courses of activation for implementation within a forward model of ERP data. The cortical regions from the 2002 model were modeled using atlas-based masks overlaid on the MNI high definition single subject cortical mesh. The electromagnetic contribution of each region was modeled using current dipoles whose position and orientation were constrained by the cortical geometry. In linking neural network computation via EEG forward modeling to empirical results in neurolinguistics, we emphasize the need for neural network models to link their architecture to geometrically sound models of the cortical surface, and the need for conceptual models to refine and adopt brain-atlas based approaches to allow precise brain anchoring of their modules. The detailed analysis of Phase 2 sets the stage for a brief introduction to Phase 1 of the program, including the case for a schema-theoretic approach to language production and perception presented in detail elsewhere. Unlike Dynamic Causal Modeling (DCM) and Bojak's mean field model, Synthetic ERP builds on models of networks that mediate the relation between the brain's inputs, outputs, and internal states in executing a specific task. The neural networks used for Synthetic ERP must include neuroanatomically realistic placement and orientation of the cortical pyramidal neurons. These constraints pose exciting challenges for future work in neural network modeling that is applicable to systems and cognitive neuroscience. Copyright © 2012 Elsevier Ltd. All rights reserved.
Electrophysiological evidence for phenomenal consciousness.
Revonsuo, Antti; Koivisto, Mika
2010-09-01
Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.
Use of Event-Related Potentials in the Study of Typical and Atypical Development
ERIC Educational Resources Information Center
Nelson, Charles A., III; McCleery, Joseph P.
2008-01-01
Event-related potential is a kind of neuroimaging tool which can be used in the study of neurodevelopment. Two areas of atypical development, children diagnosed with autism and children experiencing early psychosocial neglect, have benefited from ERPs. The physiological basis of ERPs and the constraints on their applications are also discussed.
ERIC Educational Resources Information Center
Guthormsen, Amy M.; Fisher, Kristie J.; Bassok, Miriam; Osterhout, Lee; DeWolf, Melissa; Holyoak, Keith J.
2016-01-01
Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)--N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving…
Auditory Event-Related Potentials (ERPs) in Audiovisual Speech Perception
ERIC Educational Resources Information Center
Pilling, Michael
2009-01-01
Purpose: It has recently been reported (e.g., V. van Wassenhove, K. W. Grant, & D. Poeppel, 2005) that audiovisual (AV) presented speech is associated with an N1/P2 auditory event-related potential (ERP) response that is lower in peak amplitude compared with the responses associated with auditory only (AO) speech. This effect was replicated.…
ERIC Educational Resources Information Center
Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca
2012-01-01
We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (1) a sequential learning task involving complex structured sequences and (2) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic…
A Comparison of Semantic and Syntactic Event Related Potentials Generated by Children and Adults
ERIC Educational Resources Information Center
Atchley, Ruth Ann; Rice, Mabel L.; Betz, Stacy K.; Kwasny, Kristin M.; Sereno, Joan A.; Jongman, Allard
2006-01-01
The present study employs event related potentials (ERPs) to verify the utility of using electrophysiological measures to study developmental questions within the field of language comprehension. Established ERP components (N400 and P600) that reflect semantic and syntactic processing were examined. Fifteen adults and 14 children (ages 8-13)…
Strauss, Clara; Rosten, Claire; Hayward, Mark; Lea, Laura; Forrester, Elizabeth; Jones, Anna-Marie
2015-04-16
Obsessive Compulsive Disorder (OCD) is a distressing and debilitating condition affecting 1-2% of the population. Exposure and response prevention (ERP) is a behaviour therapy for OCD with the strongest evidence for effectiveness of any psychological therapy for the condition. Even so, only about half of people offered ERP show recovery after the therapy. An important reason for ERP failure is that about 25% of people drop out early, and even for those who continue with the therapy, many do not regularly engage in ERP tasks, an essential element of ERP. A mindfulness-based approach has the potential to reduce drop-out from ERP and to improve ERP task engagement with an emphasis on accepting difficult thoughts, feelings and bodily sessions and on becoming more aware of urges, rather than automatically acting on them. This is a pilot randomised controlled trial of mindfulness-based ERP (MB-ERP) with the aim of establishing parameters for a definitive trial. Forty participants diagnosed with OCD will be allocated at random to a 10-session ERP group or to a 10-session MB-ERP group. Primary outcomes are OCD symptom severity and therapy engagement. Secondary outcomes are depressive symptom severity, wellbeing and obsessive-compulsive beliefs. A semi-structured interview with participants will guide understanding of change processes. Findings from this pilot study will inform future research in this area, and if effect sizes on primary outcomes are in favour of MB-ERP in comparison to ERP, funding for a definitive trial will be sought. Current Controlled Trials registration number ISRCTN52684820. Registered on 30 January 2014.
Baril, Andrée-Ann; Gagnon, Katia; Gagnon, Jean-François; Montplaisir, Jacques; Gosselin, Nadia
2013-07-01
Sleepiness, cognitive deficits, abnormal event-related potentials (ERP), and slowing of the waking electroencephalography (EEG) activity have been reported in patients with obstructive sleep apnea (OSA). Our study aimed at evaluating if an association exists between the severity of ERP abnormalities and EEG slowing to better understand cerebral dysfunctions in OSA. Twelve OSA patients and 12 age-matched controls underwent an overnight polysomnographic recording, an EEG recording of 10 min of wakefulness, and an auditory ERP protocol known to specifically recruit attention. P300 and P3a ERP components were measured as well as the spectral power in each frequency band of the waking EEG. Pearson product moment correlations were used to measure associations between ERP characteristics and EEG spectral power in OSA patients and control subjects. A positive correlation between the late P300 amplitude and θ power in the occipital region was observed in OSA subjects (P<.01). A positive correlation was also found between P3a amplitude and β1 power in central region in OSA subjects (P<.01). No correlation was observed for control subjects. ERP abnormalities observed in an attention task are associated with a slowing of the waking EEG recorded at rest in OSA. Copyright © 2013 Elsevier B.V. All rights reserved.
ERP correlates of attention allocation in mothers processing faces of their children
Grasso, Damion J.; Moser, Jason S.; Dozier, Mary; Simons, Robert
2012-01-01
This study employed visually evoked event-related potential (ERP) methodology to examine temporal patterns of structural and higher-level face processing in birth and foster/adoptive mothers viewing pictures of their children. Fourteen birth mothers and 14 foster/adoptive mothers engaged in a computerized task in which they viewed facial pictures of their own children, and of familiar and unfamiliar children and adults. All mothers, regardless of type, showed ERP patterns suggestive of increased attention allocation to their own children’s faces compared to other child and adult faces beginning as early as 100–150 ms after stimulus onset and lasting for several hundred milliseconds. These data are in line with a parallel processing model that posits the involvement of several brain regions in simultaneously encoding the structural features of faces as well as their emotional and personal significance. Additionally, late positive ERP patterns associated with greater allocation of attention predicted mothers’ perceptions of the parent–child relationship as positive and influential to their children’s psychological development. These findings suggest the potential utility of using ERP components to index maternal processes. PMID:19428973
Preece, Kathryn A.; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve
2015-01-01
Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under “passive” and “active” listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of ‘high’ (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children’s late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component. PMID:25922794
Badcock, Nicholas A; Preece, Kathryn A; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve
2015-01-01
Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under "passive" and "active" listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of 'high' (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children's late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component.
Purification and biochemical characterization of native ERp29 from rat liver
2004-01-01
ERp29 is a recently characterized resident of the ER (endoplasmic reticulum) lumen that has broad biological significance, being expressed ubiquitously and abundantly in animal cells. As an apparent housekeeper, ERp29 is thought to be a general folding assistant for secretory proteins and to probably function as a PDI (protein disulphide isomerase)-like molecular chaperone. In the present paper, we report the first purification to homogeneity and direct functional analysis of native ERp29, which has led to the unexpected finding that ERp29 lacks PDI-like folding activities. ERp29 was purified 4800-fold in non-denaturing conditions exploiting an unusual affinity for heparin. Two additional biochemical hallmarks that will assist the classification of ERp29 homologues were identified, namely the idiosyncratic behaviours of ERp29 on size-exclusion chromatography (Mr
Getzmann, Stephan; Jasny, Julian; Falkenstein, Michael
2017-02-01
Verbal communication in a "cocktail-party situation" is a major challenge for the auditory system. In particular, changes in target speaker usually result in declined speech perception. Here, we investigated whether speech cues indicating a subsequent change in target speaker reduce the costs of switching in younger and older adults. We employed event-related potential (ERP) measures and a speech perception task, in which sequences of short words were simultaneously presented by four speakers. Changes in target speaker were either unpredictable or semantically cued by a word within the target stream. Cued changes resulted in a less decreased performance than uncued changes in both age groups. The ERP analysis revealed shorter latencies in the change-related N400 and late positive complex (LPC) after cued changes, suggesting an acceleration in context updating and attention switching. Thus, both younger and older listeners used semantic cues to prepare changes in speaker setting. Copyright © 2016 Elsevier Inc. All rights reserved.
On the effect of subliminal priming on subjective perception of images: a machine learning approach.
Kumar, Parmod; Mahmood, Faisal; Mohan, Dhanya Menoth; Wong, Ken; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Dauwels, Justin; Chan, Alice H D
2014-01-01
The research presented in this article investigates the influence of subliminal prime words on peoples' judgment about images, through electroencephalograms (EEGs). In this cross domain priming paradigm, the participants are asked to rate how much they like the stimulus images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words, with EEG recorded simultaneously. Statistical analysis tools are used to analyze the effect of priming on behavior, and machine learning techniques to infer the primes from EEGs. The experiment reveals strong effects of subliminal priming on the participants' explicit rating of images. The subjective judgment affected by the priming makes visible change in event-related potentials (ERPs); results show larger ERP amplitude for the negative primes compared with positive and neutral primes. In addition, Support Vector Machine (SVM) based classifiers are proposed to infer the prime types from the average ERPs, which yields a classification rate of 70%.
Ibanez, Agustin; Cetkovich, Marcelo; Petroni, Agustin; Urquina, Hugo; Baez, Sandra; Gonzalez-Gadea, Maria Luz; Kamienkowski, Juan Esteban; Torralva, Teresa; Torrente, Fernando; Strejilevich, Sergio; Teitelbaum, Julia; Hurtado, Esteban; Guex, Raphael; Melloni, Margherita; Lischinsky, Alicia; Sigman, Mariano; Manes, Facundo
2012-01-01
Background Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) share DSM-IV criteria in adults and cause problems in decision-making. Nevertheless, no previous report has assessed a decision-making task that includes the examination of the neural correlates of reward and gambling in adults with ADHD and those with BD. Methodology/Principal Findings We used the Iowa gambling task (IGT), a task of rational decision-making under risk (RDMUR) and a rapid-decision gambling task (RDGT) which elicits behavioral measures as well as event-related potentials (ERPs: fERN and P3) in connection to the motivational impact of events. We did not observe between-group differences for decision-making under risk or ambiguity (RDMUR and IGT); however, there were significant differences for the ERP-assessed RDGT. Compared to controls, the ADHD group showed a pattern of impaired learning by feedback (fERN) and insensitivity to reward magnitude (P3). This ERP pattern (fERN and P3) was associated with impulsivity, hyperactivity, executive function and working memory. Compared to controls, the BD group showed fERN- and P3-enhanced responses to reward magnitude regardless of valence. This ERP pattern (fERN and P3) was associated with mood and inhibitory control. Consistent with the ERP findings, an analysis of source location revealed reduced responses of the cingulate cortex to the valence and magnitude of rewards in patients with ADHD and BD. Conclusions/Significance Our data suggest that neurophysiological (ERPs) paradigms such as the RDGT are well suited to assess subclinical decision-making processes in patients with ADHD and BD as well as for linking the cingulate cortex with action monitoring systems. PMID:22624011
The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs.
Bridwell, David A; Steele, Vaughn R; Maurer, J Michael; Kiehl, Kent A; Calhoun, Vince D
2015-02-01
The symptoms that contribute to the clinical diagnosis of depression likely emerge from, or are related to, underlying cognitive deficits. To understand this relationship further, we examined the relationship between self-reported somatic and cognitive-affective Beck'sDepression Inventory-II (BDI-II) symptoms and aspects of cognitive control reflected in error event-related potential (ERP) responses. Task and assessment data were analyzed within 51 individuals. The group contained a broad distribution of depressive symptoms, as assessed by BDI-II scores. ERPs were collected following error responses within a go/no-go task. Individual error ERP amplitudes were estimated by conducting group independent component analysis (ICA) on the electroencephalographic (EEG) time series and analyzing the individual reconstructed source epochs. Source error amplitudes were correlated with the subset of BDI-II scores representing somatic and cognitive-affective symptoms. We demonstrate a negative relationship between somatic depression symptoms (i.e. fatigue or loss of energy) (after regressing out cognitive-affective scores, age and IQ) and the central-parietal ERP response that peaks at 359 ms. The peak amplitudes within this ERP response were not significantly related to cognitive-affective symptom severity (after regressing out the somatic symptom scores, age, and IQ). These findings were obtained within a population of female adults from a maximum-security correctional facility. Thus, additional research is required to verify that they generalize to the broad population. These results suggest that individuals with greater somatic depression symptoms demonstrate a reduced awareness of behavioral errors, and help clarify the relationship between clinical measures of self-reported depression symptoms and cognitive control. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of independent components of cognitive event related potentials in a group of ADHD adults.
Markovska-Simoska, Silvana; Pop-Jordanova, Nada; Pop-Jordanov, Jordan
In the last decade, many studies have tried to define the neural correlates of attention deficit hyperactivity disorder (ADHD). The main aim of this study is the comparison of the ERPs independent components in the four QEEG subtypes in a group of ADHD adults as a basis for defining the corresponding endophenotypes among ADHD population. Sixty-seven adults diagnosed as ADHD according to the DSM-IV criteria and 50 age-matched control subjects participated in the study. The brain activity of the subjects was recorded by 19 channel quantitative electroencephalography (QEEG) system in two neuropsychological tasks (visual and emotional continuous performance tests). The ICA method was applied for separation of the independent ERPs components. The components were associated with distinct psychological operations, such as engagement operations (P3bP component), comparison (vcomTL and vcom TR), motor inhibition (P3supF) and monitoring (P4monCC) operations. The ERPs results point out that there is disturbance in executive functioning in investigated ADHD group obtained by the significantly lower amplitude and longer latency for the engagement (P3bP), motor inhibition (P3supF) and monitoring (P4monCC) components. Particularly, the QEEG subtype IV was with the most significant ERPs differences comparing to the other subtypes. In particular, the most prominent difference in the ERPs independent components for the QEEG subtype IV in comparison to other three subtypes, rise many questions and becomes the subject for future research. This study aims to advance and facilitate the use of neurophysiological procedures (QEEG and ERPs) in clinical practice as objective measures of ADHD for better assessment, subtyping and treatment of ADHD.
Van Hoogmoed, A H; Nadel, L; Spanò, G; Edgin, J O
2016-02-01
Event related potentials (ERPs) can help to determine the cognitive and neural processes underlying memory functions and are often used to study populations with severe memory impairment. In healthy adults, memory is typically assessed with active tasks, while in patient studies passive memory paradigms are generally used. In this study we examined whether active and passive continuous object recognition tasks measure the same underlying memory process in typically developing (TD) adults and in individuals with Down syndrome (DS), a population with known hippocampal impairment. We further explored how ERPs in these tasks relate to behavioral measures of memory. Data-driven analysis techniques revealed large differences in old-new effects in the active versus passive task in TD adults, but no difference between these tasks in DS. The group with DS required additional processing in the active task in comparison to the TD group in two ways. First, the old-new effect started 150 ms later. Second, more repetitions were required to show the old-new effect. In the group with DS, performance on a behavioral measure of object-location memory was related to ERP measures across both tasks. In total, our results suggest that active and passive ERP memory measures do not differ in DS and likely reflect the use of implicit memory, but not explicit processing, on both tasks. Our findings highlight the need for a greater understanding of the comparison between active and passive ERP paradigms before they are inferred to measure similar functions across populations (e.g., infants or intellectual disability). Copyright © 2016 Elsevier Ltd. All rights reserved.
Ibanez, Agustin; Cetkovich, Marcelo; Petroni, Agustin; Urquina, Hugo; Baez, Sandra; Gonzalez-Gadea, Maria Luz; Kamienkowski, Juan Esteban; Torralva, Teresa; Torrente, Fernando; Strejilevich, Sergio; Teitelbaum, Julia; Hurtado, Esteban; Guex, Raphael; Melloni, Margherita; Lischinsky, Alicia; Sigman, Mariano; Manes, Facundo
2012-01-01
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) share DSM-IV criteria in adults and cause problems in decision-making. Nevertheless, no previous report has assessed a decision-making task that includes the examination of the neural correlates of reward and gambling in adults with ADHD and those with BD. We used the Iowa gambling task (IGT), a task of rational decision-making under risk (RDMUR) and a rapid-decision gambling task (RDGT) which elicits behavioral measures as well as event-related potentials (ERPs: fERN and P3) in connection to the motivational impact of events. We did not observe between-group differences for decision-making under risk or ambiguity (RDMUR and IGT); however, there were significant differences for the ERP-assessed RDGT. Compared to controls, the ADHD group showed a pattern of impaired learning by feedback (fERN) and insensitivity to reward magnitude (P3). This ERP pattern (fERN and P3) was associated with impulsivity, hyperactivity, executive function and working memory. Compared to controls, the BD group showed fERN- and P3-enhanced responses to reward magnitude regardless of valence. This ERP pattern (fERN and P3) was associated with mood and inhibitory control. Consistent with the ERP findings, an analysis of source location revealed reduced responses of the cingulate cortex to the valence and magnitude of rewards in patients with ADHD and BD. Our data suggest that neurophysiological (ERPs) paradigms such as the RDGT are well suited to assess subclinical decision-making processes in patients with ADHD and BD as well as for linking the cingulate cortex with action monitoring systems.
Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt
2016-01-01
Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.
Primary task event-related potentials related to different aspects of information processing
NASA Technical Reports Server (NTRS)
Munson, Robert C.; Horst, Richard L.; Mahaffey, David L.
1988-01-01
The results of two studies which investigated the relationships between cognitive processing and components of transient event-related potentials (ERPs) are presented in a task in which mental workload was manipulated. The task involved the monitoring of an array of discrete readouts for values that went out of bounds, and was somewhat analogous to tasks performed in cockpits. The ERPs elicited by the changing readouts varied with the number of readouts being monitored, the number of monitored readouts that were close to going out of bounds, and whether or not the change took a monitored readout out of bounds. Moreover, different regions of the waveform differentially reflected these effects. The results confirm the sensitivity of scalp-recorded ERPs to the cognitive processes affected by mental workload and suggest the possibility of extracting useful ERP indices of primary task performance in a wide range of man-machine settings.
Smid, H G; Jakob, A; Heinze, H J
1999-03-01
What cognitive processes underlie event-related brain potential (ERP) effects related to visual multidimensional selective attention and how are these processes organized? We recorded ERPs when participants attended to one conjunction of color, global shape and local shape and ignored other conjunctions of these attributes in three discriminability conditions. Attending to color and shape produced three ERP effects: frontal selection positivity (FSP), central negativity (N2b), and posterior selection negativity (SN). The results suggested that the processes underlying SN and N2b perform independent within-dimension selections, whereas the process underlying the FSP performs hierarchical between-dimension selections. At posterior electrodes, manipulation of discriminability changed the ERPs to the relevant but not to the irrelevant stimuli, suggesting that the SN does not concern the selection process itself but rather a cognitive process initiated after selection is finished. Other findings suggested that selection of multiple visual attributes occurs in parallel.
Kayser, Jürgen; Tenke, Craig E
2015-09-01
Despite the recognition that the surface Laplacian may counteract adverse effects of volume conduction and recording reference for surface potential data, electrophysiology as a discipline has been reluctant to embrace this approach for data analysis. The reasons for such hesitation are manifold but often involve unfamiliarity with the nature of the underlying transformation, as well as intimidation by a perceived mathematical complexity, and concerns of signal loss, dense electrode array requirements, or susceptibility to noise. We revisit the pitfalls arising from volume conduction and the mandated arbitrary choice of EEG reference, describe the basic principle of the surface Laplacian transform in an intuitive fashion, and exemplify the differences between common reference schemes (nose, linked mastoids, average) and the surface Laplacian for frequently-measured EEG spectra (theta, alpha) and standard event-related potential (ERP) components, such as N1 or P3. We specifically review common reservations against the universal use of the surface Laplacian, which can be effectively addressed by employing spherical spline interpolations with an appropriate selection of the spline flexibility parameter and regularization constant. We argue from a pragmatic perspective that not only are these reservations unfounded but that the continued predominant use of surface potentials poses a considerable impediment on the progress of EEG and ERP research. Copyright © 2015 Elsevier B.V. All rights reserved.
The Use of Electrophysiology in the Study of Early Development
ERIC Educational Resources Information Center
Szucs, Denes
2005-01-01
Electrophysiology is a timely and important tool in the study of early cognitive development. This commentary polishes the definition of event-related potential (ERP) components; often interpreted as expressions of mental processes. Further, attention is drawn to time-frequency analysis of the electroencephalogram (EEG) which conveys much more…
Local and Global Auditory Processing: Behavioral and ERP Evidence
Sanders, Lisa D.; Poeppel, David
2007-01-01
Differential processing of local and global visual features is well established. Global precedence effects, differences in event-related potentials (ERPs) elicited when attention is focused on local versus global levels, and hemispheric specialization for local and global features all indicate that relative scale of detail is an important distinction in visual processing. Observing analogous differential processing of local and global auditory information would suggest that scale of detail is a general organizational principle of the brain. However, to date the research on auditory local and global processing has primarily focused on music perception or on the perceptual analysis of relatively higher and lower frequencies. The study described here suggests that temporal aspects of auditory stimuli better capture the local-global distinction. By combining short (40 ms) frequency modulated tones in series to create global auditory patterns (500 ms), we independently varied whether pitch increased or decreased over short time spans (local) and longer time spans (global). Accuracy and reaction time measures revealed better performance for global judgments and asymmetric interference that were modulated by amount of pitch change. ERPs recorded while participants listened to identical sounds and indicated the direction of pitch change at the local or global levels provided evidence for differential processing similar to that found in ERP studies employing hierarchical visual stimuli. ERP measures failed to provide evidence for lateralization of local and global auditory perception, but differences in distributions suggest preferential processing in more ventral and dorsal areas respectively. PMID:17113115
Action-related auditory ERP attenuation: Paradigms and hypotheses.
Horváth, János
2015-11-11
A number studies have shown that the auditory N1 event-related potential (ERP) is attenuated when elicited by self-induced or self-generated sounds. Because N1 is a correlate of auditory feature- and event-detection, it was generally assumed that N1-attenuation reflected the cancellation of auditory re-afference, enabled by the internal forward modeling of the predictable sensory consequences of the given action. Focusing on paradigms utilizing non-speech actions, the present review summarizes recent progress on action-related auditory attenuation. Following a critical analysis of the most widely used, contingent paradigm, two further hypotheses on the possible causes of action-related auditory ERP attenuation are presented. The attention hypotheses suggest that auditory ERP attenuation is brought about by a temporary division of attention between the action and the auditory stimulation. The pre-activation hypothesis suggests that the attenuation is caused by the activation of a sensory template during the initiation of the action, which interferes with the incoming stimulation. Although each hypothesis can account for a number of findings, none of them can accommodate the whole spectrum of results. It is suggested that a better understanding of auditory ERP attenuation phenomena could be achieved by systematic investigations of the types of actions, the degree of action-effect contingency, and the temporal characteristics of action-effect contingency representation-buildup and -deactivation. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015. Published by Elsevier B.V.
Kim, Albert E; Oines, Leif; Miyake, Akira
2018-03-01
This study investigated the processes reflected in the widely observed N400 and P600 event-related potential (ERP) effects and tested the hypothesis that the N400 and P600 effects are functionally linked in a tradeoff relationship, constrained in part by individual differences in cognitive ability. Sixty participants read sentences, and ERP effects of semantic anomaly, relative to plausible words, were calculated for each participant. Results suggested qualitatively different ERP patterns across participants: Some individuals generated N400-dominated effects, whereas others generated P600-dominated effects, for the same stimuli. To specify the sources of individual differences in brain responses, we also derived aggregate scores for verbal working memory (WM), nonverbal WM, and language experience/knowledge, based on 6 behavioral measures administered to each participant. Multiple regression analysis pitting these 3 constructs against each other showed that a larger verbal WM capacity was significantly associated with larger P600 and smaller N400 effect amplitudes across individuals, whereas the other constructs did not predict the ERP effects. The results suggest that N400 and P600 brain responses, which may be attributable to semantic integration difficulty and structural processing, respectively, vie for expression when comprehenders encounter semantically unexpected words and that which option wins out is constrained in part by each comprehender's verbal WM capacity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
ERIC Educational Resources Information Center
Dallas, Andrea; DeDe, Gayle; Nicol, Janet
2013-01-01
The current study employed a neuro-imaging technique, Event-Related Potentials (ERP), to investigate real-time processing of sentences containing filler-gap dependencies by late-learning speakers of English as a second language (L2) with a Chinese native language background. An individual differences approach was also taken to examine the role of…
ERIC Educational Resources Information Center
Tokowicz, Natasha; MacWhinney, Brian
2005-01-01
We used event-related brain potentials (ERPs) to investigate the contributions of explicit and implicit processes during second language (L2) sentence comprehension. We used a L2 grammaticality judgment task (GJT) to test 20 native English speakers enrolled in the first four semesters of Spanish while recording both accuracy and ERP data. Because…
Temporal Dynamics of Late Second Language Acquisition: Evidence from Event-Related Brain Potentials
ERIC Educational Resources Information Center
Steinhauer, Karsten; White, Erin J.; Drury, John E.
2009-01-01
The ways in which age of acquisition (AoA) may affect (morpho)syntax in second language acquisition (SLA) are discussed. We suggest that event-related brain potentials (ERPs) provide an appropriate online measure to test some such effects. ERP findings of the past decade are reviewed with a focus on recent and ongoing research. It is concluded…
ERIC Educational Resources Information Center
Reynolds, Greg D.; Courage, Mary L.; Richards, John E.
2010-01-01
In this study, we had 3 major goals. The 1st goal was to establish a link between behavioral and event-related potential (ERP) measures of infant attention and recognition memory. To assess the distribution of infant visual preferences throughout ERP testing, we designed a new experimental procedure that embeds a behavioral measure (paired…
Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time
Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.
2016-01-01
Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and characterizing ERPs as vital signs, critical for subsequent evaluation of dysfunction in conditions like concussion and/or dementia. PMID:27242415
Applying Real Options for Evaluating Investments in ERP Systems
NASA Astrophysics Data System (ADS)
Nakagane, Jun; Sekozawa, Teruji
This paper intends to verify effectiveness of real options approach for evaluating investments in Enterprise Resource Planning systems (ERP) and proves how important it is to disclose shadow options potentially embedded in ERP investment. The net present value (NPV) method is principally adopted to evaluate the value of ERP. However, the NPV method assumes no uncertainties exist in the object. It doesn't satisfy the current business circumstances which are filled with dynamic issues. Since the 1990s the effectiveness of option pricing models for Information System (IS) investment to solve issues in the NPV method has been discussed in the IS literature. This paper presents 3 business cases to review the practical advantages of such techniques for IS investments, especially ERP investments. The first case is EDI development. We evaluate the project by a new approach with lighting one of shadow options, EDI implementation. In the second case we reveal an ERP investment has an “expanding option” in a case of eliminating redundancy. The third case describes an option to contract which is deliberately slotted in ERP development to prepare transferring a manufacturing facility.
Case study of open-source enterprise resource planning implementation in a small business
NASA Astrophysics Data System (ADS)
Olson, David L.; Staley, Jesse
2012-02-01
Enterprise resource planning (ERP) systems have been recognised as offering great benefit to some organisations, although they are expensive and problematic to implement. The cost and risk make well-developed proprietorial systems unaffordable to small businesses. Open-source software (OSS) has become a viable means of producing ERP system products. The question this paper addresses is the feasibility of OSS ERP systems for small businesses. A case is reported involving two efforts to implement freely distributed ERP software products in a small US make-to-order engineering firm. The case emphasises the potential of freely distributed ERP systems, as well as some of the hurdles involved in their implementation. The paper briefly reviews highlights of OSS ERP systems, with the primary focus on reporting the case experiences for efforts to implement ERPLite software and xTuple software. While both systems worked from a technical perspective, both failed due to economic factors. While these economic conditions led to imperfect results, the case demonstrates the feasibility of OSS ERP for small businesses. Both experiences are evaluated in terms of risk dimension.
Biurrun Manresa, José A.; Arguissain, Federico G.; Medina Redondo, David E.; Mørch, Carsten D.; Andersen, Ole K.
2015-01-01
The agreement between humans and algorithms on whether an event-related potential (ERP) is present or not and the level of variation in the estimated values of its relevant features are largely unknown. Thus, the aim of this study was to determine the categorical and quantitative agreement between manual and automated methods for single-trial detection and estimation of ERP features. To this end, ERPs were elicited in sixteen healthy volunteers using electrical stimulation at graded intensities below and above the nociceptive withdrawal reflex threshold. Presence/absence of an ERP peak (categorical outcome) and its amplitude and latency (quantitative outcome) in each single-trial were evaluated independently by two human observers and two automated algorithms taken from existing literature. Categorical agreement was assessed using percentage positive and negative agreement and Cohen’s κ, whereas quantitative agreement was evaluated using Bland-Altman analysis and the coefficient of variation. Typical values for the categorical agreement between manual and automated methods were derived, as well as reference values for the average and maximum differences that can be expected if one method is used instead of the others. Results showed that the human observers presented the highest categorical and quantitative agreement, and there were significantly large differences between detection and estimation of quantitative features among methods. In conclusion, substantial care should be taken in the selection of the detection/estimation approach, since factors like stimulation intensity and expected number of trials with/without response can play a significant role in the outcome of a study. PMID:26258532
Ma, Qingguo; Hu, Linfeng; Xiao, Can; Bian, Jun; Jin, Jia; Wang, Qiuzhen
2016-11-01
The present study examined the event-related potential (ERP) and time-frequency components correlates with the comprehension process of multimodal metaphors that were represented by the combination of "a vehicle picture+a written word of an animal". Electroencephalogram data were recorded when participants decided whether the metaphor using an animal word for the vehicle rendered by a picture was appropriate or not. There were two conditions: appropriateness (e.g., sport utility vehicles+tiger) vs. inappropriateness (e.g., sport utility vehicles+cat). The ERP results showed that inappropriate metaphor elicited larger N300 (280-360ms) and N400 (380-460ms) amplitude than appropriate one, which were different from previous exclusively verbal metaphor studies that rarely observed the N300 effect. A P600 (550-750ms) was also observed and larger in appropriate metaphor condition. Besides, the time-frequency principal component analysis revealed that two independent theta activities indexed the separable processes (retrieval of semantic features and semantic integration) underlying the N300 and N400. Delta band was also induced within a later time window and best characterized the integration process underlying P600. These results indicate the specific cognitive mechanism of multimodal metaphor comprehension that is different from verbal metaphor processing, mirrored by several separable processes indexed by ERP components and time-frequency components. The present study extends the metaphor research by uncovering the functional roles of delta and theta as well as their unique contributions to the ERP components during multimodal metaphor comprehension. Copyright © 2016 Elsevier B.V. All rights reserved.
Implementation of false discovery rate for exploring novel paradigms and trait dimensions with ERPs.
Crowley, Michael J; Wu, Jia; McCreary, Scott; Miller, Kelly; Mayes, Linda C
2012-01-01
False discovery rate (FDR) is a multiple comparison procedure that targets the expected proportion of false discoveries among the discoveries. Employing FDR methods in event-related potential (ERP) research provides an approach to explore new ERP paradigms and ERP-psychological trait/behavior relations. In Study 1, we examined neural responses to escape behavior from an aversive noise. In Study 2, we correlated a relatively unexplored trait dimension, ostracism, with neural response. In both situations we focused on the frontal cortical region, applying a channel by time plots to display statistically significant uncorrected data and FDR corrected data, controlling for multiple comparisons.
Developmental coordination disorder in children - experimental work and data annotation.
Vareka, Lukáš; Bruha, Petr; Moucek, Roman; Mautner, Pavel; Cepicka, Ladislav; Holecková, Irena
2017-04-01
Developmental coordination disorder (DCD) is described as a motor skill disorder characterized by a marked impairment in the development of motor coordination abilities that significantly interferes with performance of daily activities and/or academic achievement. Since some electrophysiological studies suggest differences between children with/without motor development problems, we prepared an experimental protocol and performed electrophysiological experiments with the aim of making a step toward a possible diagnosis of this disorder using the event-related potentials (ERP) technique. The second aim is to properly annotate the obtained raw data with relevant metadata and promote their long-term sustainability. The data from 32 school children (16 with possible DCD and 16 in the control group) were collected. Each dataset contains raw electroencephalography (EEG) data in the BrainVision format and provides sufficient metadata (such as age, gender, results of the motor test, and hearing thresholds) to allow other researchers to perform analysis. For each experiment, the percentage of ERP trials damaged by blinking artifacts was estimated. Furthermore, ERP trials were averaged across different participants and conditions, and the resulting plots are included in the manuscript. This should help researchers to estimate the usability of individual datasets for analysis. The aim of the whole project is to find out if it is possible to make any conclusions about DCD from EEG data obtained. For the purpose of further analysis, the data were collected and annotated respecting the current outcomes of the International Neuroinformatics Coordinating Facility Program on Standards for Data Sharing, the Task Force on Electrophysiology, and the group developing the Ontology for Experimental Neurophysiology. The data with metadata are stored in the EEG/ERP Portal. © The Authors 2017. Published by Oxford University Press.
Behavioural and electrophysiological effects related to semantic violations during braille reading.
Glyn, Vania; Lim, Vanessa K; Hamm, Jeff P; Mathur, Ashwin; Hughes, Barry
2015-10-01
This study investigated the potential to detect event related potentials (ERPs) occurring in response to a specific task in braille reading. This would expand current methodologies for studying the cognitive processes underlying braille reading. An N400 effect paradigm was utilised, whereby proficient blind braille readers read congruent- and incongruent-ending braille sentences. Kinematic and electroencephalography (EEG) data were obtained simultaneously and synchronised. The ERPs differed between the incongruent and congruent sentences in a manner consistent with the N400 effect found with a previous sighted reading paradigm, demonstrating that ERPs can be obtained during braille reading. The frequency of finger reversals and the degree of intermittency in the finger velocity were significantly higher when reading incongruent versus congruent sentence endings. Both reversals and the potential N400 effect may reflect processes involved in semantic unification. These findings have significant implications for the modelling of braille reading. The refinement of the technique will enable other ERPs to be identified and related to behavioural responses, to further our understanding of the braille reading process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gender Difference in Event Related Potentials to Masked Emotional Stimuli in the Oddball Task
Kim, Eun Young; Park, Gewnhi; Kim, Sangrae; Kim, Imyel; Chae, Jeong-Ho; Kim, Hyun Taek
2013-01-01
Objective We investigated gender differences in event-related potential (ERP) responses to subliminally presented threat-related stimuli. Methods Twenty-four participants were presented with threat-related and neutral pictures for a very brief period of time (17 ms). To explore gender differences in ERP responses to subliminally presented stimuli, we examined six ERP components [P1, N170, N250, P300, Early Posterior Negativity (EPN) and Late Positive Potential (LPP)]. Results The result revealed that only female participants showed significant increases in the N170 and the EPN in response to subliminally presented threat-related stimuli compared to neutral stimuli. Conclusion Our results suggest that female participants exhibit greater cortical processing of subliminally presented threat-related stimuli than male participants. PMID:23798965
Lemons, Christopher J.; Key, Alexandra P.F.; Fuchs, Douglas; Yoder, Paul J.; Fuchs, Lynn S.; Compton, Donald L.; Williams, Susan M.; Bouton, Bobette
2009-01-01
The purpose of this study was to determine if event-related potential (ERP) data collected during three reading-related tasks (Letter Sound Matching, Nonword Rhyming, and Nonword Reading) could be used to predict short-term reading growth on a curriculum-based measure of word identification fluency over 19 weeks in a sample of 29 first-grade children. Results indicate that ERP responses to the Letter Sound Matching task were predictive of reading change and remained so after controlling for two previously validated behavioral predictors of reading, Rapid Letter Naming and Segmenting. ERP data for the other tasks were not correlated with reading change. The potential for cognitive neuroscience to enhance current methods of indexing responsiveness in a response-to-intervention (RTI) model is discussed. PMID:20514353
Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review.
Groppe, David M; Urbach, Thomas P; Kutas, Marta
2011-12-01
Event-related potentials (ERPs) and magnetic fields (ERFs) are typically analyzed via ANOVAs on mean activity in a priori windows. Advances in computing power and statistics have produced an alternative, mass univariate analyses consisting of thousands of statistical tests and powerful corrections for multiple comparisons. Such analyses are most useful when one has little a priori knowledge of effect locations or latencies, and for delineating effect boundaries. Mass univariate analyses complement and, at times, obviate traditional analyses. Here we review this approach as applied to ERP/ERF data and four methods for multiple comparison correction: strong control of the familywise error rate (FWER) via permutation tests, weak control of FWER via cluster-based permutation tests, false discovery rate control, and control of the generalized FWER. We end with recommendations for their use and introduce free MATLAB software for their implementation. Copyright © 2011 Society for Psychophysiological Research.
2007-09-01
the smaller ERP companies that produce specialized ERPs for particular industries. Five former IBM employees founded SAP and created the first ERP...Computer Sciences Corporations (CSC), Price Waterhouse Coopers, EDS, and IBM [2]. Selecting the right integrators is critical because they are the link... IBM was chosen as the integrator for the NEMAIS pilot. 5. Pilot Results and Road Ahead Between late 1998 and early 2002, the four Navy pilots took
A new method to detect event-related potentials based on Pearson's correlation.
Giroldini, William; Pederzoli, Luciano; Bilucaglia, Marco; Melloni, Simone; Tressoldi, Patrizio
2016-12-01
Event-related potentials (ERPs) are widely used in brain-computer interface applications and in neuroscience. Normal EEG activity is rich in background noise, and therefore, in order to detect ERPs, it is usually necessary to take the average from multiple trials to reduce the effects of this noise. The noise produced by EEG activity itself is not correlated with the ERP waveform and so, by calculating the average, the noise is decreased by a factor inversely proportional to the square root of N , where N is the number of averaged epochs. This is the easiest strategy currently used to detect ERPs, which is based on calculating the average of all ERP's waveform, these waveforms being time- and phase-locked. In this paper, a new method called GW6 is proposed, which calculates the ERP using a mathematical method based only on Pearson's correlation. The result is a graph with the same time resolution as the classical ERP and which shows only positive peaks representing the increase-in consonance with the stimuli-in EEG signal correlation over all channels. This new method is also useful for selectively identifying and highlighting some hidden components of the ERP response that are not phase-locked, and that are usually hidden in the standard and simple method based on the averaging of all the epochs. These hidden components seem to be caused by variations (between each successive stimulus) of the ERP's inherent phase latency period (jitter), although the same stimulus across all EEG channels produces a reasonably constant phase. For this reason, this new method could be very helpful to investigate these hidden components of the ERP response and to develop applications for scientific and medical purposes. Moreover, this new method is more resistant to EEG artifacts than the standard calculations of the average and could be very useful in research and neurology. The method we are proposing can be directly used in the form of a process written in the well-known Matlab programming language and can be easily and quickly written in any other software language.
Saletu, Michael; Anderer, Peter; Saletu-Zyhlarz, Gerda Maria; Mandl, Magdalena; Zeitlhofer, Josef; Saletu, Bernd
2008-08-01
Event-related potentials (ERPs) are sensitive measures of both perceptual and cognitive processes. The aim of the present study was to identify brain regions involved in the processes of cognitive dysfunction in narcolepsy by means of ERP tomography. In 17 drug-free patients with narcolepsy and 17 controls, ERPs were recorded (auditory odd-ball paradigm). Latencies, amplitudes and LORETA sources were determined for standard (N1 and P2) and target (N2 and P300) ERP components. Psychometry included measures of mental performance, affect and critical flicker fusion frequency (CFF). In the ERPs patients demonstrated delayed cognitive N2 and P300 components and reduced amplitudes in midline regions, while N1 and P2 components did not differ from controls. LORETA suggested reduced P300 sources bilaterally in the precuneus, the anterior and posterior cingulate gyri, the ventrolateral prefrontal cortex and the parahippocampal gyrus. In psychometry, patients demonstrated deteriorated mood, increased trait anxiety, decreased CFF and a trend toward reduced general verbal memory and psychomotor activity. Narcoleptic patients showed prolonged information processing, as indexed by N2 and P300 latencies and decreased energetic resources for cognitive processing. Electrophysiological aberrations in brain areas related to the 'executive attention network' and the 'limbic system' may contribute to a deterioration in mental performance and mood at the behavioral level.
Cortical evoked responses associated with arousal from sleep.
Phillips, Derrick J; Schei, Jennifer L; Meighan, Peter C; Rector, David M
2011-01-01
To determine if low-level intermittent auditory stimuli have the potential to disrupt sleep during 24-h recordings, we assessed arousal occurrence to varying stimulus intensities. Additionally, if stimulus-generated evoked response potential (ERP) components provide a metric of underlying cortical state, then a particular ERP structure may precede an arousal. Physiological electrodes measuring EEG, EKG, and EMG were implanted into 5 adult female Sprague-Dawley rats. We delivered auditory stimuli of varying intensities (50-75 dBa sound pressure level SPL) at random intervals of 6-12 s over a 24-hour period. Recordings were divided into 2-s epochs and scored for sleep/wake state. Following each stimulus, we identified whether the animal stayed asleep or woke. We then sorted the stimuli depending on prior and post-stimulus state, and measured ERP components. Auditory stimuli did not produce a significant increase in the number of arousals compared to silent control periods. Overall, arousal from REM sleep occurred more often compared to quiet sleep. ERPs preceding an arousal had decreased mean area and shorter N1 latency. Low level auditory stimuli did not fragment animal sleep since we observed no significant change in arousal occurrence. Arousals that occurred within 4 s of a stimulus exhibited an ERP mean area and latency had features similar to ERPs generated during wake, indicating that the underlying cortical tissue state may contribute to physiological conditions required for arousal.
Event-Related Potential Responses to Task Switching Are Sensitive to Choice of Spatial Filter
Wong, Aaron S. W.; Cooper, Patrick S.; Conley, Alexander C.; McKewen, Montana; Fulham, W. Ross; Michie, Patricia T.; Karayanidis, Frini
2018-01-01
Event-related potential (ERP) studies using the task-switching paradigm show that multiple ERP components are modulated by activation of proactive control processes involved in preparing to repeat or switch task and reactive control processes involved in implementation of the current or new task. Our understanding of the functional significance of these ERP components has been hampered by variability in their robustness, as well as their temporal and scalp distribution across studies. The aim of this study is to examine the effect of choice of reference electrode or spatial filter on the number, timing and scalp distribution of ERP elicited during task-switching. We compared four configurations, including the two most common (i.e., average mastoid reference and common average reference) and two novel ones that aim to reduce volume conduction (i.e., reference electrode standardization technique (REST) and surface Laplacian) on mixing cost and switch cost effects in cue-locked and target-locked ERP waveforms in 201 healthy participants. All four spatial filters showed the same well-characterized ERP components that are typically seen in task-switching paradigms: the cue-locked switch positivity and target-locked N2/P3 effect. However, both the number of ERP effects associated with mixing and switch cost, and their temporal and spatial resolution were greater with the surface Laplacian transformation which revealed rapid temporal adjustments that were not identifiable with other spatial filters. We conclude that the surface Laplacian transformation may be more suited to characterize EEG signatures of complex spatiotemporal networks involved in cognitive control. PMID:29568260
Wierzchoń, Michał; Wronka, Eligiusz; Paulewicz, Borysław; Szczepanowski, Remigiusz
2016-01-01
The present research investigated metacognitive awareness of emotional stimuli and its psychophysiological correlates. We used a backward masking task presenting participants with fearful or neutral faces. We asked participants for face discrimination and then probed their metacognitive awareness with confidence rating (CR) and post-decision wagering (PDW) scales. We also analysed psychophysiological correlates of awareness with event-related potential (ERP) components: P1, N170, early posterior negativity (EPN), and P3. We have not observed any differences between PDW and CR conditions in the emotion identification task. However, the "aware" ratings were associated with increased accuracy performance. This effect was more pronounced in PDW, especially for fearful faces, suggesting that emotional stimuli awareness may be enhanced by monetary incentives. EEG analysis showed larger N170, EPN and P3 amplitudes in aware compared to unaware trials. It also appeared that both EPN and P3 ERP components were more pronounced in the PDW condition, especially when emotional faces were presented. Taken together, our ERP findings suggest that metacognitive awareness of emotional stimuli depends on the effectiveness of both early and late visual information processing. Our study also indicates that awareness of emotional stimuli can be enhanced by the motivation induced by wagering. PMID:27490816
Wierzchoń, Michał; Wronka, Eligiusz; Paulewicz, Borysław; Szczepanowski, Remigiusz
2016-01-01
The present research investigated metacognitive awareness of emotional stimuli and its psychophysiological correlates. We used a backward masking task presenting participants with fearful or neutral faces. We asked participants for face discrimination and then probed their metacognitive awareness with confidence rating (CR) and post-decision wagering (PDW) scales. We also analysed psychophysiological correlates of awareness with event-related potential (ERP) components: P1, N170, early posterior negativity (EPN), and P3. We have not observed any differences between PDW and CR conditions in the emotion identification task. However, the "aware" ratings were associated with increased accuracy performance. This effect was more pronounced in PDW, especially for fearful faces, suggesting that emotional stimuli awareness may be enhanced by monetary incentives. EEG analysis showed larger N170, EPN and P3 amplitudes in aware compared to unaware trials. It also appeared that both EPN and P3 ERP components were more pronounced in the PDW condition, especially when emotional faces were presented. Taken together, our ERP findings suggest that metacognitive awareness of emotional stimuli depends on the effectiveness of both early and late visual information processing. Our study also indicates that awareness of emotional stimuli can be enhanced by the motivation induced by wagering.
Motivated To Win: Relationship between Anticipatory and Outcome Reward-Related Neural Activity
Nusslock, Robin
2015-01-01
Reward-processing involves two temporal stages characterized by two distinct neural processes: reward-anticipation and reward-outcome. Intriguingly, very little research has examined the relationship between neural processes involved in reward-anticipation and reward-outcome. To investigate this, one needs to consider the heterogeneity of reward-processing within each stage. To identify different stages of reward processing, we adapted a reward time-estimation task. While EEG data were recorded, participants were instructed to button-press 3.5 s after the onset of an Anticipation-Cue and received monetary reward for good time-estimation on the Reward trials, but not on No-Reward trials. We first separated reward-anticipation into event related potentials (ERPs) occurring at three sub-stages: reward/no-reward cue-evaluation, motor-preparation and feedback-anticipation. During reward/no-reward cue-evaluation, the Reward-Anticipation Cue led to a smaller N2 and larger P3. During motor-preparation, we report, for the first time, that the Reward-Anticipation Cue enhanced the Readiness Potential (RP), starting approximately 1 s before movement. At the subsequent feedback-anticipation stage, the Reward-Anticipation Cue elevated the Stimulus-Preceding Negativity (SPN). We also separated reward-outcome ERPs into different components occurring at different time-windows: the Feedback-Related Negativity (FRN), Feedback-P3 (FB-P3) and Late-Positive Potentials (LPP). Lastly, we examined the relationship between reward-anticipation and reward-outcome ERPs. We report that individual-differences in specific reward-anticipation ERPs uniquely predicted specific reward-outcome ERPs. In particular, the reward-anticipation Early-RP (1 to .8 s before movement) predicted early reward-outcome ERPs (FRN and FB-P3), whereas, the reward-anticipation SPN most strongly predicted a later reward-outcome ERP (LPP). Results have important implications for understanding the nature of the relationship between reward-anticipation and reward-outcome neural-processes. PMID:26433773
Enterprise resource planning for hospitals.
van Merode, Godefridus G; Groothuis, Siebren; Hasman, Arie
2004-06-30
Integrated hospitals need a central planning and control system to plan patients' processes and the required capacity. Given the changes in healthcare one can ask the question what type of information systems can best support these healthcare delivery organizations. We focus in this review on the potential of enterprise resource planning (ERP) systems for healthcare delivery organizations. First ERP systems are explained. An overview is then presented of the characteristics of the planning process in hospital environments. Problems with ERP that are due to the special characteristics of healthcare are presented. The situations in which ERP can or cannot be used are discussed. It is suggested to divide hospitals in a part that is concerned only with deterministic processes and a part that is concerned with non-deterministic processes. ERP can be very useful for planning and controlling the deterministic processes.
Implicit and explicit categorization of natural scenes.
Codispoti, Maurizio; Ferrari, Vera; De Cesarei, Andrea; Cardinale, Rossella
2006-01-01
Event-related potential (ERP) studies have consistently found that emotionally arousing (pleasant and unpleasant) pictures elicit a larger late positive potential (LPP) than neutral pictures in a window from 400 to 800 ms after picture onset. In addition, an early ERP component has been reported to vary with emotional arousal in a window from about 150 to 300 ms with affective, compared to neutral stimuli, prompting significantly less positivity over occipito-temporal sites. Similar early and late ERP components have been found in explicit categorization tasks, suggesting that selective attention to target features results in similar cortical changes. Several studies have shown that the affective modulation of the LPP persisted even when the same pictures are repeated several times, when they are presented as distractors, or when participants are engaged in a competing task. These results indicate that categorization of affective stimuli is an obligatory process. On the other hand, perceptual factors (e.g., stimulus size) seem to affect the early ERP component but not the affective modulation of the LPP. Although early and late ERP components vary with stimulus relevance, given that they are differentially affected by stimulus and task manipulations, they appear to index different facets of picture processing.
A Roadmap for the Development and Validation of ERP Biomarkers in Schizophrenia Research
Luck, Steven J.; Mathalon, Daniel H.; O'Donnell, Brian F.; Hämäläinen, Matti S.; Spencer, Kevin M.; Javitt, Daniel C.; Uhlhaas, Peter J.
2010-01-01
New efforts to develop treatments for cognitive dysfunction in mental illnesses would benefit enormously from biomarkers that provide sensitive and reliable measures of the neural events underlying cognition. Here we evaluate the promise of event-related potentials (ERPs) as biomarkers of cognitive dysfunction in schizophrenia. We conclude that ERPs have several desirable properties: (a) they provide a direct measure of electrical activity during neurotransmission; (b) their high temporal resolutions makes it possible to measure neural synchrony and oscillations; (c) they are relatively inexpensive and convenient to record; (d) animal models are readily available for several ERP components; (e) decades of research has established the sensitivity and reliability of ERP measures in psychiatric illnesses; and (f) feasibility of large N (>500) multi-site studies has been demonstrated for key measures. Consequently, ERPs may be useful for identifying endophenotypes and defining treatment targets, for evaluating new compounds in animals and in humans, and for identifying individuals who are good candidates for early interventions or for specific treatments. However, several challenges must be overcome before ERPs gain widespread use as biomarkers in schizophrenia research, and we make several recommendations for the research that is necessary to develop and validate ERP-based biomarkers that can have a real impact on treatment development. PMID:21111401
Using ERPs to Investigate Valence Processing in the Affect Misattribution Procedure
Von Gunten, Curtis D.; Bartholow, Bruce D.; Scherer, Laura D.
2016-01-01
The construct validity of the Affect Misattribution Procedure (AMP) has been challenged by theories proposing that the task does not actually measure affect misattribution. The current study tested the validity of the AMP as a measure of affect misattribution by examining three components of the event-related potential (ERP) known to be associated with the allocation of motivated attention. Results revealed that ERP amplitudes varied in response to affectively ambiguous targets as a function of the valence of preceding primes. Furthermore, differences in ERP responses to the targets were largely similar to differences in ERPs elicited by the primes. The existence of valence differentiation in both the prime-locked and the target-locked ERPs, along with the similarity in this differentiation, provides evidence that the affective content of the primes is psychologically registered, and that this content influences the processing of the subsequent, evaluatively ambiguous targets, both of which are required if the priming effects found in the AMP are the result of affect misattribution. However, the behavioral priming effect was uncorrelated with ERP amplitudes, leaving some question as to the locus of this effect in the information-processing system. Findings are discussed in light of the strengths and weaknesses of using ERPs to understand the priming effects in the AMP. PMID:27754548
Organization Readiness and ERP Implementation in Albaha University
NASA Astrophysics Data System (ADS)
Alaqeel, K.; Shakkah, M. S.; Rahmat, R. F.; Alfageeh, A.; Budiarto, R.
2017-04-01
This work studies the correlation between the organizational readiness in Albaha University and the respective Critical Success Factors with regards to the Enterprise Resource Planning (ERP) implementation. The study also considers some suggestions to improve the ABU’s ERP systems and roadmap towards the self -development strategy and to reduce vendor-dependency. A survey regarding ERP to the end-users, experts and developers in Albaha University was conducted. The analysis of the results in this work confirmed with the results of an existing work. The four significance success factors: Project Management, Business Process Re-engineering, System Integration, and Training and Education are recommended to be adopted to assure the smooth adoption of ERP at Albaha University.
Mograss, Melodee; Godbout, Roger; Guillem, F
2006-11-01
To verify that the classic "Old/New" memory effect can be detected after a long delay, and to investigate the differential influence of declarative memory processes after normal sleep and daytime wake. The protocol is a variation of a more traditional study-recognition test used in event-related potential (ERP) studies in which sleep or wake is inserted between the learning and recognition session in order to verify the existence of the Old/New effect (ie, positive shift that occurs when stimuli are repeated). ERPs were recorded during the recognition-test session. The protocol was based on early work that compared the effect of sleep on memory without recording sleep. Data collection occurred in the outpatient sleep laboratory. Results from 13 subjects (6 men) aged between 21 and 39 years. The subjects performed the recognition memory test after sleep and daytime wake periods. More-accurate performance for the old (studied) stimuli occurred after the sleep session. Analysis of variance on correctly answered reaction times revealed a significant effect of condition (old/new) with no difference across session. A repeated-measure analysis revealed differences in "Old/New" effect, whereby the amplitude difference between the old and new items was larger after sleep than after wake. This effect of sleep was found in early frontal and later posterior ERP components, processes that represent strategic, contextual processing and facilitation of episodic memory. Memory representation was not different across sessions. These findings suggest that sleep and wake facilitate 2 components of memory unequally, ie, episodic recognition and memory representation functioning.
Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten
2013-01-01
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974
Adamina, Michel; Kehlet, Henrik; Tomlinson, George A; Senagore, Anthony J; Delaney, Conor P
2011-06-01
Health care systems provide care to increasingly complex and elderly patients. Colorectal surgery is a prime example, with high volumes of major procedures, significant morbidity, prolonged hospital stays, and unplanned readmissions. This situation is exacerbated by an exponential rise in costs that threatens the stability of health care systems. Enhanced recovery pathways (ERP) have been proposed as a means to reduce morbidity and improve effectiveness of care. We have reviewed the evidence supporting the implementation of ERP in clinical practice. Medline, Embase, and the Cochrane library were searched for randomized, controlled trials comparing ERP with traditional care in colorectal surgery. Systematic reviews and papers on ERP based on data published in major surgical and anesthesiology journals were critically reviewed by international contributors, experienced in the development and implementation of ERP. A random-effect Bayesian meta-analysis was performed, including 6 randomized, controlled trials totalizing 452 patients. For patients adhering to ERP, length of stay decreased by 2.5 days (95% credible interval [CrI] -3.92 to -1.11), whereas 30-day morbidity was halved (relative risk, 0.52; 95% CrI, 0.36-0.73) and readmission was not increased (relative risk, 0.59; 95% CrI, 0.14-1.43) when compared with patients undergoing traditional care. Adherence to ERP achieves a reproducible improvement in the quality of care by enabling standardization of health care processes. Thus, while accelerating recovery and safely reducing hospital stay, ERPs optimize utilization of health care resources. ERPs can and should be routinely used in care after colorectal and other major gastrointestinal procedures. Copyright © 2011 Mosby, Inc. All rights reserved.
Adapting another person's affective state modulates brain potentials to unpleasant pictures.
Paul, Sandra; Endrass, Tanja; Kathmann, Norbert; Simon, Daniela
2016-10-01
Emotional processing is influenced by top-down processes such as reappraisal of emotion-inducing events. Besides one's own stimulus appraisal, information from the social environment can be used to modify the stimulus' meaning. This study investigated whether perspective taking changes participants' brain potentials to unpleasant pictures. Event-related potentials (ERPs) were measured while twenty-nine participants evaluated arousal of neutral or negative pictures. Subsequently, they received bogus feedback about another person's picture evaluation. Then, the same picture was presented again and participants were instructed to view the picture from the other person's perspective. Higher bogus- versus self-ratings of picture arousal increased P300 and late positive potential (LPP) amplitudes to unpleasant stimuli, whereas lower bogus- versus self-ratings did not influence ERPs. Thus, perspective taking only modulated ERPs when bogus ratings signaled potential underestimation of arousal. Resulting increases in responsiveness might constitute an adaptive mechanism preparing the organism against harm. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Jinhe; Zhao, Lun; Van, Gongdong; Chen, Wenjuan; Ren, Wei; Duan, Ran
To study further the effect of head-down tilt(HDT) on slow positive potential in the event-related potentials(ERPs), the temporal and spatial features of visual ERPs changes during 2 hour HDT(-10 °) were compared with that during HUT(+20°) in 15 normal subjects. The stimuli were consisted of two color LED flashes appeared randomly in left or right visual field(LVF or RVF) with same probability. The subjects were asked to make switch response to target signals(T) differentially: switching to left for T in LVF and to right for T in RVF, ignoring non-target signals(N). Five sets of tests were made during HUT and HDT. ERPs were obtained from 9 locations on scalp. The mean value of the ERPs in the period from 0.32-0.55 s was taken as the amplitude of slow positive potential(P400). The main results were as follows. 1)The mean amplitude of P400 decreased during HDT which was more significant at the 2nd, 3rd and 5th set of tests; 2)spatially, the reduction of mean P400 amplitude during HDT was more significant for signals from RVF and was more significant at posterior and central brain regions than that on frontal locations. As that the positive potential probably reflects the active inhibition activity in the brain during attention process, these data provide further evidence showing that the higher brain function was affected by the simulated weightlessness and that this effect was not only transient but also with interesting spatial characteristics.
The electrocortical correlates of fluctuating states of attention during vigilance tasks
NASA Technical Reports Server (NTRS)
Cunningham, Stephen G.; Freeman, Frederick
1994-01-01
This study investigated the electrocortical correlates of attention. Sixteen subjects (seven females, nine males) engaged in a forty-minute target detection vigilance task. Task-irrelevant probe tones were presented every 2-4 seconds. While performing the vigilance task, the subjects were asked to press a button if they were daydreaming (i.e. having a task unrelated thought or TUT). Continuous electroencephalograms (EEG's) and event-related potentials (ERP's) were recorded from the subjects during the entire task. The continuous EEG data were analyzed for differences in absolute power throughout the task as well as before and after the subjects indicated that they were daydreaming (TUT response). ERP's elicited by task-irrelevant probe tones were analyzed in the same manner. The results indicated performance decrements as reflected by increased RT to correct detections, and decreased number of hits. Further, as the task progressed, the number of reports of daydreaming increased. The analysis of the EEG data indicated a significant difference in the absolute power of the different frequency bands across periods. The greatest difference was observed at the posterior parietal electrode sites. In addition, when the EEG data was converted into band ratios (beta/alpha and beta/alpha+theta), the pre-TUT conditions were found to be significantly different than the post-TUT conditions in the posterior sites. The ERP components (N1, N2, and P2) were not significantly different before and after a TUT response or across periods. However, the ERP's across periods exhibited amplitudes that were similar to those found in previous studies of vigilance and ERP's.
Stein, M; Dierks, T; Brandeis, D; Wirth, M; Strik, W; Koenig, T
2006-11-01
Event-related potentials (ERPs) were used to trace changes in brain activity related to progress in second language learning. Twelve English-speaking exchange students learning German in Switzerland were recruited. ERPs to visually presented single words from the subjects' native language (English), second language (German) and an unknown language (Romansh) were measured before (day 1) and after (day 2) 5 months of intense German language learning. When comparing ERPs to German words from day 1 and day 2, we found topographic differences between 396 and 540 ms. These differences could be interpreted as a latency shift indicating faster processing of German words on day 2. Source analysis indicated that the topographic differences were accounted for by shorter activation of left inferior frontal gyrus (IFG) on day 2. In ERPs to English words, we found Global Field Power differences between 472 and 644 ms. This may due to memory traces related to English words being less easily activated on day 2. Alternatively, it might reflect the fact that--with German words becoming familiar on day 2--English words loose their oddball character and thus produce a weaker P300-like effect on day 2. In ERPs to Romansh words, no differences were observed. Our results reflect plasticity in the neuronal networks underlying second language acquisition. They indicate that with a higher level of second language proficiency, second language word processing is faster and requires shorter frontal activation. Thus, our results suggest that the reduced IFG activation found in previous fMRI studies might not reflect a generally lower activation but rather a shorter duration of activity.
The effect of a brief mindfulness induction on processing of emotional images: an ERP study.
Eddy, Marianna D; Brunyé, Tad T; Tower-Richardi, Sarah; Mahoney, Caroline R; Taylor, Holly A
2015-01-01
The ability to effectively direct one's attention is an important aspect of regulating emotions and a component of mindfulness. Mindfulness practices have been established as effective interventions for mental and physical illness; however, the underlying neural mechanisms of mindfulness and how they relate to emotional processing have not been explored in depth. The current study used a within-subjects repeated measures design to examine if focused breathing, a brief mindfulness induction, could modulate event-related potentials (ERPs) during emotional image processing relative to a control condition. We related ERP measures of processing positive, negative, and neutral images (the P300 and late positive potential - LPP) to state and trait mindfulness measures. Overall, the brief mindfulness induction condition did not influence ERPs reflecting emotional processing; however, in the brief mindfulness induction condition, those participants who reported feeling more decentered (a subscale of the Toronto Mindfulness Scale) after viewing the images had reduced P300 responses to negative versus neutral images.
Balconi, Michela; Lucchiari, Claudio
2005-02-01
Is facial expression recognition marked by specific event-related potentials (ERPs) effects? Are conscious and unconscious elaborations of emotional facial stimuli qualitatively different processes? In Experiment 1, ERPs elicited by supraliminal stimuli were recorded when 21 participants viewed emotional facial expressions of four emotions and a neutral stimulus. Two ERP components (N2 and P3) were analyzed for their peak amplitude and latency measures. First, emotional face-specificity was observed for the negative deflection N2, whereas P3 was not affected by the content of the stimulus (emotional or neutral). A more posterior distribution of ERPs was found for N2. Moreover, a lateralization effect was revealed for negative (right lateralization) and positive (left lateralization) facial expressions. In Experiment 2 (20 participants), 1-ms subliminal stimulation was carried out. Unaware information processing was revealed to be quite similar to aware information processing for peak amplitude but not for latency. In fact, unconscious stimulation produced a more delayed peak variation than conscious stimulation.
Wagner, Monica; Shafer, Valerie L.; Martin, Brett; Steinschneider, Mitchell
2013-01-01
The effect of exposure to the contextual features of the /pt/ cluster was investigated in native-English and native-Polish listeners using behavioral and event-related potential (ERP) methodology. Both groups experience the /pt/ cluster in their languages, but only the Polish group experiences the cluster in the context of word onset examined in the current experiment. The /st/ cluster was used as an experimental control. ERPs were recorded while participants identified the number of syllables in the second word of nonsense word pairs. The results found that only Polish listeners accurately perceived the /pt/ cluster and perception was reflected within a late positive component of the ERP waveform. Furthermore, evidence of discrimination of /pt/ and /pǝt/ onsets in the neural signal was found even for non-native listeners who could not perceive the difference. These findings suggest that exposure to phoneme sequences in highly specific contexts may be necessary for accurate perception. PMID:22867752
The effect of a brief mindfulness induction on processing of emotional images: an ERP study
Eddy, Marianna D.; Brunyé, Tad T.; Tower-Richardi, Sarah; Mahoney, Caroline R.; Taylor, Holly A.
2015-01-01
The ability to effectively direct one’s attention is an important aspect of regulating emotions and a component of mindfulness. Mindfulness practices have been established as effective interventions for mental and physical illness; however, the underlying neural mechanisms of mindfulness and how they relate to emotional processing have not been explored in depth. The current study used a within-subjects repeated measures design to examine if focused breathing, a brief mindfulness induction, could modulate event-related potentials (ERPs) during emotional image processing relative to a control condition. We related ERP measures of processing positive, negative, and neutral images (the P300 and late positive potential – LPP) to state and trait mindfulness measures. Overall, the brief mindfulness induction condition did not influence ERPs reflecting emotional processing; however, in the brief mindfulness induction condition, those participants who reported feeling more decentered (a subscale of the Toronto Mindfulness Scale) after viewing the images had reduced P300 responses to negative versus neutral images. PMID:26441766
An event-related potential study of semantic style-match judgments of artistic furniture.
Lin, Ming-Huang; Wang, Ching-yi; Cheng, Shih-kuen; Cheng, Shih-hung
2011-11-01
This study investigates how semantic networks represent different artistic furniture. Event-related potentials (ERPs) were recorded while participants made style-match judgments for table and chair sets. All of the tables were in the Normal style, whereas the chairs were in the Normal, Minimal, ReadyMade, or Deconstruction styles. The Normal and Minimal chairs had the same rates of "match" responses, which were both higher than the rates for the ReadyMade and Deconstruction chairs. Compared with Normal chairs, the ERPs elicited by both ReadyMade chairs and Deconstruction chairs exhibited reliable N400 effects, which suggests that these two design styles were unlike the Normal design style. However, Minimal chairs evoked ERPs that were similar to the ERPs of Normal chairs. Furthermore, the N400 effects elicited by ReadyMade and Deconstruction chairs showed different scalp distributions. These findings reveal that semantic networks represent different design styles for items of the same category. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Milner, Joel S.; Rabenhorst, Mandy M.; McCanne, Thomas R.; Crouch, Julie L.; Skowronski, John J.; Fleming, Matthew T.; Hiraoka, Regina; Risser, Heather J.
2011-01-01
Objective: The present investigation used event-related potentials (ERPs, N400 and N300) to determine the extent to which individuals at low and high risk for child physical abuse (CPA) have pre-existing positive and negative child-related schemata that can be automatically activated by ambiguous child stimuli. Methods: ERP data were obtained from…
ERPs and Psychopathology. I. Behavioral process issues.
Roth, W T; Tecce, J J; Pfefferbaum, A; Rosenbloom, M; Callaway, E
1984-01-01
The clinical study of ERPs has an inherent defect--a self-selection of clinical populations that hampers equating of clinically defined groups on factors extraneous to the independent variables. Such ex post facto studies increase the likelihood of confounding variables in the interpretation of findings. Hence, the development of lawful relationships between clinical variables and ERPs is impeded and the fulfillment of description, explanation, prediction, and control in brain science is thwarted. Proper methodologies and theory development can increase the likelihood of establishing these lawful relationships. One methodology of potential value in the clinical application of ERPs, particularly in studies of aging, is that of divided attention. Two promising theoretical developments in the understanding of brain functioning and aging are the distraction-arousal hypothesis and the controlled-automatic attention model. The evaluation of ERPs in the study of brain-behavior relations in clinical populations might be facilitated by the differentiation of concurrent, predictive, content, and construct validities.
Flashing characters with famous faces improves ERP-based brain-computer interface performance
NASA Astrophysics Data System (ADS)
Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.
2011-10-01
Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.
Knoeferle, Pia; Urbach, Thomas P.; Kutas, Marta
2010-01-01
To re-establish picture-sentence verification – discredited possibly for its over-reliance on post-sentence response time (RT) measures - as a task for situated comprehension, we collected event-related brain potentials (ERPs) as participants read a subject-verb-object sentence, and RTs indicating whether or not the verb matched a previously depicted action. For mismatches (vs matches), speeded RTs were longer, verb N400s over centro-parietal scalp larger, and ERPs to the object noun more negative. RTs (congruence effect) correlated inversely with the centro-parietal verb N400s, and positively with the object ERP congruence effects. Verb N400s, object ERPs, and verbal working memory scores predicted more variance in RT effects (50%) than N400s alone. Thus, (1) verification processing is not all post-sentence; (2) simple priming cannot account for these results; and (3) verification tasks can inform studies of situated comprehension. PMID:20701712
Affective picture processing: An integrative review of ERP findings
Olofsson, Jonas K.; Nordin, Steven; Sequeira, Henrique; Polich, John
2008-01-01
The review summarizes and integrates findings from 40 years of event-related potential (ERP) studies using pictures that differ in valence (unpleasant-to-pleasant) and arousal (low-to-high) and that are used to elicit emotional processing. Affective stimulus factors primarily modulate ERP component amplitude, with little change in peak latency observed. Arousal effects are consistently obtained, and generally occur at longer latencies. Valence effects are inconsistently reported at several latency ranges, including very early components. Some affective ERP modulations vary with recording methodology, stimulus factors, as well as task-relevance and emotional state. Affective ERPs have been linked theoretically to attention orientation for unpleasant pictures at earlier components (< 300 ms). Enhanced stimulus processing has been associated with memory encoding for arousing pictures of assumed intrinsic motivational relevance, with task-induced differences contributing to emotional reactivity at later components (> 300 ms). Theoretical issues, stimulus factors, task demands, and individual differences are discussed. PMID:18164800
Neural activity associated with metaphor comprehension: spatial analysis.
Sotillo, María; Carretié, Luis; Hinojosa, José A; Tapia, Manuel; Mercado, Francisco; López-Martín, Sara; Albert, Jacobo
2005-01-03
Though neuropsychological data indicate that the right hemisphere (RH) plays a major role in metaphor processing, other studies suggest that, at least during some phases of this processing, a RH advantage may not exist. The present study explores, through a temporally agile neural signal--the event-related potentials (ERPs)--, and through source-localization algorithms applied to ERP recordings, whether the crucial phase of metaphor comprehension presents or not a RH advantage. Participants (n=24) were submitted to a S1-S2 experimental paradigm. S1 consisted of visually presented metaphoric sentences (e.g., "Green lung of the city"), followed by S2, which consisted of words that could (i.e., "Park") or could not (i.e., "Semaphore") be defined by S1. ERPs elicited by S2 were analyzed using temporal principal component analysis (tPCA) and source-localization algorithms. These analyses revealed that metaphorically related S2 words showed significantly higher N400 amplitudes than non-related S2 words. Source-localization algorithms showed differential activity between the two S2 conditions in the right middle/superior temporal areas. These results support the existence of an important RH contribution to (at least) one phase of metaphor processing and, furthermore, implicate the temporal cortex with respect to that contribution.
Veselis, Robert A; Pryor, Kane O; Reinsel, Ruth A; Li, Yuelin; Mehta, Meghana; Johnson, Ray
2009-02-01
Intravenous drugs active via gamma-aminobutyric acid receptors to produce memory impairment during conscious sedation. Memory function was assessed using event-related potentials (ERPs) while drug was present. The continuous recognition task measured recognition of photographs from working (6 s) and long-term (27 s) memory while ERPs were recorded from Cz (familiarity recognition) and Pz electrodes (recollection recognition). Volunteer participants received sequential doses of one of placebo (n = 11), 0.45 and 0.9 microg/ml propofol (n = 10), 20 and 40 ng/ml midazolam (n = 12), 1.5 and 3 microg/ml thiopental (n = 11), or 0.25 and 0.4 ng/ml dexmedetomidine (n = 11). End-of-day yes/no recognition 225 min after the end of drug infusion tested memory retention of pictures encoded on the continuous recognition tasks. Active drugs increased reaction times and impaired memory on the continuous recognition task equally, except for a greater effect of midazolam (P < 0.04). Forgetting from continuous recognition tasks to end of day was similar for all drugs (P = 0.40), greater than placebo (P < 0.001). Propofol and midazolam decreased the area between first presentation (new) and recognized (old, 27 s later) ERP waveforms from long-term memory for familiarity (P = 0.03) and possibly for recollection processes (P = 0.12). Propofol shifted ERP amplitudes to smaller voltages (P < 0.002). Dexmedetomidine may have impaired familiarity more than recollection processes (P = 0.10). Thiopental had no effect on ERPs. Propofol and midazolam impaired recognition ERPs from long-term memory but not working memory. ERP measures of memory revealed different pathways to end-of-day memory loss as early as 27 s after encoding.
A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs
NASA Astrophysics Data System (ADS)
Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.
2016-12-01
Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non-control states with the same level of accuracy.
Enhanced Recovery after Colorectal Surgery: Can We Afford Not to Use It?
Jung, Andrew D; Dhar, Vikrom K; Hoehn, Richard S; Atkinson, Sarah J; Johnson, Bobby L; Rice, Teresa; Snyder, Jonathan R; Rafferty, Janice F; Edwards, Michael J; Paquette, Ian M
2018-04-01
Enhanced recovery pathways (ERPs) aim to reduce length of stay without adversely affecting short-term outcomes. High pharmaceutical costs associated with ERP regimens, however, remain a significant barrier to widespread implementation. We hypothesized that ERP would reduce hospital costs after elective colorectal resections, despite the use of more expensive pharmaceutical agents. An ERP was implemented in January 2016 at our institution. We collected data on consecutive colorectal resections for 1 year before adoption of ERP (traditional, n = 160) and compared them with consecutive resections after universal adoption of ERP (n = 146). Short-term surgical outcomes, total direct costs, and direct hospital pharmacy costs were compared between patients who received the ERP and those who did not. After implementation of the ERP, median length of stay decreased from 5.0 to 3.0 days (p < 0.01). There were no differences in 30-day complications (8.1% vs 8.9%) or hospital readmission (11.9% vs 11.0%). The ERP patients required significantly less narcotics during their index hospitalization (211.7 vs 720.2 morphine equivalence units; p < 0.01) and tolerated a regular diet 1 day sooner (p < 0.01). Despite a higher daily pharmacy cost ($477 per day vs $318 per day in the traditional cohort), the total direct pharmacy cost for the hospitalization was reduced in ERP patients ($1,534 vs $1,859; p = 0.016). Total direct cost was also lower in ERP patients ($9,791 vs $11,508; p = 0.004). Implementation of an ERP for patients undergoing elective colorectal resection substantially reduced length of stay, total hospital cost, and direct pharmacy cost without increasing complications or readmission rates. Enhanced recovery pathway after colorectal resection has both clinical and financial benefits. Widespread implementation has the potential for a dramatic impact on healthcare costs. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Hedayati, Nina; Schibli, Kylie; D'Angiulli, Amedeo
2016-12-01
Children (aged 9-12) training in an El Sistema-inspired program (OrKidstra) and a matched comparison group participated in an auditory Go/No-Go task while event-related potentials (ERPs) were recorded. Entire-sweep waveform patterns correlated with known ERP peaks associated with executive and other cognitive functions and indicated that the spread of neural activity in the initial 250 ms of executive attention processing (pre-P300) showed higher level of topographical overlap in OrKidstra children. In these children, late potentials (post-P300) concurrent with response control were more widely distributed and temporally coordinated. Intensive ensemble music training, we suggest, may be associated with neuroplastic changes facilitating integration of neural information.
D Chorna, Olena; L Hamm, Ellyn; Shrivastava, Hemang; Maitre, Nathalie L
2018-01-01
Atypical maturation of auditory neural processing contributes to preterm-born infants' language delays. Event-related potential (ERP) measurement of speech-sound differentiation might fill a gap in treatment-response biomarkers to auditory interventions. We evaluated whether these markers could measure treatment effects in a quasi-randomized prospective study. Hospitalized preterm infants in passive or active, suck-contingent mother's voice exposure groups were not different at baseline. Post-intervention, the active group had greater increases in/du/-/gu/differentiation in left frontal and temporal regions. Infants with brain injury had lower baseline/ba/-/ga/and/du/-/gu/differentiation than those without. ERP provides valid discriminative, responsive, and predictive biomarkers of infant speech-sound differentiation.
Single-trial event-related potentials to significant stimuli.
Rushby, Jacqueline A; Barry, Robert J
2009-11-01
The stimulus-response pattern of the skin conductance response (SCR) was used as a model of the Orienting Reflex (OR) to assess the P1, N1, P2, N2 and late positive complex (LPC/P300) components of the ERP in a simple habituation paradigm, in which a single series of 12 innocuous tones were presented at a very long interstimulus interval (2 min). To maintain their waking state during this boring task, participants were instructed to alternately close or open their eyes to each stimulus. None of the baseline-to-peak ERP measures showed trials effects comparable with the marked habituation over trials shown by the SCRs. Principal Components Analysis was used to decompose the ERP, yielding factors identified as the N1, N2, P3a, P3b and Novelty P3 components. An additional factor represented later eye-movement activity. No trial effects were apparent for the N1, N2, P3a or P3b components. The Novelty P3 showed marked response decrement over trials. These results are discussed in relation to current conceptualisations of the OR.
Emotional words facilitate lexical but not early visual processing.
Trauer, Sophie M; Kotz, Sonja A; Müller, Matthias M
2015-12-12
Emotional scenes and faces have shown to capture and bind visual resources at early sensory processing stages, i.e. in early visual cortex. However, emotional words have led to mixed results. In the current study ERPs were assessed simultaneously with steady-state visual evoked potentials (SSVEPs) to measure attention effects on early visual activity in emotional word processing. Neutral and negative words were flickered at 12.14 Hz whilst participants performed a Lexical Decision Task. Emotional word content did not modulate the 12.14 Hz SSVEP amplitude, neither did word lexicality. However, emotional words affected the ERP. Negative compared to neutral words as well as words compared to pseudowords lead to enhanced deflections in the P2 time range indicative of lexico-semantic access. The N400 was reduced for negative compared to neutral words and enhanced for pseudowords compared to words indicating facilitated semantic processing of emotional words. LPC amplitudes reflected word lexicality and thus the task-relevant response. In line with previous ERP and imaging evidence, the present results indicate that written emotional words are facilitated in processing only subsequent to visual analysis.
Enhanced attention-dependent activity in the auditory cortex of older musicians.
Zendel, Benjamin Rich; Alain, Claude
2014-01-01
Musical training improves auditory processing abilities, which correlates with neuro-plastic changes in exogenous (input-driven) and endogenous (attention-dependent) components of auditory event-related potentials (ERPs). Evidence suggests that musicians, compared to non-musicians, experience less age-related decline in auditory processing abilities. Here, we investigated whether lifelong musicianship mitigates exogenous or endogenous processing by measuring auditory ERPs in younger and older musicians and non-musicians while they either attended to auditory stimuli or watched a muted subtitled movie of their choice. Both age and musical training-related differences were observed in the exogenous components; however, the differences between musicians and non-musicians were similar across the lifespan. These results suggest that exogenous auditory ERPs are enhanced in musicians, but decline with age at the same rate. On the other hand, attention-related activity, modeled in the right auditory cortex using a discrete spatiotemporal source analysis, was selectively enhanced in older musicians. This suggests that older musicians use a compensatory strategy to overcome age-related decline in peripheral and exogenous processing of acoustic information. Copyright © 2014 Elsevier Inc. All rights reserved.
[The P300 based brain-computer interface: effect of stimulus position in a stimulus train].
Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia
2012-01-01
The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.
Neural correlates of emotional intelligence in a visual emotional oddball task: an ERP study.
Raz, Sivan; Dan, Orrie; Zysberg, Leehu
2014-11-01
The present study was aimed at identifying potential behavioral and neural correlates of Emotional Intelligence (EI) by using scalp-recorded Event-Related Potentials (ERPs). EI levels were defined according to both self-report questionnaire and a performance-based ability test. We identified ERP correlates of emotional processing by using a visual-emotional oddball paradigm, in which subjects were confronted with one frequent standard stimulus (a neutral face) and two deviant stimuli (a happy and an angry face). The effects of these faces were then compared across groups with low and high EI levels. The ERP results indicate that participants with high EI exhibited significantly greater mean amplitudes of the P1, P2, N2, and P3 ERP components in response to emotional and neutral faces, at frontal, posterior-parietal and occipital scalp locations. P1, P2 and N2 are considered indexes of attention-related processes and have been associated with early attention to emotional stimuli. The later P3 component has been thought to reflect more elaborative, top-down, emotional information processing including emotional evaluation and memory encoding and formation. These results may suggest greater recruitment of resources to process all emotional and non-emotional faces at early and late processing stages among individuals with higher EI. The present study underscores the usefulness of ERP methodology as a sensitive measure for the study of emotional stimuli processing in the research field of EI. Copyright © 2014 Elsevier Inc. All rights reserved.
Degerman, Alexander; Rinne, Teemu; Särkkä, Anna-Kaisa; Salmi, Juha; Alho, Kimmo
2008-06-01
Event-related brain potentials (ERPs) and magnetic fields (ERFs) were used to compare brain activity associated with selective attention to sound location or pitch in humans. Sixteen healthy adults participated in the ERP experiment, and 11 adults in the ERF experiment. In different conditions, the participants focused their attention on a designated sound location or pitch, or pictures presented on a screen, in order to detect target sounds or pictures among the attended stimuli. In the Attend Location condition, the location of sounds varied randomly (left or right), while their pitch (high or low) was kept constant. In the Attend Pitch condition, sounds of varying pitch (high or low) were presented at a constant location (left or right). Consistent with previous ERP results, selective attention to either sound feature produced a negative difference (Nd) between ERPs to attended and unattended sounds. In addition, ERPs showed a more posterior scalp distribution for the location-related Nd than for the pitch-related Nd, suggesting partially different generators for these Nds. The ERF source analyses found no source distribution differences between the pitch-related Ndm (the magnetic counterpart of the Nd) and location-related Ndm in the superior temporal cortex (STC), where the main sources of the Ndm effects are thought to be located. Thus, the ERP scalp distribution differences between the location-related and pitch-related Nd effects may have been caused by activity of areas outside the STC, perhaps in the inferior parietal regions.
Whitton, Alexis E.; Kakani, Pragya; Foti, Dan; Van’t Veer, Ashlee; Haile, Anja; Crowley, David J.; Pizzagalli, Diego A.
2015-01-01
Background Major depressive disorder (MDD) is a highly recurrent condition, and improving our understanding of the abnormalities that persist in remitted MDD (rMDD) may provide insight into mechanisms that contribute to relapse. MDD has been characterized by reward learning deficits linked to dysfunction in frontostriatal regions. Although initial behavioral evidence of reward learning deficits in rMDD has recently emerged, it is unclear whether these reflect impairments in neural reward processing that persist into remission. Methods We examined behavioral reward learning and 128-channel event-related potentials (ERP) during a well-validated probabilistic reward task in 26 rMDD individuals and 34 never-depressed controls. Temporo-spatial principal components analysis (PCA) was used to separate overlapping ERP components, and group differences in neural activity in a priori regions were examined using low-resolution electromagnetic tomography (LORETA). Results Individuals with rMDD displayed reduced behavioral reward learning, as well as blunted ERP amplitude to reward feedback. Importantly, the reduction in ERP amplitude occurred at a PCA factor that peaked during the time at which phasic reward feedback-related signaling – hypothesized to originate in the striatum and project to the anterior cingulate cortex (ACC) – are thought to modulate scalp-recorded activity. Consistent with this, LORETA analyses revealed reduced activity in the ACC in the rMDD group, and this blunting correlated with poorer reward learning. Conclusion These findings suggest that the reward learning impairment observed in acute MDD persists into full remission and that these impairments may be attributable to abnormalities in the neural processes that support reward feedback monitoring, particularly within the ACC. PMID:26858994
Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger
2014-01-01
Background Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. Methods In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. Results We found an early (100–200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. Discussion The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis. PMID:24632708
Workman, Antony J; Pau, Davide; Redpath, Calum J; Marshall, Gillian E; Russell, Julie A; Norrie, John; Kane, Kathleen A; Rankin, Andrew C
2009-01-01
Background Left ventricular systolic dysfunction (LVSD) is a risk factor for atrial fibrillation (AF), but the atrial cellular electrophysiological mechanisms in humans are unclear. Objective To investigate whether LVSD in patients who are in sinus rhythm (SR) is associated with atrial cellular electrophysiological changes which could predispose to AF. Methods Right atrial myocytes were obtained from 214 consenting patients in SR who were undergoing cardiac surgery. Action potentials or ion currents were measured using the whole-cell-patch clamp technique. Results The presence of moderate or severe LVSD was associated with a shortened atrial cellular effective refractory period, ERP (209±8 ms; 52 cells, 18 patients vs 233±7 ms; 134 cells, 49 patients; P<0.05); confirmed by multiple linear regression analysis. The LV ejection fraction (LVEF) was markedly lower in patients with moderate or severe LVSD (36±4%, n=15) than in those without LVSD (62±2%, n=31; P<0.05). In cells from patients with LVEF≤45%, the ERP and action potential duration at 90% repolarisation were shorter than in those from patients with LVEF>45%, by 24 and 18%, respectively. The LVEF and ERP were positively correlated (r=0.65, P<0.05). The L-type calcium ion current, inward rectifier potassium ion current, and sustained outward ion current was unaffected by LVSD. The transient outward potassium ion current was decreased by 34%, with a positive shift in its activation voltage, and no change in its decay kinetics. Conclusion LVSD in patients in SR is independently associated with a shortening of the atrial cellular ERP, which may be expected to contribute to a predisposition to AF. PMID:19324301
Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger
2014-01-01
Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.
Cortical sources of ERP in prosaccade and antisaccade eye movements using realistic source models
Richards, John E.
2013-01-01
The cortical sources of event-related-potentials (ERP) using realistic source models were examined in a prosaccade and antisaccade procedure. College-age participants were presented with a preparatory interval and a target that indicated the direction of the eye movement that was to be made. In some blocks a cue was given in the peripheral location where the target was to be presented and in other blocks no cue was given. In Experiment 1 the prosaccade and antisaccade trials were presented randomly within a block; in Experiment 2 procedures were compared in which either prosaccade and antisaccade trials were mixed in the same block, or trials were presented in separate blocks with only one type of eye movement. There was a central negative slow wave occurring prior to the target, a slow positive wave over the parietal scalp prior to the saccade, and a parietal spike potential immediately prior to saccade onset. Cortical source analysis of these ERP components showed a common set of sources in the ventral anterior cingulate and orbital frontal gyrus for the presaccadic positive slow wave and the spike potential. In Experiment 2 the same cued- and non-cued blocks were used, but prosaccade and antisaccade trials were presented in separate blocks. This resulted in a smaller difference in reaction time between prosaccade and antisaccade trials. Unlike the first experiment, the central negative slow wave was larger on antisaccade than on prosaccade trials, and this effect on the ERP component had its cortical source primarily in the parietal and mid-central cortical areas contralateral to the direction of the eye movement. These results suggest that blocked prosaccade and antisaccade trials results in preparatory or set effects that decreases reaction time, eliminates some cueing effects, and is based on contralateral parietal-central brain areas. PMID:23847476
Clinical applications of cognitive event-related potentials in Alzheimer's disease.
Olichney, John M; Hillert, Dieter G
2004-02-01
This article has reviewed several abnormalities in the cognitive ERPs of AD patients. These abnormalities are prominent from latencies of approximately 200 msec and later. In contrast, sensory-dependent evoked potentials, such as N100, are generally normal in AD. This finding is as one familiar with the neuropathology of AD would predict. Predilection sites in early AD include the medial temporal lobe, other limbic areas, and multimodal association cortices with sparing of primary sensory areas. Unimodal association cortex is involved in AD, but not as heavily as multimodal cortex. Particular advantages of studying a given ERP paradigm or component depend largely on the specific application or hypothesis being tested. A P300 paradigm can be useful in detecting a disorder of attention or in quantifying the effects of drugs that improve attention, such as the cholinesterase inhibitors. For the early diagnosis of AD or other memory disorders, a word-repetition paradigm with an explicit recognition task or one that fosters associative learning would be recommended. This article has discussed potential use of N400 in tracking disease progression. ERPs provide a flexible and powerful technique, with superb temporal resolution, which can be used as a probe into subtle "subclinical" abnormalities of cognitive processes. Despite being applied to AD for about 25 years since the early P300 studies, the full potential of ERPs in helping diagnose and treat AD patients has yet to be realized. In this era of rapidly evolving brain-imaging techniques, electrophysiologic data are important in advancing understanding of cognition. Brain-mapping techniques that can inform where and when key cognitive processes occur are finally emerging. A final example of potential clinical application of cognitive ERPs is in the development of rational combinational treatment of cognitive enhancing drugs. Along these lines, P300 investigations in epilepsy proved helpful in ranking the cognitive side effects of anticonvulsant drugs. Drug studies that use 2 x 2 combinational designs, which compare the effects of drug A, drug B, with A + B, are currently prohibitively expensive for full-scale clinical trials in AD. It is likely that precise ERP measures could hasten drug development in several ways. Smaller samples could be used, at lower cost, to test the cognitive effects of each specific drug combination. Optimal doses of combinational therapy perhaps could be identified by repeated within-subject ERP measures. Longitudinal changes in the ERP hold promise as a marker of individual responsivity to a particular agent, which could have diagnostic utility (eg, testing response to cholinergic or dopaminergic therapy). This horizon and many others remain wide open for well-planned explorations.
Van der Lubbe, Rob H J; Szumska, Izabela; Fajkowska, Małgorzata
2016-01-01
New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs.
Van der Lubbe, Rob H. J.; Szumska, Izabela; Fajkowska, Małgorzata
2016-01-01
New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs. PMID:28154612
2010-03-01
29 d. Coca Cola Case Study .............................................................31 3. Outsourcing...Electric, Coca - Cola , Hershey Foods, International Business Machines Corporation (IBM), and BP/Amoco (Lousek, 2000). c. Disadvantages of ERP ERP...look at all aspects of the organization to determine if the value added is worth the cost of implementing an ERP system. d. Coca Cola Case Study
Howells, Fleur M; Laurie Rauch, H G; Ives-Deliperi, Victoria L; Horn, Neil R; Stein, Dan J
2014-06-01
Emotional processing in bipolar disorder (BD) is impaired. We aimed to measure the effects of mindfulness based cognitive-behavioral therapy (MBCT) in BD on emotional processing, as measured by event related potentials (ERP) and by heart rate variability (HRV). ERP and HRV were recorded during the completion of a visual matching task, which included object matching, affect matching, and affect labeling. Individuals with BD (n = 12) were compared with controls (n = 9) to obtain baseline data prior to the individuals with BD undergoing an 8-week MBCT intervention. ERP and HRV recording was repeated after the MBCT intervention in BD. Participants with BD had exaggerated ERP N170 amplitude and increased HRV HF peak compared to controls, particularly during the affect matching condition. After an 8-week MBCT intervention, participants with BD showed attenuation of ERP N170 amplitude and reduced HRV HF peak. Our findings support findings from the literature emphasizing that emotional processing in BD is altered, and suggesting that MBCT may improve emotional processing in BD.
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947
Barbancho, Miguel A; Berthier, Marcelo L; Navas-Sánchez, Patricia; Dávila, Guadalupe; Green-Heredia, Cristina; García-Alberca, José M; Ruiz-Cruces, Rafael; López-González, Manuel V; Dawid-Milner, Marc S; Pulvermüller, Friedemann; Lara, J Pablo
2015-01-01
Changes in ERP (P100 and N400) and root mean square (RMS) were obtained during a silent reading task in 28 patients with chronic post-stroke aphasia in a randomized, double-blind, placebo-controlled trial of both memantine and constraint-induced aphasia therapy (CIAT). Participants received memantine/placebo alone (weeks 0-16), followed by drug treatment combined with CIAT (weeks 16-18), and then memantine/placebo alone (weeks 18-20). ERP/RMS values (week 16) decreased more in the memantine group than in the placebo group. During CIAT application (weeks 16-18), improvements in aphasia severity and ERP/RMS values were amplified by memantine and changes remained stable thereafter (weeks 18-20). Changes in ERP/RMS occurred in left and right hemispheres and correlated with gains in language performance. No changes in ERP/RMS were found in a healthy group in two separated evaluations. Our results show that aphasia recovery induced by both memantine alone and in combination with CIAT is indexed by bilateral cortical potentials. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Soltesz, Fruzsina; Szucs, Denes
2009-01-01
Developmental dyscalculia (DD) still lacks a generally accepted definition. A major problem is that the cognitive component processes contributing to arithmetic performance are still poorly defined. By a reanalysis of our previous event-related brain potential (ERP) data (Soltesz et al., 2007) here our objective was to identify and compare…
1992-01-01
cognitive function. For example. physiological methods allow for visual sensitivity measurements in infants and children with about the same level of...potential (ERP), the event-related magnetic field (ERF), and pupillometry . Where possible, we cite specific experiments that deal with display or stimulus...technical barrier preventing the application of these methods to the analysis of human performance with color displays. Pupillometry . The pupillary
2011-06-01
companies led the way for companies to move to ERP in order to address potential Y2K issues. As it became clear that the date turnover from December...customer responsiveness, integration, standardization, cost reduction, flexibility, globalization, Y2K , business performance, and supply/demand chain
NASA Technical Reports Server (NTRS)
Freeman, Frederick G.
1993-01-01
The increased use of automation in the cockpits of commercial planes has dramatically decreased the workload requirements of pilots, enabling them to function more efficiently and with a higher degree of safety. Unfortunately, advances in technology have led to an unexpected problem: the decreased demands on pilots have increased the probability of inducing 'hazardous states of awareness.' A hazardous state of awareness is defined as a decreased level of alertness or arousal which makes an individual less capable of reacting to unique or emergency types of situations. These states tend to be induced when an individual is not actively processing information. Under such conditions a person is likely to let his/her mind wander, either to internal states or to irrelevant external conditions. As a result, they are less capable of reacting quickly to emergency situations. Since emergencies are relatively rare, and since the high automated cockpit requires progressively decreasing levels of engagement, the probability of being seduced into a lowered state of awareness is increasing. This further decreases the readiness of the pilot to react to unique circumstances such as system failures. The HEM Lab at NASA-Langley Research Center has been studying how these states of awareness are induced and what the physiological correlates of these different states are. Specifically, they have been interested in studying electroencephalographic (EEG) measures of different states of alertness to determine if such states can be identified and, hopefully, avoided. The project worked on this summer involved analyzing the EEG and the event related potentials (ERP) data collected while subjects performed under two conditions. Each condition required subjects to perform a relatively boring vigilance task. The purpose of using these tasks was to induce a decreased state of awareness while still requiring the subject to process information. Each task involved identifying an infrequently presented target stimulus. In addition to the task requirements, irrelevant tones were presented in the background. Research has shown that even though these stimuli are not attended, ERP's to them can still be elicited. The amplitude of the ERP waves has been shown to change as a function of a person's level of alertness. ERP's were also collected and analyzed for the target stimuli for each task. Brain maps were produced based on the ERP voltages for the different stimuli. In addition to the ERP's, a quantitative EEG (QEEG) was performed on the data using a fast Fourier technique to produce a power spectral analysis of the EEG. This analysis was conducted on the continuous EEG while the subjects were performing the tasks. Finally, a QEEG was performed on periods during the task when subjects indicated that they were in an altered state of awareness. During the tasks, subjects were asked to indicate by pressing a button when they realized their level of task awareness had changed. EEG epochs were collected for times just before and just after subjects made this reponse. The purpose of this final analysis was to determine whether or not subjective indices of level of awareness could be correlated with different patterns of EEG.
Shu, I-Wei; Onton, Julie A; Prabhakar, Nitin; O'Connell, Ryan M; Simmons, Alan N; Matthews, Scott C
2014-02-01
Posttraumatic stress disorder (PTSD) worsens prognosis following mild traumatic brain injury (mTBI). Combat personnel with histories of mTBI exhibit abnormal activation of distributed brain networks-including emotion processing and default mode networks. How developing PTSD further affects these abnormalities has not been directly examined. We recorded electroencephalography in combat veterans with histories of mTBI, but without active PTSD (mTBI only, n=16) and combat veterans who developed PTSD after mTBI (mTBI+PTSD, n=16)-during the Reading the Mind in the Eyes Test (RMET), a validated test of empathy requiring emotional appraisal of facial features. Task-related event related potentials (ERPs) were identified, decomposed using independent component analysis (ICA) and localized anatomically using dipole modeling. We observed larger emotional face processing ERPs in veterans with mTBI+PTSD, including greater N300 negativity. Furthermore, greater N300 negativity correlated with greater PTSD severity, especially avoidance/numbing and hyperarousal symptom clusters. This correlation was dependent on contributions from the precuneus and posterior cingulate cortex (PCC). Our results support a model where, in combat veterans with histories of mTBI, larger ERPs from over-active posterior-medial cortical areas may be specific to PTSD, and is likely related to negative self-referential activity. © 2013 Published by Elsevier B.V.
Aging and risky decision-making: New ERP evidence from the Iowa Gambling Task.
Di Rosa, Elisa; Mapelli, Daniela; Arcara, Giorgio; Amodio, Piero; Tamburin, Stefano; Schiff, Sami
2017-02-15
Several pieces of evidence have highlighted the presence of an age-related decline in risky decision-making (DM), but the reason of this decline is still unclear. The aim of the present study was to investigate the neural correlates of feedback processing in risky DM. Twenty-one younger (age <50 years) and 15 older (age >50 years) adults were tested with the Iowa Gambling Task (IGT) during Event Related Potentials (ERP) recording. The analysis was focused on the feedback-related negativity (FRN) and P3, two ERP components that represent different stages of feedback processing. Behavioral results revealed that older adults, despite showing a significant learning trend, completed the IGT with a gain of a smaller amount of money compared to the younger ones. ERP results revealed that while the FRN response was comparable in the two groups, the P3 amplitude was significantly reduced after negative feedback in older adults, compared with the younger ones. Furthermore, the difference in the P3 amplitude evoked by positive and negative feedback was significantly correlated with age. Hence, the present findings suggest that older adults seem to be less willing to shift attention from positive to negative information, and that this relevant change in the later stages of feedback processing could be the cause of a poor performance in risky DM contexts. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrophysiological correlates of semantic memory retrieval in Gulf War Syndrome 2 patients.
Tillman, Gail D; Calley, Clifford S; Buhl, Virginia I; Chiang, Hsueh-Sheng; Haley, Robert W; Hart, John; Kraut, Michael A
2017-02-15
Gulf War veterans meeting criteria for Haley Syndrome 2 of Gulf War illness endorse a particular constellation of symptoms that include difficulty with processing information, word-finding, and confusion. To explore the neural basis of their word-finding difficulty, we assessed event-related potentials (ERPs) associated with semantic memory retrieval in 22 veterans classified as Syndrome 2 and 28 veterans who served as controls. We recorded EEGs while subjects judged whether pairs of words that represented object features combined to elicit a retrieval of an object memory or no retrieval. Syndrome 2 subjects' responses were significantly slower, and those participants were less accurate than controls on the retrieval trials, but they performed similarly on the nonretrieval trials. Analysis of the ERPs revealed a difference between retrievals and nonretrievals that has previously been detected around 750ms at the left temporal region was present in both the Syndrome 2 patients and controls. However, the Syndrome 2 patients also showed an ERP difference between retrievals and nonretrievals at the midline parietal region that had a scalp voltage polarity opposite from that recorded at the left temporal area. We hypothesize that the similarities between task performance and ERP patterns in Syndrome 2 veterans and in patients with amnestic mild cognitive impairment reflect disordered thalamic cholinergic neural activity, possibly in the dorsomedial nucleus. Copyright © 2016 Elsevier B.V. All rights reserved.
Neurophysiological evidence that perceptions of fluency produce mere exposure effects.
Leynes, P Andrew; Addante, Richard J
2016-08-01
Recent exposure to people or objects increases liking ratings, the "mere exposure effect" (Zajonc in American Psychologist, 35, 117-123, 1968), and an increase in processing fluency has been identified as a potential mechanism for producing this effect. This fluency hypothesis was directly tested by altering the trial-by-trial image clarity (i.e., fluency) while Event-Related Potentials (ERPs) were recorded. In Experiment 1, clarity was altered across two trial blocks that each had homogenous trial-by-trial clarity, whereas clarity varied randomly across trials in Experiment 2. Blocking or randomizing image clarity across trials was expected to produce different levels of relative fluency and alter mere exposure effects. The mere exposure effect (i.e., old products liked more than new products) was observed when stimulus clarity remained constant across trials, and clear image ERPs were more positive than blurry image ERPs. Importantly, these patterns were reversed when clarity varied randomly across test trials, such that participants liked clear images more than blurry (i.e., no mere exposure effect) and clear image ERPs were more negative than blurry image ERPs. The findings provide direct experimental support from both behavioral and electrophysiological measures that, in some contexts, mere exposure is the product of top-down interpretations of fluency.
Evaluation of post-traumatic anosmia with MRI and chemosensory ERPs.
Miao, Xutao; Yang, Ling; Gu, Hua; Ren, Yuanyuan; Chen, Guowei; Liu, Jia; Wei, Yongxiang
2015-08-01
Magnetic resonance imaging (MRI) and chemosensory event-related potentials (ERPs) are important methods to evaluate olfactory function, but there is lack of study to explore the application of MRI and chemosensory ERPs in the patients with traumatic anosmia. The data of 26 post-traumatic anosmic patients and 21 healthy controls were retrospectively surveyed; olfaction and olfactory pathway of all participants were measured clinically using the T&T olfactometer, the Sniffin' Sticks, chemosensory ERPs and MRI. All patients were anosmic based on complaints and clinical examinations. In five patients, the olfactory bulb volume was significantly lower than control group. In 18 patients, the olfactory sulcus (OS) depth was similar to control group, but all the participants had a deeper right OS (right = 7.79 ± 1.31, left = 7.06 ± 1.44, p < 0.01). Olfactory ERPs (oERPs) could be evoked in 17 patients, but these signals showed longer latencies and lower amplitude than controls in the N1 (latency p < 0.05, amplitude p < 0.01) and P2 (latency p < 0.01, amplitude p < 0.05) waves. Nine traumatic anosmic patients had no identifiable oERPs; most of them had olfactory center injury. Trigeminal ERPs were detected in all anosmic patients and controls; patients had longer latencies for N1 (p < 0.05) and P2 (p < 0.05) waves, while there was no similar change in amplitude. Older subjects had smaller OB volume and OS depth. Closed head injury could induce anosmia; the severity extent, injury site and subsequent consciousness are related to the olfaction. oERP is the gold standard for olfactory subjective examination; MRI could indicate the lesions on the olfactory pathway and reflect the possibility of detectable oERPs.
Samanta, Soma; Tamura, Shuzo; Dubeau, Louis; Mhawech-Fauceglia, Paulette; Miyagi, Yohei; Kato, Hisamori; Lieberman, Rich; Buckanovich, Ronald J.; Lin, Yvonne G.; Neamati, Nouri
2017-01-01
Objective Protein disulfide isomerase (PDI) is an oxidoreductase that is overexpressed in several cancers. PDI family members (PDIs) play a role in various diseases including cancer. Select PDIs were reported as useful markers in other cancers but their expression in ovarian cancer has not been thoroughly assessed. We sought to evaluate the expression of PDI, PDIA6, PDIR, ERp57, ERp72 and AGR3 in ovarian cancer patient samples and examine their prognostic significance. Methods TMA samples from 415 tissues collected from three cancer centers (UM, USC, and KCCRI) were used to assess the expression levels of PDI family proteins using IHC. Results We observed significant increases in PDI (p = 9.16E-36), PDIA6 (p = 5.51E-33), PDIR (p = 1.81E-12), ERp57 (p = 9.13E-07), ERp72 (p = 3.65E-22), and AGR3 (p = 4.56E-24) expression in ovarian cancers compared to normal tissues. Expression of PDI family members also increases during disease progression (p <0.001). All PDI family members are overexpressed in serous ovarian cancer (p<0.001). However, PDI, PDIA6, PDIR, ERp72 and AGR3 are more significantly overexpressed (p<0.001) than ERp57 (p<0.05) in clear cell ovarian carcinoma. Importantly, overexpression of PDI family members is associated with poor survival in ovarian cancer (p = 0.045 for PDI, p = 0.047 for PDIR, p = 0.037 for ERp57, p = 0.046 for ERp72, p = 0.040 for AGR3) with the exception of PDIA6 (p = 0.381). Conclusions Our findings demonstrate that select PDI family members (PDI, PDIR, ERp72, ERp57 and AGR3) are potential prognostic markers for ovarian cancer. PMID:29262583
Picture Superiority Doubly Dissociates the ERP Correlates of Recollection and Familiarity
ERIC Educational Resources Information Center
Curran, Tim; Doyle, Jeanne
2011-01-01
Two experiments investigated the processes underlying the picture superiority effect on recognition memory. Studied pictures were associated with higher accuracy than studied words, regardless of whether test stimuli were words (Experiment 1) or pictures (Experiment 2). Event-related brain potentials (ERPs) recorded during test suggested that the…
The Earliest Electrophysiological Correlate of Visual Awareness?
ERIC Educational Resources Information Center
Koivisto, Mika; Lahteenmaki, Mikko; Sorensen, Thomas Alrik; Vangkilde, Signe; Overgaard, Morten; Revonsuo, Antti
2008-01-01
To examine the neural correlates and timing of human visual awareness, we recorded event-related potentials (ERPs) in two experiments while the observers were detecting a grey dot that was presented near subjective threshold. ERPs were averaged for conscious detections of the stimulus (hits) and nondetections (misses) separately. Our results…
ERP Study of Pre-Attentive Auditory Processing in Treatment-Refractory Schizophrenia
ERIC Educational Resources Information Center
Milovan, Denise L.; Baribeau, Jacinthe; Roth, Robert M.; Stip, Emmanuel
2004-01-01
Event-related potential (ERP) studies have demonstrated impaired auditory sensory processing in patients with schizophrenia, as reflected in abnormal mismatch negativity (MMN). We sought to extend this finding by evaluating MMN in 13 treatment-refractory patients with schizophrenia, and 14 age- and gender-matched healthy controls. Subjects…
Risk Management for Enterprise Resource Planning System Implementations in Project-Based Firms
ERIC Educational Resources Information Center
Zeng, Yajun
2010-01-01
Enterprise Resource Planning (ERP) systems have been regarded as one of the most important information technology developments in the past decades. While ERP systems provide the potential to bring substantial benefits, their implementations are characterized with large capital outlay, long duration, and high risks of failure including…
Prefrontal Cortex Contributions to Episodic Retrieval Monitoring and Evaluation
ERIC Educational Resources Information Center
Cruse, Damian; Wilding, Edward L.
2009-01-01
Although the prefrontal cortex (PFC) plays roles in episodic memory judgments, the specific processes it supports are not understood fully. Event-related potential (ERP) studies of episodic retrieval have revealed an electrophysiological modulation--the right-frontal ERP old/new effect--which is thought to reflect activity in PFC. The functional…
The time course of individual face recognition: A pattern analysis of ERP signals.
Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian
2016-05-15
An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Laszlo, Sarah; Armstrong, Blair C
2014-05-01
The Parallel Distributed Processing (PDP) framework is built on neural-style computation, and is thus well-suited for simulating the neural implementation of cognition. However, relatively little cognitive modeling work has concerned neural measures, instead focusing on behavior. Here, we extend a PDP model of reading-related components in the Event-Related Potential (ERP) to simulation of the N400 repetition effect. We accomplish this by incorporating the dynamics of cortical post-synaptic potentials--the source of the ERP signal--into the model. Simulations demonstrate that application of these dynamics is critical for model elicitation of repetition effects in the time and frequency domains. We conclude that by advancing a neurocomputational understanding of repetition effects, we are able to posit an interpretation of their source that is both explicitly specified and mechanistically different from the well-accepted cognitive one. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Xin; Jin, Jingna; Li, Song; Liu, Zhipeng; Yin, Tao
2015-12-01
Evolutionary psychology holds such an opinion that negative situation may threaten survival, trigger avoidance motive and have poor effects on the human-body function and the psychological quality. Both disgusted and sad situations can induce negative emotions. However, differences between the two situations on attention capture and emotion cognition during the emotion induction are still not well known. Typical disgusted and sad situation images were used in the present study to induce two negative emotions, and 15 young students (7 males and 8 females, aged 27 ± 3) were recruited in the experiments. Electroencephalogram of 32 leads was recorded when the subjects were viewing situation images, and event-related potentials (ERP) of all leads were obtained for future analysis. Paired sample t tests were carried out on two ERP signals separately induced by disgusted and sad situation images to get time quantum with significant statistical differences between the two ERP signals. Root-mean-square deviations of two ERP signals during each time quantum were calculated and the brain topographic map based on root-mean-square deviations was drawn to display differences of two ERP signals in spatial. Results showed that differences of ERP signals induced by disgusted and sad situation images were mainly manifested in T1 (120-450 ms) early and T2 (800-1,000 ms) later. During the period of T1, the occipital lobe reflecting attention capture was activated by both disgusted and sad situation images, but the prefrontal cortex reflecting emotion sense was activated only by disgusted situation images. During the period of T2, the prefrontal cortex was activated by both disgusted and sad situation images. However, the parietal lobe was activated only by disgusted situation images, which showed stronger emotional perception. The research results would have enlightenment to deepen understanding of negative emotion and to exploredeep cognitive neuroscience mechanisms of negative emotion induction.
Age difference in numeral recognition and calculation: an event-related potential study.
Xuan, Dong; Wang, Suhong; Yang, Yilin; Meng, Ping; Xu, Feng; Yang, Wen; Sheng, Wei; Yang, Yuxia
2007-01-01
In this study, we investigated the age difference in numeral recognition and calculation in one group of school-aged children (n = 38) and one of undergraduate students (n = 26) using the event-related potential (ERP) methods. Consistent with previous reports, the age difference was significant in behavioral results. Both numeral recognition and calculation elicited a negativity peaking at about 170-280 ms (N2) and a positivity peaking at 200-470 ms (pSW) in raw ERPs, and a difference potential (dN3) between 360 and 450 ms. The difference between the two age groups indicated that more attention resources were devoted to arithmetical tasks in school-aged children, and that school-aged children and undergraduate students appear to use different strategies to solve arithmetical problems. The analysis of frontal negativity suggested that numeral recognition and mental calculation impose greater load on working memory and executive function in schoolchildren than in undergraduate students. The topography data determined that the parietal regions were responsible for arithmetical function in humans, and there was an age-related difference in the area of cerebral activation.
Sarlo, Michela; Buodo, Giulia; Devigili, Andrea; Munafò, Marianna; Palomba, Daniela
2011-02-18
The presence of an attentional bias towards disorder-related stimuli has not been consistently demonstrated in blood phobics. The present study was aimed at investigating whether or not an attentional bias, as measured by event-related potentials (ERPs), could be highlighted in blood phobics by inducing cognitive-emotional sensitization through the repetitive presentation of different disorder-related pictures. The mean amplitudes of the N100, P200, P300 and late positive potentials to picture onset were assessed along with subjective ratings of valence and arousal in 13 blood phobics and 12 healthy controls. Blood phobics, but not controls, showed a linear increase of subjective arousal over time, suggesting that cognitive-emotional sensitization did occur. The analysis of cortical responses showed larger N100 and smaller late positive potentials in phobics than in controls in response to mutilations. These findings suggest that cognitive-emotional sensitization induced an attentional bias in blood phobics during picture viewing, involving early selective encoding and late cognitive avoidance of disorder-related stimuli depicting mutilations. © 2010 Elsevier Ireland Ltd. All rights reserved.
Zhang, Youxue; Lou, Liandi; Ding, Daoqun
2015-01-01
Disgust, an emotion motivating withdrawal from offensive stimuli, protects us from the risk of biological pathogens and sociomoral violations. Homogeneity of its two types, namely, core and moral disgust has been under intensive debate. To examine the dynamic relationship between them, we recorded event-related potentials (ERPs) for core disgust, moral disgust and neutral pictures while participants performed a modified oddball task. ERP analysis revealed that N1 and P2 amplitudes were largest for the core disgust pictures, indicating automatic processing of the core disgust-evoking pictures. N2 amplitudes were higher for pictures evoking moral disgust relative to core disgust and neutral pictures, reflecting a violation of social norms. The core disgust pictures elicited larger P3 and late positive potential (LPP) amplitudes in comparison with the moral disgust pictures which, in turn, elicited larger P3 and LPP amplitudes when compared to the neutral pictures. Taken together, these findings indicated that core and moral disgust pictures elicited different neural activities at various stages of information processing, which provided supporting evidence for the heterogeneity of disgust. PMID:26011635
Zhang, Xiangyi; Guo, Qi; Zhang, Youxue; Lou, Liandi; Ding, Daoqun
2015-01-01
Disgust, an emotion motivating withdrawal from offensive stimuli, protects us from the risk of biological pathogens and sociomoral violations. Homogeneity of its two types, namely, core and moral disgust has been under intensive debate. To examine the dynamic relationship between them, we recorded event-related potentials (ERPs) for core disgust, moral disgust and neutral pictures while participants performed a modified oddball task. ERP analysis revealed that N1 and P2 amplitudes were largest for the core disgust pictures, indicating automatic processing of the core disgust-evoking pictures. N2 amplitudes were higher for pictures evoking moral disgust relative to core disgust and neutral pictures, reflecting a violation of social norms. The core disgust pictures elicited larger P3 and late positive potential (LPP) amplitudes in comparison with the moral disgust pictures which, in turn, elicited larger P3 and LPP amplitudes when compared to the neutral pictures. Taken together, these findings indicated that core and moral disgust pictures elicited different neural activities at various stages of information processing, which provided supporting evidence for the heterogeneity of disgust.
Greenham, Stephanie L; Stelmack, Robert M; van der Vlugt, Harry
2003-01-01
The role of attention in the processing of pictures and words was investigated for a group of normally achieving children and for groups of learning disability sub-types that were defined by deficient performance on tests of reading and spelling (Group RS) and of arithmetic (Group A). An event-related potential (ERP) recording paradigm was employed in which the children were required to attend to and name either pictures or words that were presented individually or in superimposed picture-word arrays that varied in degree of semantic relation. For Group RS, the ERP waves to words, both presented individually or attended in the superimposed array, exhibited reduced N450 amplitude relative to controls, whereas their ERP waves to pictures were normal. This suggests that the word-naming deficiency for Group RS is not a selective attention deficit but rather a specific linguistic deficit that develops at a later stage of processing. In contrast to Group RS and controls, Group A did not exhibit reliable early frontal negative waves (N280) to the super-imposed pictures and words, an effect that may reflect a selective attention deficit for these children that develops at an early stage of visuo-spatial processing. These early processing differences were also evident in smaller amplitude N450 waves for Group A when naming either pictures or words in the superimposed arrays.
Iidaka, Tetsuya; Matsumoto, Atsushi; Nogawa, Junpei; Yamamoto, Yukiko; Sadato, Norihiro
2006-09-01
The neural basis for successful recognition of previously studied items, referred to as "retrieval success," has been investigated using either neuroimaging or brain potentials; however, few studies have used both modalities. Our study combined event-related functional magnetic resonance imaging (fMRI) and event-related potential (ERP) in separate groups of subjects. The neural responses were measured while the subjects performed an old/new recognition task with pictures that had been previously studied in either a deep- or shallow-encoding condition. The fMRI experiment showed that among the frontoparietal regions involved in retrieval success, the inferior frontal gyrus and intraparietal sulcus were crucial to conscious recollection because the activity of these regions was influenced by the depth of memory at encoding. The activity of the right parietal region in response to a repeated item was modulated by the repetition lag, indicating that this area would be critical to familiarity-based judgment. The results of structural equation modeling revealed that the functional connectivity among the regions in the left hemisphere was more significant than that in the right hemisphere. The results of the ERP experiment and independent component analysis paralleled those of the fMRI experiment and demonstrated that the repeated item produced an earlier peak than the hit item by approximately 50 ms.
Zhu, Jing; Li, Jianxiu; Li, Xiaowei; Rao, Juan; Hao, Yanrong; Ding, Zhijie; Wang, Gangping
2018-01-01
Objects: Effective psychological function requires that cognition is not affected by task-irrelevant emotional stimuli in emotional conflict. Depression is mainly characterized as an emotional disorder. The object of this study is to reveal the behavioral and electrophysiological signature of emotional conflict processing in major depressive disorder (MDD) using event-related potentials (ERPs) and standardized low-resolution brain electromagnetic tomography (sLORETA) analysis. Method: We used a face–word Stroop task involving emotional faces while recording EEG (electroencephalography) in 20 patients with MDD and 20 healthy controls (HCs). And then ERPs were extracted and the corresponding brain sources were reconstructed using sLORETA. Results: Behaviorally, subjects with MDDs manifested significantly increased Stroop effect when examining the RT difference between happy incongruent trials and happy congruent trials, compared with HC subjects. ERP results exhibited that MDDs were characterized by the attenuated difference between P300 amplitude to sad congruent stimuli and sad incongruent stimuli, as electrophysiological evidence of impaired conflict processing in subjects with MDD. The sLORETA results showed that MDD patients had a higher current density in rostral anterior cingulate cortex (rostral ACC) within N450 time window in response to happy incongruent trials than happy congruent stimuli. Moreover, HC subjects had stronger activity in right inferior frontal gyrus (rIFG) region in response to incongruent stimuli than congruent stimuli, revealing successful inhibition of emotional distraction in HCs, which was absent in MDDs. Conclusion: Our results indicated that rostral ACC was implicated in the processing of negative emotional distraction in MDDs, as well as impaired inhibition of task-irrelevant emotional stimuli, relative to HCs. This work furnishes novel behavioral and neurophysiological evidence that are closely related to emotional conflict among MDD patients. PMID:29896094
The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.
Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin
2012-08-30
Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.
Memory and event-related potentials for rapidly presented emotional pictures.
Versace, Francesco; Bradley, Margaret M; Lang, Peter J
2010-08-01
Dense array event-related potentials (ERPs) and memory performance were assessed following rapid serial visual presentation (RSVP) of emotional and neutral pictures. Despite the extremely brief presentation, emotionally arousing pictures prompted an enhanced negative voltage over occipital sensors, compared to neutral pictures, replicating previous encoding effects. Emotionally arousing pictures were also remembered better in a subsequent recognition test, with higher hit rates and better discrimination performance. ERPs measured during the recognition test showed both an early (250-350 ms) frontally distributed difference between hits and correct rejections, and a later (400-500 ms), more centrally distributed difference, consistent with effects of recognition on ERPs typically found using slower presentation rates. The data are consistent with the hypothesis that features of affective pictures pop out during rapid serial visual presentation, prompting better memory performance.
Carroll, Christine A; Kieffaber, Paul D; Vohs, Jenifer L; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P
2008-11-01
The present study investigated event-related brain potential (ERP) indices of auditory processing and sensory gating in bipolar disorder and subgroups of bipolar patients with or without a history of psychosis using the P50 dual-click procedure. Auditory-evoked activity in two discrete frequency bands also was explored to distinguish between sensory registration and selective attention deficits. Thirty-one individuals with bipolar disorder and 28 non-psychiatric controls were compared on ERP indices of auditory processing using a dual-click procedure. In addition to conventional P50 ERP peak-picking techniques, quantitative frequency analyses were applied to the ERP data to isolate stages of information processing associated with sensory registration (20-50 Hz; gamma band) and selective attention (0-20 Hz; low-frequency band). Compared to the non-psychiatric control group, patients with bipolar disorder exhibited reduced S1 response magnitudes for the conventional P50 peak-picking and low-frequency response analyses. A bipolar subgroup effect suggested that the attenuated S1 magnitudes from the P50 peak-picking and low-frequency analyses were largely attributable to patients without a history of psychosis. The analysis of distinct frequency bands of the auditory-evoked response elicited during the dual-click procedure allowed further specification of the nature of auditory sensory processing and gating deficits in bipolar disorder with or without a history of psychosis. The observed S1 effects in the low-frequency band suggest selective attention deficits in bipolar patients, especially those patients without a history of psychosis, which may reflect a diminished capacity to selectively attend to salient stimuli as opposed to impairments of inhibitory sensory processes.
Improving zero-training brain-computer interfaces by mixing model estimators
NASA Astrophysics Data System (ADS)
Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.
2017-06-01
Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.
Shen, Guannan; Saby, Joni N; Drew, Ashley R; Marshall, Peter J
2017-03-15
This study explored interpersonal influences on electrophysiological responses during the anticipation of tactile stimulation. It is well-known that broad, negative-going potentials are present in the event-related potential (ERP) between a forewarning cue and a tactile stimulus. It has also been shown that the alpha-range mu rhythm shows a lateralized desynchronization over central electrode sites during anticipation of tactile stimulation of the hand. The current study used a tactile discrimination task in which a visual cue signaled that an upcoming stimulus would either be delivered 1500ms later to the participant's hand, to a task partner's hand, or to neither person. For the condition in which participants anticipated the tactile stimulation to their own hand, a negative potential (contingent negative variation, CNV) was observed in the ERP at central sites in the 1000ms prior to the tactile stimulus. Significant mu rhythm desynchronization was also present in the same time window. The magnitudes of the ERPs and of the mu desynchronization were greater in the contralateral than in the ipsilateral hemisphere prior to right hand stimulation. Similar ERP and EEG changes were not present when the visual cue indicated that stimulation would be delivered to the task partner or to neither person. The absence of social influences during anticipation of tactile stimulation, and the relationship between the two brain signatures of anticipatory attention (CNV and mu rhythm) are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Event-related potentials to structural familiar face incongruity processing.
Jemel, B; George, N; Olivares, E; Fiori, N; Renault, B
1999-07-01
Thirty scalp sites were used to investigate the specific topography of the event-related potentials (ERPs) related to face associative priming when masked eyes of familiar faces were completed with either the proper features or incongruent ones. The enhanced negativity of N210 and N350, due to structural incongruity of faces, have a "category specific" inferotemporal localization on the scalp. Additional analyses support the existence of multiple ERP features within the temporal interval typically associated with N400 (N350 and N380), involving occipitotemporal and centroparietal areas. Seven reliable dipole locations have been evidenced using the brain electrical source analysis algorithm. Some of these localizations (fusiform, parahippocampal) are already known to be involved in face recognition, the other ones being related to general cognitive processes related to the task's demand. Because of their specific topography, the observed effects suggest that the face structural congruency process might involve early specialized neocortical areas in parallel with cortical memory circuits in the integration of perceptual and cognitive face processing.
Jemel, Boutheina; Pisani, Michèle; Rousselle, Laurence; Crommelinck, Marc; Bruyer, Raymond
2005-01-01
In this paper, we explored the functional properties of person recognition system by investigating the onset, magnitude, and scalp distribution of within- and cross-domain self-priming effects on event-related potentials (ERPs). Recognition of degraded pictures of famous people was enhanced by a prior exposure to the same person's face (within-domain self-priming) or name (cross-domain self-priming) as compared to those preceded by neutral or unrelated primes. The ERP results showed first that the amplitude of the N170 component to famous face targets was modulated by within- and cross-domain self-priming, suggesting not only that the N170 component can be affected by top-down influences but also that this top-down effect crosses domains. Second, similar to our behavioral data, later ERPs to famous faces showed larger ERP self-priming effects in the within-domain than in the cross-domain condition. In addition, the present data dissociated between two topographically and temporally overlapping priming-sensitive ERP components: the first one, with a strongly posterior distribution arising at an early onset, was modulated more by within-domain priming irrespective whether the repeated face was familiar or not. The second component, with a relatively uniform scalp distribution, was modulated by within- and cross-domain priming of familiar faces. Moreover, there was no evidence for ERP-induced modulations for unfamiliar face targets in the cross-domain condition. Together, our findings suggest that multiple neurocognitive events that are possibly mediated by distinct brain loci contribute to face priming effects.
Kujawa, Autumn; Carroll, Ashley; Mumper, Emma; Mukherjee, Dahlia; Kessel, Ellen M; Olino, Thomas; Hajcak, Greg; Klein, Daniel N
2017-11-04
Brain regions involved in reward processing undergo developmental changes from childhood to adolescence, and alterations in reward-related brain function are thought to contribute to the development of psychopathology. Event-related potentials (ERPs), such as the reward positivity (RewP) component, are valid measures of reward responsiveness that are easily assessed across development and provide insight into temporal dynamics of reward processing. Little work has systematically examined developmental changes in ERPs sensitive to reward. In this longitudinal study of 75 youth assessed 3 times across 6years, we used principal components analyses (PCA) to differentiate ERPs sensitive to monetary reward and loss feedback in late childhood, early adolescence, and middle adolescence. We then tested reliability of, and developmental changes in, ERPs. A greater number of ERP components differentiated reward and loss feedback in late childhood compared to adolescence, but components in childhood accounted for only a small proportion of variance. A component consistent with RewP was the only one to consistently emerge at each of the 3 assessments. RewP demonstrated acceptable reliability, particularly from early to middle adolescence, though reliability estimates varied depending on scoring approach and developmental period. The magnitude of the RewP component did not significantly change across time. Results provide insight into developmental changes in the structure of ERPs sensitive to reward, and indicate that RewP is a consistently observed and relatively stable measure of reward responsiveness, particularly across adolescence. Copyright © 2017. Published by Elsevier B.V.
Early infant diet and ERP Correlates of Speech Stimuli Discrimination in 9 month old infants
USDA-ARS?s Scientific Manuscript database
Processing and discrimination of speech stimuli were examined during the initial period of weaning in infants enrolled in a longitudinal study of infant diet and development (the Beginnings Study). Event-related potential measures (ERP; 128 sites) were used to compare the processing of speech stimul...
Right Hemispheric Dominance of Creative Insight: An Event-Related Potential Study
ERIC Educational Resources Information Center
Shen, Wangbing; Liu, Chang; Zhang, Xiaojiang; Zhao, Xiaojun; Zhang, Jing; Yuan, Yuan; Chen, Yalin
2013-01-01
The purpose of this study was to investigate the hemispheric effect of creative insight. This study used high-density ERPs to record participants' brain activity while they performed an insight task. Results showed that both insight solutions and incomprehension solutions elicited a more negative ERP deflection (N320~550) than noninsight solutions…
ERIC Educational Resources Information Center
van Meel, Catharina S.; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Luman, Marjolein; Sergeant, Joseph A.
2011-01-01
Background: Several models of attention-deficit hyperactivity disorder (ADHD) propose abnormalities in the response to behavioural contingencies. Using event-related potentials (ERPs), the present study investigated the monitoring and subsequent evaluation of performance feedback resulting in either reward or punishment in children with ADHD (N =…
Maturing Brain Mechanisms and Developing Behavioral Language Skills
ERIC Educational Resources Information Center
Friedrich, Manuela; Friederici, Angela D.
2010-01-01
The relation between the maturation of brain mechanisms responsible for the N400 elicitation in the event-related brain potential (ERP) and the development of behavioral language skills was investigated in 12-month-old infants. ERPs to words presented in a picture-word priming paradigm were analyzed according to the infants' production and…
ERIC Educational Resources Information Center
Zhou, Xiaolin; Jiang, Xiaoming; Ye, Zheng; Zhang, Yaxu; Lou, Kaiyang; Zhan, Weidong
2010-01-01
An event-related potential (ERP) study was conducted to investigate the temporal neural dynamics of semantic integration processes at different levels of syntactic hierarchy during Chinese sentence reading. In a hierarchical structure, "subject noun" + "verb" + "numeral" + "classifier" + "object noun," the object noun is constrained by selectional…
ERIC Educational Resources Information Center
Tolentino, Leida C.; Tokowicz, Natasha
2009-01-01
The present study investigated the cognitive and neural mechanisms underlying the processing of concrete and abstract words by recording event-related potentials (ERPs) while participants performed an English lexical decision task. Concrete and abstract words were presented in three stimulus-order conditions: abstract before concrete, concrete…
An ERP Investigation of Regional and Foreign Accent Processing
ERIC Educational Resources Information Center
Goslin, Jeremy; Duffy, Hester; Floccia, Caroline
2012-01-01
This study used event-related potentials (ERPs) to examine whether we employ the same normalisation mechanisms when processing words spoken with a regional accent or foreign accent. Our results showed that the Phonological Mapping Negativity (PMN) following the onset of the final word of sentences spoken with an unfamiliar regional accent was…
P300 Latency and the Development of Memory Span.
ERIC Educational Resources Information Center
Howard, Lawrence
The way cognitive, event-related brain potentials (ERPs) can aid in further understanding of memory span change in children is discussed. ERPs are time-dependent changes in electrical activity of the brain (as recorded by scalp electrodes) following the presentation of a physical stimulus through auditory, visual, or somatosensory modalities. The…
ERIC Educational Resources Information Center
Kreidler, Kathryn; Wray, Amanda Hampton; Usler, Evan; Weber, Christine
2017-01-01
Purpose: Maturation of neural processes for language may lag in some children who stutter (CWS), and event-related potentials (ERPs) distinguish CWS who have recovered from those who have persisted. The current study explores whether ERPs indexing semantic processing may distinguish children who will eventually persist in stuttering…
Sentence Integration Processes: An ERP Study of Chinese Sentence Comprehension with Relative Clauses
ERIC Educational Resources Information Center
Yang, Chin Lung; Perfetti, Charles A.; Liu, Ying
2010-01-01
In an event-related potentials (ERPs) study, we examined the comprehension of different types of Chinese (Mandarin) relative clauses (object vs. subject-extracted) to test the universality and language specificity of sentence comprehension processes. Because Chinese lacks morphosyntactic cues to sentence constituent relations, it allows a test of…
ERIC Educational Resources Information Center
Meng, Xiangzhi; Sai, Xiaoguang; Wang, Cixin; Wang, Jue; Sha, Shuying; Zhou, Xiaolin
2005-01-01
By measuring behavioural performance and event-related potentials (ERPs) this study investigated the extent to which Chinese school children's reading development is influenced by their skills in auditory, speech, and temporal processing. In Experiment 1, 102 normal school children's performance in pure tone temporal order judgment, tone frequency…
Unaccusativity and Neurocognitive Indices of Second Language Acquisition: An ERP Study
ERIC Educational Resources Information Center
Purdy, John David
2010-01-01
Increased second-language (L2) proficiency is associated with a shift from explicit to implicit processing; however, the neural underpinnings are of this shift are not well understood. Furthermore, it is known that unaccusative verbs cause persistent difficulties in L2 learning. In this study, behavioral and event-related potential (ERP) responses…
Nelson, Lindsay D.; Patrick, Christopher J.; Bernat, Edward M.
2010-01-01
The externalizing dimension is viewed as a broad dispositional factor underlying risk for numerous disinhibitory disorders. Prior work has documented deficits in event-related brain potential (ERP) responses in individuals prone to externalizing problems. Here, we constructed a direct physiological index of externalizing vulnerability from three ERP indicators and evaluated its validity in relation to criterion measures in two distinct domains: psychometric and physiological. The index was derived from three ERP measures that covaried in their relations with externalizing proneness the error-related negativity and two variants of the P3. Scores on this ERP composite predicted psychometric criterion variables and accounted for externalizing-related variance in P3 response from a separate task. These findings illustrate how a diagnostic construct can be operationalized as a composite (multivariate) psychophysiological variable (phenotype). PMID:20573054
Self-Referential Processing in Depressed Adolescents: A High-Density ERP Study
Auerbach, Randy P.; Stanton, Colin H.; Proudfit, Greg Hajcak; Pizzagalli, Diego A.
2015-01-01
Despite the alarming increase in the prevalence of depression during adolescence, particularly among female adolescents, the pathophysiology of depression in adolescents remains largely unknown. Event-related potentials (ERPs) provide an ideal approach to investigate cognitive-affective processes associated with depression in adolescents, especially in the context of negative self-referential processing biases. In this study, healthy (n = 30) and depressed (n = 22) female adolescents completed a self-referential encoding task while ERP data were recorded. To examine cognitive-affective processes associated with self-referential processing, P1, P2, and late positive potential (LPP) responses to negative and positive words were investigated, and intracortical sources of scalp effects were probed using Low Resolution Electromagnetic Tomography (LORETA). Additionally, we tested whether key cognitive processes (e.g., maladaptive self-view, self-criticism) previously implicated in depression related to ERP components. Relative to healthy female subjects, depressed females endorsed more negative and fewer positive words, and free recalled and recognized fewer positive words. With respect to ERPs, compared to healthy female adolescents, depressed adolescents exhibited greater P1 amplitudes following negative words, which was associated with a more maladaptive self-view and self-criticism. In both early and late LPP responses, depressed females showed greater activity following negative versus positive words, whereas healthy females demonstrated the opposite pattern. For both P1 and LPP, LORETA revealed reduced inferior frontal gyrus activity in response to negative words in depressed versus healthy female adolescents. Collectively, these findings suggest that the P1 and LPP reflect biased self-referential processing in female adolescents with depression. Potential treatment implications are discussed. PMID:25643205
Event-related potential studies of outcome processing and feedback-guided learning.
San Martín, René
2012-01-01
In order to control behavior in an adaptive manner the brain has to learn how some situations and actions predict positive or negative outcomes. During the last decade cognitive neuroscientists have shown that the brain is able to evaluate and learn from outcomes within a few hundred milliseconds of their occurrence. This research has been primarily focused on the feedback-related negativity (FRN) and the P3, two event-related potential (ERP) components that are elicited by outcomes. The FRN is a frontally distributed negative-polarity ERP component that typically reaches its maximal amplitude 250 ms after outcome presentation and tends to be larger for negative than for positive outcomes. The FRN has been associated with activity in the anterior cingulate cortex (ACC). The P3 (~300-600 ms) is a parietally distributed positive-polarity ERP component that tends to be larger for large magnitude than for small magnitude outcomes. The neural sources of the P3 are probably distributed over different regions of the cortex. This paper examines the theories that have been proposed to explain the functional role of these two ERP components during outcome processing. Special attention is paid to extant literature addressing how these ERP components are modulated by outcome valence (negative vs. positive), outcome magnitude (large vs. small), outcome probability (unlikely vs. likely), and behavioral adjustment. The literature offers few generalizable conclusions, but is beset with a number of inconsistencies across studies. This paper discusses the potential reasons for these inconsistencies and points out some challenges that probably will shape the field over the next decade.
Performance improvement of ERP-based brain-computer interface via varied geometric patterns.
Ma, Zheng; Qiu, Tianshuang
2017-12-01
Recently, many studies have been focusing on optimizing the stimulus of an event-related potential (ERP)-based brain-computer interface (BCI). However, little is known about the effectiveness when increasing the stimulus unpredictability. We investigated a new stimulus type of varied geometric pattern where both complexity and unpredictability of the stimulus are increased. The proposed and classical paradigms were compared in within-subject experiments with 16 healthy participants. Results showed that the BCI performance was significantly improved for the proposed paradigm, with an average online written symbol rate increasing by 138% comparing with that of the classical paradigm. Amplitudes of primary ERP components, such as N1, P2a, P2b, N2, were also found to be significantly enhanced with the proposed paradigm. In this paper, a novel ERP BCI paradigm with a new stimulus type of varied geometric pattern is proposed. By jointly increasing the complexity and unpredictability of the stimulus, the performance of an ERP BCI could be considerably improved.
Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang
2015-04-01
By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimating Single-Trial Responses in EEG
NASA Technical Reports Server (NTRS)
Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; Fu, K. G.; Johnston, T. A.; Ding, M.; Bressler, S. L.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)
2002-01-01
Accurate characterization of single-trial field potential responses is critical from a number of perspectives. For example, it allows differentiation of an evoked response from ongoing EEG. We previously developed the multiple component Event Related Potential (mcERP) algorithm to improve resolution of the single-trial evoked response. The mcERP model states that multiple components, each specified by a stereotypic waveform varying in latency and amplitude from trial to trial, comprise the evoked response. Application of the mcERP algorithm to simulated data with three independent, synthetic components has shown that the model is capable of separating these components and estimating their variability. Application of the model to single trial, visual evoked potentials recorded simultaneously from all V1 laminae in an awake, fixating macaque yielded local and far-field components. Certain local components estimated by the model were distributed in both granular and supragranular laminae. This suggests a linear coupling between the responses of thalamo-recipient neuronal ensembles and subsequent responses of supragranular neuronal ensembles, as predicted by the feedforward anatomy of V1. Our results indicate that the mcERP algorithm provides a valid estimation of single-trial responses. This will enable analyses that depend on trial-to-trial variations and those that require separation of the evoked response from background EEG rhythms
Clinical Experiments of Communication by ALS Patient Utilizing Detecting Event-Related Potential
NASA Astrophysics Data System (ADS)
Kanou, Naoyuki; Sakuma, Kenji; Nakashima, Kenji
Amyotrophic Lateral Sclerosis(ALS) patients are unable to successfully communicate their desires, although their mentality is normal, and so, the necessity of Communication Aids(CA) for ALS patients is realized. Therefore, the authors are focused on Event-Related Potential(ERP) which is elicited primarily for the target by visual and auditory stimuli. P200, N200 and P300 are components of ERP. These are potentials that are elicited when the subject focuses attention on stimuli that appears infrequently. ALS patient participated in two experiments. In the first experiment, a target word out of five words on a computer display was specified. The five words were linked to an each electric appliance, allowing the ALS patient to switch on a target appliance by ERP. In the second experiment, a target word in a 5×5 matrix was specified by measure of ERP. The rows and columns of the matrix were reversed randomly. The word on a crossing point of rows and columns including the target word, was specified as the target word. The rate of correct judgment in the first and second experiments were 100% in N200 and 96% in P200. For practical use of this system, it is very important to determine suitable communication algorithms for each patient by performing these experiments evaluating the results.
NASA Astrophysics Data System (ADS)
Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui
2009-02-01
Functional near-infrared brain imaging (fNIRI) and event-related potential (ERP) were used simultaneous to detect the prefrontal cortex (PFC) which is considered to execute cognitive control of the subjects while performing the Chinese characters color-word matching Stroop task with event-related design. The fNIRI instrument is a portable system operating at three wavelengths (735nm & 805nm &850nm) with continuous-wave. The event-related potentials were acquired by Neuroscan system. The locations of optodes corresponding to the electrodes were defined four areas symmetrically. In nine native Chinese-speaking fit volunteers, fNIRI measured the hemodynamic parameters (involving oxy-/deoxy- hemoglobin) changes when the characteristic waveforms (N500/P600) were recorded by ERP. The interference effect was obvious as a longer reaction time for incongruent than congruent and neutral stimulus. The responses of hemodynamic and electrophysiology were also stronger during incongruent compared to congruent and neutral trials, and these results are similar to those obtained with fNIRI or ERP separately. There are high correlations, even linear relationship, in the two kinds of signals. In conclusion, the multi-modality approach combining of fNIRI and ERP is feasible and could obtain more cognitive function information with hemodynamic and electrophysiology signals. It also provides a perspective to prove the neurovascular coupling mechanism.
Passing faces: sequence-dependent variations in the perceptual processing of emotional faces.
Karl, Christian; Hewig, Johannes; Osinsky, Roman
2016-10-01
There is broad evidence that contextual factors influence the processing of emotional facial expressions. Yet temporal-dynamic aspects, inter alia how face processing is influenced by the specific order of neutral and emotional facial expressions, have been largely neglected. To shed light on this topic, we recorded electroencephalogram from 168 healthy participants while they performed a gender-discrimination task with angry and neutral faces. Our event-related potential (ERP) analyses revealed a strong emotional modulation of the N170 component, indicating that the basic visual encoding and emotional analysis of a facial stimulus happen, at least partially, in parallel. While the N170 and the late positive potential (LPP; 400-600 ms) were only modestly affected by the sequence of preceding faces, we observed a strong influence of face sequences on the early posterior negativity (EPN; 200-300 ms). Finally, the differing response patterns of the EPN and LPP indicate that these two ERPs represent distinct processes during face analysis: while the former seems to represent the integration of contextual information in the perception of a current face, the latter appears to represent the net emotional interpretation of a current face.
Insights into MHC class I peptide loading from the structure of the tapasin/ERp57 heterodimer
Dong, Gang; Wearsch, Pamela A.; Peaper, David R.; Cresswell, Peter; Reinisch, Karin M.
2009-01-01
SUMMARY Tapasin is a glycoprotein critical for loading Major Histocompatibility Complex (MHC) class I molecules with high affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here we present the 2.6 Å resolution structure of the tapasin/ERp57 core of the PLC. The structure reveals the basis for the stable dimerization of tapasin and ERp57 and provides the first example of a protein disulfide isomerase family member interacting with a substrate. Mutational analysis identified a conserved surface on tapasin that interacts with MHC class I molecules and is critical for the peptide loading and editing function of the tapasin-ERp57 heterodimer. By combining the tapasin/ERp57 structure with those of other defined PLC components we present a molecular model that illuminates the processes involved in MHC class I peptide loading. PMID:19119025
Hill, N J; Schölkopf, B
2012-01-01
We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135
NASA Astrophysics Data System (ADS)
Hill, N. J.; Schölkopf, B.
2012-04-01
We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.
Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel
2013-01-01
In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018
Sahoo, Swapnajeet; Malhotra, Savita; Basu, Debasish; Modi, Manish
2016-10-01
Limited biological research data are available on acute and transient psychotic disorder (ATPD) vis-à-vis schizophrenia. P300 event related potentials (ERP) have been extensively studied as an important neurophysiological parameter in schizophrenia. However, no P300 ERP studies comparing the two disorders are available. We compared auditory P300 ERP in patients remitted from ATPD with schizophrenia in remission and biologically unrelated healthy controls. In this case-control study design, 25 subjects remitted from ATPD were age-/gender-matched with healthy controls and patients with schizophrenia in remission. Clinical assessment and auditory P300 ERP (amplitude and latencies at central and parietal sites, reaction time) were recorded. The ERP parameters were compared across the three groups. All three groups showed significant differences in P300 amplitudes and latencies at central and parietal sites. Schizophrenia group differed significantly (p<0.001) from the ATPD group in all the P300 parameters. The ATPD group was found to have lower Pz latency (p<0.05) and lower mean reaction time (p<0.001) as compared to healthy controls. The results suggest that P300 could easily distinguish between ATPD and schizophrenia in remission, thus neurophysiologically differentiating the two disorders. Lower P300 latency and reaction time, which indicate hyper-arousability, distinguished ATPD from normal controls, with implications for a better understanding of ATPD. Copyright © 2016 Elsevier B.V. All rights reserved.
Böcker, K B E; Gerritsen, J; Hunault, C C; Kruidenier, M; Mensinga, Tj T; Kenemans, J L
2010-07-01
Cannabis intake has been reported to affect cognitive functions such as selective attention. This study addressed the effects of exposure to cannabis with up to 69.4mg Delta(9)-tetrahydrocannabinol (THC) on Event-Related Potentials (ERPs) recorded during a visual selective attention task. Twenty-four participants smoked cannabis cigarettes with four doses of THC on four test days in a randomized, double blind, placebo-controlled, crossover study. Two hours after THC exposure the participants performed a visual selective attention task and concomitant ERPs were recorded. Accuracy decreased linearly and reaction times increased linearly with THC dose. However, performance measures and most of the ERP components related specifically to selective attention did not show significant dose effects. Only in relatively light cannabis users the Occipital Selection Negativity decreased linearly with dose. Furthermore, ERP components reflecting perceptual processing, as well as the P300 component, decreased in amplitude after THC exposure. Only the former effect showed a linear dose-response relation. The decrements in performance and ERP amplitudes induced by exposure to cannabis with high THC content resulted from a non-selective decrease in attentional or processing resources. Performance requiring attentional resources, such as vehicle control, may be compromised several hours after smoking cannabis cigarettes containing high doses of THC, as presently available in Europe and Northern America. Copyright 2010 Elsevier Inc. All rights reserved.
False memory and level of processing effect: an event-related potential study.
Beato, Maria Soledad; Boldini, Angela; Cadavid, Sara
2012-09-12
Event-related potentials (ERPs) were used to determine the effects of level of processing on true and false memory, using the Deese-Roediger-McDermott (DRM) paradigm. In the DRM paradigm, lists of words highly associated to a single nonpresented word (the 'critical lure') are studied and, in a subsequent memory test, critical lures are often falsely remembered. Lists with three critical lures per list were auditorily presented here to participants who studied them with either a shallow (saying whether the word contained the letter 'o') or a deep (creating a mental image of the word) processing task. Visual presentation modality was used on a final recognition test. True recognition of studied words was significantly higher after deep encoding, whereas false recognition of nonpresented critical lures was similar in both experimental groups. At the ERP level, true and false recognition showed similar patterns: no FN400 effect was found, whereas comparable left parietal and late right frontal old/new effects were found for true and false recognition in both experimental conditions. Items studied under shallow encoding conditions elicited more positive ERP than items studied under deep encoding conditions at a 1000-1500 ms interval. These ERP results suggest that true and false recognition share some common underlying processes. Differential effects of level of processing on true and false memory were found only at the behavioral level but not at the ERP level.
Face-elicited ERPs and affective attitude: brain electric microstate and tomography analyses.
Pizzagalli, D; Lehmann, D; Koenig, T; Regard, M; Pascual-Marqui, R D
2000-03-01
Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.
Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.
2017-01-01
Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528
Proulx, Nicole; Samadani, Ali-Akbar; Chau, Tom
2018-05-16
Event-related potentials (ERPs) have previously been used to confirm the existence of the fast optical signal (FOS) but validation methods have mainly been limited to exploring the temporal correspondence of FOS peaks to those of ERPs. The purpose of this study was to systematically quantify the relationship between FOS and ERP responses to a visual oddball task in both time and frequency domains. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) sensors were co-located over the prefrontal cortex while participants performed a visual oddball task. Fifteen participants completed 2 data collection sessions each, where they were instructed to keep a mental count of oddball images. The oddball condition produced a positive ERP at 200 ms followed by a negativity 300-500 ms after image onset in the frontal electrodes. In contrast to previous FOS studies, a FOS response was identified only in DC intensity signals and not in phase delay signals. A decrease in DC intensity was found 150-250 ms after oddball image onset with a 400-trial average in 10 of 15 participants. The latency of the positive 200 ms ERP and the FOS DC intensity decrease were significantly correlated for only 6 (out of 15) participants due to the low signal-to-noise ratio of the FOS response. Coherence values between the FOS and ERP oddball responses were found to be significant in the 3-5 Hz frequency band for 10 participants. A significant Granger causal influence of the ERP on the FOS oddball response was uncovered in the 2-6 Hz frequency band for 7 participants. Collectively, our findings suggest that, for a majority of participants, the ERP and the DC intensity signal of the FOS are spectrally coherent, specifically in narrow frequency bands previously associated with event-related oscillations in the prefrontal cortex. However, these electro-optical relationships were only found in a subset of participants. Further research on enhancing the quality of the event-related FOS signal is required before it can be practically exploited in applications such as brain-computer interfacing. Copyright © 2018. Published by Elsevier Inc.
McCane, Lynn M; Heckman, Susan M; McFarland, Dennis J; Townsend, George; Mak, Joseph N; Sellers, Eric W; Zeitlin, Debra; Tenteromano, Laura M; Wolpaw, Jonathan R; Vaughan, Theresa M
2015-11-01
Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6×6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin with studies in HVs but also needs to include studies in people with ALS. Their differences in ERP components may affect the selection of electrode montages, and might also affect the selection of presentation parameters (e.g., matrix design, stimulation rate). P300-based BCI performance in people severely disabled by ALS is similar to that of age-matched control subjects. At the same time, their ERP components differ to some degree from those of controls. Attention to these differences could contribute to the development of BCIs useful to those with ALS and possibly to others with severe neuromuscular disabilities. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Huart, Caroline; Legrain, Valéry; Hummel, Thomas; Rombaux, Philippe; Mouraux, André
2012-01-01
Background The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs) has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1) it is less sensitive to temporal jitter and (2) it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization. Methodology/Principal Findings EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging. Conclusion/Significance By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians. PMID:22427997
Coping with Trial-to-Trial Variability of Event Related Signals: A Bayesian Inference Approach
NASA Technical Reports Server (NTRS)
Ding, Mingzhou; Chen, Youghong; Knuth, Kevin H.; Bressler, Steven L.; Schroeder, Charles E.
2005-01-01
In electro-neurophysiology, single-trial brain responses to a sensory stimulus or a motor act are commonly assumed to result from the linear superposition of a stereotypic event-related signal (e.g. the event-related potential or ERP) that is invariant across trials and some ongoing brain activity often referred to as noise. To extract the signal, one performs an ensemble average of the brain responses over many identical trials to attenuate the noise. To date, h s simple signal-plus-noise (SPN) model has been the dominant approach in cognitive neuroscience. Mounting empirical evidence has shown that the assumptions underlying this model may be overly simplistic. More realistic models have been proposed that account for the trial-to-trial variability of the event-related signal as well as the possibility of multiple differentially varying components within a given ERP waveform. The variable-signal-plus-noise (VSPN) model, which has been demonstrated to provide the foundation for separation and characterization of multiple differentially varying components, has the potential to provide a rich source of information for questions related to neural functions that complement the SPN model. Thus, being able to estimate the amplitude and latency of each ERP component on a trial-by-trial basis provides a critical link between the perceived benefits of the VSPN model and its many concrete applications. In this paper we describe a Bayesian approach to deal with this issue and the resulting strategy is referred to as the differentially Variable Component Analysis (dVCA). We compare the performance of dVCA on simulated data with Independent Component Analysis (ICA) and analyze neurobiological recordings from monkeys performing cognitive tasks.
Overview of external reference pricing systems in Europe
Rémuzat, Cécile; Urbinati, Duccio; Mzoughi, Olfa; El Hammi, Emna; Belgaied, Wael; Toumi, Mondher
2015-01-01
Background and objectives External reference pricing (ERP) is a price regulation tool widely used by policy makers in the European Union (EU) Member States (MS) to contain drug cost, although in theory, it may contribute to modulate prices up and down. The objective of this article was to summarise and discuss the main findings of part of a large project conducted for the European Commission (‘External reference pricing of medicinal products: simulation-based considerations for cross-country coordination’; see www.ec.europa.eu/health/healthcare/docs/erp_reimbursement_medicinal_products_en.pdf) that aimed to provide an overview of ERP systems, both on processes and potential issues in 31 European countries (28 EU MS, Iceland, Norway, and Switzerland). Methods A systematic structured literature review was conducted to identify and characterise the use of ERP in the selected countries, to describe its impact on the prices of pharmaceuticals, and to discuss the possible cross-country coordination issues in EU MS. This research was complemented with a consultation of competent authorities’ and international organisations’ representatives to address the main issues or uncertainties identified through the literature review. Results All selected countries applied ERP, except the United Kingdom and Sweden. Twenty-three countries used ERP as the main systematic criterion for pricing. In the majority of European countries, ERP was based on legislated pricing rules with different levels of accuracy. ERP was applied either for all marketed drugs or for specific categories of medicines; it was mainly used for publicly reimbursed medicines. The number of reference countries included in the basket varied from 1 to 31. There was a great variation in the calculation methods used to compute the price; 15 countries used the average price, 7 countries used the lowest price, and 7 countries used other calculation methods. Reported limitations of ERP application included the lack of reliable sources of price information, price heterogeneity, exchange rate volatility, and hidden discounts. Spill-over effect and downward price convergence have often been mentioned as ERP's consequences leading to pricing strategies from pharmaceutical companies. Conclusion While ERP is widely used in Europe, processes and availability of price information vary from one country to another, thus limiting ERP implementation. Furthermore, ERP spill-over effect is a major concern of pharmaceutical firms leading to implementation of the so-called ‘launch sequence strategies’. PMID:27123181
Overview of external reference pricing systems in Europe.
Rémuzat, Cécile; Urbinati, Duccio; Mzoughi, Olfa; El Hammi, Emna; Belgaied, Wael; Toumi, Mondher
2015-01-01
External reference pricing (ERP) is a price regulation tool widely used by policy makers in the European Union (EU) Member States (MS) to contain drug cost, although in theory, it may contribute to modulate prices up and down. The objective of this article was to summarise and discuss the main findings of part of a large project conducted for the European Commission ('External reference pricing of medicinal products: simulation-based considerations for cross-country coordination'; see www.ec.europa.eu/health/healthcare/docs/erp_reimbursement_medicinal_products_en.pdf) that aimed to provide an overview of ERP systems, both on processes and potential issues in 31 European countries (28 EU MS, Iceland, Norway, and Switzerland). A systematic structured literature review was conducted to identify and characterise the use of ERP in the selected countries, to describe its impact on the prices of pharmaceuticals, and to discuss the possible cross-country coordination issues in EU MS. This research was complemented with a consultation of competent authorities' and international organisations' representatives to address the main issues or uncertainties identified through the literature review. All selected countries applied ERP, except the United Kingdom and Sweden. Twenty-three countries used ERP as the main systematic criterion for pricing. In the majority of European countries, ERP was based on legislated pricing rules with different levels of accuracy. ERP was applied either for all marketed drugs or for specific categories of medicines; it was mainly used for publicly reimbursed medicines. The number of reference countries included in the basket varied from 1 to 31. There was a great variation in the calculation methods used to compute the price; 15 countries used the average price, 7 countries used the lowest price, and 7 countries used other calculation methods. Reported limitations of ERP application included the lack of reliable sources of price information, price heterogeneity, exchange rate volatility, and hidden discounts. Spill-over effect and downward price convergence have often been mentioned as ERP's consequences leading to pricing strategies from pharmaceutical companies. While ERP is widely used in Europe, processes and availability of price information vary from one country to another, thus limiting ERP implementation. Furthermore, ERP spill-over effect is a major concern of pharmaceutical firms leading to implementation of the so-called 'launch sequence strategies'.
Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments
Hill, Holger; Windmann, Sabine
2014-01-01
Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions. PMID:25264982
Examining Event-Related Potential (ERP) correlates of decision bias in recognition memory judgments.
Hill, Holger; Windmann, Sabine
2014-01-01
Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500-700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions.
Neural correlates of cued recall in young and older adults: an event-related potential study.
Angel, Lucie; Fay, Séverine; Bouazzaoui, Badiâa; Granjon, Lionel; Isingrini, Michel
2009-01-07
This experiment investigated age differences in electrophysiological correlates of retrieval success in a word-stem cued recall task. Young adults (M+/-SD: 21.4 years+/-1.9) performed this memory task more accurately than older participants (M+/-SD: 65.1 years+/-3.3). Robust event-related brain potential (ERP) old/new effects were identified in both age groups. The main age differences were observed in latency and lateralization of ERP effects. Young adults exhibited a parietal effect that became focused over left parietal electrodes, whereas no asymmetry was observed in older adults. Moreover, ERP effects were more delayed in the older group. Overall, these findings provide some evidence of the reduction of processing speed during aging and suggest that young and older adults may recruit distinct cerebral patterns during episodic cued recall.
Event-related potential study to aversive auditory stimuli.
Czigler, István; Cox, Trevor J; Gyimesi, Kinga; Horváth, János
2007-06-15
In an auditory oddball task emotionally negative (aversive) sounds (e.g. rubbing together of polystyrene) and everyday sounds (e.g. ringing of a bicycle bell) were presented as task-irrelevant (novel) sounds. Both the aversive and the everyday sounds elicited the orientation-related P3a component of the event-related potentials (ERPs). In the 154-250 ms range the ERPs for the aversive sounds were more negative than the ERP of the everyday sounds. For the aversive sounds, this negativity was followed by a frontal positive wave (372-456 ms). The aversive sounds elicited larger late positive shift than the everyday sounds. The early negativity is considered as an initial effect in a broad neural network including limbic structures, while the later is related to the cognitive assessment of the stimuli and to memory-related processes.
When Does the Brain Distinguish between Genuine and Ambiguous Smiles? An ERP Study
ERIC Educational Resources Information Center
Calvo, Manuel G.; Marrero, Hipolito; Beltran, David
2013-01-01
Event-related brain potentials (ERPs) were recorded to assess the processing time course of ambiguous facial expressions with a smiling mouth but neutral, fearful, or angry eyes, in comparison with genuinely happy faces (a smile and happy eyes) and non-happy faces (neutral, fearful, or angry mouth and eyes). Participants judged whether the faces…
Neural Correlates of Decision Making on a Gambling Task
ERIC Educational Resources Information Center
Carlson, Stephanie M.; Zayas, Vivian; Guthormsen, Amy
2009-01-01
Individual differences in affective decision making were examined by recording event-related potentials (ERPs) while 74 typically developing 8-year-olds (38 boys, 36 girls) completed a 4-choice gambling task (Hungry Donkey Task; E. A. Crone & M. W. van der Molen, 2004). ERP results indicated: (a) a robust P300 component in response to feedback…
ERIC Educational Resources Information Center
Xu, Xiaodong; Jiang, Xiaoming; Zhou, Xiaolin
2013-01-01
There have been a number of behavioral and neural studies on the processing of syntactic gender and number agreement information, marked by different morpho-syntactic features during sentence comprehension. By using the event-related potential (ERP) technique, the present study investigated whether the processing of semantic gender information and…
An ERP Study of the Processing of Subject and Object Relative Clauses in Japanese
ERIC Educational Resources Information Center
Ueno, Mieko; Garnsey, Susan M.
2008-01-01
Using reading times and event-related brain potentials (ERPs), we investigated the processing of Japanese subject and object relative clauses (SRs/ORs). Previous research on English relative clauses shows that ORs take longer to read (King & Just, 1991) and elicit anterior negativity between fillers and gaps (King & Kutas, 1995), which is…
Deviant ERP Response to Spoken Non-Words among Adolescents Exposed to Cocaine in Utero
ERIC Educational Resources Information Center
Landi, Nicole; Crowley, Michael J.; Wu, Jia; Bailey, Christopher A.; Mayes, Linda C.
2012-01-01
Concern for the impact of prenatal cocaine exposure (PCE) on human language development is based on observations of impaired performance on assessments of language skills in these children relative to non-exposed children. We investigated the effects of PCE on speech processing ability using event-related potentials (ERPs) among a sample of…
ERIC Educational Resources Information Center
Zane, Emily
2016-01-01
This project used Event-Related Potentials (ERPs) to explore neurophysiological brain responses to prepositional phrases involving concrete and abstract reference nouns (e.g., "plate" and "moment," respectively) after the presentation of objects with varying spatial features. Prepositional phrases were headed by "in"…
Neural Localization of Semantic Context Effects in Electromagnetic and Hemodynamic Studies
ERIC Educational Resources Information Center
Van Petten, Cyma; Luka, Barbara J.
2006-01-01
Measures of electrical brain activity (event-related potentials, ERPs) have been useful in understanding language processing for several decades. Extant data suggest that the amplitude of the N400 component of the ERP is a general index of the ease or difficulty of retrieving stored conceptual knowledge associated with a word, which is dependent…
ERIC Educational Resources Information Center
Iidaka, Tetsuya; Matsumoto, Atsushi; Haneda, Kaoruko; Okada, Tomohisa; Sadato, Norihiro
2006-01-01
Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments were conducted in the same group of subjects and with an identical task paradigm to investigate a possible relationship between hemodynamic and electrophysiological responses within the brain. The subjects were instructed to judge whether visually presented…
Differential Effects of Aging on Processes Underlying Task Switching
ERIC Educational Resources Information Center
West, Robert; Travers, Stephanie
2008-01-01
In this study, we used event-related brain potentials (ERPs) to examine the effects of aging on processes underlying task switching. The response time data revealed an age-related increase in mixing costs before controlling for general slowing and no effect of aging on switching costs. In the cue-locked epoch, the ERP data revealed little effect…
Parametric Modulation of Error-Related ERP Components by the Magnitude of Visuo-Motor Mismatch
ERIC Educational Resources Information Center
Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik
2011-01-01
Errors generate typical brain responses, characterized by two successive event-related potentials (ERP) following incorrect action: the error-related negativity (ERN) and the positivity error (Pe). However, it is unclear whether these error-related responses are sensitive to the magnitude of the error, or instead show all-or-none effects. We…
Concreteness in Word Processing: ERP and Behavioral Effects in a Lexical Decision Task
ERIC Educational Resources Information Center
Barber, Horacio A.; Otten, Leun J.; Kousta, Stavroula-Thaleia; Vigliocco, Gabriella
2013-01-01
Relative to abstract words, concrete words typically elicit faster response times and larger N400 and N700 event-related potential (ERP) brain responses. These effects have been interpreted as reflecting the denser links to associated semantic information of concrete words and their recruitment of visual imagery processes. Here, we examined…
Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study
ERIC Educational Resources Information Center
Teinonen, Tuomas; Huotilainen, Minna
2012-01-01
Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active…
ERIC Educational Resources Information Center
Garcia-Sierra, Adrian; Ramirez-Esparza, Nairan; Silva-Pereyra, Juan; Siard, Jennifer; Champlin, Craig A.
2012-01-01
Event Related Potentials (ERPs) were recorded from Spanish-English bilinguals (N = 10) to test pre-attentive speech discrimination in two language contexts. ERPs were recorded while participants silently read magazines in English or Spanish. Two speech contrast conditions were recorded in each language context. In the "phonemic in English"…
Processing Focus Structure in L1 and L2 French: L2 Proficiency Effects on ERPs
ERIC Educational Resources Information Center
Reichle, Robert V.; Birdsong, David
2014-01-01
This study examined the event-related potentials (ERPs) elicited by focus processing among first language (L1) speakers and second language (L2) learners of French. Participants read wh-questions containing explicit focus marking, followed by responses instantiating contrastive and informational focus. We hypothesized that L2 proficiency would…
Heine, Angela; Wissmann, Jacqueline; Tamm, Sascha; De Smedt, Bert; Schneider, Michael; Stern, Elsbeth; Verschaffel, Lieven; Jacobs, Arthur M
2013-09-01
The aim of the present study was to probe electrophysiological effects of non-symbolic numerical processing in 20 children with mathematical learning disabilities (mean age = 99.2 months) compared to a group of 20 typically developing matched controls (mean age = 98.4 months). EEG data were obtained while children were tested with a standard non-symbolic numerical comparison paradigm that allowed us to investigate the effects of numerical distance manipulations for different set sizes, i.e., the classical subitizing, counting and estimation ranges. Effects of numerical distance manipulations on event-related potential (ERP) amplitudes as well as activation patterns of underlying current sources were analyzed. In typically developing children, the amplitudes of a late parietal positive-going ERP component showed systematic numerical distance effects that did not depend on set size. For the group of children with mathematical learning disabilities, ERP distance effects were found only for stimuli within the subitizing range. Current source density analysis of distance-related group effects suggested that areas in right inferior parietal regions are involved in the generation of the parietal ERP amplitude differences. Our results suggest that right inferior parietal regions are recruited differentially by controls compared to children with mathematical learning disabilities in response to non-symbolic numerical magnitude processing tasks, but only for stimuli with set sizes that exceed the subitizing range. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yao, Dezhong
2017-03-01
Currently, average reference is one of the most widely adopted references in EEG and ERP studies. The theoretical assumption is the surface potential integral of a volume conductor being zero, thus the average of scalp potential recordings might be an approximation of the theoretically desired zero reference. However, such a zero integral assumption has been proved only for a spherical surface. In this short communication, three counter-examples are given to show that the potential integral over the surface of a dipole in a volume conductor may not be zero. It depends on the shape of the conductor and the orientation of the dipole. This fact on one side means that average reference is not a theoretical 'gold standard' reference, and on the other side reminds us that the practical accuracy of average reference is not only determined by the well-known electrode array density and its coverage but also intrinsically by the head shape. It means that reference selection still is a fundamental problem to be fixed in various EEG and ERP studies.
Event-related potentials in impulsively aggressive juveniles: a retrospective chart-review study.
Fisher, William; Ceballos, Natalie; Matthews, Dan; Fisher, Larry
2011-05-30
The assessment, treatment and management of aggressive youth represent a major clinical challenge facing pediatric mental health professionals today. Although a number of studies have examined physiological differences among aggressive patients vs. controls, the current literature lacks a comprehensive examination of the electroencephalographic activity of impulsively aggressive juveniles. The current study was designed to fill this void in the literature via a retrospective chart review of 80 male and female juveniles undergoing inpatient treatment for pathologically impulsive aggression. Clinical reports for mid- and late-latency event-related potentials (ERPs) were examined to determine their correlations with aggression characteristics, as well as any differential predictive utility of hemispheric differences and auditory vs. visual potentials. Results indicated that decrements of mid-latency potentials and ERPs evoked by auditory stimuli (vs. late-latency components and visual ERPs) were more highly predictive of aggressive behavior. No significant hemispheric differences were noted. Taken together, these results have theoretical significance for the etiology of impulsive aggression, and perhaps also clinical relevance for the treatment of this condition. Copyright © 2011 Elsevier Ltd. All rights reserved.
Huffmeijer, Renske; Alink, Lenneke R A; Tops, Mattie; Grewen, Karen M; Light, Kathleen C; Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H
2013-03-01
This is the first experimental study on the effect of oxytocin administration on the neural processing of facial stimuli conducted with female participants that uses event-related potentials (ERPs). Using a double-blind, placebo-controlled within-subjects design, we studied the effects of 16 IU of intranasal oxytocin on ERPs to pictures combining performance feedback with emotional facial expressions in 48 female undergraduate students. Participants also reported on the amount of love withdrawal they experienced from their mothers. Vertex positive potential (VPP) and late positive potential (LPP) amplitudes were more positive after oxytocin compared to placebo administration. This suggests that oxytocin increased attention to the feedback stimuli (LPP) and enhanced the processing of emotional faces (VPP). Oxytocin heightened processing of the happy and disgusted faces primarily for those reporting less love withdrawal. Significant associations with LPP amplitude suggest that more maternal love withdrawal relates to the allocation of attention toward the motivationally relevant combination of negative feedback with a disgusted face. Copyright © 2012 Elsevier Inc. All rights reserved.
Signs of impaired selective attention in patients with amyotrophic lateral sclerosis.
Pinkhardt, Elmar H; Jürgens, Reinhart; Becker, Wolfgang; Mölle, Matthias; Born, Jan; Ludolph, Albert C; Schreiber, Herbert
2008-04-01
The evidence for involvement of extramotor cortical areas in non-demented patients with amyotrophic lateral sclerosis (ALS) has been provided by recent neuropsychological and functional brain imaging studies. The aim of this study was to investigate possible alterations in selective attention, as an important constituent part of frontal brain function in ALS patients. A classical dichotic listening task paradigm was employed to assess event-related EEG potential (ERPs) indicators of selective attention as well as preattentive processing of mismatch, without interference by motor impairment.A total of 20 patients with sporadic ALS according to the revised El Escorial criteria and 20 healthy controls were studied. Additionally a neuropsychological test battery of frontotemporal functions was applied. Compared with the controls, the ALS patients showed a distinct decrease of the fronto-precentral negative difference wave (Nd), i.e., the main ERP indicator of selective attention. Analysis of the P3 component of the ERPs indicated an increased processing of non-relevant stimuli in ALS patients confirming a reduced focus of attention. We conclude impaired selective attention reflects a subtle variant of frontotemporal dementia frequently observed in ALS patients at a relatively early stage of the disease.
Neural effects of cognitive control load on auditory selective attention
Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R.; Mangalathu, Jain; Desai, Anjali
2014-01-01
Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210 msec, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. PMID:24946314
Kim, Seul-Kee; Kim, So-Yeong; Kang, Hang-Bong
2016-01-01
Smartphones are used ubiquitously worldwide and are essential tools in modern society. However, smartphone overuse is an emerging social issue, and limited studies have objectively assessed this matter. The majority of previous studies have included surveys or behavioral observation studies. Since a previous study demonstrated an association between increased push notifications and smartphone overuse, we investigated the effects of push notifications on task performance. We detected changes in brainwaves generated by smartphone push notifications using the N200 and P300 components of event-related potential (ERP) to investigate both concentration and cognitive ability. ERP assessment indicated that, in both risk and nonrisk groups, the lowest N200 amplitude and the longest latency during task performance were found when push notifications were delivered. Compared to the nonrisk group, the risk group demonstrated lower P300 amplitudes and longer latencies. In addition, the risk group featured a higher rate of error in the Go-Nogo task, due to the negative influence of smartphone push notifications on performance in both risk and nonrisk groups. Furthermore, push notifications affected subsequent performance in the risk group. PMID:27366147
Kim, Seul-Kee; Kim, So-Yeong; Kang, Hang-Bong
2016-01-01
Smartphones are used ubiquitously worldwide and are essential tools in modern society. However, smartphone overuse is an emerging social issue, and limited studies have objectively assessed this matter. The majority of previous studies have included surveys or behavioral observation studies. Since a previous study demonstrated an association between increased push notifications and smartphone overuse, we investigated the effects of push notifications on task performance. We detected changes in brainwaves generated by smartphone push notifications using the N200 and P300 components of event-related potential (ERP) to investigate both concentration and cognitive ability. ERP assessment indicated that, in both risk and nonrisk groups, the lowest N200 amplitude and the longest latency during task performance were found when push notifications were delivered. Compared to the nonrisk group, the risk group demonstrated lower P300 amplitudes and longer latencies. In addition, the risk group featured a higher rate of error in the Go-Nogo task, due to the negative influence of smartphone push notifications on performance in both risk and nonrisk groups. Furthermore, push notifications affected subsequent performance in the risk group.
Synchronized tapping facilitates learning sound sequences as indexed by the P300.
Kamiyama, Keiko S; Okanoya, Kazuo
2014-01-01
The purpose of the present study was to determine whether and how single finger tapping in synchrony with sound sequences contributed to the auditory processing of them. The participants learned two unfamiliar sound sequences via different methods. In the tapping condition, they learned an auditory sequence while they tapped in synchrony with each sound onset. In the no tapping condition, they learned another sequence while they kept pressing a key until the sequence ended. After these learning sessions, we presented the two melodies again and recorded event-related potentials (ERPs). During the ERP recordings, 10% of the tones within each melody deviated from the original tones. An analysis of the grand average ERPs showed that deviant stimuli elicited a significant P300 in the tapping but not in the no-tapping condition. In addition, the significance of the P300 effect in the tapping condition increased as the participants showed highly synchronized tapping behavior during the learning sessions. These results indicated that single finger tapping promoted the conscious detection and evaluation of deviants within the learned sequences. The effect was related to individuals' musical ability to coordinate their finger movements along with external auditory events.
Synchronized tapping facilitates learning sound sequences as indexed by the P300
Kamiyama, Keiko S.; Okanoya, Kazuo
2014-01-01
The purpose of the present study was to determine whether and how single finger tapping in synchrony with sound sequences contributed to the auditory processing of them. The participants learned two unfamiliar sound sequences via different methods. In the tapping condition, they learned an auditory sequence while they tapped in synchrony with each sound onset. In the no tapping condition, they learned another sequence while they kept pressing a key until the sequence ended. After these learning sessions, we presented the two melodies again and recorded event-related potentials (ERPs). During the ERP recordings, 10% of the tones within each melody deviated from the original tones. An analysis of the grand average ERPs showed that deviant stimuli elicited a significant P300 in the tapping but not in the no-tapping condition. In addition, the significance of the P300 effect in the tapping condition increased as the participants showed highly synchronized tapping behavior during the learning sessions. These results indicated that single finger tapping promoted the conscious detection and evaluation of deviants within the learned sequences. The effect was related to individuals’ musical ability to coordinate their finger movements along with external auditory events. PMID:25400564
Kohrt, B A; Burkey, M; Stuart, E A; Koirala, S
2015-01-01
Ethical, logistical, and funding approaches preclude conducting randomized control trials (RCTs) in some humanitarian crises. A lack of RCTs and other intervention research has contributed to a limited evidence-base for mental health and psychosocial support (MHPS) programs after disasters, war, and disease outbreaks. Propensity score methods (PSMs) are an alternative analysis technique with potential application for evaluating MHPS programs in humanitarian emergencies. PSMs were used to evaluate impacts of education reintegration packages (ERPs) and other (vocational or economic) reintegration packages (ORPs) v. no reintegration programs on mental health of child soldiers. Propensity scores were used to determine weighting of child soldiers in each of the three treatment arms. Multiple linear regression was used to estimate adjusted changes in symptom score severity on culturally validated measures of depression, post-traumatic stress disorder (PTSD), and functional impairment from baseline to 1-year follow-up. Among 258 Nepali child soldiers participating in reintegration programs, 54.7% completed ERP and 22.9% completed ORP. There was a non-significant reduction in depression by 0.59 (95% CI -1.97 to 0.70) for ERP and by 0.60 (95% CI -2.16 to 0.96) for ORP compared with no treatment. There were non-significant increases in PTSD (1.15, 95% CI -1.55 to 3.86) and functional impairment (0.91, 95% CI -0.31 to 2.14) associated with ERP and similar findings for ORP (PTSD: 0.66, 95% CI -2.24 to 3.57; functional impairment (1.05, 95% CI -0.71 to 2.80). In a humanitarian crisis in which a non-randomized intervention assignment protocol was employed, the statistical technique of PSMs addressed differences in covariate distribution between child soldiers who received different integration packages. Our analysis did not demonstrate significant changes in psychosocial outcomes for ERPs and ORPs. We suggest the use of PSMs in evaluating non-randomized interventions in humanitarian crises when non-randomized conditions are not utilized.
Yan, Dong; Cheng, Lu-feng; Song, Hong-Yan; Turdi, Subat; Kerram, Parhat
2007-08-01
Overdoses of haloperidol are associated with major ventricular arrhythmias, cardiac conduction block, and sudden death. The aim of this experiment was to study the effect of haloperidol on the action potentials in cardiac Purkinje fibers and papillary muscles under normal and simulated ischemia conditions in rabbits and guinea pigs. Using the standard intracellular microelectrode technique, we examined the effects of haloperidol on the action potential parameters [action potential amplitude (APA), phase 0 maximum upstroke velocity (V(max)), action potential amplitude at 90% of repolarization (APD(90)), and effective refractory period (ERP)] in rabbit cardiac Purkinje fibers and guinea pig cardiac papillary cells, in which both tissues were under simulated ischemic conditions. Under ischemic conditions, different concentrations of haloperidol depressed APA and prolonged APD(90) in a concentration-dependent manner in rabbit Purkinje fibers. Haloperidol (3 micromol/L) significantly depressed APA and prolonged APD(90), and from 1 micromol/L, haloperidol showed significant depression on V(max); ERP was not significantly affected. In guinea pig cardiac papillary muscles, the thresholds of significant reduction in APA, V(max), EPR, and APD(90) were 10, 0.3, 1, and 1 mumol/L, respectively, for haloperidol. Compared with cardiac conductive tissues, papillary muscles were more sensitive to ischemic conditions. Under ischemia, haloperidol prolonged ERP and APD(90) in a concentration-dependent manner and precipitated the decrease in V(max) induced by ischemia. The shortening of ERP and APD(90) in papillary muscle action potentials may be inhibited by haloperidol.
Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials
Hellerstedt, Robin; Johansson, Mikael
2016-01-01
Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit—Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit—Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks—Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation—Dentist). The participants’ memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval monitoring whereas retrieval success was reflected in an anterior positive slow wave. PMID:26901865
Muscoso, E G; Costanzo, E; Daniele, O; Maugeri, D; Natale, E; Caravaglios, G
2006-11-01
Few studies exist on ERPs and patients with subcortical vascular cognitive impairment (SVCI). This latter is a quite homogeneous subtype of vascular dementia whose cognitive profile is quite different from that of Alzheimer disease (AD). The present study aims at comparing the ERPs profile both in patients with SVCI and in patients with AD. ERPs and psychometric tests were collected from 39 healthy elderly controls, 51 patients with SVCI and 43 patients with AD. Subjects mentally count high pitched target tones that were randomly intermixed with low pitched frequent tones. We measured ERPs latencies (N1, P2, N2 and P3), and interpeak latencies (N1-P3, N1-P2, N1-N2). Grand averaged potentials in SVCI showed a significant increase of P3 latency. AD patients showed a prolongation of N1, P2, N2, P3 latencies. As far as interpeak latencies are concerned, SVCI patients showed a significant prolongation of N1-P3, AD patients had a significant increase of N1-N2, and N1-P3 intervals. When all patients were considered as a single group, correlation of neuropsychological tests scores showed a significant negative relationship between P300 latency and, respectively, Mini Mental Status Examination, auditive and visual span forward. In both groups, ERPs latency sensitivity, was low, whilst specificity values were quite high. Our finding suggest that these two dementing diseases have different electrophysiologic features that may be related to their specific underlying pathogenetic mechanism; in particular, we hypothesise that, differently from AD, P300 latency prolongation characterizes the early stage of SVCI. So, this ERPs approach could be helpful to detect early alterations of the attentional/working-memory functions in patients with subcortical ischaemic vascular disease.
Popp, Margot; Trumpp, Natalie M.; Kiefer, Markus
2016-01-01
Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance. PMID:28018201
Popp, Margot; Trumpp, Natalie M; Kiefer, Markus
2016-01-01
Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance.
Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials.
Hellerstedt, Robin; Johansson, Mikael
2016-01-01
Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit-Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit-Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks-Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation-Dentist). The participants' memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval monitoring whereas retrieval success was reflected in an anterior positive slow wave.
Towards a holistic assessment of the user experience with hybrid BCIs.
Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen
2014-06-01
In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)--resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users' experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.
Towards a holistic assessment of the user experience with hybrid BCIs
NASA Astrophysics Data System (ADS)
Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen
2014-06-01
Objective. In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. Approach. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)—resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Main results. Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Significance. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users’ experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.
Analysis on the integration of ERP and e-commerce
NASA Astrophysics Data System (ADS)
Wang, Yongqing; Shi, Yuliana
2017-08-01
With the continuous development of China's modern economic construction, a variety of information technology are emerging. The new economic development characterized by e-commerce has accelerated the globalization of the economy. In face of increasingly fierce market competition, for enterprises, the constructions of ERP and e-commerce are necessary ways to enhance the core competitiveness of enterprises. At present, most of the internal ERP systems and external e-commerce systems are in relatively independent state. However, with the increasing fierce market competition, a single mode of operation has been unable to meet the requirements of enterprise development. Accordingly, the effective integration of ERP and e-commerce in the new era has become one of the most important topics for enterprise development. This paper firstly analyzes the relationship between ERP and e-commerce, and then analyzes the necessity and feasibility of integration, and finally discusses the integration strategies and technologies.
van den Broeke, Emanuel N.; Koeslag, Lonneke; Arendsen, Laura J.; Nienhuijs, Simon W.; Rosman, Camiel; van Rijn, Clementina M.; Wilder-Smith, Oliver H. G.; van Goor, Harry
2013-01-01
Background High Frequency electrical Stimulation (HFS) of the skin induces enhanced brain responsiveness expressed as enhanced Event-Related Potential (ERP) N1 amplitude to stimuli applied to the surrounding unconditioned skin in healthy volunteers. The aim of the present study was to investigate whether this enhanced ERP N1 amplitude could be a potential marker for altered cortical sensory processing in patients with persistent pain after surgery. Materials and Methods Nineteen male patients; 9 with and 10 without persistent pain after inguinal hernia repair received HFS. Before, directly after and thirty minutes after HFS evoked potentials and the subjective pain intensity were measured in response to electric pain stimuli applied to the surrounding unconditioned skin. Results The results show that, thirty minutes after HFS, the ERP N1 amplitude observed at the conditioned arm was statistically significantly larger than the amplitude at the control arm across all patients. No statistically significant differences were observed regarding ERP N1 amplitude between patients with and without persistent pain. However, thirty minutes after HFS we did observe statistically significant differences of P2 amplitude at the conditioned arm between the two groups. The P2 amplitude decreased in comparison to baseline in the group of patients with pain. Conclusion The ERP N1 effect, induced after HFS, was not different between patients with vs. without persistent pain. The decreasing P2 amplitude was not observed in the patients without pain and also not in the previous healthy volunteer study and thus might be a marker for altered cortical sensory processing in patients with persistent pain after surgery. PMID:24376568
Lovelace, Jonathan W.; Wen, Teresa H.; Reinhard, Sarah; Hsu, Mike S.; Sidhu, Harpreet; Ethell, Iryna M.; Binder, Devin K.; Razak, Khaleel A.
2016-01-01
Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase −9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. PMID:26850918
Trunk, Attila; Stefanics, Gábor; Zentai, Norbert; Kovács-Bálint, Zsófia; Thuróczy, György; Hernádi, István
2013-01-01
Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone-like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event-related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double-blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency-deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN. Copyright © 2012 Wiley Periodicals, Inc.
2012-07-13
completed through SAP -standard templates that are then used for gap analysis as compared to the commercial-off-the-shelf “To-Be” process. The Navy ERP ...13F25-04 4800 Mark Center Drive Alexandria, VA 22350-1500 Acronyms and Abbreviations BPR CMO DAI DCMO DEAMS DLA EBS EC ERP FIAR GAO...overall objective was to evaluate six Enterprise Resource Planning ( ERP ) systems that we identified as necessary for DoD to produce auditable
Getzmann, Stephan; Wascher, Edmund
2017-02-01
Speech understanding in the presence of concurring sound is a major challenge especially for older persons. In particular, conversational turn-takings usually result in switch costs, as indicated by declined speech perception after changes in the relevant target talker. Here, we investigated whether visual cues indicating the future position of a target talker may reduce the costs of switching in younger and older adults. We employed a speech perception task, in which sequences of short words were simultaneously presented by three talkers, and analysed behavioural measures and event-related potentials (ERPs). Informative cues resulted in increased performance after a spatial change in target talker compared to uninformative cues, not indicating the future target position. Especially the older participants benefited from knowing the future target position in advance, indicated by reduced response times after informative cues. The ERP analysis revealed an overall reduced N2, and a reduced P3b to changes in the target talker location in older participants, suggesting reduced inhibitory control and context updating. On the other hand, a pronounced frontal late positive complex (f-LPC) to the informative cues indicated increased allocation of attentional resources to changes in target talker in the older group, in line with the decline-compensation hypothesis. Thus, knowing where to listen has the potential to compensate for age-related decline in attentional switching in a highly variable cocktail-party environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Neuhaus, Andres H; Koehler, Simone; Opgen-Rhein, Carolin; Urbanek, Carsten; Hahn, Eric; Dettling, Michael
2007-10-01
Schizophrenia research has gained a new focus on identification and further characterization of neurocognitive deficits in the search for behavioural endophenotypes of this disorder. The objective of this study was to explore differential cortical processing during executive control in schizophrenia as assessed with the attention network test (ANT). Sixteen schizophrenic patients and sixteen healthy controls matched for gender, age, education, and nicotine consumption were tested with the ANT while recording 29-channel-electroencephalogram (EEG). Visual event-related potentials (ERP) N200 and P300 were topographically analyzed and cortical mapping using low resolution brain electromagnetic tomography (LORETA) was applied to localize neuroelectric generators of ERP. Behaviourally, significant differences between schizophrenic patients and controls were found only for the conflict condition (p<0.05) and for conflict adjusted by mean reaction time (p<0.01). Examining ERP of control subjects, N200 failed to show robust flanker congruency effects. P300 amplitude was reduced at Pz (p<0.05) and P300 latency was increased at Cz (p<0.005) for the conflict condition. Schizophrenic patients differed significantly in P300 latency at Cz during late conflict processing (p<0.005). Source analysis revealed a deficit in anterior cingulate cortex (p<0.05). Our results are in line with previous reports about dysfunctional ACC activation in schizophrenia and argue in favour of a selective deficit of cortical conflict resolution. It is further proposed that dysfunctional ACC activation during executive processing may be a neurophysiologic endophenotype candidate of schizophrenia.
Kemmer, Laura; Coulson, Seana; Kutas, Marta
2014-02-01
Despite indications in the split-brain and lesion literatures that the right hemisphere is capable of some syntactic analysis, few studies have investigated right hemisphere contributions to syntactic processing in people with intact brains. Here we used the visual half-field paradigm in healthy adults to examine each hemisphere's processing of correct and incorrect grammatical number agreement marked either lexically, e.g., antecedent/reflexive pronoun ("The grateful niece asked herself/*themselves…") or morphologically, e.g., subject/verb ("Industrial scientists develop/*develops…"). For reflexives, response times and accuracy of grammaticality decisions suggested similar processing regardless of visual field of presentation. In the subject/verb condition, we observed similar response times and accuracies for central and right visual field (RVF) presentations. For left visual field (LVF) presentation, response times were longer and accuracy rates were reduced relative to RVF presentation. An event-related brain potential (ERP) study using the same materials revealed similar ERP responses to the reflexive pronouns in the two visual fields, but very different ERP effects to the subject/verb violations. For lexically marked violations on reflexives, P600 was elicited by stimuli in both the LVF and RVF; for morphologically marked violations on verbs, P600 was elicited only by RVF stimuli. These data suggest that both hemispheres can process lexically marked pronoun agreement violations, and do so in a similar fashion. Morphologically marked subject/verb agreement errors, however, showed a distinct LH advantage. Copyright © 2013 Elsevier B.V. All rights reserved.
Kemmer, Laura; Coulson, Seana; Kutas, Marta
2014-01-01
Despite indications in the split-brain and lesion literatures that the right hemisphere is capable of some syntactic analysis, few studies have investigated right hemisphere contributions to syntactic processing in people with intact brains. Here we used the visual half-field paradigm in healthy adults to examine each hemisphere’s processing of correct and incorrect grammatical number agreement marked either lexically, e.g., antecedent/reflexive pronoun (“The grateful niece asked herself/*themselves…”) or morphologically, e.g., subject/verb (“Industrial scientists develop/*develops…”). For reflexives, response times and accuracy of grammaticality decisions suggested similar processing regardless of visual field of presentation. In the subject/verb condition, we observed similar response times and accuracies for central and right visual field (RVF) presentations. For left visual field (LVF) presentation, response times were longer and accuracy rates were reduced relative to RVF presentation. An event-related brain potential (ERP) study using the same materials revealed similar ERP responses to the reflexive pronouns in the two visual fields, but very different ERP effects to the subject/verb violations. For lexically marked violations on reflexives, P600 was elicited by stimuli in both the LVF and RVF; for morphologically marked violations on verbs, P600 was elicited only by RVF stimuli. These data suggest that both hemispheres can process lexically marked pronoun agreement violations, and do so in a similar fashion. Morphologically marked subject/verb agreement errors, however, showed a distinct LH advantage. PMID:24326084
ERIC Educational Resources Information Center
Li, Xiao-qing; Ren, Gui-qin
2012-01-01
An event-related brain potentials (ERP) experiment was carried out to investigate how and when accentuation influences temporally selective attention and subsequent semantic processing during on-line spoken language comprehension, and how the effect of accentuation on attention allocation and semantic processing changed with the degree of…
ERIC Educational Resources Information Center
Treese, Anne-Cecile; Johansson, Mikael; Lindgren, Magnus
2010-01-01
The emotional salience of faces has previously been shown to induce memory distortions in recognition memory tasks. This event-related potential (ERP) study used repeated runs of a continuous recognition task with emotional and neutral faces to investigate emotion-induced memory distortions. In the second and third runs, participants made more…
ERIC Educational Resources Information Center
Guerra, Seidel; Ibanez, Agustin; Martin, Migdyrai; Bobes, Maria Antonieta; Reyes, Adnelys; Mendoza, Raul; Bravo, Tania; Dominguez, Mayelin; Sosa, Mitchell Valdes
2009-01-01
Endophenotypes is one emerging strategy in schizophrenia research that is being used to identify the functional importance of genetically transmitted, brain-based deficits present in this disease. Currently, event-related potentials (ERPs) are timely used in this search. Several ERPs, including N400, present deficits in relation to schizophrenia.…
ERIC Educational Resources Information Center
Vergara-Martinez, Marta; Perea, Manuel; Marin, Alejandro; Carreiras, Manuel
2011-01-01
Recent research suggests that there is a processing distinction between consonants and vowels in visual-word recognition. Here we conjointly examine the time course of consonants and vowels in processes of letter identity and letter position assignment. Event related potentials (ERPs) were recorded while participants read words and pseudowords in…
The Neural Correlates of Infant and Adult Goal Prediction: Evidence for Semantic Processing Systems
ERIC Educational Resources Information Center
Reid, Vincent M.; Hoehl, Stefanie; Grigutsch, Maren; Groendahl, Anna; Parise, Eugenio; Striano, Tricia
2009-01-01
The sequential nature of action ensures that an individual can anticipate the conclusion of an observed action via the use of semantic rules. The semantic processing of language and action has been linked to the N400 component of the event-related potential (ERP). The authors developed an ERP paradigm in which infants and adults observed simple…
USDA-ARS?s Scientific Manuscript database
Studies comparing child cognitive development and brain activity during cognitive functions between children who were fed breast milk (BF), milk formula (MF), or soy formula (SF) have not been reported. We recorded event-related scalp potentials reflecting semantic processing (N400 ERP) from 20 homo...
ERIC Educational Resources Information Center
Garcia, Felicidad M.
2017-01-01
Recent research has shown that distinct event-related potential (ERP) signatures are associated with switching between languages compared to switching between dialects or registers (e.g., Khamis-Dakwar & Froud, 2007; Moreno, Federmeier & Kutas, 2002). The current investigation builds on these findings to examine whether contrastive and…
The effect of encoding manipulation on word-stem cued recall: an event-related potential study.
Fay, Séverine; Isingrini, Michel; Ragot, Richard; Pouthas, Viviane
2005-08-01
The purpose of the present study was to find out whether the neural correlates of explicit retrieval from episodic memory would vary according to conditions at encoding when the words were presented in separate study/test blocks. Event-related potentials (ERPs) were recorded while participants performed a word-stem cued-recall task. Deeply (semantically) studied words were associated with higher levels of recall and faster response times than shallowly (lexically) studied words. Robust ERP old/new effects were observed for each encoding condition. They varied in magnitude, being largest in the semantic condition. As expected, scalp distributions also differed: for deeply studied words, the old/new effect resembled that found in previous ERP studies of word-stem cued-recall tasks (parietal and right frontal effects, between 400-800 and 800-1100 ms post-stimulus), whereas for shallowly studied words, the parietal old/new effect was absent in the latter latency window. These results can be interpreted as reflecting access to different kinds of memory representation depending on the nature of the processing engaged during encoding. Furthermore, differences in the ERPs elicited by new items indicate that subjects adopted different processing strategies in the test blocks following each encoding condition.
Effects of symbol type and numerical distance on the human event-related potential.
Jiang, Ting; Qiao, Sibing; Li, Jin; Cao, Zhongyu; Gao, Xuefei; Song, Yan; Xue, Gui; Dong, Qi; Chen, Chuansheng
2010-01-01
This study investigated the influence of the symbol type and numerical distance of numbers on the amplitudes and peak latencies of event-related potentials (ERPs). Our aim was to (1) determine the point in time of magnitude information access in visual number processing; and (2) identify at what stage the advantage of Arabic digits over Chinese verbal numbers occur. ERPs were recorded from 64 scalp sites while subjects (n=26) performed a classification task. Results showed that larger ERP amplitudes were elicited by numbers with distance-close condition in comparison to distance-far condition in the VPP component over centro-frontal sites. Furthermore, the VPP latency varied as a function of the symbol type, but the N170 did not. Such results demonstrate that magnitude information access takes place as early as 150 ms after onset of visual number stimuli and the advantage of Arabic digits over verbal numbers should be localized to the VPP component. We establish the VPP component as a critical ERP component to report in studies of numerical cognition and our results call into question the N170/VPP association hypothesis and the serial-stage model of visual number comparison processing.
Kudo, Noriko; Nakagome, Kazuyuki; Kasai, Kiyoto; Araki, Tsuyoshi; Fukuda, Masato; Kato, Nobumasa; Iwanami, Akira
2004-01-01
Corollary discharge is a brain electrical activity associated with self-monitoring, which distinguishes self from others in thoughts or behaviors. Corollary discharge can be non-invasively assessed using event-related potential (ERP) recordings in humans. Previous studies have revealed that the amplitude of the N100 component elicited during an "odd-ball" task is reduced while a healthy subject is vocalizing, which may index the effect of corollary discharge on auditory ERPs. In this study, we attempted to assess the effect of vocalization on ERP components including N100, mismatch negativity (MMN), negative difference wave (Nd), and P300 during a selective attention task in 22 healthy adults. We also evaluated the possible contribution of gender to these effects. N100 amplitudes elicited by unattended standard stimuli were reduced under the vocalization condition compared with those under the baseline condition. However, there were no significant effects of vocalization on MMN, Nd or P300. Moreover, there was no significant effect of gender to the corollary discharge. These results suggest that the effect of corollary discharge on auditory ERPs is limited to the perceptual stage of information processing in healthy men and women.
Cantiani, Chiara; Choudhury, Naseem A; Yu, Yan H; Shafer, Valerie L; Schwartz, Richard G; Benasich, April A
2016-01-01
This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD.
Cantiani, Chiara; Choudhury, Naseem A.; Yu, Yan H.; Shafer, Valerie L.; Schwartz, Richard G.; Benasich, April A.
2016-01-01
This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD. PMID:27560378
Event-related potentials and secondary task performance during simulated driving.
Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L
2008-01-01
Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.
Feig, Emily H; Winter, Samantha R; Kounios, John; Erickson, Brian; Berkowitz, Staci A; Lowe, Michael R
2017-10-01
A history of dieting to lose weight has been shown to be a robust predictor of future weight gain. A potential factor in propensity towards weight gain is the nature of people's reactions to the abundance of highly palatable food cues in the environment. Event Related Potentials (ERPs) have revealed differences in how the brain processes food cues between obese and normal weight individuals, as well as between restrained and unrestrained eaters. However, comparisons by weight status are not informative regarding whether differences predate or follow weight gain in obese individuals and restrained eating has not consistently been found to predict future weight gain. The present study compared ERP responses to food cues in non-obese historic dieters (HDs) to non-obese never dieters (NDs). HDs showed a blunted N1 component relative to NDs overall, and delayed N1 and P2 components compared to NDs in the hungry state, suggesting that early, perceptual processing of food cues differs between these groups, especially when food-deprived. HDs also showed a more hunger-dependent sustained ERP (LPP) compared to NDs. Future research should test ERP-based food cue responsivity as a mediator between dieting history and future weight gain to better identify those most at risk for weight gain as well as the nature of their vulnerability. Copyright © 2017 Elsevier Inc. All rights reserved.
The influence of caffeine on sustained attention: an ERP study.
Ruijter, J; Lorist, M M; Snel, J; De Ruiter, M B
2000-05-01
The present study investigated the effects of caffeine on sustained attention by measuring concentration and fatigue. Event-related potentials (ERPs) and behavioral measures were recorded from 12 participants who worked continuously for approximately 10 min in a self-paced reaction task under conditions of both caffeine (250 mg) and placebo. The ERP data revealed more positive frontal P2 and parietal P3 components in the caffeine condition. However, a combination of different indices of the behavioral data did not reveal any effects of caffeine intake. These results suggest that caffeine increases arousal, thereby reducing fatigue, as was observed in the ERP results. A probable explanation for the absence of any effects of caffeine in the behavioral data can be found in the demanding properties of the task that was used, thereby supporting evidence for more pronounced effects of caffeine in suboptimal conditions. In addition, these results appeal for an increase in the use of ERPs in drug research, in order to discover possible effects on the brain which do not necessarily result in behavioral changes.
The Complex Pre-Execution Stage of Auditory Cognitive Control: ERPs Evidence from Stroop Tasks
Yu, Bo; Wang, Xunda; Ma, Lin; Li, Liang; Li, Haifeng
2015-01-01
Cognitive control has been extensively studied from Event-Related Potential (ERP) point of view in visual modality using Stroop paradigms. Little work has been done in auditory Stroop paradigms, and inconsistent conclusions have been reported, especially on the conflict detection stage of cognitive control. This study investigated the early ERP components in an auditory Stroop paradigm, during which participants were asked to identify the volume of spoken words and ignore the word meanings. A series of significant ERP components were revealed that distinguished incongruent and congruent trials: two declined negative polarity waves (the N1 and the N2) and three declined positive polarity wave (the P1, the P2 and the P3) over the fronto-central area for the incongruent trials. These early ERP components imply that both a perceptual stage and an identification stage exist in the auditory Stroop effect. A 3-stage cognitive control model was thus proposed for a more detailed description of the human cognitive control mechanism in the auditory Stroop tasks. PMID:26368570
Yang, Shasha; Zhang, Shunmei; Wang, Quanhong
2016-08-15
The inconsistent stroke-count effect in Chinese character recognition has resulted in an intense debate between the analytic and holistic views of character processing. The length effects of English words on behavioral responses and event-related potentials (ERPs) are similarly inconclusive. In this study, we identified any behavioral and ERP stroke-count effects when orthographic neighborhood sizes are balanced across three stroke counts. A delayed character-matching task was conducted while ERPs were recorded. The behavioral data indicated that both response latency and error rate increased with increasing stroke count. The ERP data showed higher P2 but lower N2 amplitudes in the large count than in the median count condition. A higher P2 can reflect increased attentional load and reduced attentional resource for processing each stroke because of the additional strokes in the large count condition. The behavioral and ERP effects of stroke count provide evidence for the analytic view of character processing but also provide evidence against the holistic view. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Social context modulates cognitive markers in Obsessive-Compulsive Disorder.
Santamaría-García, Hernando; Soriano-Mas, Carles; Burgaleta, Miguel; Ayneto, Alba; Alonso, Pino; Menchón, José M; Cardoner, Narcis; Sebastián-Gallés, Nuria
2017-08-03
Error monitoring, cognitive control and motor inhibition control are proposed as cognitive alterations disrupted in obsessive-compulsive disorder (OCD). OCD has also been associated with an increased sensitivity to social evaluations. The effect of a social simulation over electrophysiological indices of cognitive alterations in OCD was examined. A case-control cross-sectional study measuring event-related potentials (ERP) for error monitoring (Error-Related Negativity), cognitive control (N2) and motor control (LRP) was conducted. We analyzed twenty OCD patients and twenty control participants. ERP were recorded during a social game consisting of a visual discrimination task, which was performed in the presence of a simulated superior or an inferior player. Significant social effects (different ERP amplitudes in Superior vs. Inferior player conditions) were found for OCD patients, but not for controls, in all ERP components. Performing the task against a simulated inferior player reduced abnormal ERP responses in OCD to levels observed in controls. The hierarchy-induced ERP effects were accompanied effects over reaction times in OCD patients. Social context modulates signatures of abnormal cognitive functioning in OCD, therefore experiencing a social superiority position impacts over cognitive processes in OCD such as error monitoring mechanisms. These results open the door for the research of new therapeutic choices.
Reva, N V; Pavlov, S V; Loktev, K V; Korenyok, V V; Aftanas, L I
2014-12-05
Despite growing interest in meditation as a tool for alternative therapy of stress-related and psychosomatic diseases, brain mechanisms of beneficial influences of meditation practice on health and quality of life are still unclear. We propose that the key point is a persistent change in emotional functioning, specifically the modulation of the early appraisal of motivational significance of events. The main aim was to study the effects of long-term meditation practice on event-related brain potentials (ERPs) during affective picture viewing. ERPs were recorded in 20 long-term Sahaja Yoga meditators and 20 control subjects without prior experience in meditation. The meditators' mid-latency (140-400ms) ERPs were attenuated for both positive and negative pictures (i.e. there were no arousal-related increases in ERP positivity) and this effect was more prominent over the right hemisphere. However, we found no differences in the long latency (400-800ms) responses to emotional images, associated with meditation practice. In addition we found stronger ERP negativity in the time window 200-300ms for meditators compared to the controls, regardless of picture valence. We assume that long-term meditation practice enhances frontal top-down control over fast automatic salience detection, based on amygdala functions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Effects of cue frequency and repetition on prospective memory: an ERP investigation.
Wilson, Jennifer; Cutmore, Tim R H; Wang, Ya; Chan, Raymond C K; Shum, David H K
2013-11-01
Prospective memory involves the formation and completion of delayed intentions and is essential for independent living. In this study (n = 33), event-related potentials (ERPs) were used to systematically evaluate the effects of PM cue frequency (10% versus 30%) and PM cue repetition (high versus low) on ERP modulations. PM cues elicited prospective positivity and frontal positivity but not N300, perhaps due to the semantic nature of the task. Results of this study revealed an interesting interaction between PM cue frequency and PM cue repetition for prospective positivity and frontal positivity, highlighting the importance of taking both factors into account when designing future studies. © 2013.
Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs
Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve
2013-01-01
Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions. Our findings suggest that the gaming EEG system may prove a valid alternative to laboratory ERP systems for recording reliable late auditory ERPs (P1, N1, P2, N2, and the P3) over the frontal cortices. In the future, the gaming EEG system may also prove useful for measuring less reliable ERPs, such as the MMN, if the reliability of such ERPs can be boosted to the same level as late auditory ERPs. PMID:23638374
Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.
Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve
2013-01-01
Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants - particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC(®), www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC(®)). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions. Our findings suggest that the gaming EEG system may prove a valid alternative to laboratory ERP systems for recording reliable late auditory ERPs (P1, N1, P2, N2, and the P3) over the frontal cortices. In the future, the gaming EEG system may also prove useful for measuring less reliable ERPs, such as the MMN, if the reliability of such ERPs can be boosted to the same level as late auditory ERPs.
Pedophilic brain potential responses to adult erotic stimuli.
Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul
2016-02-01
Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.
Nieuwland, Mante S.; Ditman, Tali; Kuperberg, Gina R.
2010-01-01
In two event-related potential (ERP) experiments, we determined to what extent Grice’s maxim of informativeness as well as pragmatic ability contributes to the incremental build-up of sentence meaning, by examining the impact of underinformative versus informative scalar statements (e.g. “Some people have lungs/pets, and…”) on the N400 event-related potential (ERP), an electrophysiological index of semantic processing. In Experiment 1, only pragmatically skilled participants (as indexed by the Autism Quotient Communication subscale) showed a larger N400 to underinformative statements. In Experiment 2, this effect disappeared when the critical words were unfocused so that the local underinformativeness went unnoticed (e.g., “Some people have lungs that…”). Our results suggest that, while pragmatic scalar meaning can incrementally contribute to sentence comprehension, this contribution is dependent on contextual factors, whether these are derived from individual pragmatic abilities or the overall experimental context. PMID:20936088
Disentangling gaze shifts from preparatory ERP effects during spatial attention
Kennett, Steffan; van Velzen, José; Eimer, Martin; Driver, Jon
2007-01-01
After a cue directing attention to one side, anterior event-related potentials (ERPs) show contralateral negativity (Anterior Directing Attention Negativity, ADAN). It is unclear whether ADAN effects are contaminated by contralateral negativity arising from residual gaze shifts. Conversely, it is possible that ADAN-related potentials contaminate the horizontal electrooculogram (HEOG), via volume conduction. To evaluate these possibilities, we used high-resolution infrared eye tracking, while recording EEG and HEOG in a cued spatial-attention task. We found that, after conventional ERP and HEOG pre-processing exclusions, small but systematic residual gaze shifts in the cued direction can remain, as revealed by the infrared measure. Nevertheless, by using this measure for more stringent exclusion of small gaze shifts, we confirmed that reliable ADAN components remain for preparatory spatial attention in the absence of any systematic gaze shifts toward the cued side. PMID:17241141
Xiao, Fengqiu; Zheng, Zhiwei; Wang, Ya; Cui, Jifang; Chen, Yinghe
2015-08-01
The implicit association test (IAT) is a promising method used to assess individual implicit attitudes by indirectly measuring the strengths of associations between target and attribute categories. To date, the cognitive processes involved in the prosocial attitude IAT task have received little attention. The present study examined the temporal dynamics of the IAT that measures prosocial attitude using event-related potentials (ERPs). ERP results revealed enhanced N2 amplitudes for incongruent trials when compared with congruent trials and enhanced P300 amplitudes for congruent trials when compared with incongruent trials. In addition, the N2 amplitude differences were significantly correlated with individual prosocial behavior (the amount of donation). Our findings suggest that conflict monitoring and stimulus categorization processes are involved in the prosocial attitude IAT task and that the ERP indices of IATs that measure prosocial attitude may predict individual prosocial behavior.
Bernard, Kristin; Simons, Robert; Dozier, Mary
2015-01-01
This study examined the neurobiology of maternal sensitivity to children’s emotions among mothers involved with Child Protective Services (CPS) and low-risk comparison mothers (Mean age = 31.6 years). CPS-referred mothers participated in the Attachment and Biobehavioral Catch-up (ABC) intervention or a control intervention. Mothers’ event-related potentials (ERP) were measured while they categorized images of children with crying, laughing, and neutral expressions. CPS-referred ABC mothers (n = 19) and low-risk comparison mothers (n = 30) showed a larger enhancement of ERP responses for emotional faces relative to neutral faces than CPS-referred control mothers (n = 21). Additionally, the magnitude of ERP responses to emotional faces was associated with observed maternal sensitivity. Findings add to our understanding of the neurobiology of deficits in parenting and suggest that these deficits are changeable through a parenting intervention. PMID:26344398
EEG phase reset due to auditory attention: an inverse time-scale approach.
Low, Yin Fen; Strauss, Daniel J
2009-08-01
We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.
Emotion processing in the visual brain: a MEG analysis.
Peyk, Peter; Schupp, Harald T; Elbert, Thomas; Junghöfer, Markus
2008-06-01
Recent functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) studies provide empirical support for the notion that emotional cues guide selective attention. Extending this line of research, whole head magneto-encephalogram (MEG) was measured while participants viewed in separate experimental blocks a continuous stream of either pleasant and neutral or unpleasant and neutral pictures, presented for 330 ms each. Event-related magnetic fields (ERF) were analyzed after intersubject sensor coregistration, complemented by minimum norm estimates (MNE) to explore neural generator sources. Both streams of analysis converge by demonstrating the selective emotion processing in an early (120-170 ms) and a late time interval (220-310 ms). ERF analysis revealed that the polarity of the emotion difference fields was reversed across early and late intervals suggesting distinct patterns of activation in the visual processing stream. Source analysis revealed the amplified processing of emotional pictures in visual processing areas with more pronounced occipito-parieto-temporal activation in the early time interval, and a stronger engagement of more anterior, temporal, regions in the later interval. Confirming previous ERP studies showing facilitated emotion processing, the present data suggest that MEG provides a complementary look at the spread of activation in the visual processing stream.
Schoenberg, Poppy L A; Hepark, Sevket; Kan, Cornelis C; Barendregt, Henk P; Buitelaar, Jan K; Speckens, Anne E M
2014-07-01
To examine whether mindfulness-based cognitive therapy (MBCT) would enhance attenuated amplitudes of event-related potentials (ERPs) indexing performance monitoring biomarkers of attention-deficit/hyperactivity disorder (ADHD). Fifty adult ADHD patients took part in a randomised controlled study investigating ERP and clinical measures pre-to-post MBCT. Twenty-six patients were randomly allocated to MBCT, 24 to a wait-list control. Main outcome measures included error processing (ERN, Pe), conflict monitoring (NoGo-N2), and inhibitory control (NoGo-P3) ERPs concomitant to a continuous performance task (CPT-X). Inattention and hyperactivity-impulsivity ADHD symptoms, psychological distress and social functioning, and mindfulness skills were also assessed. MBCT was associated with increased Pe and NoGo-P3 amplitudes, coinciding with reduced 'hyperactivity/impulsivity' and 'inattention' symptomatology. Specific to the MBCT; enhanced Pe amplitudes correlated with a decrease in hyperactivity/impulsivity symptoms and increased 'act-with-awareness' mindfulness skill, whereas, enhanced P3 correlated with amelioration in inattention symptoms. MBCT enhanced ERP amplitudes associated with motivational saliency and error awareness, leading to improved inhibitory regulation. MBCT suggests having comparable modulation on performance monitoring ERP amplitudes as pharmacological treatments. Further study and development of MBCT as a treatment for ADHD is warranted, in addition to its potential scope for clinical applicability to broader defined externalising disorders and clinical problems associated with impairments of the prefrontal cortex. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rule, J.H.; Alden, R.W. III
1996-04-01
Partitioning of Cd and Cu between geochemical fractions of an anaerobic estuarine sediment was determined after equilibrating fine-sandy sediment with different combinations of added Cd (0, 2.5, 5 mg/kg) and Cu(0, 12.5, 25 mg/kg). Sediments were placed in aquaria with 20 ppt seawater where bioassay test organisms were exposed for 14 d. At the start and conclusion of the experimental period, sediments were sequentially extracted to determine the elemental content of the exchangeable (EP), easily reducible (ERP), organic- sulfide (OSP), moderately reducible (MRP), and acid extractable (AEP) phases. Partitioning of the metals in both the native and treated sediments was,more » for Cd: OSP {much_gt} ERP > AEP > EP (MRP was below detection) and for Cu: OSP {much_gt} AEP > ERP > MRP > EP. Cadmium extracted in all phases and Cu in the EP, RP, and OSP were proportional to the respective treatments. The EP-Cd, ERP-Cd, and OSP-Cd were affected by the Cu treatment and significant interactions occurred between Cd and Cu for the EP-Cd, ERP-Cd, OSP-Cd, EP-Cu, and ERP-Cu. Increasing levels of applied Cd and Cu resulted in greater amounts of EP-Cd and ERP-Cd, fractions that are the most bioavailable and the most readily available for desorption into the water column. A significant conclusion is that the input of nontoxic metals may affect the geochemical phase distribution, potential bioavailability, and toxicity of native sediment metals.« less
Mandin, Pierre; Chareyre, Sylvia; Barras, Frédéric
2016-09-20
Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs). Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA) RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability. Regulatory small RNAs (sRNAs) have emerged as major actors in the control of gene expression in the last few decades. Relatively little is known about how these regulators interact with classical transcription factors to coordinate genetic responses. We show here how an sRNA, RyhB, and a transcription factor, IscR, regulate expression of an essential gene, erpA, in the bacterium E. coli ErpA is involved in the biogenesis of Fe-S clusters, an important class of cofactors involved in a plethora of cellular reactions. Interestingly, we show that RyhB and IscR repress expression of erpA under opposite conditions in regard to iron concentration, forming a regulatory circuit called an "incoherent network." This incoherent network serves to maximize expression of erpA at iron concentrations where it is most needed. Altogether, our study paves the way for a better understanding of mixed regulatory networks composed of RNAs and transcription factors. Copyright © 2016 Mandin et al.
Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study
NASA Astrophysics Data System (ADS)
Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H.
2015-08-01
Objective. Our experiments explored the effect of visual stimuli degradation on cognitive workload. Approach. We investigated the subjective assessment, event-related potentials (ERPs) as well as electroencephalogram (EEG) as measures of cognitive workload. Main results. These experiments confirm that degradation of visual stimuli increases cognitive workload as assessed by subjective NASA task load index and confirmed by the observed P300 amplitude attenuation. Furthermore, the single-trial multi-level classification using features extracted from ERPs and EEG is found to be promising. Specifically, the adopted single-trial oscillatory EEG/ERP detection method achieved an average accuracy of 85% for discriminating 4 workload levels. Additionally, we found from the spatial patterns obtained from EEG signals that the frontal parts carry information that can be used for differentiating workload levels. Significance. Our results show that visual stimuli can modulate cognitive workload, and the modulation can be measured by the single trial EEG/ERP detection method.
Visual gate for brain-computer interfaces.
Dias, N S; Jacinto, L R; Mendes, P M; Correia, J H
2009-01-01
Brain-Computer Interfaces (BCI) based on event related potentials (ERP) have been successfully developed for applications like virtual spellers and navigation systems. This study tests the use of visual stimuli unbalanced in the subject's field of view to simultaneously cue mental imagery tasks (left vs. right hand movement) and detect subject attention. The responses to unbalanced cues were compared with the responses to balanced cues in terms of classification accuracy. Subject specific ERP spatial filters were calculated for optimal group separation. The unbalanced cues appear to enhance early ERPs related to cue visuospatial processing that improved the classification accuracy (as low as 6%) of ERPs in response to left vs. right cues soon (150-200 ms) after the cue presentation. This work suggests that such visual interface may be of interest in BCI applications as a gate mechanism for attention estimation and validation of control decisions.
Visual statistical learning is related to natural language ability in adults: An ERP study.
Daltrozzo, Jerome; Emerson, Samantha N; Deocampo, Joanne; Singh, Sonia; Freggens, Marjorie; Branum-Martin, Lee; Conway, Christopher M
2017-03-01
Statistical learning (SL) is believed to enable language acquisition by allowing individuals to learn regularities within linguistic input. However, neural evidence supporting a direct relationship between SL and language ability is scarce. We investigated whether there are associations between event-related potential (ERP) correlates of SL and language abilities while controlling for the general level of selective attention. Seventeen adults completed tests of visual SL, receptive vocabulary, grammatical ability, and sentence completion. Response times and ERPs showed that SL is related to receptive vocabulary and grammatical ability. ERPs indicated that the relationship between SL and grammatical ability was independent of attention while the association between SL and receptive vocabulary depended on attention. The implications of these dissociative relationships in terms of underlying mechanisms of SL and language are discussed. These results further elucidate the cognitive nature of the links between SL mechanisms and language abilities. Copyright © 2017 Elsevier Inc. All rights reserved.
Visual statistical learning is related to natural language ability in adults: An ERP Study
Daltrozzo, Jerome; Emerson, Samantha N.; Deocampo, Joanne; Singh, Sonia; Freggens, Marjorie; Branum-Martin, Lee; Conway, Christopher M.
2017-01-01
Statistical learning (SL) is believed to enable language acquisition by allowing individuals to learn regularities within linguistic input. However, neural evidence supporting a direct relationship between SL and language ability is scarce. We investigated whether there are associations between event-related potential (ERP) correlates of SL and language abilities while controlling for the general level of selective attention. Seventeen adults completed tests of visual SL, receptive vocabulary, grammatical ability, and sentence completion. Response times and ERPs showed that SL is related to receptive vocabulary and grammatical ability. ERPs indicated that the relationship between SL and grammatical ability was independent of attention while the association between SL and receptive vocabulary depended on attention. The implications of these dissociative relationships in terms of underlying mechanisms of SL and language are discussed. These results further elucidate the cognitive nature of the links between SL mechanisms and language abilities. PMID:28086142
Waliszewska-Prosół, Marta; Nowakowska-Kotas, Marta; Kotas, Roman; Bańkowski, Tomasz; Pokryszko-Dragan, Anna; Podemski, Ryszard
2018-06-08
The clinical course of multiple sclerosis (MS) can vary significantly among patients and is affected by exogenous and endogenous factors. Among these, stress and personality type have been gaining more attention. The aim of this study was to investigate the parameters of event-related potentials (ERPs) with regards to stress perception and personality type, as well as cognitive performance in MS patients. The study group consisted of 30 MS patients and 26 healthy controls. Auditory ERPs were performed in both groups, including an analysis of P300 and N200 response parameters. The Perceived Stress Scale (PSS) was used in the MS group to measure the perception of stress. The D-type Scale (DS14) scale was used to determine the features of Type D personality, characterized by social inhibition and negative affectivity. The score on the PSS corresponded with a moderate or high level of stress perception in 63% of MS patients, while 23% of patients presented with a Type D personality. P300 latencies were significantly longer (p = 0.001), N200 amplitudes were significantly higher (p = 0.004), and N200 latencies were longer in MS patients than in the controls. Strong positive correlations were found between N200 and P300 amplitudes, as well as between the DS14 and PSS results. Most MS patients experience moderate to severe stress. ERP abnormalities were found in MS patients who did not have overt cognitive impairment and showed correlations with stress levels and negative affectivity. Event-related potentials may be useful in assessing the influence of stress and emotions on the course of MS.
Haiman, Guy; Pratt, Hillel; Miller, Ariel
2009-10-01
The purpose of this study was to characterize the brain activity and associated cortical structures involved in pseudobulbar affect (PBA), a condition characterized by uncontrollable episodes of laughing and/or crying in patients with multiple sclerosis before and after treatment with dextromethorphan/quinidine (DM/Q). Behavioral responses and event-related potentials (ERPs) in response to subjectively significant and neutral verbal stimuli were recorded from 2 groups: 6 multiple sclerosis patients with PBA before (PBA-preTx) and after (PBA-DM/Q) treatment with DM/Q and 6 healthy control (HC) subjects. Statistical nonparametric mapping comparisons of ERP source current density distributions between groups were conducted for subjectively significant and neutral stimuli separately before and after treatment with DM/Q. Treatment with DM/Q had a normalizing effect on the behavioral responses of PBA patients. Event-related potential waveform comparisons of PBA-preTx and PBA-DM/Q with HC, for both neutral and subjectively significant stimuli, revealed effects on early ERP components. Comparisons between PBA-preTx and HC, in response to subjectively significant stimuli, revealed both early and late effects. Source analysis comparisons between PBA-preTx and PBA-DM/Q indicated distinct activations in areas involved in emotional processing and high-level and associative visual processing in response to neutral stimuli and in areas involved in emotional, somatosensory, primary, and premotor processing in response to subjectively significant stimuli. In most cases, stimuli evoked higher current density in PBA-DM/Q compared with the other groups. In conclusion, differences in brain activity were observed before and after medication. Also, DM/Q administration resulted in normalization of behavioral and electrophysiological measures.
Event-Related Potentials of Bottom-Up and Top-Down Processing of Emotional Faces
Moradi, Afsane; Mehrinejad, Seyed Abolghasem; Ghadiri, Mohammad; Rezaei, Farzin
2017-01-01
Introduction: Emotional stimulus is processed automatically in a bottom-up way or can be processed voluntarily in a top-down way. Imaging studies have indicated that bottom-up and top-down processing are mediated through different neural systems. However, temporal differentiation of top-down versus bottom-up processing of facial emotional expressions has remained to be clarified. The present study aimed to explore the time course of these processes as indexed by the emotion-specific P100 and late positive potential (LPP) event-related potential (ERP) components in a group of healthy women. Methods: Fourteen female students of Alzahra University, Tehran, Iran aged 18–30 years, voluntarily participated in the study. The subjects completed 2 overt and covert emotional tasks during ERP acquisition. Results: The results indicated that fearful expressions significantly produced greater P100 amplitude compared to other expressions. Moreover, the P100 findings showed an interaction between emotion and processing conditions. Further analysis indicated that within the overt condition, fearful expressions elicited more P100 amplitude compared to other emotional expressions. Also, overt conditions created significantly more LPP latencies and amplitudes compared to covert conditions. Conclusion: Based on the results, early perceptual processing of fearful face expressions is enhanced in top-down way compared to bottom-up way. It also suggests that P100 may reflect an attentional bias toward fearful emotions. However, no such differentiation was observed within later processing stages of face expressions, as indexed by the ERP LPP component, in a top-down versus bottom-up way. Overall, this study provides a basis for further exploring of bottom-up and top-down processes underlying emotion and may be typically helpful for investigating the temporal characteristics associated with impaired emotional processing in psychiatric disorders. PMID:28446947
Addante, Richard J.; Ranganath, Charan; Olichney, John; Yonelinas, Andrew P.
2012-01-01
In several previous behavioral studies, we have identified a group of amnestic patients that, behaviorally, appear to exhibit severe deficits in recollection with relative preservation of familiarity-based recognition. However, these studies have relied exclusively on behavioral measures, rather than direct measures of physiology. Event-related potentials (ERPs) have been used to identify putative neural correlates of familiarity- and recollection-based recognition memory, but little work has been done to determine the extent to which these ERP correlates are spared in patients with relatively specific memory disorders. ERP studies of recognition in healthy subjects have indicated that recollection and familiarity are related to a parietal old-new effect characterized as a late positive component (LPC) and an earlier mid-frontal old-new effect referred to as an ‘FN400’, respectively. Here, we sought to determine the extent to which the putative ERP correlates of recollection and familiarity are intact or impaired in these patients. We recorded ERPs in three amnestic patients and six age matched controls while they made item recognition and source recognition judgments. The current patients were able to discriminate between old and new items fairly well, but showed nearly chance-level performance at source recognition. Moreover, whereas control subjects exhibited ERP correlates of memory that have been linked to recollection and familiarity, the patients only exhibited the mid-frontal FN400 ERP effect related to familiarity-based recognition. The results show that recollection can be severely impaired in amnesia even when familiarity-related processing is relatively spared, and they also provide further evidence that ERPs can be used to distinguish between neural correlates of familiarity and recollection. PMID:22898646
Stowe, Laurie A; Kaan, Edith; Sabourin, Laura; Taylor, Ryan C
2018-03-30
Current sentence processing research has focused on early effects of the on-line incremental processes that are performed at each word or constituent during processing. However, less attention has been devoted to what happens at the end of the clause or sentence. More specifically, over the last decade and a half, a lot of effort has been put into avoiding measuring event-related brain potentials (ERPs) at the final word of a sentence, because of the possible effects of sentence wrap-up. This article reviews the evidence on how and when sentence wrap-up impacts behavioral and ERP results. Even though the end of the sentence is associated with a positive-going ERP wave, thus far this effect has not been associated with any factors hypothesized to affect wrap-up. In addition, ERP responses to violations have not been affected by this positivity. "Sentence-final" negativities reported in the literature are not unique to sentence final positions, nor do they obscure or distort ERP effects associated with linguistic manipulations. Finally, the empirical evidence used to argue that sentence-final ERPs are different from those recorded at sentence-medial positions is weak at most. Measuring ERPs at sentence-final positions is therefore certainly not to be avoided at all costs, especially not in cases where the structure of the language under investigation requires it. More importantly, researchers should follow rigorous method in their experimental design, avoid decision tasks which may induce ERP confounds, and ensure all other possible explanations for results are considered. Although this article is directed at a particular dogma from a particular literature, this review shows that it is important to reassess what is regarded as "general knowledge" from time to time. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Sprondel, Volker; Kipp, Kerstin H.; Mecklinger, Axel
2011-01-01
Event-related potential (ERP) correlates of item and source memory were assessed in 18 children (7-8 years), 20 adolescents (13-14 years), and 20 adults (20-29 years) performing a continuous recognition memory task with object and nonobject stimuli. Memory performance increased with age and was particularly low for source memory in children. The…
ERIC Educational Resources Information Center
Czernochowski, Daniela; Mecklinger, Axel; Johansson, Mikael
2009-01-01
We examined developmental aspects of the ability to monitor the temporal context of an item's previous occurrence while event-related potentials (ERPs) were recorded. In a continuous recognition task, children between 10 and 12 years and young adults watched a stream of pictures repeated with a lag of 10-15 intervening items and indicated…
ERIC Educational Resources Information Center
Pivik, R. T.; Andres, Aline; Badger, Thomas M.
2011-01-01
Early post-natal nutrition influences later development, but there are no studies comparing brain function in healthy infants as a function of dietary intake even though the major infant diets differ significantly in nutrient composition. We studied brain responses (event-related potentials; ERPs) to speech sounds for infants who were fed either…
ERIC Educational Resources Information Center
Molfese, Dennis L.; Molfese, Victoria J.; Kelly, Spencer
2001-01-01
This article provides an introduction to the use of event-related potential (ERP) approaches to study language processes. First, a brief history of the emergence of this technology is presented, followed by definitions, a theoretical overview, and a practical guide to conducting ERP studies. Examples of language studies that use this technique are…
ERIC Educational Resources Information Center
Swingler, Margaret M.; Sweet, Monica A.; Carver, Leslie J.
2010-01-01
Event-related potentials (ERPs) were recorded from 6-month-olds (N = 30) as they looked at pictures of their mother's face and a stranger's face. Negative component (Nc) and P400 component responses from the ERP portion of the study were correlated with behavioral responses of the infants during a separation from their mothers. We measured the…
ERIC Educational Resources Information Center
Kim, Albert E.; Oines, Leif; Miyake, Akira
2018-01-01
This study investigated the processes reflected in the widely observed N400 and P600 event-related potential (ERP) effects and tested the hypothesis that the N400 and P600 effects are functionally linked in a tradeoff relationship, constrained in part by individual differences in cognitive ability. Sixty participants read sentences, and ERP…
Boucher, Olivier; Bastien, Célyne H; Saint-Amour, Dave; Dewailly, Eric; Ayotte, Pierre; Jacobson, Joseph L; Jacobson, Sandra W; Muckle, Gina
2010-08-01
Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are seafood contaminants known for their adverse effects on neurodevelopment. This study examines the relation of developmental exposure to these contaminants to information processing assessed with event-related potentials (ERPs) in school-aged Inuit children from Nunavik (Arctic Québec). In a prospective longitudinal study on child development, exposure to contaminants was measured at birth and 11 years of age. An auditory oddball protocol was administered at 11 years to measure ERP components N1 and P3b. Multiple regression analyses were performed to examine the associations of levels of the contaminants to auditory oddball performance (mean reaction time, omission errors and false alarms) and ERP parameters (latency and amplitude) after control for potential confounding variables. A total of 118 children provided useable ERP data. Prenatal MeHg exposure was associated with slower reaction times and fewer false alarms during the oddball task. Analyses of the ERP parameters revealed that prenatal MeHg exposure was related to greater amplitude and delayed latency of the N1 wave in the target condition but not to the P3b component. MeHg effects on the N1 were stronger after control for seafood nutrients. Prenatal PCB exposure was not related to any endpoint for sample as a whole but was associated with a decrease in P3b amplitude in the subgroup of children who had been breast-fed for less than 3 months. Body burdens of MeHg and PCBs at 11 years were not related to any of the behavioural or ERP measures. These data suggest that prenatal MeHg exposure alters attentional mechanisms modulating early processing of sensory information. By contrast, prenatal PCB exposure appears to affect information processing at later stages, when the information is being consciously evaluated. These effects seem to be mitigated in children who are breast-fed for a more extended period. (c) 2010 Elsevier Inc. All rights reserved.
Event-related potential studies of post-traumatic stress disorder: a critical review and synthesis
2011-01-01
Despite the sparseness of the currently available data, there is accumulating evidence of information processing impairment in post-traumatic stress disorder (PTSD). Studies of event-related potentials (ERPs) are the main tool in real time examination of information processing. In this paper, we sought to critically review the ERP evidence of information processing abnormalities in patients with PTSD. We also examined the evidence supporting the existence of a relationship between ERP abnormalities and symptom profiles or severity in PTSD patients. An extensive Medline search was performed. Keywords included PTSD or post-traumatic stress disorder, electrophysiology or EEG, electrophysiology, P50, P100, N100, P2, P200, P3, P300, sensory gating, CNV (contingent negative variation) and MMN (mismatch negativity). We limited the review to ERP adult human studies with control groups which were reported in the English language. After applying our inclusion-exclusion review criteria, 36 studies were included. Subjects exposed to wide ranges of military and civilian traumas were studied in these reports. Presented stimuli were both auditory and visual. The most widely studied components included P300, P50 gating, N100 and P200. Most of the studies reported increased P300 response to trauma-related stimuli in PTSD patients. A smaller group of studies reported dampening of responses or no change in responses to trauma-related and/or unrelated stimuli. P50 studies were strongly suggestive of impaired gating in patients with PTSD. In conclusion, the majority of reports support evidence of information processing abnormalities in patients with PTSD diagnosis. The predominance of evidence suggests presence of mid-latency and late ERP components differences in PTSD patients in comparison to healthy controls. Heterogeneity of assessment methods used contributes to difficulties in reaching firm conclusions regarding the nature of these differences. We suggest that future ERP-PTSD studies utilize standardized assessment scales that provide detailed information regarding the symptom clusters and the degree of symptom severity. This would allow assessment of electrophysiological indices-clinical symptoms relationships. Based on the available data, we suggest that ERP abnormalities in PTSD are possibly affected by the level of illness severity. If supported by future research, ERP studies may be used for both initial assessment and treatment follow-up. PMID:22738160
Tağluk, M E; Cakmak, E D; Karakaş, S
2005-04-30
Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics.
Steele, Vaughn R.; Bernat, Edward M.; van den Broek, Paul; Collins, Paul F.; Patrick, Christopher J.; Marsolek, Chad J.
2012-01-01
Successful comprehension during reading often requires inferring information not explicitly presented. This information is readily accessible when subsequently encountered, and a neural correlate of this is an attenuation of the N400 event-related potential (ERP). We used ERPs and time-frequency (TF) analysis to investigate neural correlates of processing inferred information after a causal coherence inference had been generated during text comprehension. Participants read short texts, some of which promoted inference generation. After each text, they performed lexical decisions to target words that were unrelated or inference-related to the preceding text. Consistent with previous findings, inference-related words elicited an attenuated N400 relative to unrelated words. TF analyses revealed unique contributions to the N400 from activity occurring at 1–6 Hz (theta) and 0–2 Hz (delta), supporting the view that multiple, sequential processes underlie the N400. PMID:23165117
Galinski, Christine N; Zwicker, Jeffrey I; Kennedy, Daniel R
2016-01-01
Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Galinski, Christine N.; Zwicker, Jeffrey I.; Kennedy, Daniel R.
2015-01-01
Introduction Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Methods Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. Results We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. Conclusions PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. PMID:26585763
Is human sentence parsing serial or parallel? Evidence from event-related brain potentials.
Hopf, Jens-Max; Bader, Markus; Meng, Michael; Bayer, Josef
2003-01-01
In this ERP study we investigate the processes that occur in syntactically ambiguous German sentences at the point of disambiguation. Whereas most psycholinguistic theories agree on the view that processing difficulties arise when parsing preferences are disconfirmed (so-called garden-path effects), important differences exist with respect to theoretical assumptions about the parser's recovery from a misparse. A key distinction can be made between parsers that compute all alternative syntactic structures in parallel (parallel parsers) and parsers that compute only a single preferred analysis (serial parsers). To distinguish empirically between parallel and serial parsing models, we compare ERP responses to garden-path sentences with ERP responses to truly ungrammatical sentences. Garden-path sentences contain a temporary and ultimately curable ungrammaticality, whereas truly ungrammatical sentences remain so permanently--a difference which gives rise to different predictions in the two classes of parsing architectures. At the disambiguating word, ERPs in both sentence types show negative shifts of similar onset latency, amplitude, and scalp distribution in an initial time window between 300 and 500 ms. In a following time window (500-700 ms), the negative shift to garden-path sentences disappears at right central parietal sites, while it continues in permanently ungrammatical sentences. These data are taken as evidence for a strictly serial parser. The absence of a difference in the early time window indicates that temporary and permanent ungrammaticalities trigger the same kind of parsing responses. Later differences can be related to successful reanalysis in garden-path but not in ungrammatical sentences. Copyright 2003 Elsevier Science B.V.
Aberrant Processing of Deviant Stimuli in Schizophrenia Revealed by Fusion of FMRI and EEG Data
Calhoun, VD; Wu, L; Kiehl, KA; Eichele, T; Pearlson, GD
2010-01-01
Background Aberrant electrophysiological and hemodynamic processing of auditory oddball stimuli is among the most robustly documented findings in patients with schizophrenia. However, no study to date has directly examined linked patterns of electrical and hemodynamic differences in patients and controls. Methods In a recent paper we demonstrated a data-driven approach, joint independent component analysis (jICA) to fuse together functional magnetic resonance imaging (fMRI) and event-related potential (ERP) data and elucidated the chronometry of auditory oddball target detection in healthy control subjects. In this paper we extend our fusion method to identify specific differences in the neuronal chronometry of target detection for chronic schizophrenia patients compared to healthy controls. Results We found one linked source, consistent with the N2 response, known to be related to cognitive processing of deviant stimuli, spatially localized to bilateral fronto-temporal regions. This source showed significant between-group differences both in amplitude response and in the fMRI/ERP distribution pattern. These findings are consistent with previous work showing N2 amplitude and latency abnormalities in schizophrenia, and provide new information about the linkage between the two. Conclusions In summary, we use a novel approach to isolate and identify a linked fMRI/ERP component which shows marked differences in chronic schizophrenia patients. We also demonstrate that jointly using both fMRI and ERP measures provides a fully picture of the underlying hemodynamic and electrical changes which are present in patients. Our approach also has broad applicability to other diseases such as autism, Alzheimer’s disease, or bipolar disorder. PMID:21331320
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J 3rd; Freeman, Frederick G.; Scerbo, Mark W.; Mikulka, Peter J.; Pope, Alan T.
2003-01-01
The present study examined the effects of an electroencephalographic- (EEG-) based system for adaptive automation on tracking performance and workload. In addition, event-related potentials (ERPs) to a secondary task were derived to determine whether they would provide an additional degree of workload specificity. Participants were run in an adaptive automation condition, in which the system switched between manual and automatic task modes based on the value of each individual's own EEG engagement index; a yoked control condition; or another control group, in which task mode switches followed a random pattern. Adaptive automation improved performance and resulted in lower levels of workload. Further, the P300 component of the ERP paralleled the sensitivity to task demands of the performance and subjective measures across conditions. These results indicate that it is possible to improve performance with a psychophysiological adaptive automation system and that ERPs may provide an alternative means for distinguishing among levels of cognitive task demand in such systems. Actual or potential applications of this research include improved methods for assessing operator workload and performance.
Emotion and attention: event-related brain potential studies.
Schupp, Harald T; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus
2006-01-01
Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different stages of stimulus processing including perceptual encoding, stimulus representation in working memory, and elaborate stimulus evaluation. Furthermore, the review includes a discussion of studies exploring the interaction of motivated attention with passive and active forms of attentional control. Recent research is reviewed exploring the selective processing of emotional cues as a function of stimulus novelty, emotional prime pictures, learned stimulus significance, and in the context of explicit attention tasks. It is concluded that ERP measures are useful to assess the emotion-attention interface at the level of distinct processing stages. Results are discussed within the context of two-stage models of stimulus perception brought out by studies of attention, orienting, and learning.
Sokhadze, Estate M; Baruth, Joshua M; Sears, Lonnie; Sokhadze, Guela E; El-Baz, Ayman S; Williams, Emily; Klapheke, Robert; Casanova, Manuel F
2012-01-01
Autism spectrum disorders (ASD) and attention deficit/hyperactivity disorder (ADHD) are very common developmental disorders which share some similar symptoms of social, emotional, and attentional deficits. This study is aimed to help understand the differences and similarities of these deficits using analysis of dense-array event-related potentials (ERP) during an illusory figure recognition task. Although ADHD and ASD seem very distinct, they have been shown to share some similarities in their symptoms. Our hypothesis was that children with ASD will show less pronounced differences in ERP responses to target and non-target stimuli as compared to typical children, and to a lesser extent, ADHD. Participants were children with ASD (N=16), ADHD (N=16), and controls (N=16). EEG was collected using a 128 channel EEG system. The task involved the recognition of a specific illusory shape, in this case a square or triangle, created by three or four inducer disks. There were no between group differences in reaction time (RT) to target stimuli, but both ASD and ADHD committed more errors, specifically the ASD group had statistically higher commission error rate than controls. Post-error RT in ASD group was exhibited in a post-error speeding rather than corrective RT slowing typical for the controls. The ASD group also demonstrated an attenuated error-related negativity (ERN) as compared to ADHD and controls. The fronto-central P200, N200, and P300 were enhanced and less differentiated in response to target and non-target figures in the ASD group. The same ERP components were marked by more prolonged latencies in the ADHD group as compared to both ASD and typical controls. The findings are interpreted according to the "minicolumnar" hypothesis proposing existence of neuropathological differences in ASD and ADHD, specifically minicolumnar number/width morphometry spectrum differences. In autism, a model of local hyperconnectivity and long-range hypoconnectivity explains many of the behavioral and cognitive deficits present in the condition, while the inverse arrangement of local hypoconnectivity and long-range hyperconnectivity in ADHD explains some deficits typical for this disorder. The current ERP study supports the proposed suggestion that some between group differences could be manifested in the frontal ERP indices of executive functions during performance on an illusory figure categorization task.
Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring
Parvaz, Muhammad A.; Maloney, Thomas; Moeller, Scott J.; Malaker, Pias; Konova, Anna B.; Alia-Klein, Nelly; Goldstein, Rita Z.
2014-01-01
Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC–N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations. PMID:24918068
Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring.
Parvaz, Muhammad A; Maloney, Thomas; Moeller, Scott J; Malaker, Pias; Konova, Anna B; Alia-Klein, Nelly; Goldstein, Rita Z
2014-01-01
Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC-N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations.
Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J
2016-10-01
Precise preclinical detection of dementia for effective treatment and stage monitoring is of great importance. Miscellaneous types of biomarkers, e.g., biochemical, genetic, neuroimaging, and physiological, have been proposed to diagnose Alzheimer's disease (AD), the usual suspect behind manifested cognitive decline, and mild cognitive impairment (MCI), a neuropathology prior to AD that does not affect cognitive functions. Event related potential (ERP) methods constitute a non-invasive, inexpensive means of analysis and have been proposed as sensitive biomarkers of cognitive impairment; besides, various ERP components are strongly linked with working memory, attention, sensory processing and motor responses. In this study, an auditory oddball task is employed, to acquire high density electroencephalograhy recordings from healthy elderly controls, MCI and AD patients. The mismatch negativity (MMN) and P300 ERP components are then extracted and their relationship with neurodegeneration is examined. Then, the neural activation at these components is reconstructed using the 3D vector field tomography (3D-VFT) inverse solution. The results reveal a decline of both ERPs amplitude, and a statistically significant prolongation of their latency as cognitive impairment advances. For the MMN, higher brain activation is usually localized in the inferior frontal and superior temporal gyri in the controls. However, in AD, parietal sites exhibit strong activity. Stronger P300 generators are mostly found in the frontal lobe for the controls, but in AD they often shift to the temporal lobe. Reduction in inferior frontal source strength and the switch of the maximum intensity area to parietal and superior temporal sites suggest that these areas, especially the former, are of particular significance when neurodegenerative disorders are investigated. The modulation of MMN and P300 can serve to produce biomarkers of dementia and its progression, and brain imaging can further contribute to the diagnostic efficiency of ERPs. Copyright © 2016. Published by Elsevier B.V.
Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.
2015-01-01
Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. PMID:25665966
(C)overt attention and visual speller design in an ERP-based brain-computer interface.
Treder, Matthias S; Blankertz, Benjamin
2010-05-28
In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP). An ERP-based brain-computer interface (BCI) exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention) or whether it is also feasible for targets in the visual periphery (covert attention). Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Healthy participants (N = 13) performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (c)overt attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification) of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower for covert attention. The Hex-o-Spell outperforms the Matrix, especially when eye movements are not permitted, illustrating that performance can be increased if one accounts for peculiarities of peripheral vision.
(C)overt attention and visual speller design in an ERP-based brain-computer interface
2010-01-01
Background In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP). An ERP-based brain-computer interface (BCI) exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention) or whether it is also feasible for targets in the visual periphery (covert attention). Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Method Healthy participants (N = 13) performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (c)overt attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. Results We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification) of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Conclusions Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower for covert attention. The Hex-o-Spell outperforms the Matrix, especially when eye movements are not permitted, illustrating that performance can be increased if one accounts for peculiarities of peripheral vision. PMID:20509913
Bar-Kochva, Irit
2011-01-01
Orthographies range from shallow orthographies with transparent grapheme-phoneme relations, to deep orthographies, in which these relations are opaque. Two forms of script transcribe the Hebrew language: the shallow pointed script (with diacritics) and the deep unpointed script (without diacritics). This study was set out to examine whether the reading of these scripts evokes distinct brain activity. Preliminary results indicate distinct Event-related-potentials (ERPs). As an equivalent finding was absent when ERPs of non-orthographic stimuli with and without meaningless diacritics were compared, the results imply that print-specific aspects of processing account for the distinct activity elicited by the pointed and unpointed scripts.
ERP denoising in multichannel EEG data using contrasts between signal and noise subspaces.
Ivannikov, Andriy; Kalyakin, Igor; Hämäläinen, Jarmo; Leppänen, Paavo H T; Ristaniemi, Tapani; Lyytinen, Heikki; Kärkkäinen, Tommi
2009-06-15
In this paper, a new method intended for ERP denoising in multichannel EEG data is discussed. The denoising is done by separating ERP/noise subspaces in multidimensional EEG data by a linear transformation and the following dimension reduction by ignoring noise components during inverse transformation. The separation matrix is found based on the assumption that ERP sources are deterministic for all repetitions of the same type of stimulus within the experiment, while the other noise sources do not obey the determinancy property. A detailed derivation of the technique is given together with the analysis of the results of its application to a real high-density EEG data set. The interpretation of the results and the performance of the proposed method under conditions, when the basic assumptions are violated - e.g. the problem is underdetermined - are also discussed. Moreover, we study how the factors of the number of channels and trials used by the method influence the effectiveness of ERP/noise subspaces separation. In addition, we explore also the impact of different data resampling strategies on the performance of the considered algorithm. The results can help in determining the optimal parameters of the equipment/methods used to elicit and reliably estimate ERPs.