Sample records for potential evolutionary relationship

  1. An Evolutionary Perspective on Mate Rejection.

    PubMed

    Kelly, Ashleigh J; Dubbs, Shelli L; Barlow, Fiona Kate

    2016-01-01

    We argue that mate rejection and ex-partner relationships are important, multifaceted topics that have been underresearched in social and evolutionary psychology. Mate rejection and relationship dissolution are ubiquitous and form integral parts of the human experience. Both also carry with them potential risks and benefits to our fitness and survival. Hence, we expect that mate rejection would have given rise to evolved behavioral and psychological adaptations. Herein, we outline some of the many unanswered questions in evolutionary psychology on these topics, at each step presenting novel hypotheses about how men and women should behave when rejecting a mate or potential mate or in response to rejection. We intend these hypotheses and suggestions for future research to be used as a basis for enriching our understanding of human mating from an evolutionary perspective.

  2. Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships.

    PubMed

    Baier, F; Copp, J N; Tokuriki, N

    2016-11-22

    The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional "space" have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain "function connectivity" via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.

  3. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  4. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  5. Social defense: an evolutionary-developmental model of children's strategies for coping with threat in the peer group.

    PubMed

    Martin, Meredith J; Davies, Patrick T; MacNeill, Leigha A

    2014-04-29

    Navigating the ubiquitous conflict, competition, and complex group dynamics of the peer group is a pivotal developmental task of childhood. Difficulty negotiating these challenges represents a substantial source of risk for psychopathology. Evolutionary developmental psychology offers a unique perspective with the potential to reorganize the way we think about the role of peer relationships in shaping how children cope with the everyday challenges of establishing a social niche. To address this gap, we utilize the ethological reformulation of the emotional security theory as a guide to developing an evolutionary framework for advancing an understanding of the defense strategies children use to manage antagonistic peer relationships and protect themselves from interpersonal threat (Davies and Sturge-Apple, 2007). In this way, we hope to illustrate the value of an evolutionary developmental lens in generating unique theoretical insight and novel research directions into the role of peer relationships in the development of psychopathology.

  6. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.

  7. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change.

    PubMed

    Diamond, Sarah E

    2017-02-01

    How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate. © 2016 New York Academy of Sciences.

  8. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates.

    PubMed

    Kriegs, Jan Ole; Churakov, Gennady; Jurka, Jerzy; Brosius, Jürgen; Schmitz, Jürgen

    2007-04-01

    The evolutionary relationships of 7SL RNA-derived SINEs such as the primate Alu or the rodent B1 elements have hitherto been obscure. We established an unambiguous phylogenetic tree for Supraprimates, and derived intraordinal relationships of the 7SL RNA-derived SINEs. As well as new elements in Tupaia and primates, we also found that the purported ancestral fossil Alu monomer was restricted to Primates, and provide here the first description of a potential chimeric promoter box region in SINEs.

  9. Communicative genes in the evolution of empathy and altruism.

    PubMed

    Buck, Ross

    2011-11-01

    This paper discusses spontaneous communication and its implications for understanding empathy and altruism. The question of the possibility of "true" altruism-giving up one's genetic potential in favor of the genetic potential of another-is a fundamental issue common to the biological, behavioral, and social sciences. Darwin regarded "social instincts and sympathies" to be critical to the social order, but the possibility of biologically-based prosocial motives and emotions was questioned when selection was interpreted as operating at the level of the gene. In the selfish gene hypothesis, Dawkins argued that the unit of evolutionary selection must be an active, germ-line replicator: a unit whose activities determine whether copies of it are made across evolutionary timescales. He argued that the only active replicator existing across evolutionary timescales is the gene, so that the "selfish gene" is a replicator motivated only to make copies of itself. The communicative gene hypothesis notes that genes function by communicating, and the phenotype communication involves not only the individual sending and receiving abilities of the individual genes involved, but also the relationship between them relative to other genes. Therefore the selection of communication as phenotype involves the selection of individual genes and also their relationship. Relationships become replicators, and are selected across evolutionary timescales including social relationships (e.g., sex, nurturance, dominance-submission). An interesting implication of this view: apparent altruism has been interpreted by selfish gene theorists as due to kin selection and reciprocity, in which the survival of kin and comrade indirectly favor the genetic potential of the altruist. From the viewpoint of the communicative gene hypothesis, rather than underlying altruism, kin selection and reciprocity are ways of restricting altruism to kin and comrade: they are mechanisms not of altruism but of xenophobia.

  10. Evolutionary distance from human homologs reflects allergenicity of animal food proteins.

    PubMed

    Jenkins, John A; Breiteneder, Heimo; Mills, E N Clare

    2007-12-01

    In silico analysis of allergens can identify putative relationships among protein sequence, structure, and allergenic properties. Such systematic analysis reveals that most plant food allergens belong to a restricted number of protein superfamilies, with pollen allergens behaving similarly. We have investigated the structural relationships of animal food allergens and their evolutionary relatedness to human homologs to define how closely a protein must resemble a human counterpart to lose its allergenic potential. Profile-based sequence homology methods were used to classify animal food allergens into Pfam families, and in silico analyses of their evolutionary and structural relationships were performed. Animal food allergens could be classified into 3 main families--tropomyosins, EF-hand proteins, and caseins--along with 14 minor families each composed of 1 to 3 allergens. The evolutionary relationships of each of these allergen superfamilies showed that in general, proteins with a sequence identity to a human homolog above approximately 62% were rarely allergenic. Single substitutions in otherwise highly conserved regions containing IgE epitopes in EF-hand parvalbumins may modulate allergenicity. These data support the premise that certain protein structures are more allergenic than others. Contrasting with plant food allergens, animal allergens, such as the highly conserved tropomyosins, challenge the capability of the human immune system to discriminate between foreign and self-proteins. Such immune responses run close to becoming autoimmune responses. Exploiting the closeness between animal allergens and their human homologs in the development of recombinant allergens for immunotherapy will need to consider the potential for developing unanticipated autoimmune responses.

  11. ECOD: An Evolutionary Classification of Protein Domains

    PubMed Central

    Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.

    2014-01-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468

  12. ECOD: an evolutionary classification of protein domains.

    PubMed

    Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V

    2014-12-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.

  13. Let's get serious: communicating commitment in romantic relationships.

    PubMed

    Ackerman, Joshua M; Griskevicius, Vladas; Li, Norman P

    2011-06-01

    Are men or women more likely to confess love first in romantic relationships? And how do men and women feel when their partners say "I love you"? An evolutionary-economics perspective contends that women and men incur different potential costs and gain different potential benefits from confessing love. Across 6 studies testing current and former romantic relationships, we found that although people think that women are the first to confess love and feel happier when they receive such confessions, it is actually men who confess love first and feel happier when receiving confessions. Consistent with predictions from our model, additional studies have shown that men's and women's reactions to love confessions differ in important ways depending on whether the couple has engaged in sexual activity. These studies have demonstrated that saying and hearing "I love you" has different meanings depending on who is doing the confessing and when the confession is being made. Beyond romantic relationships, an evolutionary-economics perspective suggests that displays of commitment in other types of relationships--and reactions to these displays--will be influenced by specific, functional biases. 2011 APA, all rights reserved

  14. Evolutionary rescue in vertebrates: evidence, applications and uncertainty

    PubMed Central

    Vander Wal, E.; Garant, D.; Festa-Bianchet, M.; Pelletier, F.

    2013-01-01

    The current rapid rate of human-driven environmental change presents wild populations with novel conditions and stresses. Theory and experimental evidence for evolutionary rescue present a promising case for species facing environmental change persisting via adaptation. Here, we assess the potential for evolutionary rescue in wild vertebrates. Available information on evolutionary rescue was rare and restricted to abundant and highly fecund species that faced severe intentional anthropogenic selective pressures. However, examples from adaptive tracking in common species and genetic rescues in species of conservation concern provide convincing evidence in favour of the mechanisms of evolutionary rescue. We conclude that low population size, long generation times and limited genetic variability will result in evolutionary rescue occurring rarely for endangered species without intervention. Owing to the risks presented by current environmental change and the possibility of evolutionary rescue in nature, we suggest means to study evolutionary rescue by mapping genotype → phenotype → demography → fitness relationships, and priorities for applying evolutionary rescue to wild populations. PMID:23209171

  15. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data

    PubMed Central

    Nater, Alexander; Burri, Reto; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2015-01-01

    Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow. PMID:26187295

  16. RELATIONSHIP BETWEEN PHYLOGENETIC DISTRIBUTION AND GENOMIC FEATURES IN NEUROSPORA CRASSA

    USDA-ARS?s Scientific Manuscript database

    In the post-genome era, insufficient functional annotation of predicted genes greatly restricts the potential of mining genome data. We demonstrate that an evolutionary approach, which is independent of functional annotation, has great potential as a tool for genome analysis. We chose the genome o...

  17. Genome-scale rates of evolutionary change in bacteria

    PubMed Central

    Duchêne, Sebastian; Holt, Kathryn E.; Weill, François-Xavier; Le Hello, Simon; Hawkey, Jane; Edwards, David J.; Fourment, Mathieu

    2016-01-01

    Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10−5 to 10−8 nucleotide substitutions per site year−1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria. PMID:28348834

  18. Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism.

    PubMed

    Malé, P-J G; Leroy, C; Humblot, P; Dejean, A; Quilichini, A; Orivel, J

    2016-12-01

    Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time.

    PubMed

    Lamsdell, James C; Congreve, Curtis R; Hopkins, Melanie J; Krug, Andrew Z; Patzkowsky, Mark E

    2017-06-01

    The new and emerging field of phylogenetic paleoecology leverages the evolutionary relationships among species to explain temporal and spatial changes in species diversity, abundance, and distribution in deep time. This field is poised for rapid progress as knowledge of the evolutionary relationships among fossil species continues to expand. In particular, this approach will lend new insights to many of the longstanding questions in evolutionary biology, such as: the relationships among character change, ecology, and evolutionary rates; the processes that determine the evolutionary relationships among species within communities and along environmental gradients; and the phylogenetic signal underlying ecological selectivity in background and mass extinctions and in major evolutionary radiations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evolutionary speed limited by water in arid Australia

    PubMed Central

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-01-01

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns. PMID:20410038

  1. Evolutionary speed limited by water in arid Australia.

    PubMed

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-09-07

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns.

  2. Beyond Linear Sequence Comparisons: The use of genome-levelcharacters for phylogenetic reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.

    2004-11-27

    Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincinglymore » resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.« less

  3. Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains.

    PubMed

    Muthu Krishnan, S

    2018-05-14

    The receptor-associated protein (RAP) is an inhibitor of endocytic receptors that belong to the lipoprotein receptor gene family. In this study, a computational approach was tried to find the evolutionarily related fold of the RAP proteins. Through the structural and sequence-based analysis, found various protein folds that are very close to the RAP folds. Remote homolog datasets were used potentially to develop a different support vector machine (SVM) methods to recognize the homologous RAP fold. This study helps in understanding the relationship of RAP homologs folds based on the structure, function and evolutionary history. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The plastid genomes of flowering plants.

    PubMed

    Ruhlman, Tracey A; Jansen, Robert K

    2014-01-01

    The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.

  5. Women's hair as a cue to desired relationship and parenting characteristics.

    PubMed

    Matz, David C; Hinsz, Verlin B

    2017-10-30

    We investigated how women's hair color (blond, brown, black) and length (short, medium, long) influences males' judgments about the women's age, health, physical attractiveness, relationship potential, and parenting capability. Results, which are generally consistent with evolutionary psychology approaches, indicate that hair color and, to a lesser extent, length can affect perceptions of personal characteristics. More specifically, we found that lighter hair (blond and brown) compared to darker hair (black) is generally associated with perceptions of youth, health and attractiveness, and generally leads to more positive perceptions of relationship and parenting potential. Furthermore, the relationships between variables suggest that characteristics directly related to reproductive potential may be inferred from more obvious indirect characteristics. These results suggest that males are able to make complex judgments about women concerning their desirable relationship and parenting potential based on discernable characteristics such as hair color and length.

  6. Entrepreneurs and Evolutionary Biology: The Relationship between Testosterone and New Venture Creation

    ERIC Educational Resources Information Center

    White, Roderick E.; Thornhill, Stewart; Hampson, Elizabeth

    2006-01-01

    Biological evolutionary processes select for heritable behaviors providing a survival and reproductive advantage. Accordingly, how we behave is, at least in part, affected by the evolutionary history of our species. This research uses evolutionary psychology as the theoretical perspective for exploring the relationship between a heritable…

  7. Using Evolutionary Data in Developing Phylogenetic Trees: A Scaffolded Approach with Authentic Data

    ERIC Educational Resources Information Center

    Davenport, K. D.; Milks, Kirstin Jane; Van Tassell, Rebecca

    2015-01-01

    Analyzing evolutionary relationships requires that students have a thorough understanding of evidence and of how scientists use evidence to develop these relationships. In this lesson sequence, students work in groups to process many different lines of evidence of evolutionary relationships between ungulates, then construct a scientific argument…

  8. The application of evolutionary medicine principles for sustainable malaria control: a scoping study.

    PubMed

    Ocampo, Denise; Booth, Mark

    2016-07-22

    Current interventions against malaria have significantly reduced the number of people infected and the number of deaths. Concerns about emerging resistance of both mosquitoes and parasites to intervention have been raised, and questions remain about how best to generate wider knowledge of the underlying evolutionary processes. The pedagogical and research principles of evolutionary medicine may provide an answer to this problem. Eight programme managers and five academic researchers were interviewed by telephone or videoconference to elicit their first-hand views and experiences of malaria control given that evolution is a constant threat to sustainable control. Interviewees were asked about their views on the relationship between practit groups and academics and for their thoughts on whether or not evolutionary medicine may provide a solution to reported tensions. There was broad agreement that evolution of both parasites and vectors presents an obstacle to sustainable control. It was also widely agreed that through more efficient monitoring, evolution could be widely monitored. Interviewees also expressed the view that even well planned interventions may fail if the evolutionary biology of the disease is not considered, potentially making current tools redundant. This scoping study suggests that it is important to make research, including evolutionary principles, available and easily applicable for programme managers and key decision-makers, including donors and politicians. The main conclusion is that sharing knowledge through the educational and research processes embedded within evolutionary medicine has potential to relieve tensions and facilitate sustainable control of malaria and other parasitic infections.

  9. Local population density and group composition influence the signal-preference relationship in Enchenopa treehoppers (Hemiptera: Membracidae).

    PubMed

    Fowler-Finn, K D; Cruz, D C; Rodríguez, R L

    2017-01-01

    Many animals exhibit social plasticity - changes in phenotype or behaviour in response to experience with conspecifics that change how evolutionary processes like sexual selection play out. Here, we asked whether social plasticity arising from variation in local population density in male advertisement signals and female mate preferences influences the form of sexual selection. We manipulated local density and determined whether this changed how the distribution of male signals overlapped with female preferences - the signal preference relationship. We specifically look at the shape of female mate preference functions, which, when compared to signal distributions, provide hypotheses about the form of sexual selection. We used Enchenopa binotata treehoppers, a group of plant-feeding insects that exhibit natural variation in local densities across individual host plants, populations, species and years. We measured male signal frequency and female preference functions across the density treatments. We found that male signals varied across local social groups, but not according to local density. By contrast, female preferences varied with local density - favouring higher signal frequencies in denser environments. Thus, local density changes the signal-preference relationship and, consequently, the expected form of sexual selection. We found no influence of sex ratio on the signal-preference relationship. Our findings suggest that plasticity arising from variation in local group density and composition can alter the form of sexual selection with potentially important consequences both for the maintenance of variation and for speciation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  10. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  11. Evolutionary characterization of the West Nile Virus complete genome.

    PubMed

    Gray, R R; Veras, N M C; Santos, L A; Salemi, M

    2010-07-01

    The spatial dynamics of the West Nile Virus epidemic in North America are largely unknown. Previous studies that investigated the evolutionary history of the virus used sequence data from the structural genes (prM and E); however, these regions may lack phylogenetic information and obscure true evolutionary relationships. This study systematically evaluated the evolutionary patterns in the eleven genes of the WNV genome in order to determine which region(s) were most phylogenetically informative. We found that while the E region lacks resolution and can potentially result in misleading conclusions, the full NS3 or NS5 regions have strong phylogenetic signal. Furthermore, we show that geographic structure of WNV infection within the US is more pronounced than previously reported in studies that used the structural genes. We conclude that future evolutionary studies should focus on NS3 and NS5 in order to maximize the available sequences while retaining maximal interpretative power to infer temporal and geographic trends among WNV strains. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Phylogenomic evidence for a recent and rapid radiation of lizards in the Patagonian Liolaemus fitzingerii species group.

    PubMed

    Grummer, Jared A; Morando, Mariana M; Avila, Luciano J; Sites, Jack W; Leaché, Adam D

    2018-08-01

    Rapid evolutionary radiations are difficult to resolve because divergence events are nearly synchronous and gene flow among nascent species can be high, resulting in a phylogenetic "bush". Large datasets composed of sequence loci from across the genome can potentially help resolve some of these difficult phylogenetic problems. A suitable test case is the Liolaemus fitzingerii species group of lizards, which includes twelve species that are broadly distributed in Argentinean Patagonia. The species in the group have had a complex evolutionary history that has led to high morphological variation and unstable taxonomy. We generated a sequence capture dataset for 28 ingroup individuals of 580 nuclear loci, alongside a mitogenomic dataset, to infer phylogenetic relationships among species in this group. Relationships among species were generally weakly supported with the nuclear data, and along with an inferred age of ∼2.6 million years old, indicate either rapid evolution, hybridization, incomplete lineage sorting, non-informative data, or a combination thereof. We inferred a signal of mito-nuclear discordance, indicating potential hybridization between L. melanops and L. martorii, and phylogenetic network analyses provided support for 5 reticulation events among species. Phasing the nuclear loci did not provide additional insight into relationships or suspected patterns of hybridization. Only one clade, composed of L. camarones, L. fitzingerii, and L. xanthoviridis was recovered across all analyses. Genomic datasets provide molecular systematists with new opportunities to resolve difficult phylogenetic problems, yet the lack of phylogenetic resolution in Patagonian Liolaemus is biologically meaningful and indicative of a recent and rapid evolutionary radiation. The phylogenetic relationships of the Liolaemus fitzingerii group may be best modeled as a reticulated network instead of a bifurcating phylogeny. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. An Armillaria survey in Mexico: A basis for determining evolutionary relationships, assessing potentially invasive pathogens, evaluating future impacts of climate change, and developing international collaborations in forest pathology

    Treesearch

    Phil Cannon; Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Dionicio Alvarado Rosales

    2008-01-01

    In September 2007, a collaborative effort was made to survey Armillaria species in three general areas of south-central Mexico. Collected Armillaria isolates will be subjected to DNA analyses to examine genetic relationships with other Armillaria species. These studies will provide baseline information for examining evolution of Armillaria...

  14. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    PubMed

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Novel fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to assess evolutionary relationships, species diversity, and trichothecene toxin potential of five Fusarium graminearum complex (FGSC) isolates identified as genetically novel during prior Fusarium head blight (FHB) surveys in Nepal and Louisiana. Results of a multilocus gen...

  16. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria.

    PubMed

    Bouzat, Juan L; Hoostal, Matthew J

    2013-05-01

    Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.

  17. Hormonally active phytochemicals and vertebrate evolution.

    PubMed

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  18. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule.

    PubMed

    Knouft, Jason H; Page, Lawrence M

    2003-03-01

    Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.

  19. Common evolutionary trends underlie the four-bar linkage systems of sunfish and mantis shrimp.

    PubMed

    Hu, Yinan; Nelson-Maney, Nathan; Anderson, Philip S L

    2017-05-01

    Comparative biomechanics offers an opportunity to explore the evolution of disparate biological systems that share common underlying mechanics. Four-bar linkage modeling has been applied to various biological systems such as fish jaws and crustacean appendages to explore the relationship between biomechanics and evolutionary diversification. Mechanical sensitivity states that the functional output of a mechanical system will show differential sensitivity to changes in specific morphological components. We document similar patterns of mechanical sensitivity in two disparate four-bar systems from different phyla: the opercular four-bar system in centrarchid fishes and the raptorial appendage of stomatopods. We built dynamic linkage models of 19 centrarchid and 36 stomatopod species and used phylogenetic generalized least squares regression (PGLS) to compare evolutionary shifts in linkage morphology and mechanical outputs derived from the models. In both systems, the kinematics of the four-bar mechanism show significant evolutionary correlation with the output link, while travel distance of the output arm is correlated with the coupler link. This common evolutionary pattern seen in both fish and crustacean taxa is a potential consequence of the mechanical principles underlying four-bar systems. Our results illustrate the potential influence of physical principles on morphological evolution across biological systems with different structures, behaviors, and ecologies. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes.

    PubMed

    Meng, Xiangfeng; Gangoiti, Joana; Bai, Yuxiang; Pijning, Tjaard; Van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-07-01

    Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their reaction mechanism, especially structural features determining their linkage specificity. In addition, with the increase of genome sequencing, more and more GS enzymes are identified and characterized. Together, such knowledge may promote the synthesis of α-glucans with desired structures and properties from sucrose. In the meantime, two new GH70 subfamilies (GTFB- and GTFC-like) have been identified as 4,6-α-glucanotransferases (4,6-α-GTs) that represent novel evolutionary intermediates between the family GH13 and "classical GH70 enzymes". These enzymes are not active on sucrose; instead, they use (α1 → 4) glucans (i.e. malto-oligosaccharides and starch) as substrates to synthesize novel α-glucans by introducing linear chains of (α1 → 6) linkages. All these GH70 enzymes are very interesting biocatalysts and hold strong potential for applications in the food, medicine and cosmetic industries. In this review, we summarize the microbiological distribution and the structure-function relationships of family GH70 enzymes, introduce the two newly identified GH70 subfamilies, and discuss evolutionary relationships between family GH70 and GH13 enzymes.

  1. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  2. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?

    PubMed

    Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U

    2016-05-01

    Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  3. The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis

    PubMed Central

    Lester, Sarah E; Ruttenberg, Benjamin I

    2005-01-01

    We address the conflict in earlier results regarding the relationship between dispersal potential and range size. We examine all published pelagic larval duration data for tropical reef fishes. Larval duration is a convenient surrogate for dispersal potential in marine species that are sedentary as adults and that therefore only experience significant dispersal during their larval phase. Such extensive quantitative dispersal data are only available for fishes and thus we use a unique dataset to examine the relationship between dispersal potential and range size. We find that dispersal potential and range size are positively correlated only in the largest ocean basin, the Indo-Pacific, and that this pattern is driven primarily by the spatial distribution of habitat and dispersal barriers. Furthermore, the relationship strengthens at higher taxonomic levels, suggesting an evolutionary mechanism. We document a negative correlation between species richness and larval duration at the family level in the Indo-Pacific, implying that speciation rate may be negatively related to dispersal potential. If increased speciation rate within a taxonomic group results in smaller range sizes within that group, speciation rate could regulate the association between range size and dispersal potential. PMID:16007745

  4. Evaluating community–environment relationships along fine to broad taxonomic resolutions reveals evolutionary forces underlying community assembly

    PubMed Central

    Lu, Hsiao-Pei; Yeh, Yi-Chun; Sastri, Akash R; Shiah, Fuh-Kwo; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    We propose a method for detecting evolutionary forces underlying community assembly by quantifying the strength of community–environment relationships hierarchically along taxonomic ranks. This approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein, phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when niches are conserved, broader taxonomic classification should not diminish the strength of community–environment relationships and may even yield stronger associations by summarizing occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader taxonomic classification should weaken community–environment relationships when niches are under great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we quantified the strength of community–environment relationships using distance-based redundancy analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies (covering a variety of sampling scales and sequencing strategies) and found that the variation in community composition explained by environmental factors either increased or remained constant with broadening taxonomic resolution from species to order or even phylum level. These results support the niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches. PMID:27177191

  5. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  6. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    ERIC Educational Resources Information Center

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  7. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process

    PubMed Central

    Woese, Carl R.; Olsen, Gary J.; Ibba, Michael; Söll, Dieter

    2000-01-01

    The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the “gemini group.” (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense. PMID:10704480

  8. Leadership, followership, and evolution: some lessons from the past.

    PubMed

    Van Vugt, Mark; Hogan, Robert; Kaiser, Robert B

    2008-04-01

    This article analyzes the topic of leadership from an evolutionary perspective and proposes three conclusions that are not part of mainstream theory. First, leading and following are strategies that evolved for solving social coordination problems in ancestral environments, including in particular the problems of group movement, intragroup peacekeeping, and intergroup competition. Second, the relationship between leaders and followers is inherently ambivalent because of the potential for exploitation of followers by leaders. Third, modern organizational structures are sometimes inconsistent with aspects of our evolved leadership psychology, which might explain the alienation and frustration of many citizens and employees. The authors draw several implications of this evolutionary analysis for leadership theory, research, and practice.

  9. Antibody Epitope Analysis to Investigate Folded Structure, Allosteric Conformation, and Evolutionary Lineage of Proteins.

    PubMed

    Wong, Sienna; Jin, J-P

    2017-01-01

    Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Polyandry-fecundity relationship in insects: methodological and conceptual problems.

    PubMed

    Torres-Vila, L M

    2013-02-01

    Polyandry is perhaps the most puzzling component of mating systems because the fitness benefits for females of mating with more than one male during lifetime are poorly understood. The occurrence and extent of polyandry varies considerably both among and within species, and a positive association between polyandry and fecundity is widespread but not universal. The scenario is further complicated because the scientific literature on this issue includes studies that are often inconclusive or contradictory even for the same target species. A previous meta-analysis detected the crucial importance of two usually neglected aspects that potentially bias the interpretation of primary studies about the polyandry-fecundity relationship: the methodological approach--experimental or descriptive--and the polyandry concept itself--realized or potential. In this paper, we experimentally test the effect of these aspects with the moth Lobesia botrana. We used an innovative protocol in which the experimental and the descriptive methods were conducted simultaneously on the same target population and the results were then interpreted from the perspective of both concepts of polyandry. The results clearly showed that 1) the conclusions about the polyandry-fecundity relationship were strongly dependent on the methodological approach used and 2) the concept of polyandry invoked by the researcher was a confounding effect that potentially biases data interpretation. We suggest that greater attention must be paid to intraspecific variation among females in their propensity to remate. The differentiation in experimental studies between potentially polyandrous and monandrous phenotypes could greatly improve our knowledge about the maintenance of female mating polymorphism in most species and the adaptive significance of polyandry. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  11. Helminths and Cancers From the Evolutionary Perspective.

    PubMed

    Scholte, Larissa L S; Pascoal-Xavier, Marcelo A; Nahum, Laila A

    2018-01-01

    Helminths include free-living and parasitic Platyhelminthes and Nematoda which infect millions of people worldwide. Some Platyhelminthes species of blood flukes ( Schistosoma haematobium, Schistosoma japonicum , and Schistosoma mansoni ) and liver flukes ( Clonorchis sinensis and Opisthorchis viverrini ) are known to be involved in human cancers. Other helminths are likely to be carcinogenic. Our main goals are to summarize the current knowledge of human cancers caused by Platyhelminthes, point out some helminth and human biomarkers identified so far, and highlight the potential contributions of phylogenetics and molecular evolution to cancer research. Human cancers caused by helminth infection include cholangiocarcinoma, colorectal hepatocellular carcinoma, squamous cell carcinoma, and urinary bladder cancer. Chronic inflammation is proposed as a common pathway for cancer initiation and development. Furthermore, different bacteria present in gastric, colorectal, and urogenital microbiomes might be responsible for enlarging inflammatory and fibrotic responses in cancers. Studies have suggested that different biomarkers are involved in helminth infection and human cancer development; although, the detailed mechanisms remain under debate. Different helminth proteins have been studied by different approaches. However, their evolutionary relationships remain unsolved. Here, we illustrate the strengths of homology identification and function prediction of uncharacterized proteins from genome sequencing projects based on an evolutionary framework. Together, these approaches may help identifying new biomarkers for disease diagnostics and intervention measures. This work has potential applications in the field of phylomedicine (evolutionary medicine) and may contribute to parasite and cancer research.

  12. Teaching Tree-Thinking to Undergraduate Biology Students.

    PubMed

    Meisel, Richard P

    2010-07-27

    Evolution is the unifying principle of all biology, and understanding how evolutionary relationships are represented is critical for a complete understanding of evolution. Phylogenetic trees are the most conventional tool for displaying evolutionary relationships, and "tree-thinking" has been coined as a term to describe the ability to conceptualize evolutionary relationships. Students often lack tree-thinking skills, and developing those skills should be a priority of biology curricula. Many common student misconceptions have been described, and a successful instructor needs a suite of tools for correcting those misconceptions. I review the literature on teaching tree-thinking to undergraduate students and suggest how this material can be presented within an inquiry-based framework.

  13. Using single cell sequencing data to model the evolutionary history of a tumor.

    PubMed

    Kim, Kyung In; Simon, Richard

    2014-01-24

    The introduction of next-generation sequencing (NGS) technology has made it possible to detect genomic alterations within tumor cells on a large scale. However, most applications of NGS show the genetic content of mixtures of cells. Recently developed single cell sequencing technology can identify variation within a single cell. Characterization of multiple samples from a tumor using single cell sequencing can potentially provide information on the evolutionary history of that tumor. This may facilitate understanding how key mutations accumulate and evolve in lineages to form a heterogeneous tumor. We provide a computational method to infer an evolutionary mutation tree based on single cell sequencing data. Our approach differs from traditional phylogenetic tree approaches in that our mutation tree directly describes temporal order relationships among mutation sites. Our method also accommodates sequencing errors. Furthermore, we provide a method for estimating the proportion of time from the earliest mutation event of the sample to the most recent common ancestor of the sample of cells. Finally, we discuss current limitations on modeling with single cell sequencing data and possible improvements under those limitations. Inferring the temporal ordering of mutational sites using current single cell sequencing data is a challenge. Our proposed method may help elucidate relationships among key mutations and their role in tumor progression.

  14. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    PubMed Central

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of phylogenetic diversity in the mega-phylogeny were more consistent, thereby removing a potential source of bias at the plot-level, and demonstrating the value of assessing phylogenetic relationships simultaneously within a mega-phylogeny. An unexpected result of the comparisons among plots based on the mega-phylogeny was that the communities in the ForestGEO plots in general appear to be assemblages of more closely related species than expected by chance, and that differentiation among communities is very low, suggesting deep floristic connections among communities and new avenues for future analyses in community ecology. PMID:25414723

  15. Commitment in Age-Gap Heterosexual Romantic Relationships: A Test of Evolutionary and Socio-Cultural Predictions

    ERIC Educational Resources Information Center

    Lehmiller, Justin J.; Agnew, Christopher R.

    2008-01-01

    Little research has addressed age-gap romantic relationships (romantic involvements characterized by substantial age differences between partners). Drawing on evolutionary and socio-cultural perspectives, the present study examined normative beliefs and commitment processes among heterosexual women involved in age-gap and age-concordant…

  16. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria).

    PubMed

    Bapst, D W; Wright, A M; Matzke, N J; Lloyd, G T

    2016-07-01

    Dated phylogenies of fossil taxa allow palaeobiologists to estimate the timing of major divergences and placement of extinct lineages, and to test macroevolutionary hypotheses. Recently developed Bayesian 'tip-dating' methods simultaneously infer and date the branching relationships among fossil taxa, and infer putative ancestral relationships. Using a previously published dataset for extinct theropod dinosaurs, we contrast the dated relationships inferred by several tip-dating approaches and evaluate potential downstream effects on phylogenetic comparative methods. We also compare tip-dating analyses to maximum-parsimony trees time-scaled via alternative a posteriori approaches including via the probabilistic cal3 method. Among tip-dating analyses, we find opposing but strongly supported relationships, despite similarity in inferred ancestors. Overall, tip-dating methods infer divergence dates often millions (or tens of millions) of years older than the earliest stratigraphic appearance of that clade. Model-comparison analyses of the pattern of body-size evolution found that the support for evolutionary mode can vary across and between tree samples from cal3 and tip-dating approaches. These differences suggest that model and software choice in dating analyses can have a substantial impact on the dated phylogenies obtained and broader evolutionary inferences. © 2016 The Author(s).

  17. Mating Goals Moderate Power's Effect on Conspicuous Consumption Among Women.

    PubMed

    Zhao, Taiyang; Jin, Xiaotong; Xu, Wei; Zuo, Xiaomeng; Cui, Hongjing

    2017-01-01

    This study aimed to use evolutionary psychology to explain conspicuous consumption's relationship with mating goals among women. We used experiments to show that power moderates conspicuous consumption's relationship with mating goals among women through an underlying relationship with women's social comparison tendencies. In Study 1, the participants read a passage describing a young woman wearing a coat made by a conspicuous brand (vs. an ordinary brand) who aimed to attract a desired man (vs. aiming to guard against potential competitors' attempts to disrupt her established intimate relationship). Participants in the conspicuous-brand condition were more confident that the young woman would succeed in mate attraction and guarding than participants in the ordinary-brand condition, suggesting the participants believed the conspicuous brands facilitated mate attraction and mate guarding more than ordinary brands. Study 2 manipulated the participants' power states and mating goals and measured participants' social comparison tendencies and conspicuous consumption index values. In the mate-guarding condition, high-power participants showed more inclination toward conspicuous consumption than low-power participants. In the mate-attraction condition, low-power participants showed a greater inclination toward conspicuous consumption than did high-power participants. Comparison orientation also mediated power's effect on conspicuous consumption inclination. The evolutionary psychological basis for the above findings is discussed, and suggestions are offered regarding product marketing.

  18. Identification of Microbial Pathogens in Periodontal disease and Diabetic patients of South Indian Population

    PubMed Central

    Chiranjeevi, Tikka; Prasad, Osuru Hari; Prasad, Uppu Venkateswara; Kumar, Avula Kishor; Chakravarthi, Veeraraghavulu Praveen; Rao, Paramala Balaji; Sarma, Potuguchi Venkata Gurunadha Krishna; Reddy, Nagi reddy Raveendra; Bhaskar, Matcha

    2014-01-01

    Periodontitis have been referred to as the sixth complication of diabetes found in high prevalence among diabetic patients than among healthy controls. The aim of the present study was to examine the periodontal disease status among collected dental plaque samples. Chromosomal DNA was isolated and amplified by universal primers. The DNA was sequenced for bacterial confirmation and phylogenetic analysis performed for the evolutionary relationship with other known pathogens. No amplification products were observed in groups labeled non periodontal and non Diabetes (NP&ND) and non Periodontal and Diabetes (NP&D). But in the case of Periodontal and non Diabetes (P&ND) groups 22 amplified products were observed. In case of Periodontal and Diabetes (P&D), 32 amplified products were positive for microbes. Among the four microbial groups, Treponemadenticola, and Tannerella forsythia were found to be prevalent in P&D. The phylogenetic analysis of 16s rRNA of Treponemadenticola showed the relationship with other Treponema oral pathogen species and with the Spirochaetazuelaera. Tannerella forsythia shows its evolutionary relationship only with four oral pathogens (Macellibacteroidesfermentans, Porphyromadaceae bacterium, Parabacteroidesmeredae and Bacillus fosythus). Prevotellaintermedia also showed its evolutionary relationship only with Prevotella Spcs while Fusobacterium revealed close evolutionary relationship only with Porpiromonasgingivalis. PMID:24966528

  19. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  20. Teaching Tree-Thinking to Undergraduate Biology Students

    PubMed Central

    2011-01-01

    Evolution is the unifying principle of all biology, and understanding how evolutionary relationships are represented is critical for a complete understanding of evolution. Phylogenetic trees are the most conventional tool for displaying evolutionary relationships, and “tree-thinking” has been coined as a term to describe the ability to conceptualize evolutionary relationships. Students often lack tree-thinking skills, and developing those skills should be a priority of biology curricula. Many common student misconceptions have been described, and a successful instructor needs a suite of tools for correcting those misconceptions. I review the literature on teaching tree-thinking to undergraduate students and suggest how this material can be presented within an inquiry-based framework. PMID:21572571

  1. Bacterial group II introns: not just splicing.

    PubMed

    Toro, Nicolás; Jiménez-Zurdo, José Ignacio; García-Rodríguez, Fernando Manuel

    2007-04-01

    Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed.

  2. When Relationships Depicted Diagrammatically Conflict with Prior Knowledge: An Investigation of Students' Interpretations of Evolutionary Trees

    ERIC Educational Resources Information Center

    Novick, Laura R.; Catley, Kefyn M.

    2014-01-01

    Science is an important domain for investigating students' responses to information that contradicts their prior knowledge. In previous studies of this topic, this information was communicated verbally. The present research used diagrams, specifically trees (cladograms) depicting evolutionary relationships among taxa. Effects of college…

  3. Rape avoidance behavior among Slovak women.

    PubMed

    Prokop, Pavol

    2013-05-28

    Rape has been a recurrent adaptive problem for many species, including humans. Rape is costly to women in terms of disease transmission, partner abandonment, and unwanted pregnancy (among other costs). Therefore, behavioral strategies which allow women to avoid coercive men may have been favored by selection. In line with this evolutionary reasoning, the current research documented that physically stronger women and those in a committed romantic relationship reported more rape avoidance behavior. In addition, virgin women tended to perform more rape avoidance behavior compared with their non-virgin counterparts. Women with high conception risk perceived themselves as physically stronger, which may protect them against a potential rapist. Fear of unwanted pregnancy from rape decreased as age increased, reflecting higher fertility among younger participants. However, older women reported more rape avoidance behavior, which contradicts evolutionary predictions. The results provide some support for evolutionary hypotheses of rape avoidance behavior which suggest that woman's perception of rape is influenced by parental investment and perceived physical condition.

  4. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate

    PubMed Central

    Dehal, Paramvir; Boore, Jeffrey L

    2005-01-01

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage. PMID:16128622

  5. Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal.

    PubMed

    Minaya, Miguel; Díaz-Pérez, Antonio; Mason-Gamer, Roberta; Pimentel, Manuel; Catalán, Pilar

    2015-10-01

    Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG β-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether β-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the β-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the β-amylase exon+intron positions is optimal at all taxonomic levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Why get big in the cold? Size-fecundity relationships explain the temperature-size rule in a pulmonate snail (Physa).

    PubMed

    Arendt, J

    2015-01-01

    Most ectotherms follow a pattern of size plasticity known as the temperature-size rule where individuals reared in cold environments are larger at maturation than those reared in warm environments. This pattern seems maladaptive because growth is slower in the cold so it takes longer to reach a large size. However, it may be adaptive if reaching a large size has a greater benefit in a cold than in a warm environment such as when size-dependent mortality or size-dependent fecundity depends on temperature. I present a theoretical model showing how a correlation between temperature and the size-fecundity relationship affects optimal size at maturation. I parameterize the model using data from a freshwater pulmonate snail from the genus Physa. Nine families were reared from hatching in one of three temperature regimes (daytime temperature of 22, 25 or 28 °C, night-time temperature of 22 °C, under a 12L:12D light cycle). Eight of the nine families followed the temperature-size rule indicating genetic variation for this plasticity. As predicted, the size-fecundity relationship depended upon temperature; fecundity increases steeply with size in the coldest treatment, less steeply in the intermediate treatment, and shows no relationship with size in the warmest treatment. Thus, following the temperature-size rule is adaptive for this species. Although rarely measured under multiple conditions, size-fecundity relationships seem to be sensitive to a number of environmental conditions in addition to temperature including local productivity, competition and predation. If this form of plasticity is as widespread as it appears to be, this model shows that such plasticity has the potential to greatly modify current life-history theory. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Phylogenetic and population genetic analyses of diploid Leucaena (Leguminosae; Mimosoideae) reveal cryptic species diversity and patterns of divergent allopatric speciation.

    PubMed

    Govindarajulu, Rajanikanth; Hughes, Colin E; Bailey, C Donovan

    2011-12-01

    Leucaena comprises 17 diploid species, five tetraploid species, and a complex series of hybrids whose evolutionary histories have been influenced by human seed translocation, cultivation, and subsequent spontaneous hybridization. Here we investigated patterns of evolutionary divergence among diploid Leucaena through comprehensively sampled multilocus phylogenetic and population genetic approaches to address species delimitation, interspecific relationships, hybridization, and the predominant mode of speciation among diploids. Parsimony- and maximum-likelihood-based phylogenetic approaches were applied to 59 accessions sequenced for six SCAR-based nuclear loci, nrDNA ITS, and four cpDNA regions. Population genetic comparisons included 1215 AFLP loci representing 42 populations and 424 individuals. Phylogenetic results provided a well-resolved hypothesis of divergent species relationships, recovering previously recognized clades of diploids as well as newly resolved relationships. Phylogenetic and population genetic assessments identified two cryptic species that are consistent with geography and morphology. Findings from this study highlight the importance and utility of multilocus data in the recovery of complex evolutionary histories. The results are consistent with allopatric divergence representing the predominant mode of speciation among diploid Leucaena. These findings contrast with the potential hybrid origin of several tetraploid species and highlight the importance of human translocation of seed to the origin of these tetraploids. The recognition of one previously unrecognized species (L. cruziana) and the elevation of another taxon (L. collinsii subsp. zacapana) to specific status (L. zacapana) is consistent with a growing number of newly diagnosed species from neotropical seasonally dry forests, suggesting these communities harbor greater species diversity than previously recognized.

  8. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Homosexual mating preferences from an evolutionary perspective: sexual selection theory revisited.

    PubMed

    Gobrogge, Kyle L; Perkins, Patrick S; Baker, Jessica H; Balcer, Kristen D; Breedlove, S Marc; Klump, Kelly L

    2007-10-01

    Studies in evolutionary psychology and sexual selection theory show that heterosexual men prefer younger mating partners than heterosexual women in order to ensure reproductive success. However, previous research has generally not examined differences in mating preferences as a function of sexual orientation or the type of relationship sought in naturalistic settings. Given that homosexual men seek partners for reasons other than procreation, they may exhibit different mating preferences than their heterosexual counterparts. Moreover, mating preferences may show important differences depending on whether an individual is seeking a long-term versus a short-term relationship. The purpose of the present study was to examine these issues by comparing partner preferences in terms of age and relationship type between homosexual and heterosexual men placing internet personal advertisements. Participants included 439 homosexual and 365 heterosexual men who placed internet ads in the U.S. or Canada. Ads were coded for the participant's age, relationship type (longer-term or short-term sexual encounter) sought, and partner age preferences. Significantly more homosexual than heterosexual men sought sexual encounters, although men (regardless of sexual orientation) seeking sexual encounters preferred a significantly wider age range of partners than men seeking longer-term relationships. These findings suggest that partner preferences are independent of evolutionary drives to procreate, since both types of men preferred similar ages in their partners. In addition, they highlight the importance of examining relationship type in evolutionary studies of mating preferences, as men's partner preferences show important differences depending upon the type of relationship sought.

  10. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

    Treesearch

    K.D. Klepzig; A.S. Adams; J. Handelsman; K.F. Raffa

    2009-01-01

    Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological,evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host...

  11. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

    Treesearch

    Kier Klepzig; A.S. Adams; J Handelsman; K.F. Raffa

    2009-01-01

    Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological, evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host...

  12. Determination of evolutionary relationships of outbreak-associated Listeria monocytogenes strains of serotypes 1/2a and 1/2b by whole-genome sequencing

    USDA-ARS?s Scientific Manuscript database

    We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or “epidemic clones” that have been previously associated with outb...

  13. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  14. Universal scaling in the branching of the tree of life.

    PubMed

    Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M

    2008-07-23

    Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.

  15. Evolutionary Creation: Moving beyond the Evolution versus Creation Debate

    ERIC Educational Resources Information Center

    Lamoureux, Denis O.

    2010-01-01

    Evolutionary creation offers a conservative Christian approach to evolution. It explores biblical faith and evolutionary science through a Two Divine Books model and proposes a complementary relationship between Scripture and science. The Book of God's Words discloses the spiritual character of the world, while the Book of God's Works reveals the…

  16. Beyond the Pleistocene: Using Phylogeny and Constraint to Inform the Evolutionary Psychology of Human Mating

    ERIC Educational Resources Information Center

    Eastwick, Paul W.

    2009-01-01

    Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the…

  17. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    PubMed

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Computationally mapping sequence space to understand evolutionary protein engineering.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce

    2008-01-01

    Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.

  19. Genomic Comparison of the P-ATPase Gene Family in Four Cotton Species and Their Expression Patterns in Gossypium hirsutum.

    PubMed

    Chen, Wen; Si, Guo-Yang; Zhao, Gang; Abdullah, Muhammad; Guo, Ning; Li, Da-Hui; Sun, Xu; Cai, Yong-Ping; Lin, Yi; Gao, Jun-Shan

    2018-05-05

    Plant P-type H⁺-ATPase (P-ATPase) is a membrane protein existing in the plasma membrane that plays an important role in the transmembrane transport of plant cells. To understand the variety and quantity of P-ATPase proteins in different cotton species, we combined four databases from two diploid cotton species ( Gossypium raimondii and G. arboreum ) and two tetraploid cotton species ( G. hirsutum and G. barbadense ) to screen the P-ATPase gene family and resolved the evolutionary relationships between the former cotton species. We identified 53, 51, 99 and 98 P-ATPase genes from G. arboretum, G. raimondii , G. barbadense and G. hirsutum , respectively. The structural and phylogenetic analyses revealed that the gene structure was consistent between P-ATPase genes, with a close evolutionary relationship. The expression analysis of P-ATPase genes showed that many P-ATPase genes were highly expressed in various tissues and at different fiber developmental stages in G. hirsutum , suggesting that they have potential functions during growth and fiber development in cotton.

  20. Integrative View of α2,3-Sialyltransferases (ST3Gal) Molecular and Functional Evolution in Deuterostomes: Significance of Lineage-Specific Losses

    PubMed Central

    Petit, Daniel; Teppa, Elin; Mir, Anne-Marie; Vicogne, Dorothée; Thisse, Christine; Thisse, Bernard; Filloux, Cyril; Harduin-Lepers, Anne

    2015-01-01

    Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions. PMID:25534026

  1. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer.

    PubMed

    Boto, Luis

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  2. Allele-specific gene expression in a wild nonhuman primate population

    PubMed Central

    Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.

    2015-01-01

    Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779

  3. Climate change and evolutionary adaptation.

    PubMed

    Hoffmann, Ary A; Sgrò, Carla M

    2011-02-24

    Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.

  4. Accurate quantification of within- and between-host HBV evolutionary rates requires explicit transmission chain modelling.

    PubMed

    Vrancken, Bram; Suchard, Marc A; Lemey, Philippe

    2017-07-01

    Analyses of virus evolution in known transmission chains have the potential to elucidate the impact of transmission dynamics on the viral evolutionary rate and its difference within and between hosts. Lin et al. (2015, Journal of Virology , 89/7: 3512-22) recently investigated the evolutionary history of hepatitis B virus in a transmission chain and postulated that the 'colonization-adaptation-transmission' model can explain the differential impact of transmission on synonymous and non-synonymous substitution rates. Here, we revisit this dataset using a full probabilistic Bayesian phylogenetic framework that adequately accounts for the non-independence of sequence data when estimating evolutionary parameters. Examination of the transmission chain data under a flexible coalescent prior reveals a general inconsistency between the estimated timings and clustering patterns and the known transmission history, highlighting the need to incorporate host transmission information in the analysis. Using an explicit genealogical transmission chain model, we find strong support for a transmission-associated decrease of the overall evolutionary rate. However, in contrast to the initially reported larger transmission effect on non-synonymous substitution rate, we find a similar decrease in both non-synonymous and synonymous substitution rates that cannot be adequately explained by the colonization-adaptation-transmission model. An alternative explanation may involve a transmission/establishment advantage of hepatitis B virus variants that have accumulated fewer within-host substitutions, perhaps by spending more time in the covalently closed circular DNA state between each round of viral replication. More generally, this study illustrates that ignoring phylogenetic relationships can lead to misleading evolutionary estimates.

  5. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity

    PubMed Central

    Ma, Pikyee; Patching, Simon G.; Ivanova, Ekaterina; Baldwin, Jocelyn M.; Sharples, David; Baldwin, Stephen A.

    2016-01-01

    This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens, and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energized E. coli whole cells conformed to Michaelis–Menten kinetics with an apparent affinity (K mapp) of 24 ± 3 μM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilized from inner membranes using n-dodecyl-β-d-maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI. PMID:26967546

  6. From genes to ecosystems: Measuring evolutionary diversity and community structure with Forest Inventory and Analysis (FIA) data

    Treesearch

    Kevin M. Potter

    2009-01-01

    Forest genetic sustainability is an important component of forest health because genetic diversity and evolutionary processes allow for the adaptation of species and for the maintenance of ecosystem functionality and resilience. Phylogenetic community analyses, a set of new statistical methods for describing the evolutionary relationships among species, offer an...

  7. ["Long-branch Attraction" artifact in phylogenetic reconstruction].

    PubMed

    Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping

    2007-06-01

    Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.

  8. Parasites, ecosystems and sustainability: an ecological and complex systems perspective.

    PubMed

    Horwitz, Pierre; Wilcox, Bruce A

    2005-06-01

    Host-parasite relationships can be conceptualised either narrowly, where the parasite is metabolically dependent on the host, or more broadly, as suggested by an ecological-evolutionary and complex systems perspective. In this view Host-parasite relationships are part of a larger set of ecological and co-evolutionary interdependencies and a complex adaptive system. These interdependencies affect not just the hosts, vectors, parasites, the immediate agents, but also those indirectly or consequentially affected by the relationship. Host-parasite relationships also can be viewed as systems embedded within larger systems represented by ecological communities and ecosystems. So defined, it can be argued that Host-parasite relationships may often benefit their hosts and contribute significantly to the structuring of ecological communities. The broader, complex adaptive system view also contributes to understanding the phenomenon of disease emergence, the ecological and evolutionary mechanisms involved, and the role of parasitology in research and management of ecosystems in light of the apparently growing problem of emerging infectious diseases in wildlife and humans. An expanded set of principles for integrated parasite management is suggested by this perspective.

  9. Evolutionary divergency of giant tortoises in Gal?pagos

    USGS Publications Warehouse

    Fritts, T.H.

    1984-01-01

    The giant tortoises in the Galapagos Archipelago diverge considerably in size, and in shape and other carapace characteristics. The saddleback morphotype is known only from insular faunas lacking large terrestrial predators (i.e. Galapagos and Mauritius) and in Galapagos is associated with xeric habitats where vertical feeding range and vertical reach in agonistic encounters are adaptive. The large domed morphotype is associated with relatively cool, mesic habitats where intraspecific competition for food and other resources may be less intense than in xeric habitats. Other external characteristics that differ between tortoise populations are also correlated with ecological variation. Tortoises have radiated into a mosaic of ecological conditions in the Galapagos but critical data are lacking on the role of genetic and environmental controls on phenotypic variation. Morphological divergence in tortoises is potentially a better indicator of present ecological conditions than of evolutionary relationships.

  10. The Relationship Between College Zoology Students' Religious Beliefs and Their Ability to Objectively View the Scientific Evidence Supporting Evolutionary Theory.

    ERIC Educational Resources Information Center

    Sinclair, Anne; Baldwin, Beatrice

    An anonymous 12-item, multiple-choice questionnaire was administered to 218 southern college, introductory zoology students prior to and following a study of evolutionary theory to assess their understanding and acceptance of the credibility of the evidence supporting the theory. Key topics addressed were the history of evolutionary thought, basic…

  11. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  12. Global patterns of the beta diversity-energy relationship in terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Xiao, Ming

    2012-02-01

    Patterns in beta diversity or species turnover, describing the change in species composition between places, have their wide implication for ecological and evolutionary issues. It is thought that beta diversity increases with increasing energy availability, but very few studies have directly tested this hypothesis. We examined the beta diversity-energy relationship for four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) in ecoregions across the world. The relationship was examined for each class in each of six biogeographic realms. We show that beta diversity is generally higher in areas with higher energy availability, measured as annual potential evapotranspiration. A higher level of beta diversity in areas with higher energy availability may have contributed to the well-known latitudinal diversity gradient (i.e., species richness increases towards the equator).

  13. Mean-Potential Law in Evolutionary Games

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  14. Functional Evolution of PLP-dependent Enzymes based on Active-Site Structural Similarities

    PubMed Central

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-01-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5’-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the Comparison of Protein Active Site Structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. PMID:24920327

  15. Functional evolution of PLP-dependent enzymes based on active-site structural similarities.

    PubMed

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-10-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. © 2014 Wiley Periodicals, Inc.

  16. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura)

    PubMed Central

    2010-01-01

    Background Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships. Results This study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families. Conclusions The diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events early in the association between anoplurans and mammals, there is substantial conflict between the host and parasite phylogenies. This conflict is likely the result of a complex history of host switching and extinction events that occurred throughout the evolutionary association between sucking lice and their mammalian hosts. It is unlikely that there are any ectoparasite groups (including lice) that tracked the early and rapid radiation of eutherian mammals. PMID:20860811

  17. A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility

    PubMed Central

    2014-01-01

    Background Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution. Results We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant’s active conformation. We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. Conclusions We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility. PMID:24716445

  18. The many voices of Darwin's descendants: reply to Schmitt (2014).

    PubMed

    Eastwick, Paul W; Luchies, Laura B; Finkel, Eli J; Hunt, Lucy L

    2014-05-01

    This article elaborates on evolutionary perspectives relevant to the meta-analytic portion of our recent review (Eastwick, Luchies, Finkel, & Hunt, 2014). We suggested that if men and women evolved sex-differentiated ideals (i.e., mate preferences), then they should exhibit sex-differentiated desires (e.g., romantic attraction) and/or relational outcomes (e.g., relationship satisfaction) with respect to live opposite-sex targets. Our meta-analysis revealed no support for these sex-differentiated desires and relational outcomes in either established relationship or mate selection contexts. With respect to established relationships, Schmitt (2014) has objected to the idea that relationship quality (one of our primarily romantic evaluation dependent measures) has functional relevance. In doing so, he neglects myriad evolutionary perspectives on the adaptive importance of the pair-bond and the wealth of data suggesting that relationship quality predicts the dissolution of pair-bonds. With respect to mate selection, Schmitt (2014) has continued to suggest that sex-differentiated patterns should emerge in these contexts despite the fact that our meta-analysis included this literature and found no sex differences. Schmitt (2014) also generated several novel sex-differentiated predictions with respect to attractiveness and earning prospects, but neither the existing literature nor reanalyses of our meta-analytic data reveal any support for his "proper" function-related hypotheses. In short, there are diverse evolutionary perspectives relevant to mating, including our own synthesis; Schmitt's (2014) conceptual analysis is not the one-and-only evolutionary psychological view, and his alternative explanations for our meta-analytic data remain speculative.

  19. Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification.

    PubMed

    Citadini, J M; Brandt, R; Williams, C R; Gomes, F R

    2018-03-01

    The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post-cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi-aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein-Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi-aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi-aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  20. Facial attractiveness, symmetry, and physical fitness in young women.

    PubMed

    Hönekopp, Johannes; Bartholomé, Tobias; Jansen, Gregor

    2004-06-01

    This study explores the evolutionary-based hypothesis that facial attractiveness (a guiding force in mate selection) is a cue for physical fitness (presumably an important contributor to mate value in ancestral times). Since fluctuating asymmetry, a measure of developmental stability, is known to be a valid cue for fitness in several biological domains, we scrutinized facial asymmetry as a potential mediator between attractiveness and fitness. In our sample of young women, facial beauty indeed indicated physical fitness. The relationships that pertained to asymmetry were in the expected direction. However, a closer analysis revealed that facial asymmetry did not mediate the relationship between fitness and attractiveness. Unexpected problems regarding the measurement of facial asymmetry are discussed.

  1. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    PubMed

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  2. Prevalent Role of Gene Features in Determining Evolutionary Fates of Whole-Genome Duplication Duplicated Genes in Flowering Plants1[W][OA

    PubMed Central

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi

    2013-01-01

    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833

  3. Identifying Evolutionary Patterns of SMBHS Using Characteristic Variables of the Quasar AGNs of eBOSS

    NASA Astrophysics Data System (ADS)

    Martens, Sarah Katherine; Wilcots, Eric M.

    2017-01-01

    We investigate the redshift distribution and environmental conditions of quasar AGNs. The importance of studying these relationships is to use the evolutionary patterns of QSOs (features with many quantifiable characteristics) to gain insight into the evolutionary paths and environmental dependencies of their host super massive black holes (SMBHs), which are more difficult to study directly. We employ specific redshift bins within Data Release 13 of the Sloan Digital Sky Survey's (SDSS) Extended Baryonic Oscillation Spectroscopic Survey (eBOSS) and begin with a sample of 595,025 QSOs. We then incorporate overlapping data sets: The Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) which provides the HI detected QSOs in our sample, along with the galaxy group and cluster sample from Tempel, Tago, Liivamägi 2012 which we cross referenced with our QSO sample to see which of them exist in group environments. The addition of these data sets allows us to create a more holistic view of the processes at work within our sample of QSOs. Understanding the HI presence in different evolutionary phases will allow us to draw conclusions on potential star formation rates or quenching, and by understanding the populations of QSOs in galaxy groups we can determine if QSOs exist overwhelmingly in one particular environment and how environmental conditions effect the other characteristics of QSOs. Overall we provide a multi-faceted analysis of some of the evolutionary patterns and cycles of the eBOSS Data Release 13 QSOs and their implications on the evolutionary paths of SMBHs. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  4. Quantitative proteomic analysis reveals evolutionary divergence and species-specific peptides in the Alexandrium tamarense complex (Dinophyceae).

    PubMed

    Li, Cheng; Zhang, Yong; Xie, Zhang-Xian; He, Zhi-Ping; Lin, Lin; Wang, Da-Zhi

    2013-06-28

    The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear. This study compared protein profiles of the A. tamarense complex collected from different geographic regions using the two dimensional fluorescence difference gel electrophoresis (2-D DIGE) approach, and identified species-specific peptides using MALDI-TOF/TOF mass spectrometry. The results showed that three Alexandrium morphotypes presented significantly different protein expression patterns with about 30-40% shared proteins. However, ecotypes from different geographic regions within a species exhibited the same expression patterns, although a few proteins were altered in abundance. Several proteins, i.e. ribulose-1,5-bisphosphate carboxylase oxygenase form II, plastid protein NAP50, methionine S-adenosyltransferase, and peridinin-chlorophyll a-binding protein, were identified and presented different shift patterns in isoelectric point and/or molecular weight in the 2-D DIGE gels, indicating that amino acid mutation and/or posttranslational modification of these proteins had occurred. The species-specific peptide mass fingerprint and amino acid sequence of ribulose-1,5-bisphosphate carboxylase oxygenase were characterized in the A. tamarense complex, and amino acid substitution occurred among them. This study indicated that evolutionary divergence had occurred at the proteomic level in the A. tamarense complex, and that the species-specific peptides could be used as potential biomarkers to distinguish the three morphotypes. Scientific question: The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear, which has seriously impeded our understanding of Alexandrium-causing HABs and, consequently, the monitoring, mitigation and prevention. Technical significance: This study, for the first time, compared the global protein expression patterns of eight ecotypes from the A. tamarense complex and identified species-specific peptides using a quantitative proteomic approach combining 2-D DIGE and MALDI-TOF/TOF MS. This study demonstrated that the evolutionary divergence had occurred in the A. tamarense complex at the proteomic level, and the complex should be classified into three species, i.e. A. tamarense, A. catenella, and A. fundyense. Moreover, the species-specific peptide mass fingerprints could be used as potential biomarkers to distinguish the three morphotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Mean-Potential Law in Evolutionary Games.

    PubMed

    Nałęcz-Jawecki, Paweł; Miękisz, Jacek

    2018-01-12

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  6. Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?

    PubMed Central

    Freire, Caio César de Melo

    2018-01-01

    Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host. PMID:29385205

  7. Body size as a primary determinant of ecomorphological diversification and the evolution of mimicry in the lampropeltinine snakes (Serpentes: Colubridae).

    PubMed

    Pyron, R Alexander; Burbrink, F T

    2009-10-01

    Evolutionary correlations between functionally related character suites are expected as a consequence of coadaptation due to physiological relationships between traits. However, significant correlations may also exist between putatively unrelated characters due to shared relationships between those traits and underlying variables, such as body size. Although such patterns are often dismissed as simple body size scaling, this presumption may overlook important evolutionary patterns of diversification. If body size is the primary determinant of potential diversity in multiple unrelated characters, the observed differentiation of species may be governed by variability in body size, and any biotic or abiotic constraints on the diversification thereof. Here, we demonstrate that traits related to both predatory specialization (gape and diet preference) and predatory avoidance (the development of Batesian mimicry) are phylogenetically correlated in the North American snake tribe Lampropeltini. This is apparently due to shared relationships between those traits and adult body size, suggesting that size is the primary determinant of ecomorphological differentiation in the lampropeltinines. Diversification in body size is apparently not linked to climatic or environmental factors, and may have been driven by interspecific interactions such as competition. Additionally, we find the presence of a 'key zone' for the development of both rattle- and coral snake mimicry; only small snakes feeding primarily on ectothermic prey develop mimetic colour patterns, in or near the range of venomous model species.

  8. Fetal and Early Post-Natal Mineralization of the Tympanic Bulla in Fin Whales May Reveal a Hitherto Undiscovered Evolutionary Trait

    PubMed Central

    Cozzi, Bruno; Podestà, Michela; Mazzariol, Sandro; Zotti, Alessandro

    2012-01-01

    The evolution of the cetacean skeleton followed a path that differentiated this group from other terrestrial mammals about 50 million years ago [1], and debate is still going on about the relationships between Cetacea and Artiodactyla [2], [3], [4]. Some skeletal traits of the basilosaurids (the more advanced forms of Archaeocetes), such as the expansion of the peribullary air sinuses, dental modification and vertebral size uniformity [5] are maintained and further emphasized also in contemporary odontocetes and mysticetes. Using Dual-Energy X-Ray Absorptiometry here we report that the deposition of bone mineral in fetal and newborn specimens of the fin whale Balaenoptera physalus is remarkably higher in the bulla tympanica than in the adjacent basal skull or in the rest of the skeleton. Ossification of the tympanic bulla in fetal Artiodactyla (bovine, hippopotamus) is minimal, becomes sensible after birth and then progresses during growth, contrarily to the precocious mineralization that we observed in fin whales. Given the importance of the ear bones for the precise identification of phylogenetic relationship in therian evolution [6], this feature may indicate a specific evolutionary trait of fin whales and possibly other cetacean species or families. Early mineralization of the tympanic bulla allows immediate sound conduction in the aquatic medium and consequently holds potential importance for mother-calf relationship and postnatal survival. PMID:22615912

  9. A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (gamma-Proteobacteria: Enterobacteriaceae).

    PubMed

    Lee, Ming-Min; Stock, S Patricia

    2010-09-01

    Nematodes of the genus Steinernema Travassos, 1927 (Nematoda: Steinernematidae) and their associated bacteria, Xenorhabdus spp. (gamma-Proteobacteria), are an emergent model of terrestrial animal-microbe symbiosis. Interest in this association initially arose out of their potential as biocontrol agents against insect pests, but, despite advances in their field application and the growing popularity of this model system, relatively little has been published to uncover the evolutionary facets of this beneficial partnership. This study adds to the body of knowledge regarding nematode-bacteria symbiosis by proposing a possible scenario for their historical association in the form of a cophylogenetic hypothesis. Topological and likelihood based testing methods were employed to reconstruct a history of association between 30 host-symbiont pairs and to gauge the level of similarity between their inferred phylogenetic patterns.

  10. Phylomemetics—Evolutionary Analysis beyond the Gene

    PubMed Central

    Howe, Christopher J.; Windram, Heather F.

    2011-01-01

    Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements. PMID:21655311

  11. Evolving Landscapes: the Effect of Genetic Variation on Salt Marsh Erosion

    NASA Astrophysics Data System (ADS)

    Bernik, B. M.; Blum, M. J.

    2014-12-01

    Ecogeomorphic studies have demonstrated that biota can exert influence over geomorphic processes, such as sediment transport, which in turn have biotic consequences and generate complex feedbacks. However, little attention has been paid to the potential for feedback to arise from evolutionary processes as population genetic composition changes in response to changing physical landscapes. In coastal ecosystems experiencing land loss, for example, shoreline erosion entails reduced plant survival and reproduction, and thereby represents a geomorphic response with inherent consequences for evolutionary fitness. To get at this topic, we examined the effect of genetic variation in the saltmarsh grass Spartina alterniflora, a renowned ecosystem engineer, on rates of shoreline erosion. Field transplantation studies and controlled greenhouse experiments were conducted to compare different genotypes from both wild and cultivated populations. Plant traits, soil properties, accretion/subsidence, and rates of land loss were measured. We found significant differences in rates of erosion between field plots occupied by different genotypes. Differences in erosion corresponded to variation in soil properties including critical shear stress and subsidence. Plant traits that differed across genotypes included belowground biomass, root tensile strength, and C:N ratios. Our results demonstrate the importance of genetic variation to salt marsh functioning, elucidating the relationship between evolutionary processes and ecogeomorphic dynamics in these systems. Because evolutionary processes can occur on ecological timescales, the direction and strength of ecogeomorphic feedbacks may be more dynamic than previously accounted for.

  12. Climbing Mount Probable

    ERIC Educational Resources Information Center

    Harper, Marc Allen

    2009-01-01

    This work attempts to explain the relationships between natural selection, information theory, and statistical inference. In particular, a geometric formulation of information theory known as information geometry and its deep connections to evolutionary game theory inform the role of natural selection in evolutionary processes. The goals of this…

  13. Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study.

    PubMed

    Suchan, Tomasz; Espíndola, Anahí; Rutschmann, Sereina; Emerson, Brent C; Gori, Kevin; Dessimoz, Christophe; Arrigo, Nils; Ronikier, Michał; Alvarez, Nadir

    2017-09-01

    Determining phylogenetic relationships among recently diverged species has long been a challenge in evolutionary biology. Cytoplasmic DNA markers, which have been widely used, notably in the context of molecular barcoding, have not always proved successful in resolving such phylogenies. However, with the advent of next-generation-sequencing technologies and associated techniques of reduced genome representation, phylogenies of closely related species have been resolved at a much higher detail in the last couple of years. Here we examine the potential and limitations of one of such techniques-Restriction-site Associated DNA (RAD) sequencing, a method that produces thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of the fly genus Chiastocheta (Diptera: Anthomyiidae). In Europe, this genus encompasses seven species of seed predators, which have been widely studied in the context of their ecological and evolutionary interactions with the plant Trollius europaeus (Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to resolve monophyly of most of the species from this recently diversified genus, suggesting that their taxonomy may need a revision. However, relying on a single, non-recombining marker and ignoring potential incongruences between mitochondrial and nuclear loci may provide an incomplete account of the lineage history. In this study, we applied both classical Sanger sequencing of three mtDNA regions and RAD-sequencing, for reconstructing the phylogeny of the genus. Contrasting with results based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of all seven species, in agreement with the morphological species assignment. We found robust nuclear-based species assignment of individual samples, and low levels of estimated contemporary gene flow among them. However, despite recovering species' monophyly, interspecific relationships varied depending on the set of RAD loci considered, producing contradictory topologies. Moreover, coalescence-based phylogenetic analyses revealed low supports for most of the interspecific relationships. Our results indicate that despite the higher performance of RAD-sequencing in terms of species trees resolution compared to cytoplasmic markers, reconstructing inter-specific relationships among recently-diverged lineages may lie beyond the possibilities offered by large sets of RAD-sequencing markers in cases of strong gene tree incongruence. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation.

    PubMed

    Zhou, Jiyun; Lu, Qin; Xu, Ruifeng; He, Yulan; Wang, Hongpeng

    2017-08-29

    Prediction of DNA-binding residue is important for understanding the protein-DNA recognition mechanism. Many computational methods have been proposed for the prediction, but most of them do not consider the relationships of evolutionary information between residues. In this paper, we first propose a novel residue encoding method, referred to as the Position Specific Score Matrix (PSSM) Relation Transformation (PSSM-RT), to encode residues by utilizing the relationships of evolutionary information between residues. PDNA-62 and PDNA-224 are used to evaluate PSSM-RT and two existing PSSM encoding methods by five-fold cross-validation. Performance evaluations indicate that PSSM-RT is more effective than previous methods. This validates the point that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction. An ensemble learning classifier (EL_PSSM-RT) is also proposed by combining ensemble learning model and PSSM-RT to better handle the imbalance between binding and non-binding residues in datasets. EL_PSSM-RT is evaluated by five-fold cross-validation using PDNA-62 and PDNA-224 as well as two independent datasets TS-72 and TS-61. Performance comparisons with existing predictors on the four datasets demonstrate that EL_PSSM-RT is the best-performing method among all the predicting methods with improvement between 0.02-0.07 for MCC, 4.18-21.47% for ST and 0.013-0.131 for AUC. Furthermore, we analyze the importance of the pair-relationships extracted by PSSM-RT and the results validates the usefulness of PSSM-RT for encoding DNA-binding residues. We propose a novel prediction method for the prediction of DNA-binding residue with the inclusion of relationship of evolutionary information and ensemble learning. Performance evaluation shows that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction and ensemble learning can be used to address the data imbalance issue between binding and non-binding residues. A web service of EL_PSSM-RT ( http://hlt.hitsz.edu.cn:8080/PSSM-RT_SVM/ ) is provided for free access to the biological research community.

  15. Evolutionary origins of leadership and followership.

    PubMed

    Van Vugt, Mark

    2006-01-01

    Drawing upon evolutionary logic, leadership is reconceptualized in terms of the outcome of strategic interactions among individuals who are following different, yet complementary, decision rules to solve recurrent coordination problems. This article uses the vast psychological literature on leadership as a database to test several evolutionary hypotheses about the origins of leadership and followership in humans. As expected, leadership correlates with initiative taking, trait measures of intelligence, specific task competencies, and several indicators of generosity. The review finds no link between leadership and dominance. The evolutionary analysis accounts for reliable age, health, and sex differences in leadership emergence. In general, evolutionary theory provides a useful, integrative framework for studying leader-follower relationships and generates various novel research hypotheses.

  16. Does aquatic foraging impact head shape evolution in snakes?

    PubMed Central

    Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-01-01

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887

  17. Host association influences variation at salivary protein genes in the bat ectoparasite Cimex adjunctus.

    PubMed

    Talbot, Benoit; Vonhof, Maarten J; Broders, Hugh G; Fenton, Brock; Keyghobadi, Nusha

    2018-05-01

    Parasite-host relationships create strong selection pressures that can lead to adaptation and increasing specialization of parasites to their hosts. Even in relatively loose host-parasite relationships, such as between generalist ectoparasites and their hosts, we may observe some degree of specialization of parasite populations to one of the multiple potential hosts. Salivary proteins are used by blood-feeding ectoparasites to prevent hemostasis in the host and maximize energy intake. We investigated the influence of association with specific host species on allele frequencies of salivary protein genes in Cimex adjunctus, a generalist blood-feeding ectoparasite of bats in North America. We analysed two salivary protein genes: an apyrase, which hydrolyses ATP at the feeding site and thus inhibits platelet aggregation, and a nitrophorin, which brings nitrous oxide to the feeding site, inhibiting platelet aggregation and vasoconstriction. We observed more variation at both salivary protein genes among parasite populations associated with different host species than among populations from different spatial locations associated with the same host species. The variation in salivary protein genes among populations on different host species was also greater than expected under a neutral scenario of genetic drift and gene flow. Finally, host species was an important predictor of allelic divergence in genotypes of individual C. adjunctus at both salivary protein genes. Our results suggest differing selection pressures on these two salivary protein genes in C. adjunctus depending on the host species. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  18. Ornament size and colour as alternative strategies for effective communication in gliding lizards.

    PubMed

    Klomp, D A; Ord, T J; Das, I; Diesmos, A; Ahmad, N; Stuart-Fox, D

    2016-09-01

    Sexual ornamentation needs to be conspicuous to be effective in attracting potential mates and defending territories and indeed, a multitude of ways exists to achieve this. Two principal mechanisms for increasing conspicuousness are to increase the ornament's colour or brightness contrast against the background and to increase the size of the ornament. We assessed the relationship between the colour and size of the dewlap, a large extendible throat-fan, across a range of species of gliding lizards (Agamidae; genus Draco) from Malaysia and the Philippines. We found a negative relationship across species between colour contrast against the background and dewlap size in males, but not in females, suggesting that males of different species use increasing colour contrast and dewlap size as alternative strategies for effective communication. Male dewlap size also increases with increasing sexual size dimorphism, and dewlap colour and brightness contrast increase with increasing sexual dichromatism in colour and brightness, respectively, suggesting that sexual selection may act on both dewlap size and colour. We further found evidence that relative predation intensity, as measured from predator attacks on models placed in the field, may play a role in the choice of strategy (high chromatic contrast or large dewlap area) a species employs. More broadly, these results highlight that each component in a signal (such as colour or size) may be influenced by different selection pressures and that by assessing components individually, we can gain a greater understanding of the evolution of signal diversity. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Phylogenics & Tree-Thinking

    ERIC Educational Resources Information Center

    Baum, David A.; Offner, Susan

    2008-01-01

    Phylogenetic trees, which are depictions of the inferred evolutionary relationships among a set of species, now permeate almost all branches of biology and are appearing in increasing numbers in biology textbooks. While few state standards explicitly require knowledge of phylogenetics, most require some knowledge of evolutionary biology, and many…

  20. Despotism, democracy, and the evolutionary dynamics of leadership and followership.

    PubMed

    Van Vugt, Mark

    2009-01-01

    Responds to comments made by George B. Graen and Stephen J. Guastello on the current author's article Leadership, followership, and evolution: Some lessons from the past by Van Vugt, Hogan, and Kaiser. In the original article my co-authors and I proposed a new way of thinking about leadership, informed by evolutionary (neo-Darwinian) theory. In the first commentary, Graen noted that we ignored a number of recently developed psychological theories of leadership that take into account the leader-follower relationship, most notably LMX theory. LMX theory asserts that leadership effectiveness and team performance are affected by the quality of working relationships between superior and subordinates. Because the original article primarily dealt with questions about the origins of leadership--the phylogenetic and evolutionary causes--we had to be concise in our review of proximate psychological theories of leadership. In the second commentary, Guastello concurred with the importance of an evolutionary game analysis for studying leadership but disagreed with certain details of our analysis. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  1. Inference is bliss: using evolutionary relationship to guide categorical inferences.

    PubMed

    Novick, Laura R; Catley, Kefyn M; Funk, Daniel J

    2011-01-01

    Three experiments, adopting an evolutionary biology perspective, investigated subjects' inferences about living things. Subjects were told that different enzymes help regulate cell function in two taxa and asked which enzyme a third taxon most likely uses. Experiment 1 and its follow-up, with college students, used triads involving amphibians, reptiles, and mammals (reptiles and mammals are most closely related evolutionarily) and plants, fungi, and animals (fungi are more closely related to animals than to plants). Experiment 2, with 10th graders, also included triads involving mammals, birds, and snakes/crocodilians (birds and snakes/crocodilians are most closely related). Some subjects received cladograms (hierarchical diagrams) depicting the evolutionary relationships among the taxa. The effect of providing cladograms depended on students' background in biology. The results illuminate students' misconceptions concerning common taxa and constraints on their willingness to override faulty knowledge when given appropriate evolutionary evidence. Implications for introducing tree thinking into biology curricula are discussed. Copyright © 2011 Cognitive Science Society, Inc.

  2. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia

    PubMed Central

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M.

    2016-01-01

    Abstract Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints. PMID:28175287

  3. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia.

    PubMed

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M; Ruiz-Herrera, Aurora

    2016-12-01

    Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.

  4. Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes.

    PubMed

    Cui, Rongfeng; Schumer, Molly; Kruesi, Karla; Walter, Ronald; Andolfatto, Peter; Rosenthal, Gil G

    2013-08-01

    Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges. Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high-confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a long-standing controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  5. The evolutionary origins of Syngnathidae: pipefishes and seahorses.

    PubMed

    Wilson, A B; Orr, J W

    2011-06-01

    Despite their importance as evolutionary and ecological model systems, the phylogenetic relationships among gasterosteiforms remain poorly understood, complicating efforts to understand the evolutionary origins of the exceptional morphological and behavioural diversity of this group. The present review summarizes current knowledge on the origin and evolution of syngnathids, a gasterosteiform family with a highly developed form of male parental care, combining inferences based on morphological and molecular data with paleontological evidence documenting the evolutionary history of the group. Molecular methods have provided new tools for the study of syngnathid relationships and have played an important role in recent conservation efforts. Despite recent insights into syngnathid evolution, however, a survey of the literature reveals a strong taxonomic bias towards studies on the species-rich genera Hippocampus and Syngnathus, with a lack of data for many morphologically unique members of the family. The study of the evolutionary pressures responsible for generating the high diversity of syngnathids would benefit from a wider perspective, providing a comparative framework in which to investigate the evolution of the genetic, morphological and behavioural traits of the group as a whole. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  6. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    PubMed

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Acceptance of evolutionary explanations as they are applied to plants, animals, and humans

    NASA Astrophysics Data System (ADS)

    Thanukos, Anastasia

    In four investigations using Likert-scale questionnaires and think-aloud protocols with 173 university students in total, the willingness to accept evolutionary explanations regarding plant, animal, and human characteristics was examined. Participants were presented with evolutionary explanations for features and behaviors and were asked to rate how much they agreed with evolution as an explanation for each scenario. Some were also asked to explain their reasoning in think-aloud protocols or to discuss item ratings with one another. Overall, participants thought evolutionary explanations appropriate, with median ratings in the upper quarter of the rating scale. They were slightly more willing to ascribe evolutionary explanations to plant than to human phenomena; however, this general effect was mediated by more specific aspects of the evolutionary scenarios in question. Participants who were generally negative regarding evolution were particularly negative towards human evolution. Those who were positive or neutral towards evolution in general were more willing to accept human evolution, but were more likely to use evolution to explain similarities between humans and other species than to explain particular human adaptations. For example, they were more likely to agree that evolution is responsible for the DNA similarities between humans and chimpanzees than that evolution is responsible for human behavioral characteristics, such as the fight or flight response. Think-aloud protocols suggest that, while people are more familiar with human evolutionary relationships than plant evolutionary relationships, they may be less likely to see human characteristics as adaptively valuable. One plausible explanation for these patterns is that an evolutionary explanation is judged jointly by its availability in an individual's memory and its plausibility (i.e., its congruence with the individual's worldview). Popular media coverage, with its focus on controversy and litigation, makes it likely that awareness of human evolution is high, compared with plant evolution (which may not even "enter the radar screen" when most people think of evolution). Some aspects of human evolution, such as the basic relationship between all primates, may have become so pedestrian that they do not threaten many individuals' worldviews. However, even for those positively disposed towards evolution, extending the ramifications of human evolution by suggesting that evolution shapes our behaviors and physical traits may pose a threat to their sense of personal agency. This threat is not associated with plant evolution.

  8. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases

    NASA Astrophysics Data System (ADS)

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-10-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  9. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases.

    PubMed

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-01-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  10. Cancer Evolution: Mathematical Models and Computational Inference

    PubMed Central

    Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804

  11. Using genomics to characterize evolutionary potential for conservation of wild populations

    PubMed Central

    Harrisson, Katherine A; Pavlova, Alexandra; Telonis-Scott, Marina; Sunnucks, Paul

    2014-01-01

    Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework. PMID:25553064

  12. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    ERIC Educational Resources Information Center

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  13. Bullying and Evolutionary Psychology: The Dominance Hierarchy among Students and Implications for School Personnel

    ERIC Educational Resources Information Center

    Kolbert, Jered B.; Crothers, Laura M.

    2003-01-01

    The phenomenon of childhood bullying is conceptualized from an evolutionary psychological perspective. In this manuscript, the research literature is examined regarding the role of the relationship between aggression, testosterone, and social status in the development and maintenance of dominance hierarchies, which involve a reciprocal…

  14. A Coevolutionary Arms Race: Understanding Plant-Herbivore Interactions

    ERIC Educational Resources Information Center

    Becklin, Katie M.

    2008-01-01

    Plants and insects share a long evolutionary history characterized by relationships that affect individual, population, and community dynamics. Plant-herbivore interactions are a prominent feature of this evolutionary history; it is by plant-herbivore interactions that energy is transferred from primary producers to the rest of the food web. Not…

  15. The Relationship between College Zoology Students' Beliefs about Evolutionary Theory and Religion.

    ERIC Educational Resources Information Center

    Sinclair, Anne; And Others

    1997-01-01

    Researchers administered surveys to college zoology students prior to, and immediately following a study of evolutionary theory, to assess their understanding and acceptance of evidence supporting the theory. Results showed students had many misconceptions about the theory. Their beliefs interfered with their ability to objectively view scientific…

  16. Multiple regimes of robust patterns between network structure and biodiversity

    NASA Astrophysics Data System (ADS)

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-12-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.

  17. Multiple regimes of robust patterns between network structure and biodiversity

    PubMed Central

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-01-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996

  18. Mate attraction, retention and expulsion.

    PubMed

    Miner, Emily J; Shackelford, Todd K

    2010-02-01

    Sexual selection theory and parental investment theory have guided much of the evolutionary psychological research on human mating. Based on these theories, researchers have predicted and found sex differences in mating preferences and behaviors. Men generally prefer that their long-term partners are youthful and physically attractive. Women generally prefer that their long-term partners have existing resources or clear potential for securing resources and display a willingness to invest those resources in children the relationship might produce. Both men and women, however, desire long-term partners who are kind and intelligent. Once a partner is obtained, men and women act in sex-specific ways to ensure the continuation and exclusivity of the relationship. Men, in particular, engage in behaviors designed to prevent, correct, and anticipate their partner's sexual infidelity. Relationships dissolve for evolutionarily-relevant reasons: infidelity, childlessness, and infertility. The discussion addresses directions for future research.

  19. Shaping up: a geometric morphometric approach to assemblage ecomorphology.

    PubMed

    Bower, L M; Piller, K R

    2015-09-01

    This study adopts an ecomorphological approach to test the utility of body shape as a predictor of niche relationships among a stream fish assemblage of the Tickfaw River (Lake Pontchartrain Basin) in southeastern Louisiana, U.S.A. To examine the potential influence of evolutionary constraints, analyses were performed with and without the influence of phylogeny. Fish assemblages were sampled throughout the year, and ecological data (habitat and tropic guild) and body shape (geometric morphometric) data were collected for each fish specimen. Multivariate analyses were performed to examine relationships and differences between body shape and ecological data. Results indicate that a relationship exists between body shape and trophic guild as well as flow regime, but no significant correlation between body shape and substratum was found. Body shape was a reliable indicator of position within assemblage niche space. © 2015 The Fisheries Society of the British Isles.

  20. The Use of Aftereffects in the Study of Relationships among Emotion Categories

    ERIC Educational Resources Information Center

    Rutherford, M. D.; Chattha, Harnimrat Monica; Krysko, Kristen M.

    2008-01-01

    The perception of visual aftereffects has been long recognized, and these aftereffects reveal a relationship between perceptual categories. Thus, emotional expression aftereffects can be used to map the categorical relationships among emotion percepts. One might expect a symmetric relationship among categories, but an evolutionary, functional…

  1. The masculinity paradox: facial masculinity and beardedness interact to determine women's ratings of men's facial attractiveness.

    PubMed

    Dixson, B J W; Sulikowski, D; Gouda-Vossos, A; Rantala, M J; Brooks, R C

    2016-11-01

    In many species, male secondary sexual traits have evolved via female choice as they confer indirect (i.e. genetic) benefits or direct benefits such as enhanced fertility or survival. In humans, the role of men's characteristically masculine androgen-dependent facial traits in determining men's attractiveness has presented an enduring paradox in studies of human mate preferences. Male-typical facial features such as a pronounced brow ridge and a more robust jawline may signal underlying health, whereas beards may signal men's age and masculine social dominance. However, masculine faces are judged as more attractive for short-term relationships over less masculine faces, whereas beards are judged as more attractive than clean-shaven faces for long-term relationships. Why such divergent effects occur between preferences for two sexually dimorphic traits remains unresolved. In this study, we used computer graphic manipulation to morph male faces varying in facial hair from clean-shaven, light stubble, heavy stubble and full beards to appear more (+25% and +50%) or less (-25% and -50%) masculine. Women (N = 8520) were assigned to treatments wherein they rated these stimuli for physical attractiveness in general, for a short-term liaison or a long-term relationship. Results showed a significant interaction between beardedness and masculinity on attractiveness ratings. Masculinized and, to an even greater extent, feminized faces were less attractive than unmanipulated faces when all were clean-shaven, and stubble and beards dampened the polarizing effects of extreme masculinity and femininity. Relationship context also had effects on ratings, with facial hair enhancing long-term, and not short-term, attractiveness. Effects of facial masculinization appear to have been due to small differences in the relative attractiveness of each masculinity level under the three treatment conditions and not to any change in the order of their attractiveness. Our findings suggest that beardedness may be attractive when judging long-term relationships as a signal of intrasexual formidability and the potential to provide direct benefits to females. More generally, our results hint at a divergence of signalling function, which may result in a subtle trade-off in women's preferences, for two highly sexually dimorphic androgen-dependent facial traits. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  2. Modelling formulations using gene expression programming--a comparative analysis with artificial neural networks.

    PubMed

    Colbourn, E A; Roskilly, S J; Rowe, R C; York, P

    2011-10-09

    This study has investigated the utility and potential advantages of gene expression programming (GEP)--a new development in evolutionary computing for modelling data and automatically generating equations that describe the cause-and-effect relationships in a system--to four types of pharmaceutical formulation and compared the models with those generated by neural networks, a technique now widely used in the formulation development. Both methods were capable of discovering subtle and non-linear relationships within the data, with no requirement from the user to specify the functional forms that should be used. Although the neural networks rapidly developed models with higher values for the ANOVA R(2) these were black box and provided little insight into the key relationships. However, GEP, although significantly slower at developing models, generated relatively simple equations describing the relationships that could be interpreted directly. The results indicate that GEP can be considered an effective and efficient modelling technique for formulation data. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Tapping the woodpecker tree for evolutionary insight.

    PubMed

    Shakya, Subir B; Fuchs, Jérôme; Pons, Jean-Marc; Sheldon, Frederick H

    2017-11-01

    Molecular phylogenetic studies of woodpeckers (Picidae) have generally focused on relationships within specific clades or have sampled sparsely across the family. We compared DNA sequences of six loci from 203 of the 217 recognized species of woodpeckers to construct a comprehensive tree of intrafamilial relationships. We recovered many known, but also numerous unknown, relationships among clades and species. We found, for example, that the three picine tribes are related as follows (Picini, (Campephilini, Melanerpini)) and that the genus Dinopium is paraphyletic. We used the tree to analyze rates of diversification and biogeographic patterns within the family. Diversification rate increased on two occasions during woodpecker history. We also tested diversification rates between temperate and tropical species but found no significant difference. Biogeographic analysis supported an Old World origin of the family and identified at least six independent cases of New World-Old World sister relationships. In light of the tree, we discuss how convergence, mimicry, and potential cases of hybridization have complicated woodpecker taxonomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Biogeographic affinity helps explain productivity-richness relationships at regional and local scales

    USGS Publications Warehouse

    Harrison, S.; Grace, J.B.

    2007-01-01

    The unresolved question of what causes the observed positive relationship between large-scale productivity and species richness has long interested ecologists and evolutionists. Here we examine a potential explanation that we call the biogeographic affinity hypothesis, which proposes that the productivity-richness relationship is a function of species' climatic tolerances that in turn are shaped by the earth's climatic history combined with evolutionary niche conservatism. Using botanical data from regions and sites across California, we find support for a key prediction of this hypothesis, namely, that the productivity-species richness relationship differs strongly and predictably among groups of higher taxa on the basis of their biogeographic affinities (i.e., between families or genera primarily associated with north-temperate, semiarid, or desert zones). We also show that a consideration of biogeographic affinity can yield new insights on how productivity-richness patterns at large geographic scales filter down to affect patterns of species richness and composition within local communities. ?? 2007 by The University of Chicago. All rights reserved.

  5. The potential influence of morphology on the evolutionary divergence of an acoustic signal

    PubMed Central

    Pitchers, W. R.; Klingenberg, C.P.; Tregenza, Tom; Hunt, J.; Dworkin, I.

    2014-01-01

    The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterise the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. PMID:25223712

  6. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria).

    PubMed

    Fukami, Hironobu; Chen, Chaolun Allen; Budd, Ann F; Collins, Allen; Wallace, Carden; Chuang, Yao-Yang; Chen, Chienhsun; Dai, Chang-Feng; Iwao, Kenji; Sheppard, Charles; Knowlton, Nancy

    2008-09-16

    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ss-tubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils.

  7. [The Evolutionary Origin of Placodes and Neural Crest Cells

    NASA Technical Reports Server (NTRS)

    Bronner-Fraser, Marianne

    2003-01-01

    The long-term goal of this NASA-supported research is to understand the evolutionary origin of placodes and neural crest cells, with particular reference to evolution of the inner ear, and their evolutionary and developmental relationships. The cephalochordcate amphioxus, the closest living invertebrate relative of the vertebrates is used as a stand-in for the ancestral vertebrate. The research, which has supported one graduate student, Jr-Kai Yu, has resulted in ten publications by the Holland laboratory in peer-reviewed journals.

  8. Incorporating evolutionary insights to improve ecotoxicology for freshwater species

    USGS Publications Warehouse

    Brady, Steven P.; Richardson, Jonathan L.; Kunz, Bethany K.

    2017-01-01

    Ecotoxicological studies have provided extensive insights into the lethal and sublethal effects of environmental contaminants. These insights are critical for environmental regulatory frameworks, which rely on knowledge of toxicity for developing policies to manage contaminants. While varied approaches have been applied to ecotoxicological questions, perspectives related to the evolutionary history of focal species or populations have received little consideration. Here, we evaluate chloride toxicity from the perspectives of both macroevolution and contemporary evolution. First, by mapping chloride toxicity values derived from the literature onto a phylogeny of macroinvertebrates, fish, and amphibians, we tested whether macroevolutionary relationships across species and taxa are predictive of chloride tolerance. Next, we conducted chloride exposure tests for two amphibian species to assess whether potential contemporary evolutionary change associated with environmental chloride contamination influences chloride tolerance across local populations. We show that explicitly evaluating both macroevolution and contemporary evolution can provide important and even qualitatively different insights from those obtained via traditional ecotoxicological studies. While macroevolutionary perspectives can help forecast toxicological end points for species with untested sensitivities, contemporary evolutionary perspectives demonstrate the need to consider the environmental context of exposed populations when measuring toxicity. Accounting for divergence among populations of interest can provide more accurate and relevant information related to the sensitivity of populations that may be evolving in response to selection from contaminant exposure. Our data show that approaches accounting for and specifically examining variation among natural populations should become standard practice in ecotoxicology.

  9. Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin.

    PubMed

    Prisilla, A; Prathiviraj, R; Chellapandi, P

    2017-04-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 toxin along with botulinum neurotoxins. C2 toxin is belonged to binary toxin A family in bacterial ADP-ribosylation superfamily. A structural and functional diversity of binary toxin A family was inferred from different evolutionary constraints to determine the avirulence state of C2 toxin. Evolutionary genetic analyses revealed evidence of C2 toxin cluster evolution through horizontal gene transfer from the phage or plasmid origins, site-specific insertion by gene divergence, and homologous recombination event. It has also described that residue in conserved NAD-binding core, family-specific domain structure, and functional motifs found to predetermine its virulence state. Any mutational changes in these residues destabilized its structure-function relationship. Avirulent mutants of C2 toxin were screened and selected from a crucial site required for catalytic function of C2I and pore-forming function of C2II. We found coevolved amino acid pairs contributing an essential role in stabilization of its local structural environment. Avirulent toxins selected in this study were evaluated by detecting evolutionary constraints in stability of protein backbone structure, folding and conformational dynamic space, and antigenic peptides. We found 4 avirulent mutants of C2I and 5 mutants of C2II showing more stability in their local structural environment and backbone structure with rapid fold rate, and low conformational flexibility at mutated sites. Since, evolutionary constraints-free mutants with lack of catalytic and pore-forming function suggested as potential immunogenic candidates for treating C. botulinum infected poultry and veterinary animals. Single amino acid substitution in C2 toxin thus provides a major importance to understand its structure-function link, not only of a molecule but also of the pathogenesis.

  10. Evolutionary perspectives on wildlife disease: concepts and applications

    PubMed Central

    Vander Wal, Eric; Garant, Dany; Pelletier, Fanie

    2014-01-01

    Wildlife disease has the potential to cause significant ecological, socioeconomic, and health impacts. As a result, all tools available need to be employed when host–pathogen dynamics merit conservation or management interventions. Evolutionary principles, such as evolutionary history, phenotypic and genetic variation, and selection, have the potential to unravel many of the complex ecological realities of infectious disease in the wild. Despite this, their application to wildlife disease ecology and management remains in its infancy. In this article, we outline the impetus behind applying evolutionary principles to disease ecology and management issues in the wild. We then introduce articles from this special issue on Evolutionary Perspectives on Wildlife Disease: Concepts and Applications, outlining how each is exemplar of a practical wildlife disease challenge that can be enlightened by applied evolution. Ultimately, we aim to bring new insights to wildlife disease ecology and its management using tools and techniques commonly employed in evolutionary ecology. PMID:25469154

  11. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    PubMed

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  12. Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family

    PubMed Central

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes. PMID:23755192

  13. There must be a prokaryote somewhere: microbiology's search for itself

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1994-01-01

    While early microbiologists showed considerable interest in the problem of the natural (evolutionary) relationships among prokaryotes, by the middle of this century that problem had largely been discarded as being unsolvable. In other words, the science of microbiology developed without an evolutionary framework, the lack of which kept it a weak discipline, defined largely by external forces. Modern technology has allowed microbiology finally to develop the needed evolutionary framework, and with this comes a sense of coherence, a sense of identity. Not only is this development radically changing microbiology itself, but also it will change microbiology's relationship to the other biological disciplines. Microbiology of the future will become the primary biological science, the base upon which our future understanding of the living world rests, and the font from which new understanding of it flows.

  14. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation

    PubMed Central

    Shinneman, Douglas J.; Potter, Kevin M.; Hipkins, Valerie D.

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete temporary glacial refugia. Our predictive climate niche models may inform strategies for further genetic research (e.g., sampling design) and conservation that promotes haplotype compatibility with projected changes in future climate. PMID:26985674

  15. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation.

    PubMed

    Shinneman, Douglas J; Means, Robert E; Potter, Kevin M; Hipkins, Valerie D

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete temporary glacial refugia. Our predictive climate niche models may inform strategies for further genetic research (e.g., sampling design) and conservation that promotes haplotype compatibility with projected changes in future climate.

  16. Exploring climate niches of ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western United States: Implications for evolutionary history and conservation

    USGS Publications Warehouse

    Shinneman, Douglas; Means, Robert E.; Potter, Kevin M.; Hipkins, Valerie D.

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete temporary glacial refugia. Our predictive climate niche models may inform strategies for further genetic research (e.g., sampling design) and conservation that promotes haplotype compatibility with projected changes in future climate.

  17. Effect of Partnership Status on Preferences for Facial Self-Resemblance

    PubMed Central

    Lindová, Jitka; Little, Anthony C.; Havlíček, Jan; Roberts, S. Craig; Rubešová, Anna; Flegr, Jaroslav

    2016-01-01

    Self-resemblance has been found to have a context-dependent effect when expressing preferences for faces. Whereas dissimilarity preference during mate choice in animals is often explained as an evolutionary adaptation to increase heterozygosity of offspring, self-resemblance can be also favored in humans, reflecting, e.g., preference for kinship cues. We performed two studies, using transformations of facial photographs to manipulate levels of resemblance with the rater, to examine the influence of self-resemblance in single vs. coupled individuals. Raters assessed facial attractiveness of other-sex and same-sex photographs according to both short-term and long-term relationship contexts. We found a preference for dissimilarity of other-sex and same-sex faces in single individuals, but no effect of self-resemblance in coupled raters. No effect of sex of participant or short-term vs. long-term attractiveness rating was observed. The results support the evolutionary interpretation that dissimilarity of other-sex faces is preferred by uncoupled individuals as an adaptive mechanism to avoid inbreeding. In contrast, lower dissimilarity preference of other-sex faces in coupled individuals may reflect suppressed attention to attractiveness cues in potential alternative partners as a relationship maintenance mechanism, and its substitution by attention to cues of kinship and psychological similarity connected with greater likelihood of prosocial behavior acquisition from such persons. PMID:27378970

  18. The reformulation of emotional security theory: the role of children's social defense in developmental psychopathology.

    PubMed

    Davies, Patrick T; Martin, Meredith J

    2013-11-01

    Although children's security in the context of the interparental relationship has been identified as a key explanatory mechanism in pathways between family discord and child psychopathology, little is known about the inner workings of emotional security as a goal system. Thus, the objective of this paper is to describe how our reformulation of emotional security theory within an ethological and evolutionary framework may advance the characterization of the architecture and operation of emotional security and, in the process, cultivate sustainable growing points in developmental psychopathology. The first section of the paper describes how children's security in the interparental relationship is organized around a distinctive behavioral system designed to defend against interpersonal threat. Building on this evolutionary foundation for emotional security, the paper offers an innovative taxonomy for identifying qualitatively different ways children try to preserve their security and its innovative implications for more precisely informing understanding of the mechanisms in pathways between family and developmental precursors and children's trajectories of mental health. In the final section, the paper highlights the potential of the reformulation of emotional security theory to stimulate new generations of research on understanding how children defend against social threats in ecologies beyond the interparental dyad, including both familial and extrafamilial settings.

  19. The Reformulation of Emotional Security Theory: The Role of Children’s Social Defense in Developmental Psychopathology

    PubMed Central

    Davies, Patrick T.; Martin, Meredith J.

    2014-01-01

    Although children’s security in the context of the interparental relationship has been identified as a key explanatory mechanism in pathways between family discord and child psychopathology, little is known about the inner workings of emotional security as a goal system. Accordingly, the objective of this paper is to describe how our reformulation of emotional security theory (EST-R) within an ethological and evolutionary framework may advance the characterization of the architecture and operation of emotional security and, in the process, cultivate sustainable growing points in developmental psychopathology. The first section of the paper describes how children’s security in the interparental relationship is organized around a distinctive behavioral system designed to defend against interpersonal threat. Building on this evolutionary foundation for emotional security, the paper offers an innovative taxonomy for identifying qualitatively different ways children try to preserve their security and its innovative implications for more precisely informing understanding of the mechanisms in pathways between family and developmental precursors and children’s trajectories of mental health. In the final section, the paper highlights the potential of EST-R to stimulate new generations of research on understanding how children defend against social threats in ecologies beyond the interparental dyad, including both familial and extrafamilial settings. PMID:24342849

  20. The Evolutionary History of Protein Domains Viewed by Species Phylogeny

    PubMed Central

    Yang, Song; Bourne, Philip E.

    2009-01-01

    Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107

  1. The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.

    PubMed

    Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos

    2017-04-01

    This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Beyond the pleistocene: using phylogeny and constraint to inform the evolutionary psychology of human mating.

    PubMed

    Eastwick, Paul W

    2009-09-01

    Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.

  3. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae

    PubMed Central

    Alexandrou, Markos A.; Cardinale, Bradley J.; Hall, John D.; Delwiche, Charles F.; Fritschie, Keith; Narwani, Anita; Venail, Patrick A.; Bentlage, Bastian; Pankey, M. Sabrina; Oakley, Todd H.

    2015-01-01

    The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis. PMID:25473009

  4. Reasoning about Evolution's Grand Patterns: College Students' Understanding of the Tree of Life

    ERIC Educational Resources Information Center

    Novick, Laura R.; Catley, Kefyn M.

    2013-01-01

    Tree thinking involves using cladograms, hierarchical diagrams depicting the evolutionary history of a set of taxa, to reason about evolutionary relationships and support inferences. Tree thinking is indispensable in modern science. College students' tree-thinking skills were investigated using tree (much more common in professional biology) and…

  5. Conceptual Ecology of Evolution Acceptance among Greek Education Students: The Contribution of Knowledge Increase

    ERIC Educational Resources Information Center

    Athanasiou, Kyriacos; Katakos, Efstratios; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored the factors related to acceptance of evolutionary theory among students/preservice preschool education teachers using conceptual ecology for biological evolution as a theoretical frame. We aimed to examine the acceptance and understanding of evolutionary theory and also the relationship of acceptance and understanding of…

  6. Human Facial Expressions as Adaptations:Evolutionary Questions in Facial Expression Research

    PubMed Central

    SCHMIDT, KAREN L.; COHN, JEFFREY F.

    2007-01-01

    The importance of the face in social interaction and social intelligence is widely recognized in anthropology. Yet the adaptive functions of human facial expression remain largely unknown. An evolutionary model of human facial expression as behavioral adaptation can be constructed, given the current knowledge of the phenotypic variation, ecological contexts, and fitness consequences of facial behavior. Studies of facial expression are available, but results are not typically framed in an evolutionary perspective. This review identifies the relevant physical phenomena of facial expression and integrates the study of this behavior with the anthropological study of communication and sociality in general. Anthropological issues with relevance to the evolutionary study of facial expression include: facial expressions as coordinated, stereotyped behavioral phenotypes, the unique contexts and functions of different facial expressions, the relationship of facial expression to speech, the value of facial expressions as signals, and the relationship of facial expression to social intelligence in humans and in nonhuman primates. Human smiling is used as an example of adaptation, and testable hypotheses concerning the human smile, as well as other expressions, are proposed. PMID:11786989

  7. De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum)

    PubMed Central

    2011-01-01

    Background Transcriptome sequencing data has become an integral component of modern genetics, genomics and evolutionary biology. However, despite advances in the technologies of DNA sequencing, such data are lacking for many groups of living organisms, in particular, many plant taxa. We present here the results of transcriptome sequencing for two closely related plant species. These species, Fagopyrum esculentum and F. tataricum, belong to the order Caryophyllales - a large group of flowering plants with uncertain evolutionary relationships. F. esculentum (common buckwheat) is also an important food crop. Despite these practical and evolutionary considerations Fagopyrum species have not been the subject of large-scale sequencing projects. Results Normalized cDNA corresponding to genes expressed in flowers and inflorescences of F. esculentum and F. tataricum was sequenced using the 454 pyrosequencing technology. This resulted in 267 (for F. esculentum) and 229 (F. tataricum) thousands of reads with average length of 341-349 nucleotides. De novo assembly of the reads produced about 25 thousands of contigs for each species, with 7.5-8.2× coverage. Comparative analysis of two transcriptomes demonstrated their overall similarity but also revealed genes that are presumably differentially expressed. Among them are retrotransposon genes and genes involved in sugar biosynthesis and metabolism. Thirteen single-copy genes were used for phylogenetic analysis; the resulting trees are largely consistent with those inferred from multigenic plastid datasets. The sister relationships of the Caryophyllales and asterids now gained high support from nuclear gene sequences. Conclusions 454 transcriptome sequencing and de novo assembly was performed for two congeneric flowering plant species, F. esculentum and F. tataricum. As a result, a large set of cDNA sequences that represent orthologs of known plant genes as well as potential new genes was generated. PMID:21232141

  8. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant.

    PubMed

    Franks, S J; Weis, A E

    2008-09-01

    Climate change is likely to spur rapid evolution, potentially altering integrated suites of life-history traits. We examined evolutionary change in multiple life-history traits of the annual plant Brassica rapa collected before and after a recent 5-year drought in southern California. We used a direct approach to examining evolutionary change by comparing ancestors and descendants. Collections were made from two populations varying in average soil moisture levels, and lines propagated from the collected seeds were grown in a greenhouse and experimentally subjected to conditions simulating either drought (short growing season) or high precipitation (long growing season) years. Comparing ancestors and descendants, we found that the drought caused many changes in life-history traits, including a shift to earlier flowering, longer duration of flowering, reduced peak flowering and greater skew of the flowering schedule. Descendants had thinner stems and fewer leaf nodes at the time of flowering than ancestors, indicating that the drought selected for plants that flowered at a smaller size and earlier ontogenetic stage rather than selecting for plants to develop more rapidly. Thus, there was not evidence for absolute developmental constraints to flowering time evolution. Common principal component analyses showed substantial differences in the matrix of trait covariances both between short and long growing season treatments and between populations. Although the covariances matrices were generally similar between ancestors and descendants, there was evidence for complex evolutionary changes in the relationships among the traits, and these changes depended on the population and treatment. These results show that a full appreciation of the impacts of global change on phenotypic evolution will entail an understanding of how changes in climatic conditions affect trait values and the structure of relationships among traits.

  9. Influences on Understanding and Belief About the Origin of Species in Chinese and American Adolescents

    NASA Astrophysics Data System (ADS)

    Smith, Erin Irene

    Although beliefs about origins and evolutionary knowledge have been considered independent, research has suggested that both are influenced by cognitive constraints of psychological essentialism and teleology. Most research supporting these claims has been conducted with children from Western cultures; little is known about the psychological processes underpinning beliefs and knowledge about the natural world outside Western contexts or during adolescence. Claims about the universality of beliefs, knowledge, and the possible relationship between should be made after examining samples that differ in theoretically relevant ways from a typical Western sample, such as a Chinese sample in which religious explanations are rare or an adolescent sample in which brain development promotes the coordination of conflicting information. To examine how belief and knowledge are related in Western- and non-Western samples, as well as the factors that predict both independently, 238 Chinese (M = 15.85 years old, SD = .85 years; 36.6% male) and 277 American adolescents (M = 15.80 years, SD = 1.34 years; 51.6% male) were recruited from their high schools to participate. Adolescents completed a survey measuring beliefs about the origin of living and non-living exemplars, evolutionary knowledge, and variables that were likely to influence belief and knowledge such as science preference, epistemology, psychological essentialism, teleological reasoning, and religious beliefs. American adolescents were more creationist than Chinese adolescents. Chinese adolescents displayed more sophisticated evolutionary knowledge than American adolescents although overall performance was low. Finally, there was no relationship between belief and knowledge for American adolescents yet there was a small, positive relationship for Chinese adolescents such that adolescents who believed in creation also tended to demonstrate more evolutionary knowledge. Additional analyses employed mediation techniques to explain why cultural differences in creation belief and evolutionary knowledge exist. Age was unrelated to belief and to knowledge. The discussion focuses on the aspects of cultural membership that contribute to belief and evolutionary knowledge. Additional discussion highlights the role of classroom curriculum, curriculum testing, and focusing on uncovering variables and techniques that promote evolutionary learning.

  10. Comparative phylogeography and population genetics within Buteo lineatus reveals evidence of distinct evolutionary lineages

    USGS Publications Warehouse

    Hull, J.M.; Strobel, Bradley N.; Boal, C.W.; Hull, A.C.; Dykstra, C.R.; Irish, A.M.; Fish, A.M.; Ernest, H.B.

    2008-01-01

    Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted. ?? 2008 Elsevier Inc. All rights reserved.

  11. Functional and evolutionary relationships between bacteriorhodopsin and halorhodopsin in the archaebacterium, halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1986-01-01

    The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.

  12. Machine-assisted discovery of relationships in astronomy

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Mahabal, Ashish A.; Donalek, Ciro; Drake, Andrew J.

    2013-05-01

    High-volume feature-rich data sets are becoming the bread-and-butter of 21st century astronomy but present significant challenges to scientific discovery. In particular, identifying scientifically significant relationships between sets of parameters is non-trivial. Similar problems in biological and geosciences have led to the development of systems which can explore large parameter spaces and identify potentially interesting sets of associations. In this paper, we describe the application of automated discovery systems of relationships to astronomical data sets, focusing on an evolutionary programming technique and an information-theory technique. We demonstrate their use with classical astronomical relationships - the Hertzsprung-Russell diagram and the Fundamental Plane of elliptical galaxies. We also show how they work with the issue of binary classification which is relevant to the next generation of large synoptic sky surveys, such as the Large Synoptic Survey Telescope (LSST). We find that comparable results to more familiar techniques, such as decision trees, are achievable. Finally, we consider the reality of the relationships discovered and how this can be used for feature selection and extraction.

  13. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.

    PubMed

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H'T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species.

  14. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    PubMed

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  15. Evolutionary history of the ABCB2 genomic region in teleosts

    USGS Publications Warehouse

    Palti, Y.; Rodriguez, M.F.; Gahr, S.A.; Hansen, J.D.

    2007-01-01

    Gene duplication, silencing and translocation have all been implicated in shaping the unique genomic architecture of the teleost MH regions. Previously, we demonstrated that trout possess five unlinked regions encoding MH genes. One of these regions harbors ABCB2 which in all other vertebrate classes is found in the MHC class II region. In this study, we sequenced a BAC contig for the trout ABCB2 region. Analysis of this region revealed the presence of genes homologous to those located in the human class II (ABCB2, BRD2, ??DAA), extended class II (RGL2, PHF1, SYGP1) and class III (PBX2, Notch-L) regions. The organization and syntenic relationships of this region were then compared to similar regions in humans, Tetraodon and zebrafish to learn more about the evolutionary history of this region. Our analysis indicates that this region was generated during the teleost-specific duplication event while also providing insight about potential MH paralogous regions in teleosts. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Predicting rates of interspecific interaction from phylogenetic trees.

    PubMed

    Nuismer, Scott L; Harmon, Luke J

    2015-01-01

    Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction. © 2014 John Wiley & Sons Ltd/CNRS.

  17. Does aquatic foraging impact head shape evolution in snakes?

    PubMed

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  18. Predicting evolutionary responses to climate change in the sea.

    PubMed

    Munday, Philip L; Warner, Robert R; Monro, Keyne; Pandolfi, John M; Marshall, Dustin J

    2013-12-01

    An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change. © 2013 John Wiley & Sons Ltd/CNRS.

  19. Evaluating the relationship between diploid and tetraploid Vaccinium oxycoccos (Ericaceae) in eastern Canada

    USDA-ARS?s Scientific Manuscript database

    Vaccinium oxycoccos s. l. is a complex of diploid and polyploid plants. The evolutionary relationship between the cytotypes is uncertain, with conflicting treatments in recent taxonomic studies. To clarify this situation, we investigated the relationships among ploidy, morphology and genetic diversi...

  20. Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past.

    PubMed

    Tijssen, Peter; Pénzes, Judit J; Yu, Qian; Pham, Hanh T; Bergoin, Max

    2016-10-01

    A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy. Copyright © 2016. Published by Elsevier Inc.

  1. The influence of feeding on the evolution of sensory signals: a comparative test of an evolutionary trade-off between masticatory and sensory functions of skulls in southern African horseshoe bats (Rhinolophidae).

    PubMed

    Jacobs, D S; Bastian, A; Bam, L

    2014-12-01

    The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade-offs. Here, we investigate whether a trade-off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three-dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade-off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency-specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Evolutionary relationships between miRNA genes and their activity.

    PubMed

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  3. On Reciprocal Causation in the Evolutionary Process.

    PubMed

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach might have been underestimated by critics of contemporary evolutionary biology.

  4. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    PubMed

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  5. A Phylogenomic Perspective on the Radiation of Ray-Finned Fishes Based upon Targeted Sequencing of Ultraconserved Elements (UCEs)

    PubMed Central

    Sorenson, Laurie; Santini, Francesco

    2013-01-01

    Ray-finned fishes constitute the dominant radiation of vertebrates with over 32,000 species. Although molecular phylogenetics has begun to disentangle major evolutionary relationships within this vast section of the Tree of Life, there is no widely available approach for efficiently collecting phylogenomic data within fishes, leaving much of the enormous potential of massively parallel sequencing technologies for resolving major radiations in ray-finned fishes unrealized. Here, we provide a genomic perspective on longstanding questions regarding the diversification of major groups of ray-finned fishes through targeted enrichment of ultraconserved nuclear DNA elements (UCEs) and their flanking sequence. Our workflow efficiently and economically generates data sets that are orders of magnitude larger than those produced by traditional approaches and is well-suited to working with museum specimens. Analysis of the UCE data set recovers a well-supported phylogeny at both shallow and deep time-scales that supports a monophyletic relationship between Amia and Lepisosteus (Holostei) and reveals elopomorphs and then osteoglossomorphs to be the earliest diverging teleost lineages. Our approach additionally reveals that sequence capture of UCE regions and their flanking sequence offers enormous potential for resolving phylogenetic relationships within ray-finned fishes. PMID:23824177

  6. Evolutionary medicine: its scope, interest and potential

    PubMed Central

    Stearns, Stephen C.

    2012-01-01

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host–pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous. PMID:22933370

  7. Evolutionary medicine: its scope, interest and potential.

    PubMed

    Stearns, Stephen C

    2012-11-07

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.

  8. Cancer evolution: mathematical models and computational inference.

    PubMed

    Beerenwinkel, Niko; Schwarz, Roland F; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  9. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory

    PubMed Central

    Ferriere, Regis; Legendre, Stéphane

    2013-01-01

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163

  10. Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.

    2015-09-01

    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org

  11. Facultative use of thelytokous parthenogenesis for queen production in the polyandrous ant Cataglyphis cursor.

    PubMed

    Doums, C; Cronin, A L; Ruel, C; Fédérici, P; Haussy, C; Tirard, C; Monnin, T

    2013-07-01

    The evolutionary paradox of sex remains one of the major debates in evolutionary biology. The study of species capable of both sexual and asexual reproduction can elucidate factors important in the evolution of sex. One such species is the ant Cataglyphis cursor, where the queen maximizes the transmission of her genes by producing new queens (gynes) asexually while simultaneously maintaining a genetically diverse workforce via the sexual production of workers. We show that the queen can also produce gynes sexually and may do so to offset the costs of asexual reproduction. We genotyped 235 gynes from 18 colonies and found that half were sexually produced. A few colonies contained both sexually and asexually produced gynes. Although workers in this species can also use thelytoky, we found no evidence of worker production of gynes based on genotypes of 471 workers from the six colonies producing sexual gynes. Gynes are thus mainly, and potentially exclusively, produced by the queen. Simulations of gynes inbreeding level following one to ten generations of automictic thelytoky suggest that the queen switches between or combines thelytoky and sex, which may reduce the costs of inbreeding. This is supported by the relatively small size of inbred gynes in one colony, although we found no relationship between the level of inbreeding and immune parameters. Such facultative use of sex and thelytoky by individual queens contrasts with other known forms of parthenogenesis in ants, which are typically characterized by distinct lineages specializing in one strategy or the other. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  12. Eco-evolutionary feedbacks drive species interactions

    PubMed Central

    Andrade-Domínguez, Andrés; Salazar, Emmanuel; del Carmen Vargas-Lagunas, María; Kolter, Roberto; Encarnación, Sergio

    2014-01-01

    In the biosphere, many species live in close proximity and can thus interact in many different ways. Such interactions are dynamic and fall along a continuum between antagonism and cooperation. Because interspecies interactions are the key to understanding biological communities, it is important to know how species interactions arise and evolve. Here, we show that the feedback between ecological and evolutionary processes has a fundamental role in the emergence and dynamics of species interaction. Using a two-species artificial community, we demonstrate that ecological processes and rapid evolution interact to influence the dynamics of the symbiosis between a eukaryote (Saccharomyces cerevisiae) and a bacterium (Rhizobium etli). The simplicity of our experimental design enables an explicit statement of causality. The niche-constructing activities of the fungus were the key ecological process: it allowed the establishment of a commensal relationship that switched to ammensalism and provided the selective conditions necessary for the adaptive evolution of the bacteria. In this latter state, the bacterial population radiates into more than five genotypes that vary with respect to nutrient transport, metabolic strategies and global regulation. Evolutionary diversification of the bacterial populations has strong effects on the community; the nature of interaction subsequently switches from ammensalism to antagonism where bacteria promote yeast extinction. Our results demonstrate the importance of the evolution-to-ecology pathway in the persistence of interactions and the stability of communities. Thus, eco-evolutionary dynamics have the potential to transform the structure and functioning of ecosystems. Our results suggest that these dynamics should be considered to improve our understanding of beneficial and detrimental host–microbe interactions. PMID:24304674

  13. Mitochondrial and Nuclear Genes Suggest that Stony Corals Are Monophyletic but Most Families of Stony Corals Are Not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    PubMed Central

    Fukami, Hironobu; Chen, Chaolun Allen; Budd, Ann F.; Collins, Allen; Wallace, Carden; Chuang, Yao-Yang; Chen, Chienhsun; Dai, Chang-Feng; Iwao, Kenji; Sheppard, Charles; Knowlton, Nancy

    2008-01-01

    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ß-tubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent “robust” and “complex” clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils. PMID:18795098

  14. Comparison of the genetic relationship between nine Cephalopod species based on cluster analysis of karyotype evolutionary distance

    PubMed Central

    Wang, Jin-hai; Zheng, Xiao-dong

    2017-01-01

    Abstract Karyotype analysis was carried out on gill cells of three species of octopods using a conventional air-drying method. The karyotype results showed that all the three species have the same diploid chromosome number, 2n=60, but with different karyograms as 2n=38M+6SM+8ST+8T, FN (fundamental number)=104 (Cistopus chinensis Zheng et al., 2012), 2n=42M+6SM+4ST+8T, FN=108 (Octopus minor (Sasaki, 1920)) and 2n=32M+16SM+12T, FN=108 (Amphioctopus fangsiao (d’Orbigny, 1839–1841)). These findings were combined with data from earlier studies to infer the genetic relationships between nine species via cluster analysis using the karyotype evolutionary distance (De) and resemblance-near coefficient (λ). The resulting tree revealed a clear distinction between different families and orders which was substantially consistent with molecular phylogenies. The smallest intraspecific evolutionary distance (De=0.2013, 0.2399) and largest resemblance-near coefficient (λ=0.8184, 0.7871) appeared between O. minor and C. chinensis, and Sepia esculenta Hoyle, 1885 and S. lycidas Gray, 1849, respectively, indicating that these species have the closest relationship. The largest evolutionary gap appeared between species with complicated karyotypes and species with simple karyotypes. Cluster analysis of De and λ provides information to supplement traditional taxonomy and molecular systematics, and it would serve as an important auxiliary for routine phylogenetic study. PMID:29093799

  15. AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae).

    PubMed

    Gaudeul, Myriam; Rouhan, Germinal; Gardner, Martin F; Hollingsworth, Peter M

    2012-01-01

    Despite its small size, New Caledonia is characterized by a very diverse flora and striking environmental gradients, which make it an ideal setting to study species diversification. Thirteen of the 19 Araucaria species are endemic to the territory and form a monophyletic group, but patterns and processes that lead to such a high species richness are largely unexplored. We used 142 polymorphic AFLP markers and performed analyses based on Bayesian clustering algorithms, genetic distances, and cladistics on 71 samples representing all New Caledonian Araucaria species. We examined correlations between the inferred evolutionary relationships and shared morphological, ecological, or geographic parameters among species, to investigate evolutionary processes that may have driven speciation. We showed that genetic divergence among the present New Caledonian Araucaria species is low, suggesting recent diversification rather than pre-existence on Gondwana. We identified three genetic groups that included small-leaved, large-leaved, and coastal species, but detected no association with soil preference, ecological habitat, or rainfall. The observed patterns suggested that speciation events resulted from both differential adaptation and vicariance. Last, we hypothesize that speciation is ongoing and/or there are cryptic species in some genetically (sometimes also morphologically) divergent populations. Further data are required to provide better resolution and understanding of the diversification of New Caledonian Araucaria species. Nevertheless, our study allowed insights into their evolutionary relationships and provides a framework for future investigations on the evolution of this emblematic group of plants in one of the world's biodiversity hotspots.

  16. The Implications of the Cognitive Sciences for the Relation between Religion and Science Education: The Case of Evolutionary Theory

    ERIC Educational Resources Information Center

    Blancke, Stefaan; De Smedt, Johan; De Cruz, Helen; Boudry, Maarten; Braeckman, Johan

    2012-01-01

    This paper discusses the relationship between religion and science education in the light of the cognitive sciences. We challenge the popular view that science and religion are compatible, a view that suggests that learning and understanding evolutionary theory has no effect on students' religious beliefs and vice versa. We develop a cognitive…

  17. Searching for consensus in molt terminology 11 years after Howell et al.'s "first basic problem"

    Treesearch

    Jared D. Wolfe; Erik I. Johnson; Ryan S. Terrill

    2014-01-01

    Howell et al. (2003) published an innovative augmentation to terminology proposed by Humphrey and Parkes (1959) that classified bird molt on the basis of perceived evolutionary relationships. Despite apparent universal applicability, Howell et al.’s (2003) proposed terminological changes were met with criticism that cited a failure to verify the evolutionary...

  18. Top predators induce the evolutionary diversification of intermediate predator species.

    PubMed

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism

    PubMed Central

    Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.

    2013-01-01

    Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572

  20. Evolutionary model of the growth and size of firms

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2012-07-01

    The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms, the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into account the characteristic property of human activities to occur in bursts, the model allows also an explanation of the size-variance relationship of the growth rate distribution of products and firms. Further the product life cycle, the learning (experience) curve and the market size in terms of the mean number of firms that can survive in a market are derived. The model also suggests the existence of an invariant of a market as the ratio of total profit to total revenue. The relationship between a neo-classic and an evolutionary view of a market is discussed. The comparison with empirical investigations suggests that the theory is able to describe the main stylized facts concerning the size and growth of firms.

  1. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    NASA Astrophysics Data System (ADS)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  2. New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae).

    PubMed

    Cosacov, Andrea; Sérsic, Alicia N; Sosa, Victoria; De-Nova, J Arturo; Nylinder, Stephan; Cocucci, Andrea A

    2009-12-01

    Biogeographical patterns and diversification processes in Andean and Patagonian flora are not yet well understood. Calceolaria is a highly diversified genus of these areas, representing one of the most specialized plant-pollinator systems because flowers produce nonvolatile oils, a very unusual floral reward. Phylogenetic analyses with molecular (ITS and matK) and morphological characters from 103 Calceolaria species were conducted to examine relationships, to understand biogeographic patterns, and to detect evolutionary patterns of floral and ecological characters. Total evidence analysis retrieved three major clades, which strongly correspond to the three previously recognized subgenera, although only subgenus Rosula was retrieved as a monophyletic group. A single historical event explains the expansion from the southern to central Andes, while different parallel evolutionary lines show a northward expansion from the central to northern Andes across the Huancabamba Deflection, an important geographical barrier in northern Peru. Polyploidy, acquisition of elaiophores, and a nototribic pollination mechanism are key aspects of the evolutionary history of Calceolaria. Pollination interactions were more frequently established with Centris than with Chalepogenus oil-collecting bee species. The repeated loss of the oil gland and shifts to pollen as the only reward suggest an evolutionary tendency from highly to moderately specialized pollination systems.

  3. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities.

    PubMed

    Lázaro, Amparo; Hegland, Stein Joar; Totland, Orjan

    2008-08-01

    The pollination syndrome hypothesis has provided a major conceptual framework for how plants and pollinators interact. However, the assumption of specialization in pollination systems and the reliability of floral traits in predicting the main pollinators have been questioned recently. In addition, the relationship between ecological and evolutionary specialization in pollination interactions is still poorly understood. We used data of 62 plant species from three communities across southern Norway to test: (1) the relationships between floral traits and the identity of pollinators, (2) the association between floral traits (evolutionary specialization) and ecological generalization, and (3) the consistency of both relationships across communities. Floral traits significantly affected the identity of pollinators in the three communities in a way consistent with the predictions derived from the pollination syndrome concept. However, hover flies and butterflies visited flowers with different shapes in different communities, which we mainly attribute to among-community variation in pollinator assemblages. Interestingly, ecological generalization depended more on the community-context (i.e. the plant and pollinator assemblages in the communities) than on specific floral traits. While open yellow and white flowers were the most generalist in two communities, they were the most specialist in the alpine community. Our results warn against the use of single measures of ecological generalization to question the pollination syndrome concept, and highlight the importance of community comparisons to assess the pollination syndromes, and to understand the relationships between ecological and evolutionary specialization in plant-pollinator interactions.

  4. Evaluation of Generation Alternation Models in Evolutionary Robotics

    NASA Astrophysics Data System (ADS)

    Oiso, Masashi; Matsumura, Yoshiyuki; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    For efficient implementation of Evolutionary Algorithms (EA) to a desktop grid computing environment, we propose a new generation alternation model called Grid-Oriented-Deletion (GOD) based on comparison with the conventional techniques. In previous research, generation alternation models are generally evaluated by using test functions. However, their exploration performance on the real problems such as Evolutionary Robotics (ER) has not been made very clear yet. Therefore we investigate the relationship between the exploration performance of EA on an ER problem and its generation alternation model. We applied four generation alternation models to the Evolutionary Multi-Robotics (EMR), which is the package-pushing problem to investigate their exploration performance. The results show that GOD is more effective than the other conventional models.

  5. Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification

    PubMed Central

    Zhang, Hailing; Cao, Yingping; Shang, Chen; Li, Jikai; Wang, Jianli; Wu, Zhenying; Ma, Lichao; Qi, Tianxiong; Fu, Chunxiang; Hu, Baozhong

    2017-01-01

    The GRAS gene family is a large plant-specific family of transcription factors that are involved in diverse processes during plant development. Medicago truncatula is an ideal model plant for genetic research in legumes, and specifically for studying nodulation, which is crucial for nitrogen fixation. In this study, 59 MtGRAS genes were identified and classified into eight distinct subgroups based on phylogenetic relationships. Motifs located in the C-termini were conserved across the subgroups, while motifs in the N-termini were subfamily specific. Gene duplication was the main evolutionary force for MtGRAS expansion, especially proliferation of the LISCL subgroup. Seventeen duplicated genes showed strong effects of purifying selection and diverse expression patterns, highlighting their functional importance and diversification after duplication. Thirty MtGRAS genes, including NSP1 and NSP2, were preferentially expressed in nodules, indicating possible roles in the process of nodulation. A transcriptome study, combined with gene expression analysis under different stress conditions, suggested potential functions of MtGRAS genes in various biological pathways and stress responses. Taken together, these comprehensive analyses provide basic information for understanding the potential functions of GRAS genes, and will facilitate further discovery of MtGRAS gene functions. PMID:28945786

  6. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential†

    PubMed Central

    Taylor, Michael W.; Radax, Regina; Steger, Doris; Wagner, Michael

    2007-01-01

    Summary: Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations. PMID:17554047

  7. Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity?

    PubMed

    Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan

    2010-07-01

    Exposure to environmental pollutants such as endocrine-disrupting compounds (EDCs) is now taken into account to explain partially the biodiversity decline of aquatic ecosystems. Much research has demonstrated that EDCs can adversely affect the endocrine system, reproductive health, and immune function in aquatic species. These toxicological effects include 1) interference with normal hormonal synthesis, release, and transport, 2) impairment of growth, development, and gonadal maturation, and 3) increased sensitivity to environmental stressors. Recent studies also have confirmed that EDCs have carcinogenic and mutagenic potential. In essence, these changes in physiological and biochemical parameters reflect, to some extent, some phenotypic characteristics of the deterioration of aquatic biodiversity. At present, evidence at the molecular level shows that exposure to EDCs can trigger genotoxicity, such as DNA damage, and can reduce genetic diversity. Field studies have also provided more direct evidence that EDCs contribute to the population decrease and biodiversity decline. Evolutionary toxicology and multigenerational toxicity tests have further demonstrated that EDCs can damage an organism's offspring and eventually likely lead to loss of evolutionary potential. Taken together, these results provide some basis for understanding the relationship between variety deterioration and EDC exposure. It is conceivable that there is a causal association between EDC exposure and variety deterioration of aquatic organisms. (c) 2010 SETAC.

  8. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato

    PubMed Central

    Margos, Gabriele; Vollmer, Stephanie A.; Ogden, Nicholas H.; Fish, Durland

    2011-01-01

    In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria. PMID:21843658

  9. Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks.

    PubMed

    Wei, Fangping; Chen, Bowen

    2012-03-01

    To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.

  10. The pipid root.

    PubMed

    Bewick, Adam J; Chain, Frédéric J J; Heled, Joseph; Evans, Ben J

    2012-12-01

    The estimation of phylogenetic relationships is an essential component of understanding evolution. Accurate phylogenetic estimation is difficult, however, when internodes are short and old, when genealogical discordance is common due to large ancestral effective population sizes or ancestral population structure, and when homoplasy is prevalent. Inference of divergence times is also hampered by unknown and uneven rates of evolution, the incomplete fossil record, uncertainty in relationships between fossil and extant lineages, and uncertainty in the age of fossils. Ideally, these challenges can be overcome by developing large "phylogenomic" data sets and by analyzing them with methods that accommodate features of the evolutionary process, such as genealogical discordance, recurrent substitution, recombination, ancestral population structure, gene flow after speciation among sampled and unsampled taxa, and variation in evolutionary rates. In some phylogenetic problems, it is possible to use information that is independent of fossils, such as the geological record, to identify putative triggers for diversification whose associated estimated divergence times can then be compared a posteriori with estimated relationships and ages of fossils. The history of diversification of pipid frog genera Pipa, Hymenochirus, Silurana, and Xenopus, for instance, is characterized by many of these evolutionary and analytical challenges. These frogs diversified dozens of millions of years ago, they have a relatively rich fossil record, their distributions span continental plates with a well characterized geological record of ancient connectivity, and there is considerable disagreement across studies in estimated evolutionary relationships. We used high throughput sequencing and public databases to generate a large phylogenomic data set with which we estimated evolutionary relationships using multilocus coalescence methods. We collected sequence data from Pipa, Hymenochirus, Silurana, and Xenopus and the outgroup taxon Rhinophrynus dorsalis from coding sequence of 113 autosomal regions, averaging ∼300 bp in length (range: 102-1695 bp) and also a portion of the mitochondrial genome. Analysis of these data using multiple approaches recovers strong support for the ((Xenopus, Silurana)(Pipa, Hymenochirus)) topology, and geologically calibrated divergence time estimates that are consistent with estimated ages and phylogenetic affinities of many fossils. These results provide new insights into the biogeography and chronology of pipid diversification during the breakup of Gondwanaland and illustrate how phylogenomic data may be necessary to tackle tough problems in molecular systematics. [Coalescence; gene tree; high-throughout sequencing; lineage sorting; pipid; species tree; Xenopus.].

  11. Fossil preservation and the stratigraphic ranges of taxa

    NASA Technical Reports Server (NTRS)

    Foote, M.; Raup, D. M.

    1996-01-01

    The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy. Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased.(3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of fossiliferous rock more than failure of species to enter the fossil record in the first place.

  12. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases.

    PubMed

    Kulkarni, N; Lakshmikumaran, M; Rao, M

    1999-10-05

    A 1.0 kilobase gene fragment from the genomic DNA of an alkaliphilic thermophilic Bacillus was found to code for a functional xylanase (XynII). The complete nucleotide sequence including the structural gene and the 5' and 3' flanking sequences of the xylanase gene have been determined. An open reading frame starting from ATG initiator codon comprising 402 nucleotides gave a preprotein of 133 amino acids of calculated molecular mass 14.090 kDa. The occurrence of three potential N-glycosylation sites in XynII gene is a unique feature for a gene of bacterial origin. The stop codon was followed by hairpin loop structures indicating the presence of transcription termination signals. The secondary structure analysis of XynII predicted that the polypeptide was primarily formed of beta-sheets. XynII appeared to be a member of family G/11 of xylanases based on its molecular weight and basic pI (8.0). However, sequence homology revealed similar identity with families 10 and 11 of xylanases. The conserved triad (Val-Val-Xaa, where Xaa is Asn or Asp) was identified only in the xylanases from alkaliphilic organisms. Our results implicate for the first time the concept of convergent evolution for XynII and provide a basis for research in evolutionary relationship among the xylanases from alkaliphilic and neutrophilic organisms. Copyright 1999 Academic Press.

  13. Insect form vision as one potential shaping force of spider web decoration design.

    PubMed

    Cheng, R-C; Yang, E-C; Lin, C-P; Herberstein, M E; Tso, I-M

    2010-03-01

    Properties of prey sensory systems are important factors shaping the design of signals generated by organisms exploiting them. In this study we assessed how prey sensory preference affected the exploiter signal design by investigating the evolutionary relationship and relative attractiveness of linear and cruciate form web decorations built by Argiope spiders. Because insects have an innate preference for bilaterally symmetrical patterns, we hypothesized that cruciate form decorations were evolved from linear form due to their higher visual attractiveness to insects. We first reconstructed a molecular phylogeny of the Asian members of the genus Argiope using mitochondrial markers to infer the evolutionary relationship of two decoration forms. Results of ancestral character state reconstruction showed that the linear form was ancestral and the cruciate form derived. To evaluate the luring effectiveness of two decoration forms, we performed field experiments in which the number and orientation of decoration bands were manipulated. Decoration bands arranged in a cruciate form were significantly more attractive to insects than those arranged in a linear form, no matter whether they were composed of silks or dummies. Moreover, dummy decoration bands arranged in a cruciate form attracted significantly more insects than those arranged in a vertical/horizontal form. Such results suggest that pollinator insects' innate preference for certain bilateral or radial symmetrical patterns might be one of the driving forces shaping the arrangement pattern of spider web decorations.

  14. Toward a Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa

    PubMed Central

    Hettling, Hannes; Condamine, Fabien L.; Vos, Karin; Nilsson, R. Henrik; Sanderson, Michael J.; Sauquet, Hervé; Scharn, Ruud; Silvestro, Daniele; Töpel, Mats; Bacon, Christine D.; Oxelman, Bengt; Vos, Rutger A.

    2017-01-01

    Abstract Rapidly growing biological data—including molecular sequences and fossils—hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a “Dated Tree of Life” where all node ages are directly comparable. PMID:27616324

  15. What Is Peromyscus? Evidence from nuclear and mitochondrial DNA sequences suggests the need for a new classification

    PubMed Central

    Platt, Roy N.; Amman, Brian R.; Keith, Megan S.; Thompson, Cody W.; Bradley, Robert D.

    2015-01-01

    The evolutionary relationships between Peromyscus, Habromys, Isthmomys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase (Adh1-I2), beta fibrinogen (Fgb-I7), interphotoreceptor retinoid-binding protein (Rbp3), and cytochrome-b (Cytb). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys, Megadontomys, Neotomodon, Osgoodomys, Podomys, and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus. Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data. PMID:26937047

  16. What Is Peromyscus? Evidence from nuclear and mitochondrial DNA sequences suggests the need for a new classification.

    PubMed

    Platt, Roy N; Amman, Brian R; Keith, Megan S; Thompson, Cody W; Bradley, Robert D

    2015-08-03

    The evolutionary relationships between Peromyscus , Habromys , Isthmomys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase ( Adh 1-I2), beta fibrinogen ( Fgb -I7), interphotoreceptor retinoid-binding protein ( Rbp 3), and cytochrome- b ( Cytb ). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys , Megadontomys , Neotomodon , Osgoodomys , Podomys , and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus . Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data.

  17. Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae?

    PubMed Central

    Marek, Paul E.

    2017-01-01

    For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921—a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels. PMID:29038750

  18. Can Strategic Ignorance Explain the Evolution of Love?

    PubMed

    Bear, Adam; Rand, David G

    2018-04-24

    People's devotion to, and love for, their romantic partners poses an evolutionary puzzle: Why is it better to stop your search for other partners once you enter a serious relationship when you could continue to search for somebody better? A recent formal model based on "strategic ignorance" suggests that such behavior can be adaptive and favored by natural selection, so long as you can signal your unwillingness to "look" for other potential mates to your current partner. Here, we re-examine this conclusion with a more detailed model designed to capture specific features of romantic relationships. We find, surprisingly, that devotion does not typically evolve in our model: Selection favors agents who choose to "look" while in relationships and who allow their partners to do the same. Non-looking is only expected to evolve if there is an extremely large cost associated with being left by your partner. Our results therefore raise questions about the role of strategic ignorance in explaining the evolution of love. Copyright © 2018 Cognitive Science Society, Inc.

  19. Aggressive mimicry coexists with mutualism in an aphid.

    PubMed

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-27

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation.

  20. Aggressive mimicry coexists with mutualism in an aphid

    PubMed Central

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-01

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  1. Towards a mechanistic foundation of evolutionary theory.

    PubMed

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  2. The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies

    PubMed Central

    Dworkin, Ian; Wagner, Aaron P.

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847

  3. From philosophy to science (to natural philosophy): evolutionary developmental perspectives.

    PubMed

    Love, Alan C

    2008-03-01

    This paper focuses on abstraction as a mode of reasoning that facilitates a productive relationship between philosophy and science. Using examples from evolutionary developmental biology, I argue that there are two areas where abstraction can be relevant to science: reasoning explication and problem clarification. The value of abstraction is characterized in terms of methodology (modeling or data gathering) and epistemology (explanatory evaluation or data interpretation).

  4. Revising the recent evolutionary history of equids using ancient DNA.

    PubMed

    Orlando, Ludovic; Metcalf, Jessica L; Alberdi, Maria T; Telles-Antunes, Miguel; Bonjean, Dominique; Otte, Marcel; Martin, Fabiana; Eisenmann, Véra; Mashkour, Marjan; Morello, Flavia; Prado, Jose L; Salas-Gismondi, Rodolfo; Shockey, Bruce J; Wrinn, Patrick J; Vasil'ev, Sergei K; Ovodov, Nikolai D; Cherry, Michael I; Hopwood, Blair; Male, Dean; Austin, Jeremy J; Hänni, Catherine; Cooper, Alan

    2009-12-22

    The rich fossil record of the family Equidae (Mammalia: Perissodactyla) over the past 55 MY has made it an icon for the patterns and processes of macroevolution. Despite this, many aspects of equid phylogenetic relationships and taxonomy remain unresolved. Recent genetic analyses of extinct equids have revealed unexpected evolutionary patterns and a need for major revisions at the generic, subgeneric, and species levels. To investigate this issue we examine 35 ancient equid specimens from four geographic regions (South America, Europe, Southwest Asia, and South Africa), of which 22 delivered 87-688 bp of reproducible aDNA mitochondrial sequence. Phylogenetic analyses support a major revision of the recent evolutionary history of equids and reveal two new species, a South American hippidion and a descendant of a basal lineage potentially related to Middle Pleistocene equids. Sequences from specimens assigned to the giant extinct Cape zebra, Equus capensis, formed a separate clade within the modern plain zebra species, a phenotypicically plastic group that also included the extinct quagga. In addition, we revise the currently recognized extinction times for two hemione-related equid groups. However, it is apparent that the current dataset cannot solve all of the taxonomic and phylogenetic questions relevant to the evolution of Equus. In light of these findings, we propose a rapid DNA barcoding approach to evaluate the taxonomic status of the many Late Pleistocene fossil Equidae species that have been described from purely morphological analyses.

  5. Ecological and evolutionary drivers of the elevational gradient of diversity.

    PubMed

    Laiolo, Paola; Pato, Joaquina; Obeso, José Ramón

    2018-05-02

    Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon-specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity-elevation relationships. © 2018 John Wiley & Sons Ltd/CNRS.

  6. Lifemap: Exploring the Entire Tree of Life.

    PubMed

    de Vienne, Damien M

    2016-12-01

    The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.

  7. Connecting proximate mechanisms and evolutionary patterns: pituitary gland size and mammalian life history.

    PubMed

    Kamilar, J M; Tecot, S R

    2015-11-01

    At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  8. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning.

    PubMed

    Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R

    2016-09-01

    Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.

  9. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in Drosophila melanogaster.

    PubMed

    Erkosar, Berra; Kolly, Sylvain; van der Meer, Jan R; Kawecki, Tadeusz J

    2017-10-24

    Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster , microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. IMPORTANCE Animals depend on gut microbiota for various metabolic tasks, particularly under conditions of nutritional stress, a relationship usually regarded as an inherent aspect of animal physiology. Here, we use experimental evolution in fly populations to show that the degree of host dependence on microbiota can substantially and rapidly change as the host population evolves in response to poor diet. Our results suggest that, although microbiota may initially greatly facilitate coping with suboptimal diets, chronic nutritional stress experienced over multiple generations leads to evolutionary adaptation in physiology and gut digestive properties that reduces dependence on the microbiota for growth and survival. Thus, despite its ancient evolutionary history, the reliance of animal hosts on their microbial partners can be surprisingly flexible and may be relaxed by short-term evolution. Copyright © 2017 Erkosar et al.

  10. Conservation of myeloid surface antigens on primate granulocytes.

    PubMed

    Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D

    1983-02-01

    Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.

  11. Undergraduate Students’ Initial Ability in Understanding Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Hidayat, T.; Sudargo, Fransisca

    2017-04-01

    The Phylogenetic tree is a visual representation depicts a hypothesis about the evolutionary relationship among taxa. Evolutionary experts use this representation to evaluate the evidence for evolution. The phylogenetic tree is currently growing for many disciplines in biology. Consequently, learning about the phylogenetic tree has become an important part of biological education and an interesting area of biology education research. Skill to understanding and reasoning of the phylogenetic tree, (called tree thinking) is an important skill for biology students. However, research showed many students have difficulty in interpreting, constructing, and comparing among the phylogenetic tree, as well as experiencing a misconception in the understanding of the phylogenetic tree. Students are often not taught how to reason about evolutionary relationship depicted in the diagram. Students are also not provided with information about the underlying theory and process of phylogenetic. This study aims to investigate the initial ability of undergraduate students in understanding and reasoning of the phylogenetic tree. The research method is the descriptive method. Students are given multiple choice questions and an essay that representative by tree thinking elements. Each correct answer made percentages. Each student is also given questionnaires. The results showed that the undergraduate students’ initial ability in understanding and reasoning phylogenetic tree is low. Many students are not able to answer questions about the phylogenetic tree. Only 19 % undergraduate student who answered correctly on indicator evaluate the evolutionary relationship among taxa, 25% undergraduate student who answered correctly on indicator applying concepts of the clade, 17% undergraduate student who answered correctly on indicator determines the character evolution, and only a few undergraduate student who can construct the phylogenetic tree.

  12. The Implications of the Cognitive Sciences for the Relation Between Religion and Science Education: The Case of Evolutionary Theory

    NASA Astrophysics Data System (ADS)

    Blancke, Stefaan; De Smedt, Johan; De Cruz, Helen; Boudry, Maarten; Braeckman, Johan

    2012-08-01

    This paper discusses the relationship between religion and science education in the light of the cognitive sciences. We challenge the popular view that science and religion are compatible, a view that suggests that learning and understanding evolutionary theory has no effect on students' religious beliefs and vice versa. We develop a cognitive perspective on how students manage to reconcile evolutionary theory with their religious beliefs. We underwrite the claim developed by cognitive scientists and anthropologists that religion is natural because it taps into people's intuitive understanding of the natural world which is constrained by essentialist, teleological and intentional biases. After contrasting the naturalness of religion with the unnaturalness of science, we discuss the difficulties cognitive and developmental scientists have identified in learning and accepting evolutionary theory. We indicate how religious beliefs impede students' understanding and acceptance of evolutionary theory. We explore a number of options available to students for reconciling an informed understanding of evolutionary theory with their religious beliefs. To conclude, we discuss the implications of our account for science and biology teachers.

  13. Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective.

    PubMed

    Inoue, Jun G; Miya, Masaki; Lam, Kevin; Tay, Boon-Hui; Danks, Janine A; Bell, Justin; Walker, Terrence I; Venkatesh, Byrappa

    2010-11-01

    With our increasing ability for generating whole-genome sequences, comparative analysis of whole genomes has become a powerful tool for understanding the structure, function, and evolutionary history of human and other vertebrate genomes. By virtue of their position basal to bony vertebrates, cartilaginous fishes (class Chondrichthyes) are a valuable outgroup in comparative studies of vertebrates. Recently, a holocephalan cartilaginous fish, the elephant shark, Callorhinchus milii (Subclass Holocephali: Order Chimaeriformes), has been proposed as a model genome, and low-coverage sequence of its genome has been generated. Despite such an increasing interest, the evolutionary history of the modern holocephalans-a previously successful and diverse group but represented by only 39 extant species-and their relationship with elasmobranchs and other jawed vertebrates has been poorly documented largely owing to a lack of well-preserved fossil materials after the end-Permian about 250 Ma. In this study, we assembled the whole mitogenome sequences for eight representatives from all the three families of the modern holocephalans and investigated their phylogenetic relationships and evolutionary history. Unambiguously aligned sequences from these holocephalans together with 17 other vertebrates (9,409 nt positions excluding entire third codon positions) were subjected to partitioned maximum likelihood analysis. The resulting tree strongly supported a single origin of the modern holocephalans and their sister-group relationship with elasmobranchs. The mitogenomic tree recovered the most basal callorhinchids within the chimaeriforms, which is sister to a clade comprising the remaining two families (rhinochimaerids and chimaerids). The timetree derived from a relaxed molecular clock Bayesian method suggests that the holocephalans originated in the Silurian about 420 Ma, having survived from the end-Permian (250 Ma) mass extinction and undergoing familial diversifications during the late Jurassic to early Cretaceous (170-120 Ma). This postulated evolutionary scenario agrees well with that based on the paleontological observations.

  14. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes

    PubMed Central

    2017-01-01

    Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity. PMID:28796803

  15. A continuum model for damage evolution in laminated composites

    NASA Technical Reports Server (NTRS)

    Lo, D. C.; Allen, D. H.; Harris, C. E.

    1991-01-01

    The accumulation of matrix cracking is examined using continuum damage mechanics lamination theory. A phenomenologically based damage evolutionary relationship is proposed for matrix cracking in continuous fiber reinforced laminated composites. The use of material dependent properties and damage dependent laminate averaged ply stresses in this evolutionary relationship permits its application independently of the laminate stacking sequence. Several load histories are applied to crossply laminates using this model, and the results are compared to published experimental data. The stress redistribution among the plies during the accumulation of matrix damage is also examined. It is concluded that characteristics of the stress redistribution process could assist in the analysis of the progressive failure process in laminated composites.

  16. Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae).

    PubMed

    Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo

    2018-01-01

    Two new species of the genus Ateuchus Weber are described from the region of Los Chimalapas, Oaxaca, Mexico: A. benitojuarezi sp. n. and A. colossus sp. n. A diagnosis for distinguishing these new species from the other species of this genus in North America is included. This paper is illustrated with pictures of the dorsal habitus and the male genitalia of the new species. The evolutionary relationships of the species are discussed, as well as their distribution and ecology. It is considered that the species of the genus Ateuchus present in North and Central America correspond to the Typical Neotropical and Mountain Mesoamerican distribution patterns.

  17. Constructing phylogenetic trees using interacting pathways.

    PubMed

    Wan, Peng; Che, Dongsheng

    2013-01-01

    Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.

  18. Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae)

    PubMed Central

    Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo

    2018-01-01

    Abstract Two new species of the genus Ateuchus Weber are described from the region of Los Chimalapas, Oaxaca, Mexico: A. benitojuarezi sp. n. and A. colossus sp. n. A diagnosis for distinguishing these new species from the other species of this genus in North America is included. This paper is illustrated with pictures of the dorsal habitus and the male genitalia of the new species. The evolutionary relationships of the species are discussed, as well as their distribution and ecology. It is considered that the species of the genus Ateuchus present in North and Central America correspond to the Typical Neotropical and Mountain Mesoamerican distribution patterns. PMID:29674904

  19. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees.

    PubMed

    DeBlasio, Dan F; Wisecaver, Jennifer H

    2016-01-01

    We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/.

  20. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    PubMed

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion. © 2013 John Wiley & Sons Ltd/CNRS.

  1. Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data

    PubMed Central

    Lewis, Nicola S.; Verhagen, Josanne H.; Javakhishvili, Zurab; Russell, Colin A.; Lexmond, Pascal; Westgeest, Kim B.; Bestebroer, Theo M.; Halpin, Rebecca A.; Lin, Xudong; Ransier, Amy; Fedorova, Nadia B.; Stockwell, Timothy B.; Latorre-Margalef, Neus; Olsen, Björn; Smith, Gavin; Bahl, Justin; Wentworth, David E.; Waldenström, Jonas; Fouchier, Ron A. M.

    2015-01-01

    Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. Frequent reassortment and co-circulating lineages were observed for all eight genomic RNA segments over time. There was no apparent species-specific effect on the diversity of the avian IAVs. There was a spatial and temporal relationship between the Eurasian sequences and significant viral migration of avian IAVs from West Eurasia towards Central Eurasia. The observed viral migration patterns differed between segments. Furthermore, we discuss the challenges faced when analysing these surveillance and sequence data, and the caveats to be borne in mind when drawing conclusions from the apparent results of such analyses. PMID:25904147

  2. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    PubMed Central

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  3. Network Analysis of Plasmidomes: The Azospirillum brasilense Sp245 Case

    PubMed Central

    Fondi, Marco

    2014-01-01

    Azospirillum brasilense is a nitrogen-fixing bacterium living in association with plant roots. The genome of the strain Sp245, isolated in Brazil from wheat roots, consists of one chromosome and six plasmids. In this work, the A. brasilense Sp245 plasmids were analyzed in order to shed some light on the evolutionary pathways they followed over time. To this purpose, a similarity network approach was applied in order to identify the evolutionary relationships among all the A. brasilense plasmids encoded proteins; in this context a computational pipeline specifically devoted to the analysis and the visualization of the network-like evolutionary relationships among different plasmids molecules was developed. This information was supplemented with a detailed (in silico) functional characterization of both the connected (i.e., sharing homology with other sequences in the dataset) and the unconnected (i.e., not sharing homology) components of the network. Furthermore, the most likely source organism for each of the genes encoded by A. brasilense plasmids was checked, allowing the identification of possible trends of gene loss/gain in this microorganism. Data obtained provided a detailed description of the evolutionary landscape of the plasmids of A. brasilense Sp245, suggesting some of the molecular mechanisms responsible for the present-day structure of these molecules. PMID:25610702

  4. Evolutionary relationships of flying foxes (genus Pteropus) in the Philippines inferred from DNA sequences of cytochrome b gene.

    PubMed

    Bastian, S T; Tanaka, K; Anunciado, R V P; Natural, N G; Sumalde, A C; Namikawa, T

    2002-04-01

    Six flying fox species, genus Pteropus (four from the Philippines) were investigated using complete cytochrome b gene sequences (1140 bp) to infer their evolutionary relationships. The DNA sequences generated via polymerase chain reaction were analyzed using the neighbor-joining, parsimony, and maximum likelihood methods. We estimated that the first evolutionary event among these Pteropus species occurred approximately 13.90 +/- 1.49 MYA. Within this short period of evolutionary time we further hypothesized that the ancestors of the flying foxes found in the Philippines experienced a subsequent diversification forming two clusters in the topology. The first cluster is composed of P. pumilus (Philippine endemic), P. speciosus (restricted in western Mindanao) with P. scapulatus, while the second one comprised P. vampyrus and P. dasymallus species based on the analysis from first and second codon positions. Consistently, all phylogenetic analyses divulged close association of P. dasymallus with P. vampyrus contradicting the previous report categorizing P. dasymallus under subniger species group with P. pumilus. P. speciosus, and P. hypomelanus. The Philippine endemic species (P. pumilus) is closely linked with P. speciosus. The representative samples of P. vampyrus showed a large genetic distance of 1.87%. The large genetic distance between P. dasymallus and P. hypomelanus, P. pumilus and P. speciosus denotes a distinct species group.

  5. A Cross-Cultural Comparison of Korean and American Science Teachers' Views of Evolution and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Kim, Sun Young; Nehm, Ross H.

    2011-01-01

    Despite a few international comparisons of the evolutionary beliefs of the general public, comparatively less research has focused on science teachers. Cross-cultural studies offer profitable opportunities for exploring the interactions among knowledge and belief variables in regard to evolution in different socio-cultural contexts. We investigated the evolutionary worldviews of pre-service science teachers from Asia (specifically South Korea), a region often excluded from international comparisons. We compared Korean and American science teachers': (1) understandings of evolution and the nature of science, and (2) acceptance of evolution in order to elucidate how knowledge and belief relationships are manifested in different cultural contexts. We found that Korean science teachers exhibited 'moderate' evolutionary acceptance levels comparable to or lower than American science teacher samples. Gender was significantly related to Korean teachers' evolution content knowledge and acceptance of evolution, with female Christian biology teachers displaying the lowest values on all measures. Korean science teachers' understandings of nature of science were significantly related to their acceptance and understanding of evolution; this relationship appears to transcend cultural boundaries. Our new data on Korean teachers, combined with studies from more than 20 other nations, expose the global nature of science teacher ambivalence or antipathy toward evolutionary knowledge.

  6. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics.

    PubMed

    Erren, T C; Erren, M

    2004-04-01

    When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.

  7. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene.

    PubMed

    Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C

    2015-02-01

    The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions.

    PubMed

    Galián, José A; Rosato, Marcela; Rosselló, Josep A

    2014-03-01

    Multigene families have provided opportunities for evolutionary biologists to assess molecular evolution processes and phylogenetic reconstructions at deep and shallow systematic levels. However, the use of these markers is not free of technical and analytical challenges. Many evolutionary studies that used the nuclear 5S rDNA gene family rarely used contiguous 5S coding sequences due to the routine use of head-to-tail polymerase chain reaction primers that are anchored to the coding region. Moreover, the 5S coding sequences have been concatenated with independent, adjacent gene units in many studies, creating simulated chimeric genes as the raw data for evolutionary analysis. This practice is based on the tacitly assumed, but rarely tested, hypothesis that strict intra-locus concerted evolution processes are operating in 5S rDNA genes, without any empirical evidence as to whether it holds for the recovered data. The potential pitfalls of analysing the patterns of molecular evolution and reconstructing phylogenies based on these chimeric genes have not been assessed to date. Here, we compared the sequence integrity and phylogenetic behavior of entire versus concatenated 5S coding regions from a real data set obtained from closely related plant species (Medicago, Fabaceae). Our results suggest that within arrays sequence homogenization is partially operating in the 5S coding region, which is traditionally assumed to be highly conserved. Consequently, concatenating 5S genes increases haplotype diversity, generating novel chimeric genotypes that most likely do not exist within the genome. In addition, the patterns of gene evolution are distorted, leading to incorrect haplotype relationships in some evolutionary reconstructions.

  9. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau.

    PubMed

    Yuan, Ming-Long; Zhang, Qi-Lin; Zhang, Li; Jia, Cheng-Lin; Li, Xiao-Peng; Yang, Xing-Zhuo; Feng, Run-Qiu

    2018-05-01

    Grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) are the most important pests in alpine meadows of the Tibetan Plateau (TP) and have well adapted to high-altitude environments. To further understand the evolutionary history and their adaptation to the TP, we newly determined seven complete TP Gynaephora mitogenomes. Compared to single genes, whole mitogenomes provided the best phylogenetic signals and obtained robust results, supporting the monophyly of the TP Gynaephora species and a phylogeny of Arctiinae + (Aganainae + Lymantriinae). Incongruent phylogenetic signals were found among single mitochondrial genes, none of which recovered the same phylogeny as the whole mitogenome. We identified six best-performing single genes using Shimodaira-Hasegawa tests and found that the combinations of rrnS and either cox1 or cox3 generated the same phylogeny as the whole mitogenome, indicating the phylogenetic potential of these three genes for future evolutionary studies of Gynaephora. The TP Gynaephora species were estimated to radiate on the TP during the Pliocene and Quaternary, supporting an association of the diversification and speciation of the TP Gynaephora species with the TP uplifts and associated climate changes during this time. Selection analyses revealed accelerated evolutionary rates of the mitochondrial protein-coding genes in the TP Gynaephora species, suggesting that they accumulated more nonsynonymous substitutions that may benefit their adaptation to high altitudes. Furthermore, signals of positive selection were detected in nad5 of two Gynaephora species with the highest altitude-distributions, indicating that this gene may contribute to Gynaephora's adaptation to divergent altitudes. This study adds to the understanding of the TP Gynaephora evolutionary relationships and suggests a link between mitogenome evolution and ecological adaptation to high-altitude environments in grassland caterpillars. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group*

    PubMed Central

    Auer, Markus; Gruber, Clemens; Bellei, Marzia; Pirker, Katharina F.; Zamocky, Marcel; Kroiss, Daniela; Teufer, Stefan A.; Hofbauer, Stefan; Soudi, Monika; Battistuzzi, Gianantonio; Furtmüller, Paul G.; Obinger, Christian

    2013-01-01

    Reconstructing the phylogenetic relationships of the main evolutionary lines of the mammalian peroxidases lactoperoxidase and myeloperoxidase revealed the presence of novel bacterial heme peroxidase subfamilies. Here, for the first time, an ancestral bacterial heme peroxidase is shown to possess a very high bromide oxidation activity (besides conventional peroxidase activity). The recombinant protein allowed monitoring of the autocatalytic peroxide-driven formation of covalent heme to protein bonds. Thereby, the high spin ferric rhombic heme spectrum became similar to lactoperoxidase, the standard reduction potential of the Fe(III)/Fe(II) couple shifted to more positive values (−145 ± 10 mV at pH 7), and the conformational and thermal stability of the protein increased significantly. We discuss structure-function relationships of this new peroxidase in relation to its mammalian counterparts and ask for its putative physiological role. PMID:23918925

  11. The evolution of island gigantism and body size variation in tortoises and turtles

    PubMed Central

    Jaffe, Alexander L.; Slater, Graham J.; Alfaro, Michael E.

    2011-01-01

    Extant chelonians (turtles and tortoises) span almost four orders of magnitude of body size, including the startling examples of gigantism seen in the tortoises of the Galapagos and Seychelles islands. However, the evolutionary determinants of size diversity in chelonians are poorly understood. We present a comparative analysis of body size evolution in turtles and tortoises within a phylogenetic framework. Our results reveal a pronounced relationship between habitat and optimal body size in chelonians. We found strong evidence for separate, larger optimal body sizes for sea turtles and island tortoises, the latter showing support for the rule of island gigantism in non-mammalian amniotes. Optimal sizes for freshwater and mainland terrestrial turtles are similar and smaller, although the range of body size variation in these forms is qualitatively greater. The greater number of potential niches in freshwater and terrestrial environments may mean that body size relationships are more complicated in these habitats. PMID:21270022

  12. Intraspecific evolutionary relationships among peregrine falcons in western North American high latitudes

    PubMed Central

    Sage, George K.; Sonsthagen, Sarah A.; Gravley, Meg C.; Swem, Ted; Williams, Jeffrey C.; Longmire, Jonathan L.; Ambrose, Skip; Flamme, Melanie J.; Lewis, Stephen B.; Phillips, Laura; Anderson, Clifford; White, Clayton M.

    2017-01-01

    Subspecies relationships within the peregrine falcon (Falco peregrinus) have been long debated because of the polytypic nature of melanin-based plumage characteristics used in subspecies designations and potential differentiation of local subpopulations due to philopatry. In North America, understanding the evolutionary relationships among subspecies may have been further complicated by the introduction of captive bred peregrines originating from non-native stock, as part of recovery efforts associated with mid 20th century population declines resulting from organochloride pollution. Alaska hosts all three nominal subspecies of North American peregrine falcons–F. p. tundrius, anatum, and pealei–for which distributions in Alaska are broadly associated with nesting locales within Arctic, boreal, and south coastal maritime habitats, respectively. Unlike elsewhere, populations of peregrine falcon in Alaska were not augmented by captive-bred birds during the late 20th century recovery efforts. Population genetic differentiation analyses of peregrine populations in Alaska, based on sequence data from the mitochondrial DNA control region and fragment data from microsatellite loci, failed to uncover genetic distinction between populations of peregrines occupying Arctic and boreal Alaskan locales. However, the maritime subspecies, pealei, was genetically differentiated from Arctic and boreal populations, and substructured into eastern and western populations. Levels of interpopulational gene flow between anatum and tundrius were generally higher than between pealei and either anatum or tundrius. Estimates based on both marker types revealed gene flow between augmented Canadian populations and unaugmented Alaskan populations. While we make no attempt at formal taxonomic revision, our data suggest that peregrine falcons occupying habitats in Alaska and the North Pacific coast of North America belong to two distinct regional groupings–a coastal grouping (pealei) and a boreal/Arctic grouping (currently anatum and tundrius)–each comprised of discrete populations that are variously intra-regionally connected. PMID:29149202

  13. Decoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since z = 2.5

    NASA Astrophysics Data System (ADS)

    Cowley, M. J.; Spitler, L. R.; Quadri, R. F.; Goulding, A. D.; Papovich, C.; Tran, K. V. H.; Labbé, I.; Alcorn, L.; Allen, R. J.; Forrest, B.; Glazebrook, K.; Kacprzak, G. G.; Morrison, G.; Nanayakkara, T.; Straatman, C. M. S.; Tomczak, A. R.

    2018-01-01

    We investigate the relationship between the black hole accretion rate (BHAR) and star formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 to 2.5. We source galaxies from the Ks-band-selected ZFOURGE survey, which includes multiwavelength data spanning 0.3-160 μm. We use decomposition software to split the observed spectral energy distributions (SEDs) of our galaxies into their active galactic nuclei (AGNs) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison with BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find that, as the progenitors evolve their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 ± 0.11, while the M31-mass progenitors are 0.39 ± 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray-/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).

  14. Molecular phylogenetics, vocalizations, and species limits in Celeus woodpeckers (Aves: Picidae).

    PubMed

    Benz, Brett W; Robbins, Mark B

    2011-10-01

    Species limits and the evolutionary mechanisms that have shaped diversification of woodpeckers and allies (Picidae) remain obscure, as inter and intraspecific phylogenetic relationships have yet to be comprehensively resolved for most genera. Herein, we analyzed 5020 base pairs of nucleotide sequence data from the mitochondrial and nuclear genomes to reconstruct the evolutionary history of Celeus woodpeckers. Broad geographic sampling was employed to assess species limits in phenotypically variable lineages and provide a first look at the evolution of song and plumage traits in this poorly known Neotropical genus. Our results strongly support the monophyly of Celeus and reveal several novel relationships across a shallow phylogenetic topology. We confirm the close sister relationship between Celeus spectabilis and the enigmatic Celeus obrieni, both of which form a clade with Celeus flavus. The Mesoamerican Celeus castaneus was placed as sister to a Celeus undatus-grammicus lineage, with the species status of the latter drawn into question given the lack of substantial genetic, morphological, and vocal variation in these taxa. We recovered paraphyly in Celeus elegans; however, this result appears to be the consequence of mitochondrial introgression from Celeus lugubris considering the monophyly of elegans at the ß-FIBI7 locus. A second instance of paraphyly was observed in Celeus flavescens with deep genetic splits and substantial phenotypic variation indicating the presence of two distinct species in this broadly distributed lineage. As such, we advocate elevation of Celeus flavescens ochraceus to species status. Our analysis of Celeus vocalizations and plumage characters demonstrates a pattern of lability consistent with a relatively recent origin of the genus and potentially rapid speciation history. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Phylogenomics of palearctic Formica species suggests a single origin of temporary parasitism and gives insights to the evolutionary pathway toward slave-making behaviour.

    PubMed

    Romiguier, Jonathan; Rolland, Jonathan; Morandin, Claire; Keller, Laurent

    2018-03-28

    The ants of the Formica genus are classical model species in evolutionary biology. In particular, Darwin used Formica as model species to better understand the evolution of slave-making, a parasitic behaviour where workers of another species are stolen to exploit their workforce. In his book "On the Origin of Species" (1859), Darwin first hypothesized that slave-making behaviour in Formica evolved in incremental steps from a free-living ancestor. The absence of a well-resolved phylogenetic tree of the genus prevent an assessment of whether relationships among Formica subgenera are compatible with this scenario. In this study, we resolve the relationships among the 4 palearctic Formica subgenera (Formica str. s., Coptoformica, Raptiformica and Serviformica) using a phylogenomic dataset of 945 genes for 16 species. We provide a reference tree resolving the relationships among the main Formica subgenera with high bootstrap supports. The branching order of our tree suggests that the free-living lifestyle is ancestral in the Formica genus and that parasitic colony founding could have evolved a single time, probably acting as a pre-adaptation to slave-making behaviour. This phylogenetic tree provides a solid backbone for future evolutionary studies in the Formica genus and slave-making behaviour.

  16. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism.

    PubMed Central

    Fernandes, A P; Nelson, K; Beverley, S M

    1993-01-01

    Molecular evolutionary relationships within the protozoan order Kinetoplastida were deduced from comparisons of the nuclear small and large subunit ribosomal RNA (rRNA) gene sequences. These studies show that relationships among the trypanosomatid protozoans differ from those previously proposed from studies of organismal characteristics or mitochondrial rRNAs. The genera Leishmania, Endotrypanum, Leptomonas, and Crithidia form a closely related group, which shows progressively more distant relationships to Phytomonas and Blastocrithidia, Trypanosoma cruzi, and lastly Trypanosoma brucei. The rooting of the trypanosomatid tree was accomplished by using Bodo caudatus (family Bodonidae) as an outgroup, a status confirmed by molecular comparisons with other eukaryotes. The nuclear rRNA tree agrees well with data obtained from comparisons of other nuclear genes. Differences with the proposed mitochondrial rRNA tree probably reflect the lack of a suitable outgroup for this tree, as the topologies are otherwise similar. Small subunit rRNA divergences within the trypanosomatids are large, approaching those among plants and animals, which underscores the evolutionary antiquity of the group. Analysis of the distribution of different parasitic life-styles of these species in conjunction with a probable timing of evolutionary divergences suggests that vertebrate parasitism arose multiple times in the trypanosomatids. PMID:8265597

  17. Evolutionary relationships among food habit, loss of flight, and reproductive traits: life-history evolution in the Silphinae (Coleoptera: Silphidae).

    PubMed

    Ikeda, Hiroshi; Kagaya, Takashi; Kubota, Kohei; Abe, Toshio

    2008-08-01

    Flightlessness in insects is generally thought to have evolved due to changes in habitat environment or habitat isolation. Loss of flight may have changed reproductive traits in insects, but very few attempts have been made to assess evolutionary relationships between flight and reproductive traits in a group of related species. We elucidated the evolutionary history of flight loss and its relationship to evolution in food habit, relative reproductive investment, and egg size in the Silphinae (Coleoptera: Silphidae). Most flight-capable species in this group feed primarily on vertebrate carcasses, whereas flightless or flight-dimorphic species feed primarily on soil invertebrates. Ancestral state reconstruction based on our newly constructed molecular phylogenetic tree implied that flight muscle degeneration occurred twice in association with food habit changes from necrophagy to predatory, suggesting that flight loss could evolve independently from changes in the environmental circumstances per se. We found that total egg production increased with flight loss. We also found that egg size increased with decreased egg number following food habit changes in the lineage leading to predaceous species, suggesting that selection for larger larvae intensified with the food habit change. This correlated evolution has shaped diverse life-history patterns among extant species of Silphinae.

  18. Evolutionary Game Analysis of Government Regulation and Enterprise Emission from the Perspective of Environmental Tax

    NASA Astrophysics Data System (ADS)

    Mai, Yazong

    2017-12-01

    In the context of the upcoming implementation of the environmental tax policy, there is a need for a focus on the relationship between government regulation and corporate emissions. To achieve the real effect of environmental tax policy, government need to regulate the illegal emissions of enterprises. Based on the hypothesis of bounded rationality, this paper analyses the strategic set of government regulators and polluting enterprises in the implementation of environmental tax policy. By using the evolutionary game model, the utility function and payoff matrix of the both sides are constructed, and the evolutionary analysis and strategy adjustment of the environmental governance target and the actual profit of the stakeholders are carried out. Thus, the wrong behaviours could be corrected so that the equilibrium of the evolutionary system can be achieved gradually, which could also get the evolutionary stable strategies of the government and the polluting enterprises in the implementation of environmental tax policy.

  19. Evolutionary medicine: update on the relevance to family practice.

    PubMed

    Naugler, Christopher T

    2008-09-01

    To review the relevance of evolutionary medicine to family practice and family physician training. Articles were located through a MEDLINE search, using the key words evolution, Darwin, and adaptation. Most references presented level III evidence (expert opinion), while a minority provided level II evidence (epidemiologic studies). Evolutionary medicine deals with the interplay of biology and the environment in the understanding of human disease. Yet medical schools have virtually ignored the need for family physicians to have more than a cursory knowledge of this topic. A review of the main trends in this field most relevant to family practice revealed that a basic knowledge of evolutionary medicine might help in explaining the causation of diseases to patients. Evolutionary medicine has also proven key to explaining the reasons for the development of antibiotic resistance and has the potential to explain cancer pathogenesis. As an organizing principle, this field also has potential in the teaching of family medicine. Evolutionary medicine should be studied further and incorporated into medical training and practice. Its practical utility will be proven through the generation of testable hypotheses and their application in relation to disease causation and possible prevention.

  20. Temperature-Dependent Sex Determination under Rapid Anthropogenic Environmental Change: Evolution at a Turtle's Pace?

    PubMed

    Refsnider, Jeanine M; Janzen, Fredric J

    2016-01-01

    Organisms become adapted to their environment by evolving through natural selection, a process that generally transpires over many generations. Currently, anthropogenically driven environmental changes are occurring orders of magnitude faster than they did prior to human influence, which could potentially outpace the ability of some organisms to adapt. Here, we focus on traits associated with temperature-dependent sex determination (TSD), a classic polyphenism, in a model turtle species to address the evolutionary potential of species with TSD to respond to rapid climate change. We show, first, that sex-ratio outcomes in species with TSD are sensitive to climatic variation. We then identify the evolutionary potential, in terms of heritability, of TSD and quantify the evolutionary potential of 3 key traits involved in TSD: pivotal temperature, maternal nest-site choice, and nesting phenology. We find that these traits display different patterns of adaptive potential: pivotal temperature exhibits moderate heritable variation, whereas nest-site choice and nesting phenology, with considerable phenotypic plasticity, have only modest evolutionary potential to alter sex ratios. Therefore, the most likely response of species with TSD to anthropogenically induced climate change may be a combination of microevolution in thermal sensitivity of the sex-determining pathway and of plasticity in maternal nesting behavior. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Phylogenomic analyses of nuclear genes reveal the evolutionary relationships within the BEP clade and the evidence of positive selection in Poaceae.

    PubMed

    Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua

    2013-01-01

    BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.

  2. Phylogenomic Analyses of Nuclear Genes Reveal the Evolutionary Relationships within the BEP Clade and the Evidence of Positive Selection in Poaceae

    PubMed Central

    Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua

    2013-01-01

    BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family. PMID:23734211

  3. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    PubMed

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species. Copyright 1999 Academic Press.

  4. Global distribution and evolvement of urbanization and PM2.5 (1998-2015)

    NASA Astrophysics Data System (ADS)

    Yang, Dongyang; Ye, Chao; Wang, Xiaomin; Lu, Debin; Xu, Jianhua; Yang, Haiqing

    2018-06-01

    PM2.5 concentrations increased and have been one of the major social issues along with rapid urbanization in many regions of the world in recent decades. The development of urbanization differed among regions, PM2.5 pollution also presented discrepant distribution across the world. Thus, this paper aimed to grasp the profile of global distribution of urbanization and PM2.5 and their evolutionary relationships. Based on global data for the proportion of the urban population and PM2.5 concentrations in 1998-2015, this paper investigated the spatial distribution, temporal variation, and evolutionary relationships of global urbanization and PM2.5. The results showed PM2.5 presented an increasing trend along with urbanization during the study period, but there was a variety of evolutionary relationships in different countries and regions. Most countries in East Asia, Southeast Asia, South Asia, and some African countries developed with the rapid increase in both urbanization and PM2.5. Under the impact of other socioeconomic factors, such as industry and economic growth, the development of urbanization increased PM2.5 concentrations in most Asian countries and some African countries, but decreased PM2.5 concentrations in most European and American countries. The findings of this study revealed the spatial distributions of global urbanization and PM2.5 pollution and provided an interpretation on the evolution of urbanization-PM2.5 relationships, which can contribute to urbanization policies making aimed at successful PM2.5 pollution control and abatement.

  5. Evolutionary and Biogeographic Insights on the Macaronesian Beta-Patellifolia Species (Amaranthaceae) from a Time-Scaled Molecular Phylogeny

    PubMed Central

    Romeiras, Maria M.; Vieira, Ana; Silva, Diogo N.; Moura, Monica; Santos-Guerra, Arnoldo; Batista, Dora; Duarte, Maria Cristina; Paulo, Octávio S.

    2016-01-01

    The Western Mediterranean Region and Macaronesian Islands are one of the top biodiversity hotspots of Europe, containing a significant native genetic diversity of global value among the Crop Wild Relatives (CWR). Sugar beet is the primary crop of the genus Beta (subfamily Betoideae, Amaranthaceae) and despite the great economic importance of this genus, and of the close relative Patellifolia species, a reconstruction of their evolutionary history is still lacking. We analyzed nrDNA (ITS) and cpDNA gene (matK, trnH-psbA, trnL intron, rbcL) sequences to: (i) investigate the phylogenetic relationships within the Betoideae subfamily, and (ii) elucidate the historical biogeography of wild beet species in the Western Mediterranean Region, including the Macaronesian Islands. The results support the Betoideae as a monophyletic group (excluding the Acroglochin genus) and provide a detailed inference of relationships within this subfamily, revealing: (i) a deep genetic differentiation between Beta and Patellifolia species, which may have occurred in Late Oligocene; and (ii) the occurrence of a West-East genetic divergence within Beta, indicating that the Mediterranean species probably differentiated by the end of the Miocene. This was interpreted as a signature of species radiation induced by dramatic habitat changes during the Messinian Salinity Crisis (MSC, 5.96–5.33 Mya). Moreover, colonization events during the Pleistocene also played a role in shaping the current diversity patterns among and within the Macaronesian Islands. The origin and number of these events could not be revealed due to insufficient phylogenetic resolution, suggesting that the diversification was quite recent in these archipelagos, and unravelling potential complex biogeographic patterns with hybridization and gene flow playing an important role. Finally, three evolutionary lineages were identified corresponding to major gene pools of sugar beet wild relatives, which provide useful information for establishing in situ and ex situ conservation priorities in the hotspot area of the Macaronesian Islands. PMID:27031338

  6. Nest desertion and cowbird parasitism: evidence for evolved responses and evolutionary lag.

    PubMed

    Hosoi; Rothstein

    2000-04-01

    Nest desertion with subsequent renesting is a frequently cited response to parasitism by the brown-headed cowbird, Molothrus ater, yet the role of desertion as an antiparasite defence is widely debated. To determine whether desertion represents an evolutionary response to brown-headed cowbird parasitism, we searched the primary literature, yielding data on the desertion frequencies of 60 host populations from 35 species. Species were categorized according to three habitat types (forest, intermediate and nonforest). Because cowbirds prefer open habitat and rarely penetrate deeply into forests, nonforest species have long been exposed to widespread cowbird parasitism, whereas forest species have not. However, due to increased forest fragmentation, forest species are being increasingly exposed to extensive parasitism. The frequency of desertion of parasitized nests was significantly higher in nonforest than forest species, suggesting that the latter experience evolutionary lag. We also considered whether desertion is affected by predation frequency, degree of current or recent sympatry with cowbirds, parasitism frequency, length of host laying season, phylogenetic relationships, and potential cost of cowbird parasitism. None of these variables created biases that could account for the observed difference in desertion frequencies of nonforest and forest species. However, species that incur large costs when parasitized had higher desertion rates among nonforest species but not among forest species. These results indicate that increased nest desertion is an evolved response to cowbird parasitism, as one would otherwise expect no relationship between desertion frequency and thezx costs and length of exposure to cowbird parasitism. Although nearly all hosts have eggs easily distinguished from cowbird eggs, few or none desert in response to cowbird eggs. Instead, desertion may be a response to adult cowbirds. The scarcity of species that desert in response to cowbird eggs suggests that egg recognition is more difficult to evolve than heightened desertion tendencies and that egg recognition quickly leads to ejection behaviour once it does develop. Copyright 2000 The Association for the Study of Animal Behaviour.

  7. Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures

    PubMed Central

    Bryson, David M.; Ofria, Charles

    2013-01-01

    We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. PMID:24376669

  8. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    PubMed Central

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival. PMID:23637571

  9. Relationships and the social brain: integrating psychological and evolutionary perspectives.

    PubMed

    Sutcliffe, Alistair; Dunbar, Robin; Binder, Jens; Arrow, Holly

    2012-05-01

    Psychological studies of relationships tend to focus on specific types of close personal relationships (romantic, parent-offspring, friendship) and examine characteristics of both the individuals and the dyad. This paper looks more broadly at the wider range of relationships that constitute an individual's personal social world. Recent work on the composition of personal social networks suggests that they consist of a series of layers that differ in the quality and quantity of relationships involved. Each layer increases relationship numbers by an approximate multiple of 3 (5-15-50-150) but decreasing levels of intimacy (strong, medium, and weak ties) and frequency of interaction. To account for these regularities, we draw on both social and evolutionary psychology to argue that relationships at different layers serve different functions and have different cost-benefit profiles. At each layer, the benefits are asymptotic but the costs of maintaining a relationship at that level (most obviously, the time that has to be invested in servicing it) are roughly linear with the number of relationships. The trade-off between costs and benefits at a given level, and across the different types of demands and resources typical of different levels, gives rise to a distribution of social effort that generates and maintains a hierarchy of layered sets of relationships within social networks. We suggest that, psychologically, these trade-offs are related to the level of trust in a relationship, and that this is itself a function of the time invested in the relationship. ©2011 The British Psychological Society.

  10. Time to Evolve? Potential Evolutionary Responses of Fraser River Sockeye Salmon to Climate Change and Effects on Persistence

    PubMed Central

    Reed, Thomas E.; Schindler, Daniel E.; Hague, Merran J.; Patterson, David A.; Meir, Eli; Waples, Robin S.; Hinch, Scott G.

    2011-01-01

    Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ∼10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change. PMID:21738573

  11. Spiders in Motion: Demonstrating Adaptation, Structure-Function Relationships, and Trade-Offs in Invertebrates

    ERIC Educational Resources Information Center

    Bowlin, Melissa S.; McLeer, Dorothy F.; Danielson-Francois, Anne M.

    2014-01-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students…

  12. How Humans Evolved According to Grade 12 Students in Singapore

    ERIC Educational Resources Information Center

    Seoh, Kah Huat Robin; Subramaniam, R.; Hoh, Yin Kiong

    2016-01-01

    Tree thinking, the understanding of the evolutionary relationships between organisms depicted in different types of tree diagrams, is an integral part of understanding evolution. Novice learners often read tree diagrams differently from specialists, resulting in diverse interpretations of the relationships depicted. The aim of this study is to…

  13. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses

    USDA-ARS?s Scientific Manuscript database

    Literature published after 1984 were reviewed to address: (1) genome relationships among monogenomic diploid species, (2) progenitors of the unknown Y genome in Elymus polyploids, X in Thinopyrum intermedium, and Xm in Leymus, and (3) genome constitutions of some perennial Triticeae species that wer...

  14. Developmental plasticity: Friend or foe?

    PubMed

    Michels, Karin B

    2017-01-01

    Developmental plasticity - the concept that adaptation to changing and unfavorable environmental conditions are possible but may come at the price of compromised health potentials - has evolutionary grounding as it facilitates survival but dissents with fundamental evolutionary principles in that it may advance the lesser fit. It is an important cornerstone of the Developmental Origins of Health and Disease (DOHaD). Unlike evolutionary adaptation developmental plasticity may be short-lived and restricted to one or few generations and inheritance is uncertain. Potential mechanisms include epigenetic modifications adopted in utero which may not transmit to the next generation; future insights may allow adjustments of the outcomes of developmental plasticity.

  15. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages.

    PubMed

    Liu, Xiaobo; Li, Meng; Castelle, Cindy J; Probst, Alexander J; Zhou, Zhichao; Pan, Jie; Liu, Yang; Banfield, Jillian F; Gu, Ji-Dong

    2018-06-08

    As a recently discovered member of the DPANN superphylum, Woesearchaeota account for a wide diversity of 16S rRNA gene sequences, but their ecology, evolution, and metabolism remain largely unknown. Here, we assembled 133 global clone libraries/studies and 19 publicly available genomes to profile these patterns for Woesearchaeota. Phylogenetic analysis shows a high diversity with 26 proposed subgroups for this recently discovered archaeal phylum, which are widely distributed in different biotopes but primarily in inland anoxic environments. Ecological patterns analysis and ancestor state reconstruction for specific subgroups reveal that oxic status of the environments is the key factor driving the distribution and evolutionary diversity of Woesearchaeota. A selective distribution to different biotopes and an adaptive colonization from anoxic to oxic environments can be proposed and supported by evidence of the presence of ferredoxin-dependent pathways in the genomes only from anoxic biotopes but not from oxic biotopes. Metabolic reconstructions support an anaerobic heterotrophic lifestyle with conspicuous metabolic deficiencies, suggesting the requirement for metabolic complementarity with other microbes. Both lineage abundance distribution and co-occurrence network analyses across diverse biotopes confirmed metabolic complementation and revealed a potential syntrophic relationship between Woesearchaeota and methanogens, which is supported by metabolic modeling. If correct, Woesearchaeota may impact methanogenesis in inland ecosystems. The findings provide an ecological and evolutionary framework for Woesearchaeota at a global scale and indicate their potential ecological roles, especially in methanogenesis.

  16. Accounting for epistatic interactions improves the functional analysis of protein structures.

    PubMed

    Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier

    2013-11-01

    The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.

  17. Accounting for epistatic interactions improves the functional analysis of protein structures

    PubMed Central

    Wilkins, Angela D.; Venner, Eric; Marciano, David C.; Erdin, Serkan; Atri, Benu; Lua, Rhonald C.; Lichtarge, Olivier

    2013-01-01

    Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: lichtarge@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24021383

  18. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    PubMed

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Role of Evolutionary Biology in Research and Control of Liver Flukes in Southeast Asia

    PubMed Central

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F.; Wilcox, Bruce A.

    2016-01-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. PMID:27197053

  20. Neptunism and Transformism: Robert Jameson and other Evolutionary Theorists in Early Nineteenth-Century Scotland.

    PubMed

    Jenkins, Bill

    2016-08-01

    This paper sheds new light on the prevalence of evolutionary ideas in Scotland in the early nineteenth century and establish what connections existed between the espousal of evolutionary theories and adherence to the directional history of the earth proposed by Abraham Gottlob Werner and his Scottish disciples. A possible connection between Wernerian geology and theories of the transmutation of species in Edinburgh in the period when Charles Darwin was a medical student in the city was suggested in an important 1991 paper by James Secord. This study aims to deepen our knowledge of this important episode in the history of evolutionary ideas and explore the relationship between these geological and evolutionary discourses. To do this it focuses on the circle of natural historians around Robert Jameson, Wernerian geologist and professor of natural history at the University of Edinburgh from 1804 to 1854. From the evidence gathered here there emerges a clear confirmation that the Wernerian model of geohistory facilitated the acceptance of evolutionary explanations of the history of life in early nineteenth-century Scotland. As Edinburgh was at this time the most important center of medical education in the English-speaking world, this almost certainly influenced the reception and development of evolutionary ideas in the decades that followed.

  1. Are hotspots of evolutionary potential adequately protected in southern California?

    USGS Publications Warehouse

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  2. Macroscopic Theory for Evolving Biological Systems Akin to Thermodynamics.

    PubMed

    Kaneko, Kunihiko; Furusawa, Chikara

    2018-05-20

    We present a macroscopic theory to characterize the plasticity, robustness, and evolvability of biological responses and their fluctuations. First, linear approximation in intracellular reaction dynamics is used to demonstrate proportional changes in the expression of all cellular components in response to a given environmental stress, with the proportion coefficient determined by the change in growth rate as a consequence of the steady growth of cells. We further demonstrate that this relationship is supported through adaptation experiments of bacteria, perhaps too well as this proportionality is held even across cultures of different types of conditions. On the basis of simulations of cell models, we further show that this global proportionality is a consequence of evolution in which expression changes in response to environmental or genetic perturbations are constrained along a unique one-dimensional curve, which is a result of evolutionary robustness. It then follows that the expression changes induced by environmental changes are proportionally reduced across different components of a cell by evolution, which is akin to the Le Chatelier thermodynamics principle. Finally, with the aid of a fluctuation-response relationship, this proportionality is shown to hold between fluctuations caused by genetic changes and those caused by noise. Overall, these results and support from the theoretical and experimental literature suggest a formulation of cellular systems akin to thermodynamics, in which a macroscopic potential is given by the growth rate (or fitness) represented as a function of environmental and evolutionary changes.

  3. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar

    2013-04-01

    The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.

  4. A distance-limited sample of massive star-forming cores from the RMS

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Lumsden, S. L.; Moore, T. J. T.; Mottram, J. C.; Urquhart, J. S.; Cicchini, A.

    2015-09-01

    We analyse C18O (J = 3-2) data from a sample of 99 infrared (IR)-bright massive young stellar objects (MYSOs) and compact H II regions that were identified as potential molecular-outflow sources in the Red MSX Source survey. We extract a distance-limited (D < 6 kpc) sample shown to be representative of star formation covering the transition between the source types. At the spatial resolution probed, Larson-like relationships are found for these cores, though the alternative explanation, that Larson's relations arise where surface-density-limited samples are considered, is also consistent with our data. There are no significant differences found between source properties for the MYSOs and H II regions, suggesting that the core properties are established prior to the formation of massive stars, which subsequently have little impact at the later evolutionary stages investigated. There is a strong correlation between dust-continuum and C18O-gas masses, supporting the interpretation that both trace the same material in these IR-bright sources. A clear linear relationship is seen between the independently established core masses and luminosities. The position of MYSOs and compact H II regions in the mass-luminosity plane is consistent with the luminosity expected from the most massive protostar in the cluster when using an ˜40 per cent star formation efficiency and indicates that they are at a similar evolutionary stage, near the end of the accretion phase.

  5. Introgression of the Kinetoplast DNA: An Unusual Evolutionary Journey in Trypanosoma cruzi.

    PubMed

    Tomasini, Nicolás

    2018-02-01

    Phylogenetic relationships between different lineages of Trypanosoma cruzi, the agent of Chagas disease, have been controversial for several years. However, recent phylogenetic and phylogenomic analyses clarified the nuclear relationships among such lineages. However, incongruence between nuclear and kinetoplast DNA phylogenies has emerged as a new challenge. This incongruence implies several events of mitochondrial introgression at evolutionary level. However, the mechanism that gave origin to introgressed lineages is unknown. Here, I will review and discuss how maxicircles of the kinetoplast were horizontally and vertically transferred between different lineages of T. cruzi. Finally, I will discuss what we know - and what we don't - about the kDNA transference and inheritance in the context of sexual reproduction in this parasite.

  6. Evolutionary history and molecular epidemiology of rabbit haemorrhagic disease virus in the Iberian Peninsula and Western Europe

    PubMed Central

    2010-01-01

    Background Rabbit haemorrhagic disease virus (RHDV) is a highly virulent calicivirus, first described in domestic rabbits in China in 1984. RHDV appears to be a mutant form of a benign virus that existed in Europe long before the first outbreak. In the Iberian Peninsula, the first epidemic in 1988 severely reduced the populations of autochthonous European wild rabbit. To examine the evolutionary history of RHDV in the Iberian Peninsula, we collected virus samples from wild rabbits and sequenced a fragment of the capsid protein gene VP60. These data together with available sequences from other Western European countries, were analyzed following Bayesian Markov chain Monte Carlo methods to infer their phylogenetic relationships, evolutionary rates and demographic history. Results Evolutionary relationships of RHDV revealed three main lineages with significant phylogeographic structure. All lineages seem to have emerged at a common period of time, between ~1875 and ~1976. The Iberian Peninsula showed evidences of genetic isolation, probably due to geographic barriers to gene flow, and was also the region with the youngest MRCA. Overall, demographic analyses showed an initial increase and stabilization of the relative genetic diversity of RHDV, and a subsequent reduction in genetic diversity after the first epidemic breakout in 1984, which is compatible with a decline in effective population size. Conclusions Results were consistent with the hypothesis that the current Iberian RHDV arose from a single infection between 1869 and 1955 (95% HPD), and rendered a temporal pattern of appearance and extinction of lineages. We propose that the rising positive selection pressure observed throughout the history of RHDV is likely mediated by the host immune system as a consequence of the genetic changes that rendered the virus virulent. Consequently, this relationship is suggested to condition RHDV demographic history. PMID:21067589

  7. On the Evolutionary and Biogeographic History of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.)

    PubMed Central

    DeChaine, Eric G.; Anderson, Stacy A.; McNew, Jennifer M.; Wendling, Barry M.

    2013-01-01

    Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting the North Pacific Rim. PMID:23922810

  8. Mutation predicts 40 million years of fly wing evolution.

    PubMed

    Houle, David; Bolstad, Geir H; van der Linde, Kim; Hansen, Thomas F

    2017-08-24

    Mutation enables evolution, but the idea that adaptation is also shaped by mutational variation is controversial. Simple evolutionary hypotheses predict such a relationship if the supply of mutations constrains evolution, but it is not clear that constraints exist, and, even if they do, they may be overcome by long-term natural selection. Quantification of the relationship between mutation and phenotypic divergence among species will help to resolve these issues. Here we use precise data on over 50,000 Drosophilid fly wings to demonstrate unexpectedly strong positive relationships between variation produced by mutation, standing genetic variation, and the rate of evolution over the last 40 million years. Our results are inconsistent with simple constraint hypotheses because the rate of evolution is very low relative to what both mutational and standing variation could allow. In principle, the constraint hypothesis could be rescued if the vast majority of mutations are so deleterious that they cannot contribute to evolution, but this also requires the implausible assumption that deleterious mutations have the same pattern of effects as potentially advantageous ones. Our evidence for a strong relationship between mutation and divergence in a slowly evolving structure challenges the existing models of mutation in evolution.

  9. Eco-evolutionary dynamics in a coevolving host-virus system.

    PubMed

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  10. Uncoupling proteins of invertebrates: A review.

    PubMed

    Slocinska, Malgorzata; Barylski, Jakub; Jarmuszkiewicz, Wieslawa

    2016-09-01

    Uncoupling proteins (UCPs) mediate inducible proton conductance in the mitochondrial inner membrane. Herein, we summarize our knowledge regarding UCPs in invertebrates. Since 2001, the presence of UCPs has been demonstrated in nematodes, mollusks, amphioxi, and insects. We discuss the following important issues concerning invertebrate UCPs: their evolutionary relationships, molecular and functional properties, and physiological impact. Evolutionary analysis indicates that the branch of vertebrate and invertebrate UCP4-5 diverged early in the evolutionary process prior to the divergence of the animal groups. Several proposed physiological roles of invertebrate UCPs are energy control, metabolic balance, and preventive action against oxidative stress. © 2016 IUBMB Life, 68(9):691-699, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  11. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  12. Evolutionary origins of mechanosensitive ion channels.

    PubMed

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  13. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    PubMed

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  14. Evolutionary heritage influences Amazon tree ecology.

    PubMed

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  15. Evolutionary heritage influences Amazon tree ecology

    PubMed Central

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  16. Quantifying rates of evolutionary adaptation in response to ocean acidification.

    PubMed

    Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W

    2011-01-01

    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.

  17. A Perspective on Micro-Evo-Devo: Progress and Potential

    PubMed Central

    Nunes, Maria D. S.; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P.

    2013-01-01

    The term “micro-evo-devo” refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field. PMID:24190920

  18. A perspective on micro-evo-devo: progress and potential.

    PubMed

    Nunes, Maria D S; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P

    2013-11-01

    The term "micro-evo-devo" refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field.

  19. Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes.

    PubMed

    Rendel, Mark D

    2011-01-01

    In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily.

    PubMed

    Kang, Ji Hyoun; Schartl, Manfred; Walter, Ronald B; Meyer, Axel

    2013-01-29

    Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.

  1. Evolutionary principles and their practical application

    PubMed Central

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  2. Evolutionary principles and their practical application.

    PubMed

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  3. Toward a unifying framework for evolutionary processes.

    PubMed

    Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M; Trubenová, Barbora

    2015-10-21

    The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Revising the recent evolutionary history of equids using ancient DNA

    PubMed Central

    Orlando, Ludovic; Metcalf, Jessica L.; Alberdi, Maria T.; Telles-Antunes, Miguel; Bonjean, Dominique; Otte, Marcel; Martin, Fabiana; Eisenmann, Véra; Mashkour, Marjan; Morello, Flavia; Prado, Jose L.; Salas-Gismondi, Rodolfo; Shockey, Bruce J.; Wrinn, Patrick J.; Vasil'ev, Sergei K.; Ovodov, Nikolai D.; Cherry, Michael I.; Hopwood, Blair; Male, Dean; Austin, Jeremy J.; Hänni, Catherine; Cooper, Alan

    2009-01-01

    The rich fossil record of the family Equidae (Mammalia: Perissodactyla) over the past 55 MY has made it an icon for the patterns and processes of macroevolution. Despite this, many aspects of equid phylogenetic relationships and taxonomy remain unresolved. Recent genetic analyses of extinct equids have revealed unexpected evolutionary patterns and a need for major revisions at the generic, subgeneric, and species levels. To investigate this issue we examine 35 ancient equid specimens from four geographic regions (South America, Europe, Southwest Asia, and South Africa), of which 22 delivered 87–688 bp of reproducible aDNA mitochondrial sequence. Phylogenetic analyses support a major revision of the recent evolutionary history of equids and reveal two new species, a South American hippidion and a descendant of a basal lineage potentially related to Middle Pleistocene equids. Sequences from specimens assigned to the giant extinct Cape zebra, Equus capensis, formed a separate clade within the modern plain zebra species, a phenotypicically plastic group that also included the extinct quagga. In addition, we revise the currently recognized extinction times for two hemione-related equid groups. However, it is apparent that the current dataset cannot solve all of the taxonomic and phylogenetic questions relevant to the evolution of Equus. In light of these findings, we propose a rapid DNA barcoding approach to evaluate the taxonomic status of the many Late Pleistocene fossil Equidae species that have been described from purely morphological analyses. PMID:20007379

  5. Phenotypic and Genetic Effects of Contrasting Ethanol Environments on Physiological and Developmental Traits in Drosophila melanogaster

    PubMed Central

    Castañeda, Luis E.; Nespolo, Roberto F.

    2013-01-01

    A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567

  6. Epistasis in protein evolution

    PubMed Central

    Starr, Tyler N.

    2016-01-01

    Abstract The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions—called epistasis—within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage‐specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis—in which one mutation influences the phenotypic effect of few other mutations—is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low‐probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  7. Replaying evolutionary transitions from the dental fossil record

    PubMed Central

    Harjunmaa, Enni; Seidel, Kerstin; Häkkinen, Teemu; Renvoisé, Elodie; Corfe, Ian J.; Kallonen, Aki; Zhang, Zhao-Qun; Evans, Alistair R.; Mikkola, Marja L.; Salazar-Ciudad, Isaac; Klein, Ophir D.; Jernvall, Jukka

    2014-01-01

    The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character interdependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character state transitions used in evolutionary studies. PMID:25079326

  8. The one-third law of evolutionary dynamics.

    PubMed

    Ohtsuki, Hisashi; Bordalo, Pedro; Nowak, Martin A

    2007-11-21

    Evolutionary game dynamics in finite populations provide a new framework for studying selection of traits with frequency-dependent fitness. Recently, a "one-third law" of evolutionary dynamics has been described, which states that strategy A fixates in a B-population with selective advantage if the fitness of A is greater than that of B when A has a frequency 13. This relationship holds for all evolutionary processes examined so far, from the Moran process to games on graphs. However, the origin of the "number"13 is not understood. In this paper we provide an intuitive explanation by studying the underlying stochastic processes. We find that in one invasion attempt, an individual interacts on average with B-players twice as often as with A-players, which yields the one-third law. We also show that the one-third law implies that the average Malthusian fitness of A is positive.

  9. Anger Can Help: A Transactional Model and Three Pathways of the Experience and Expression of Anger.

    PubMed

    Butler, Mark H; Meloy-Miller, Kierea C; Seedall, Ryan B; Dicus, J Logan

    2017-07-23

    Anger is a significant human emotion with far-reaching implications for individuals and relationships. We propose a transactional model of anger that highlights its relational relevance and potentially positive function, in addition to problematic malformations. By evolutionary design, physical, self-concept, or attachment threats all similarly trigger diffuse physiological arousal, psychologically experienced as anger-emotion. Anger is first a signaling and motivational system. Anger is then formed to affirming, productive use or malformed to destructive ends. A functional, prosocial approach to anger organizes it for protective and corrective personal and relational adaptation. In our model, threat perception interacts with a person's view of self in relation to other to produce helpful or harmful anger. Inflated or collapsed views of self in relation to other produce distinct manifestations of destructive anger that are harmful to self, other, and relationship. Conversely, a balanced view of self in relation to other promotes constructive anger and catalyzes self, other, and relationship healing. Clinical use of the model to shape healing personal and relational contact with anger is explored. © 2017 Family Process Institute.

  10. Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.

    PubMed

    Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C

    2016-01-01

    In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.

  11. Inferring phylogenetic trees from the knowledge of rare evolutionary events.

    PubMed

    Hellmuth, Marc; Hernandez-Rosales, Maribel; Long, Yangjing; Stadler, Peter F

    2018-06-01

    Rare events have played an increasing role in molecular phylogenetics as potentially homoplasy-poor characters. In this contribution we analyze the phylogenetic information content from a combinatorial point of view by considering the binary relation on the set of taxa defined by the existence of a single event separating two taxa. We show that the graph-representation of this relation must be a tree. Moreover, we characterize completely the relationship between the tree of such relations and the underlying phylogenetic tree. With directed operations such as tandem-duplication-random-loss events in mind we demonstrate how non-symmetric information constrains the position of the root in the partially reconstructed phylogeny.

  12. Conflict on the Sex Chromosomes: Cause, Effect, and Complexity

    PubMed Central

    Mank, Judith E.; Hosken, David J.; Wedell, Nina

    2014-01-01

    Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change. PMID:25280765

  13. Evolutionary analysis of the TPP-dependent enzyme family.

    PubMed

    Costelloe, Seán J; Ward, John M; Dalby, Paul A

    2008-01-01

    The evolutionary relationships of the thiamine pyrophosphate (TPP)-dependent family of enzymes was investigated by generation of a neighbor joining phylogenetic tree using sequences from the conserved pyrophosphate (PP) and pyrimidine (Pyr) binding domains of 17 TPP-dependent enzymes. This represents the most comprehensive analysis of TPP-dependent enzyme evolution to date. The phylogeny was shown to be robust by comparison with maximum likelihood trees generated for each individual enzyme and also broadly confirms the evolutionary history proposed recently from structural comparisons alone (Duggleby 2006). The phylogeny is most parsimonious with the TPP enzymes having arisen from a homotetramer which subsequently diverged into an alpha(2)beta(2) heterotetramer. The relationship between the PP- and Pyr-domains and the recruitment of additional protein domains was examined using the transketolase C-terminal (TKC)-domain as an example. This domain has been recruited by several members of the family and yet forms no part of the active site and has unknown function. Removal of the TKC-domain was found to increase activity toward beta-hydroxypyruvate and glycolaldehyde. Further truncations of the Pyr-domain yielded several variants with retained activity. This suggests that the influence of TKC-domain recruitment on the evolution of the mechanism and specificity of transketolase (TK) has been minor, and that the smallest functioning unit of TK comprises the PP- and Pyr-domains, whose evolutionary histories extend to all TPP-dependent enzymes.

  14. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution.

    PubMed

    Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen

    2016-08-24

    Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.

  15. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    PubMed

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  16. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate

    PubMed Central

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-01-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal. PMID:26078856

  17. Delinquency, androgens, and the family: a test of evolutionary neuroandrogenic theory.

    PubMed

    Ellis, Lee; Das, Shyamal

    2013-08-01

    There is little doubt that family factors can influence involvement in delinquency, although the full nature and extent of their influences remain unclear. In recent decades, testosterone has been increasingly implicated as a contributor to adolescent offending. The present study sought to determine whether two important types of familial factors--parental socioeconomic status and amicable parent-child relationships--are interacting with testosterone (and possibly other androgens) to affect delinquency. A large sample of North American college students self-reported their involvement in eight categories of delinquency along with self-ratings of various androgen-promoted traits (e.g., muscularity and low-deep voice), parental social status, and the quality of the relationships they had with parents. In both sexes, parent-child relationships and androgens were significantly associated with delinquency but parental social status was not. Factor analysis revealed that the authors' measures of all four categories of variables exhibited strong loadings onto their respective factors. Androgens and amicable parent-child relationships were associated with delinquency but parental social status was not. About one third of the influence of parent-child relationships on delinquency appeared to be attributable to androgens. Findings are discussed from the perspective of the evolutionary neuroandrogenic theory of delinquent and criminal behavior.

  18. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    PubMed

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  19. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes

    NASA Astrophysics Data System (ADS)

    von der Heyden, Sophie

    2017-03-01

    Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.

  20. Tracking the footsteps of an invasive plant pathogen: Intercontinental phylogeographic structure of the white-pine-blister-rust fungus, Cronartium ribicola

    Treesearch

    Bryce A. Richardson; Mee-Sook Kim; Ned B. Klopfenstein; Yuko Ota; Kwan Soo Woo; Richard C. Hamelin

    2009-01-01

    Presently, little is known about the worldwide genetic structure, diversity, or evolutionary relationships of the white-pineblister-rust fungus, Cronartium ribicola. A collaborative international effort is underway to determine the phylogeographic relationships among Asian, European, and North American sources of C. ribicola and...

  1. Network-level architecture and the evolutionary potential of underground metabolism.

    PubMed

    Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs

    2014-08-12

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.

  2. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution

    PubMed Central

    Day, Troy

    2012-01-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390

  3. Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits?

    PubMed Central

    Santos, Mauro; Castañeda, Luis E; Rezende, Enrico L

    2012-01-01

    The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system. We combine a physiological model to simulate thermal tolerance assays with multilocus models for quantitative traits. Our simulations show that, whereas the evolutionary response of the genetically determined upper thermal limit (CTmax) is independent of methodological context, the response in knockdown temperatures varies with measurement protocol and is substantially (up to 50%) lower than for CTmax. Realized heritabilities of knockdown temperature may grossly underestimate the true heritability of CTmax. For instance, assuming that the true heritability of CTmax in the base population is h2 = 0.25, realized heritabilities of knockdown temperature are around 0.08–0.16 depending on heating rate. These effects are higher in slow heating assays, suggesting that flawed methodology might explain the apparently limited evolutionary potential of cosmopolitan D. melanogaster. PMID:23170220

  4. Perceived consequences of evolution: College students perceive negative personal and social impact in evolutionary theory

    NASA Astrophysics Data System (ADS)

    Brem, Sarah K.; Ranney, Michael; Schindel, Jennifer

    2003-03-01

    Evolutionary science has consequences for individuals and society, ranging from the way we interpret human behavior to our notions of spirituality and the purpose of our existence. Popular portrayals of evolution depict a paradoxical theory, a source of knowledge and human connections, but also a threat to our humanity and freedom. Using quantitative and qualitative methodology, we examined how college-educated adults (n = 135) from diverse ethnic and religious backgrounds perceive the impact of evolutionary theory on individuals and society. We identified a continuum of perspectives, ranging from strong creationist to strong evolutionist. Using the model of knowledge as an ecology (Demastes, Good, & Peebles, Science Education, 79, 637-666, 1995; Nardi & O'Day, Information ecologies: Using technology with heart, MIT Press, Cambridge, MA, 1999), we examined the relationships among participants' beliefs, their perceptions regarding the social and personal impact of evolutionary theory, their prior exposure to and knowledge of evolutionary theory, and their opinions regarding the teaching of evolution. Evolutionists and creationists differed in their prior exposure to evolutionary theory, and their opinions about some aspects of teaching, but showed striking similarities regarding perceived impact. All groups viewed the consequences of accepting evolutionary principles in a way that might be considered undesirable: increased selfishness and racism, decreased spirituality, and a decreased sense of purpose and self-determination. From a science education perspective, this one-sided interpretation is troublesome because it runs counter to the available evidence and theories in evolutionary science, and we consider ways of fostering more balanced presentation and appraisal of evolutionary theory.

  5. Divergent trait and environment relationships among parallel radiations in Pelargonium (Geraniaceae): a role for evolutionary legacy?

    PubMed

    Moore, Timothy E; Schlichting, Carl D; Aiello-Lammens, Matthew E; Mocko, Kerri; Jones, Cynthia S

    2018-05-11

    Functional traits in closely related lineages are expected to vary similarly along common environmental gradients as a result of shared evolutionary and biogeographic history, or legacy effects, and as a result of biophysical tradeoffs in construction. We test these predictions in Pelargonium, a relatively recent evolutionary radiation. Bayesian phylogenetic mixed effects models assessed, at the subclade level, associations between plant height, leaf area, leaf nitrogen content and leaf mass per area (LMA), and five environmental variables capturing temperature and rainfall gradients across the Greater Cape Floristic Region of South Africa. Trait-trait integration was assessed via pairwise correlations within subclades. Of 20 trait-environment associations, 17 differed among subclades. Signs of regression coefficients diverged for height, leaf area and leaf nitrogen content, but not for LMA. Subclades also differed in trait-trait relationships and these differences were modulated by rainfall seasonality. Leave-one-out cross-validation revealed that whether trait variation was better predicted by environmental predictors or trait-trait integration depended on the clade and trait in question. Legacy signals in trait-environment and trait-trait relationships were apparently lost during the earliest diversification of Pelargonium, but then retained during subsequent subclade evolution. Overall, we demonstrate that global-scale patterns are poor predictors of patterns of trait variation at finer geographic and taxonomic scales. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds.

    PubMed

    Lind, O; Delhey, K

    2015-03-01

    Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet-sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV-sensitive (UVS) cones maximally sensitive at 360-370 nm. The reasons for VS-UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS-cone vision is linked to plumage colours so that visual sensitivity and feather coloration are 'matched'. This leads to the specific prediction that UVS-cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS-bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS-cone vision and plumage colour evolution. Instead, we suggest that UVS-cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  7. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA.

    PubMed

    Sum, Jia-Siang; Lee, Wenn-Chyau; Amir, Amirah; Braima, Kamil A; Jeffery, John; Abdul-Aziz, Noraishah M; Fong, Mun-Yik; Lau, Yee-Ling

    2014-07-03

    Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Mosquitoes were collected, identified, dissected to check infection status, and DNA extraction was performed for PCR with primers targeting the ITS2 rDNA region. Sequencing was done and phylogenetic tree was constructed to study the evolutionary relationship among Anopheles mosquitoes within Peninsular Malaysia, as well as across the Asian region. A total of 133 Anopheles mosquitoes consisting of six different species were collected from eight different locations across Peninsular Malaysia. Of these, 65 ITS2 rDNA sequences were obtained. The ITS2 rDNA amplicons of the studied species were of different sizes. One collected species, Anopheles sinensis, shows two distinct pools of population in Peninsular Malaysia, suggesting evolvement of geographic race or allopatric speciation. Anopheles mosquitoes from Peninsular Malaysia show close evolutionary relationship with the Asian anophelines. Nevertheless, genetic differences due to geographical segregation can be seen. Meanwhile, some Anopheles mosquitoes in Peninsular Malaysia show vicariance, exemplified by the emergence of distinct cluster of An. sinensis population.

  8. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA

    PubMed Central

    2014-01-01

    Background Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Methods Mosquitoes were collected, identified, dissected to check infection status, and DNA extraction was performed for PCR with primers targeting the ITS2 rDNA region. Sequencing was done and phylogenetic tree was constructed to study the evolutionary relationship among Anopheles mosquitoes within Peninsular Malaysia, as well as across the Asian region. Results A total of 133 Anopheles mosquitoes consisting of six different species were collected from eight different locations across Peninsular Malaysia. Of these, 65 ITS2 rDNA sequences were obtained. The ITS2 rDNA amplicons of the studied species were of different sizes. One collected species, Anopheles sinensis, shows two distinct pools of population in Peninsular Malaysia, suggesting evolvement of geographic race or allopatric speciation. Conclusion Anopheles mosquitoes from Peninsular Malaysia show close evolutionary relationship with the Asian anophelines. Nevertheless, genetic differences due to geographical segregation can be seen. Meanwhile, some Anopheles mosquitoes in Peninsular Malaysia show vicariance, exemplified by the emergence of distinct cluster of An. sinensis population. PMID:24993022

  9. Diversity of tuco-tucos (Ctenomys, Rodentia) in the Northeastern wetlands from Argentina: mitochondrial phylogeny and chromosomal evolution.

    PubMed

    Caraballo, Diego A; Abruzzese, Giselle A; Rossi, María Susana

    2012-06-01

    Tuco-tucos (small subterranean rodents of the genus Ctenomys) that inhabit sandy soils of the area under the influence of the second largest wetland of South America, in Northeastern Argentina (Corrientes province), are a complex of species and forms whose taxonomic status were not defined, nor are the evolutionary relationships among them. The tuco-tuco populations of this area exhibit one of the most ample grades of chromosomal variability within the genus. In order to analyze evolutionary relationships within the Corrientes group and its chromosomal variability, we completed the missing karyotypic information and performed a phylogenetic analysis. We obtained partial sequences of three mitochondrial markers: D-loop, cytochrome b and cytochrome oxidase I. The Corrientes group was monophyletic and split into three main clades that grouped related karyomorphs. The phylogeny suggested an ancestral condition of the karyomorph with diploid number (2n) 70 and fundamental number (FN) 84 that has evolved mainly via reductions of the FN although amplifications occurred in certain lineages. We discuss the relationship between patterns of chromosomal variability and species and groups boundaries. From the three main clades the one named iberá exhibited a remarkable karyotypic homogeneity, and could be considered as an independent and cohesive evolutionary lineage. On the contrary, the former recognized species C. dorbignyi is a polyphyletic lineage and hence its systematic classification should be reviewed.

  10. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock.

    PubMed

    Burress, E D; Alda, F; Duarte, A; Loureiro, M; Armbruster, J W; Chakrabarty, P

    2018-01-01

    The rapid rise of phenotypic and ecological diversity in independent lake-dwelling groups of cichlids is emblematic of the East African Great Lakes. In this study, we show that similar ecologically based diversification has occurred in pike cichlids (Crenicichla) throughout the Uruguay River drainage of South America. We collected genomic data from nearly 500 ultraconserved element (UCEs) loci and >260 000 base pairs across 33 species, to obtain a phylogenetic hypothesis for the major species groups and to evaluate the relationships and genetic structure among five closely related, endemic, co-occurring species (the Uruguay River species flock; URSF). Additionally, we evaluated ecological divergence of the URSF based on body and lower pharyngeal jaw (LPJ) shape and gut contents. Across the genus, we recovered novel relationships among the species groups. We found strong support for the monophyly of the URSF; however, relationships among these species remain problematic, likely because of the rapid and recent evolution of this clade. Clustered co-ancestry analysis recovered most species as well delimited genetic groups. The URSF species exhibit species-specific body and LPJ shapes associated with specialized trophic roles. Collectively, our results suggest that the URSF consists of incipient species that arose via ecological speciation associated with the exploration of novel trophic roles. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions

    PubMed Central

    Schmitz, Oswald

    2017-01-01

    Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073

  12. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  13. Revisiting the cost of carnivory in mammals.

    PubMed

    Tucker, M A; Ord, T J; Rogers, T L

    2016-11-01

    Predator-prey relationships play a key role in the evolution and ecology of carnivores. An understanding of predator-prey relationships and how this differs across species and environments provides information on how carnivorous strategies have evolved and how they may change in response to environmental change. We aim to determine how mammals overcame the challenges of living within the marine environment; specifically, how this altered predator-prey body mass relationships relative to terrestrial mammals. Using predator and prey mass data collected from the literature, we applied phylogenetic piecewise regressions to investigate the relationship between predator and prey size across carnivorous mammals (51 terrestrial and 56 marine mammals). We demonstrate that carnivorous mammals have four broad dietary groups: small marine carnivores (< 11 000 kg) and small terrestrial carnivores (< 11 kg) feed on prey less than 5 kg and 2 kg, respectively. On average, large marine carnivores (> 11 000 kg) feed on prey equal to 0.01% of the carnivore's body size, compared to 45% or greater in large terrestrial carnivores (> 11 kg). We propose that differences in prey availability, and the relative ease of processing large prey in the terrestrial environment and small prey in marine environment, have led to the evolution of these novel foraging behaviours. Our results provide important insights into the selection pressures that may have been faced by early marine mammals and ultimately led to the evolution of a range of feeding strategies and predatory behaviours. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. Evolutionary process of deep-sea bathymodiolus mussels.

    PubMed

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular to intracellular symbiotic states in whale carcasses. The estimated evolutionary time suggests that the mytilid ancestors were able to exploit whales during adaptation to the deep sea.

  15. [Essentials of pharmacophylogeny: knowledge pedigree, epistemology and paradigm shift].

    PubMed

    Hao, Da-cheng; Xiao, Pei-gen; Liu, Li-wei; Peng, Yong; He, Chun-nian

    2015-09-01

    Chinese materia medica resource (CMM resource) is the foundation of the development of traditional Chinese medicine. In the study of sustainable utilization of CMM resource, adopting innovative theory and method to find new CMM resource is one of hotspots and always highlighted. Pharmacophylogeny interrogates the phylogenetic relationship of medicinal organisms (especially medicinal plants), as well as the intrinsic correlation of morphological taxonomy, molecular phylogeny, chemical constituents, and therapeutic efficacy (ethnopharmacology and pharmacological activity). This new discipline may have the power to change the way we utilize medicinal plant resources and develop plant-based drugs. Phylogenomics is the crossing of evolutionary biology and genomics, in which genome data are utilized for evolutionary reconstructions. Phylogenomics can be integrated into the flow chart of drug discovery and development, and extends the field of pharmacophylogeny at the omic level, thus the concept of pharmacophylogenomics could be redefined in the context of plant pharmaceutical resources. This contribution gives a brief discourse of knowledge pedigree of pharmacophylogeny, epistemology and paradigm shift, highlighting the theoretical and practical values of pharmacophylogenomics. Many medicinally important tribes and genera, such as Clematis, Pulsatilla, Anemone, Cimicifugeae, Nigella, Delphinieae, Adonideae, Aquilegia, Thalictrum, and Coptis, belong to Ranunculaceae family. Compared to other plant families, Ranunculaceae has the most species that are recorded in China Pharmacopoeia (CP) 2010. However, many Ranunculaceae species, e. g., those that are closely related to CP species, as well as those endemic to China, have not been investigated in depth, and their phylogenetic relationship and potential in medicinal use remain elusive. As such, it is proposed to select Ranunculaceae to exemplify the utility of pharmacophylogenomics and to elaborate the new concept empirically. It is argued that phylogenetic and evolutionary relationship of medicinally important tribes and genera within Ranunculaceae could be elucidated at the genomic, transcriptomic, and metabolomic levels, from which the intrinsic correlation between medicinal plant genotype and metabolic phenotype, and between genetic diversity and chemodivesity of closely related taxa, could be revealed. This proof-of-concept study regards pharmacophylogenomics as the updated version of pharmacophylogeny and would enrich the intension and spread the extension of pharmacophylogeny. The interdisciplinary knowledge and techniques will be integrated in the proposed study to promote development of CMM resource discipline and to boost sustainable development of Chinese medicinal plant resources.

  16. e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations.

    PubMed

    Karim, Sajjad; NourEldin, Hend Fakhri; Abusamra, Heba; Salem, Nada; Alhathli, Elham; Dudley, Joel; Sanderford, Max; Scheinfeldt, Laura B; Chaudhary, Adeel G; Al-Qahtani, Mohammed H; Kumar, Sudhir

    2016-10-17

    Genome-wide association studies (GWAS) have become a mainstay of biological research concerned with discovering genetic variation linked to phenotypic traits and diseases. Both discrete and continuous traits can be analyzed in GWAS to discover associations between single nucleotide polymorphisms (SNPs) and traits of interest. Associations are typically determined by estimating the significance of the statistical relationship between genetic loci and the given trait. However, the prioritization of bona fide, reproducible genetic associations from GWAS results remains a central challenge in identifying genomic loci underlying common complex diseases. Evolutionary-aware meta-analysis of the growing GWAS literature is one way to address this challenge and to advance from association to causation in the discovery of genotype-phenotype relationships. We have created an evolutionary GWAS resource to enable in-depth query and exploration of published GWAS results. This resource uses the publically available GWAS results annotated in the GRASP2 database. The GRASP2 database includes results from 2082 studies, 177 broad phenotype categories, and ~8.87 million SNP-phenotype associations. For each SNP in e-GRASP, we present information from the GRASP2 database for convenience as well as evolutionary information (e.g., rate and timespan). Users can, therefore, identify not only SNPs with highly significant phenotype-association P-values, but also SNPs that are highly replicated and/or occur at evolutionarily conserved sites that are likely to be functionally important. Additionally, we provide an evolutionary-adjusted SNP association ranking (E-rank) that uses cross-species evolutionary conservation scores and population allele frequencies to transform P-values in an effort to enhance the discovery of SNPs with a greater probability of biologically meaningful disease associations. By adding an evolutionary dimension to the GWAS results available in the GRASP2 database, our e-GRASP resource will enable a more effective exploration of SNPs not only by the statistical significance of trait associations, but also by the number of studies in which associations have been replicated, and the evolutionary context of the associated mutations. Therefore, e-GRASP will be a valuable resource for aiding researchers in the identification of bona fide, reproducible genetic associations from GWAS results. This resource is freely available at http://www.mypeg.info/egrasp .

  17. Evolutionary psychology and evolutionary developmental psychology: understanding the evolution of human behavior and development.

    PubMed

    Hernández Blasi, Carlos; Causey, Kayla

    2010-02-01

    This is an introduction to this special issue on evolutionary psychology (EP) and evolutionary developmental psychology (EDP). We suggest here that, contrary to some common assumptions, mainstream psychology continues to be essentially non Darwinian and that EP and EDP are new approaches that can potentially help us to change this situation. We then present the organization of the special issue (composed of six papers). We conclude that evolution is certainly not the final consideration in psychology, but emphasize its importance as the basis upon which all modern behaviors and development are built.

  18. Stochastic dynamics and stable equilibrium of evolutionary optional public goods game in finite populations

    NASA Astrophysics Data System (ADS)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2018-07-01

    Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.

  19. The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).

    PubMed

    Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Lamborn, Brent; Sherratt, Thomas N

    2014-02-01

    Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated or to augment an already close morphological resemblance. We evaluated these contrasting predictions by assaying the behavior of 57 field-caught species of mimetic hover flies (Diptera: Syrphidae) and quantifying their morphological similarity to a range of potential hymenopteran models. A purpose-built phylogeny for the hover flies was used to control for potential lack of independence due to shared evolutionary history. Those hover fly species that engage in behavioral mimicry (mock stinging, leg waving, wing wagging) were all large wasp mimics within the genera Spilomyia and Temnostoma. While the behavioral mimics assayed were good morphological mimics, not all good mimics were behavioral mimics. Therefore, while the behaviors may have evolved to augment good morphological mimicry, they do not advantage all good mimics.

  20. Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples.

    PubMed

    U'ren, Jana M; Dalling, James W; Gallery, Rachel E; Maddison, David R; Davis, E Christine; Gibson, Cara M; Arnold, A Elizabeth

    2009-04-01

    Fungi associated with seeds of tropical trees pervasively affect seed survival and germination, and thus are an important, but understudied, component of forest ecology. Here, we examine the diversity and evolutionary origins of fungi isolated from seeds of an important pioneer tree (Cecropia insignis, Cecropiaceae) following burial in soil for five months in a tropical moist forest in Panama. Our approach, which relied on molecular sequence data because most isolates did not sporulate in culture, provides an opportunity to evaluate several methods currently used to analyse environmental samples of fungi. First, intra- and interspecific divergence were estimated for the nu-rITS and 5.8S gene for four genera of Ascomycota that are commonly recovered from seeds. Using these values we estimated species boundaries for 527 isolates, showing that seed-associated fungi are highly diverse, horizontally transmitted, and genotypically congruent with some foliar endophytes from the same site. We then examined methods for inferring the taxonomic placement and phylogenetic relationships of these fungi, evaluating the effects of manual versus automated alignment, model selection, and inference methods, as well as the quality of BLAST-based identification using GenBank. We found that common methods such as neighbor-joining and Bayesian inference differ in their sensitivity to alignment methods; analyses of particular fungal genera differ in their sensitivity to alignments; and numerous and sometimes intricate disparities exist between BLAST-based versus phylogeny-based identification methods. Lastly, we used our most robust methods to infer phylogenetic relationships of seed-associated fungi in four focal genera, and reconstructed ancestral states to generate preliminary hypotheses regarding the evolutionary origins of this guild. Our results illustrate the dynamic evolutionary relationships among endophytic fungi, pathogens, and seed-associated fungi, and the apparent evolutionary distinctiveness of saprotrophs. Our study also elucidates the diversity, taxonomy, and ecology of an important group of plant-associated fungi and highlights some of the advantages and challenges inherent in the use of ITS data for environmental sampling of fungi.

  1. The Evolution of Bony Vertebrate Enhancers at Odds with Their Coding Sequence Landscape.

    PubMed

    Yousaf, Aisha; Sohail Raza, Muhammad; Ali Abbasi, Amir

    2015-08-06

    Enhancers lie at the heart of transcriptional and developmental gene regulation. Therefore, changes in enhancer sequences usually disrupt the target gene expression and result in disease phenotypes. Despite the well-established role of enhancers in development and disease, evolutionary sequence studies are lacking. The current study attempts to unravel the puzzle of bony vertebrates' conserved noncoding elements (CNE) enhancer evolution. Bayesian phylogenetics of enhancer sequences spotlights promising interordinal relationships among placental mammals, proposing a closer relationship between humans and laurasiatherians while placing rodents at the basal position. Clock-based estimates of enhancer evolution provided a dynamic picture of interspecific rate changes across the bony vertebrate lineage. Moreover, coelacanth in the study augmented our appreciation of the vertebrate cis-regulatory evolution during water-land transition. Intriguingly, we observed a pronounced upsurge in enhancer evolution in land-dwelling vertebrates. These novel findings triggered us to further investigate the evolutionary trend of coding as well as CNE nonenhancer repertoires, to highlight the relative evolutionary dynamics of diverse genomic landscapes. Surprisingly, the evolutionary rates of enhancer sequences were clearly at odds with those of the coding and the CNE nonenhancer sequences during vertebrate adaptation to land, with land vertebrates exhibiting significantly reduced rates of coding sequence evolution in comparison to their fast evolving regulatory landscape. The observed variation in tetrapod cis-regulatory elements caused the fine-tuning of associated gene regulatory networks. Therefore, the increased evolutionary rate of tetrapods' enhancer sequences might be responsible for the variation in developmental regulatory circuits during the process of vertebrate adaptation to land. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. The Reciprocal Links between Evolutionary-Ecological Sciences and Environmental Ethics.

    ERIC Educational Resources Information Center

    Rozzi, Ricardo

    1999-01-01

    Illustrates the reciprocal relationships between the sciences and environmental ethics by examining the Darwinian theory of evolution and discussing its implications for ecologists and ethicists. (CCM)

  3. COGcollator: a web server for analysis of distant relationships between homologous protein families.

    PubMed

    Dibrova, Daria V; Konovalov, Kirill A; Perekhvatov, Vadim V; Skulachev, Konstantin V; Mulkidjanian, Armen Y

    2017-11-29

    The Clusters of Orthologous Groups (COGs) of proteins systematize evolutionary related proteins into specific groups with similar functions. However, the available databases do not provide means to assess the extent of similarity between the COGs. We intended to provide a method for identification and visualization of evolutionary relationships between the COGs, as well as a respective web server. Here we introduce the COGcollator, a web tool for identification of evolutionarily related COGs and their further analysis. We demonstrate the utility of this tool by identifying the COGs that contain distant homologs of (i) the catalytic subunit of bacterial rotary membrane ATP synthases and (ii) the DNA/RNA helicases of the superfamily 1. This article was reviewed by Drs. Igor N. Berezovsky, Igor Zhulin and Yuri Wolf.

  4. Attachment. A pancultural need but a cultural construct.

    PubMed

    Keller, Heidi

    2016-04-01

    Attachment theory can be considered as the most important theory for children's socioemotional development during the first years of life with substantial implications also for the application in clinical and educational fields. Attachment theory has been developed out of the prevailing Euro-American childcare philosophy and based on a selective review of knowledge available from different disciplines, including evolutionary theory, ethology, and systems theory. What is left out is systematic evidence for relationship formation beyond the exclusive dyadic Western mother-child format. Recent evidence published by cultural anthropologists, psychologists, and evolutionary theorists is discussed in this paper especially with respect to caregiving arrangements with multiple caregivers. It is concluded that there is not one model of relationship formation that is adaptive for all of the world's population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sperm midpiece length predicts sperm swimming velocity in house mice.

    PubMed

    Firman, Renée C; Simmons, Leigh W

    2010-08-23

    Evolutionary biologists have argued that there should be a positive relationship between sperm size and sperm velocity, and that these traits influence a male's sperm competitiveness. However, comparative analyses investigating the evolutionary associations between sperm competition risk and sperm morphology have reported inconsistent patterns of association, and in vitro sperm competition experiments have further confused the issue; in some species, males with longer sperm achieve more competitive fertilization, while in other species males with shorter sperm have greater sperm competitiveness. Few investigations have attempted to address this problem. Here, we investigated the relationship between sperm morphology and sperm velocity in house mice (Mus domesticus). We conducted in vitro sperm velocity assays on males from established selection lines, and found that sperm midpiece size was the only phenotypic predictor of sperm swimming velocity.

  6. Phylogeny of lion tamarins (Leontopithecus spp) based on interphotoreceptor retinol binding protein intron sequences.

    PubMed

    Mundy, N I; Kelly, J

    2001-05-01

    The evolutionary relationships of the lion tamarins (Leontopithecus) were investigated using nuclear interphotoreceptor retinol binding protein (IRBP) intron sequences. Phylogenetic reconstructions strongly support the monophyly of the genus, and a sister relationship between the golden lion tamarin, Leontopithecus rosalia, and the black lion tamarin, L. chrysopygus, to the exclusion of the golden-headed lion tamarin, L. chrysomelas. The most parsimonious evolutionary reconstruction suggests that the ancestral lion tamarin and the common ancestor of L. rosalia and L. chrysopygus had predominantly black coats. This reconstruction is not consistent with a theory of orthogenetic evolution of coat color that was based on coat color evolution in marmosets and tamarins. An alternative reconstruction that is consistent with metachromism requires that ancestral lion tamarins had agouti hairs. Copyright 2001 Wiley-Liss, Inc.

  7. Evolutionary insights from studies on viruses of hyperthermophilic archaea.

    PubMed

    Prangishvili, David

    2003-05-01

    The morphological diversity of viruses which parasitize hyperthermophilic archaea thriving at temperatures > or = 80 degrees C appears to exceed that of viruses of prokaryotes living at lower temperatures. Based on assumptions of the existence of viruses in the prebiotic phase of evolution and hot origins of cellular life, we suggest that this remarkable diversity could have its source in ancestral diversity of viral morphotypes in hot environments. Attempts are made to trace evolutionary relationships of viruses of hyperthermophilic archaea with other viruses.

  8. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    PubMed

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for Conservation Biology.

  9. Structure-function relationships in the evolutionary framework of spermine oxidase.

    PubMed

    Cervelli, Manuela; Salvi, Daniele; Polticelli, Fabio; Amendola, Roberto; Mariottini, Paolo

    2013-06-01

    Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure-function relationships in the evolution of spermine oxidase.

  10. Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences.

    PubMed

    Zhang, Y P; Ryder, O A

    1994-12-01

    The phylogenetic relationships among some bear species are still open questions. We present here mitochondrial DNA sequences of D-loop region, cytochrome b, 12S rRNA, tRNA(Pro), and tRNA(Thr) genes from all bear species and the giant panda. A series of evolutionary trees with concordant topology has been derived based on the combined data set of all of the mitochondrial DNA sequences, which may have resolved the evolutionary relationships of all bear species: the ancestor of the spectacled bear diverged first, followed by the sloth bear; the brown bear and polar bear are sister taxa relative to the Asiatic black bear; the closest relative of the American black bear is the sun bear. Primers for forensic identification of the giant panda and bears are proposed. Analysis of these data, in combination with data from primates and antelopes, suggests that relative substitutional rates between different mitochondrial DNA regions may vary greatly among different taxa of the vertebrates.

  11. Phylogeny, host-parasite relationship and zoogeography

    PubMed Central

    1999-01-01

    Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036

  12. Evolution and the American social sciences: An evolutionary social scientist's view.

    PubMed

    Thayer, Bradley A

    2004-03-01

    American social scientists rarely ever use evolutionary concepts to explain behavior, despite the potential of such concepts to elucidate major social problems. I argue that this observation can be understood as the product of three influences: an ideologically narrowed political liberalism; a fear of ''Social Darwinism'' as a scientific idea, rather than a scientific apostasy; and a widely believed criticism of evolutionary thinking as deterministic, reductionistic, and Panglossian. I ask what is to be done to encourage social scientists to learn and to apply evolutionary lessons. I answer with four solutions. First, evolutionary social scientists should more effectively educate their non-evolutionary students and colleagues. Second, they should publicize, even popularize, accessible refutations of perennially misleading criticisms. Third, they should more credibly assure skeptics that evolutionary theory not only keeps the ''social'' in social science but better explains social behavior than can any individual-level theory, such as rational-choice theory. Fourth, they should recall that biology took generations to become Darwinian, and they must understand that the social sciences may take as long to become evolutionary.

  13. Using Evolutionary Theory to Guide Mental Health Research.

    PubMed

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  14. Using Evolutionary Theory to Guide Mental Health Research

    PubMed Central

    Mulsant, Benoit H.; McKenzie, Kwame; Andrews, Paul W.

    2016-01-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating “normally” (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. PMID:27254091

  15. The sociobiology of genes: the gene's eye view as a unifying behavioural-ecological framework for biological evolution.

    PubMed

    De Tiège, Alexis; Van de Peer, Yves; Braeckman, Johan; Tanghe, Koen B

    2017-11-22

    Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly 'gene-centred', the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene's eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes within the same organism and genome. Here, we explore the explanatory potential of 'intra-organismic' and 'intra-genomic' gene-selectionism, i.e., of a behavioural-ecological 'gene's eye view' on genetic, genomic and organismal evolution. First, we give a general outline of the framework and how it complements the-to some extent-still 'organism-centred' approach of classical evolutionary theory. Secondly, we give a more in-depth assessment of its explanatory potential for biological evolution, i.e., for Darwin's 'common descent with modification' or, more specifically, for 'historical continuity or homology with modular evolutionary change' as it has been studied by evolutionary developmental biology (evo-devo) during the last few decades. In contrast with classical evolutionary theory, evo-devo focuses on 'within-organism' developmental processes. Given the capacity of gene-selectionism to adopt an intra-organismal gene's eye view, we outline the relevance of the latter model for evo-devo. Overall, we aim for the conceptual integration between the gene's eye view on the one hand, and more organism-centred evolutionary models (both classical evolutionary theory and evo-devo) on the other.

  16. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species.

    PubMed

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.

  17. Association between genomic instability and evolutionary chromosomal rearrangements in Neotropical Primates.

    PubMed

    Puntieri, Fiona; Andrioli, Nancy B; Nieves, Mariela

    2018-06-14

    During the last decades the mammalian genome has been proposed to have regions prone to breakage and reorganization concentrated in certain chromosomal bands that seem to correspond to evolutionary breakpoints. These bands are likely to be involved in chromosome fragility or instability. In Primates, some biomarkers of genetic damage may be associated with various degrees of genomic instability. Here, we investigated the usefulness of Sister Chromatid Exchange (SCE) as a biomarker of potential sites of frequent chromosome breakage and rearrangement in Alouatta caraya, Ateles chamek, Ateles paniscus and Cebus cay. These Neotropical species have particular genomic and chromosomal features allowing the analysis of genomic instability for comparative purposes. We determined the frequency of spontaneous induction of SCEs and assessed the relationship between these and structural rearrangements implicated in the evolution of the primates of interest. Overall, A. caraya and C. cay presented a low proportion of statistically significant unstable bands, suggesting fairly stable genomes and the existence of some kind of protection against endogenous damage. In contrast, Ateles showed a highly significant proportion of unstable bands; these were mainly found in the rearranged regions, which is consistent with the numerous genomic reorganizations that might have occurred during the evolution of this genus.

  18. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  19. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?

    PubMed

    Ševčíková, Tereza; Horák, Aleš; Klimeš, Vladimír; Zbránková, Veronika; Demir-Hilton, Elif; Sudek, Sebastian; Jenkins, Jerry; Schmutz, Jeremy; Přibyl, Pavel; Fousek, Jan; Vlček, Čestmír; Lang, B Franz; Oborník, Miroslav; Worden, Alexandra Z; Eliáš, Marek

    2015-05-28

    Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.

  20. The coevolutionary dynamics of obligate ant social parasite systems--between prudence and antagonism.

    PubMed

    Brandt, Miriam; Foitzik, Susanne; Fischer-Blass, Birgit; Heinze, Jürgen

    2005-05-01

    In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and theory predicts that their associations are best described in terms of a highly antagonistic coevolutionary arms race.

  1. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs.

    PubMed

    Patel, Vir D; Capra, John A

    2017-08-31

    microRNAs (miRNAs) are essential to the regulation of gene expression in eukaryotes, and improper expression of miRNAs contributes to hundreds of diseases. Despite the essential functions of miRNAs, the evolutionary dynamics of how they are integrated into existing gene regulatory and functional networks is not well understood. Knowledge of the origin and evolutionary history a gene has proven informative about its functions and disease associations; we hypothesize that incorporating the evolutionary origins of miRNAs into analyses will help resolve differences in their functional dynamics and how they influence disease. We computed the phylogenetic age of miRNAs across 146 species and quantified the relationship between human miRNA age and several functional attributes. Older miRNAs are significantly more likely to be associated with disease than younger miRNAs, and the number of associated diseases increases with age. As has been observed for genes, the miRNAs associated with different diseases have different age profiles. For example, human miRNAs implicated in cancer are enriched for origins near the dawn of animal multicellularity. Consistent with the increasing contribution of miRNAs to disease with age, older miRNAs target more genes than younger miRNAs, and older miRNAs are expressed in significantly more tissues. Furthermore, miRNAs of all ages exhibit a strong preference to target older genes; 93% of validated miRNA gene targets were in existence at the origin of the targeting miRNA. Finally, we find that human miRNAs in evolutionarily related families are more similar in their targets and expression profiles than unrelated miRNAs. Considering the evolutionary origin and history of a miRNA provides useful context for the analysis of its function. Consistent with recent work in Drosophila, our results support a model in which miRNAs increase their expression and functional regulatory interactions over evolutionary time, and thus older miRNAs have increased potential to cause disease. We anticipate that these patterns hold across mammalian species; however, comprehensively evaluating them will require refining miRNA annotations across species and collecting functional data in non-human systems.

  2. A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases.

    PubMed

    Cummins, Carla A; McInerney, James O

    2011-12-01

    Current phylogenetic methods attempt to account for evolutionary rate variation across characters in a matrix. This is generally achieved by the use of sophisticated evolutionary models, combined with dense sampling of large numbers of characters. However, systematic biases and superimposed substitutions make this task very difficult. Model adequacy can sometimes be achieved at the cost of adding large numbers of free parameters, with each parameter being optimized according to some criterion, resulting in increased computation times and large variances in the model estimates. In this study, we develop a simple approach that estimates the relative evolutionary rate of each homologous character. The method that we describe uses the similarity between characters as a proxy for evolutionary rate. In this article, we work on the premise that if the character-state distribution of a homologous character is similar to many other characters, then this character is likely to be relatively slowly evolving. If the character-state distribution of a homologous character is not similar to many or any of the rest of the characters in a data set, then it is likely to be the result of rapid evolution. We show that in some test cases, at least, the premise can hold and the inferences are robust. Importantly, the method does not use a "starting tree" to make the inference and therefore is tree independent. We demonstrate that this approach can work as well as a maximum likelihood (ML) approach, though the ML method needs to have a known phylogeny, or at least a very good estimate of that phylogeny. We then demonstrate some uses for this method of analysis, including the improvement in phylogeny reconstruction for both deep-level and recent relationships and overcoming systematic biases such as base composition bias. Furthermore, we compare this approach to two well-established methods for reweighting or removing characters. These other methods are tree-based and we show that they can be systematically biased. We feel this method can be useful for phylogeny reconstruction, understanding evolutionary rate variation, and for understanding selection variation on different characters.

  3. [Genetic mechanism and evolutionary significance of the origin of parthenogenetic insects].

    PubMed

    Wang, Cheng-Ye

    2011-12-01

    There is a high proportion of parthenogenesis in insecta, and the parthenogenetic potential of insects is an important but often ignored threaten factor for the agricultural and forestry production. The maintenance of parthenogenetic species is a puzzling issue in evolutionary biology. In recent years, although the cellular mechanisms during parthenogenesis in some species have been well studied, the underlying genetic mechanisms that cause the switch from sexual reproduction to parthenogenesis have not been defined. While, understanding the genetic mechanism and evolutionary significance of the origin of parthenogenetic insects is crucial for preventing the pests in agricultural and forestry production. Here we summarized recent studies aimed at identifying the underlying genetic mechanism of parthenogenesis in insects, and briefly discussed its potential application in this filed.

  4. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    PubMed Central

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  5. Mate choice trade-offs and women's preference for physically attractive men.

    PubMed

    Waynforth, D

    2001-09-01

    Researchers studying human sexuality have repeatedly concluded that men place more emphasis on the physical attractiveness of potential mates than women do, particularly in long-term sexual relationships. Evolutionary theorists have suggested that this is the case because male mate value (the total value of the characteristics that an individual possesses in terms of the potential contribution to his or her mate's reproductive success) is better predicted by social status and economic resources, whereas women's mate value hinges on signals conveyed by their physical appearance. This pattern may imply that women trade off attractiveness for resources in mate choice. Here I test whether a trade-off between resources and attractiveness seems to be occurring in the mate choice decisions of women in the United States. In addition, the possibility that the risk of mate desertion drives women to choose less attractive men as long-term mates is tested. The results were that women rated physically attractive men as more likely to cheat or desert a long-term relationship, whereas men did not consider attractive women to be more likely to cheat. However, women showed no aversion to the idea of forming long-term relationships with attractive men. Evidence for a trade-off between resources and attractiveness was found for women, who traded off attractiveness, but not other traits, for resources. The potential meaning of these findings, as well as how they relate to broader issues in the study of sex differences in the evolution of human mate choice for physical traits, is discussed.

  6. Evolutionary relationships in Vaccinium section Cyanococcus

    USDA-ARS?s Scientific Manuscript database

    The North American Vaccinium section Cyanococcus includes the ecologically and economically important blueberry species, Vaccinium corymbosum (highbush blueberry), Vaccinium angustifolium (lowbush blueberry), Vaccinium myrtilloides (velvet-leaf blueberry), and Vaccinium virgatum (rabbiteye blueberry...

  7. Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello

    2004-01-01

    This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.

  8. Identifying predictors of time-inhomogeneous viral evolutionary processes.

    PubMed

    Bielejec, Filip; Baele, Guy; Rodrigo, Allen G; Suchard, Marc A; Lemey, Philippe

    2016-07-01

    Various factors determine the rate at which mutations are generated and fixed in viral genomes. Viral evolutionary rates may vary over the course of a single persistent infection and can reflect changes in replication rates and selective dynamics. Dedicated statistical inference approaches are required to understand how the complex interplay of these processes shapes the genetic diversity and divergence in viral populations. Although evolutionary models accommodating a high degree of complexity can now be formalized, adequately informing these models by potentially sparse data, and assessing the association of the resulting estimates with external predictors, remains a major challenge. In this article, we present a novel Bayesian evolutionary inference method, which integrates multiple potential predictors and tests their association with variation in the absolute rates of synonymous and non-synonymous substitutions along the evolutionary history. We consider clinical and virological measures as predictors, but also changes in population size trajectories that are simultaneously inferred using coalescent modelling. We demonstrate the potential of our method in an application to within-host HIV-1 sequence data sampled throughout the infection of multiple patients. While analyses of individual patient populations lack statistical power, we detect significant evidence for an abrupt drop in non-synonymous rates in late stage infection and a more gradual increase in synonymous rates over the course of infection in a joint analysis across all patients. The former is predicted by the immune relaxation hypothesis while the latter may be in line with increasing replicative fitness during the asymptomatic stage.

  9. Differentiated evolutionary relationships among chordates from comparative alignments of multiple sequences of MyoD and MyoG myogenic regulatory factors.

    PubMed

    Oliani, L C; Lidani, K C F; Gabriel, J E

    2015-10-16

    MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.

  10. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    PubMed Central

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  11. Integrating evo-devo with ecology for a better understanding of phenotypic evolution

    PubMed Central

    Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.

    2015-01-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411

  12. Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases.

    PubMed

    Janecek, S

    1994-09-01

    Amino acid sequence comparison of 37 alpha-amylases from microbial, plant and animal sources was performed to identify their mutual sequence similarities in addition to the five already described conserved regions. These sequence regions were examined from structure/function and evolutionary perspectives. An unrooted evolutionary tree of alpha-amylases was constructed on a subset of 55 residues from the alignment of sequence similarities along with conserved regions. The most important new information extracted from the tree was as follows: (a) the close evolutionary relationship of Alteromonas haloplanctis alpha-amylase (thermolabile enzyme from an antarctic psychrotroph) with the already known group of homologous alpha-amylases from streptomycetes, Thermomonospora curvata, insects and mammals, and (b) the remarkable 40.1% identity between starch-saccharifying Bacillus subtilis alpha-amylase and the enzyme from the ruminal bacterium Butyrivibrio fibrisolvens, an alpha-amylase with an unusually large polypeptide chain (943 residues in the mature enzyme). Due to a very high degree of similarity, the whole amino acid sequences of three groups of alpha-amylases, namely (a) fungi and yeasts, (b) plants, and (c) A. haloplanctis, streptomycetes, T. curvata, insects and mammals, were aligned independently and their unrooted distance trees were calculated using these alignments. Possible rooting of the trees was also discussed. Based on the knowledge of the location of the five disulfide bonds in the structure of pig pancreatic alpha-amylase, the possible disulfide bridges were established for each of these groups of homologous alpha-amylases.

  13. The evolution of life-history variation in fishes, with particular reference to flatfishes

    NASA Astrophysics Data System (ADS)

    Roff, Derek A.

    This paper explores four aspects of the evolution of life-history variation in fish, with particular reference to the flatfishes: 1. genetic variation and evolutionary response; 2. the size and age at first reproduction; 3. adult lifespan and variation in recruitment; 4. the relationship between reproductive effort and age. Evolutionary response may be limited by previous evolutionary pathways (phylogenetic variation) or by lack of genetic variation due to selection for a single trait. Estimates of heritability suggest, as predicted, that selection is stronger on life-history traits than morphological traits; but there is still adequate genetic variation to permit fairly rapid evolutionary changes. Several approaches to the analysis of the optimal age and size at first reproduction are discussed in the light of a general life-history model based on the assumption that natural selection maximizes r or R 0. It is concluded that one of the most important areas of future research is the relationship between reproduction and mortality. Murphy's hypothesis that the reproductive lifespan should increase with variation in spawning success is shown to be incorrect for fish, at least at the level of interspecific comparison. The model of Charlesworth & León predicting the sufficient condition for reproductive effort to increase with age is tested: in 28 of 31 cases the model predicts an increase of reproductive effort with age. These results suggest that, in general, reproductive effort should increase with age in fish. This prediction is confirmed in the 15 species for which adequate data exist.

  14. Integrating evo-devo with ecology for a better understanding of phenotypic evolution.

    PubMed

    Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman

    2015-11-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.

  15. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch

    PubMed Central

    2014-01-01

    In 21st-century public health, rapid urbanization and mental health disorders are a growing global concern. The relationship between diet, brain function and the risk of mental disorders has been the subject of intense research in recent years. In this review, we examine some of the potential socioeconomic and environmental challenges detracting from the traditional dietary patterns that might otherwise support positive mental health. In the context of urban expansion, climate change, cultural and technological changes and the global industrialization and ultraprocessing of food, findings related to nutrition and mental health are connected to some of the most pressing issues of our time. The research is also of relevance to matters of biophysiological anthropology. We explore some aspects of a potential evolutionary mismatch between our ancestral past (Paleolithic, Neolithic) and the contemporary nutritional environment. Changes related to dietary acid load, advanced glycation end products and microbiota (via dietary choices and cooking practices) may be of relevance to depression, anxiety and other mental disorders. In particular, the results of emerging studies demonstrate the importance of prenatal and early childhood dietary practices within the developmental origins of health and disease concept. There is still much work to be done before these population studies and their mirrored advances in bench research can provide translation to clinical medicine and public health policy. However, the clear message is that in the midst of a looming global epidemic, we ignore nutrition at our peril. PMID:25060574

  16. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch.

    PubMed

    Logan, Alan C; Jacka, Felice N

    2014-07-24

    In 21st-century public health, rapid urbanization and mental health disorders are a growing global concern. The relationship between diet, brain function and the risk of mental disorders has been the subject of intense research in recent years. In this review, we examine some of the potential socioeconomic and environmental challenges detracting from the traditional dietary patterns that might otherwise support positive mental health. In the context of urban expansion, climate change, cultural and technological changes and the global industrialization and ultraprocessing of food, findings related to nutrition and mental health are connected to some of the most pressing issues of our time. The research is also of relevance to matters of biophysiological anthropology. We explore some aspects of a potential evolutionary mismatch between our ancestral past (Paleolithic, Neolithic) and the contemporary nutritional environment. Changes related to dietary acid load, advanced glycation end products and microbiota (via dietary choices and cooking practices) may be of relevance to depression, anxiety and other mental disorders. In particular, the results of emerging studies demonstrate the importance of prenatal and early childhood dietary practices within the developmental origins of health and disease concept. There is still much work to be done before these population studies and their mirrored advances in bench research can provide translation to clinical medicine and public health policy. However, the clear message is that in the midst of a looming global epidemic, we ignore nutrition at our peril.

  17. Regional Variations in Brain Gyrification Are Associated with General Cognitive Ability in Humans

    PubMed Central

    Gregory, Michael D.; Kippenhan, J. Shane; Dickinson, Dwight; Carrasco, Jessica; Mattay, Venkata S.; Weinberger, Daniel R.; Berman, Karen F.

    2016-01-01

    Summary Searching for a neurobiological understanding of human intellectual capabilities has long occupied those very capabilities. Brain gyrification, or folding of the cortex, is as highly-evolved and variable a characteristic in humans as is intelligence. Indeed, gyrification scales with brain size, and relationships between brain size and intelligence have been demonstrated in humans [1-3]. However, gyrification shows a large degree of variability that is independent from brain size [4-6], suggesting that the former may independently contribute to cognitive abilities, and thus supporting a direct investigation of this parameter in the context of intelligence. Moreover, uncovering the regional pattern of such an association could offer insights into evolutionary and neural mechanisms. We tested for this brain-behavior relationship in two separate, independently-collected, large cohorts: 440 healthy adults and 662 healthy children, using high-resolution structural neuroimaging and comprehensive neuropsychometric batteries. In both samples, general cognitive ability was significantly associated (pfdr<0.01) with increasing gyrification in a network of neocortical regions, including large portions of the prefrontal cortex, inferior parietal lobule, and temporoparietal junction, as well as the insula, cingulate cortex, and fusiform gyrus, a regional distribution that was nearly identical in both samples (Dice similarity coefficient=0.80). This neuroanatomical pattern is consistent with an existing, well-known proposal, the Parieto-Frontal Integration Theory of Intelligence [7], and is also consistent with research in comparative evolutionary biology showing rapid neocortical expansion of these regions in humans relative to other species. These data provide a framework for understanding the neurobiology of human cognitive abilities, and suggest a potential neurocellular association. PMID:27133866

  18. PROFESS: a PROtein Function, Evolution, Structure and Sequence database

    PubMed Central

    Triplet, Thomas; Shortridge, Matthew D.; Griep, Mark A.; Stark, Jaime L.; Powers, Robert; Revesz, Peter

    2010-01-01

    The proliferation of biological databases and the easy access enabled by the Internet is having a beneficial impact on biological sciences and transforming the way research is conducted. There are ∼1100 molecular biology databases dispersed throughout the Internet. To assist in the functional, structural and evolutionary analysis of the abundant number of novel proteins continually identified from whole-genome sequencing, we introduce the PROFESS (PROtein Function, Evolution, Structure and Sequence) database. Our database is designed to be versatile and expandable and will not confine analysis to a pre-existing set of data relationships. A fundamental component of this approach is the development of an intuitive query system that incorporates a variety of similarity functions capable of generating data relationships not conceived during the creation of the database. The utility of PROFESS is demonstrated by the analysis of the structural drift of homologous proteins and the identification of potential pancreatic cancer therapeutic targets based on the observation of protein–protein interaction networks. Database URL: http://cse.unl.edu/∼profess/ PMID:20624718

  19. Molecular phylogeny and historical biogeography of West Indian boid snakes (Chilabothrus).

    PubMed

    Reynolds, R Graham; Niemiller, Matthew L; Hedges, S Blair; Dornburg, Alex; Puente-Rolón, Alberto R; Revell, Liam J

    2013-09-01

    The evolutionary and biogeographic history of West Indian boid snakes (Epicrates), a group of nine species and 14 subspecies, was once thought to be well understood; however, new research has indicated that we are missing a clear understanding of the evolutionary relationships of this group. Here, we present the first multilocus, species-tree based analyses of the evolutionary relationships, divergence times, and historical biogeography of this clade with data from 10 genes and 6256 bp. We find evidence for a single colonization of the Caribbean from mainland South America in the Oligocene or early Miocene, followed by a radiation throughout the Greater Antilles and Bahamas. These findings support the previous suggestion that Epicrates sensu lato Wagler is paraphyletic with respect to the anacondas (Eunectes Wagler), and hence we restrict Epicrates to the mainland clade and use the available name Chilabothrus Duméril and Bibron for the West Indian clade. Our results suggest some diversification occurred within island banks, though most species divergence events seem to have occurred in allopatry. We also find evidence for a remarkable diversification within the Bahamian archipelago suggesting that the recognition of another Bahamian endemic species C. strigilatus is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Thioredoxin and evolution

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.

    1991-01-01

    Comparisons of primary structure have revealed significant homology between the m type thioredoxins of chloroplasts and the thioredoxins from a variety of bacteria. Chloroplast thioredoxin f, by comparison, remains an enigma: certain residues are invariant with those of the other thioredoxins, but a phylogenetic relationship to bacterial or m thioredoxins seems distant. Knowledge of the evolutionary history of thioredoxin f is, nevertheless, of interest because of its role in photosynthesis. Therefore, we have attempted to gain information on the evolutionary history of chloroplast thioredoxin f, as well as m. Our goal was first to establish the utility of thioredoxin as a phylogenetic marker, and, if found suitable, to deduce the evolutionary histories of the chloroplast thioredoxins. To this end, we have constructed phylogenetic (minimal replacement) trees using computer analysis. The results show that the thioredoxins of bacteria and animals fall into distinct phylogenetic groups - the bacterial group resembling that derived from earlier 16s RNA analysis and the animal group showing a cluster consistent with known relationships. The chloroplast thioredoxins show a novel type of phylogenetic arrangement: one m type aligns with its counterpart of eukaryotic algae, cyanobacteria and other bacteria, whereas the second type (f type) tracks with animal thioredoxin. The results give new insight into the evolution of photosynthesis.

  1. Pareto-optimal phylogenetic tree reconciliation

    PubMed Central

    Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S.; Kellis, Manolis

    2014-01-01

    Motivation: Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. Results: We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Availability and implementation: Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. Contact: mukul@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24932009

  2. Wealth, fertility and adaptive behaviour in industrial populations

    PubMed Central

    2016-01-01

    The lack of association between wealth and fertility in contemporary industrialized populations has often been used to question the value of an evolutionary perspective on human behaviour. Here, we first present the history of this debate, and the evolutionary explanations for why wealth and fertility (the number of children) are decoupled in modern industrial settings. We suggest that the nature of the relationship between wealth and fertility remains an open question because of the multi-faceted nature of wealth, and because existing cross-sectional studies are ambiguous with respect to how material wealth and fertility are linked. A literature review of longitudinal studies on wealth and fertility shows that the majority of these report positive effects of wealth, although levels of fertility seem to fall below those that would maximize fitness. We emphasize that reproductive decision-making reflects a complex interplay between individual and societal factors that resists simple evolutionary interpretation, and highlight the role of economic insecurity in fertility decisions. We conclude by discussing whether the wealth–fertility relationship can inform us about the adaptiveness of modern fertility behaviour, and argue against simplistic claims regarding maladaptive behaviour in humans. PMID:27022080

  3. Wealth, fertility and adaptive behaviour in industrial populations.

    PubMed

    Stulp, Gert; Barrett, Louise

    2016-04-19

    The lack of association between wealth and fertility in contemporary industrialized populations has often been used to question the value of an evolutionary perspective on human behaviour. Here, we first present the history of this debate, and the evolutionary explanations for why wealth and fertility (the number of children) are decoupled in modern industrial settings. We suggest that the nature of the relationship between wealth and fertility remains an open question because of the multi-faceted nature of wealth, and because existing cross-sectional studies are ambiguous with respect to how material wealth and fertility are linked. A literature review of longitudinal studies on wealth and fertility shows that the majority of these report positive effects of wealth, although levels of fertility seem to fall below those that would maximize fitness. We emphasize that reproductive decision-making reflects a complex interplay between individual and societal factors that resists simple evolutionary interpretation, and highlight the role of economic insecurity in fertility decisions. We conclude by discussing whether the wealth-fertility relationship can inform us about the adaptiveness of modern fertility behaviour, and argue against simplistic claims regarding maladaptive behaviour in humans. © 2016 The Author(s).

  4. Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia.

    PubMed

    Liu, Tong; Sun, Keping; Park, Yung Chul; Feng, Jiang

    2016-01-01

    The greater horseshoe bat, Rhinolophus ferrumequinum , is an important model organism for studies on chiropteran phylogeographic patterns. Previous studies revealed the population history of R. ferrumequinum from Europe and most Asian regions, yet there continue to be arguments about their evolutionary process in Northeast Asia. In this study, we obtained mitochondrial DNA cyt b and D-loop data of R. ferrumequinum from Northeast China, South Korea and Japan to clarify their phylogenetic relationships and evolutionary process. Our results indicate a highly supported monophyletic group of Northeast Asian greater horseshoe bats, in which Japanese populations formed a single clade and clustered into the mixed branches of Northeast Chinese and South Korean populations. We infer that R. ferrumequinum in Northeast Asia originated in Northeast China and South Korea during a cold glacial period, while some ancestors likely arrived in Japan by flying or land bridge and subsequently adapted to the local environment. Consequently, during the warm Eemian interglaciation, the Korea Strait, between Japan and South Korea, became a geographical barrier to Japanese and inland populations, while the Changbai Mountains, between China and North Korea, did not play a significant role as a barrier between Northeast China and South Korea populations.

  5. Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia

    PubMed Central

    Liu, Tong; Park, Yung Chul

    2016-01-01

    The greater horseshoe bat, Rhinolophus ferrumequinum, is an important model organism for studies on chiropteran phylogeographic patterns. Previous studies revealed the population history of R. ferrumequinum from Europe and most Asian regions, yet there continue to be arguments about their evolutionary process in Northeast Asia. In this study, we obtained mitochondrial DNA cyt b and D-loop data of R. ferrumequinum from Northeast China, South Korea and Japan to clarify their phylogenetic relationships and evolutionary process. Our results indicate a highly supported monophyletic group of Northeast Asian greater horseshoe bats, in which Japanese populations formed a single clade and clustered into the mixed branches of Northeast Chinese and South Korean populations. We infer that R. ferrumequinum in Northeast Asia originated in Northeast China and South Korea during a cold glacial period, while some ancestors likely arrived in Japan by flying or land bridge and subsequently adapted to the local environment. Consequently, during the warm Eemian interglaciation, the Korea Strait, between Japan and South Korea, became a geographical barrier to Japanese and inland populations, while the Changbai Mountains, between China and North Korea, did not play a significant role as a barrier between Northeast China and South Korea populations. PMID:27761309

  6. Some results on ethnic conflicts based on evolutionary game simulation

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  7. Evolutionary relationships among sympatric life history forms of Dolly Varden inhabiting the landlocked Kronotsky Lake, Kamchatka, and a neighboring anadromous population

    USGS Publications Warehouse

    Ostberg, C.O.; Pavlov, S.D.; Hauser, L.

    2009-01-01

    We investigated the evolutionary relationships among five sympatric morphs of Dolly Varden Salvelinus malma (white, Schmidti, longhead, river, and dwarf) inhabiting landlocked Kronotsky Lake on the Kamchatka Peninsula, Russia, and an anadromous population below the barrier waterfall on the outflowing Kronotsky River. Morphological analyses indicated phenotypic differentiation corresponding to preferred habitat, the longhead (a limnetic piscivorous morph) having a fusiform body, long jaw, and short fins and the Schmidti (a benthic morph) having a robust body, small jaw, and long fins. Analysis of molecular variance among the Kronotsky Lake morphs indicated that contemporary gene flow is restricted both among morphs within locations and among locations within morphs. Gene flow from Kronotsky Lake into the anadromous population also appears to be restricted. Our findings indicate that there are two divergent evolutionary lineages, one consisting of the white, Schmidti, river, and dwarf morphs and the other of the longhead morph and the anadromous population, which suggests that Kronotsky Lake was subject to separate waves of immigration. The Kronotsky Lake Dolly Varden morphs may represent an example of ecological speciation in progress, and we present a working hypothesis for the diversification of morphs within Kronotsky Lake.

  8. Molecular Phylogeny of the Animal Kingdom.

    ERIC Educational Resources Information Center

    Field, Katharine G.; And Others

    1988-01-01

    A rapid sequencing method for ribosomal RNA was applied to the resolution of evolutionary relationships among Metazoa. Describes the four groups (chordates, echinoderms, arthropods, and eucoelomate protostomes) that radiated from the coelomates. (TW)

  9. [The effect of prostitution on the stability of romantic relationships. Empirical testing of an evolutionary model].

    PubMed

    Meskó, Norbert; Láng, András; Bernáth, László

    2012-01-01

    Until now prostitution has only been explained from two evolutionary points of view. According to the short-term mate choice strategy approach motives for seeking prostitutes are to be found in the nature of male sexuality. Another theory - the evolutionary interpretation of female promiscuity's motivational base - indirectly completes the understanding of prostitution. This theory emphasizes the adaptive benefits of female promiscuity under certain circumstances. The aim of our study was to test a third idea (Adaptive Support Theory), according to which women in long-term relationships support their partners' (husbands') sexual relations with prostitutes. University female students (n=208, age mean±SD=23.55±7.13, min=18, max=50) completed our questionnaire. Female participants are presumed to recognize the advantages and threats of their partners' sexual relations with prostitutes compared to other possible forms of betrayal. Hence it is hypothesized that women overtly support the possibility of their partners' relations with prostitutes. Our results show that women are able to assess the favorable and unfavorable effects of their partners' relations with prostitutes. At the same time they do not directly support this form of betrayal over other possibilities. However, female participants were more approving of their partners' relations with prostitutes (in a thought- experiment), than they guessed their partner would demand such services. According to our model women living in long-term relationship are adaptively interested in their partner's cheating on them with a prostitute (rather than engaging in other kinds of sexual relations), because this finance based external sexual liaison is the least threatening for the stability of the long-term relationship.

  10. Bioinformatics analysis and genetic diversity of the poliovirus.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Wang, Shujing; Xu, Ruixue

    2014-12-01

    Poliomyelitis, a disease which can manifest as muscle paralysis, is caused by the poliovirus, which is a human enterovirus and member of the family Picornaviridae that usually transmits by the faecal-oral route. The viruses of the OPV (oral poliovirus attenuated-live vaccine) strains can mutate in the human intestine during replication and some of these mutations can lead to the recovery of serious neurovirulence. Informatics research of the poliovirus genome can be used to explain further the characteristics of this virus. In this study, sequences from 100 poliovirus isolates were acquired from GenBank. To determine the evolutionary relationship between the strains, we compared and analysed the sequences of the complete poliovirus genome and the VP1 region. The reconstructed phylogenetic trees for the complete sequences and the VP1 sequences were both divided into two branches, indicating that the genetic relationships of the whole poliovirus genome and the VP1 sequences are very similar. This branching indicates that the virulence and pathogenicity of poliomyelitis may be associated with the VP1 region. Sequence alignment of the VP1 region revealed numerous mutation sites in which mutation rates of >30 % were detected. In a group of strains recorded in the USA, mutation sites and mutation types were the same and this may be associated with their distribution in the evolutionary tree and their genetic relationship. In conclusion, the genetic evolutionary relationships of poliovirus isolate sequences are determined to a great extent by the VP1 protein, and poliovirus strains located on the same branch of the phylogenetic tree contain the same mutation spots and mutation types. Hence, the genetic characteristics of the VP1 region in the poliovirus genome should be analysed to identify the transmission route of poliovirus and provide the basis of viral immunity development. © 2014 The Authors.

  11. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988

  12. Arabidopsis thaliana type I and II chaperonins.

    PubMed

    Hill, J E; Hemmingsen, S M

    2001-07-01

    An examination of the Arabidopsis thaliana genome sequence led to the identification of 29 predicted genes with the potential to encode members of the chaperonin family of chaperones (CPN60 and CCT), their associated cochaperonins, and the cytoplasmic chaperonin cofactor prefoldin. These comprise the first complete set of plant chaperonin protein sequences and indicate that the CPN family is more diverse than previously described. In addition to surprising sequence diversity within CPN subclasses, the genomic data also suggest the existence of previously undescribed family members, including a 10-kDa chloroplast cochaperonin. Consideration of the sequence data described in this review prompts questions about the complexities of plant CPN systems and the evolutionary relationships and functions of the component proteins, most of which have not been studied experimentally.

  13. Molecular phylogenetics of mastodon and Tyrannosaurus rex.

    PubMed

    Organ, Chris L; Schweitzer, Mary H; Zheng, Wenxia; Freimark, Lisa M; Cantley, Lewis C; Asara, John M

    2008-04-25

    We report a molecular phylogeny for a nonavian dinosaur, extending our knowledge of trait evolution within nonavian dinosaurs into the macromolecular level of biological organization. Fragments of collagen alpha1(I) and alpha2(I) proteins extracted from fossil bones of Tyrannosaurus rex and Mammut americanum (mastodon) were analyzed with a variety of phylogenetic methods. Despite missing sequence data, the mastodon groups with elephant and the T. rex groups with birds, consistent with predictions based on genetic and morphological data for mastodon and on morphological data for T. rex. Our findings suggest that molecular data from long-extinct organisms may have the potential for resolving relationships at critical areas in the vertebrate evolutionary tree that have, so far, been phylogenetically intractable.

  14. Pathogen–Host Defense in the Evolution of Depression: Insights into Epidemiology, Genetics, Bioregional Differences and Female Preponderance

    PubMed Central

    Raison, Charles L; Miller, Andrew H

    2017-01-01

    Significant attention has been paid to the potential adaptive value of depression as it relates to interactions with people in the social world. However, in this review, we outline the rationale of why certain features of depression including its environmental and genetic risk factors, its association with the acute phase response and its age of onset and female preponderance appear to have evolved from human interactions with pathogens in the microbial world. Approaching the relationship between inflammation and depression from this evolutionary perspective yields a number of insights that may reveal important clues regarding the origin and epidemiology of the disorder as well as the persistence of its risk alleles in the modern human genome. PMID:27629366

  15. Theoretical Foundation of the RelTime Method for Estimating Divergence Times from Variable Evolutionary Rates

    PubMed Central

    Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir

    2018-01-01

    Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954

  16. Evolutionary game theory: cells as players.

    PubMed

    Hummert, Sabine; Bohl, Katrin; Basanta, David; Deutsch, Andreas; Werner, Sarah; Theissen, Günter; Schroeter, Anja; Schuster, Stefan

    2014-12-01

    In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.

  17. Evolutionary ethnobiology and cultural evolution: opportunities for research and dialog.

    PubMed

    Santoro, Flávia Rosa; Nascimento, André Luiz Borba; Soldati, Gustavo Taboada; Ferreira Júnior, Washington Soares; Albuquerque, Ulysses Paulino

    2018-01-09

    The interest in theoretical frameworks that improve our understanding of social-ecological systems is growing within the field of ethnobiology. Several evolutionary questions may underlie the relationships between people and the natural resources that are investigated in this field. A new branch of research, known as evolutionary ethnobiology (EE), focuses on these questions and has recently been formally conceptualized. The field of cultural evolution (CE) has significantly contributed to the development of this new field, and it has introduced the Darwinian concepts of variation, competition, and heredity to studies that focus on the dynamics of local knowledge. In this article, we introduce CE as an important theoretical framework for evolutionary ethnobiological research. We present the basic concepts and assumptions of CE, along with the adjustments that are necessary for its application in EE. We discuss different ethnobiological studies in the context of this new framework and the new opportunities for research that exist in this area. We also propose a dialog that includes our findings in the context of cultural evolution.

  18. Disease and Evolution.

    ERIC Educational Resources Information Center

    Wells, Calvin

    1978-01-01

    Discusses disease and genetic disorders as evolutionary mechanisms. Emphasizes the archeological evidence from past human populations and societies, mentioning albinism, scurvy, sleeping sickness, bone conditions, various host-parasite relationships, rickets, sickle-cell anemia, diabetes, and influenza. (CS)

  19. Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs

    NASA Astrophysics Data System (ADS)

    Suo, Qi; Guo, Jin-Li; Sun, Shiwei; Liu, Han

    2018-01-01

    A new evolutionary model is proposed to describe the characteristics and evolution pattern of supply chain systems using evolving hypergraphs, in which nodes represent enterprise entities while hyperedges represent the relationships among diverse trades. The nodes arrive at the system in accordance with a Poisson process, with the evolving process incorporating the addition of new nodes, linking of old nodes, and rewiring of links. Grounded in the Poisson process theory and continuum theory, the stationary average hyperdegree distribution is shown to follow a shifted power law (SPL), and the theoretical predictions are consistent with the results of numerical simulations. Testing the impact of parameters on the model yields a positive correlation between hyperdegree and degree. The model also uncovers macro characteristics of the relationships among enterprises due to the microscopic interactions among individuals.

  20. Evolution of the arginase fold and functional diversity

    PubMed Central

    Dowling, Daniel P.; Costanzo, Luigi Di; Gennadios, Heather A.; Christianson, David W.

    2009-01-01

    The large number of protein structures deposited in the Protein Data Bank allows for the identification of novel structural superfamilies based on conservation of fold in addition to conservation of amino acid sequence. Since sequence diverges more rapidly than fold in protein evolution, proteins with little or no significant sequence identity are occasionally observed to adopt similar folds, thereby reflecting unanticipated evolutionary relationships. Here, we review the unique α/β fold first observed in the manganese metalloenzyme rat liver arginase, consisting of a parallel 8 stranded β-sheet surrounded by several helices, and its evolutionary relationship with the zinc-requiring and/or iron-requiring histone deacetylases and acetylpolyamine amidohydrolases. Structural comparisons reveal key features of the core α/β fold that contribute to the divergent metal ion specificity and stoichiometry required for the chemical and biological functions of these enzymes. PMID:18360740

  1. What are the taxonomic and evolutionary relationships of the Protozoa to the Protista?

    PubMed

    Corliss, J O

    1981-01-01

    In order to consider the problems of protist-protozoan interrelationships in proper perspective, a new "packaging" of phyla within the great kingdom Protista is proposed. Although it is based largely on historical groupings and is admittedly "unnatural" (nor are taxonomic names proposed for my five supraphyletic groupings), the arrangement may clarify some long-persisting problems, especially with regard to mixed algal-protozoan groups and/or phylogenies. Some three dozen phyla are recognized as comprising the kingdom, with the number that might be considered as "protozoan" ranging from 10 to 25, depending on one's viewpoint. No taxon should have the formal name "Protozoa", "Phytoflagellate" and "zooflagellate" are also misleading categories. Taxonomic and evolutionary relationships of phyla containing protozoa (with small "p") are inextricably intermeshed with those of other protist phyla, and thus no unified protozoan super-group exists.

  2. Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.

    2017-02-01

    Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.

  3. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  4. Evolutionary tree design: An exploratory study of the influence of linear versus branching format on visitors' interpretation and understanding across age groups

    NASA Astrophysics Data System (ADS)

    MacDonald, Teresa Elise

    This exploratory study sought to investigate the influence of tree graphic design---specifically linear versus branching depictions of taxa---on visitors in three different age groups (aged 11-13, 14-18, adults) interpretation and understanding using a multiple-case study strategy. The findings from this research indicate that linear and branched depictions elicit qualitatively different narratives and explanations about the relationships between the taxa in all age groups. Branched tree graphics support scientifically appropriate explanations of evolutionary relationships, i.e. that taxa are related via shared or common ancestry; while linear representations reinforce intuitive interpretations of ancestor-descendant or anagenic relationships. Furthermore, differences in the language used for linear and branched trees suggests that there is a spectrum within an analogy of developmental change that is thought to serve as a transitional concept between intuitive and scientific understanding--with 'evolved from' for branched depictions of taxa representing a shift towards an interpretation of shared ancestry rather than an individual transformation from one thing into another. In addition, branched graphics appear to support the correct reading and interpretation of shared or common ancestry in tree diagrams. Mixed reasoning was common and overall reasoning patterns were broadly similar among participants in all age groups, however, older youth (aged 14 to 18) and adults often provided more detail in their explanations and sometimes included references to evolutionary ideas such as variation, inheritance and selection.

  5. Genomic Data from Extinct North American Camelops Revise Camel Evolutionary History.

    PubMed

    Heintzman, Peter D; Zazula, Grant D; Cahill, James A; Reyes, Alberto V; MacPhee, Ross D E; Shapiro, Beth

    2015-09-01

    Recent advances in paleogenomic technologies have enabled an increasingly detailed understanding of the evolutionary relationships of now-extinct mammalian taxa. However, a number of enigmatic Quaternary species have never been characterized with molecular data, often because available fossils are rare or are found in environments that are not optimal for DNA preservation. Here, we analyze paleogenomic data extracted from bones attributed to the late Pleistocene western camel, Camelops cf. hesternus, a species that was distributed across central and western North America until its extinction approximately 13,000 years ago. Despite a modal sequence length of only around 35 base pairs, we reconstructed high-coverage complete mitochondrial genomes and low-coverage partial nuclear genomes for each specimen. We find that Camelops is sister to African and Asian bactrian and dromedary camels, to the exclusion of South American camelids (llamas, guanacos, alpacas, and vicuñas). These results contradict previous morphology-based phylogenetic models for Camelops, which suggest instead a closer relationship between Camelops and the South American camelids. The molecular data imply a Late Miocene divergence of the Camelops clade from lineages that separately gave rise to the extant camels of Eurasia. Our results demonstrate the increasing capacity of modern paleogenomic methods to resolve evolutionary relationships among distantly related lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity

    PubMed Central

    Wei, Ran; Yan, Yue-Hong; Harris, AJ; Kang, Jong-Soo; Shen, Hui; Zhang, Xian-Chun

    2017-01-01

    Abstract The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae–Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates. PMID:28854625

  7. Monogamy and Nonmonogamy: Evolutionary Considerations and Treatment Challenges.

    PubMed

    Brandon, Marianne

    2016-10-01

    Few topics generate such controversy and emotional reactivity as the nature of human mating behavior. Unfortunately, and potentially to the detriment of good patient care, sexual medicine practitioners have largely avoided this matter. An understanding of the scientific literature can empower practitioners to more effectively confront the inevitable monogamy and nonmonogamy challenges present in research and clinical practice. To review and summarize relevant scientific literature as a context to evaluate the more common myths and misunderstanding relating to the practice of monogamy and nonmonogamy in humans. This review also is intended to promote a discussion of the ways human mating strategies may impact sexual function and dysfunction for the individual and couple. A review of English written peer-reviewed evolutionary, anthropological, neuropsychiatric, zoological research, and other scholarly texts was conducted. Work published between 2000 and 2016 concentrating on evolutionary theory, long- and short-term mating strategies in primates and most specifically in humans, and consensual nonmonogamy was highlighted. Main outcomes included a brief explanation of evolutionary theory and a review of relevant literature regarding long- and short-term mating behaviors and consensual nonmonogamy. Serial sexual and social monogamy is the norm for humans. Across time and cultures, humans have adapted both long- and short-term mating strategies that are used flexibly, and sometimes simultaneously, based on unique personal, social, and environmental circumstances. Human mating behavior is individualistic, the result of numerous biopsychosocial influences. The clinician cannot assume that an individual presenting as a patient maintains a monogamy-valued view of his or her intimate relationship. Patients may experience conflict between the cultural monogamous ideal and their actual sexual behaviors. This conflict may be critical in understanding a patient's sexual concerns and in treatment planning. Awareness of these issues will aid the practitioner in sexual medicine. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  8. Migrate small, sound big: functional constraints on body size promote tracheal elongation in cranes.

    PubMed

    Jones, M R; Witt, C C

    2014-06-01

    Organismal traits often represent the outcome of opposing selection pressures. Although social or sexual selection can cause the evolution of traits that constrain function or survival (e.g. ornamental feathers), it is unclear how the strength and direction of selection respond to ecological shifts that increase the severity of the constraint. For example, reduced body size might evolve by natural selection to enhance flight performance in migratory birds, but social or sexual selection favouring large body size may provide a countervailing force. Tracheal elongation is a potential outcome of these opposing pressures because it allows birds to convey an auditory signal of exaggerated body size. We predicted that the evolution of migration in cranes has coincided with a reduction in body size and a concomitant intensification of social or sexual selection for apparent large body size via tracheal elongation. We used a phylogenetic comparative approach to examine the relationships among migration distance, body mass and trachea length in cranes. As predicted, we found that migration distance correlated negatively with body size and positively with proportional trachea length. This result was consistent with our hypothesis that evolutionary reductions in body size led to intensified selection for trachea length. The most likely ultimate causes of intensified positive selection on trachea length are the direct benefits of conveying a large body size in intraspecific contests for mates and territories. We conclude that the strength of social or sexual selection on crane body size is linked to the degree of functional constraint. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  9. Discovery of Novel HIV-1 Integrase Inhibitors Using QSAR-Based Virtual Screening of the NCI Open Database.

    PubMed

    Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil

    2016-01-01

    Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.

  10. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Treesearch

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  11. Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci.

    Treesearch

    John Syring; Ann Willyard; Richard Cronn; Aaron Liston

    2005-01-01

    Sequence data from nrITS and cpDNA have failed to fully resolve phylogenetic relationships among Pinus species. Four low-copy nuclear genes, developed from the screening of 73 mapped conifer anchor loci, were sequenced from 12 species representing all subsections. Individual loci do not uniformly support either the nrITS or cpDNA hypotheses and in...

  12. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  13. Why don't zebras have machine guns? Adaptation, selection, and constraints in evolutionary theory.

    PubMed

    Shanahan, Timothy

    2008-03-01

    In an influential paper, Stephen Jay Gould and Richard Lewontin (1979) contrasted selection-driven adaptation with phylogenetic, architectural, and developmental constraints as distinct causes of phenotypic evolution. In subsequent publications Gould (e.g., 1997a,b, 2002) has elaborated this distinction into one between a narrow "Darwinian Fundamentalist" emphasis on "external functionalist" processes, and a more inclusive "pluralist" emphasis on "internal structuralist" principles. Although theoretical integration of functionalist and structuralist explanations is the ultimate aim, natural selection and internal constraints are treated as distinct causes of evolutionary change. This distinction is now routinely taken for granted in the literature in evolutionary biology. I argue that this distinction is problematic because the effects attributed to non-selective constraints are more parsimoniously explained as the ordinary effects of selection itself. Although it may still be a useful shorthand to speak of phylogenetic, architectural, and developmental constraints on phenotypic evolution, it is important to understand that such "constraints" do not constitute an alternative set of causes of evolutionary change. The result of this analysis is a clearer understanding of the relationship between adaptation, selection and constraints as explanatory concepts in evolutionary theory.

  14. Evolutionary Developmental Psychology: Contributions from Comparative Research with Nonhuman Primates

    ERIC Educational Resources Information Center

    Maestripieri, Dario; Roney, James R.

    2006-01-01

    Evolutionary developmental psychology is a discipline that has the potential to integrate conceptual approaches to the study of behavioral development derived from psychology and biology as well as empirical data from humans and animals. Comparative research with animals, and especially with nonhuman primates, can provide evidence of adaptation in…

  15. Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization

    ERIC Educational Resources Information Center

    Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.

    2013-01-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…

  16. Evolutionary Science as a Method to Facilitate Higher Level Thinking and Reasoning in Medical Training.

    PubMed

    Graves, Joseph L; Reiber, Chris; Thanukos, Anna; Hurtado, Magdalena; Wolpaw, Terry

    2016-10-15

    Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. In order to facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes.Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  17. Individual genetic diversity and probability of infection by avian malaria parasites in blue tits (Cyanistes caeruleus).

    PubMed

    Ferrer, E S; García-Navas, V; Sanz, J J; Ortego, J

    2014-11-01

    Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  18. Evolution of Modern Birds Revealed by Mitogenomics: Timing the Radiation and Origin of Major Orders

    PubMed Central

    Pacheco, M. Andreína; Battistuzzi, Fabia U.; Lentino, Miguel; Aguilar, Roberto F.; Kumar, Sudhir; Escalante, Ananias A.

    2011-01-01

    Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds. PMID:21242529

  19. Learning, epigenetics, and computation: An extension on Fitch's proposal. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Okanoya, Kazuo

    2014-09-01

    The comparative computational approach of Fitch [1] attempts to renew the classical David Marr paradigm of computation, algorithm, and implementation, by introducing evolutionary view of the relationship between neural architecture and cognition. This comparative evolutionary view provides constraints useful in narrowing down the problem space for both cognition and neural mechanisms. I will provide two examples from our own studies that reinforce and extend Fitch's proposal.

  20. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  1. Evolutionary potential games on lattices

    NASA Astrophysics Data System (ADS)

    Szabó, György; Borsos, István

    2016-04-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the "equilibrium state" by adding non-potential components representing games of cyclic dominance.

  2. Niche construction theory: a practical guide for ecologists.

    PubMed

    Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N

    2013-03-01

    Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.

  3. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers.

    PubMed

    Bateman, Richard M; Hilton, Jason; Rudall, Paula J

    2006-01-01

    Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.

  4. Insights into evolution in Andean Polystichum (Dryopteridaceae) from expanded understanding of the cytosolic phosphoglucose isomerase gene.

    PubMed

    Lyons, Brendan M; McHenry, Monique A; Barrington, David S

    2017-07-01

    Cytosolic phosphoglucose isomerase (pgiC) is an enzyme essential to glycolysis found universally in eukaryotes, but broad understanding of variation in the gene coding for pgiC is lacking for ferns. We used a substantially expanded representation of the gene for Andean species of the fern genus Polystichum to characterize pgiC in ferns relative to angiosperms, insects, and an amoebozoan; assess the impact of selection versus neutral evolutionary processes on pgiC; and explore evolutionary relationships of selected Andean species. The dataset of complete sequences comprised nine accessions representing seven species and one hybrid from the Andes and Serra do Mar. The aligned sequences of the full data set comprised 3376 base pairs (70% of the entire gene) including 17 exons and 15 introns from two central areas of the gene. The exons are highly conserved relative to angiosperms and retain substantial homology to insect pgiC, but intron length and structure are unique to the ferns. Average intron size is similar to angiosperms; intron number and location in insects are unlike those of the plants we considered. The introns included an array of indels and, in intron 7, an extensive microsatellite array with potential utility in analyzing population-level histories. Bayesian and maximum-parsimony analysis of 129 variable nucleotides in the Andean polystichums revealed that 59 (1.7% of the 3376 total) were phylogenetically informative; most of these united sister accessions. The phylogenetic trees for the Andean polystichums were incongruent with previously published cpDNA trees for the same taxa, likely the result of rapid evolutionary change in the introns and contrasting stability in the exons. The exons code a total of seven amino-acid substitutions. Comparison of non-synonymous to synonymous substitutions did not suggest that the pgiC gene is under selection in the Andes. Variation in pgiC including two additional accessions represented by incomplete sequences provided new insights into reticulate relationships among Andean taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Analysis of trait mean and variability versus temperature in trematode cercariae: is there scope for adaptation to global warming?

    PubMed

    Studer, A; Poulin, R

    2014-05-01

    The potential of species for evolutionary adaptation in the context of global climate change has recently come under scrutiny. Estimates of phenotypic variation in biological traits may prove valuable for identifying species, or groups of species, with greater or lower potential for evolutionary adaptation, as this variation, when heritable, represents the basis for natural selection. Assuming that measures of trait variability reflect the evolutionary potential of these traits, we conducted an analysis across trematode species to determine the potential of these parasites as a group to adapt to increasing temperatures. Firstly, we assessed how the mean number of infective stages (cercariae) emerging from infected snail hosts as well as the survival and infectivity of cercariae are related to temperature. Secondly and importantly in the context of evolutionary potential, we assessed how coefficients of variation for these traits are related to temperature, in both cases controlling for other factors such as habitat, acclimatisation, latitude and type of target host. With increasing temperature, an optimum curve was found for mean output and mean infectivity, and a linear decrease for survival of cercariae. For coefficients of variation, temperature was only an important predictor in the case of cercarial output, where results indicated that there is, however, no evidence for limited trait variation at the higher temperature range. No directional trend was found for either variation of survival or infectivity. These results, characterising general patterns among trematodes, suggest that all three traits considered may have potential to change through adaptive evolution. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  6. Supra-domains: evolutionary units larger than single protein domains.

    PubMed

    Vogel, Christine; Berzuini, Carlo; Bashton, Matthew; Gough, Julian; Teichmann, Sarah A

    2004-02-20

    Domains are the evolutionary units that comprise proteins, and most proteins are built from more than one domain. Domains can be shuffled by recombination to create proteins with new arrangements of domains. Using structural domain assignments, we examined the combinations of domains in the proteins of 131 completely sequenced organisms. We found two-domain and three-domain combinations that recur in different protein contexts with different partner domains. The domains within these combinations have a particular functional and spatial relationship. These units are larger than individual domains and we term them "supra-domains". Amongst the supra-domains, we identified some 1400 (1203 two-domain and 166 three-domain) combinations that are statistically significantly over-represented relative to the occurrence and versatility of the individual component domains. Over one-third of all structurally assigned multi-domain proteins contain these over-represented supra-domains. This means that investigation of the structural and functional relationships of the domains forming these popular combinations would be particularly useful for an understanding of multi-domain protein function and evolution as well as for genome annotation. These and other supra-domains were analysed for their versatility, duplication, their distribution across the three kingdoms of life and their functional classes. By examining the three-dimensional structures of several examples of supra-domains in different biological processes, we identify two basic types of spatial relationships between the component domains: the combined function of the two domains is such that either the geometry of the two domains is crucial and there is a tight constraint on the interface, or the precise orientation of the domains is less important and they are spatially separate. Frequently, the role of the supra-domain becomes clear only once the three-dimensional structure is known. Since this is the case for only a quarter of the supra-domains, we provide a list of the most important unknown supra-domains as potential targets for structural genomics projects.

  7. Intraspecific evolutionary relationships among peregrine falcons in western North American high latitudes

    USGS Publications Warehouse

    Talbot, Sandra L.; Sage, Kevin; Sonsthagen, Sarah A.; Gravley, Megan C.; Swem, Ted; Williams, Jeffrey C.; Longmire, Jonathan L.; Ambrose, Skip; Flamme, Melanie J; Lewis, Stephen B.; Phillips, Laura M.; Anderson, Clifford; White, Clayton M

    2017-01-01

    Subspecies relationships within the peregrine falcon (Falco peregrinus) have been long debated because of the polytypic nature of melanin-based plumage characteristics used in subspecies designations and potential differentiation of local subpopulations due to philopatry. In North America, understanding the evolutionary relationships among subspecies may have been further complicated by the introduction of captive bred peregrines originating from non-native stock, as part of recovery efforts associated with mid 20th century population declines resulting from organochloride pollution. Alaska hosts all three nominal subspecies of North American peregrine falcons–F. p. tundrius, anatum, and pealei–for which distributions in Alaska are broadly associated with nesting locales within Arctic, boreal, and south coastal maritime habitats, respectively. Unlike elsewhere, populations of peregrine falcon in Alaska were not augmented by captive-bred birds during the late 20th century recovery efforts. Population genetic differentiation analyses of peregrine populations in Alaska, based on sequence data from the mitochondrial DNA control region and fragment data from microsatellite loci, failed to uncover genetic distinction between populations of peregrines occupying Arctic and boreal Alaskan locales. However, the maritime subspecies, pealei, was genetically differentiated from Arctic and boreal populations, and substructured into eastern and western populations. Levels of interpopulational gene flow between anatum and tundrius were generally higher than between pealei and either anatum or tundrius. Estimates based on both marker types revealed gene flow between augmented Canadian populations and unaugmented Alaskan populations. While we make no attempt at formal taxonomic revision, our data suggest that peregrine falcons occupying habitats in Alaska and the North Pacific coast of North America belong to two distinct regional groupings–a coastal grouping (pealei) and a boreal/Arctic grouping (currently anatum and tundrius)–each comprised of discrete populations that are variously intra-regionally connected.

  8. Gene trees, species trees, and morphology converge on a similar phylogeny of living gars (Actinopterygii: Holostei: Lepisosteidae), an ancient clade of ray-finned fishes.

    PubMed

    Wright, Jeremy J; David, Solomon R; Near, Thomas J

    2012-06-01

    Extant gars represent the remaining members of a formerly diverse assemblage of ancient ray-finned fishes and have been the subject of multiple phylogenetic analyses using morphological data. Here, we present the first hypothesis of phylogenetic relationships among living gar species based on molecular data, through the examination of gene tree heterogeneity and coalescent species tree analyses of a portion of one mitochondrial (COI) and seven nuclear (ENC1, myh6, plagl2, S7 ribosomal protein intron 1, sreb2, tbr1, and zic1) genes. Individual gene trees displayed varying degrees of resolution with regards to species-level relationships, and the gene trees inferred from COI and the S7 intron were the only two that were completely resolved. Coalescent species tree analyses of nuclear genes resulted in a well-resolved and strongly supported phylogenetic tree of living gar species, for which Bayesian posterior node support was further improved by the inclusion of the mitochondrial gene. Species-level relationships among gars inferred from our molecular data set were highly congruent with previously published morphological phylogenies, with the exception of the placement of two species, Lepisosteus osseus and L. platostomus. Re-examination of the character coding used by previous authors provided partial resolution of this topological discordance, resulting in broad concordance in the phylogenies inferred from individual genes, the coalescent species tree analysis, and morphology. The completely resolved phylogeny inferred from the molecular data set with strong Bayesian posterior support at all nodes provided insights into the potential for introgressive hybridization and patterns of allopatric speciation in the evolutionary history of living gars, as well as a solid foundation for future examinations of functional diversification and evolutionary stasis in a "living fossil" lineage. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Buried treasure: evolutionary perspectives on microbial iron piracy

    PubMed Central

    Barber, Matthew F.; Elde, Nels C.

    2015-01-01

    Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a critical innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of `iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution, but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. PMID:26431675

  10. An evolutionary algorithm that constructs recurrent neural networks.

    PubMed

    Angeline, P J; Saunders, G M; Pollack, J B

    1994-01-01

    Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.

  11. Evolutionary psychology in the modern world: applications, perspectives, and strategies.

    PubMed

    Roberts, S Craig; van Vugt, Mark; Dunbar, Robin I M

    2012-12-20

    An evolutionary approach is a powerful framework which can bring new perspectives on any aspect of human behavior, to inform and complement those from other disciplines, from psychology and anthropology to economics and politics. Here we argue that insights from evolutionary psychology may be increasingly applied to address practical issues and help alleviate social problems. We outline the promise of this endeavor, and some of the challenges it faces. In doing so, we draw parallels between an applied evolutionary psychology and recent developments in Darwinian medicine, which similarly has the potential to complement conventional approaches. Finally, we describe some promising new directions which are developed in the associated papers accompanying this article.

  12. Chaos in Environmental Education.

    ERIC Educational Resources Information Center

    Hardy, Joy

    1999-01-01

    Explores chaos theory, the evolutionary capacity of chaotic systems, and the philosophical implications of chaos theory in general and for education. Compares the relationships between curriculum vision based on chaos theory and critical education for the environment. (Author/CCM)

  13. Evolutionary Relationships Based on Cellular Structure.

    ERIC Educational Resources Information Center

    Van Winkle, Lon J.

    1979-01-01

    This laboratory exercise integrates the topics of cell structure, classification of living organisms, and evolution. It is suitable for secondary or college biology courses and was used in an interdisciplinary science course for nonscience majors. (BB)

  14. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily

    PubMed Central

    2013-01-01

    Background Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. Conclusions This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally. PMID:23360326

  15. Applying Evolutionary Anthropology

    PubMed Central

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  16. Applying evolutionary anthropology.

    PubMed

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  17. Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient.

    PubMed

    Firmat, C; Delzon, S; Louvet, J-M; Parmentier, J; Kremer, A

    2017-12-01

    It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long-lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common-garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change-induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short-term population survival in a changing climate. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. The consequences of lifetime and evolutionary exposure to toxic prey: changes in avoidance behaviour through ontogeny.

    PubMed

    Robbins, T R; Langkilde, T

    2012-10-01

    Responses to novel threats (e.g. invasive species) can involve genetic changes or plastic shifts in phenotype. There is controversy over the relative importance of these processes for species survival of such perturbations, but we are realizing they are not mutually exclusive. Native eastern fence lizards (Sceloporus undulatus) have adapted to top-down predation pressure imposed by the invasive red imported fire ant (Solenopsis invicta) via changes in adult (but not juvenile) lizard antipredator behaviour. Here, we examine the largely ignored, but potentially equally important, bottom-up effect of fire ants as toxic prey for lizards. We test how fire ant consumption (or avoidance) is affected by lifetime (via plasticity) and evolutionary (via natural selection) exposure to fire ants by comparing field-caught and laboratory-reared lizards, respectively, from fire ant-invaded and uninvaded populations. More naive juveniles from invaded populations ate fire ants than did adults, reflecting a natural ontogenetic dietary shift away from ants. Laboratory-reared lizards from the invaded site were less likely to eat fire ants than were those from the uninvaded site, suggesting a potential evolutionary shift in feeding behaviour. Lifetime and evolutionary exposure interacted across ontogeny, however, and field-caught lizards from the invaded site exhibited opposite ontogenetic trends; adults were more likely to eat fire ants than were juveniles. Our results suggest that plastic and evolutionary processes may both play important roles in permitting species survival of novel threats. We further reveal how complex interactions can shape adaptive responses to multimodal impacts imposed by invaders: in our system, fire ants impose stronger bottom-up selection than top-down selection, with each selection regime changing differently across lizard ontogeny. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  19. Patterns of co-speciation and host switching in primate malaria parasites.

    PubMed

    Garamszegi, László Zsolt

    2009-05-22

    The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.

  20. Current hormonal contraceptive use predicts female extra-pair and dyadic sexual behavior: evidence based on Czech National Survey data.

    PubMed

    Klapilová, Kateřina; Cobey, Kelly D; Wells, Timothy; Roberts, S Craig; Weiss, Petr; Havlíček, Jan

    2014-01-10

    Data from 1155 Czech women (493 using oral contraception, 662 non-users), obtained from the Czech National Survey of Sexual Behavior, were used to investigate evolutionary-based hypotheses concerning the predictive value of current oral contraceptive (OC) use on extra-pair and dyadic (in-pair) sexual behavior of coupled women. Specifically, the aim was to determine whether current OC use was associated with lower extra-pair and higher in-pair sexual interest and behavior, because OC use suppresses cyclical shifts in mating psychology that occur in normally cycling women. Zero-inflated Poisson (ZIP) regression and negative binomial models were used to test associations between OC use and these sexual measures, controlling for other relevant predictors (e.g., age, parity, in-pair sexual satisfaction, relationship length). The overall incidence of having had an extra-pair partner or one-night stand in the previous year was not related to current OC use (the majority of the sample had not). However, among the women who had engaged in extra-pair sexual behavior, OC users had fewer one-night stands than non-users, and tended to have fewer partners, than non-users. OC users also had more frequent dyadic intercourse than non-users, potentially indicating higher commitment to their current relationship. These results suggest that suppression of fertility through OC use may alter important aspects of female sexual behavior, with potential implications for relationship functioning and stability.

  1. Architectural design influences the diversity and structure of the built environment microbiome

    PubMed Central

    Kembel, Steven W; Jones, Evan; Kline, Jeff; Northcutt, Dale; Stenson, Jason; Womack, Ann M; Bohannan, Brendan JM; Brown, G Z; Green, Jessica L

    2012-01-01

    Buildings are complex ecosystems that house trillions of microorganisms interacting with each other, with humans and with their environment. Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome—the community of microorganisms that live indoors—is important for understanding the relationship between building design, biodiversity and human health. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility. We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air. The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors, and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms. Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors, including taxa closely related to potential human pathogens. Building attributes, specifically the source of ventilation air, airflow rates, relative humidity and temperature, were correlated with the diversity and composition of indoor bacterial communities. The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors, and higher in rooms with lower airflow rates and lower relative humidity. The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments, altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors. PMID:22278670

  2. Fundamental population-productivity relationships can be modified through density-dependent feedbacks of life-history evolution.

    PubMed

    Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A

    2014-12-01

    The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability.

  3. The evolution of orbit orientation and encephalization in the Carnivora (Mammalia)

    PubMed Central

    Finarelli, John A; Goswami, Anjali

    2009-01-01

    Evolutionary change in encephalization within and across mammalian clades is well-studied, yet relatively few comparative analyses attempt to quantify the impact of evolutionary change in relative brain size on cranial morphology. Because of the proximity of the braincase to the orbits, and the inter-relationships among ecology, sensory systems and neuroanatomy, a relationship has been hypothesized between orbit orientation and encephalization for mammals. Here, we tested this hypothesis in 68 fossil and living species of the mammalian order Carnivora, comparing orbit orientation angles (convergence and frontation) to skull length and encephalization. No significant correlations were observed between skull length and orbit orientation when all taxa were analysed. Significant correlations were observed between encephalization and orbit orientation; however, these were restricted to the families Felidae and Canidae. Encephalization is positively correlated with frontation in both families and negatively correlated with convergence in canids. These results indicate that no universal relationship exists between encephalization and orbit orientation for Carnivora. Braincase expansion impacts orbit orientation in specific carnivoran clades, the nature of which is idiosyncratic to the clade itself. PMID:19438762

  4. Gender and Evolutionary Theory in Workplace Health Promotion

    ERIC Educational Resources Information Center

    Björklund, Erika; Wright, Jan

    2017-01-01

    Objective: Ideas from evolutionary theories are increasingly taken up in health promotion. This article seeks to demonstrate how such a trend has the potential to embed essentialist and limiting stereotypes of women and men in health promotion practice. Design: We draw on material gathered for a larger ethnographic study that examined how…

  5. Evolutionary potential of marine phytoplankton under ocean acidification.

    PubMed

    Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A

    2014-01-01

    Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.

  6. The impact of digging on craniodental morphology and integration.

    PubMed

    McIntosh, A F; Cox, P G

    2016-12-01

    The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel-tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel-tooth-digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel-tooth-digging rodents differ in craniodental morphology. The study showed that the crania of chisel-tooth-digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel-tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel-tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species' evolutionary history and functional morphology. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Maggio, A.; Sciortino, S.

    2000-09-01

    We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.

  8. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  9. Overcoming the effects of rogue taxa: Evolutionary relationships of the bee flies

    PubMed Central

    Trautwein, Michelle D.; Wiegmann, Brian M.; Yeates, David K

    2011-01-01

    Bombyliidae (5000 sp.), or bee flies, are a lower brachyceran family of flower-visiting flies that, as larvae, act as parasitoids of other insects. The evolutionary relationships are known from a morphological analysis that yielded minimal support for higher-level groupings. We use the protein-coding gene CAD and 28S rDNA to determine phylogeny and to test the monophyly of existing subfamilies, the divisions Tomophtalmae, and ‘the sand chamber subfamilies’. Additionally, we demonstrate that consensus networks can be used to identify rogue taxa in a Bayesian framework. Pruning rogue taxa post-analysis from the final tree distribution results in increased posterior probabilities. We find 8 subfamilies to be monophyletic and the subfamilies Heterotropinae and Mythicomyiinae to be the earliest diverging lineages. The large subfamily Bombyliinae is found to be polyphyletic and our data does not provide evidence for the monophyly of Tomophthalmae or the ‘sand chamber subfamilies’. PMID:21686308

  10. Trichocyst ribbons of a cryptomonads are constituted of homologs of R-body proteins produced by the intracellular parasitic bacterium of Paramecium.

    PubMed

    Yamagishi, Takahiro; Kai, Atsushi; Kawai, Hiroshi

    2012-04-01

    Trichocysts are ejectile organelles found in cryptomonads, dinoflagellates, and peniculine ciliates. The fine structure of trichocysts differs considerably among lineages, and their evolutionary relationships are unclear. The biochemical makeup of the trichocyst constituents has been studied in the ciliate Paramecium, but there have been no investigations of cryptomonads and dinoflagellates. Furthermore, morphological similarity between the contents of cryptomonad trichocysts and the R-bodies of the endosymbiotic bacteria of Paramecium has been reported. In this study, we identified the proteins of the trichocyst constituents in a red cryptomonad, Pyrenomonas helgolandii, and found their closest relationships to be with rebB that comprises the R-bodies of Caedibacter taeniospiralis (gammaproteobacteria), which is an endosymbiont of Paramecium. In addition, the biochemical makeups of the trichocysts are entirely different between cryptomonads and peniculine ciliates, and therefore, cryptomonad trichocysts have an evolutionary origin independent from the peniculine ciliate trichocysts.

  11. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    PubMed

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  12. Interdependence of specialization and biodiversity in Phanerozoic marine invertebrates.

    PubMed

    Nürnberg, Sabine; Aberhan, Martin

    2015-03-17

    Studies of the dynamics of biodiversity often suggest that diversity has upper limits, but the complex interplay between ecological and evolutionary processes and the relative role of biotic and abiotic factors that set upper limits to diversity are poorly understood. Here we statistically assess the relationship between global biodiversity and the degree of habitat specialization of benthic marine invertebrates over the Phanerozoic eon. We show that variation in habitat specialization correlates positively with changes in global diversity, that is, times of high diversity coincide with more specialized faunas. We identify the diversity dynamics of specialists but not generalists, and origination rates but not extinction rates, as the main drivers of this ecological interdependence. Abiotic factors fail to show any significant relationship with specialization. Our findings suggest that the overall level of specialization and its fluctuations over evolutionary timescales are controlled by diversity-dependent processes--driven by interactions between organisms competing for finite resources.

  13. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila

    PubMed Central

    Pitmon, E.; Stephens, G.; Parkhurst, S. J.; Wolf, F. W.; Kehne, G.; Taylor, M.

    2016-01-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. PMID:26749475

  14. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    PubMed

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  16. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed by the environment and HGT.

  17. Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae).

    PubMed

    Swift, H F; Gómez Daglio, L; Dawson, M N

    2016-06-01

    Evolutionary inference can be complicated by morphological crypsis, particularly in open marine systems that may rapidly dissipate signals of evolutionary processes. These complications may be alleviated by studying systems with simpler histories and clearer boundaries, such as marine lakes-small bodies of seawater entirely surrounded by land. As an example, we consider the jellyfish Mastigias spp. which occurs in two ecotypes, one in marine lakes and one in coastal oceanic habitats, throughout the Indo-West Pacific (IWP). We tested three evolutionary hypotheses to explain the current distribution of the ecotypes: (H1) the ecotypes originated from an ancient divergence; (H2) the lake ecotype was derived recently from the ocean ecotype during a single divergence event; and (H3) the lake ecotype was derived from multiple, recent, independent, divergences. We collected specimens from 21 locations throughout the IWP, reconstructed multilocus phylogenetic and intraspecific relationships, and measured variation in up to 40 morphological characters. The species tree reveals three reciprocally monophyletic regional clades, two of which contain ocean and lake ecotypes, suggesting repeated, independent evolution of coastal ancestors into marine lake ecotypes, consistent with H3; hypothesis testing and an intraspecific haplotype network analysis of samples from Palau reaffirms this result. Phylogenetic character mapping strongly correlates morphology to environment rather than lineage (r=0.7512, p<0.00001). Considering also the deeper relationships among regional clades, morphological similarity in Mastigias spp. clearly results from three separate patterns of evolution: morphological stasis in ocean medusae, convergence of lake morphology across distinct species and parallelism between lake morphologies within species. That three evolutionary routes each result in crypsis illustrates the challenges of interpreting evolutionary processes from patterns of biogeography and diversity in the seas. Identifying cryptic species is only the first step in understanding these processes; an equally important second step is exploring and understanding the processes and patterns that create crypsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds.

    PubMed

    Mason, Nicholas A; Shultz, Allison J; Burns, Kevin J

    2014-08-07

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates

    PubMed Central

    Li, Shugang; Cao, Yiping; Geng, Fang

    2017-01-01

    Albumins are the most well-known globular proteins, and the most typical representatives are the serum albumins. However, less attention was paid to the albumin family, except for the human and bovine serum albumin. To characterize the features of albumin family, we have mined all the putative albumin proteins from the available genome sequences. The results showed that albumin is widely distributed in vertebrates, but not present in the bacteria and archaea. The phylogenetic analysis of vertebrate albumin family implied an evolutionary relationship between members of serum albumin, α-fetoprotein, vitamin D–binding protein, and afamin. Meanwhile, a new member from the albumin family was found, namely, extracellular matrix protein 1. The structural analysis revealed that the motifs for forming the internal disulfide bonds are highly conserved in the albumin family, despite the low overall sequence identity across the family. The domain arrangement of albumin proteins indicated that most of vertebrate albumins contain 3 characteristic domains, arising from 2 evolutionary patterns. And a significant trend has been observed that the albumin proteins in higher vertebrate species tend to possess more characteristic domains. This study has provided the fundamental information required for achieving a better understanding of the albumin distribution, phylogenetic relationship, characteristic motif, structure, and new insights into the evolutionary pattern. PMID:28680266

  20. Between-sex differences in romantic jealousy: substance or spin? A qualitative analysis.

    PubMed

    Fussell, Nicola J; Stollery, Brian T

    2012-03-29

    An influential evolutionary account of romantic jealousy proposes that natural selection shaped a specific sexually-dimorphic psychological mechanism in response to relationship threat. However, this account has faced considerable theoretical and methodological criticism and it remains unclear whether putative sex differences in romantic jealousy actually exist and, if they do, whether they are consistent with its predictions. Given the multidimensional nature of romantic jealousy, the current study employed a qualitative design to examine these issues. We report the results of sixteen semi-structured interviews that were conducted with heterosexual men and women with the purpose of exploring the emotions, cognitions and behaviors that formed their subjective, lived experience in response to relationship threat. Interpretative phenomenological analysis revealed four super-ordinate themes ("threat appraisal", "emotional episodes", "sex-specific threat" and "forgive and forget") and unequivocal sex differences in romantic jealousy consistent with the evolutionary account. Self-esteem, particularly when conceptualized as an index of mate value, emerged as an important proximal mediator for both sexes. However, specific outcomes were dependent upon domains central to the individual's self concept that were primarily sex-specific. The findings are integrated within the context of existing self-esteem and evolutionary theory and future directions for romantic jealousy research are suggested.

  1. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    PubMed Central

    Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.

    2017-01-01

    Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095

  2. Hierarchical complexity and the size limits of life.

    PubMed

    Heim, Noel A; Payne, Jonathan L; Finnegan, Seth; Knope, Matthew L; Kowalewski, Michał; Lyons, S Kathleen; McShea, Daniel W; Novack-Gottshall, Philip M; Smith, Felisa A; Wang, Steve C

    2017-06-28

    Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases. © 2017 The Author(s).

  3. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants

    PubMed Central

    Zhao, Peng; Liu, Fang; Li, Ying-Ming; Cai, Lei

    2016-01-01

    Gymnosporangium species (Pucciniaceae, Pucciniales) cause serious diseases and significant economic losses to apple cultivars. Most of the reported species are heteroecious and complete their life cycles on two different plant hosts belonging to two unrelated genera, i.e. Juniperus and Malus. However, the phylogenetic relationships among Gymnosporangium species and the evolutionary history of Gymnosporangium on its aecial and telial hosts were still undetermined. In this study, we recognized species based on rDNA sequence data by using coalescent method of generalized mixed Yule-coalescent (GMYC) and Poisson Tree Processes (PTP) models. The evolutionary relationships of Gymnosporangium species and their hosts were investigated by comparing the cophylogenetic analyses of Gymnosporangium species with Malus species and Juniperus species, respectively. The concordant results of GMYC and PTP analyses recognized 14 species including 12 known species and two undescribed species. In addition, host alternations of 10 Gymnosporangium species were uncovered by linking the derived sequences between their aecial and telial stages. This study revealed the evolutionary process of Gymnosporangium species, and clarified that the aecial hosts played more important roles than telial hosts in the speciation of Gymnosporangium species. Host switch, losses, duplication and failure to divergence all contributed to the speciation of Gymnosporangium species. PMID:27385413

  4. Coevolution between invasive and native plants driven by chemical competition and soil biota.

    PubMed

    Lankau, Richard A

    2012-07-10

    Although reciprocal evolutionary responses between interacting species are a driving force behind the diversity of life, pairwise coevolution between plant competitors has received less attention than other species interactions and has been considered relatively less important in explaining ecological patterns. However, the success of species transported across biogeographic boundaries suggests a stronger role for evolutionary relationships in shaping plant interactions. Alliaria petiolata is a Eurasian species that has invaded North American forest understories, where it competes with native understory species in part by producing compounds that directly and indirectly slow the growth of competing species. Here I show that populations of A. petiolata from areas with a greater density of interspecific competitors invest more in a toxic allelochemical under common conditions. Furthermore, populations of a native competitor from areas with highly toxic invaders are more tolerant to competition from the invader, suggesting coevolutionary dynamics between the species. Field reciprocal transplants confirmed that native populations more tolerant to the invader had higher fitness when the invader was common, but these traits came at a cost when the invader was rare. Exotic species are often detrimentally dominant in their new range due to their evolutionary novelty; however, the development of new coevolutionary relationships may act to integrate exotic species into native communities.

  5. Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus.

    PubMed

    Lang, Andrew S; Taylor, Terumi A; Beatty, J Thomas

    2002-11-01

    The gene transfer agent (GTA) of the a-proteobacterium Rhodobacter capsulatus is a cell-controlled genetic exchange vector. Genes that encode the GTA structure are clustered in a 15-kb region of the R. capsulatus chromosome, and some of these genes show sequence similarity to known bacteriophage head and tail genes. However, the production of GTA is controlled at the level of transcription by a cellular two-component signal transduction system. This paper describes homologues of both the GTA structural gene cluster and the GTA regulatory genes in the a-proteobacteria Rhodopseudomonas palustris, Rhodobacter sphaeroides, Caulobacter crescentus, Agrobacterium tumefaciens and Brucella melitensis. These sequences were used in a phylogenetic tree approach to examine the evolutionary relationships of selected GTA proteins to these homologues and (pro)phage proteins, which was compared to a 16S rRNA tree. The data indicate that a GTA-like element was present in a single progenitor of the extant species that contain both GTA structural cluster and regulatory gene homologues. The evolutionary relationships of GTA structural proteins to (pro)phage proteins indicated by the phylogenetic tree patterns suggest a predominantly vertical descent of GTA-like sequences in the a-proteobacteria and little past gene exchange with (pro)phages.

  6. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Predicting protein contact map using evolutionary and physical constraints by integer programming.

    PubMed

    Wang, Zhiyong; Xu, Jinbo

    2013-07-01

    Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.

  8. Evolutionary models of interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.

    1987-01-01

    The goal of evolutionary models of interstellar chemistry is to understand how interstellar clouds came to be the way they are, how they will change with time, and to place them in an evolutionary sequence with other celestial objects such as stars. An improved Mark II version of an earlier model of chemistry in dynamically evolving clouds is presented. The Mark II model suggests that the conventional elemental C/O ratio less than one can explain the observed abundances of CI and the nondetection of O2 in dense clouds. Coupled chemical-dynamical models seem to have the potential to generate many observable discriminators of the evolutionary tracks. This is exciting, because, in general, purely dynamical models do not yield enough verifiable discriminators of the predicted tracks.

  9. Social dilemmas in multistrategy evolutionary potential games

    NASA Astrophysics Data System (ADS)

    Szabó, György; Bunth, Gergely

    2018-01-01

    The nature of social dilemmas is studied in n -strategy evolutionary potential games on a square lattice with nearest-neighbor interactions and the logit rule. For symmetric games with symmetric payoff matrices there are no dilemmas because of the coincidence of individual and common interests. The dilemmas are caused by the antisymmetric parts of the self- and cross-dependent payoff components if it modifies the preferred Nash equilibrium. The contentment of players and the emergence of dilemmas in the preferred Nash equilibria are illustrated on some two-dimensional cross sections of the parameter space.

  10. Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids

    NASA Astrophysics Data System (ADS)

    Villegas-Martín, Jorge; Netto, Renata Guimarães

    2017-12-01

    The trace fossil Bichordites monastiriensis is found in early Eocene turbiditic sandstones of the upper-slope deposits from the Capdevila Formation in Los Palacios Basin, Pinar del Río region, western Cuba. The potential tracemakers of B. monastiriensis include fossil spatangoids from the family Eupatagidae. The record of Bichordites in the deposits from Cuba allows to suppose that Eupatagidae echinoids were the oldest potential tracemakers of Bichordites isp. and reinforce the hypothesis that the ichnological record are relevant in envisaging the evolutionary history of the spatangoids.

  11. Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree.

    PubMed

    Herrera, James P; Dávalos, Liliana M

    2016-09-01

    Paleontological and neontological systematics seek to answer evolutionary questions with different data sets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared with a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae).

    PubMed

    Hernández-Hernández, Tania; Hernández, Héctor M; De-Nova, J Arturo; Puente, Raul; Eguiarte, Luis E; Magallón, Susana

    2011-01-01

    Cactaceae is one of the most charismatic plant families because of the extreme succulence and outstanding diversity of growth forms of its members. Although cacti are conspicuous elements of arid ecosystems in the New World and are model systems for ecological and anatomical studies, the high morphological convergence and scarcity of phenotypic synapomorphies make the evolutionary relationships and trends among lineages difficult to understand. We performed phylogenetic analyses implementing parsimony ratchet and likelihood methods, using a concatenated matrix with 6148 bp of plastid and nuclear markers (trnK/matK, matK, trnL-trnF, rpl16, and ppc). We included 224 species representing approximately 85% of the family's genera. Likelihood methods were used to perform an ancestral character reconstruction within Cactoideae, the richest subfamily in terms of morphological diversity and species number, to evaluate possible growth form evolutionary trends. Our phylogenetic results support previous studies showing the paraphyly of subfamily Pereskioideae and the monophyly of subfamilies Opuntioideae and Cactoideae. After the early divergence of Blossfeldia, Cactoideae splits into two clades: Cacteae, including North American globose and barrel-shaped members, and core Cactoideae, including the largest diversity of growth forms distributed throughout the American continent. Para- or polyphyly is persistent in different parts of the phylogeny. Main Cactoideae clades were found to have different ancestral growth forms, and convergence toward globose, arborescent, or columnar forms occurred in different lineages. Our study enabled us to provide a detailed hypothesis of relationships among cacti lineages and represents the most complete general phylogenetic framework available to understand evolutionary trends within Cactaceae.

  13. Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics

    PubMed Central

    Mira, Alex; Pushker, Ravindra; Legault, Boris A; Moreira, David; Rodríguez-Valera, Francisco

    2004-01-01

    Background The phylogenetic position and evolutionary relationships of Fusobacteria remain uncertain. Especially intriguing is their relatedness to low G+C Gram positive bacteria (Firmicutes) by ribosomal molecular phylogenies, but their possession of a typical gram negative outer membrane. Taking advantage of the recent completion of the Fusobacterium nucleatum genome sequence we have examined the evolutionary relationships of Fusobacterium genes by phylogenetic analysis and comparative genomics tools. Results The data indicate that Fusobacterium has a core genome of a very different nature to other bacterial lineages, and branches out at the base of Firmicutes. However, depending on the method used, 35–56% of Fusobacterium genes appear to have a xenologous origin from bacteroidetes, proteobacteria, spirochaetes and the Firmicutes themselves. A high number of hypothetical ORFs with unusual codon usage and short lengths were found and hypothesized to be remnants of transferred genes that were discarded. Some proteins and operons are also hypothesized to be of mixed ancestry. A large portion of the Gram-negative cell wall-related genes seems to have been transferred from proteobacteria. Conclusions Many instances of similarity to other inhabitants of the dental plaque that have been sequenced were found. This suggests that the close physical contact found in this environment might facilitate horizontal gene transfer, supporting the idea of niche-specific gene pools. We hypothesize that at a point in time, probably associated to the rise of mammals, a strong selective pressure might have existed for a cell with a Clostridia-like metabolic apparatus but with the adhesive and immune camouflage features of Proteobacteria. PMID:15566569

  14. Heritable victimization and the benefits of agonistic relationships

    PubMed Central

    Lea, Amanda J.; Blumstein, Daniel T.; Wey, Tina W.; Martin, Julien G. A.

    2010-01-01

    Here, we present estimates of heritability and selection on network traits in a single population, allowing us to address the evolutionary potential of social behavior and the poorly understood link between sociality and fitness. To evolve, sociality must have some heritable basis, yet the heritability of social relationships is largely unknown. Recent advances in both social network analyses and quantitative genetics allow us to quantify attributes of social relationships and estimate their heritability in free-living populations. Our analyses addressed a variety of measures (in-degree, out-degree, attractiveness, expansiveness, embeddedness, and betweenness), and we hypothesized that traits reflecting relationships controlled by an individual (i.e., those that the individual initiated or were directly involved in) would be more heritable than those based largely on the behavior of conspecifics. Identifying patterns of heritability and selection among related traits may provide insight into which types of relationships are important in animal societies. As expected, we found that variation in indirect measures was largely explained by nongenetic variation. Yet, surprisingly, traits capturing initiated interactions do not possess significant additive genetic variation, whereas measures of received interactions are heritable. Measures describing initiated aggression and position in an agonistic network are under selection (0.3 < |S| < 0.4), although advantageous trait values are not inherited by offspring. It appears that agonistic relationships positively influence fitness and seemingly costly or harmful ties may, in fact, be beneficial. Our study highlights the importance of studying agonistic as well as affiliative relationships to understand fully the connections between sociality and fitness. PMID:21115836

  15. Phytogeographic patterns and cryptic diversity in an aposematic toad from NW Argentina.

    PubMed

    Clemente-Carvalho, Rute B; Vaira, Marcos; King, Laura E; Koscinski, Daria; Bonansea, Maria I; Lougheed, Stephen C

    2017-11-01

    The Yungas Redbelly Toad, Melanophryniscus rubriventris, is patchily distributed in Argentina, confined to the upland portion (1000-2000m above sea level) of the montane forests of northern and central regions of Salta, and in central-eastern and south-eastern Jujuy. This species is known for its striking aposematic color variation across its geographic distribution, and was once treated as a complex of three subspecies based on distinctive color patterns. Here we assess the geographical genetic variation within M. rubriventris and quantify divergence in color and pattern among individuals sampled from Northwestern Argentina. We compare multi-gene phylogeography of M. rubriventris to patterns of dorsal and ventral coloration to test whether evolutionary affinities predict variation in warning color. Our results reveal two well-supported species lineages: one confined to the extreme northern portion of our sampling area, and the other extending over most of the Argentine portion of the species' range, within which there are two populations. However, these well-supported evolutionary relationships do not mirror the marked variation in warning coloration. This discordance between DNA genealogy and warning color variation may reflect selection brought about by differences in local predation pressures, potentially coupled with effects of sexual selection and thermoregulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Host specialist clownfishes are environmental niche generalists

    PubMed Central

    Litsios, Glenn; Kostikova, Anna; Salamin, Nicolas

    2014-01-01

    Why generalist and specialist species coexist in nature is a question that has interested evolutionary biologists for a long time. While the coexistence of specialists and generalists exploiting resources on a single ecological dimension has been theoretically and empirically explored, biological systems with multiple resource dimensions (e.g. trophic, ecological) are less well understood. Yet, such systems may provide an alternative to the classical theory of stable evolutionary coexistence of generalist and specialist species on a single resource dimension. We explore such systems and the potential trade-offs between different resource dimensions in clownfishes. All species of this iconic clade are obligate mutualists with sea anemones yet show interspecific variation in anemone host specificity. Moreover, clownfishes developed variable environmental specialization across their distribution. In this study, we test for the existence of a relationship between host-specificity (number of anemones associated with a clownfish species) and environmental-specificity (expressed as the size of the ecological niche breadth across climatic gradients). We find a negative correlation between host range and environmental specificities in temperature, salinity and pH, probably indicating a trade-off between both types of specialization forcing species to specialize only in a single direction. Trade-offs in a multi-dimensional resource space could be a novel way of explaining the coexistence of generalist and specialists. PMID:25274370

  17. Phenotypic diversity, population structure and stress protein-based capacitoring in populations of Xeropicta derbentina, a heat-tolerant land snail species.

    PubMed

    Di Lellis, Maddalena A; Sereda, Sergej; Geißler, Anna; Picot, Adrien; Arnold, Petra; Lang, Stefanie; Troschinski, Sandra; Dieterich, Andreas; Hauffe, Torsten; Capowiez, Yvan; Mazzia, Christophe; Knigge, Thomas; Monsinjon, Tiphaine; Krais, Stefanie; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R

    2014-11-01

    The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.

  18. Evolutionary consequence of a change in life cycle complexity: A link between precocious development and evolution toward female-biased sex allocation in a hermaphroditic parasite.

    PubMed

    Kasl, Emily L; McAllister, Chris T; Robison, Henry W; Connior, Matthew B; Font, William F; Criscione, Charles D

    2015-12-01

    The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female-biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self-fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three-host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  19. Coevolution of coloration and colour vision?

    PubMed

    Lind, Olle; Henze, Miriam J; Kelber, Almut; Osorio, Daniel

    2017-07-05

    The evolutionary relationship between signals and animal senses has broad significance, with potential consequences for speciation, and for the efficacy and honesty of biological communication. Here we outline current understanding of the diversity of colour vision in two contrasting groups: the phylogenetically conservative birds, and the more variable butterflies. Evidence for coevolution of colour signals and vision exists in both groups, but is limited to observations of phenotypic differences between visual systems, which might be correlated with coloration. Here, to illustrate how one might interpret the evolutionary significance of such differences, we used colour vision modelling based on an avian eye to evaluate the effects of variation in three key characters: photoreceptor spectral sensitivity, oil droplet pigmentation and the proportions of different photoreceptor types. The models predict that physiologically realistic changes in any one character will have little effect, but complementary shifts in all three can substantially affect discriminability of three types of natural spectra. These observations about the adaptive landscape of colour vision may help to explain the general conservatism of photoreceptor spectral sensitivities in birds. This approach can be extended to other types of eye and spectra to inform future work on coevolution of coloration and colour vision.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  20. A socio-relational framework of sex differences in the expression of emotion.

    PubMed

    Vigil, Jacob Miguel

    2009-10-01

    Despite a staggering body of research demonstrating sex differences in expressed emotion, very few theoretical models (evolutionary or non-evolutionary) offer a critical examination of the adaptive nature of such differences. From the perspective of a socio-relational framework, emotive behaviors evolved to promote the attraction and aversion of different types of relationships by advertising the two most parsimonious properties of reciprocity potential, or perceived attractiveness as a prospective social partner. These are the individual's (a) perceived capacity or ability to provide expedient resources, or to inflict immediate harm onto others, and their (b) perceived trustworthiness or probability of actually reciprocating altruism (Vigil 2007). Depending on the unique social demands and relational constraints that each sex evolved, individuals should be sensitive to advertise "capacity" and "trustworthiness" cues through selective displays of dominant versus submissive and masculine versus feminine emotive behaviors, respectively. In this article, I introduce the basic theoretical assumptions and hypotheses of the framework, and show how the models provide a solid scaffold with which to begin to interpret common sex differences in the emotional development literature. I conclude by describing how the framework can be used to predict condition-based and situation-based variation in affect and other forms of expressive behaviors.

  1. How predation shaped fish: the impact of fin spines on body form evolution across teleosts.

    PubMed

    Price, S A; Friedman, S T; Wainwright, P C

    2015-11-22

    It is well known that predators can induce morphological changes in some fish: individuals exposed to predation cues increase body depth and the length of spines. We hypothesize that these structures may evolve synergistically, as together, these traits will further enlarge the body dimensions of the fish that gape-limited predators must overcome. We therefore expect that the orientation of the spines will predict which body dimension increases in the presence of predators. Using phylogenetic comparative methods, we tested this prediction on the macroevolutionary scale across 347 teleost families, which display considerable variation in fin spines, body depth and width. Consistent with our predictions, we demonstrate that fin spines on the vertical plane (dorsal and anal fins) are associated with a deeper-bodied optimum. Lineages with spines on the horizontal plane (pectoral fins) are associated with a wider-bodied optimum. Optimal body dimensions across lineages without spines paralleling the body dimension match the allometric expectation. Additionally, lineages with longer spines have deeper and wider body dimensions. This evolutionary relationship between fin spines and body dimensions across teleosts reveals functional synergy between these two traits and a potential macroevolutionary signature of predation on the evolutionary dynamics of body shape. © 2015 The Author(s).

  2. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks.

    PubMed

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  3. Do arms races punctuate evolutionary stasis? Unified insights from phylogeny, phylogeography and microevolutionary processes.

    PubMed

    Toju, Hirokazu; Sota, Teiji

    2009-09-01

    One of the major controversies in evolutionary biology concerns the processes underlying macroevolutionary patterns in which prolonged stasis is disrupted by rapid, short-term evolution that leads species to new adaptive zones. Recent advances in the understanding of contemporary evolution have suggested that such rapid evolution can occur in the wild as a result of environmental changes. Here, we examined a novel hypothesis that evolutionary stasis is punctuated by co-evolutionary arms races, which continuously alter adaptive peaks and landscapes. Based on the phylogeny of long-mouthed weevils in the genus Curculio, likelihood ratio tests showed that the macroevolutionary pattern of the weevils coincides with the punctuational evolution model. A coalescent analysis of a species, Curculio camelliae, the mouthpart of which has diverged considerably among populations because of an arms race with its host plant, further suggested that major evolutionary shifts had occurred within 7000 generations. Through a microevolutionary analysis of the species, we also found that natural selection acting through co-evolutionary interactions is potentially strong enough to drive rapid evolutionary shifts between adaptive zones. Overall, we posit that co-evolution is an important factor driving the history of organismal evolution.

  4. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks

    NASA Astrophysics Data System (ADS)

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  5. Women, behavior, and evolution: understanding the debate between feminist evolutionists and evolutionary psychologists.

    PubMed

    Liesen, Laurette T

    2007-03-01

    Often since the early 1990s, feminist evolutionists have criticized evolutionary psychologists, finding fault in their analyses of human male and female reproductive behavior. Feminist evolutionists have criticized various evolutionary psychologists for perpetuating gender stereotypes, using questionable methodology, and exhibiting a chill toward feminism. Though these criticisms have been raised many times, the conflict itself has not been fully analyzed. Therefore, I reconsider this conflict, both in its origins and its implications. I find that the approaches and perspectives of feminist evolutionists and evolutionary psychologists are distinctly different, leading many of the former to work in behavioral ecology, primatology, and evolutionary biology. Invitingly to feminist evolutionists, these three fields emphasize social behavior and the influences of environmental variables; in contrast, evolutionary psychology has come to rely on assumptions deemphasizing the pliability of psychological mechanisms and the flexibility of human behavior. In behavioral ecology, primatology, and evolutionary biology, feminist evolutionists have found old biases easy to correct and new hypotheses practical to test, offering new insights into male and female behavior, explaining the emergence and persistence of patriarchy, and potentially bringing closer a prime feminist goal, sexual equality.

  6. Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.

    PubMed Central

    Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.

    1993-01-01

    We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067

  7. Laboratory rhesus macaque social housing and social changes: Implications for research.

    PubMed

    Hannibal, Darcy L; Bliss-Moreau, Eliza; Vandeleest, Jessica; McCowan, Brenda; Capitanio, John

    2017-01-01

    Macaque species, specifically rhesus (Macaca mulatta), are the most common nonhuman primates (NHPs) used in biomedical research due to their suitability as a model of high priority diseases (e.g., HIV, obesity, cognitive aging), cost effective breeding and housing compared to most other NHPs, and close evolutionary relationship to humans. With this close evolutionary relationship, however, is a shared adaptation for a socially stimulating environment, without which both their welfare and suitability as a research model are compromised. While outdoor social group housing provides the best approximation of a social environment that matches the macaque behavioral biology in the wild, this is not always possible at all facilities, where animals may be housed indoors in small groups, in pairs, or alone. Further, animals may experience many housing changes in their lifetime depending on project needs, changes in social status, management needs, or health concerns. Here, we review the evidence for the physiological and health effects of social housing changes and the potential impacts on research outcomes for studies using macaques, particularly rhesus. We situate our review in the context of increasing regulatory pressure for research facilities to both house NHPs socially and mitigate trauma from social aggression. To meet these regulatory requirements and further refine the macaque model for research, significant advances must be made in our understanding and management of rhesus macaque social housing, particularly pair-housing since it is the most common social housing configuration for macaques while on research projects. Because most NHPs are adapted for sociality, a social context is likely important for improving repeatability, reproducibility, and external validity of primate biomedical research. Am. J. Primatol. 79:e22528, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Traditional taxonomic groupings mask evolutionary history: a molecular phylogeny and new classification of the chromodorid nudibranchs.

    PubMed

    Johnson, Rebecca Fay; Gosliner, Terrence M

    2012-01-01

    Chromodorid nudibranchs (16 genera, 300+ species) are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new), representing 157 (106 new) chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI). We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions), while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names.

  9. Laboratory Rhesus Macaque Social Housing and Social Changes: Implications for Research

    PubMed Central

    Hannibal, Darcy L; Bliss-Moreau, Eliza; Vandeleest, Jessica; McCowan, Brenda; Capitanio, John

    2017-01-01

    Macaque species, specifically rhesus (Macaca mulatta), are the most common nonhuman primates (NHPs) used in biomedical research due to their suitability as a model of high priority diseases (e.g., HIV, obesity, cognitive aging), cost effective breeding and housing compared to most other NHPs, and close evolutionary relationship to humans. With this close evolutionary relationship, however, is a shared adaptation for a socially stimulating environment, without which both their welfare and suitability as a research model are compromised. While outdoor social group housing provides the best approximation of a social environment that matches the macaque behavioral biology in the wild, this is not always possible at all facilities, where animals may be housed indoors in small groups, in pairs, or alone. Further, animals may experience many housing changes in their lifetime depending on project needs, changes in social status, management needs, or health concerns. Here we review the evidence for the physiological and health effects of social housing changes and the potential impacts on research outcomes for studies using macaques, particularly rhesus. We situate our review in the context of increasing regulatory pressure for research facilities to both house NHPs socially and mitigate trauma from social aggression. To meet these regulatory requirements and further refine the macaque model for research, significant advances must be made in our understanding and management of rhesus macaque social housing, particularly pair-housing since it is the most common social housing configuration for macaques while on research projects. Because most NHPs are adapted for sociality, a social context is likely important for improving repeatability, reproducibility, and external validity of primate biomedical research. PMID:26848542

  10. Cocoa/Cotton Comparative Genomics

    USDA-ARS?s Scientific Manuscript database

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  11. Gramene database: navigating plant comparative genomics resources

    USDA-ARS?s Scientific Manuscript database

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  12. Veterinary Fusarioses within the United States

    USDA-ARS?s Scientific Manuscript database

    Multilocus DNA sequence data was used to retrospectively assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically dist...

  13. Arabidopsis thaliana type I and II chaperonins

    PubMed Central

    Hill, Janet E.; Hemmingsen, Sean M.

    2001-01-01

    An examination of the Arabidopsis thaliana genome sequence led to the identification of 29 predicted genes with the potential to encode members of the chaperonin family of chaperones (CPN60 and CCT), their associated cochaperonins, and the cytoplasmic chaperonin cofactor prefoldin. These comprise the first complete set of plant chaperonin protein sequences and indicate that the CPN family is more diverse than previously described. In addition to surprising sequence diversity within CPN subclasses, the genomic data also suggest the existence of previously undescribed family members, including a 10-kDa chloroplast cochaperonin. Consideration of the sequence data described in this review prompts questions about the complexities of plant CPN systems and the evolutionary relationships and functions of the component proteins, most of which have not been studied experimentally. PMID:11599560

  14. Visual exploration of parameter influence on phylogenetic trees.

    PubMed

    Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana

    2014-01-01

    Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.

  15. Mental stress and hypertension, an evolutionary framework: some historical perspectives of the 1960 World Health Organization Prague Hypertension Meeting.

    PubMed

    Kuchel, Otto

    2003-03-01

    Emotional stress acutely and repetitively causing blood pressure increase or aggravating existing hypertension is usually not reflected by norepinephrine and epinephrine increase but by a sudden rise of dopamine, the third "defensive" catecholamine coping with the damaging neuropsychological and cardiovascular actions of the first two. This double-edged sympathetic response to emotional stress evolves during human lifespan and long-term evolution of hypertension. In the course of philogenesis it carries a potential mismatch between the normal physiology of the human dopaminergic system and current environmental (emotional particularly) conditions in industrialized countries. This offers a rational support to a mental stress-cardiovascular diseases relationship proposed 40 years ago in a WHO report which followed a memorable 1960 Prague Hypertension Meeting.

  16. Does playing pay? The fitness-effect of free play during childhood.

    PubMed

    Greve, Werner; Thomsen, Tamara; Dehio, Cornelia

    2014-04-29

    Evolutionary developmental psychology claims that the sequences and processes of human development, in fact the mere fact of ontogeny itself, have to be viewed as evolutionary products. However, although the functional benefits of childish behavior (child playing) for cognitive and emotional development have been shown repeatedly, claiming evolutionary adaptiveness of playing in childhood suggests that childish play supports evolutionary success in mature stages of development. This hypothesis is tested in a study with N=134 adults (93 females; age range 20-66 years). Participants were asked to recollect their play experiences during childhood in detail, and to report their current developmental status with respect to several aspects of social success. Results show that the opportunity for and the promotion of free play in childhood significantly predict some indicators of social success. Additional analyses strive to explore mediating processes for this relationship. In particular, the mediating role of individual adaptivity (flexibility of goal adjustment) is investigated. Results suggest that freely playing in childhood promotes developmental resources, in particular individual adaptivity in adulthood, which, in turn, promote developmental success.

  17. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    PubMed

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  18. A non-invasive geometric morphometrics method for exploring variation in dorsal head shape in urodeles: sexual dimorphism and geographic variation in Salamandra salamandra.

    PubMed

    Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni

    2017-04-01

    The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. A Potential Benefit of Albinism in Astyanax Cavefish: Downregulation of the oca2 Gene Increases Tyrosine and Catecholamine Levels as an Alternative to Melanin Synthesis

    PubMed Central

    Parkhurst, Amy; Jeffery, William R.

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment. PMID:24282555

  20. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

Top