Renewable Energy Data Explorer User Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L; Grue, Nicholas W; Tran, July
This publication provides a user guide for the Renewable Energy Data Explorer and technical potential tool within the Explorer. The Renewable Energy Data Explorer is a dynamic, web-based geospatial analysis tool that facilitates renewable energy decision-making, investment, and deployment. It brings together renewable energy resource data and other modeled or measured geographic information system (GIS) layers, including land use, weather, environmental, population density, administrative, and grid data.
A Tale of Two Doctoral Students: Social Media Tools and Hybridised Identities
ERIC Educational Resources Information Center
Bennett, Liz; Folley, Sue
2014-01-01
This paper explores the experiences of two doctoral students who embraced Web 2.0 tools in their digital scholarship practices. The paper gives an insider perspective of the challenges and potential of working with online tools, such as blogs, and participating in online communities, such as Twitter's #phdchat. We explore by drawing on our…
Agent-based modeling as a tool for program design and evaluation.
Lawlor, Jennifer A; McGirr, Sara
2017-12-01
Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Use of SMS Support in Programming Education
ERIC Educational Resources Information Center
Kert, Serhat Bahadir
2011-01-01
The rapid developments in the communication technologies today render possible the use of new technological support tools in learning processes. Wireless, or mobile wireless, technologies are the tools whose potential contributions to education are investigated. The potential effects of these technologies on learning are explored through studies…
BASINS Climate Assessment Tool Tutorials
The BASINS Climate Assessment Tool (CAT) provides a flexible set of capabilities for exploring the potential effects of climate change on streamflow and water quality using different watershed models in BASINS.
He Asked Me What!?--Using Shared Online Accounts as Training Tools for Distance Learning Librarians
ERIC Educational Resources Information Center
Robinson, Kelly; Casey, Anne Marie; Citro, Kathleen
2017-01-01
This study explores the idea of creating a knowledge base from shared online accounts to use in training librarians who perform distance reference services. Through a survey, follow-up interviews and a case study, the investigators explored current and potential use of shared online accounts as training tools. This study revealed that the…
ERIC Educational Resources Information Center
Ruvane, Mary Brent
2012-01-01
The use of GIS technology for the humanities has opened up new avenues for visually exploring and asking questions of our nation's historical record. The potential to harness new knowledge with tools designed to capture and preserve geographic links to the artifacts of our past is within our grasp. This research explores the common information…
Exploring the Educational Potential of Robotics in Schools: A Systematic Review
ERIC Educational Resources Information Center
Benitti, Fabiane Barreto Vavassori
2012-01-01
This study reviews recently published scientific literature on the use of robotics in schools, in order to: (a) identify the potential contribution of the incorporation of robotics as educational tool in schools, (b) present a synthesis of the available empirical evidence on the educational effectiveness of robotics as an educational tool in…
NASA Technical Reports Server (NTRS)
Shum, Dana; Bugbee, Kaylin
2017-01-01
This talk explains the ongoing metadata curation activities in the Common Metadata Repository. It explores tools that exist today which are useful for building quality metadata and also opens up the floor for discussions on other potentially useful tools.
Viewing Objects and Planning Actions: On the Potentiation of Grasping Behaviours by Visual Objects
ERIC Educational Resources Information Center
Makris, Stergios; Hadar, Aviad A.; Yarrow, Kielan
2011-01-01
How do humans interact with tools? Gibson (1979) suggested that humans perceive directly what tools afford in terms of meaningful actions. This "affordances" hypothesis implies that visual objects can potentiate motor responses even in the absence of an intention to act. Here we explore the temporal evolution of motor plans afforded by common…
Human eye haptics-based multimedia.
Velandia, David; Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron
2014-01-01
Immersive and interactive multimedia applications offer complementary study tools in anatomy as users can explore 3D models while obtaining information about the organ, tissue or part being explored. Haptics increases the sense of interaction with virtual objects improving user experience in a more realistic manner. Common eye studying tools are books, illustrations, assembly models, and more recently these are being complemented with mobile apps whose 3D capabilities, computing power and customers are increasing. The goal of this project is to develop a complementary eye anatomy and pathology study tool using deformable models within a multimedia application, offering the students the opportunity for exploring the eye from up close and within with relevant information. Validation of the tool provided feedback on the potential of the development, along with suggestions on improving haptic feedback and navigation.
Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities
NASA Astrophysics Data System (ADS)
Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia
2017-02-01
Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.
Exploring the Potential of Podcasting to Deliver Mobile Ubiquitous Learning in Higher Education
ERIC Educational Resources Information Center
Lee, Mark J. W.; Chan, Anthony
2006-01-01
Podcasting facilitates the timely delivery of digital audio content such as MP3 files to a user's desktop, as it becomes available. The authors believe it holds tremendous potential as a low-cost, low-barrier tool for mobile ubiquitous learning, given the large uptake of portable music players. This paper explores some of the possibilities for…
ERIC Educational Resources Information Center
Ryan, Jenna; Porter, Marjorie; Miller, Rebecca
2010-01-01
Current literature on libraries is abundant with articles about the uses and the potential of new interactive communication technology, including Web 2.0 tools. Recently, the advent and use of virtual worlds have received top billing in these works. Many library institutions are exploring these virtual environments; this exploration and the…
Lindsey, Cary R.; Neupane, Ghanashym; Spycher, Nicolas; ...
2018-01-03
Although many Known Geothermal Resource Areas in Oregon and Idaho were identified during the 1970s and 1980s, few were subsequently developed commercially. Because of advances in power plant design and energy conversion efficiency since the 1980s, some previously identified KGRAs may now be economically viable prospects. Unfortunately, available characterization data vary widely in accuracy, precision, and granularity, making assessments problematic. In this paper, we suggest a procedure for comparing test areas against proven resources using Principal Component Analysis and cluster identification. The result is a low-cost tool for evaluating potential exploration targets using uncertain or incomplete data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Cary R.; Neupane, Ghanashym; Spycher, Nicolas
Although many Known Geothermal Resource Areas in Oregon and Idaho were identified during the 1970s and 1980s, few were subsequently developed commercially. Because of advances in power plant design and energy conversion efficiency since the 1980s, some previously identified KGRAs may now be economically viable prospects. Unfortunately, available characterization data vary widely in accuracy, precision, and granularity, making assessments problematic. In this paper, we suggest a procedure for comparing test areas against proven resources using Principal Component Analysis and cluster identification. The result is a low-cost tool for evaluating potential exploration targets using uncertain or incomplete data.
RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert S. Balch; Ron Broadhead
2005-03-01
Incomplete or sparse data such as geologic or formation characteristics introduce a high level of risk for oil exploration and development projects. ''Expert'' systems developed and used in several disciplines and industries have demonstrated beneficial results when working with sparse data. State-of-the-art expert exploration tools, relying on a database, and computer maps generated by neural networks and user inputs, have been developed through the use of ''fuzzy'' logic, a mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk has been reduced with the use of these properly verified and validated ''Fuzzy Expert Exploration (FEE) Tools.'' Through themore » course of this project, FEE Tools and supporting software were developed for two producing formations in southeast New Mexico. Tools of this type can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs. In today's oil industry environment, many smaller exploration companies lack the resources of a pool of expert exploration personnel. Downsizing, volatile oil prices, and scarcity of domestic exploration funds have also affected larger companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are depleted. The FEE Tools benefit a diverse group in the U.S., allowing a more efficient use of scarce funds, and potentially reducing dependence on foreign oil and providing lower product prices for consumers.« less
Research-derived insights into surface geochemical hydrocarbon exploration
Price, L.C.
1996-01-01
Research studies based on foreland basins (mainly in eastern Colorado) examined three surface geochemical exploration (SGE) methods as possible hydrocarbon (HC) exploration techniques. The first method, microbial soil surveying, has high potential as an exploration tool, especially hi development and enhanced recovery operations. Integrative adsorption, the second technique, is not effective as a quantitative SGE method because water, carbon dioxide, nitrous oxide, unsaturated hydrocarbons, and organic compounds are collected by the adsorbent (activated charcoal) much more strongly than covalently bonded microseeping Q-Cs thermogenic HCs. Qualitative comparisons (pattern recognition) of C8+ mass spectra cannot gauge HC gas microseepage that involves only the Q-Cs HCs. The third method, soil cakite surveying, also has no potential as an exploration tool. Soil calcite concentrations had patterns with pronounced areal contrasts, but these patterns had no geometric relationship to surface traces of established or potential production, that is, the patterns were random. Microscopic examination of thousands of soils revealed that soil calcite was an uncrystallized caliche coating soil particles. During its precipitation, caliche captures or occludes any gases, elements, or compounds in its immediate vicinity. Thus, increased signal intensity of some SGE methods should depend on increasing soil calcite concentrations. Analyses substantiate this hypothesis. Because soil calcite has no utility as a surface exploration tool, any surface method that depends on soil calcite has a diminished utility as an SGE tool. Isotopic analyses of soil calcites revealed carbonate carbon ??13C values of -4.0 to +2.07co (indicating a strong influence of atmospheric CO2) as opposed to expected values of-45 to -30%c if the carbonate carbon had originated from microbial oxidation of microseeping HC gases. These analyses confirm a surface origin for this soil calcite (caliche), which is not necessarily related to HC gas microseepage. This previously unappreciated pivotal role of caliche is hypothesized to contribute significantly to the poor and inconsistent results of some SGE methods.
Reading the Writing on the Graffiti Wall: The World Wide Web and Training.
ERIC Educational Resources Information Center
Jones, Charles M.
This paper examines the benefits to be derived from networked computer-based instruction (CBI) and discusses the potential of the World Wide Web (WWW) as an effective tool in employee training. Methods of utilizing the WWW as a training tool and communication tool are explored. The discussion is divided into the following sections: (1) "WWW and…
Cullis, B R; Smith, A B; Beeck, C P; Cowling, W A
2010-11-01
Exploring and exploiting variety by environment (V × E) interaction is one of the major challenges facing plant breeders. In paper I of this series, we presented an approach to modelling V × E interaction in the analysis of complex multi-environment trials using factor analytic models. In this paper, we develop a range of statistical tools which explore V × E interaction in this context. These tools include graphical displays such as heat-maps of genetic correlation matrices as well as so-called E-scaled uniplots that are a more informative alternative to the classical biplot for large plant breeding multi-environment trials. We also present a new approach to prediction for multi-environment trials that include pedigree information. This approach allows meaningful selection indices to be formed either for potential new varieties or potential parents.
Harnessing Distributed Musical Expertise through Edublogging
ERIC Educational Resources Information Center
Chong, Eddy K. M.
2008-01-01
The pedagogical potential of edublogging--blogging used as an educational tool and strategy--in music teaching has been explored in two previous studies; a third exploration has now been conducted. Recognising the social and contextual dimensions of knowledge and of the learning process, I reflect on all three experiences from a distributed…
Locating Community Action Outreach Projects in the Scholarship of Media Literacy Pedagogy
ERIC Educational Resources Information Center
Crandall, Heather
2016-01-01
This paper compares frameworks in recent critical media literacy scholarship with trends found in eight semesters of media literacy community action outreach assignments to explore how these frameworks can function as curricular tools for media literacy practitioners. Besides potential tools for media literacy pedagogy, this examination of recent…
Simulation Software's Effect on College Students Spreadsheet Project Scores
ERIC Educational Resources Information Center
Atkinson, J. Kirk; Thrasher, Evelyn H.; Coleman, Phillip D.
2011-01-01
The purpose of this study is to explore the potential impact of support materials on student spreadsheet skill acquisition. Specifically, this study examines the use of an online spreadsheet simulation tool versus a printed book across two independent student groups. This study hypothesizes that the online spreadsheet simulation tool will have a…
Gressel, Gregory M; Lundsberg, Lisbet S; Illuzzi, Jessica L; Danton, Cheryl M; Sheth, Sangini S; Xu, Xiao; Gariepy, Aileen
2014-12-01
To explore patient and provider perspectives regarding a new Web-based contraceptive support tool. We conducted a qualitative study at an urban Medicaid-based clinic among sexually active women interested in starting a new contraceptive method, clinic providers and staff. All participants were given the opportunity to explore Bedsider, an online contraceptive support tool developed for sexually active women ages 18-29 by the National Campaign to Prevent Teen and Unplanned Pregnancy and endorsed by the American Congress of Obstetricians and Gynecologists. Focus groups were conducted separately among patient participants and clinic providers/staff using open-ended structured interview guides to identify specific themes and key concepts related to use of this tool in an urban clinic setting. Patient participants were very receptive to this online contraceptive support tool, describing it as trustworthy, accessible and empowering. In contrast, clinic providers and staff had concerns regarding the Website's legitimacy, accessibility, ability to empower patients and applicability, which limited their willingness to recommend its use to patients. Contrasting opinions regarding Bedsider may point to a potential disconnect between how providers and patients view contraception information tools. Further qualitative and quantitative studies are needed to explore women's perspectives on contraceptive education and counseling and providers' understanding of these perspectives. This study identifies a contrast between how patients and providers in an urban clinic setting perceive a Web-based contraceptive tool. Given a potential patient-provider discrepancy in preferred methods and approaches to contraceptive counseling, additional research is needed to enhance this important arena of women's health care. Copyright © 2014 Elsevier Inc. All rights reserved.
What Is Improvement Science? Do We Need It in Education?
ERIC Educational Resources Information Center
Lewis, Catherine
2015-01-01
The theory and tools of "improvement science" have produced performance improvements in many organizational sectors. This essay describes improvement science and explores its potential and challenges within education. Potential contributions include attention to the knowledge-building and motivational systems within schools, strategies…
"Choose, Explore, Analyze": A Multi-Tiered Approach to Social Media in the Classroom
ERIC Educational Resources Information Center
Rosatelli, Meghan
2015-01-01
In this essay, social media are presented as complex tools that require student involvement from potential classroom implementation to the post-mortem. The "choose, explore, analyze" approach narrows social media options for the classroom based on student feedback and allows students and teachers to work together to understand why and…
Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding
ERIC Educational Resources Information Center
Pfannkuch, Maxine; Budgett, Stephanie
2016-01-01
Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…
Community Near-Port Modeling System (C-PORT): Briefing for Environmental Defense Fund
What C-PORT is: Screening level tool for assessing port activities and exploring the range of potential impacts that changes to port operations might have on local air quality; Analysis of decision alternatives through mapping of the likely pattern of potential pollutant dispersi...
Reading and Computers: Issues for Theory and Practice. Computers and Education Series.
ERIC Educational Resources Information Center
Reinking, David, Ed.
Embodying two themes--that the computer can become an even more exciting instructional tool than it is today, and that the research necessary for developing the potential of this tool is already underway, this book explores the theoretical, research, and instructional issues concerning computers and reading. The titles of the essays and their…
ERIC Educational Resources Information Center
Anastasios, Michailidis; Koutsouris, Alex; Konstadinos, Mattas
2010-01-01
This article critically assesses the potential of information and communication technologies (ICTs) as agricultural extension tools. Specifically, the purpose of the current piece of work is to identify the extent of the use of ICTs on farms, look into farmers' characteristics as related to ICTs' adoption and explore farmers' preferred extension…
Exploiting LCSH, LCC, and DDC To Retrieve Networked Resources: Issues and Challenges.
ERIC Educational Resources Information Center
Chan, Lois Mai
This paper examines how the nature of the World Wide Web and characteristics of networked resources affect subject access and analyzes the requirements of effective indexing and retrieval tools. The current and potential uses of existing tools and possible courses of future development are explored in the context of recent research. The first…
Faculty Use of Tablet PCs in Teacher Education and K-12 Settings
ERIC Educational Resources Information Center
Steinweg, Sue Byrd; Williams, Sarah Carver; Stapleton, Joy Neal
2010-01-01
As new technological tools emerge almost daily, students in public school and university settings are becoming increasingly technologically savvy. Faculty members in both settings have the opportunity to explore tools that have the potential to be valuable resources in a variety of educational environments. The Tablet PC is an example of one such…
NASA Astrophysics Data System (ADS)
Jamieson, J. W.; Clague, D. A.; Petersen, S.; Yeo, I. A.; Escartin, J.; Kwasnitschka, T.
2016-12-01
High-resolution, autonomous underwater vehicle (AUV)-derived multibeam bathymetry is increasingly being used as an exploration tool for delineating the size and extent of hydrothermal vent fields and associated seafloor massive sulfide deposits. However, because of the limited amount of seafloor that can be surveyed during a single dive, and the challenges associated with distinguishing hydrothermal chimneys and mounds from other volcanic and tectonic features using solely bathymetric data, AUV mapping surveys have largely been employed as a secondary exploration tool once hydrothermal sites have been discovered using other exploration methods such as plume, self-potential and TV surveys, or ROV and submersible dives. Visual ground-truthing is often required to attain an acceptable level of confidence in the hydrothermal origin of features identified in AUV-derived bathymetry. Here, we present examples of high-resolution bathymetric surveys of vent fields from a variety of tectonic environments, including slow- and intermediate-rate mid-ocean ridges, oceanic core complexes and back arc basins. Results illustrate the diversity of sulfide deposit morphologies, and the challenges associated with identifying hydrothermal features in different tectonic environments. We present a developing set of criteria that can be used to distinguish hydrothermal deposits in bathymetric data, and how AUV surveys can be used either on their own or in conjunction with other exploration techniques as a primary exploration tool.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
Exploring the Transformative Potential of Bluetooth Beacons in Higher Education
ERIC Educational Resources Information Center
McDonald, Kieran; Glover, Ian
2016-01-01
The growing ubiquity of smartphones and tablet devices integrated into personal, social and professional life, facilitated by expansive communication networks globally, has the potential to disrupt higher education. Academics and students are considering the future possibilities of exploiting these tools and utilising networks to consolidate and…
Self-Regulated Learning in the Digital Age: An EFL Perspective
ERIC Educational Resources Information Center
Sahin Kizil, Aysel; Savran, Zehra
2016-01-01
Research on the role of Information and Communication Technologies (ICT) in language learning has ascertained heretofore various potentials ranging from metacognitive domain to skill-based practices. One area in which the potentials of ICT tools requires further exploration is self-regulated language learning, an active, constructive process in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie
This fact sheet overviews the benefits of using the RE Data Explorer tool to analyze and develop renewable energy zones. Renewable energy zones are developed through a transmission planning and approval process customized for renewable energy. RE Data Explorer analysis can feed into broader stakeholder discussions and allow stakeholders to easily visualize potential zones. Stakeholders can access pertinent data to inform transmission planning and enable investment.
ERIC Educational Resources Information Center
Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.
2016-01-01
When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of…
Realizing the Potential of Mobile Mental Health: New Methods for New Data in Psychiatry
Staples, Patrick; Onnela, Jukka-Pekka
2015-01-01
Smartphones are now ubiquitous and can be harnessed to offer psychiatry a wealth of real-time data regarding patient behavior, self-reported symptoms, and even physiology. The data collected from smartphones meet the three criteria of big data: velocity, volume, and variety. Although these data have tremendous potential, transforming them into clinically valid and useful information requires using new tools and methods as a part of assessment in psychiatry. In this paper, we introduce and explore numerous analytical methods and tools from the computational and statistical sciences that appear readily applicable to psychiatric data collected using smartphones. By matching smartphone data with appropriate statistical methods, psychiatry can better realize the potential of mobile mental health and empower both patients and providers with novel clinical tools. PMID:26073363
Boschmann, D.; Diles, J.; Clarno, J.; Meigs, A.; Walsh, P.
2011-01-01
Using LiDAR to identify structural and volcanic evolution of a Miocene-Pleistocene age bimodal volcanic complex and implications for geothermal potential. The file includes an updated geologic map, methods, and preliminary results.
ERIC Educational Resources Information Center
Jager, Sake; Meima, Estelle; Oggel, Gerdientje
2013-01-01
This article reports our findings on using WebCEF as a CEFR familiarization and self-assessment tool for oral proficiency. Furthermore, we outline how we have implemented Skype as a tool for telecollaboration in our language programmes. The primary purpose of our study was to explore how students and teachers would perceive the potential benefits…
ERIC Educational Resources Information Center
Cowie, Bronwen; Khoo, Elaine
2014-01-01
This paper reports on the findings from a two year research project that explored the potential of digital tools in support of teaching-learning across different disciplinary areas at a New Zealand university. Two courses (in History and Tourism) are case studied using data collected through interviews with lecturers, tutors and their students,…
Mediated Authentic Video: A Flexible Tool Supporting a Developmental Approach to Teacher Education
ERIC Educational Resources Information Center
Stutchbury, Kris; Woodward, Clare
2017-01-01
YouTube now has more searches than Google, indicating that video is a motivating and, potentially, powerful learning tool. This paper investigates how we can embrace video to support improvements in teacher education. It will draw on innovative approaches to teacher education, developed by the Open University UK, in order to explore in more depth…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenne, S.; Young, K. R.; Thorsteinsson, H.
The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (allmore » available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).« less
Mathematical Modelling for Singapore Primary Classrooms: From a Teacher's Lens
ERIC Educational Resources Information Center
Seto, Cynthia; Magdalene, Thomas Mary; Ng Kit Ee, Dawn; Chan Chun Ming, Eric; Widjaja, Wanty
2012-01-01
Limited Singapore research indicated a lack of exposure of modelling tasks at primary levels. Teacher reflection is used as a tool in design research cycles exploring the potentials of modelling tasks in a Singapore primary five classroom. Findings reveal that the teacher identified three potentials of a modelling task on children's…
ERIC Educational Resources Information Center
Lees, David; LePage, Pamela
1994-01-01
This article describes the current capabilities and future potential of robots designed as supplements or replacements for human assistants or as tools for education and rehabilitation of people with disabilities. Review of robots providing educational, vocational, or independent living assistance concludes that eventually effective, reliable…
Pervasive Learning Games: Explorations of Hybrid Educational Gamescapes
ERIC Educational Resources Information Center
Thomas, Siobhan
2006-01-01
Pervasive gaming has tremendous potential as a learning tool and represents an interesting development in the field of video games and education. The literature surrounding video games and education is vast: For more than 20 years, educationalists have been discussing the potential that exists for the application of video games to learning.…
Social Media's Use in Postgraduate Students' Decision-Making Journey: An Exploratory Study
ERIC Educational Resources Information Center
Galan, Mianda; Lawley, Meredith; Clements, Michael
2015-01-01
Universities globally are showing increased interest in the potential of social media as a marketing recruitment tool. This paper explores how and why potential postgraduate business students looking to study internationally use social media in their educational decision-making process. Due to a lack of existing research, this study adopted an…
NASA Astrophysics Data System (ADS)
Craig, Paul; Kennedy, Jessie
2008-01-01
An increasingly common approach being taken by taxonomists to define the relationships between taxa in alternative hierarchical classifications is to use a set-based notation which states relationship between two taxa from alternative classifications. Textual recording of these relationships is cumbersome and difficult for taxonomists to manage. While text based GUI tools are beginning to appear which ease the process, these have several limitations. Interactive visual tools offer greater potential to allow taxonomists to explore the taxa in these hierarchies and specify such relationships. This paper describes the Concept Relationship Editor, an interactive visualisation tool designed to support the assertion of relationships between taxonomic classifications. The tool operates using an interactive space-filling adjacency layout which allows users to expand multiple lists of taxa with common parents so they can explore and assert relationships between two classifications.
RE Data Explorer: Informing Variable Renewable Energy Grid Integration for Low Emission Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L
The RE Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based analysis tool that utilizes geospatial and spatiotemporal renewable energy data to visualize, execute, and support analysis of renewable energy potential under various user-defined scenarios. This analysis can inform high-level prospecting, integrated planning, and policy making to enable low emission development.
The Clifton Youth StrengthsExplorer Assessment: Identifying the Talents of Today's Youth
ERIC Educational Resources Information Center
Educational Horizons, 2006
2006-01-01
The aim of many educators is to help youth reach their maximum potential. The Clifton Youth StrengthsExplorer gives teachers a tool to help identify the talents of their students, as well as actionable suggestions for utilizing those talents. Such information can help teachers to individualize the ways in which they respond to youths, and the…
Tularosa Basin Play Fairway Analysis: Methodology Flow Charts
Adam Brandt
2015-11-15
These images show the comprehensive methodology used for creation of a Play Fairway Analysis to explore the geothermal resource potential of the Tularosa Basin, New Mexico. The deterministic methodology was originated by the petroleum industry, but was custom-modified to function as a knowledge-based geothermal exploration tool. The stochastic PFA flow chart uses weights of evidence, and is data-driven.
Statistics, Structures & Satisfied Customers: Using Web Log Data to Improve Site Performance.
ERIC Educational Resources Information Center
Peacock, Darren
This paper explores some of the ways in which the National Museum of Australia is using Web analysis tools to shape its future directions in the delivery of online services. In particular, it explores the potential of quantitative analysis, based on Web server log data, to convert these ephemeral traces of user experience into a strategic…
Translating statistical species-habitat models to interactive decision support tools
Wszola, Lyndsie S.; Simonsen, Victoria L.; Stuber, Erica F.; Gillespie, Caitlyn R.; Messinger, Lindsey N.; Decker, Karie L.; Lusk, Jeffrey J.; Jorgensen, Christopher F.; Bishop, Andrew A.; Fontaine, Joseph J.
2017-01-01
Understanding species-habitat relationships is vital to successful conservation, but the tools used to communicate species-habitat relationships are often poorly suited to the information needs of conservation practitioners. Here we present a novel method for translating a statistical species-habitat model, a regression analysis relating ring-necked pheasant abundance to landcover, into an interactive online tool. The Pheasant Habitat Simulator combines the analytical power of the R programming environment with the user-friendly Shiny web interface to create an online platform in which wildlife professionals can explore the effects of variation in local landcover on relative pheasant habitat suitability within spatial scales relevant to individual wildlife managers. Our tool allows users to virtually manipulate the landcover composition of a simulated space to explore how changes in landcover may affect pheasant relative habitat suitability, and guides users through the economic tradeoffs of landscape changes. We offer suggestions for development of similar interactive applications and demonstrate their potential as innovative science delivery tools for diverse professional and public audiences.
Translating statistical species-habitat models to interactive decision support tools.
Wszola, Lyndsie S; Simonsen, Victoria L; Stuber, Erica F; Gillespie, Caitlyn R; Messinger, Lindsey N; Decker, Karie L; Lusk, Jeffrey J; Jorgensen, Christopher F; Bishop, Andrew A; Fontaine, Joseph J
2017-01-01
Understanding species-habitat relationships is vital to successful conservation, but the tools used to communicate species-habitat relationships are often poorly suited to the information needs of conservation practitioners. Here we present a novel method for translating a statistical species-habitat model, a regression analysis relating ring-necked pheasant abundance to landcover, into an interactive online tool. The Pheasant Habitat Simulator combines the analytical power of the R programming environment with the user-friendly Shiny web interface to create an online platform in which wildlife professionals can explore the effects of variation in local landcover on relative pheasant habitat suitability within spatial scales relevant to individual wildlife managers. Our tool allows users to virtually manipulate the landcover composition of a simulated space to explore how changes in landcover may affect pheasant relative habitat suitability, and guides users through the economic tradeoffs of landscape changes. We offer suggestions for development of similar interactive applications and demonstrate their potential as innovative science delivery tools for diverse professional and public audiences.
Translating statistical species-habitat models to interactive decision support tools
Simonsen, Victoria L.; Stuber, Erica F.; Gillespie, Caitlyn R.; Messinger, Lindsey N.; Decker, Karie L.; Lusk, Jeffrey J.; Jorgensen, Christopher F.; Bishop, Andrew A.; Fontaine, Joseph J.
2017-01-01
Understanding species-habitat relationships is vital to successful conservation, but the tools used to communicate species-habitat relationships are often poorly suited to the information needs of conservation practitioners. Here we present a novel method for translating a statistical species-habitat model, a regression analysis relating ring-necked pheasant abundance to landcover, into an interactive online tool. The Pheasant Habitat Simulator combines the analytical power of the R programming environment with the user-friendly Shiny web interface to create an online platform in which wildlife professionals can explore the effects of variation in local landcover on relative pheasant habitat suitability within spatial scales relevant to individual wildlife managers. Our tool allows users to virtually manipulate the landcover composition of a simulated space to explore how changes in landcover may affect pheasant relative habitat suitability, and guides users through the economic tradeoffs of landscape changes. We offer suggestions for development of similar interactive applications and demonstrate their potential as innovative science delivery tools for diverse professional and public audiences. PMID:29236707
In Silico Studies of the Toxcast Chemicals Interacting with Biomolecular targets
Molecular docking, a structure-based in silico tool for chemical library pre-screening in drug discovery, can be used to explore the potential toxicity of environmental chemicals acting at specific biomelcular targets.
Mars, John L.; Zientek, M.L.; Hammarstrom, J.M.; Johnson, K.M.; Pierce, F.W.
2014-01-01
The ASTER alteration map and corresponding geologic maps were used to select circular to elliptical patterns of argillic- and phyllic-altered volcanic and intrusive rocks as potential porphyry copper sites. One hundred and seventy eight potential porphyry copper sites were mapped along the UDVB, and 23 sites were mapped along the CVB. The potential sites were selected to assist in further exploration and assessments of undiscovered porphyry copper deposits.
ERIC Educational Resources Information Center
McCullough, Mark; Holmberg, Melissa
2005-01-01
The purpose of this research was to explore Google's potential for detecting occurrences of word-for-word (1) plagiarism in master's theses. The authors sought answers to these questions:1. Is Google an effective tool for detecting plagiarism in master's theses?2. Is Google an efficient tool for detecting plagiarism in master's theses?The first…
Yen, Wendy; Hovey, Richard; Hodwitz, Kathryn; Zhang, Su
2011-03-01
The present study explored the relationship between the Multiple Mini-Interview (MMI) admissions process and the Bar-On EQ-i emotional intelligence (EI) instrument in order to investigate the potential for the EQ-i to serve as a proxy measure to the MMI. Participants were 196 health science candidates who completed both the MMI and the EQ-i as part of their admissions procedure at the Michener Institute for Applied Health Sciences. Three types of analyses were conducted to examine the relationship between the two tools: reliability analyses, correlational analyses, and a t-test. The tools were found to be moderately reliable. No significant relationships were found between the MMI and the EQ-i at the total or subscale level. The ability of the EQ-i to discriminate between accepted and not-accepted students was also not supported. These findings do not support the use of the EQ-i as a potential pre-screening tool for the MMI, but rather highlight the need to exercise caution when using emotional intelligence instruments for high-stakes admissions purposes.
Extravehicular Activity Asteroid Exploration and Sample Collection Capability
NASA Technical Reports Server (NTRS)
Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan
2014-01-01
NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the overall concept for the EVAs including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, the results of early development testing of potential EVA tasks, and extensibility of the EVA architecture to NASA's exploration missions.
ERIC Educational Resources Information Center
Bertrand, Melanie
2016-01-01
In this article, Melanie Bertrand explores the potential of using the concept of intertextuality--which captures the way snippets of written or spoken text from one source become incorporated into other sources--in the study and practice of youth participatory action research (YPAR). Though this collective and youth-centered form of research…
The Pedagogical Potential of Drawing and Writing in a Primary Science Multimodal Unit
ERIC Educational Resources Information Center
Wilson, Rachel E.; Bradbury, Leslie U.
2016-01-01
In consideration of the potential of drawing and writing as assessment and learning tools, we explored how early primary students used these modes to communicate their science understandings. The context for this study was a curricular unit that incorporated multiple modes of representation in both the presentation of information and production of…
ERIC Educational Resources Information Center
Quigley, Cassie F.; Dogbey, James; Che, S. Megan; Hallo, Jeffrey; Womac, Patrick
2014-01-01
This study explores the potential of photovoice for understanding environmental perspectives of teachers in the Narok District of Kenya. The objective of this paper is to share this photo-methodology with environmental educators so they may use it as an innovative methodological tool to understand the construction of environmental perspectives.…
Recognizing Academic Potential in Students of Color: Findings of U-STARS~PLUS
ERIC Educational Resources Information Center
Harradine, Christine C.; Coleman, Mary Ruth B.; Winn, Donna-Marie C.
2014-01-01
Students of color are often underrepresented in academic programs for gifted and talented students. This study explored the impact of The Teacher's Observation of Potential in Students (TOPS) tool on teachers' ability to systematically observe and document the academic strengths of 5-to 9-year-old students across nine domains. Teachers indicated…
ERIC Educational Resources Information Center
Yeo, Hwan-Ik; Lee, Yekyung Lisa
2014-01-01
This study explores the use of blogs for personal information management (PIM) as a learning tool that could bring increased efficiency and academic self-efficacy for carrying out learning tasks. In order to identify the uses and effects of using blogs for PIM by children, a control group that used personal spaces within the class website and an…
Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns
Murphy, Jeffrey N.; Harris, Kenneth D.; Buriak, Jillian M.
2015-01-01
Line patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin films are of widespread interest for their potential to enable nanoscale patterning over large areas. In order for such patterning methods to effectively integrate with current technologies, the resulting patterns need to have low defect densities, and be produced in a short timescale. To understand whether a given polymer or annealing method might potentially meet such challenges, it is necessary to examine the evolution of defects. Unfortunately, few tools are readily available to researchers, particularly those engaged in the synthesis and design of new polymeric systems with the potential for patterning, to measure defects in such line patterns. To this end, we present an image analysis tool, which we have developed and made available, to measure the characteristics of such patterns in an automated fashion. Additionally we apply the tool to six cylinder-forming polystyrene-block-poly(2-vinylpyridine) polymers thermally annealed to explore the relationship between the size of each polymer and measured characteristics including line period, line-width, defect density, line-edge roughness (LER), line-width roughness (LWR), and correlation length. Finally, we explore the line-edge roughness, line-width roughness, defect density, and correlation length as a function of the image area sampled to determine each in a more rigorous fashion. PMID:26207990
Neal, Zachary
2015-06-01
The concept of social capital is becoming increasingly common in community psychology and elsewhere. However, the multiple conceptual and operational definitions of social capital challenge its utility as a theoretical tool. The goals of this paper are to clarify two forms of social capital (bridging and bonding), explicitly link them to the structural characteristics of small world networks, and explore the behavioral and ecological prerequisites of its formation. First, I use the tools of network science and specifically the concept of small-world networks to clarify what patterns of social relationships are likely to facilitate social capital formation. Second, I use an agent-based model to explore how different ecological characteristics (diversity and segregation) and behavioral tendencies (homophily and proximity) impact communities' potential for developing social capital. The results suggest diverse communities have the greatest potential to develop community social capital, and that segregation moderates the effects that the behavioral tendencies of homophily and proximity have on community social capital. The discussion highlights how these findings provide community-based researchers with both a deeper understanding of the contextual constraints with which they must contend, and a useful tool for targeting their efforts in communities with the greatest need or greatest potential.
Potential of social media as a tool to combat foodborne illness.
Chapman, Benjamin; Raymond, Benjamin; Powell, Douglas
2014-07-01
The use of social media platforms, such as Facebook and Twitter, has been increasing substantially in recent years and has affected the way that people access information online. Social media rely on high levels of interaction and user-generated context shared through established and evolving social networks. Health information providers must know how to successfully participate through social media in order to meet the needs of these online audiences. This article reviews the current research on the use of social media for public health communication and suggests potential frameworks for developing social media strategies. The extension to food safety risk communication is explored, considering the potential of social media as a tool to combat foodborne illness.
Choo, Esther K; Ranney, Megan L; Chan, Teresa M; Trueger, N Seth; Walsh, Amy E; Tegtmeyer, Ken; McNamara, Shannon O; Choi, Ricky Y; Carroll, Christopher L
2015-05-01
Twitter is a tool for physicians to increase engagement of learners and the public, share scientific information, crowdsource new ideas, conduct, discuss and challenge emerging research, pursue professional development and continuing medical education, expand networks around specialized topics and provide moral support to colleagues. However, new users or skeptics may well be wary of its potential pitfalls. The aims of this commentary are to discuss the potential advantages of the Twitter platform for dialogue among physicians, to explore the barriers to accurate and high-quality healthcare discourse and, finally, to recommend potential safeguards physicians may employ against these threats in order to participate productively.
Bathen, Tone F; Sitter, Beathe; Sjøbakk, Torill E; Tessem, May-Britt; Gribbestad, Ingrid S
2010-09-01
Personalized medicine is increasingly important in cancer treatment for its role in staging and its potential to improve stratification of patients. Different types of molecules, genes, proteins, and metabolites are being extensively explored as potential biomarkers. This review discusses the major findings and potential of tissue metabolites determined by high-resolution magic angle spinning magnetic resonance spectroscopy for cancer detection, characterization, and treatment monitoring.
Making MEPA-IEP work: tools for professionals.
McRoy, Ruth; Mica, Maryanne; Freundlich, Madelyn; Kroll, Joe
2007-01-01
The Multiethnic Placement Act of 1994 and the Interethnic Adoption Provisions of 1996 (MEPA-IEP) require states to develop plans that "provide for the diligent recruitment of potential foster and adoptive families that reflect the ethnic and racial diversity of children in the state for whom foster and adoptive homes are needed." This paper explores the background of MEPA-IEP, describes the disparate outcomes for minority children in the child welfare system, and identifies agency challenges in finding permanent families for African American children. Tools are provided for successfully recruiting families while following MEPA-IEP and avoiding potentially discriminatory practices in placement decisionmaking.
Geothermal Exploration Cost and Time
Jenne, Scott
2013-02-13
The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.
[Progress on neuropsychology and event-related potentials in patients with brain trauma].
Dong, Ri-xia; Cai, Wei-xiong; Tang, Tao; Huang, Fu-yin
2010-02-01
With the development of information technology, as one of the research frontiers in neurophysiology, event-related potentials (ERP) is concerned increasingly by international scholars, which provides a feasible and objective method for exploring cognitive function. There are many advances in neuropsychology due to new assessment tool for the last years. The basic theories in the field of ERP and neuropsychology were reviewed in this article. The research and development in evaluating cognitive function of patients with syndrome after brain trauma were focused in this review, and the perspectives for the future research of ERP was also explored.
The Potential of Repertory Grid Technique in the Assessment of Conceptual Change in Physics.
ERIC Educational Resources Information Center
Winer, Laura R.; Vazquez-Abad, Jesus
This paper presents results from a number of trials of a new approach in assessing student conceptions in physics and changes in these conceptions over time. The goal was to explore the potential of Personal Construct Psychology and its central tool, Repertory Grid Technique, to aid in the diagnosis of learner difficulties and eventually the…
ERIC Educational Resources Information Center
Papastergiou, Marina
2009-01-01
This study aims at critically reviewing recently published scientific literature on the use of computer and video games in Health Education (HE) and Physical Education (PE) with a view: (a) to identifying the potential contribution of the incorporation of electronic games as educational tools into HE and PE programs, (b) to present a synthesis of…
The Performance and Registration Information Systems Management (PRISM) pilot demonstration project
DOT National Transportation Integrated Search
1999-12-01
The Intermodal Surface Transportation Efficiency Act of 1991 mandated a study to explore the potential of the commercial motor vehicle (CMV) registration process as a safety enforcement tool for reducing CMV accidents. The project sought to establish...
New perspectives on microbial community distortion after whole-genome amplification
Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...
Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools
NASA Astrophysics Data System (ADS)
Sánchez Pineda, A.
2015-12-01
We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.
Geodemographics--a tool for health intelligence?
Abbas, J; Ojo, A; Orange, S
2009-01-01
In recent years, social marketing principles and techniques have featured at the heart of government proposals for improving health and tackling health inequalities. This, in part, has led to a shift in the type of information and intelligence needed to support service planning at all levels. In particular, there has been increasing interest in the use of commercial geodemographic classification systems. Despite the amount of activity and associated investment in this area, there is evidence of a real lack of understanding among users about the tools themselves, and the added value they are providing in the National Health Service. This paper describes some of the potential applications of geodemographic tools in the health sector, and explores issues for consideration when selecting or using a system. This paper also describes a potentially cost-effective and sustainable model for utilizing geodemographic tools as part of a regional insight function within the health service.
Tan, Amanda W Y; Hemelrijk, Charlotte K; Malaivijitnond, Suchinda; Gumert, Michael D
2018-05-12
Examining how animals direct social learning during skill acquisition under natural conditions, generates data for examining hypotheses regarding how transmission biases influence cultural change in animal populations. We studied a population of macaques on Koram Island, Thailand, and examined model-based biases during interactions by unskilled individuals with tool-using group members. We first compared the prevalence of interactions (watching, obtaining food, object exploration) and proximity to tool users during interactions, in developing individuals (infants, juveniles) versus mature non-learners (adolescents, adults), to provide evidence that developing individuals are actively seeking information about tool use from social partners. All infants and juveniles, but only 49% of mature individuals carried out interacted with tool users. Macaques predominantly obtained food by scrounging or stealing, suggesting maximizing scrounging opportunities motivates interactions with tool users. However, while interactions by adults was limited to obtaining food, young macaques and particularly infants also watched tool users and explored objects, indicating additional interest in tool use itself. We then ran matrix correlations to identify interaction biases, and what attributes of tool users influenced these. Biases correlated with social affiliation, but macaques also preferentially targeted tool users that potentially increase scrounging and learning opportunities. Results suggest that social structure may constrain social learning, but the motivation to bias interactions towards tool users to maximize feeding opportunities may also socially modulate learning by facilitating close proximity to better tool users, and further interest in tool-use actions and materials, especially during development.
Realizing the Potential of Patient Engagement: Designing IT to Support Health in Everyday Life
Novak, Laurie L.; Unertl, Kim M.; Holden, Richard J.
2017-01-01
Maintaining health or managing a chronic condition involves performing and coordinating potentially new and complex tasks in the context of everyday life. Tools such as reminder apps and online health communities are being created to support patients in carrying out these tasks. Research has documented mixed effectiveness and problems with continued use of these tools, and suggests that more widespread adoption may be aided by design approaches that facilitate integration of eHealth technologies into patients’ and family members’ daily routines. Given the need to augment existing methods of design and implementation of eHealth tools, this contribution discusses frameworks and associated methods that engage patients and explore contexts of use in ways that can produce insights for eHealth designers. PMID:27198106
Planetary Sample Caching System Design Options
NASA Technical Reports Server (NTRS)
Collins, Curtis; Younse, Paulo; Backes, Paul
2009-01-01
Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.
Harmon, Thomas; Guo, Wei; Stover, John; Wu, Zunyou; Kaufman, Joan; Schneider, Kammerle; Liu, Li; Feng, Liao; Schwartländer, Bernard
2015-01-01
China’s commitment to implementing established and emerging HIV/AIDS prevention and control strategies has led to substantial gains in terms of access to antiretroviral treatment and prevention services, but the evolving and multifaceted HIV/AIDS epidemic in China highlights the challenges of maintaining that response. This study presents modeling results exploring the potential impact of HIV vaccines in the Chinese context at varying efficacy and coverage rates, while further exploring the potential implications of vaccination programs aimed at reaching populations at highest risk of HIV infection. A preventive HIV vaccine would add a powerful tool to China’s response, even if not 100% efficacious or available to the full population. PMID:26344945
Kurkurina, Elina; Lange, Brittany C L; Lama, Sonam D; Burk-Leaver, Erin; Yaffe, Mark J; Monin, Joan K; Humphries, Debbie
2018-01-01
There are no known instruments to aid law enforcement officers in the assessment of elder abuse (EA), despite officers' contact with older adults. This study aimed to identify: 1) officers' perceptions and knowledge of EA, 2) barriers in detecting EA in the field, 3) characteristics officers value in a detection tool, and to explore 4) the potential for officers to use the Elder Abuse Suspicion Index (EASI)©. Data was collected from 69 Connecticut officers who confirmed that barriers to effectively detecting EA included a lack of EA detection instruments, as well as a lack of training on warning signs and risk factors. Officers indicated that the important elements of a desirable tool for helping to detect EA included ease of use, clear instructions, and information on follow-up resources. Approximately 80% of respondents could see themselves using the EASI © in the field, and a modified version has been developed for this purpose.
NASA Astrophysics Data System (ADS)
Power, C.; Gerhard, J. I.; Tsourlos, P.; Giannopoulos, A.
2011-12-01
Remediation programs for sites contaminated with dense non-aqueous phase liquids (DNAPLs) would benefit from an ability to non-intrusively map the evolving volume and extent of the DNAPL source zone. Electrical resistivity tomography (ERT) is a well-established geophysical tool, widely used outside the remediation industry, that has significant potential for mapping DNAPL source zones. However, that potential has not been realized due to challenges in data interpretation from contaminated sites - in either a qualitative or quantitative way. The objective of this study is to evaluate the potential of ERT to map realistic, evolving DNAPL source zones within complex subsurface environments during remedial efforts. For this purpose, a novel coupled model was developed that integrates a multiphase flow model (DNAPL3D-MT), which generates realistic DNAPL release scenarios, with 3DINV, an ERT model which calculates the corresponding resistivity response. This presentation will describe the developed model coupling methodology, which integrates published petrophysical relationships to generate an electrical resistivity field that accounts for both the spatial heterogeneity of subsurface soils and the evolving spatial distribution of fluids (including permeability, porosity, clay content and air/water/DNAPL saturation). It will also present an example in which the coupled model was employed to explore the ability of ERT to track the remediation of a DNAPL source zone. A field-scale, three-dimensional release of chlorinated solvent DNAPL into heterogeneous clayey sand was simulated, including the subsurface migration and subsequent removal of the DNAPL source zone via dissolution in groundwater. Periodic surveys of this site via ERT applied at the surface were then simulated and inversion programs were used to calculate the subsurface distribution of electrical properties. This presentation will summarize this approach and its potential as a research tool exploring the range of site conditions under which ERT may prove useful in aiding DNAPL site remediation. Moreover, it is expected to provide a cost-effective avenue to test optimum ERT data acquisition, inversion and interpretative tools at contaminated sites.
Estiri, Hossein; Lovins, Terri; Afzalan, Nader; Stephens, Kari A.
2016-01-01
We applied a participatory design approach to define the objectives, characteristics, and features of a “data profiling” tool for primary care Electronic Health Data (EHD). Through three participatory design workshops, we collected input from potential tool users who had experience working with EHD. We present 15 recommended features and characteristics for the data profiling tool. From these recommendations we derived three overarching objectives and five properties for the tool. A data profiling tool, in Biomedical Informatics, is a visual, clear, usable, interactive, and smart tool that is designed to inform clinical and biomedical researchers of data utility and let them explore the data, while conveniently orienting the users to the tool’s functionalities. We suggest that developing scalable data profiling tools will provide new capacities to disseminate knowledge about clinical data that will foster translational research and accelerate new discoveries. PMID:27570651
NASA Astrophysics Data System (ADS)
Jack-Scott, E.; Arnott, J. C.; Katzenberger, J.; Davis, S. J.; Delman, E.
2015-12-01
It has been a generational challenge to simultaneously meet the world's energy requirements, while remaining within the bounds of acceptable cost and environmental impact. To this end, substantial research has explored various energy futures on a global scale, leaving decision-makers and the public overwhelmed by information on energy options. In response, this interactive energy table was developed as a comprehensive resource through which users can explore the availability, scalability, and growth potentials of all energy technologies currently in use or development. Extensive research from peer-reviewed papers and reports was compiled and summarized, detailing technology costs, technical considerations, imminent breakthroughs, and obstacles to integration, as well as political, social, and environmental considerations. Energy technologies fall within categories of coal, oil, natural gas, nuclear, solar, wind, hydropower, ocean, geothermal and biomass. In addition to 360 expandable cells of cited data, the interactive table also features educational windows with background information on each energy technology. The table seeks not to advocate for specific energy futures, but to succinctly and accurately centralize peer-reviewed research and information in an interactive, accessible resource. With this tool, decision-makers, researchers and the public alike can explore various combinations of energy technologies and their quantitative and qualitative attributes that can satisfy the world's total primary energy supply (TPES) while making progress towards a near zero carbon future.
Informetrics: Exploring Databases as Analytical Tools.
ERIC Educational Resources Information Center
Wormell, Irene
1998-01-01
Advanced online search facilities and information retrieval techniques have increased the potential of bibliometric research. Discusses three case studies carried out by the Centre for Informetric Studies at the Royal School of Library Science (Denmark) on the internationality of international journals, informetric analyses on the World Wide Web,…
Application of genomic tools for lesquerella crop improvement
USDA-ARS?s Scientific Manuscript database
Lesquerella, a potential new industrial oilseed crop, is valued for its unusual hydroxy fatty acid (20:1OH) which can be used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. As a step towards genetic engineering of lesquerella, we explored a lesqu...
A quality improvement management model for renal care.
Vlchek, D L; Day, L M
1991-04-01
The purpose of this article is to explore the potential for applying the theory and tools of quality improvement (total quality management) in the renal care setting. We believe that the coupling of the statistical techniques used in the Deming method of quality improvement, with modern approaches to outcome and process analysis, will provide the renal care community with powerful tools, not only for improved quality (i.e., reduced morbidity and mortality), but also for technology evaluation and resource allocation.
Visualizing Alternative Phosphorus Scenarios for Future Food Security
Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart
2016-01-01
The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems. PMID:27840814
Visualizing Alternative Phosphorus Scenarios for Future Food Security.
Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart
2016-01-01
The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems.
Computational Methods to Assess the Production Potential of Bio-Based Chemicals.
Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J
2018-01-01
Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.
Modeling the Energy Use of a Connected and Automated Transportation System (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Brown, A.
Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing trafficmore » flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.« less
Social Bookmarking in Academic Libraries: Trends and Applications
ERIC Educational Resources Information Center
Redden, Carla S.
2010-01-01
This paper presents an exploration of the potential utilization of social bookmarking web sites by academic libraries. These web sites, which allow users and organizations to create accounts for bookmarking online content, provide academic libraries tools to collaborate and network, organize and share electronic resources and teach information…
"Transformative Looks": Practicing Citizenship through Photography
ERIC Educational Resources Information Center
Pereira, Sónia; Maiztegui-Oñate, Concha; Mata-Codesal, Diana
2016-01-01
Purpose: The article discusses the meanings of citizenship and citizenship education when formal citizenship is restricted by exploring the potential of photography education and practice as a tool that promotes the exercise of citizenship in the context of non-formal critical adult education. By doing it, this text aims to enhance our…
E-Science Librarianship: Field Undefined
ERIC Educational Resources Information Center
Alvaro, Elsa; Brooks, Heather; Ham, Monica; Poegel, Stephanie; Rosencrans, Sarah
2011-01-01
The potential of librarians working in e-science, a term for using the Internet and other digital tools to facilitate scientific data collection, management, and sharing, has been the cause of much discussion. Many professionals agree that librarians could participate in or facilitate e-science tasks. This article explores what e-science…
Exploring Rating Quality in Rater-Mediated Assessments Using Mokken Scale Analysis
ERIC Educational Resources Information Center
Wind, Stefanie A.; Engelhard, George, Jr.
2016-01-01
Mokken scale analysis is a probabilistic nonparametric approach that offers statistical and graphical tools for evaluating the quality of social science measurement without placing potentially inappropriate restrictions on the structure of a data set. In particular, Mokken scaling provides a useful method for evaluating important measurement…
ERIC Educational Resources Information Center
Sánchez-Castro, Olga; Strambi, Antonella
2017-01-01
This study explores the potential contribution of Eggins and Slade's (2004) Speech Functions as tools for describing learners' participation patterns in Synchronous Computer-Mediated Communication (SCMC). Our analysis focuses on the relationship between learners' self-efficacy (i.e. personal judgments of second language performance capabilities)…
A Quantitative ADME-base Tool for Exploring Human Exposure to Consumer Product Ingredients
Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advanc...
Using Interactive Software to Teach Foundational Mathematical Skills
ERIC Educational Resources Information Center
Lysenko, Larysa; Rosenfield, Steven; Dedic, Helena; Savard, Annie; Idan, Einat; Abrami, Philip C.; Wade, C. Anne; Naffi, Nadia
2016-01-01
The pilot research presented here explores the classroom use of Emerging Literacy in Mathematics (ELM) software, a research-based bilingual interactive multimedia instructional tool, and its potential to develop emerging numeracy skills. At the time of the study, a central theme of early mathematics curricula, "Number Concept," was fully…
Healthy Video Gaming: Oxymoron or Possibility?
ERIC Educational Resources Information Center
Yang, Stephen; Smith, Brian; Graham, George
2008-01-01
Stephen Yang, Brian Smith, and George Graham explore the potential of exergames as a tool to combat the growing problem of childhood and adolescent obesity. Exergames rely on sensing technology that allows on-screen activity to be controlled through physical activity, rather than through operation of a handheld controller. Researchers frequently…
Historical Development of Simulation Models of Recreation Use
Jan W. van Wagtendonk; David N. Cole
2005-01-01
The potential utility of modeling as a park and wilderness management tool has been recognized for decades. Romesburg (1974) explored how mathematical decision modeling could be used to improve decisions about regulation of wilderness use. Cesario (1975) described a computer simulation modeling approach that utilized GPSS (General Purpose Systems Simulator), a...
Wustenberghs, Hilde; Fevery, Davina; Lauwers, Ludwig; Marchand, Fleur; Spanoghe, Pieter
2018-03-15
Sustainable crop protection (SCP) has many facets. Farmers may therefore perceive transition to SCP as very complex. The Dual Indicator Set for Crop Protection Sustainability (DISCUSS) can handle this complexity. To provide targeted support throughout the transition to SCP, complexity capture must be synchronised with the time course of on-farm decision-making. Tool use must be tuned to farmer awareness and appropriate level of data in consecutive stages. This paper thus explores the potential functionalities of DISCUSS in relation to both complexity and time. Results from apple and potato crop protection show three potential functions: DISCUSS can be used as (1) a simulation tool for communication and decision support, (2) an assessment and monitoring tool, and (3) a discussion support tool for farmer groups. Analysis of these functionalities using a framework for guiding on-farm sustainability assessment and strategic decision-making shows how each functionality can support the consecutive steps of transition to SCP, i.e. using the right tool functionality at the right time. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.
Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less
Remote sensing in hydrology: A survey of applications with selected bibliography and abstracts
NASA Technical Reports Server (NTRS)
Sers, S. W. (Compiler)
1971-01-01
Remote infrared sensing as a water exploration technique is demonstrated. Various applications are described, demonstrating that infrared sensors can locate aquifers, geothermal water, water trapped by faults, springs and water in desert regions. The potentiality of airborne IR sensors as a water prospecting tool is considered. Also included is a selected bibliography with abstracts concentrating on those publications which will better acquaint the hydrologist with investigations using thermal remote sensors as applied to water exploration.
Spruyt, Karen; Gozal, David
2010-01-01
Questionnaires are a useful and extensively used tool in clinical sleep medicine and in sleep research. The number of sleep questionnaires targeting the pediatric age range has tremendously increased in recent years, and with such explosion in the number of instruments, their heterogeneity has become all the more apparent. Here, we explore the theoretical and pragmatic processes required for instrument design and development, i.e., how any questionnaire, inventory, log, or diary should be created and evaluated, and also provide illustrative examples to further underline the potential pitfalls that are inherently embedded in every step of tool development. PMID:20952230
NASA Astrophysics Data System (ADS)
Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.; Buja, L.; Gutowski, W. J., Jr.; Halley-Gotway, J.; Kaatz, L.; Yates, D. N.
2017-12-01
Coordinated, multi-model climate change projection archives have already led to a flourishing of new climate impact applications. Collections and online tools for the computation of derived indicators have attracted many non-specialist users and decision-makers and facilitated for them the exploration of potential future weather and climate changes on their systems. Guided by a set of standardized steps and analyses, many can now use model output and determine basic model-based changes. But because each application and decision-context is different, the question remains if such a small collection of standardized tools can faithfully and comprehensively represent the critical physical context of change? We use the example of the El Niño - Southern Oscillation, the largest and most broadly recognized mode of variability in the climate system, to explore the difference in impact contexts between a quasi-blind, protocol-bound and a flexible, scientifically guided use of climate information. More use oriented diagnostics of the model-data as well as different strategies for getting data into decision environments are explored.
NASA Technical Reports Server (NTRS)
Everett, J. R.; Petzel, G.
1974-01-01
This investigation was undertaken to determine the types and amounts of information valuable to petroleum exploration that are extractable from ERTS data and to determine the cost of obtaining the information from ERTS relative to costs using traditional or conventional means. In particular, it was desirable to evaluate this new petroleum exploration tool in a geologically well-known area in order to assess its potential usefulness in an unknown area. In light of the current energy situation, it is felt that such an evaluation is important in order to best utilize technical efforts with customary exploration tools, by rapidly focusing attention on the most promising areas in order to reduce the time required to go through the exploration cycle and to maximize cost savings. The Anadarko Basin lies in western Oklahoma and the panhandle of Texas (Figure 1). It was chosen as a test site because there is a great deal of published information available on the surface and subsurface geology of the area, there are many known structures that act as traps for hydrocarbons, and it is similar to several other large epicontinental sedimentary basins.
Mercury in soil gas and air--A potential tool in mineral exploration
McCarthy, Joseph Howard; Vaughn, W.W.; Learned, R.E.; Meuschke, J.L.
1969-01-01
The mercury content in soil gas and in the atmosphere was measured in several mining districts to test the possibility that the mercury content in the atmosphere is higher over ore deposits than over barren ground. At Cortez, Nev., the distribution of anorhalous amounts of mercury in the air collected at ground level (soil gas) correlates well with the distribution of gold-bearing rocks that are covered by as much as 100 feet of gravel. The mercury content in the atmosphere collected at an altitude of 200 feet by an aircraft was 20 times background over a mercury posit and 10 times background over two porphyry copper deposits. Measurement of mercury in soil gas and air may prove to be a valuable exploration tool.
Developing nursing leadership in social media.
Moorley, Calvin; Chinn, Teresa
2016-03-01
A discussion on how nurse leaders are using social media and developing digital leadership in online communities. Social media is relatively new and how it is used by nurse leaders and nurses in a digital space is under explored. Discussion paper. Searches used CINAHL, the Royal College of Nursing webpages, Wordpress (for blogs) and Twitter from 2000-2015. Search terms used were Nursing leadership + Nursing social media. Understanding the development and value of nursing leadership in social media is important for nurses in formal and informal (online) leadership positions. Nurses in formal leadership roles in organizations such as the National Health Service are beginning to leverage social media. Social media has the potential to become a tool for modern nurse leadership, as it is a space where can you listen on a micro level to each individual. In addition to listening, leadership can be achieved on a much larger scale through the use of social media monitoring tools and exploration of data and crowd sourcing. Through the use of data and social media listening tools nursing leaders can seek understanding and insight into a variety of issues. Social media also places nurse leaders in a visible and accessible position as role models. Social media and formal nursing leadership do not have to be against each other, but they can work in harmony as both formal and online leadership possess skills that are transferable. If used wisely social media has the potential to become a tool for modern nurse leadership. © 2016 John Wiley & Sons Ltd.
Can Terrestrial Microbes Grow on Mars?
NASA Technical Reports Server (NTRS)
Rothschild, Lynn
2012-01-01
The theme for AbSciCon 2012 is "Exploring Life: Past and Present, Near and Far." The conference will address our current understanding of life - from processes at the molecular level to those which operate at planetary scales. Studying these aspects of life on Earth provides an essential platform from which to examine the potential for life on other worlds, both within our solar system and beyond. Mars exhibits a variety of extreme environments characterized by high UV and ionizing radiation flux, low pressure anoxic atmosphere, scarce or absent liquid water, extreme low temperatures, etc. The ability of terrestrial microorganisms to survive and adapt to the Mars environment has profound implications for astrobiology, planetary protection, and Mars life detection missions. At the NASA Ames Synthetic Biology Initiative, we believe that synthetic biology has the potential to revolutionize human space exploration. As such, the initiative is dedicated to applying the tools and techniques of synthetic biology to space exploration and astrobiology. Biological solutions will be invaluable for space exploration because they are not resource intensive, and they are versatile and self-renewing. An understanding of how to work with DNA in an unfavorable environment is paramount to utilizing biological tools on space missions. Furthermore, the ability to adjust life to the parameters of Mars is vital both to discovering what life on Mars might look like, and to using biological tools under such conditions. As a first step, we need an energy-efficient, low cost means of transporting, storing, and protecting genomic DNA, DNA parts, and whole microbial strains. Our goal is to develop and demonstrate viable and superior alternatives to standard DNA storage methods, which can be optimized to the conditions of space exploration, using synthetic biology as a tool. This includes protocols and kit designs for easy and repeatable DNA and strain recovery from protective storage conditions. We are constructing newly engineered genetic parts for different valuable host organisms, designed to increased long-term survival and functional retention. These methods should be applied for DNA and strain storage and transportation. In parallel, we seek inspiration from natural organisms that have developed means for survival in extreme environmental conditions. We are utilizing novel techniques for analysis of lipid biomarkers in the Antarctic Dry Valleys in order to identify resident microbes in the Antarctic soil and permafrost, as well as biomarker fossils of organisms that survived in the valleys in ages past. Through the identification of these life forms, we hope to understand and draw on new biological tools and strategies for synthetic biological applications on Mars.
Valdez, Rodolfo; Yoon, Paula W; Qureshi, Nadeem; Green, Ridgely Fisk; Khoury, Muin J
2010-01-01
Family history is a risk factor for many chronic diseases, including cancer, cardiovascular disease, and diabetes. Professional guidelines usually include family history to assess health risk, initiate interventions, and motivate behavioral changes. The advantages of family history over other genomic tools include a lower cost, greater acceptability, and a reflection of shared genetic and environmental factors. However, the utility of family history in public health has been poorly explored. To establish family history as a public health tool, it needs to be evaluated within the ACCE framework (analytical validity; clinical validity; clinical utility; and ethical, legal, and social issues). Currently, private and public organizations are developing tools to collect standardized family histories of many diseases. Their goal is to create family history tools that have decision support capabilities and are compatible with electronic health records. These advances will help realize the potential of family history as a public health tool.
MOOCs: Meaningful Learning Tools for Public Administration Education or Academic Simulacra?
ERIC Educational Resources Information Center
Sementelli, Arthur J.; Garrett, Terence M.
2015-01-01
Purpose: The purpose of this paper is to explore and critically assess the potential value and effectiveness of massive open online courses (MOOCs) for public administration education. Design/methodology/approach: The research in this conceptual paper offered a critical examination of MOOCs using the work of Baudrillard, Debord, and others to…
The Use of Twitter for Professional Growth and Development
ERIC Educational Resources Information Center
Gerstein, Jackie
2011-01-01
Twitter, the micro blogging tool, has seen unprecedented growth in the past year and is expected to continue into the future. Twitter's power, engagement, and popularity lie in its endless networking opportunities. Its potential as a venue for professional growth and development needs to be explored, discussed, and ultimately used as such. A brief…
ERIC Educational Resources Information Center
Mottier Lopez, Lucie; Pasquini, Raphaël
2017-01-01
This article describes two collaborative research projects whose common goal was to explore the potential role of professional controversies in building teachers' summative assessment capacity. In the first project, upper primary teachers were encouraged to compare their practices through a form of social moderation, without prior instructor input…
Digital Video for Fostering Self-Reflection in an ePortfolio Environment
ERIC Educational Resources Information Center
Cheng, Gary; Chau, Juliana
2009-01-01
The ability to self-reflect is widely recognized as a desirable learner attribute that can induce deep learning. Advances in computer-mediated communication technologies have led to intense interest in higher education in exploring the potential of digital tools, particularly digital video, for fostering self-reflection. While there are reports…
Using CD-ROMs as a Pedagogical Tool
ERIC Educational Resources Information Center
White, Andrew
2007-01-01
Purpose: This paper aims to explore the potential uses of CD-ROMs in multicultural education through an analysis of the development of a digital archive of political posters relating to the Northern Irish conflict. Design/methodology/approach: The author draws on literature on the relationship between new media platforms and the construction of…
Long-term forest management and climate effects on streamflow
Shelby G. Laird; C.R. Ford; S.H. Laseter; J.M. Vose
2011-01-01
Long-term watershed studies are a powerful tool for examining interactions among management activities, streamflow, and climatic variability. Understanding these interactions is critical for exploring the potential of forest management to adapt to or mitigate against the effects of climate change. The Coweeta Hydrologic Laboratory, located in North Carolina, USA, is a...
Sulfometuron methyl: Its use in forestry and potential phytotoxicity
Nathan D. Robertson; Anthony S. Davis
2010-01-01
Planting site preparation is a common practice used to enhance seedling establishment success. Site preparations include herbicide, fire, and mechanical methods. Studies designed to explore the use of herbicides as site preparation and release tools are common, and herbicides have shown their use in forestry to be logistically, economically, and ecologically...
Minecraft as a Creative Tool: A Case Study
ERIC Educational Resources Information Center
Cipollone, Maria; Schifter, Catherine C.; Moffat, Rick A.
2014-01-01
Many scholars are enthusiastic about the potential learning opportunities present in the sandbox-style gaming environment, Minecraft. In the following case study, the authors explored the use of Minecraft in a high school literature class and the presentation of characterization and plot in three student-made machinima, or films made in the game…
Simulation As a Tool in Education Research and Development. A Technical Paper. EdTalk.
ERIC Educational Resources Information Center
Hood, Paul
This document introduces simulation as a field of endeavor that has great potential for education research, development, and training. Simulation allows education developers to explore, develop, and test new educational programs and practices before communities, educators, and students are asked to participate in them. Simulation technologies…
Looking In: Exploring One's Personal Health Values.
ERIC Educational Resources Information Center
Read, Donald A.
This workbook deals with values clarification strategies in the area of health education. It is designed to serve as a tool for expanding self awareness. The underlying assumption is that cognitive knowledge is only half of what is necessary for understanding one's own feelings and making decisions about such potential life problems as drugs, sex,…
Air-microfluidics is a field that has the potential to dramatically reduce the size, cost, and power requirements of future air quality sensors. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical systems (MEMS) that can be ap...
Applications of Text Analysis Tools for Spoken Response Grading
ERIC Educational Resources Information Center
Crossley, Scott; McNamara, Danielle
2013-01-01
This study explores the potential for automated indices related to speech delivery, language use, and topic development to model human judgments of TOEFL speaking proficiency in second language (L2) speech samples. For this study, 244 transcribed TOEFL speech samples taken from 244 L2 learners were analyzed using automated indices taken from…
ERIC Educational Resources Information Center
Kerr, Stacey
2016-01-01
Although instruction related to learning management systems and other educational applications in teacher education programs has increased, the potential of geospatial technologies has yet to be widely explored and considered in the teacher education literature, despite its ability to function as an engaging pedagogical tool with teacher…
ERIC Educational Resources Information Center
Napora, Lisa
2013-01-01
This study explored the potential of classroom-based meditation practice as a tool to facilitate learning. Moreover, the impact of meditation on cognitive engagement, mindfulness and academic performance of undergraduate college students was investigated. Additionally, the relationships between mindfulness and cognitive engagement, and between…
CRISPR/Cas9: at the cutting edge of hepatology
Pankowicz, Francis P; Jarrett, Kelsey E; Lagor, William R; Bissig, Karl-Dimiter
2018-01-01
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome engineering has revolutionised biomedical science and we are standing on the cusp of medical transformation. The therapeutic potential of this technology is tremendous, however, its translation to the clinic will be challenging. In this article, we review recent progress using this genome editing technology and explore its potential uses in studying and treating diseases of the liver. We discuss the development of new research tools and animal models as well as potential clinical applications, strategies and challenges. PMID:28487442
Curie-Montgolfiere Planetary Explorers
NASA Astrophysics Data System (ADS)
Taylor, Chris Y.; Hansen, Jeremiah
2007-01-01
Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.
Fisher, Rohan; Lassa, Jonatan
2017-04-18
Modelling travel time to services has become a common public health tool for planning service provision but the usefulness of these analyses is constrained by the availability of accurate input data and limitations inherent in the assumptions and parameterisation. This is particularly an issue in the developing world where access to basic data is limited and travel is often complex and multi-modal. Improving the accuracy and relevance in this context requires greater accessibility to, and flexibility in, travel time modelling tools to facilitate the incorporation of local knowledge and the rapid exploration of multiple travel scenarios. The aim of this work was to develop simple open source, adaptable, interactive travel time modelling tools to allow greater access to and participation in service access analysis. Described are three interconnected applications designed to reduce some of the barriers to the more wide-spread use of GIS analysis of service access and allow for complex spatial and temporal variations in service availability. These applications are an open source GIS tool-kit and two geo-simulation models. The development of these tools was guided by health service issues from a developing world context but they present a general approach to enabling greater access to and flexibility in health access modelling. The tools demonstrate a method that substantially simplifies the process for conducting travel time assessments and demonstrate a dynamic, interactive approach in an open source GIS format. In addition this paper provides examples from empirical experience where these tools have informed better policy and planning. Travel and health service access is complex and cannot be reduced to a few static modeled outputs. The approaches described in this paper use a unique set of tools to explore this complexity, promote discussion and build understanding with the goal of producing better planning outcomes. The accessible, flexible, interactive and responsive nature of the applications described has the potential to allow complex environmental social and political considerations to be incorporated and visualised. Through supporting evidence-based planning the innovative modelling practices described have the potential to help local health and emergency response planning in the developing world.
The Distributed Geothermal Market Demand Model (dGeo): Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Kevin; Mooney, Meghan E; Sigrin, Benjamin O
The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistentmore » with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.« less
Multistate metadynamics for automatic exploration of conical intersections
NASA Astrophysics Data System (ADS)
Lindner, Joachim O.; Röhr, Merle I. S.; Mitrić, Roland
2018-05-01
We introduce multistate metadynamics for automatic exploration of conical intersection seams between adiabatic Born-Oppenheimer potential energy surfaces in molecular systems. By choosing the energy gap between the electronic states as a collective variable the metadynamics drives the system from an arbitrary ground-state configuration toward the intersection seam. Upon reaching the seam, the multistate electronic Hamiltonian is extended by introducing biasing potentials into the off-diagonal elements, and the molecular dynamics is continued on a modified potential energy surface obtained by diagonalization of the latter. The off-diagonal bias serves to locally open the energy gap and push the system to the next intersection point. In this way, the conical intersection energy landscape can be explored, identifying minimum energy crossing points and the barriers separating them. We illustrate the method on the example of furan, a prototype organic molecule exhibiting rich photophysics. The multistate metadynamics reveals plateaus on the conical intersection energy landscape from which the minimum energy crossing points with characteristic geometries can be extracted. The method can be combined with the broad spectrum of electronic structure methods and represents a generally applicable tool for the exploration of photophysics and photochemistry in complex molecules and materials.
Monitoring Java Programs with Java PathExplorer
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)
2001-01-01
We present recent work on the development Java PathExplorer (JPAX), a tool for monitoring the execution of Java programs. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems. The tool facilitates automated instrumentation of a program's late code which will then omit events to an observer during its execution. The observer checks the events against user provided high level requirement specifications, for example temporal logic formulae, and against lower level error detection procedures, for example concurrency related such as deadlock and data race algorithms. High level requirement specifications together with their underlying logics are defined in the Maude rewriting logic, and then can either be directly checked using the Maude rewriting engine, or be first translated to efficient data structures and then checked in Java.
How can knowledge discovery methods uncover spatio-temporal patterns in environmental data?
NASA Astrophysics Data System (ADS)
Wachowicz, Monica
2000-04-01
This paper proposes the integration of KDD, GVis and STDB as a long-term strategy, which will allow users to apply knowledge discovery methods for uncovering spatio-temporal patterns in environmental data. The main goal is to combine innovative techniques and associated tools for exploring very large environmental data sets in order to arrive at valid, novel, potentially useful, and ultimately understandable spatio-temporal patterns. The GeoInsight approach is described using the principles and key developments in the research domains of KDD, GVis, and STDB. The GeoInsight approach aims at the integration of these research domains in order to provide tools for performing information retrieval, exploration, analysis, and visualization. The result is a knowledge-based design, which involves visual thinking (perceptual-cognitive process) and automated information processing (computer-analytical process).
Empathic engineering: helping deliver dignity through design
Hosking, Ian; Cornish, Katie; Bradley, Mike; Clarkson, P. John
2015-01-01
Abstract Dignity is a key value within healthcare. Technology is also recognized as being a fundamental part of healthcare delivery, but also a potential cause of dehumanization of the patient. Therefore, understanding how medical devices can be designed to help deliver dignity is important. This paper explores the role of empathy tools as a way of engendering empathy in engineers and designers to enable them to design for dignity. A framework is proposed that makes the link between empathy tools and outcomes of feelings of dignity. It represents a broad systems view that provides a structure for reviewing the evidence for the efficacy of empathy tools and also how dignity can be systematically understood for particular medical devices. PMID:26453036
Robotic Seals as Therapeutic Tools in an Aged Care Facility: A Qualitative Study
Bodak, Marie; Barlas, Joanna; Harwood, June; Pether, Mary
2016-01-01
Robots, including robotic seals, have been used as an alternative to therapies such as animal assisted therapy in the promotion of health and social wellbeing of older people in aged care facilities. There is limited research available that evaluates the effectiveness of robot therapies in these settings. The aim of this study was to identify, explore, and describe the impact of the use of Paro robotic seals in an aged care facility in a regional Australian city. A qualitative, descriptive, exploratory design was employed. Data were gathered through interviews with the three recreational therapists employed at the facility who were also asked to maintain logs of their interactions with the Paro and residents. Data were transcribed and thematically analysed. Three major themes were identified from the analyses of these data: “a therapeutic tool that's not for everybody,” “every interaction is powerful,” and “keeping the momentum.” Findings support the use of Paro as a therapeutic tool, revealing improvement in emotional state, reduction of challenging behaviours, and improvement in social interactions of residents. The potential benefits justify the investment in Paro, with clear evidence that these tools can have a positive impact that warrants further exploration. PMID:27990301
Hammond, Davyda; Conlon, Kathryn; Barzyk, Timothy; Chahine, Teresa; Zartarian, Valerie; Schultz, Brad
2011-03-01
Communities are concerned over pollution levels and seek methods to systematically identify and prioritize the environmental stressors in their communities. Geographic information system (GIS) maps of environmental information can be useful tools for communities in their assessment of environmental-pollution-related risks. Databases and mapping tools that supply community-level estimates of ambient concentrations of hazardous pollutants, risk, and potential health impacts can provide relevant information for communities to understand, identify, and prioritize potential exposures and risk from multiple sources. An assessment of existing databases and mapping tools was conducted as part of this study to explore the utility of publicly available databases, and three of these databases were selected for use in a community-level GIS mapping application. Queried data from the U.S. EPA's National-Scale Air Toxics Assessment, Air Quality System, and National Emissions Inventory were mapped at the appropriate spatial and temporal resolutions for identifying risks of exposure to air pollutants in two communities. The maps combine monitored and model-simulated pollutant and health risk estimates, along with local survey results, to assist communities with the identification of potential exposure sources and pollution hot spots. Findings from this case study analysis will provide information to advance the development of new tools to assist communities with environmental risk assessments and hazard prioritization. © 2010 Society for Risk Analysis.
Young Scientist in the Classroom (II)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Young Scientist in the Classroom (I)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Young Scientist in the Classroom (III)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Young Scientist in the Classroom (IV)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Computational Screening of 2D Materials for Photocatalysis.
Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G
2015-03-19
Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.
Genome Editing Redefines Precision Medicine in the Cardiovascular Field
Lahm, Harald; Dreßen, Martina; Lange, Rüdiger; Wu, Sean M.; Krane, Markus
2018-01-01
Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1) the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2) the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies. PMID:29731778
Mining semantic networks of bioinformatics e-resources from the literature
2011-01-01
Background There have been a number of recent efforts (e.g. BioCatalogue, BioMoby) to systematically catalogue bioinformatics tools, services and datasets. These efforts rely on manual curation, making it difficult to cope with the huge influx of various electronic resources that have been provided by the bioinformatics community. We present a text mining approach that utilises the literature to automatically extract descriptions and semantically profile bioinformatics resources to make them available for resource discovery and exploration through semantic networks that contain related resources. Results The method identifies the mentions of resources in the literature and assigns a set of co-occurring terminological entities (descriptors) to represent them. We have processed 2,691 full-text bioinformatics articles and extracted profiles of 12,452 resources containing associated descriptors with binary and tf*idf weights. Since such representations are typically sparse (on average 13.77 features per resource), we used lexical kernel metrics to identify semantically related resources via descriptor smoothing. Resources are then clustered or linked into semantic networks, providing the users (bioinformaticians, curators and service/tool crawlers) with a possibility to explore algorithms, tools, services and datasets based on their relatedness. Manual exploration of links between a set of 18 well-known bioinformatics resources suggests that the method was able to identify and group semantically related entities. Conclusions The results have shown that the method can reconstruct interesting functional links between resources (e.g. linking data types and algorithms), in particular when tf*idf-like weights are used for profiling. This demonstrates the potential of combining literature mining and simple lexical kernel methods to model relatedness between resource descriptors in particular when there are few features, thus potentially improving the resource description, discovery and exploration process. The resource profiles are available at http://gnode1.mib.man.ac.uk/bioinf/semnets.html PMID:21388573
Schirmann, Felix
2014-01-01
This article presents a history of the early electroencephalography (EEG) of psychopathy, delinquency, and immorality in Great Britain and the United States in the 1940s and 1950s. Then, EEG was a novel research tool that promised ground-breaking insights in psychiatry and criminology. Experts explored its potential regarding the diagnosis, classification, etiology, and treatment of unethical and unlawful persons. This line of research yielded tentative and inconsistent findings, which the experts attributed to methodological and theoretical shortcomings. Accordingly, the scientific community discussed the reliability, validity, and utility of EEG, and launched initiatives to calibrate and standardize the novel tool. The analysis shows that knowledge production, gauging of the research tool, and attempts to establish credibility for EEG in the study of immoral persons occurred simultaneously. The paper concludes with a reflection on the similarities between EEG and neuroimaging—the prime research tool in the current neuroscience of morality—and calls for a critical assessment of their potentials and limitations in the study of immorality and crime. PMID:24860464
Schirmann, Felix
2014-01-01
This article presents a history of the early electroencephalography (EEG) of psychopathy, delinquency, and immorality in Great Britain and the United States in the 1940s and 1950s. Then, EEG was a novel research tool that promised ground-breaking insights in psychiatry and criminology. Experts explored its potential regarding the diagnosis, classification, etiology, and treatment of unethical and unlawful persons. This line of research yielded tentative and inconsistent findings, which the experts attributed to methodological and theoretical shortcomings. Accordingly, the scientific community discussed the reliability, validity, and utility of EEG, and launched initiatives to calibrate and standardize the novel tool. The analysis shows that knowledge production, gauging of the research tool, and attempts to establish credibility for EEG in the study of immoral persons occurred simultaneously. The paper concludes with a reflection on the similarities between EEG and neuroimaging-the prime research tool in the current neuroscience of morality-and calls for a critical assessment of their potentials and limitations in the study of immorality and crime.
Adoption of online health management tools among healthy older adults: An exploratory study.
Zettel-Watson, Laura; Tsukerman, Dmitry
2016-06-01
As the population ages and chronic diseases abound, overburdened healthcare systems will increasingly require individuals to manage their own health. Online health management tools, quickly increasing in popularity, have the potential to diminish or even replace in-person contact with health professionals, but overall efficacy and usage trends are unknown. The current study explored perceptions and usage patterns among users of online health management tools, and identified barriers and barrier-breakers among non-users. An online survey was completed by 169 computer users (aged 50+). Analyses revealed that a sizable minority (37%) of participants use online health management tools and most users (89%) are satisfied with these tools, but a limited range of tools are being used and usage occurs in relatively limited domains. Improved awareness and education for online health management tools could enhance people's abilities to remain at home as they age, reducing the financial burden on formal assistance programs. © The Author(s) 2014.
Assessing Google Cardboard Virtual Reality as a Content Delivery System in Business Classrooms
ERIC Educational Resources Information Center
Lee, Seung Hwan; Sergueeva, Ksenia; Catangui, Mathew; Kandaurova, Maria
2017-01-01
In the past, researchers have explored virtual reality (VR) as an educational tool primarily for training or therapeutic purposes. In this research, the authors examine the potential for using Google Cardboard VR in business classrooms as a content delivery platform. They specifically investigate how VR (viewing a 3-dimensional, 360° video)…
ERIC Educational Resources Information Center
Lee, Victor R.; DuMont, Maneksha
2010-01-01
There is a great potential opportunity to use portable physical activity monitoring devices as data collection tools for educational purposes. Using one such device, we designed and implemented a weeklong workshop with high school students to test the utility of such technology. During that intervention, students performed data investigations of…
ERIC Educational Resources Information Center
Cook, Deirdre M.
2001-01-01
Explores young children's mark-making in a domestic play setting. Suggests mark-making indicates aspects of the relationship between semiotic and conceptual development. Focuses on contexts in which mark-making occurs and on the authenticity of the learning events in which children participate. (DLH)
ERIC Educational Resources Information Center
Hearn, James C.; McLendon, Michael K.; Mokher, Christine G.
2008-01-01
This event history analysis explores factors driving the emergence over recent decades of comprehensive state-level student unit-record [SUR] systems, a potentially powerful tool for increasing student success. Findings suggest that the adoption of these systems is rooted in demand and ideological factors. Larger states, states with high…
Assessing Sensitivity to Unmeasured Confounding Using a Simulated Potential Confounder
ERIC Educational Resources Information Center
Carnegie, Nicole Bohme; Harada, Masataka; Hill, Jennifer L.
2016-01-01
A major obstacle to developing evidenced-based policy is the difficulty of implementing randomized experiments to answer all causal questions of interest. When using a nonexperimental study, it is critical to assess how much the results could be affected by unmeasured confounding. We present a set of graphical and numeric tools to explore the…
ERIC Educational Resources Information Center
Singh, Lenandlar
2013-01-01
Web 2.0 and specifically Social Networking Software have become ubiquitous tools for communication over the last five years. Across many disciplines, practitioners and researchers have been exploring these technologies with the hope of tapping into their perceived potential. Not least in this endeavor is the field of Education. Educators and…
Making the Invisible Visible in Science Museums through Augmented Reality Devices
ERIC Educational Resources Information Center
Yoon, Susan A.; Wang, Joyce
2014-01-01
Despite the potential of augmented reality (AR) in enabling students to construct new understanding, little is known about how the processes and interactions with the multimedia lead to increased learning. This study seeks to explore the affordances of an AR tool on learning that is focused on the science concept of magnets and magnetic fields.…
ERIC Educational Resources Information Center
Hollenbeck, Candice R.; Mason, Charlotte H.; Song, Ji Hee
2011-01-01
The design of a course has potential to help marketing students achieve their learning objectives. Marketing courses are increasingly turning to technology to facilitate teaching and learning, and pedagogical tools such as Blackboard, WebCT, and e-Learning Commons are essential to the design of a course. Here, the authors investigate the research…
ERIC Educational Resources Information Center
Sheehy, Kieron
2005-01-01
Children with severe learning difficulties who fail to begin word recognition can learn to recognise pictures and symbols relatively easily. However, finding an effective means of using pictures to teach word recognition has proved problematic. This research explores the use of morphing software to support the transition from picture to word…
Using wood composites as a tool for sustainable forestry
Jerrold E. Winandy; Robert W. Wellwood; Salim Hiziroglu
2005-01-01
This report provides a summary of technical papers presented in Session #90 of the recent IUFRO XXII World Forestry Congress held in Brisbane, Queensland, Australia, August 8â13, 2005. Papers in this report include the oral presentations, poster presentations, and panel discussions exploring and providing technical information on the potential adaptability and...
Instant Messaging between Students and Faculty: A Tool for Increasing Student-Faculty Interaction
ERIC Educational Resources Information Center
Hickerson, Corey A.; Giglio, Matt
2009-01-01
This study explores the pedagogical potential of instant messaging in a communication course. Two instructors made themselves available to students via instant messaging as a supplement to other modes of communication (e.g., e-mail, office hours). In order to gauge students' reactions to and use of the technology, the researchers kept logs of…
The Development and Publication of Elementary Mathematics Textbooks: Let the Buyer Beware!
ERIC Educational Resources Information Center
Reys, Barbara J.; Reys, Robert E.
2006-01-01
Mathematics textbooks are critical tools for student learning in American classrooms. Teachers use them daily to plan and deliver lessons, and students use them in class to explore and learn mathematics. Given textbooks' potential to support student learning, it is important to understand how they are developed. While pressure is growing on…
ERIC Educational Resources Information Center
Shahani, Vijay M.; Jenkinson, Jodie
2016-01-01
We explored analogies used for introducing students to the concept of potential energy wells. Two analogy systems were developed, a spring system and a novel system consisting of electrostatic spheres. These two, distinct analogies were housed within an interactive tool that allowed students to manipulate the analogous systems and witness changes…
What the Tech Is Going On? Social Media and Your Music Classroom
ERIC Educational Resources Information Center
Giebelhausen, Robin
2015-01-01
Social media is a dynamic tool capable of helping music teachers in various capacities. This article will explore two levels of involvement, including the personal learning network and the social classroom. When teachers use social media to its fullest potential in the music classroom, it allows for many new possibilities for the classroom,…
Success Factors for Using Case Method in Teaching and Learning Software Engineering
ERIC Educational Resources Information Center
Razali, Rozilawati; Zainal, Dzulaiha Aryanee Putri
2013-01-01
The Case Method (CM) has long been used effectively in Social Science education. Its potential use in Applied Science such as Software Engineering (SE) however has yet to be further explored. SE is an engineering discipline that concerns the principles, methods and tools used throughout the software development lifecycle. In CM, subjects are…
From Reload to ReCourse: Learning from IMS Learning Design Implementations
ERIC Educational Resources Information Center
Griffiths, David; Beauvoir, Phillip; Liber, Oleg; Barrett-Baxendale, Mark
2009-01-01
The use of the Web to deliver open, distance, and flexible learning has opened up the potential for social interaction and adaptive learning, but the usability, expressivity, and interoperability of the available tools leave much to be desired. This article explores these issues as they relate to teachers and learning designers through the case of…
Musicking as Education for Social and Ecological Peace: A New Synthesis
ERIC Educational Resources Information Center
Golden, Michael
2016-01-01
The aim of this article is twofold: first, to confirm the multi-level linkage between the ecological and social realms in terms of violence, peace, and education, and second, to explore what light ecological thinking can shed on musicking as a potentially effective tool in peace education. The effects of violence in the ecological and social…
Designing GeoGebra Applets to Maximize Student Engagement
ERIC Educational Resources Information Center
Paoletti, Teo; Monahan, Ceire; Vishnubhotla, Madhavi
2017-01-01
GeoGebra is a free tool that has the potential to change both how and what is taught in mathematics. GeoGebra allows teachers and students to explore various mathematical ideas either through the full applet (https://www.geogebra.org/graphing) or by sharing applets via GeoGebra's Materials site (https://www.geogebra. org/materials/). It has many…
Simulators and virtual reality in surgical education.
Chou, Betty; Handa, Victoria L
2006-06-01
This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.
Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study
NASA Technical Reports Server (NTRS)
Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram
2009-01-01
We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.
Lazaris, Charalampos; Kelly, Stephen; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis
2017-01-05
Chromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies. To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by adding more tools as they become available. HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets. We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of three-dimensional genome organization.
NASA Astrophysics Data System (ADS)
Moschini, Elena
Academics are beginning to explore the educational potential of Second LifeTM (SL) by setting up inworld educational activities and projects. Given the relative novelty of the use of virtual world environments in higher education many such projects are still at pilot stage. However the initial pilot and experimentation stage will have to be followed by a rigorous evaluation process as for more traditional teaching projects. The chapter addresses issues about SL research tools and research methods. It introduces a "researcher toolkit" that includes: the various stages in the evaluation of SL educational projects and the theoretical framework that can inform such projects; an outline of the inworld tools that can be utilised or customised for academic research purposes; a review of methods for collecting feedback from participants and of the main ethical issues involved in researching virtual world environments; a discussion on the technical skills required to operate a research project in SL. The chapter also offers an indication of the inworld opportunities for the dissemination of SL research findings.
WorldWide Telescope and Google Sky: New Technologies to Engage Students and the Public
NASA Astrophysics Data System (ADS)
Landsberg, R. H.; Subbarao, M. U.; Dettloff, L.
2010-08-01
New, visually rich, astronomical software environments coupled with large web-accessible data sets hold the promise of new and exciting ways to teach, collaborate, and explore the universe. These freeware tools provide contextual views of astronomical objects, real time access to multi-wavelength sky surveys, and, most importantly, the ability to incorporate new data and to produce user created content. This interactive panel examined the capabilities of Google Sky and WorldWide Telescope, and explored case studies of how these tools have been used to create compelling and participatory educational experiences in both formal (i.e., K-12 and undergraduate non-science majors classrooms), and informal (e.g., museum) settings. The overall goal of this session was to stimulate a discussion about future uses of these technologies. Substantial time was allotted for participants to create conceptual designs of learning experiences for use at their home institutions, with feedback provided by the panel members. Activities included technical discussions (e.g., mechanisms for incorporating new data and dissemination tools), exercises in narrative preparation, and a brainstorming session to identify potential future uses of these technologies.
Sotomayor, Teresita M
2010-01-01
The effectiveness of games as instructional tools has been debated over the past several decades. This is due to the lack of empirical data to support such claims. The US ARMY developed a game-based simulation to support Tactical Combat Casualty Care (TCCC) Training. The TC3 Game based Simulation is a first person game that allows a Soldier to play the role of a combat medic during an infantry squad mission in an urban environment. This research documents results from a training effectiveness evaluation conducted at the Department of Combat Medic Training (Ft Sam Houston) in an effort to explore the capability of the game based simulation as a potential tool to support the TCCC program of instruction. Reaction to training, as well as, acquisition of knowledge and transfer of skills were explored using Kirkpatrick's Model of Training Effectiveness Evaluation. Results from the evaluation are discussed.
Transphobic ‘Honour’-Based Abuse: A Conceptual Tool
Rogers, Michaela
2016-01-01
This article proposes that an understanding of transphobic ‘honour’-based abuse can be employed as a conceptual tool to explore trans people’s experiences of familial abuse. This conception has evolved by connecting a sociology of shame, Goffman’s work on stigma and ‘honour’-based ideology. The discussion draws upon findings of a qualitative study which explored trans people’s experiences of domestic violence and abuse. Narrative interviews were undertaken with 15 trans people who had either experienced abuse or whose perceptions were informed experientially through their support of others. Transcripts were analysed using the Listening Guide. Findings indicate that trans people can experience abuse as a result of a family’s perceptions of shame and stigma. This article offers a novel way of conceptualising trans people’s experiences of family-based abuse, but it also holds potential for understanding other relational contexts, for example, those of intimate partnerships. PMID:28490817
Lessons learned from a secret Facebook support group.
Oliver, Debra Parker; Washington, Karla; Wittenberg-Lyles, Elaine; Gage, Ashley; Mooney, Megan; Demiris, George
2015-05-01
The National Association of Social Workers developed practice standards for social workers using technology in their practice. These standards were derived from the foundation of the social work code of ethics and are helpful as social workers explore the use of new tools for the benefit of their clients. Hospice caregivers, both active and bereaved, are in great need of support but are often unable to attend traditional support groups. Facebook secret groups offer social workers a potential tool, given the geographic barriers that exist for traditional face-to-face support groups. The authors' experience with a secret Facebook group indicates that the technology can be useful when managed by a social worker facilitator. As social workers continue to explore helpful ways to use technology with clients, it is critical that they evaluate that practice and assess the clinical outcomes to establish an evidence base behind this practice.
Identification of facilitators and barriers to residents' use of a clinical reasoning tool.
DiNardo, Deborah; Tilstra, Sarah; McNeil, Melissa; Follansbee, William; Zimmer, Shanta; Farris, Coreen; Barnato, Amber E
2018-03-28
While there is some experimental evidence to support the use of cognitive forcing strategies to reduce diagnostic error in residents, the potential usability of such strategies in the clinical setting has not been explored. We sought to test the effect of a clinical reasoning tool on diagnostic accuracy and to obtain feedback on its usability and acceptability. We conducted a randomized behavioral experiment testing the effect of this tool on diagnostic accuracy on written cases among post-graduate 3 (PGY-3) residents at a single internal medical residency program in 2014. Residents completed written clinical cases in a proctored setting with and without prompts to use the tool. The tool encouraged reflection on concordant and discordant aspects of each case. We used random effects regression to assess the effect of the tool on diagnostic accuracy of the independent case sets, controlling for case complexity. We then conducted audiotaped structured focus group debriefing sessions and reviewed the tapes for facilitators and barriers to use of the tool. Of 51 eligible PGY-3 residents, 34 (67%) participated in the study. The average diagnostic accuracy increased from 52% to 60% with the tool, a difference that just met the test for statistical significance in adjusted analyses (p=0.05). Residents reported that the tool was generally acceptable and understandable but did not recognize its utility for use with simple cases, suggesting the presence of overconfidence bias. A clinical reasoning tool improved residents' diagnostic accuracy on written cases. Overconfidence bias is a potential barrier to its use in the clinical setting.
Microfluidic tools toward industrial biotechnology.
Oliveira, Aline F; Pessoa, Amanda C S N; Bastos, Reinaldo G; de la Torre, Lucimara G
2016-11-01
Microfluidics is a technology that operates with small amounts of fluids and makes possible the investigation of cells, enzymes, and biomolecules and encapsulation of biocatalysts in a greater variety of conditions than permitted using conventional methods. This review discusses technological possibilities that can be applied in the field of industrial biotechnology, presenting the principal definitions and fundamental aspects of microfluidic parameters to better understand advanced approaches. Specifically, concentration gradient generators, droplet-based microfluidics, and microbioreactors are explored as useful tools that can contribute to industrial biotechnology. These tools present potential applications, inclusive as commercial platforms to optimizing in bioprocesses development as screening cells, encapsulating biocatalysts, and determining critical kinetic parameters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1372-1389, 2016. © 2016 American Institute of Chemical Engineers.
ERIC Educational Resources Information Center
Young, Jennifer
2001-01-01
Explores potential for developing education for sustainability (EfS) through biodiversity planning in the UK based on a survey conducted in April 1999. Concludes that biodiversity practitioners have the tools to deliver EfS through implementation of local biodiversity action plans (LBAPs), the concept allowing close links to Local Agenda 21,…
Trial Counsel and Defense Counsel Handbook
1995-05-01
Investigate the Character of Key Witnesses.......... Consider Polygraph Or Hypnosis ...................... Explore Alternate Dispositions of the...Personnel Records Jacket (MPRJ) of each potential witness. ^3 2=17c Consider polygraph or hypnosis When an accused cannot recall relevant facts in...examination or hypnosis as defense tools. Keep in mind that statements made during a polygraph may be admissible against the client. Consider first a
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.
ERIC Educational Resources Information Center
Woods, Larry, Ed.
The 1999 American Society for Information Science (ASIS) conference explored current knowledge creation, acquisition, navigation, correlation, retrieval, management, and dissemination practicalities and potentialities, their implementation and impact, and the theories behind the developments. Speakers reviewed processes, technologies, and tools,…
Exploring Dialogue in a Virtual Space: Blogging to Learn in an Undergraduate Black Studies Course
ERIC Educational Resources Information Center
Stewart, Anissa R.
2011-01-01
A growing number of researchers claim that web-based communication tools, such as weblogs (blogs for short), have the potential to transform teaching and learning in schools across grade levels. Yet, much of this research lacks evidence of what instructors and students are actually doing with the technology, including the circumstances under which…
ERIC Educational Resources Information Center
Lockhart, Naorah C.
2017-01-01
Group counselors commonly collaborate in interdisciplinary settings in health care, substance abuse, and juvenile justice. Social network analysis is a methodology rarely used in counseling research yet has potential to examine task group dynamics in new ways. This case study explores the scholarly relationships among 36 members of an…
ERIC Educational Resources Information Center
Fonow, Mary Margaret; Cook, Judith A.; Goldsand, Richard S.; Burke-Miller, Jane K.
2016-01-01
We explored the potential of the Feldenkrais Method of somatic education as a tool for enhancing mindfulness, body awareness, and perceptions of transformational leadership capacities among college students. The intervention consisted of thirty-two, 1.25-hour long group sessions taught by a certified Feldenkrais instructor twice weekly to 21…
ERIC Educational Resources Information Center
Simon, S.; Johnson, S; Cavell, S.; Parsons, T.
2012-01-01
The paper reports on the outcomes of a study that utilized a graphical tool, Digalo, to stimulate argumentative interactions in both school and informal learning settings. Digalo was developed in a European study to explore argumentation in a range of learning environments. The focus here is on the potential for using Digalo in promoting…
The Use of a Wiki at a College in Hungary as a Tool to Enhance Personal Learning
ERIC Educational Resources Information Center
Asztalos, Réka
2014-01-01
Wikis have been extensively used in language teaching for collaborative writing. However, there are very few studies about wikis as holistic learning environments. To fill this niche, the present research project aimed to explore the potential of the wiki as a platform for knowledge building and personalized learning that may enhance lifelong…
Nudging for health: do we need financial incentives?
Goel, Vivek
2012-01-01
Nudges, creating simple processes or structures that guide people toward a particular behaviour choice, are potentially a powerful tool for health promotion. User financial incentives could be a monetary form of such nudges. Given the challenges of chronic disease prevention, interventions such as nudges should be explored further. However, there would appear to be limited rationale for pursuing financial incentives as nudges.
Atrial Arrhythmias and Their Implications for Space Flight - Introduction
NASA Technical Reports Server (NTRS)
Polk, J. D.; Barr, Y. R.; Bauer, P.; Hamilton, D. R.; Kerstman, E.; Tarver, B.
2010-01-01
This panel will discuss the implications of atrial arrhythmias in astronauts from a variety of perspectives; including historical data, current practices, and future challenges for exploration class missions. The panelists will present case histories, outline the evolution of current NASA medical standards for atrial arrhythmias, discuss the use of predictive tools, and consider potential challenges for current and future missions.
ERIC Educational Resources Information Center
Hartwell, Supaporn Kradtap
2012-01-01
A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…
ERIC Educational Resources Information Center
Iiyoshi, Toru, Ed.; Kumar, M. S. Vijay, Ed.
2008-01-01
Given the abundance of open education initiatives that aim to make educational assets freely available online, the time seems ripe to explore the potential of open education to transform the economics and ecology of education. Despite the diversity of tools and resources already available--from well-packaged course materials to simple games, for…
ERIC Educational Resources Information Center
Barker, Bruce O.; Petersen, Paul D.
This paper explores the fault-tree analysis approach to isolating failure modes within a system. Fault tree investigates potentially undesirable events and then looks for failures in sequence that would lead to their occurring. Relationships among these events are symbolized by AND or OR logic gates, AND used when single events must coexist to…
Collaborative Web-Enabled GeoAnalytics Applied to OECD Regional Data
NASA Astrophysics Data System (ADS)
Jern, Mikael
Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing collaborative geovisual analytics (GeoAnalytics). In this paper, tools are introduced that help establish progress initiatives at international and sub-national levels aimed at measuring and collaborating, through statistical indicators, economic, social and environmental developments and to engage both statisticians and the public in such activities. Given this global dimension of such a task, the “dream” of building a repository of progress indicators, where experts and public users can use GeoAnalytics collaborative tools to compare situations for two or more countries, regions or local communities, could be accomplished. While the benefits of GeoAnalytics tools are many, it remains a challenge to adapt these dynamic visual tools to the Internet. For example, dynamic web-enabled animation that enables statisticians to explore temporal, spatial and multivariate demographics data from multiple perspectives, discover interesting relationships, share their incremental discoveries with colleagues and finally communicate selected relevant knowledge to the public. These discoveries often emerge through the diverse backgrounds and experiences of expert domains and are precious in a creative analytics reasoning process. In this context, we introduce a demonstrator “OECD eXplorer”, a customized tool for interactively analyzing, and collaborating gained insights and discoveries based on a novel story mechanism that capture, re-use and share task-related explorative events.
Social media and medical education: Exploring the potential of Twitter as a learning tool.
Jalali, Alireza; Sherbino, Jonathan; Frank, Jason; Sutherland, Stephanie
2015-04-01
This study set out to explore the ways in which social media can facilitate learning in medical education. In particular we were interested in determining whether the use of Twitter during an academic conference can promote learning for participants. The Twitter transcript from the annual International Conference on Residency Education (ICRE) 2013 was qualitatively analysed for evidence of the three overarching cognitive themes: (1) preconceptions, (2) frameworks, and (3) metacognition/refl ection in regard to the National Research Council ’ s (NRC) How People Learn framework . Content analysis of the Twitter transcript revealed evidence of the three cognitive themes as related to how people learn. Twitter appears to be most effective at stimulating individuals ’ preconceptions, thereby engaging them with the new material acquired during a medical education conference. The study of social media data, such as the Twitter data used in this study, is in its infancy. Having established that Twitter does hold signifi cant potential as a learning tool during an academic conference, we are now in a better position to more closely examine the spread, depth, and sustainability of such learning during medical education meetings.
Sami, Sarmed S.; Ragunath, Krish; Iyer, Prasad G.
2014-01-01
As the incidence and mortality of esophageal adenocarcinoma continue to increase, strategies to counter this need to be explored. Screening for Barrett’s esophagus, which is the known precursor of a large majority of adenocarcinomas, has been debated without a firm consensus. Given evidence for and against perceived benefits of screening, the multitude of challenges in the implementation of such a strategy and in the downstream management of subjects with Barrett’s esophagus who could be diagnosed by screening, support for screening has been modest. Recent advances in form of development and initial accuracy of non-invasive tools for screening, risk assessment tools and biomarker panels to risk stratify subjects with BE, have spurred renewed interest in the early detection of Barrett’s esophagus and related neoplasia, particularly with the advent of effective endoscopic therapy. In this review, we explore in depth, the potential rationale for screening for Barrett’s esophagus, recent advances which have the potential of making screening feasible and also highlight some of the challenges which will have to be overcome to develop an effective approach to improve the outcomes of subjects with esophageal adenocarcinoma. PMID:24887058
Liu, X H; Song, H Y; Zhang, J X; Han, B C; Wei, X N; Ma, X H; Cui, W K; Chen, Y Z
2010-05-17
Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visualization and Interaction in Research, Teaching, and Scientific Communication
NASA Astrophysics Data System (ADS)
Ammon, C. J.
2017-12-01
Modern computing provides many tools for exploring observations, numerical calculations, and theoretical relationships. The number of options is, in fact, almost overwhelming. But the choices provide those with modest programming skills opportunities to create unique views of scientific information and to develop deeper insights into their data, their computations, and the underlying theoretical data-model relationships. I present simple examples of using animation and human-computer interaction to explore scientific data and scientific-analysis approaches. I illustrate how valuable a little programming ability can free scientists from the constraints of existing tools and can facilitate the development of deeper appreciation data and models. I present examples from a suite of programming languages ranging from C to JavaScript including the Wolfram Language. JavaScript is valuable for sharing tools and insight (hopefully) with others because it is integrated into one of the most powerful communication tools in human history, the web browser. Although too much of that power is often spent on distracting advertisements, the underlying computation and graphics engines are efficient, flexible, and almost universally available in desktop and mobile computing platforms. Many are working to fulfill the browser's potential to become the most effective tool for interactive study. Open-source frameworks for visualizing everything from algorithms to data are available, but advance rapidly. One strategy for dealing with swiftly changing tools is to adopt common, open data formats that are easily adapted (often by framework or tool developers). I illustrate the use of animation and interaction in research and teaching with examples from earthquake seismology.
Endomicroscopy imaging of epithelial structures using tissue autofluorescence
NASA Astrophysics Data System (ADS)
Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.
2011-04-01
We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.
Weiler, Monica R; Lavender, Steven A; Crawford, J Mac; Reichelt, Paul A; Conrad, Karen M; Browne, Michael W
2012-01-01
This study explored factors contributing to intervention adoption decisions among Emergency Medical Service (EMS) workers. Emergency Medical Service workers (n = 190), from six different organisations, participated in a two-month longitudinal study following the introduction of a patient transfer-board (also known as slide-board) designed to ease lateral transfers of patients to and from ambulance cots. Surveys administered at baseline, after one month and after two months sampled factors potentially influencing the EMS providers' decision process. 'Ergonomics Advantage' and 'Patient Advantage' entered into a stepwise regression model predicting 'intention to use' at the end of month one (R (2 )= 0.78). After the second month, the stepwise regression indicated only two factors were predictive of intention to use: 'Ergonomics Advantage,' and 'Endorsed by Champions' (R (2 )= 0.58). Actual use was predicted by: 'Ergonomics Advantage' and 'Previous Tool Experience.' These results relate to key concepts identified in the diffusion of innovation literature and have the potential to further ergonomics intervention adoption efforts. Practitioner Summary. This study explored factors that potentially facilitate the adoption of voluntarily used ergonomics interventions. EMS workers were provided with foldable transfer-boards (slideboards) designed to reduce the physical demands when laterally transferring patients. Factors predictive of adoption measures included perceived ergonomics advantage, the endorsement by champions, and prior tool experience.
Using component technologies for web based wavelet enhanced mammographic image visualization.
Sakellaropoulos, P; Costaridou, L; Panayiotakis, G
2000-01-01
The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.
Enabling technology for human collaboration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Tim Andrew; Jones, Wendell Bruce; Warner, David Jay
2003-11-01
This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio andmore » video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept study, and its observations are preliminary. Its main purpose is to demonstrate the potential for the tools developed here to improve the effectiveness of groups, and to suggest possible hypotheses for future exploration.« less
Modeling RF-induced Plasma-Surface Interactions with VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.
Social networking for nurse education: Possibilities, perils and pitfalls.
Green, Janet; Wyllie, Aileen; Jackson, Debra
2014-01-01
Abstract In this paper, we consider the potential and implications of using social networking sites such as Facebook® in nurse education. The concept of social networking and the use of Facebook will be explored, as will the theoretical constructs specific to the use of online technology and Web 2.0 tools. Theories around Communities of Inquiry (Garrison, Anderson, & Archer, 2000), Communities of Practice (Wenger, 1998), Activity Theory (Daniels, Cole, & Wertsch, 2007) and Actor-Network theory (Latour, 1997) will be briefly explored, as will the work of Vygotsky (1978), as applies to the social aspects of learning. Boundary issues, such as if and how faculty and students should or could be connected via social networking sites will also be explored.
Can Digital Tools Be Used for Improving Immunization Programs?
Tozzi, Alberto E; Gesualdo, Francesco; D'Ambrosio, Angelo; Pandolfi, Elisabetta; Agricola, Eleonora; Lopalco, Pierluigi
2016-01-01
In order to successfully control and eliminate vaccine-preventable infectious diseases, an appropriate vaccine coverage has to be achieved and maintained. This task requires a high level of effort as it may be compromised by a number of barriers. Public health agencies have issued specific recommendations to address these barriers and therefore improve immunization programs. In the present review, we characterize issues and challenges of immunization programs for which digital tools are a potential solution. In particular, we explore previously published research on the use of digital tools in the following vaccine-related areas: immunization registries, dose tracking, and decision support systems; vaccine-preventable diseases surveillance; surveillance of adverse events following immunizations; vaccine confidence monitoring; and delivery of information on vaccines to the public. Subsequently, we analyze the limits of the use of digital tools in such contexts and envision future possibilities and challenges.
Can Digital Tools Be Used for Improving Immunization Programs?
Tozzi, Alberto E.; Gesualdo, Francesco; D’Ambrosio, Angelo; Pandolfi, Elisabetta; Agricola, Eleonora; Lopalco, Pierluigi
2016-01-01
In order to successfully control and eliminate vaccine-preventable infectious diseases, an appropriate vaccine coverage has to be achieved and maintained. This task requires a high level of effort as it may be compromised by a number of barriers. Public health agencies have issued specific recommendations to address these barriers and therefore improve immunization programs. In the present review, we characterize issues and challenges of immunization programs for which digital tools are a potential solution. In particular, we explore previously published research on the use of digital tools in the following vaccine-related areas: immunization registries, dose tracking, and decision support systems; vaccine-preventable diseases surveillance; surveillance of adverse events following immunizations; vaccine confidence monitoring; and delivery of information on vaccines to the public. Subsequently, we analyze the limits of the use of digital tools in such contexts and envision future possibilities and challenges. PMID:27014673
Matthew B. Dickinson; Joshua C. Dickinson; Francis E. Putz; Francis E. Putz
1996-01-01
A round table discussion was convened to explore divergent views on the potential for natural forest management (NFM) for timber to contribute to wide-scale maintenance of forest cover and biological diversity in tropical forests. The general argument for NFM for timber is that, by conferring relatively more economic value on forests that alternative forest uses, NFM...
ERIC Educational Resources Information Center
Smith, Leigh K.; Draper, Roni Jo; Sabey, Brenda L.
2005-01-01
This qualitative study examined the use of WebQuests as a teaching tool in problem-based elementary methods courses. We explored the potential of WebQuests to address three dilemmas faced in teacher education: (a) modeling instruction that is based on current learning theory and research-based practices, (b) providing preservice teachers with…
ERIC Educational Resources Information Center
Angelova, Maria; Zhao, Ying
2016-01-01
The purpose of this study was to explore the potential of computer-mediated communication (CMC) tools to facilitate second language acquisition and develop English as a second language (ESL) teaching skills and cultural awareness. The paper describes a collaborative online project between students from China and the USA, who communicated using the…
It's no debate, debates are great.
Dy-Boarman, Eliza A; Nisly, Sarah A; Costello, Tracy J
A debate can be a pedagogical method used to instill essential functions in pharmacy students. This non-traditional teaching method may help to further develop a number of skills that are highlighted in the current Accreditation Council for Pharmacy Education Standards 2016 and Center for the Advancement of Pharmacy Education Educational Outcomes 2013. Debates have also been used as an educational tool in other health disciplines. Current pharmacy literature does illustrate the use of debates in various areas within the pharmacy curriculum in both required and elective courses; however, the current body of literature would suggest that debates are an underutilized teaching tool in pharmacy experiential education. With all potential benefits of debates as a teaching tool, pharmacy experiential preceptors should further explore their use in the experiential setting. Copyright © 2017 Elsevier Inc. All rights reserved.
Can, Özgün Emre; D'Cruze, Neil; Balaskas, Margaret; Macdonald, David W
2017-03-01
With around 3,200 tigers (Panthera tigris) left in the wild, the governments of 13 tiger range countries recently declared that there is a need for innovation to aid tiger research and conservation. In response to this call, we created the "Think for Tigers" study to explore whether crowdsourcing has the potential to innovate the way researchers and practitioners monitor tigers in the wild. The study demonstrated that the benefits of crowdsourcing are not restricted only to harnessing the time, labor, and funds from the public but can also be used as a tool to harness creative thinking that can contribute to development of new research tools and approaches. Based on our experience, we make practical recommendations for designing a crowdsourcing initiative as a tool for generating ideas.
Breaking Barriers and Building Bridges: Using EJ SCREEN ...
Communities across the United States are faced with concerns about environmental risks and exposures including air contaminants near roadways, proximity to hazardous waste sites and children’s environmental health. These concerns are compounded by complicated data, limited opportunities for collaboration and resource-based restrictions such as funding. This workshop will introduce innovative approaches for combining the capacity of EPA science tools - EJ SCREEN and the recently released Community Focused Exposure and Risk Screening Tool (C-FERST). Following a nationally applicable case study, participants will learn how these tools can be used sequentially to; (1) identify community environmental health ‘hotspots’; (2) take a closer look at local scale sources of exposure and; (3) use new features of the tool to target potential partners and resources across the country. By exploring the power of GIS mapping and crowdsource data, participants will leave with simple, user-defined approaches for using state of the science tools to advance their community and environmental health projects. Presentation using EJ SCREEN and C-FERST
Chapman, Ann LN; Darton, Thomas C; Foster, Rachel A
2013-01-01
Tuberculosis (TB) remains a global health emergency. Ongoing challenges include the coordination of national and international control programs, high levels of drug resistance in many parts of the world, and availability of accurate and rapid diagnostic tests. The increasing availability and reliability of Internet access throughout both affluent and resource-limited countries brings new opportunities to improve TB management and control through the integration of web-based technologies with traditional approaches. In this review, we explore current and potential future use of web-based tools in the areas of TB diagnosis, treatment, epidemiology, service monitoring, and teaching and training. PMID:24294008
Cathodic Protection Measurement Through Inline Inspection Technology Uses and Observations
NASA Astrophysics Data System (ADS)
Ferguson, Briana Ley
This research supports the evaluation of an impressed current cathodic protection (CP) system of a buried coated steel pipeline through alternative technology and methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent and mitigate external corrosion. This thesis investigates the ability to measure the current density of a pipeline's CP system from inside of a pipeline rather than manually from outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required by regulations and standards. This was demonstrated through a mathematical model that utilizes applications of Ohm's Law, circuit concepts, and attenuation principles in order to match the results of the ILI sample data by varying parameters of the model (i.e., values for over potential and coating resistivity). This research has not been conducted previously in order to determine if the protected potential range can be achieved with respect to the predicted current density from the CP ILI device. Kirchhoff's method was explored, but certain principals could not be used in the model as manual measurements were required. This research was based on circuit concepts which indirectly affected electrochemical processes. Through Ohm's law, the results show that a constant current density is possible in the protected potential range; therefore, indicates polarization of the pipeline, which leads to calcareous deposit development with respect to electrochemistry. Calcareous deposit is desirable in industry since it increases the resistance of the pipeline coating and lowers current, thus slowing the oxygen diffusion process. This research conveys that an alternative method for CP evaluation from inside of the pipeline is possible where the pipe-to-soil potential can be estimated (as required by regulations) from the ILI tool's current density measurement.
2013-01-01
Background Due to the growing number of biomedical entries in data repositories of the National Center for Biotechnology Information (NCBI), it is difficult to collect, manage and process all of these entries in one place by third-party software developers without significant investment in hardware and software infrastructure, its maintenance and administration. Web services allow development of software applications that integrate in one place the functionality and processing logic of distributed software components, without integrating the components themselves and without integrating the resources to which they have access. This is achieved by appropriate orchestration or choreography of available Web services and their shared functions. After the successful application of Web services in the business sector, this technology can now be used to build composite software tools that are oriented towards biomedical data processing. Results We have developed a new tool for efficient and dynamic data exploration in GenBank and other NCBI databases. A dedicated search GenBank system makes use of NCBI Web services and a package of Entrez Programming Utilities (eUtils) in order to provide extended searching capabilities in NCBI data repositories. In search GenBank users can use one of the three exploration paths: simple data searching based on the specified user’s query, advanced data searching based on the specified user’s query, and advanced data exploration with the use of macros. search GenBank orchestrates calls of particular tools available through the NCBI Web service providing requested functionality, while users interactively browse selected records in search GenBank and traverse between NCBI databases using available links. On the other hand, by building macros in the advanced data exploration mode, users create choreographies of eUtils calls, which can lead to the automatic discovery of related data in the specified databases. Conclusions search GenBank extends standard capabilities of the NCBI Entrez search engine in querying biomedical databases. The possibility of creating and saving macros in the search GenBank is a unique feature and has a great potential. The potential will further grow in the future with the increasing density of networks of relationships between data stored in particular databases. search GenBank is available for public use at http://sgb.biotools.pl/. PMID:23452691
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Siążnik, Artur
2013-03-01
Due to the growing number of biomedical entries in data repositories of the National Center for Biotechnology Information (NCBI), it is difficult to collect, manage and process all of these entries in one place by third-party software developers without significant investment in hardware and software infrastructure, its maintenance and administration. Web services allow development of software applications that integrate in one place the functionality and processing logic of distributed software components, without integrating the components themselves and without integrating the resources to which they have access. This is achieved by appropriate orchestration or choreography of available Web services and their shared functions. After the successful application of Web services in the business sector, this technology can now be used to build composite software tools that are oriented towards biomedical data processing. We have developed a new tool for efficient and dynamic data exploration in GenBank and other NCBI databases. A dedicated search GenBank system makes use of NCBI Web services and a package of Entrez Programming Utilities (eUtils) in order to provide extended searching capabilities in NCBI data repositories. In search GenBank users can use one of the three exploration paths: simple data searching based on the specified user's query, advanced data searching based on the specified user's query, and advanced data exploration with the use of macros. search GenBank orchestrates calls of particular tools available through the NCBI Web service providing requested functionality, while users interactively browse selected records in search GenBank and traverse between NCBI databases using available links. On the other hand, by building macros in the advanced data exploration mode, users create choreographies of eUtils calls, which can lead to the automatic discovery of related data in the specified databases. search GenBank extends standard capabilities of the NCBI Entrez search engine in querying biomedical databases. The possibility of creating and saving macros in the search GenBank is a unique feature and has a great potential. The potential will further grow in the future with the increasing density of networks of relationships between data stored in particular databases. search GenBank is available for public use at http://sgb.biotools.pl/.
Grubb, Amy; Brown, Sarah
2012-01-01
This article explores the potential role of hostage negotiator characteristics and the impact of psychological constructs on negotiator success. It explores the role of Personality, Decision-Making Style, Coping Style, Cognitive Coping Style and Emotion Regulation and Emotional Intelligence within high stress environments and occupations. The findings suggest that certain individual traits and characteristics may play a role in negotiator success, via the mediation of specific styles, which are conducive to effective crisis negotiation skills. It is proposed that these findings have application within the field of hostage/crisis negotiation in the format of guidance regarding the recruitment and selection of hostage negotiators and the identification of potential training needs within individual negotiators in order to maximize their efficacy within the field. In line with this, it is argued that a psychometric tool that assesses these constructs is developed in order to aid the process of hostage negotiation selection.
Ma, Chihua; Luciani, Timothy; Terebus, Anna; Liang, Jie; Marai, G Elisabeta
2017-02-15
Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes. We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state information corresponding to particular peaks. We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases.
Visual analysis of fluid dynamics at NASA's numerical aerodynamic simulation facility
NASA Technical Reports Server (NTRS)
Watson, Velvin R.
1991-01-01
A study aimed at describing and illustrating visualization tools used in Computational Fluid Dynamics (CFD) and indicating how these tools are likely to change by showing a projected resolution of the human computer interface is presented. The following are outlined using a graphically based test format: the revolution of human computer environments for CFD research; comparison of current environments; current environments with the ideal; predictions for the future CFD environments; what can be done to accelerate the improvements. The following comments are given: when acquiring visualization tools, potential rapid changes must be considered; environmental changes over the next ten years due to human computer interface cannot be fathomed; data flow packages such as AVS, apE, Explorer and Data Explorer are easy to learn and use for small problems, excellent for prototyping, but not so efficient for large problems; the approximation techniques used in visualization software must be appropriate for the data; it has become more cost effective to move jobs that fit on workstations and run only memory intensive jobs on the supercomputer; use of three dimensional skills will be maximized when the three dimensional environment is built in from the start.
Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.
2016-01-01
When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms. PMID:27252295
Interactive metagenomic visualization in a Web browser.
Ondov, Brian D; Bergman, Nicholas H; Phillippy, Adam M
2011-09-30
A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft
NASA Technical Reports Server (NTRS)
Silva, Christopher; Johnson, Wayne; Solis, Eduardo
2018-01-01
Python-based wrappers for OpenMDAO are used to integrate disparate software for practical conceptual design of rotorcraft. The suite of tools which are connected thus far include aircraft sizing, comprehensive analysis, and parametric geometry. The tools are exercised to design aircraft with aggressive goals for emission reductions relative to fielded state-of-the-art rotorcraft. Several advanced reduced-emission rotorcraft are designed and analyzed, demonstrating the flexibility of the tools to consider a wide variety of potentially transformative vertical flight vehicles. To explore scale effects, aircraft have been sized for 5, 24, or 76 passengers in their design missions. Aircraft types evaluated include tiltrotor, single-main-rotor, coaxial, and side-by-side helicopters. Energy and drive systems modeled include Lithium-ion battery, hydrogen fuel cell, turboelectric hybrid, and turboshaft drive systems. Observations include the complex nature of the trade space for this simple problem, with many potential aircraft design and operational solutions for achieving significant emission reductions. Also interesting is that achieving greatly reduced emissions may not require exotic component technologies, but may be achieved with a dedicated design objective of reducing emissions.
NASA Astrophysics Data System (ADS)
McNall, Rebecca Lee
This study explored how 10 beginning secondary science teachers who had completed the newly revised technology-integrated science teacher education program at the University of Virginia used educational technology in their science instruction during the induction year. Nine of the beginning teachers taught in Virginia or Maryland high schools, while one taught overseas in an international school. Participants taught biology, earth science, chemistry, physics, or general science. A revised version of the Technology Usage and Needs of Science Teachers survey (Pedersen & Yerrick, 2000) was administered to all 10 participants in early fall 2002 and late spring 2003 to assess their confidence using educational technology tools in teaching science. Follow-up interviews were conducted with all participants subsequent to survey administration to explore their views toward educational technology as an instructional tool, their use of educational technology in science instruction, and factors influencing their use. In addition, four participants were purposefully selected to characterize participants' instructional use of educational technology and to increase the likelihood of observing its use. Selection criteria of this subgroup included factors summarized from the research literature: (a) high confidence using educational technology, (b) strong intent to use educational technology instructionally, (c) access to technology tools, and (d) collegial or technology support. Survey responses were analyzed using descriptive statistics, and interview and classroom observation data were analyzed using analytic induction methods developed by Erickson (1986). Analysis of survey responses indicated that participants were confident using educational technology tools in science instruction and were most confident using word processing, spreadsheets, PowerPoint, and telecommunications applications. Classroom observations and interview responses indicated that participants used educational technology to provide visual representations of science concepts, support authentic science explorations and inquiry, and create real-world connections to science content. Limited access to educational technology resources, unfamiliarity with the curriculum, and limited time were factors limiting their use. While participants used educational technology less than they had originally intended, they continued to believe educational technology was a potentially powerful tool for teaching science and planned to continue to explore ways of incorporating it in their science instruction.
ERIC Educational Resources Information Center
Ismail, Mohd Nasir; Mamat, Nurfaezah; Jamaludin, Adnan
2018-01-01
The purpose of this study is to investigate effects of WebOPAC Self Training Tool with Guided Exploration (WSTTG), WebOPAC Self Training Tool with non-guided exploration (WSTT) and Traditional (T) groups as the learning strategies on information literacy (IL) skills standards among first year degree students in Malaysian public university. The…
Exploring Seafloor Volcanoes in Cyberspace: NOAA's "Ocean Explorer" Inspires Inquiry
ERIC Educational Resources Information Center
Hjelm, Elizabeth
2011-01-01
Seafloor exploration being done by scientists is an ideal way to introduce students to technology as a tool for inquiry. The same technology that allows scientists to share data in near real time can also provide students the tools to become researchers. NOAA's Ocean Explorer Explorations website is a rich research data bank that can be used by…
Wehrens, Rik
2015-09-01
This paper explores the potential and relevance of an innovative sociological research method known as the Imitation Game for research in health care. Whilst this method and its potential have until recently only been explored within sociology, there are many interesting and promising facets that may render this approach fruitful within the health care field, most notably to questions about the experiential knowledge or 'expertise' of chronically ill patients (and the extent to which different health care professionals are able to understand this experiential knowledge). The Imitation Game can be especially useful because it provides a way to map this experiential knowledge more systematically, without falling in the dual trap of either over-relying on in-depth, but highly specific phenomenological 'insider'-approaches that are hard to generalize, or, alternatively, problematically reducing the rich life-worlds of patients to a set of indicators in a questionnaire. The main focus of this paper is theoretical and conceptual: explaining the Imitation Game method, discussing its usefulness in the health care domain, and exploring the ways in which the approach can be utilized for chronic illness care. The paper presents both a conceptual and empirical exploration of how the Imitation Game method and its underlying theoretical concepts of 'contributory expertise' and 'interactional expertise' can be transferred from the sociological realm to the field of health care, what kinds of insights can be gained from the method, which methodological issues it may raise, and what potentially fruitful research routes can be explored. I argue that the Imitation Game can be thought of as a 'social learning experiment' that simultaneously enables the participants to learn from each other's perspectives, allows researchers to explore exciting new possibilities, and also offers the tools to intervene in the practice that is being studied.
Community Near-Port Modeling System (C-PORT): Briefing for ...
What C-PORT is: Screening level tool for assessing port activities and exploring the range of potential impacts that changes to port operations might have on local air quality; Analysis of decision alternatives through mapping of the likely pattern of potential pollutant dispersion and an estimated change in pollutant concentrations for user-designated scenarios; Designed primarily to evaluate the local air quality impacts of proposed port expansion or modernization, as well as to identify options for mitigating any impacts; Currently includes data from 21 US seaports and features a map-based interface similar to the widely used Google Earth; Still under development, C-PORT is designed as an easy-to-use computer modeling tool for users, such as state air quality managers and planners. This is part of our product outreach prior to model public release and to solicit for additional beta testers.
Exploring Scientific Information for Policy Making under Deep Uncertainty
NASA Astrophysics Data System (ADS)
Forni, L.; Galaitsi, S.; Mehta, V. K.; Escobar, M.; Purkey, D. R.; Depsky, N. J.; Lima, N. A.
2016-12-01
Each actor evaluating potential management strategies brings her/his own distinct set of objectives to a complex decision space of system uncertainties. The diversity of these objectives require detailed and rigorous analyses that responds to multifaceted challenges. However, the utility of this information depends on the accessibility of scientific information to decision makers. This paper demonstrates data visualization tools for presenting scientific results to decision makers in two case studies, La Paz/ El Alto, Bolivia, and Yuba County,California. Visualization output from the case studies combines spatiotemporal, multivariate and multirun/multiscenario information to produce information corresponding to the objectives defined by key actors and stakeholders. These tools can manage complex data and distill scientific information into accessible formats. Using the visualizations, scientists and decision makers can navigate the decision space and potential objective trade-offs to facilitate discussion and consensus building. These efforts can support identifying stable negotiatedagreements between different stakeholders.
Sansom, P; Copley, V R; Naik, F C; Leach, S; Hall, I M
2013-01-01
Statistical methods used in spatio-temporal surveillance of disease are able to identify abnormal clusters of cases but typically do not provide a measure of the degree of association between one case and another. Such a measure would facilitate the assignment of cases to common groups and be useful in outbreak investigations of diseases that potentially share the same source. This paper presents a model-based approach, which on the basis of available location data, provides a measure of the strength of association between cases in space and time and which is used to designate and visualise the most likely groupings of cases. The method was developed as a prospective surveillance tool to signal potential outbreaks, but it may also be used to explore groupings of cases in outbreak investigations. We demonstrate the method by using a historical case series of Legionnaires’ disease amongst residents of England and Wales. PMID:23483594
Novel vaccine strategies against emerging viruses
García-Sastre, Adolfo; Mena, Ignacio
2013-01-01
One of the main public health concerns of emerging viruses is their potential introduction into and sustained circulation among populations of immunologically naïve, susceptible hosts. The induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Conventional approaches to develop vaccines against emerging pathogens have significant limitations: lack of experimental tools for several emerging viruses of concern, poor immunogenicity, safety issues, or lack of cross-protection against antigenic variants. The unpredictability of the emergence of future virus threats demands the capability to rapidly develop safe, effective vaccines. We describe some recent advances in new vaccine strategies that are being explored as alternatives to classical attenuated and inactivated vaccines, and provide examples of potential novel vaccines for emerging viruses. These approaches might be applied to the control of many other emerging pathogens. PMID:23477832
Training multitasking in a virtual supermarket: a novel intervention after stroke.
Rand, Debbie; Weiss, Patrice L Tamar; Katz, Noomi
2009-01-01
To explore the potential of the VMall, a virtual supermarket running on a video-capture virtual reality system, as an intervention tool for people who have multitasking deficits after stroke. Poststroke, 4 participants received ten 60-min sessions over 3 weeks using the VMall. The intervention focused on improving multitasking while the participant was engaged in a virtual shopping task. Instruments included the Multiple Errands Test-Hospital Version (MET-HV) in a real mall and in the VMall. Participants achieved improvements ranging from 20.5% to 51.2% for most of the MET-HV measures performed in a real shopping mall and in the VMall. The data support the VMall's potential as a motivating and effective intervention tool for the rehabilitation of people poststroke who have multitasking deficits during the performance of daily tasks. However, because the sample was small, additional intervention studies with the VMall should be conducted.
Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles
NASA Technical Reports Server (NTRS)
Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.
2014-01-01
The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Anna
With recent trends toward intermittent renewable energy sources in the U.S., the geothermal industry in its current form faces a crossroad: adapt, disrupt, or be left behind. Strategic planning with scenario analysis offers a framework to characterize plausible views of the future given current trends - as well as disruptions to the status quo. To inform strategic planning in the Department of Energy's (DOE) Geothermal Technology Office (GTO), the Geothermal Vision Study is tasked with offering data-driven pathways for future geothermal development. Scenario analysis is a commonly used tool in private industry corporate strategic planning as a way to prioritizemore » and manage large investments in light of uncertainty and risk. Since much of the uncertainty and risk in a geothermal project is believed to occur within early stage exploration and drilling, this paper focuses on the levers (technical and financial) within the exploration process that can be pulled to affect change. Given these potential changes, this work first qualitatively explores potential shifts to the geothermal industry. Future work within the Geothermal Vision Study will incorporate these qualitative scenarios quantitatively, in competition with other renewable and conventional energy industries.« less
Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project
2011-10-01
promising technology on the horizon is the Diffusion Tensor Imaging ( DTI ). Diffusion tensor imaging ( DTI ) is a magnetic resonance imaging (MRI)-based...in the brain. The potential for DTI to improve our understanding of TBI has not been fully explored and challenges associated with non-existent...processing tools, quality control standards, and a shared image repository. The recommendations will be disseminated and pilot tested. A DTI of TBI
Multi-Metric Sustainability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowlin, Shannon; Heimiller, Donna; Macknick, Jordan
2014-12-01
A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.
ERIC Educational Resources Information Center
Kaplan, Randy M.; Bennett, Randy Elliot
This study explores the potential for using a computer-based scoring procedure for the formulating-hypotheses (F-H) item. This item type presents a situation and asks the examinee to generate explanations for it. Each explanation is judged right or wrong, and the number of creditable explanations is summed to produce an item score. Scores were…
NASA Human Research Wiki - An Online Collaboration Tool
NASA Technical Reports Server (NTRS)
Barr, Y. R.; Rasbury, J.; Johnson, J.; Barsten, K.; Saile, L.; Watkins, S. D.
2011-01-01
In preparation for exploration-class missions, the Exploration Medical Capability (ExMC) element of NASA's Human Research Program (HRP) has compiled a large evidence base, which previously was available only to persons within the NASA community. The evidence base is comprised of several types of data, for example: information on more than 80 medical conditions which could occur during space flight, derived from several sources (including data on incidence and potential outcomes of these medical conditions, as captured in the Integrated Medical Model's Clinical Finding Forms). In addition, approximately 35 gap reports are included in the evidence base, identifying current understanding of the medical challenges for exploration, as well as any gaps in knowledge and/or technology that would need to be addressed in order to provide adequate medical support for these novel missions. In an effort to make the ExMC information available to the general public and increase collaboration with subject matter experts within and outside of NASA, ExMC has developed an online collaboration tool, very similar to a wiki, titled the NASA Human Research Wiki. The platform chosen for this data sharing, and the potential collaboration it could generate, is a MediaWiki-based application that would house the evidence, allow "read only" access to all visitors to the website, and editorial access to credentialed subject matter experts who have been approved by the Wiki's editorial board. Although traditional wikis allow users to edit information in real time, the NASA Human Research Wiki includes a peer review process to ensure quality and validity of information. The wiki is also intended to be a pathfinder project for other HRP elements that may want to use this type of web-based tool. The wiki website will be released with a subset of the data described and will continue to be populated throughout the year.
Applied superconductivity and superfluidity for the exploration of the Moon and Mars
NASA Technical Reports Server (NTRS)
Chui, Talso C P.; Hahn, Inseob; Penanen, Konstantin; Zhong, Fang; Strayer, Donald
2005-01-01
We discuss how superconductivity and superfluidity can be applied to solve the challenges in the exploration of the Moon and Mars. High sensitivity instruments using phenomena of superconductivity and superfluidity can potentially make significant contributions to the fields of navigation, automation, habitation, and resource location. Using the quantum nature of superconductivity, lightweight and very sensitive diagnostic tools can be made to monitor the health of astronauts. Moreover, the Moon and Mars offer a unique environment for scientific exploration. We also discuss how powerful superconducting instruments may enable scientists to seek answers to several profound questions about nature. These answers will not only deepen our appreciation of the universe, they may also open the door to paradigm-shifting technologies. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Applied superconductivity and superfluidity for the exploration of the Moon and Mars.
Chui, Talso C P; Hahn, Inseob; Penanen, Konstantin; Zhong, Fang; Strayer, Donald
2005-01-01
We discuss how superconductivity and superfluidity can be applied to solve the challenges in the exploration of the Moon and Mars. High sensitivity instruments using phenomena of superconductivity and superfluidity can potentially make significant contributions to the fields of navigation, automation, habitation, and resource location. Using the quantum nature of superconductivity, lightweight and very sensitive diagnostic tools can be made to monitor the health of astronauts. Moreover, the Moon and Mars offer a unique environment for scientific exploration. We also discuss how powerful superconducting instruments may enable scientists to seek answers to several profound questions about nature. These answers will not only deepen our appreciation of the universe, they may also open the door to paradigm-shifting technologies. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun; Glukhov, Evgenia; Peng, Yao; Ackermann, Gail; Amir, Amnon; Duggan, Brendan M; Ryazanov, Sergey; Gerwick, Lena; Knight, Rob; Alexandrov, Theodore; Bandeira, Nuno; Gerwick, William H; Dorrestein, Pieter C
2017-01-01
Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI: http://dx.doi.org/10.7554/eLife.24214.001 PMID:28492366
Kirlian Photography as a Teaching Tool of Physics
NASA Astrophysics Data System (ADS)
Terrel, Andy; Thacker, Beth Ann, , Dr.
2002-10-01
There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.
Hughes, Sheryl O; Hayes, Jenna T; Sigman-Grant, Madeleine; VanBrackle, Angela
2017-02-01
Objective To provide preliminary descriptive data on caregiver and child weight status, parenting styles, feeding styles, and feeding practices of a small American Indian sample. Methods Participants included a subsample of American Indian caregivers (n = 23) identified from a larger study that was conducted in five states. Using previously validated instruments, means, standard deviations, and ranges for general parenting styles, feeding styles, and feeding practices were explored. Results In general, most caregivers reported healthy feeding practices. Most caregivers scored higher on responsive compared to restrictive or permissive in general parenting. Of the sample, 12 caregivers (52.2 %) were classified in the indulgent feeding style category, 5 caregivers (21.7 %) were classified as authoritative, 5 (21.7 %) uninvolved, and 1 (4.3 %) authoritarian. Conclusions More investigations are needed to explore questions raised by this study about using common tools that measure childhood obesity with American Indian families.
Circadian clock-deficient mice as a tool for exploring disease etiology.
Doi, Masao
2012-01-01
One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.
Kuhnel, Leslie
2018-01-01
The broad use of social networking and user-generated content has increased the online footprint of many individuals. A generation of healthcare professionals have grown up with online search activities as part of their everyday lives. Sites like Facebook, Twitter, and Instagram have given the public new ways to share intimate details about their public and private lives and the lives of their friends and families. As a result, careproviders have the ability to find out more about their patients with just the tap of a key or the click of a mouse. This type of online searching for patient information is known as patient-targeted googling or PTG. This article provides an overview of the emergence of PTG, identifies the potential benefits and possible pitfalls of engaging in PTG, and explores current ethical frameworks that guide decisions about PTG. The article describes the development of a critical thinking tool developed by the Behavioral Health Ethics Committee at CHI Health, that can serve as a best-practice model for other hospitals and health systems. Called TTaPP (Together Take a Pause and Ponder), this tool is designed to help healthcare professionals across settings practice collaborative critical thinking skills as they consider the ethical questions of whether or not to engage in PTG. Finally, this article suggests areas for further study, including ways to prompt collaboration and appropriate documentation by maximizing electronic medical records systems, exploring the effectiveness of the TTaPP tool as a way to promote a culture of collaborative critical thinking practices, and the attitudes of patients and the public regarding PTG. Copyright 2018 The Journal of Clinical Ethics. All rights reserved.
Bioresources for control of environmental pollution.
Sana, Barindra
2015-01-01
Environmental pollution is one of the biggest threats to human beings. For practical reasons it is not possible to stop most of the activities responsible for environmental pollution; rather we need to eliminate the pollutants. In addition to other existing means, biological processes can be utilized to get rid of toxic pollutants. Degradation, removal, or deactivation of pollutants by biological means is known as bioremediation. Nature itself has several weapons to deal with natural wastage and some of them are equally active for eliminating nonnatural pollutants. Several plants, microorganisms, and some lower eukaryotes utilize environmental pollutants as nutrients and some of them are very efficient for decontaminating specific types of pollutants. If exploited properly, these natural resources have enough potential to deal with most elements of environmental pollution. In addition, several artificial microbial consortia and genetically modified organisms with high bioremediation potential were developed by application of advanced scientific tools. On the other hand, natural equilibria of ecosystems are being affected by human intervention. Rapid population growth, urbanization, and industrialization are destroying ecological balances and the natural remediation ability of the Earth is being compromised. Several potential bioremediation tools are also being destroyed by biodiversity destruction of unexplored ecosystems. Pollution management by bioremediation is highly dependent on abundance, exploration, and exploitation of bioresources, and biodiversity is the key to success. Better pollution management needs the combined actions of biodiversity conservation, systematic exploration of natural resources, and their exploitation with sophisticated modern technologies.
NASA Astrophysics Data System (ADS)
Murtha, T., Jr.; Orland, B.; Goldberg, L.; Hammond, R.
2014-12-01
Deep shale natural gas deposits made accessible by new technologies are quickly becoming a considerable share of North America's energy portfolio. Unlike traditional deposits and extraction footprints, shale gas offers dispersed and complex landscape and community challenges. These challenges are both cultural and environmental. This paper describes the development and application of creative geospatial tools as a means to engage communities along the northern tier counties of Pennsylvania, experiencing Marcellus shale drilling in design and planning. Uniquely combining physical landscape models with predictive models of exploration activities, including drilling, pipeline construction and road reconstruction, the tools quantify the potential impacts of drilling activities for communities and landscapes in the commonwealth of Pennsylvania. Dividing the state into 9836 watershed sub-basins, we first describe the current state of Marcellus related activities through 2014. We then describe and report the results of three scaled predictive models designed to investigate probable sub-basins where future activities will be focused. Finally, the core of the paper reports on the second level of tools we have now developed to engage communities in planning for unconventional gas extraction in Pennsylvania. Using a geodesign approach we are working with communities to transfer information for comprehensive landscape planning and informed decision making. These tools not only quantify physical landscape impacts, but also quantify potential visual, aesthetic and cultural resource implications.
Extravehicular Activity Asteroid Exploration and Sample Collection Capability
NASA Technical Reports Server (NTRS)
Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.
2014-01-01
One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.
Nanoparticle exposure biomonitoring: exposure/effect indicator development approaches
NASA Astrophysics Data System (ADS)
Marie-Desvergne, C.; Dubosson, M.; Lacombe, M.; Brun, V.; Mossuz, V.
2015-05-01
The use of engineered nanoparticles (NP) is more and more widespread in various industrial sectors. The inhalation route of exposure is a matter of concern (adverse effects of air pollution by ultrafine particles and asbestos). No NP biomonitoring recommendations or standards are available so far. The LBM laboratory is currently studying several approaches to develop bioindicators for occupational health applications. As regards exposure indicators, new tools are being implemented to assess potentially inhaled NP in non-invasive respiratory sampling (nasal sampling and exhaled breath condensates (EBC)). Diverse NP analytical characterization methods are used (ICP-MS, dynamic light scattering and electron microscopy coupled to energy-dispersive X-ray analysis). As regards effect indicators, a methodology has been developed to assess a range of 29 cytokines in EBCs (potential respiratory inflammation due to NP exposure). Secondly, collaboration between the LBM laboratory and the EDyp team has allowed the EBC proteome to be characterized by means of an LC-MS/MS process. These projects are expected to facilitate the development of individual NP exposure biomonitoring tools and the analysis of early potential impacts on health. Innovative techniques such as field-flow fractionation combined with ICP-MS and single particle-ICPMS are currently being explored. These tools are directly intended to assist occupational physicians in the identification of exposure situations.
Interactive and Approachable Web-Based Tools for Exploring Global Geophysical Data Records
NASA Astrophysics Data System (ADS)
Croteau, M. J.; Nerem, R. S.; Merrifield, M. A.; Thompson, P. R.; Loomis, B. D.; Wiese, D. N.; Zlotnicki, V.; Larson, J.; Talpe, M.; Hardy, R. A.
2017-12-01
Making global and regional data accessible and understandable for non-experts can be both challenging and hazardous. While data products are often developed with end users in mind, the ease of use of these data can vary greatly. Scientists must take care to provide detailed guides for how to use data products to ensure users are not incorrectly applying data to their problem. For example, terrestrial water storage data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is notoriously difficult for non-experts to access and correctly use. However, allowing these data to be easily accessible to scientists outside the GRACE community is desirable because this would allow that data to see much wider-spread use. We have developed a web-based interactive mapping and plotting tool that provides easy access to geophysical data. This work presents an intuitive method for making such data widely accessible to experts and non-experts alike, making the data approachable and ensuring proper use of the data. This tool has proven helpful to experts by providing fast and detailed access to the data. Simultaneously, the tool allows non-experts to gain familiarity with the information contained in the data and access to that information for both scientific studies and public use. In this presentation, we discuss the development of this tool and application to both GRACE and ocean altimetry satellite missions, and demonstrate the capabilities of the tool. Focusing on the data visualization aspects of the tool, we showcase our integrations of the Mapbox API and the D3.js data-driven web document framework. We then explore the potential of these tools in other web-based visualization projects, and how incorporation of such tools into science can improve the presentation of research results. We demonstrate how the development of an interactive and exploratory resource can enable further layers of exploratory and scientific discovery.
Rabiei-Dastjerdi, Hamidreza; Matthews, Stephen A
2018-01-01
Recent interest in the social determinants of health (SDOH) and the effects of neighborhood contexts on individual health and well-being has grown exponentially. In this brief communication, we describe recent developments in both analytical perspectives and methods that have opened up new opportunities for researchers interested in exploring neighborhoods and health research within a SDOH framework. We focus specifically on recent advances in geographic information science, statistical methods, and spatial analytical tools. We close with a discussion of how these recent developments have the potential to enhance SDOH research in Iran.
Bridging groundwater models and decision support with a Bayesian network
Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert
2013-01-01
Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.
NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling
NASA Technical Reports Server (NTRS)
Day, Brian
2017-01-01
NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.
Inayet, N; Neild, P
2015-03-01
Over the last 50 years, parenteral nutrition has been recognised as an invaluable and potentially lifesaving tool in the physician's arsenal in the management of patients with intestinal failure or inaccessibility; however, it may also be associated with a number of potentially life-threatening complications. A recent NCEPOD report (2010) identified a number of inadequacies in the overall provision and management of parenteral nutrition and recommendations were made with the aim of improving clinical practice in the future. This paper focuses on the practical aspects relating to parenteral nutrition for adults, including important concepts, such as patient selection, as well as general management. We also explore the various pitfalls and potential complications and how these may be minimised.
Tetrazine ligation for chemical proteomics.
Kang, Kyungtae; Park, Jongmin; Kim, Eunha
2016-01-01
Determining small molecule-target protein interaction is essential for the chemical proteomics. One of the most important keys to explore biological system in chemical proteomics field is finding first-class molecular tools. Chemical probes can provide great spatiotemporal control to elucidate biological functions of proteins as well as for interrogating biological pathways. The invention of bioorthogonal chemistry has revolutionized the field of chemical biology by providing superior chemical tools and has been widely used for investigating the dynamics and function of biomolecules in live condition. Among 20 different bioorthogonal reactions, tetrazine ligation has been spotlighted as the most advanced bioorthogonal chemistry because of their extremely faster kinetics and higher specificity than others. Therefore, tetrazine ligation has a tremendous potential to enhance the proteomic research. This review highlights the current status of tetrazine ligation reaction as a molecular tool for the chemical proteomics.
Can, Özgün Emre; D’Cruze, Neil; Balaskas, Margaret; Macdonald, David W.
2017-01-01
With around 3,200 tigers (Panthera tigris) left in the wild, the governments of 13 tiger range countries recently declared that there is a need for innovation to aid tiger research and conservation. In response to this call, we created the “Think for Tigers” study to explore whether crowdsourcing has the potential to innovate the way researchers and practitioners monitor tigers in the wild. The study demonstrated that the benefits of crowdsourcing are not restricted only to harnessing the time, labor, and funds from the public but can also be used as a tool to harness creative thinking that can contribute to development of new research tools and approaches. Based on our experience, we make practical recommendations for designing a crowdsourcing initiative as a tool for generating ideas. PMID:28328924
Use of computers in dysmorphology.
Diliberti, J H
1988-01-01
As a consequence of the increasing power and decreasing cost of digital computers, dysmorphologists have begun to explore a wide variety of computerised applications in clinical genetics. Of considerable interest are developments in the areas of syndrome databases, expert systems, literature searches, image processing, and pattern recognition. Each of these areas is reviewed from the perspective of the underlying computer principles, existing applications, and the potential for future developments. Particular emphasis is placed on the analysis of the tasks performed by the dysmorphologist and the design of appropriate tools to facilitate these tasks. In this context the computer and associated software are considered paradigmatically as tools for the dysmorphologist and should be designed accordingly. Continuing improvements in the ability of computers to manipulate vast amounts of data rapidly makes the development of increasingly powerful tools for the dysmorphologist highly probable. PMID:3050092
Neurotech for Neuroscience: Unifying Concepts, Organizing Principles, and Emerging Tools
Silver, Rae; Boahen, Kwabena; Grillner, Sten; Kopell, Nancy; Olsen, Kathie L.
2012-01-01
The ability to tackle analysis of the brain at multiple levels simultaneously is emerging from rapid methodological developments. The classical research strategies of “measure,” “model,” and “make” are being applied to the exploration of nervous system function. These include novel conceptual and theoretical approaches, creative use of mathematical modeling, and attempts to build brain-like devices and systems, as well as other developments including instrumentation and statistical modeling (not covered here). Increasingly, these efforts require teams of scientists from a variety of traditional scientific disciplines to work together. The potential of such efforts for understanding directed motor movement, emergence of cognitive function from neuronal activity, and development of neuromimetic computers are described by a team that includes individuals experienced in behavior and neuroscience, mathematics, and engineering. Funding agencies, including the National Science Foundation, explore the potential of these changing frontiers of research for developing research policies and long-term planning. PMID:17978017
Exploring the potential of laser capture microdissection technology in integrated oral biosciences.
Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R
2017-09-01
Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Bensimon, Moshe; Amir, Dorit
2010-01-01
Musical presentation (MP) is a diagnostic and therapeutic music therapy tool which focuses on the participant's emotional exploration and awareness-insight development. Using this tool people present themselves through music of their choice and subsequently receive feedback from their peers. This study investigates MP as a tool for enhancing…
ePIANNO: ePIgenomics ANNOtation tool.
Liu, Chia-Hsin; Ho, Bing-Ching; Chen, Chun-Ling; Chang, Ya-Hsuan; Hsu, Yi-Chiung; Li, Yu-Cheng; Yuan, Shin-Sheng; Huang, Yi-Huan; Chang, Chi-Sheng; Li, Ker-Chau; Chen, Hsuan-Yu
2016-01-01
Recently, with the development of next generation sequencing (NGS), the combination of chromatin immunoprecipitation (ChIP) and NGS, namely ChIP-seq, has become a powerful technique to capture potential genomic binding sites of regulatory factors, histone modifications and chromatin accessible regions. For most researchers, additional information including genomic variations on the TF binding site, allele frequency of variation between different populations, variation associated disease, and other neighbour TF binding sites are essential to generate a proper hypothesis or a meaningful conclusion. Many ChIP-seq datasets had been deposited on the public domain to help researchers make new discoveries. However, researches are often intimidated by the complexity of data structure and largeness of data volume. Such information would be more useful if they could be combined or downloaded with ChIP-seq data. To meet such demands, we built a webtool: ePIgenomic ANNOtation tool (ePIANNO, http://epianno.stat.sinica.edu.tw/index.html). ePIANNO is a web server that combines SNP information of populations (1000 Genomes Project) and gene-disease association information of GWAS (NHGRI) with ChIP-seq (hmChIP, ENCODE, and ROADMAP epigenomics) data. ePIANNO has a user-friendly website interface allowing researchers to explore, navigate, and extract data quickly. We use two examples to demonstrate how users could use functions of ePIANNO webserver to explore useful information about TF related genomic variants. Users could use our query functions to search target regions, transcription factors, or annotations. ePIANNO may help users to generate hypothesis or explore potential biological functions for their studies.
Knowledge Support and Automation for Performance Analysis with PerfExplorer 2.0
Huck, Kevin A.; Malony, Allen D.; Shende, Sameer; ...
2008-01-01
The integration of scalable performance analysis in parallel development tools is difficult. The potential size of data sets and the need to compare results from multiple experiments presents a challenge to manage and process the information. Simply to characterize the performance of parallel applications running on potentially hundreds of thousands of processor cores requires new scalable analysis techniques. Furthermore, many exploratory analysis processes are repeatable and could be automated, but are now implemented as manual procedures. In this paper, we will discuss the current version of PerfExplorer, a performance analysis framework which provides dimension reduction, clustering and correlation analysis ofmore » individual trails of large dimensions, and can perform relative performance analysis between multiple application executions. PerfExplorer analysis processes can be captured in the form of Python scripts, automating what would otherwise be time-consuming tasks. We will give examples of large-scale analysis results, and discuss the future development of the framework, including the encoding and processing of expert performance rules, and the increasing use of performance metadata.« less
Optimized exploration resource evaluation using the MDT tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zainun, K.; Trice, M.L.
1995-10-01
This paper discusses exploration cost reduction and improved resource delineation benefits that were realized by use of the MDT (Modular Formation Dynamic Tester) tool to evaluate exploration prospects in the Malay Basin of the South China Sea. Frequently, open hole logs do not clearly define fluid content due to low salinity of the connate water and the effect of shale laminae or bioturbation in the silty, shaley sandstones. Therefore, extensive pressure measurements and fluid sampling are required to define fluid type and contacts. This paper briefly describes the features of the MDT tool which were utilized to reduce rig timemore » usage while providing more representative fluid samples and illustrates usage of these features with field examples. The tool has been used on several exploration wells and a comparison of MDT pressures and samples to results obtained with earlier vintage tools and production tests is also discussed.« less
Applying Pragmatics Principles for Interaction with Visual Analytics.
Hoque, Enamul; Setlur, Vidya; Tory, Melanie; Dykeman, Isaac
2018-01-01
Interactive visual data analysis is most productive when users can focus on answering the questions they have about their data, rather than focusing on how to operate the interface to the analysis tool. One viable approach to engaging users in interactive conversations with their data is a natural language interface to visualizations. These interfaces have the potential to be both more expressive and more accessible than other interaction paradigms. We explore how principles from language pragmatics can be applied to the flow of visual analytical conversations, using natural language as an input modality. We evaluate the effectiveness of pragmatics support in our system Evizeon, and present design considerations for conversation interfaces to visual analytics tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.
One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topicsmore » in further detail.« less
Student loan burden and its impact on career decisions in dermatology.
Nguyen, Jannett; Song, Eingun; Liu, Michael A; Lee, Patrick K; Truong, Sam
2017-12-01
Dermatology departments in the United States face difficulties in recruiting dermatologists to academic positions, raising concerns for the future of dermatology education and research. This preliminary study aimed to explore the impact of student loan burden on career plans in dermatology and to determine if the Public Service Loan Forgiveness (PSLF) program can be used as a recruitment tool for academic positions in dermatology. Results from this electronic survey, which was distributed to dermatology residents and attending physicians, revealed that debt burden may influence career decisions in dermatology. Dermatologists may not be fully educated on loan repayment options. With increased awareness, the PSLF can potentially be used as a recruitment tool for academic positions in dermatology.
Zhang, Jie; Feng, Guo-Hua; Zou, Chun-Yan; Su, Pin-Can; Liu, Huai-E; Yang, Zhao-Qing
2017-11-18
Artemisinin resistance in Plasmodium falciparum threatens the remarkable efficacy of artemisinin-based combination therapies worldwide. Thus, greater insight into the resistance mechanism using monitoring tools is essential. The ring-stage survival assay is used for phenotyping artemisinin-resistance or decreased artemisinin sensitivity. Here, we review the progress of this measurement assay and explore its limitations and potential applications.
ERIC Educational Resources Information Center
Fazeli, Seyed Hossein
2011-01-01
Since Language Learning Strategies (LLSs) have the potential to be "an extremely powerful learning tool" (O'Malley, Chamot, Stewner-Manzanares, Russo & Kupper, 1985a, p.43), the use of LLSs helps the learners retrieve and store material, and facilitate their learning (Grander & Maclntyre, 1992), they are sensitive to the learning context and to…
ERIC Educational Resources Information Center
Coniam, David; Wong, Richard
2004-01-01
This pilot study explores the use of Internet Relay Chat facilities such as ICQ in an independent-use mode, as a vehicle for potential English language enhancement. In a small-scale study, a number of Hong Kong secondary school students (Grades 7-10) agreed to participate in an on-line "chatting" programme (in a text-only mode) for a minimum of 20…
ERIC Educational Resources Information Center
Weisbrod, David L.
This booklet, one of a series of background papers for the White House Conference, explores the potential of new technologies to improve library services while reducing library costs. Separate subsections describe the application of technology to the following library functions: acquisitions, catalogs and cataloging, serials control, circulation…
Quantitative Imaging In Pathology (QUIP) | Informatics Technology for Cancer Research (ITCR)
This site hosts web accessible applications, tools and data designed to support analysis, management, and exploration of whole slide tissue images for cancer research. The following tools are included: caMicroscope: A digital pathology data management and visualization plaform that enables interactive viewing of whole slide tissue images and segmentation results. caMicroscope can be also used independently of QUIP. FeatureExplorer: An interactive tool to allow patient-level feature exploration across multiple dimensions.
NASA Technical Reports Server (NTRS)
Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.
2009-01-01
Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.
Interactive metagenomic visualization in a Web browser
2011-01-01
Background A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Results Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Conclusions Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net. PMID:21961884
Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation
NASA Astrophysics Data System (ADS)
Wender, Benjamin
Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA---building on the theory of anticipatory governance---as a series of methodological improvements that seek to align LCA practices with the objectives of RRI. Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and rapid increases in scale of deployment. The chapter concludes with a series of research recommendations that seek to direct PV research agenda towards pathways with the greatest potential for environmental improvement. Similar to PV, engineered nanomaterials (ENMs) are an emerging technology with numerous potential applications, are the subject of active R&D efforts, and are characterized by high uncertainty regarding potential environmental implications. Chapter three introduces a Monte Carlo impact assessment tool based on the toxicity impact assessment model USEtox and demonstrates stochastic characterization factor (CF) development to prioritize risk research with the greatest potential to improve certainty in CFs. The case study explores a hypothetical decision in which personal care product developers are interested in replacing the conventional antioxidant niacinamide with the novel ENM C 60, but face high data uncertainty, are unsure regarding potential ecotoxicity impacts associated with this substitution, and do not know what future risk-relevant experiments to invest in that most efficiently improve certainty in the comparison. Results suggest experiments that elucidate C60 partitioning to suspended solids should be prioritized over parameters with little influence on results. This dissertation demonstrates a novel anticipatory approach to exploration of uncertainty in environmental models that can create new, actionable knowledge with potential to guide future research and development decisions.
Modelling the urban water cycle as an integrated part of the city: a review.
Urich, Christian; Rauch, Wolfgang
2014-01-01
In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.
Data Standards for Flow Cytometry
SPIDLEN, JOSEF; GENTLEMAN, ROBERT C.; HAALAND, PERRY D.; LANGILLE, MORGAN; MEUR, NOLWENN LE; OCHS, MICHAEL F.; SCHMITT, CHARLES; SMITH, CLAYTON A.; TREISTER, ADAM S.; BRINKMAN, RYAN R.
2009-01-01
Flow cytometry (FCM) is an analytical tool widely used for cancer and HIV/AIDS research, and treatment, stem cell manipulation and detecting microorganisms in environmental samples. Current data standards do not capture the full scope of FCM experiments and there is a demand for software tools that can assist in the exploration and analysis of large FCM datasets. We are implementing a standardized approach to capturing, analyzing, and disseminating FCM data that will facilitate both more complex analyses and analysis of datasets that could not previously be efficiently studied. Initial work has focused on developing a community-based guideline for recording and reporting the details of FCM experiments. Open source software tools that implement this standard are being created, with an emphasis on facilitating reproducible and extensible data analyses. As well, tools for electronic collaboration will assist the integrated access and comprehension of experiments to empower users to collaborate on FCM analyses. This coordinated, joint development of bioinformatics standards and software tools for FCM data analysis has the potential to greatly facilitate both basic and clinical research—impacting a notably diverse range of medical and environmental research areas. PMID:16901228
Chronodes: Interactive Multifocus Exploration of Event Sequences
POLACK, PETER J.; CHEN, SHANG-TSE; KAHNG, MINSUK; DE BARBARO, KAYA; BASOLE, RAHUL; SHARMIN, MOUSHUMI; CHAU, DUEN HORNG
2018-01-01
The advent of mobile health (mHealth) technologies challenges the capabilities of current visualizations, interactive tools, and algorithms. We present Chronodes, an interactive system that unifies data mining and human-centric visualization techniques to support explorative analysis of longitudinal mHealth data. Chronodes extracts and visualizes frequent event sequences that reveal chronological patterns across multiple participant timelines of mHealth data. It then combines novel interaction and visualization techniques to enable multifocus event sequence analysis, which allows health researchers to interactively define, explore, and compare groups of participant behaviors using event sequence combinations. Through summarizing insights gained from a pilot study with 20 behavioral and biomedical health experts, we discuss Chronodes’s efficacy and potential impact in the mHealth domain. Ultimately, we outline important open challenges in mHealth, and offer recommendations and design guidelines for future research. PMID:29515937
Identifying High Potential Well Targets with 3D Seismic and Mineralogy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellors, R. J.
2015-10-30
Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in identifying the highly-permeable zones essential for economic hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, identifying permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to identify and mapmore » permeable zones in a hydrothermal area.« less
Fluorescent probes for exploring plant cell wall deconstruction: a review.
Paës, Gabriel
2014-07-03
Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.
Golgi: Interactive Online Brain Mapping
Brown, Ramsay A.; Swanson, Larry W.
2015-01-01
Golgi (http://www.usegolgi.com) is a prototype interactive brain map of the rat brain that helps researchers intuitively interact with neuroanatomy, connectomics, and cellular and chemical architecture. The flood of “-omic” data urges new ways to help researchers connect discrete findings to the larger context of the nervous system. Here we explore Golgi’s underlying reasoning and techniques and how our design decisions balance the constraints of building both a scientifically useful and usable tool. We demonstrate how Golgi can enhance connectomic literature searches with a case study investigating a thalamocortical circuit involving the Nucleus Accumbens and we explore Golgi’s potential and future directions for growth in systems neuroscience and connectomics. PMID:26635596
Skin Biomarkers for Cystic Fibrosis: A Potential Non-Invasive Approach for Patient Screening.
Esteves, Cibele Zanardi; de Aguiar Dias, Letícia; de Oliveira Lima, Estela; de Oliveira, Diogo Noin; Rodrigues Melo, Carlos Fernando Odir; Delafiori, Jeany; Souza Gomez, Carla Cristina; Ribeiro, José Dirceu; Ribeiro, Antônio Fernando; Levy, Carlos Emílio; Catharino, Rodrigo Ramos
2017-01-01
Cystic fibrosis (CF) is a disabling genetic disease with an increased prevalence in European heritage populations. Currently, the most used technique for collection of CF samples and diagnosis is provided through uncomfortable tests, with uncertain results, mostly based on chloride concentration in sweat. Since CF mutation induces many metabolic changes in patients, exploring these alterations might be an alternative to visualize potential biomarkers that could be used as interesting tools for further diagnostic upgrade, prioritizing simplicity, low cost, and quickness. This contribution describes an accurate strategy to provide potential biomarkers related to CF, which may be understood as a potential tool for new diagnostic approaches and/or for monitoring disease evolution. Therefore, the present proposal consists of using skin imprints on silica plates as a way of sample collection, followed by direct-infusion high-resolution mass spectrometry and multivariate data analysis, intending to identify metabolic changes in skin composition of CF patients. Metabolomics analysis allowed identifying chemical markers that can be traced back to CF in patients' skin imprints, differently from control subjects. Seven chemical markers from several molecular classes were elected, represented by bile acids, a glutaric acid derivative, thyrotropin-releasing hormone, an inflammatory mediator, a phosphatidic acid, and diacylglycerol isomers, all reflecting metabolic disturbances that occur due to of CF. The comfortable method of sample collection combined with the identified set of biomarkers represent potential tools that open the range of possibilities to manage CF and follow the disease evolution. This exploratory approach points to new perspectives about the development of diagnostic assay using biomarkers and the management CF.
Effective methodology to derive strategic decisions from ESA exploration technology roadmaps
NASA Astrophysics Data System (ADS)
Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2016-09-01
Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.
A New Tool for Exploring Climate Change Induced Range Shifts of Conifer Species in China
Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong
2014-01-01
It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management. PMID:25268604
A new tool for exploring climate change induced range shifts of conifer species in China.
Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong
2014-01-01
It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management.
2009-06-01
AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet
Biological ageing and frailty markers in breast cancer patients.
Brouwers, Barbara; Dalmasso, Bruna; Hatse, Sigrid; Laenen, Annouschka; Kenis, Cindy; Swerts, Evalien; Neven, Patrick; Smeets, Ann; Schöffski, Patrick; Wildiers, Hans
2015-05-01
Older cancer patients are a highly heterogeneous population in terms of global health and physiological reserves, and it is often difficult to determine the best treatment. Moreover, clinical tools currently used to assess global health require dedicated time and lack a standardized end score. Circulating markers of biological age and/or fitness could complement or partially substitute the existing screening tools. In this study we explored the relationship of potential ageing/frailty biomarkers with age and clinical frailty. On a population of 82 young and 162 older non-metastatic breast cancer patients, we measured mean leukocyte telomere length and plasma levels of interleukin-6 (IL-6), regulated upon activation, normal T cell expressed and secreted (RANTES), monocyte chemotactic protein 1 (MCP-1), insulin-like growth factor 1 (IGF-1). We also developed a new tool to summarize clinical frailty, designated Leuven Oncogeriatric Frailty Score (LOFS), by integrating GA results in a single, semi-continuous score. LOFS' median score was 8, on a scale from 0=frail to 10=fit. IL-6 levels were associated with chronological age in both groups and with clinical frailty in older breast cancer patients, whereas telomere length, IGF-1 and MCP-1 only correlated with age. Plasma IL-6 should be further explored as frailty biomarker in cancer patients.
An Overview of the Runtime Verification Tool Java PathExplorer
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)
2002-01-01
We present an overview of the Java PathExplorer runtime verification tool, in short referred to as JPAX. JPAX can monitor the execution of a Java program and check that it conforms with a set of user provided properties formulated in temporal logic. JPAX can in addition analyze the program for concurrency errors such as deadlocks and data races. The concurrency analysis requires no user provided specification. The tool facilitates automated instrumentation of a program's bytecode, which when executed will emit an event stream, the execution trace, to an observer. The observer dispatches the incoming event stream to a set of observer processes, each performing a specialized analysis, such as the temporal logic verification, the deadlock analysis and the data race analysis. Temporal logic specifications can be formulated by the user in the Maude rewriting logic, where Maude is a high-speed rewriting system for equational logic, but here extended with executable temporal logic. The Maude rewriting engine is then activated as an event driven monitoring process. Alternatively, temporal specifications can be translated into efficient automata, which check the event stream. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems.
Enabling Rapid Naval Architecture Design Space Exploration
NASA Technical Reports Server (NTRS)
Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri
2011-01-01
Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.
Teachers' Use of Computational Tools to Construct and Explore Dynamic Mathematical Models
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron
2011-01-01
To what extent does the use of computational tools offer teachers the possibility of constructing dynamic models to identify and explore diverse mathematical relations? What ways of reasoning or thinking about the problems emerge during the model construction process that involves the use of the tools? These research questions guided the…
NASA Astrophysics Data System (ADS)
Bleacher, J. E.; Gendreau, K.; Arzoumanian, Z.; Young, K. E.; McAdam, A.
2018-02-01
Science instruments to be used during human exploration should be designed to serve as multipurpose tools that are of use throughout a mission. Here we discuss a multipurpose tool approach to using contact XRD/XRF onboard the Deep Space Gateway.
Urban Health Indicator Tools of the Physical Environment: a Systematic Review.
Pineo, Helen; Glonti, Ketevan; Rutter, Harry; Zimmermann, Nici; Wilkinson, Paul; Davies, Michael
2018-04-16
Urban health indicator (UHI) tools provide evidence about the health impacts of the physical urban environment which can be used in built environment policy and decision-making. Where UHI tools provide data at the neighborhood (and lower) scale they can provide valuable information about health inequalities and environmental deprivation. This review performs a census of UHI tools and explores their nature and characteristics (including how they represent, simplify or address complex systems) to increase understanding of their potential use by municipal built environment policy and decision-makers. We searched seven bibliographic databases, four key journals and six practitioner websites and conducted Google searches between January 27, 2016 and February 24, 2016 for UHI tools. We extracted data from primary studies and online indicator systems. We included 198 documents which identified 145 UHI tools comprising 8006 indicators, from which we developed a taxonomy. Our taxonomy classifies the significant diversity of UHI tools with respect to topic, spatial scale, format, scope and purpose. The proportions of UHI tools which measure data at the neighborhood and lower scale, and present data via interactive maps, have both increased over time. This is particularly relevant to built environment policy and decision-makers, reflects growing analytical capability and offers the potential for improved understanding of the complexity of influences on urban health (an aspect noted as a particular challenge by some indicator producers). The relation between urban health indicators and health impacts attributable to modifiable environmental characteristics is often indirect. Furthermore, the use of UHI tools in policy and decision-making appears to be limited, thus raising questions about the continued development of such tools by multiple organisations duplicating scarce resources. Further research is needed to understand the requirements of built environment policy and decision-makers, public health professionals and local communities regarding the form and presentation of indicators which support their varied objectives.
O'Connor, Annette M; Tsafnat, Guy; Gilbert, Stephen B; Thayer, Kristina A; Wolfe, Mary S
2018-01-09
The second meeting of the International Collaboration for Automation of Systematic Reviews (ICASR) was held 3-4 October 2016 in Philadelphia, Pennsylvania, USA. ICASR is an interdisciplinary group whose aim is to maximize the use of technology for conducting rapid, accurate, and efficient systematic reviews of scientific evidence. Having automated tools for systematic review should enable more transparent and timely review, maximizing the potential for identifying and translating research findings to practical application. The meeting brought together multiple stakeholder groups including users of summarized research, methodologists who explore production processes and systematic review quality, and technologists such as software developers, statisticians, and vendors. This diversity of participants was intended to ensure effective communication with numerous stakeholders about progress toward automation of systematic reviews and stimulate discussion about potential solutions to identified challenges. The meeting highlighted challenges, both simple and complex, and raised awareness among participants about ongoing efforts by various stakeholders. An outcome of this forum was to identify several short-term projects that participants felt would advance the automation of tasks in the systematic review workflow including (1) fostering better understanding about available tools, (2) developing validated datasets for testing new tools, (3) determining a standard method to facilitate interoperability of tools such as through an application programming interface or API, and (4) establishing criteria to evaluate the quality of tools' output. ICASR 2016 provided a beneficial forum to foster focused discussion about tool development and resources and reconfirm ICASR members' commitment toward systematic reviews' automation.
Exploring the use of concept chains to structure teacher trainees' understanding of science
NASA Astrophysics Data System (ADS)
Machin, Janet; Varleys, Janet; Loxley, Peter
2004-12-01
This paper reports on a paper and pencil concept-sorting strategy that enables trainee teachers to restructure their knowledge in any one domain of science. It is used as a self-study tool, mainly to enable them to break down and understand the progression of concepts beyond the level at which they have to teach. The strategy involves listing key ideas in an increasingly complex and inclusive fashion such that a 'chain' is developed where the initial statements are simple and the final ones more complex. Evaluation of the strategy with trainees over a five-year period revealed promising potential for the strategy as a self-study tool, as well as an audit tool, enabling tutors to more easily identify misconceptions. There was some evidence that trainees found the strategy useful in preparing themselves to teach in the classroom, possibly by enabling meaningful learning to take place according to the Ausubel-Novak-Gowin theory.
New tools for the analysis of glial cell biology in Drosophila.
Awasaki, Takeshi; Lee, Tzumin
2011-09-01
Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila. Copyright © 2011 Wiley-Liss, Inc.
Chaplain Documentation and the Electronic Medical Record: A Survey of ACPE Residency Programs.
Tartaglia, Alexander; Dodd-McCue, Diane; Ford, Timothy; Demm, Charles; Hassell, Alma
2016-01-01
This study explores the extent to which chaplaincy departments at ACPE-accredited residency programs make use of the electronic medical record (EMR) for documentation and training. Survey data solicited from 219 programs with a 45% response rate and interview findings from 11 centers demonstrate a high level of usage of the EMR as well as an expectation that CPE residents document each patient/family encounter. Centers provided considerable initial training, but less ongoing monitoring of chaplain documentation. Centers used multiple sources to develop documentation tools for the EMR. One center was verified as having created the spiritual assessment component of the documentation tool from a peer reviewed published model. Interviews found intermittent use of the student chart notes for educational purposes. One center verified a structured manner of monitoring chart notes as a performance improvement activity. Findings suggested potential for the development of a standard documentation tool for chaplain charting and training.
Multi-agent electricity market modeling with EMCAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M.; Macal, C.; Conzelmann, G.
2002-09-05
Electricity systems are a central component of modern economies. Many electricity markets are transitioning from centrally regulated systems to decentralized markets. Furthermore, several electricity markets that have recently undergone this transition have exhibited extremely unsatisfactory results, most notably in California. These high stakes transformations require the introduction of largely untested regulatory structures. Suitable tools that can be used to test these regulatory structures before they are applied to real systems are required. Multi-agent models can provide such tools. To better understand the requirements such as tool, a live electricity market simulation was created. This experience helped to shape the developmentmore » of the multi-agent Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.« less
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-06-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-09-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
Arroyo, Adrian; Matsuzawa, Tetsuro; de la Torre, Ignacio
2015-01-01
Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/ anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record. PMID:25793642
Geospatial analysis identifies critical mineral-resource potential in Alaska
Karl, Susan M.; Labay, Keith A.; Jacques, Katherine; Landowski, Claire
2017-03-03
Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.
Zhu, Jinning; Xu, Xuan; Tao, Qing; Yi, Panpan; Yu, Dan; Xu, Xinwei
2017-07-01
Ecological niche modeling is an effective tool to characterize the spatial distribution of suitable areas for species, and it is especially useful for predicting the potential distribution of invasive species. The widespread submerged plant Hydrilla verticillata (hydrilla) has an obvious phylogeographical pattern: Four genetic lineages occupy distinct regions in native range, and only one lineage invades the Americas. Here, we aimed to evaluate climatic niche conservatism of hydrilla in North America at the intraspecific level and explore its invasion potential in the Americas by comparing climatic niches in a phylogenetic context. Niche shift was found in the invasion process of hydrilla in North America, which is probably mainly attributed to high levels of somatic mutation. Dramatic changes in range expansion in the Americas were predicted in the situation of all four genetic lineages invading the Americas or future climatic changes, especially in South America; this suggests that there is a high invasion potential of hydrilla in the Americas. Our findings provide useful information for the management of hydrilla in the Americas and give an example of exploring intraspecific climatic niche to better understand species invasion.
Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.
Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Hyeon Yoo, Tae; Lee, Chong-Soon; Yun, Hyungdon
2015-12-01
The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hoppe, Christian; Obermeier, Patrick; Muehlhans, Susann; Alchikh, Maren; Seeber, Lea; Tief, Franziska; Karsch, Katharina; Chen, Xi; Boettcher, Sindy; Diedrich, Sabine; Conrad, Tim; Kisler, Bron; Rath, Barbara
2016-10-01
Regulatory authorities often receive poorly structured safety reports requiring considerable effort to investigate potential adverse events post hoc. Automated question-and-answer systems may help to improve the overall quality of safety information transmitted to pharmacovigilance agencies. This paper explores the use of the VACC-Tool (ViVI Automated Case Classification Tool) 2.0, a mobile application enabling physicians to classify clinical cases according to 14 pre-defined case definitions for neuroinflammatory adverse events (NIAE) and in full compliance with data standards issued by the Clinical Data Interchange Standards Consortium. The validation of the VACC-Tool 2.0 (beta-version) was conducted in the context of a unique quality management program for children with suspected NIAE in collaboration with the Robert Koch Institute in Berlin, Germany. The VACC-Tool was used for instant case classification and for longitudinal follow-up throughout the course of hospitalization. Results were compared to International Classification of Diseases , Tenth Revision (ICD-10) codes assigned in the emergency department (ED). From 07/2013 to 10/2014, a total of 34,368 patients were seen in the ED, and 5243 patients were hospitalized; 243 of these were admitted for suspected NIAE (mean age: 8.5 years), thus participating in the quality management program. Using the VACC-Tool in the ED, 209 cases were classified successfully, 69 % of which had been missed or miscoded in the ED reports. Longitudinal follow-up with the VACC-Tool identified additional NIAE. Mobile applications are taking data standards to the point of care, enabling clinicians to ascertain potential adverse events in the ED setting and during inpatient follow-up. Compliance with Clinical Data Interchange Standards Consortium (CDISC) data standards facilitates data interoperability according to regulatory requirements.
Exploring a model-driven architecture (MDA) approach to health care information systems development.
Raghupathi, Wullianallur; Umar, Amjad
2008-05-01
To explore the potential of the model-driven architecture (MDA) in health care information systems development. An MDA is conceptualized and developed for a health clinic system to track patient information. A prototype of the MDA is implemented using an advanced MDA tool. The UML provides the underlying modeling support in the form of the class diagram. The PIM to PSM transformation rules are applied to generate the prototype application from the model. The result of the research is a complete MDA methodology to developing health care information systems. Additional insights gained include development of transformation rules and documentation of the challenges in the application of MDA to health care. Design guidelines for future MDA applications are described. The model has the potential for generalizability. The overall approach supports limited interoperability and portability. The research demonstrates the applicability of the MDA approach to health care information systems development. When properly implemented, it has the potential to overcome the challenges of platform (vendor) dependency, lack of open standards, interoperability, portability, scalability, and the high cost of implementation.
Que, Syril Keena T; Grant-Kels, Jane M; Longo, Caterina; Pellacani, Giovanni
2016-10-01
The use of reflectance confocal microscopy (RCM) and other noninvasive imaging devices can potentially streamline clinical care, leading to more precise and efficient management of skin cancer. This article explores the potential role of RCM in cutaneous oncology, as an adjunct to more established techniques of detecting and monitoring for skin cancer, such as dermoscopy and total body photography. Discussed are current barriers to the adoption of RCM, diagnostic workflows and standards of care in the United States and Europe, and medicolegal issues. The potential role of RCM and other similar technological innovations in the enhancement of dermatologic care is evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.
Knowledge mapping as a technique to support knowledge translation.
Ebener, S.; Khan, A.; Shademani, R.; Compernolle, L.; Beltran, M.; Lansang, Ma; Lippman, M.
2006-01-01
This paper explores the possibility of integrating knowledge mapping into a conceptual framework that could serve as a tool for understanding the many complex processes, resources and people involved in a health system, and for identifying potential gaps within knowledge translation processes in order to address them. After defining knowledge mapping, this paper presents various examples of the application of this process in health, before looking at the steps that need to be taken to identify potential gaps, to determine to what extent these gaps affect the knowledge translation process and to establish their cause. This is followed by proposals for interventions aimed at strengthening the overall process. Finally, potential limitations on the application of this framework at the country level are addressed. PMID:16917651
NASA Astrophysics Data System (ADS)
Doran, Rosa
Bringing space exploration recent results and future challenges and opportunities to the knowledge of students has been a preoccupation of educators and space agencies for quite some time. The will to foster student’s interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of “Big Data”. Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student’s path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission’s results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes and Radio Antennas - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets or the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Participants will also have the opportunity to use one of the radio antennas devoted for education from the EUHOU Consortium (European Hands-on Universe). A map of the arms of our galaxy will be built during the training session. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies to the construction of colour images, from making movies exhibiting the circular motion of the Sun to Jupiter Moons dance around the planet. e-learning repositories - In the ICT age it is very important that educators have support and know where to find meaningful and curriculum adapted resources for the construction of modern lessons. Some repositories will be presented in this session. Examples of such repositories are: Discover the Cosmos and EUHOU or a congregator of such repositories with quite advanced possibilities to support the work of teachers, the Open Discovery Space portal. This type of sessions are being successfully implemented by the Galileo Teacher Training Program team in Portugal under the scope of the EC funded GO-LAB project. This is a project devoted to demonstrate innovative ways to involve teachers and students in e-Science through the use of virtual labs, that simulate experiments, in order to spark young people’s interest in science and in following scientific careers.
Cortical localization of cognitive function by regression of performance on event-related potentials
NASA Technical Reports Server (NTRS)
Montgomery, R. W.; Montgomery, L. D.; Guisado, R.
1992-01-01
This paper demonstrates a new method of mapping cortical localization of cognitive function, using electroencephalographic data. Cross-subject regression analyses are used to identify cortical sites and post-stimulus latencies where there is a high correlation between subjects' performance and their cognitive event-related potential amplitude. The procedure was tested using a mental arithmetic task and was found to identify essentially the same cortical regions that have been associated with such tasks on the basis of research with patients suffering localized cortical lesions. Thus, it appears to offer an inexpensive, noninvasive tool for exploring the dynamics of localization in neurologically normal subjects.
Applications of airborne remote sensing in atmospheric sciences research
NASA Technical Reports Server (NTRS)
Serafin, R. J.; Szejwach, G.; Phillips, B. B.
1984-01-01
This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.
Building a Partnership between the United States and India: Exploring Airpower’s Potential
2015-04-01
increasing, it is incumbent upon both the Indian and American leadership to find cost -effective, nonkinetic means of de- fending their interests in the...Partnership between the United States and India Feature India’s military power without necessarily upping the ante. Given the IAF’s budgetary constraints...deploy rapidly to locations around the world, the USAF is undoubtedly America’s best tool for supplying immediate assistance. These low- cost missions are
2006-09-01
The aim of the two parts of the experiment was identical: To explore concepts and supporting tools for Effects Based Approach to Operations (EBAO...feedback on the PMESII factors over time and the degree of achievement of the Operational Endstate. Modelling & Simulation Support to the Effects ...specific situation depends also on his interests. GAMMA provides two different methods: 1. The importance for different PMESII factors (ie potential
SPARCLE: Electrostatic Dust Control Tool Proof of Concept
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.
2010-01-01
Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.
NASA Astrophysics Data System (ADS)
Bauer, J. R.; Rose, K.; Romeo, L.; Barkhurst, A.; Nelson, J.; Duran-Sesin, R.; Vielma, J.
2016-12-01
Efforts to prepare for and reduce the risk of hazards, from both natural and anthropogenic sources, which threaten our oceans and coasts requires an understanding of the dynamics and interactions between the physical, ecological, and socio-economic systems. Understanding these coupled dynamics are essential as offshore oil & gas exploration and production continues to push into harsher, more extreme environments where risks and uncertainty increase. However, working with these large, complex data from various sources and scales to assess risks and potential impacts associated with offshore energy exploration and production poses several challenges to research. In order to address these challenges, an integrated assessment model (IAM) was developed at the Department of Energy's (DOE) National Energy Technology Laboratory (NETL) that combines spatial data infrastructure and an online research platform to manage, process, analyze, and share these large, multidimensional datasets, research products, and the tools and models used to evaluate risk and reduce uncertainty for the entire offshore system, from the subsurface, through the water column, to coastal ecosystems and communities. Here, we will discuss the spatial data infrastructure and online research platform, NETL's Energy Data eXchange (EDX), that underpin the offshore IAM, providing information on how the framework combines multidimensional spatial data and spatio-temporal tools to evaluate risks to the complex matrix of potential environmental, social, and economic impacts stemming from modeled offshore hazard scenarios, such as oil spills or hurricanes. In addition, we will discuss the online analytics, tools, and visualization methods integrated into this framework that support availability and access to data, as well as allow for the rapid analysis and effective communication of analytical results to aid a range of decision-making needs.
Gordon, C; Roopchand-Martin, S; Gregg, A
2012-09-01
To explore the possibility of using the Nintendo Wii™ as a rehabilitation tool for children with cerebral palsy (CP) in a developing country, and determine whether there is potential for an impact on their gross motor function. Pilot study with a pre-post-test design. Sir John Golding Rehabilitation Center, Jamaica, West Indies. Seven children, aged 6 to 12 years, with dyskinetic CP were recruited for the study. One child dropped out at week 4. Training with the Nintendo Wii was conducted twice weekly for 6 weeks. The games used were Wii Sports Boxing, Baseball and Tennis. Percentage attendance over the 6-week period, percentage of sessions for which the full duration of training was completed, and changes in gross motor function using the Gross Motor Function Measure (GMFM). All six participants who completed the study had 100% attendance, and all were able to complete the full 45 minutes of training at every session. Those who were wheelchair bound participated in two games, whilst those who were ambulant played three games. The mean GMFM score increased from 62.83 [standard deviation (SD) 24.86] to 70.17 (SD 23.67). The Nintendo Wii has the potential for use as a rehabilitation tool in the management of children with CP. Clinical trials should be conducted in this area to determine whether this could be an effective tool for improving gross motor function. Copyright © 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Patterns and Pedagogy: Exploring Student Blog Use in Higher Education
ERIC Educational Resources Information Center
Pursel, Barton K.; Xie, Hui
2014-01-01
As social and collaborative technologies emerge, educators and scholars continue to explore and experiment with how these tools might impact pedagogy. For over a decade, educators experimented with the use of blogs in academic settings, a tool that allows for students and instructors to enter into a rich dialogue. With most technology tools, users…
ERIC Educational Resources Information Center
Argyropoulou, Eleftheria; Hatira, Kalliopi
2014-01-01
This article introduces an alternative qualitative research tool: metaphor and drawing, as projections of personality features, to explore underlying concepts and values, thoughts and beliefs, fears and hesitations, aspirations and ambitions of the research subjects. These two projective tools are used to explore Greek state kindergarten head…
Sheridan, Kimberly M; Konopasky, Abigail W; Kirkwood, Sophie; Defeyter, Margaret A
2016-03-19
Research indicates that in experimental settings, young children of 3-7 years old are unlikely to devise a simple tool to solve a problem. This series of exploratory studies done in museums in the US and UK explores how environment and ownership of materials may improve children's ability and inclination for (i) tool material selection and (ii) innovation. The first study takes place in a children's museum, an environment where children can use tools and materials freely. We replicated a tool innovation task in this environment and found that while 3-4 year olds showed the predicted low levels of innovation rates, 4-7 year olds showed higher rates of innovation than the younger children and than reported in prior studies. The second study explores the effect of whether the experimental materials are owned by the experimenter or the child on tool selection and innovation. Results showed that 5-6 year olds and 6-7 year olds were more likely to select tool material they owned compared to tool material owned by the experimenter, although ownership had no effect on tool innovation. We argue that learning environments supporting tool exploration and invention and conveying ownership over materials may encourage successful tool innovation at earlier ages. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouhard, Margaret MEG G; Steed, Chad A; Hahn, Steven E
In this paper, we propose strategies and objectives for immersive data visualization with applications in materials science using the Oculus Rift virtual reality headset. We provide background on currently available analysis tools for neutron scattering data and other large-scale materials science projects. In the context of the current challenges facing scientists, we discuss immersive virtual reality visualization as a potentially powerful solution. We introduce a prototype immersive visual- ization system, developed in conjunction with materials scientists at the Spallation Neutron Source, which we have used to explore large crystal structures and neutron scattering data. Finally, we offer our perspective onmore » the greatest challenges that must be addressed to build effective and intuitive virtual reality analysis tools that will be useful for scientists in a wide range of fields.« less
Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco
2013-09-03
Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.
Jieyi Li; Arandjelovic, Ognjen
2017-07-01
Computer science and machine learning in particular are increasingly lauded for their potential to aid medical practice. However, the highly technical nature of the state of the art techniques can be a major obstacle in their usability by health care professionals and thus, their adoption and actual practical benefit. In this paper we describe a software tool which focuses on the visualization of predictions made by a recently developed method which leverages data in the form of large scale electronic records for making diagnostic predictions. Guided by risk predictions, our tool allows the user to explore interactively different diagnostic trajectories, or display cumulative long term prognostics, in an intuitive and easily interpretable manner.
Performance evaluation of Bragg coherent diffraction imaging
NASA Astrophysics Data System (ADS)
Öztürk, H.; Huang, X.; Yan, H.; Robinson, I. K.; Noyan, I. C.; Chu, Y. S.
2017-10-01
In this study, we present a numerical framework for modeling three-dimensional (3D) diffraction data in Bragg coherent diffraction imaging (Bragg CDI) experiments and evaluating the quality of obtained 3D complex-valued real-space images recovered by reconstruction algorithms under controlled conditions. The approach is used to systematically explore the performance and the detection limit of this phase-retrieval-based microscopy tool. The numerical investigation suggests that the superb performance of Bragg CDI is achieved with an oversampling ratio above 30 and a detection dynamic range above 6 orders. The observed performance degradation subject to the data binning processes is also studied. This numerical tool can be used to optimize experimental parameters and has the potential to significantly improve the throughput of Bragg CDI method.
Transcranial electric stimulation for the investigation of speech perception and comprehension
Zoefel, Benedikt; Davis, Matthew H.
2017-01-01
ABSTRACT Transcranial electric stimulation (tES), comprising transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), involves applying weak electrical current to the scalp, which can be used to modulate membrane potentials and thereby modify neural activity. Critically, behavioural or perceptual consequences of this modulation provide evidence for a causal role of neural activity in the stimulated brain region for the observed outcome. We present tES as a tool for the investigation of which neural responses are necessary for successful speech perception and comprehension. We summarise existing studies, along with challenges that need to be overcome, potential solutions, and future directions. We conclude that, although standardised stimulation parameters still need to be established, tES is a promising tool for revealing the neural basis of speech processing. Future research can use this method to explore the causal role of brain regions and neural processes for the perception and comprehension of speech. PMID:28670598
NASA Astrophysics Data System (ADS)
Cathcart, Laura Anne
This dissertation consists of two studies: 1) development and characterization of the Salient Map Analysis for Research and Teaching (SMART) method as a formative assessment tool and 2) a case study exploring how a paramedic instructor's beliefs about learners affect her utilization of the SMART method and vice versa. The first study explored: How can a novel concept map analysis method be designed as an effective formative assessment tool? The SMART method improves upon existing concept map analysis methods because it does not require hierarchically structured concept maps and it preserves the rich content of the maps instead of reducing each map down to a numerical score. The SMART method is performed by comparing a set of students' maps to each other and to an instructor's map. The resulting composite map depicts, in percentages and highlighted colors, the similarities and differences between all of the maps. Some advantages of the SMART method as a formative assessment tool include its ability to highlight changes across time, problematic or alternative conceptions, and patterns of student responses at a glance. Study two explored: How do a paramedic instructor's beliefs about students and learning affect---and become affected by---her use of the SMART method as a formative assessment tool? This case study of Angel, an expert paramedic instructor, begins to address a gap in the emergency medical services (EMS) education literature, which contains almost no research on teachers or pedagogy. Angel and I worked together as participant co-researchers (Heron & Reason, 1997) exploring the affordances of the SMART method. This study, based on those interactions with Angel, involved using open coding to identify themes (Strauss & Corbin, 1998) from Angel's views of students and use of the SMART method. Angel views learning as a sense-making process. She has a multi-faceted view of her students as novices and invests substantial time trying to understand their concept maps. Not only do these beliefs affect her use of the SMART method; in addition, her beliefs are refined through the use of the SMART method.
Vanbellingen, Tim; Schumacher, Rahel; Eggenberger, Noëmi; Hopfner, Simone; Cazzoli, Dario; Preisig, Basil C; Bertschi, Manuel; Nyffeler, Thomas; Gutbrod, Klemens; Bassetti, Claudio L; Bohlhalter, Stephan; Müri, René M
2015-05-01
According to the direct matching hypothesis, perceived movements automatically activate existing motor components through matching of the perceived gesture and its execution. The aim of the present study was to test the direct matching hypothesis by assessing whether visual exploration behavior correlate with deficits in gestural imitation in left hemisphere damaged (LHD) patients. Eighteen LHD patients and twenty healthy control subjects took part in the study. Gesture imitation performance was measured by the test for upper limb apraxia (TULIA). Visual exploration behavior was measured by an infrared eye-tracking system. Short videos including forty gestures (20 meaningless and 20 communicative gestures) were presented. Cumulative fixation duration was measured in different regions of interest (ROIs), namely the face, the gesturing hand, the body, and the surrounding environment. Compared to healthy subjects, patients fixated significantly less the ROIs comprising the face and the gesturing hand during the exploration of emblematic and tool-related gestures. Moreover, visual exploration of tool-related gestures significantly correlated with tool-related imitation as measured by TULIA in LHD patients. Patients and controls did not differ in the visual exploration of meaningless gestures, and no significant relationships were found between visual exploration behavior and the imitation of emblematic and meaningless gestures in TULIA. The present study thus suggests that altered visual exploration may lead to disturbed imitation of tool related gestures, however not of emblematic and meaningless gestures. Consequently, our findings partially support the direct matching hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
O*NET[TM] Career Exploration Tools. Version 3.0.
ERIC Educational Resources Information Center
Employment and Training Administration (DOL), Washington, DC.
Developed by the U.S. Department of Labor's Occupational Information Network (O*NET) team, the O*NET[TM] Career Exploration Tools (Version 3.0) consist of three main parts: (1) the Interest Profiler; (2) the Work Importance Locator; and (3) the O*NET[TM] Occupations Combined List. The Interest Profiler is a self-assessment career exploration tool…
Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.
2014-01-01
The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a site-specific basis and to explore the effectiveness of various mitigation practices.
Prototype Development of a Tradespace Analysis Tool for Spaceflight Medical Resources.
Antonsen, Erik L; Mulcahy, Robert A; Rubin, David; Blue, Rebecca S; Canga, Michael A; Shah, Ronak
2018-02-01
The provision of medical care in exploration-class spaceflight is limited by mass, volume, and power constraints, as well as limitations of available skillsets of crewmembers. A quantitative means of exploring the risks and benefits of inclusion or exclusion of onboard medical capabilities may help to inform the development of an appropriate medical system. A pilot project was designed to demonstrate the utility of an early tradespace analysis tool for identifying high-priority resources geared toward properly equipping an exploration mission medical system. Physician subject matter experts identified resources, tools, and skillsets required, as well as associated criticality scores of the same, to meet terrestrial, U.S.-specific ideal medical solutions for conditions concerning for exploration-class spaceflight. A database of diagnostic and treatment actions and resources was created based on this input and weighed against the probabilities of mission-specific medical events to help identify common and critical elements needed in a future exploration medical capability. Analysis of repository data demonstrates the utility of a quantitative method of comparing various medical resources and skillsets for future missions. Directed database queries can provide detailed comparative estimates concerning likelihood of resource utilization within a given mission and the weighted utility of tangible and intangible resources. This prototype tool demonstrates one quantitative approach to the complex needs and limitations of an exploration medical system. While this early version identified areas for refinement in future version development, more robust analysis tools may help to inform the development of a comprehensive medical system for future exploration missions.Antonsen EL, Mulcahy RA, Rubin D, Blue RS, Canga MA, Shah R. Prototype development of a tradespace analysis tool for spaceflight medical resources. Aerosp Med Hum Perform. 2018; 89(2):108-114.
Review: visual analytics of climate networks
NASA Astrophysics Data System (ADS)
Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
2015-09-01
Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
Review: visual analytics of climate networks
NASA Astrophysics Data System (ADS)
Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
2015-04-01
Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
Nightingale, Julie M; Marshall, Gill
2013-09-01
The research-related performance of universities, as well as that of individual researchers, is increasingly evaluated through the use of objective measures, or metrics, which seek to support or in some cases even replace more traditional methods of peer review. In particular there is a growing awareness in research communities, government organisations and funding bodies around the concept of using evaluation metrics to analyse research citations. The tools available for 'citation analysis' are many and varied, enabling a quantification of scientific quality, academic impact and prestige. However there is increasing concern regarding the potential misuse of such tools, which have limitations in certain research disciplines.This article uses 'real world' examples from radiography research and scholarship to illustrate the range of currently available citation analysis tools. It explores the academic debate surrounding their strengths and limitations, and identifies the potential impact of citation analysis on the radiography research community.The article concludes that citation analysis is a valuable tool for researchers to use for personal reflection and research planning, yet there are inherent dangers if it is used inappropriately. Whilst citation analysis can give objective information regarding an individual, research group, journal or higher education institution, it should not be used as a total substitute for traditional qualitative review and peer assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lunar Extravehicular Activity Program
NASA Technical Reports Server (NTRS)
Heartsill, Amy Ellison
2006-01-01
Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.
2017-01-01
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species. PMID:27899636
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; ...
2016-11-29
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Nonhuman organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research datamore » can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.« less
Aerobiology: Experimental Considerations, Observations, and Future Tools
Haddrell, Allen E.
2017-01-01
ABSTRACT Understanding airborne survival and decay of microorganisms is important for a range of public health and biodefense applications, including epidemiological and risk analysis modeling. Techniques for experimental aerosol generation, retention in the aerosol phase, and sampling require careful consideration and understanding so that they are representative of the conditions the bioaerosol would experience in the environment. This review explores the current understanding of atmospheric transport in relation to advances and limitations of aerosol generation, maintenance in the aerosol phase, and sampling techniques. Potential tools for the future are examined at the interface between atmospheric chemistry, aerosol physics, and molecular microbiology where the heterogeneity and variability of aerosols can be explored at the single-droplet and single-microorganism levels within a bioaerosol. The review highlights the importance of method comparison and validation in bioaerosol research and the benefits that the application of novel techniques could bring to increasing the understanding of aerobiological phenomena in diverse research fields, particularly during the progression of atmospheric transport, where complex interdependent physicochemical and biological processes occur within bioaerosol particles. PMID:28667111
NASA Astrophysics Data System (ADS)
Mayorga, E.
2013-12-01
Practical, problem oriented software developed by scientists and graduate students in domains lacking a strong software development tradition is often balkanized into the scripting environments provided by dominant, typically proprietary tools. In environmental fields, these tools include ArcGIS, Matlab, SAS, Excel and others, and are often constrained to specific operating systems. While this situation is the outcome of rational choices, it limits the dissemination of useful tools and their integration into loosely coupled frameworks that can meet wider needs and be developed organically by groups addressing their own needs. Open-source dynamic languages offer the advantages of an accessible programming syntax, a wealth of pre-existing libraries, multi-platform access, linkage to community libraries developed in lower level languages such as C or FORTRAN, and access to web service infrastructure. Python in particular has seen a large and increasing uptake in scientific communities, as evidenced by the continued growth of the annual SciPy conference. Ecosystems with distinctive physical structures and organization, and mechanistic processes that are well characterized, are both factors that have often led to the grass-roots development of useful code meeting the needs of a range of communities. In aquatic applications, examples include river and watershed analysis tools (River Tools, Taudem, etc), and geochemical modules such as CO2SYS, PHREEQ and LOADEST. I will review the state of affairs and explore the potential offered by a Python tool ecosystem in supporting aquatic biogeochemistry and water quality research. This potential is multi-faceted and broadly involves accessibility to lone grad students, access to a wide community of programmers and problem solvers via online resources such as StackExchange, and opportunities to leverage broader cyberinfrastructure efforts and tools, including those from widely different domains. Collaborative development of such tools can provide the additional advantage of enhancing cohesion and communication across specific research areas, and reducing research obstacles in a range of disciplines.
Ertl, Peter; Patiny, Luc; Sander, Thomas; Rufener, Christian; Zasso, Michaël
2015-01-01
Wikipedia, the world's largest and most popular encyclopedia is an indispensable source of chemistry information. It contains among others also entries for over 15,000 chemicals including metabolites, drugs, agrochemicals and industrial chemicals. To provide an easy access to this wealth of information we decided to develop a substructure and similarity search tool for chemical structures referenced in Wikipedia. We extracted chemical structures from entries in Wikipedia and implemented a web system allowing structure and similarity searching on these data. The whole search as well as visualization system is written in JavaScript and therefore can run locally within a web page and does not require a central server. The Wikipedia Chemical Structure Explorer is accessible on-line at www.cheminfo.org/wikipedia and is available also as an open source project from GitHub for local installation. The web-based Wikipedia Chemical Structure Explorer provides a useful resource for research as well as for chemical education enabling both researchers and students easy and user friendly chemistry searching and identification of relevant information in Wikipedia. The tool can also help to improve quality of chemical entries in Wikipedia by providing potential contributors regularly updated list of entries with problematic structures. And last but not least this search system is a nice example of how the modern web technology can be applied in the field of cheminformatics. Graphical abstractWikipedia Chemical Structure Explorer allows substructure and similarity searches on molecules referenced in Wikipedia.
VIP Data Explorer: A Tool for Exploring 30 years of Vegetation Index and Phenology Observations
NASA Astrophysics Data System (ADS)
Barreto-munoz, A.; Didan, K.; Rivera-Camacho, J.; Yitayew, M.; Miura, T.; Tsend-Ayush, J.
2011-12-01
Continuous acquisition of global satellite imagery over the years has contributed to the creation of long term data records from AVHRR, MODIS, TM, SPOT-VGT and other sensors. These records account for 30+ years, as these archives grow, they become invaluable tools for environmental, resources management, and climate studies dealing with trends and changes from local, regional to global scale. In this project, the Vegetation Index and Phenology Lab (VIPLab) is processing 30 years of daily global surface reflectance data into an Earth Science Data Record of Vegetation Index and Phenology metrics. Data from AVHRR (N07,N09,N11 and N14) and MODIS (AQUA and TERRA collection 5) for the periods 1981-1999 and 2000-2010, at CMG resolution were processed into one seamless and sensor independent data record using various filtering, continuity and gap filling techniques (Tsend-Ayush et al., AGU 2011, Rivera-Camacho et al, AGU 2011). An interactive online tool (VIP Data Explorer) was developed to support the visualization, qualitative and quantitative exploration, distribution, and documentation of these records using a simple web 2.0 interface. The VIP Data explorer (http://vip.arizona.edu/viplab_data_explorer) can display any combination of multi temporal and multi source data, enable the quickly exploration and cross comparison of the various levels of processing of this data. It uses the Google Earth (GE) model and was developed using the GE API for images rendering, manipulation and geolocation. These ESDRs records can be quickly animated in this environment and explored for visual trends and anomalies detection. Additionally the tool enables extracting and visualizing any land pixel time series while showing the different levels of processing it went through. User can explore this ESDR database within this data explorer GUI environment, and any desired data can be placed into a dynamic "cart" to be ordered and downloaded later. More functionalities are planned and will be added to this data explorer tool as the project progresses.
NASA Technical Reports Server (NTRS)
Daniels, V. R.; Bayuse, T. M.; Mulcahy, R. A.; McGuire, R. K. M.; Antonsen, E. L.
2018-01-01
Exploration spaceflight poses several challenges to the provision of a comprehensive medication formulary. This formulary must accommodate the size and space limitations of the spacecraft, while addressing individual medication needs and preferences of the crew, consequences of a degrading inventory over time, the inability to resupply used or expired medications, and the need to forecast the best possible medication candidates to treat conditions that may occur. The Exploration Medical Capability (ExMC) Element's Pharmacy Project Team has developed a research plan (RP) that is focused on evidence-based models and theories as well as new diagnostic tools, treatments, or preventive measures aimed to ensure an available, safe, and effective pharmacy sufficient to manage potential medical threats during exploration spaceflight. Here, we will discuss the ways in which the ExMC Pharmacy Project Team pursued expert evaluation and guidance, and incorporated acquired insight into an achievable research pathway, reflected in the revised RP.
What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations
NASA Astrophysics Data System (ADS)
Schollaert Uz, S.; Ward, K.
2017-12-01
Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.
ERIC Educational Resources Information Center
Rose, Simon P.; Habgood, M. P. Jacob; Jay, Tim
2017-01-01
Programming tools are being used in education to teach computer science to children as young as 5 years old. This research aims to explore young children's approaches to programming in two tools with contrasting programming interfaces, ScratchJr and Lightbot, and considers the impact of programming approaches on developing computational thinking.…
Patterson, Mark E; Miranda, Derick; Schuman, Greg; Eaton, Christopher; Smith, Andrew; Silver, Brad
2016-01-01
Leveraging "big data" as a means of informing cost-effective care holds potential in triaging high-risk heart failure (HF) patients for interventions within hospitals seeking to reduce 30-day readmissions. Explore provider's beliefs and perceptions about using an electronic health record (EHR)-based tool that uses unstructured clinical notes to risk-stratify high-risk heart failure patients. Six providers from an inpatient HF clinic within an urban safety net hospital were recruited to participate in a semistructured focus group. A facilitator led a discussion on the feasibility and value of using an EHR tool driven by unstructured clinical notes to help identify high-risk patients. Data collected from transcripts were analyzed using a thematic analysis that facilitated drawing conclusions clustered around categories and themes. From six categories emerged two themes: (1) challenges of finding valid and accurate results, and (2) strategies used to overcome these challenges. Although employing a tool that uses electronic medical record (EMR) unstructured text as the benchmark by which to identify high-risk patients is efficient, choosing appropriate benchmark groups could be challenging given the multiple causes of readmission. Strategies to mitigate these challenges include establishing clear selection criteria to guide benchmark group composition, and quality outcome goals for the hospital. Prior to implementing into practice an innovative EMR-based case-finder driven by unstructured clinical notes, providers are advised to do the following: (1) define patient quality outcome goals, (2) establish criteria by which to guide benchmark selection, and (3) verify the tool's validity and reliability. Achieving consensus on these issues would be necessary for this innovative EHR-based tool to effectively improve clinical decision-making and in turn, decrease readmissions for high-risk patients.
Global Health, Geographical Contingency, and Contingent Geographies
Herrick, Clare
2016-01-01
Health geography has emerged from under the “shadow of the medical” to become one of the most vibrant of all the subdisciplines. Yet, this success has also meant that health research has become increasingly siloed within this subdisciplinary domain. As this article explores, this represents a potential lost opportunity with regard to the study of global health, which has instead come to be dominated by anthropology and political science. Chief among the former's concerns are exploring the gap between the programmatic intentions of global health and the unintended or unanticipated consequences of their deployment. This article asserts that recent work on contingency within geography offers significant conceptual potential for examining this gap. It therefore uses the example of alcohol taxation in Botswana, an emergent global health target and tool, to explore how geographical contingency and the emergent, contingent geographies that result might help counter the prevailing tendency for geography to be side-stepped within critical studies of global health. At the very least, then, this intervention aims to encourage reflection by geographers on how to make explicit the all-too-often implicit links between their research and global health debates located outside the discipline. PMID:27611662
Transcranial magnetic stimulation (TMS) in Attention Deficit Hyperactivity Disorder (ADHD).
Zaman, Rashid
2015-09-01
Attention Deficit Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder, which affects children as well as adults and leads to significant impairment in educational, social and occupational functioning and has associated personal and societal costs. Whilst there are effective medications (mostly stimulants) as well as some psychobehavioural treatments that help alleviate symptoms of ADHD, there is still need to improve our understanding of its neurobiology as well as explore other treatment options. Transcranial Magnetic Stimulation (TMS) and repetitive transcranial magnetic stimulation (rTMS) are safe and non-invasive investigative and therapeutic tools respectively. In this short article, I will explore their potential for improving our understanding of the neurobiology of ADHD as well consider its as a possible treatment option.
Remote image analysis for Mars Exploration Rover mobility and manipulation operations
NASA Technical Reports Server (NTRS)
Leger, Chris; Deen, Robert G.; Bonitz, Robert G.
2005-01-01
NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.
NASA Technical Reports Server (NTRS)
Schulte, Peter Z.; Moore, James W.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that flight performance requirements on parachute loads and terminal rate of descent are met. Design of Experiments (DoE) provides a systematic method for variation of simulation input parameters. When implemented and interpreted correctly, a DoE study of parachute simulation tools indicates values and combinations of parameters that may cause requirement limits to be violated. This paper describes one implementation of DoE that is currently being developed by CPAS, explains how DoE results can be interpreted, and presents the results of several preliminary studies. The potential uses of DoE to validate parachute simulation models and verify requirements are also explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Li; Fuhrer, Tobias; Schaefer, Bastian
Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. Based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures.more » The new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.« less
NASA Lunar and Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, Brian; Law, Emily
2016-10-01
NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.
NASA Astrophysics Data System (ADS)
Mahrer, Stephen M.
2000-08-01
The advent of US Digital Television Broadcasting in the late fall of 1998 has profoundly changed both the technology and business of 'Television' as we have grown to known it. US DTV, encompassing as it does a wide variety of 'voluntary' signal formats, presents today's broadcaster with an unparalleled choice of the 'right tool for the job.' This paper will explore the technical aspects of some of those choices and the potential for DTV equipment application to non-broadcast environments.
Solid Freeform Fabrication of Aesthetic Objects
Hart, George [SUNY Stony Brook, Stony Brook, New York, United States
2018-01-08
Solid Freeform Fabrication (aka. Rapid Prototyping) equipment can produce beautiful three-dimensional objects of exquisite intricacy. To use this technology to its full potential requires spatial visualization in the designer and new geometric algorithms as tools. As both a sculptor and a research professor in the Computer Science department at Stony Brook University, George Hart is exploring algorithms for the design of elaborate aesthetic objects. In this talk, he will describe this work, show many images, and bring many physical models to display.
Qualitative tools and experimental philosophy.
Andow, James
2016-11-16
Experimental philosophy brings empirical methods to philosophy. These methods are used to probe how people think about philosophically interesting things such as knowledge, morality, and freedom. This paper explores the contribution that qualitative methods have to make in this enterprise. I argue that qualitative methods have the potential to make a much greater contribution than they have so far. Along the way, I acknowledge a few types of resistance that proponents of qualitative methods in experimental philosophy might encounter, and provide reasons to think they are ill-founded.
Exploring the potential of machine learning to break deadlock in convection parameterization
NASA Astrophysics Data System (ADS)
Pritchard, M. S.; Gentine, P.
2017-12-01
We explore the potential of modern machine learning tools (via TensorFlow) to replace parameterization of deep convection in climate models. Our strategy begins by generating a large ( 1 Tb) training dataset from time-step level (30-min) output harvested from a one-year integration of a zonally symmetric, uniform-SST aquaplanet integration of the SuperParameterized Community Atmosphere Model (SPCAM). We harvest the inputs and outputs connecting each of SPCAM's 8,192 embedded cloud-resolving model (CRM) arrays to its host climate model's arterial thermodynamic state variables to afford 143M independent training instances. We demonstrate that this dataset is sufficiently large to induce preliminary convergence for neural network prediction of desired outputs of SP, i.e. CRM-mean convective heating and moistening profiles. Sensitivity of the machine learning convergence to the nuances of the TensorFlow implementation are discussed, as well as results from pilot tests from the neural network operating inline within the SPCAM as a replacement to the (super)parameterization of convection.
Practical Applications of Digital Pathology.
Saeed-Vafa, Daryoush; Magliocco, Anthony M
2015-04-01
Virtual microscopy and advances in machine learning have paved the way for the ever-expanding field of digital pathology. Multiple image-based computing environments capable of performing automated quantitative and morphological analyses are the foundation on which digital pathology is built. The applications for digital pathology in the clinical setting are numerous and are explored along with the digital software environments themselves, as well as the different analytical modalities specific to digital pathology. Prospective studies, case-control analyses, meta-analyses, and detailed descriptions of software environments were explored that pertained to digital pathology and its use in the clinical setting. Many different software environments have advanced platforms capable of improving digital pathology and potentially influencing clinical decisions. The potential of digital pathology is vast, particularly with the introduction of numerous software environments available for use. With all the digital pathology tools available as well as those in development, the field will continue to advance, particularly in the era of personalized medicine, providing health care professionals with more precise prognostic information as well as helping them guide treatment decisions.
Views of general practitioners on the use of STOPP&START in primary care: a qualitative study.
Dalleur, O; Feron, J-M; Spinewine, A
2014-08-01
STOPP (Screening Tool of Older Person's Prescriptions) and START (Screening Tool to Alert Doctors to Right Treatment) criteria aim at detecting potentially inappropriate prescribing in older people. The objective was to explore general practitioners' (GPs) perceptions regarding the use of the STOPP&START tool in their practice. We conducted three focus groups which were conveniently sampled. Vignettes with clinical cases were provided for discussion as well as a full version of the STOPP&START tool. Knowledge, strengths and weaknesses of the tool and its implementation were discussed. Two researchers independently performed content analysis, classifying quotes and creating new categories for emerging themes. Discussions highlighted incentives (e.g. systematic procedure for medication review) and barriers (e.g. time-consuming application) influencing the use of STOPP&START in primary care. Usefulness, comprehensiveness, and relevance of the tool were also questioned. Another important category emerging from the content analysis was the projected use of the tool. The GPs imagined key elements for the implementation in daily practice: computerized clinical decision support system, education, and multidisciplinary collaborations, especially at care transitions and in nursing homes. Despite variables views on the usefulness, comprehensiveness, and relevance of STOPP&START, GPs suggest the implementation of this tool in primary care within computerized clinical decision support systems, through education, and used as part of multidisciplinary collaborations.
Johnson, Angela N
2016-08-01
In bioengineering training for new researchers and engineers, a great deal of time is spent discussing what constitutes "good" design. Conceptualization of good design, however, varies widely across interdisciplinary team members, with potential to both foster innovation or lead to unproductive conflict. To explore how groups central to bioengineering teams (physicians/clinicians and engineers/physicists) conceptualize good design, we asked 176 professionals in bioengineering to complete a comprehensive online survey including items designed to assess cognitive and moral foundations (validated MFQ30 tool) and custom items assessing perceptions on good design in three areas (good design characteristics, reputation of design approvers, and perceived design patient/consumer suitability). Of those that responded, 82 completed all quantitative survey sections and were included in this preliminary analysis. Correlations between response areas were examined to explore the possible links between cognitive and moral biases and perspectives on good design. The survey results indicated that both groups were more conservative than average Americans based on previous reports, and clinicians scored higher on average for all MFQ30 domains. Numerous significant correlations with good design were observed among clinicians, while engineers/physicists most closely correlated good design with prescriber approval and scientific/technical literature. The exploratory analysis demonstrated the potential utility of sociological frameworks to explore relationships in design thinking with potential utility to stimulate thriving conversation on team-based design thinking in bioengineering education and practice.
The Lunar Roving Vehicle: Historical perspective
NASA Technical Reports Server (NTRS)
Morea, Saverio F.
1992-01-01
As NASA proceeds with its studies, planning, and technology efforts in preparing for the early twenty-first century, it seems appropriate to reexamine past programs for potential applicability in meeting future national space science and exploration goals and objectives. Both the National Commission on Space (NCOS) study and NASA's 'Sally Ride study' suggest future programs involving returning to the Moon and establishing man's permanent presence there, and/or visiting the planet Mars in both the unmanned and manned mode. Regardless of when and which of these new bold initiatives is selected as our next national space goal, implementing these potentially new national thrusts in space will undoubtedly require the use of both manned and remotely controlled roving vehicles. Therefore, the purpose of this paper is to raise the consciousness level of the current space exploration planners to what, in the early 1970s, was a highly successful roving vehicle. During the Apollo program the vehicle known as the Lunar Roving Vehicle (LRV) was designed for carrying two astronauts, their tools, and the equipment needed for rudimentary exploration of the Moon. This paper contains a discussion of the vehicle, its characteristics, and its use on the Moon. Conceivably, the LRV has the potential to meet some future requirements, either with relatively low cost modifications or via an evolutionary route. This aspect, however, is left to those who would choose to further study these options.
ExMC Work Prioritization Process
NASA Technical Reports Server (NTRS)
Simon, Matthew
2015-01-01
Last year, NASA's Human Research Program (HRP) introduced the concept of a "Path to Risk Reduction" (PRR), which will provide a roadmap that shows how the work being done within each HRP element can be mapped to reducing or closing exploration risks. Efforts are currently underway within the Exploration Medical Capability (ExMC) Element to develop a structured, repeatable process for prioritizing work utilizing decision analysis techniques and risk estimation tools. The goal of this effort is to ensure that the work done within the element maximizes risk reduction for future exploration missions in a quantifiable way and better aligns with the intent and content of the Path to Risk Reduction. The Integrated Medical Model (IMM) will be used to identify those conditions that are major contributors of medical risk for a given design reference mission. For each of these conditions, potential prevention, screening, diagnosis, and treatment methods will be identified. ExMC will then aim to prioritize its potential investments in these mitigation methods based upon their potential for risk reduction and other factors such as vehicle performance impacts, near term schedule needs, duplication with external efforts, and cost. This presentation will describe the process developed to perform this prioritization and inform investment discussions in future element planning efforts. It will also provide an overview of the required input information, types of process participants, figures of merit, and the expected outputs of the process.
Chéron, Jean-Baptiste; Triki, Dhoha; Senac, Caroline; Flatters, Delphine; Camproux, Anne-Claude
2017-01-01
Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels. PMID:28817602
Regad, Leslie; Chéron, Jean-Baptiste; Triki, Dhoha; Senac, Caroline; Flatters, Delphine; Camproux, Anne-Claude
2017-01-01
Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels.
Community Level Stressors and Their Impacts on Food ...
Research is needed to understand a community’s food resources, utilization of those resources, and how the built and natural environment impact access to resources and potential chemical exposures. This research will identify stressors, relationships between those stressors, and explore potential interactions between food resources and chemical and non-chemical stressors. By evaluating various chemical and non-chemical stressors, an understanding of a community’s food resources and utilization with potential exposures can be obtained. With this understanding about the community’s potential dietary exposures and contributing factors, it will be possible to evaluate ways to mitigate and alleviate issues that could impact public health. The objectives of this research are 1) to obtain information on a community’s environmental exposures (chemical and non-chemical stressors) from various available databases and data and 2) to evaluate impacts on dietary exposure which may lead to adverse public health outcomes. This research will enhance public tools, in particular, the Community-Focused Exposure and Risk Screening Tool (CFERST), which can be utilized by community leaders in decision making by bridging all pertinent information to inform policy. Community level health analyses can support protective actions, be used by communities to identify and prioritize their risks based on scientific data and ensure that resources are directed where they will provi
Comprehensive Software Eases Air Traffic Management
NASA Technical Reports Server (NTRS)
2007-01-01
To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.
NASA Technical Reports Server (NTRS)
Martin, Lynne Hazel; Sharma, Shivanjli; Lozito, Sharon; Kaneshige, John; Hayashi, Miwa; Dulchinos, Victoria
2012-01-01
Multiple studies have investigated the development and use of ground-based (controller) tools to manage and schedule traffic in future terminal airspace. No studies have investigated the impacts that such tools (and concepts) could have on the flight-deck. To begin to redress the balance, an exploratory study investigated the procedures and actions of ten Boeing-747-400 crews as they flew eight continuous descent approaches in the Los Angeles terminal airspace, with the descents being controlled using speed alone. Although the study was exploratory in nature, four variables were manipulated: speed changes, route constraints, clearance phraseology, and winds. Despite flying the same scenarios with the same events and timing, there was at least a 50 second difference in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The primary focus of this paper is the potential impact of ground scheduling tools on the flight crews performance and procedures. Crews reported "moderate to low" workload, on average; however, short periods of intense and high workload were observed. The non-flying pilot often reported a higher level of workload than the flying-pilot, which may be due to their increased interaction with the Flight Management Computer, when using the aircraft automation to assist with managing the descent clearances. It is concluded that ground-side tools and automation may have a larger impact on the current-day flight-deck than was assumed and that studies investigating this impact should continue in parallel with controller support tool development.
Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Hartman, Frank; Maxwell, Scott; Wright, John; Yen, Jeng
2004-01-01
Current developments in immersive environments for mission planning include several tools which make up a system for performing and rehearsing missions. This system, known as the Rover Sequencing and Visualization Program (RSVP), includes tools for planning long range sorties for highly autonomous rovers, tools for planning operations with robotic arms, and advanced tools for visualizing telemetry from remote spacecraft and landers. One of the keys to successful planning of rover activities is knowing what the rover has accomplished to date and understanding the current rover state. RSVP builds on the lessons learned and the heritage of the Mars Pathfinder mission This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearsed results, and reviewing science and engineering imagery. In addition we will present how this tool suite was used on the Mars Exploration Rovers (MER) project to explore the surface of Mars.
Development and testing of an active boring bar for increased chatter immunity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
Recent advances in smart materials have renewed interest in the development of improved manufacturing processes featuring sensing, processing, and active control. In particular, vibration suppression in metal cutting has received much attention because of its potential for enhancing part quality while reducing the time and cost of production. Although active tool clamps have been recently demonstrated, they are often accompanied by interfacing issues that limit their applicability to specific machines. Under the auspices of the Laboratory Directed Research and Development program, the project titled {open_quotes}Smart Cutting Tools for Precision Manufacturing{close_quotes} developed an alternative approach to active vibration control in machining.more » Using the boring process as a vehicle for exploration, a commercially available tool was modified to incorporate PZT stack actuators for active suppression of its bending modes. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on many machines. Cutting tests conducted on a horizontal lathe fitted with a hardened steel workpiece verify that the actively damped boring bar yields significant vibration reduction and improved surface finishes as compared to an unmodified tool.« less
Direct measurement of a nonequilibrium system entropy using a feedback trap
NASA Astrophysics Data System (ADS)
Gavrilov, Momčilo; Bechhoefer, John
2017-08-01
Feedback traps are tools for trapping single charged objects in solution. They periodically measure an object's position and apply a feedback force to counteract Brownian motion. The feedback force can be calculated as a gradient of a potential function, effectively creating a "virtual potential." Its flexibility regarding the choice of form of the potential gives an opportunity to explore various fundamental questions in stochastic thermodynamics. Here, we review the theory behind feedback traps and apply it to measuring the average work required to erase a fraction of a bit of information. The results agree with predictions based on the nonequilibrium system entropy. With this example, we also show how a feedback trap can easily implement the complex erasure protocols required to reach ultimate thermodynamic limits.
MaGnET: Malaria Genome Exploration Tool.
Sharman, Joanna L; Gerloff, Dietlind L
2013-09-15
The Malaria Genome Exploration Tool (MaGnET) is a software tool enabling intuitive 'exploration-style' visualization of functional genomics data relating to the malaria parasite, Plasmodium falciparum. MaGnET provides innovative integrated graphic displays for different datasets, including genomic location of genes, mRNA expression data, protein-protein interactions and more. Any selection of genes to explore made by the user is easily carried over between the different viewers for different datasets, and can be changed interactively at any point (without returning to a search). Free online use (Java Web Start) or download (Java application archive and MySQL database; requires local MySQL installation) at http://malariagenomeexplorer.org joanna.sharman@ed.ac.uk or dgerloff@ffame.org Supplementary data are available at Bioinformatics online.
Chen, A.; Yarmush, M.L.; Maguire, T.
2014-01-01
There is a large emphasis within the pharmaceutical industry to provide tools that will allow early research and development groups to better predict dose ranges for and metabolic responses of candidate molecules in a high throughput manner, prior to entering clinical trials. These tools incorporate approaches ranging from PBPK, QSAR, and molecular dynamics simulations in the in silico realm, to micro cell culture analogue (CCAs)s in the in vitro realm. This paper will serve to review these areas of high throughput predictive research, and highlight hurdles and potential solutions. In particular we will focus on CCAs, as their incorporation with PBPK modeling has the potential to replace animal testing, with a more predictive assay that can combine multiple organ analogs on one microfluidic platform in physiologically correct volume ratios. While several advantages arise from the current embodiments of CCAS in a microfluidic format that can be exploited for realistic simulations of drug absorption, metabolism and action, we explore some of the concerns with these systems, and provide a potential path forward to realizing animal-free solutions. Furthermore we envision that, together with theoretical modeling, CCAs may produce reliable predictions of the efficacy of newly developed drugs. PMID:22571482
Lee, Ji-Hyun; You, Sungyong; Hyeon, Do Young; Kang, Byeongsoo; Kim, Hyerim; Park, Kyoung Mii; Han, Byungwoo; Hwang, Daehee; Kim, Sunghoon
2015-01-01
Mammalian cells have cytoplasmic and mitochondrial aminoacyl-tRNA synthetases (ARSs) that catalyze aminoacylation of tRNAs during protein synthesis. Despite their housekeeping functions in protein synthesis, recently, ARSs and ARS-interacting multifunctional proteins (AIMPs) have been shown to play important roles in disease pathogenesis through their interactions with disease-related molecules. However, there are lacks of data resources and analytical tools that can be used to examine disease associations of ARS/AIMPs. Here, we developed an Integrated Database for ARSs (IDA), a resource database including cancer genomic/proteomic and interaction data of ARS/AIMPs. IDA includes mRNA expression, somatic mutation, copy number variation and phosphorylation data of ARS/AIMPs and their interacting proteins in various cancers. IDA further includes an array of analytical tools for exploration of disease association of ARS/AIMPs, identification of disease-associated ARS/AIMP interactors and reconstruction of ARS-dependent disease-perturbed network models. Therefore, IDA provides both comprehensive data resources and analytical tools for understanding potential roles of ARS/AIMPs in cancers. Database URL: http://ida.biocon.re.kr/, http://ars.biocon.re.kr/ PMID:25824651
Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.
Karthikeyan, Muthukumarasamy; Vyas, Renu
2015-01-01
Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.
Langley, Ivor; Doulla, Basra; Lin, Hsien-Ho; Millington, Kerry; Squire, Bertie
2012-09-01
The introduction and scale-up of new tools for the diagnosis of Tuberculosis (TB) in developing countries has the potential to make a huge difference to the lives of millions of people living in poverty. To achieve this, policy makers need the information to make the right decisions about which new tools to implement and where in the diagnostic algorithm to apply them most effectively. These decisions are difficult as the new tools are often expensive to implement and use, and the health system and patient impacts uncertain, particularly in developing countries where there is a high burden of TB. The authors demonstrate that a discrete event simulation model could play a significant part in improving and informing these decisions. The feasibility of linking the discrete event simulation to a dynamic epidemiology model is also explored in order to take account of longer term impacts on the incidence of TB. Results from two diagnostic districts in Tanzania are used to illustrate how the approach could be used to improve decisions.
Forster, Marie-Therese; Hoecker, Alexander Claudius; Kang, Jun-Suk; Quick, Johanna; Seifert, Volker; Hattingen, Elke; Hilker, Rüdiger; Weise, Lutz Martin
2015-06-01
Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures. To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking. Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift. Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation. The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.
Ahn, SangNam; Smith, Matthew Lee; Altpeter, Mary; Post, Lindsey; Ory, Marcia G
2015-01-01
Chronic disease self-management education (CDSME) programs have been delivered to more than 100,000 older Americans with chronic conditions. As one of the Stanford suite of evidence-based CDSME programs, the chronic disease self-management program (CDSMP) has been disseminated in diverse populations and settings. The objective of this paper is to introduce a practical, universally applicable tool to assist program administrators and decision makers plan implementation efforts and make the case for continued program delivery. This tool was developed utilizing data from a recent National Study of CDSMP to estimate national savings associated with program participation. Potential annual healthcare savings per CDSMP participant were calculated based on averted emergency room visits and hospitalizations. While national data can be utilized to estimate cost savings, the tool has built-in features allowing users to tailor calculations based on their site-specific data. Building upon the National Study of CDSMP's documented potential savings of $3.3 billion in healthcare costs by reaching 5% of adults with one or more chronic conditions, two heuristic case examples were also explored based on different population projections. The case examples show how a small county and large metropolitan city were not only able to estimate healthcare savings ($38,803 for the small county; $732,290 for the large metropolitan city) for their existing participant populations but also to project significant healthcare savings if they plan to reach higher proportions of middle-aged and older adults. Having a tool to demonstrate the monetary value of CDSMP can contribute to the ongoing dissemination and sustainability of such community-based interventions. Next steps will be creating a user-friendly, internet-based version of Healthcare Cost Savings Estimator Tool: CDSMP, followed by broadening the tool to consider cost savings for other evidence-based programs.
Identifying contributors of two-person DNA mixtures by familial database search.
Chung, Yuk-Ka; Fung, Wing K
2013-01-01
The role of familial database search as a crime-solving tool has been increasingly recognized by forensic scientists. As an enhancement to the existing familial search approach on single source cases, this article presents our current progress in exploring the potential use of familial search to mixture cases. A novel method was established to predict the outcome of the search, from which a simple strategy for determining an appropriate scale of investigation by the police force is developed. Illustrated by an example using Swedish data, our approach is shown to have the potential for assisting the police force to decide on the scale of investigation, thereby achieving desirable crime-solving rate with reasonable cost.
From dinner table to digital tablet: technology's potential for reducing loneliness in older adults.
McCausland, Lauren; Falk, Nancy L
2012-05-01
Statistics estimate that close to 35% of our nation's older individuals experience loneliness. Feelings of loneliness have been associated with physical and psychological illness in several research studies. As technology advances and connectivity through tablet devices becomes increasingly user friendly, the potential for tablets to reduce loneliness among older adults is substantial. This article discusses the issue of loneliness among older adults and suggests tablet technology as a tool to improve connectivity and reduce loneliness in the older adult population. As nurses, we have the opportunity to help enhance the quality of life for our clients. Tablet technology offers a new option that should be fully explored. Copyright 2012, SLACK Incorporated.
Relational interventions in psychotherapy: development of a therapy process rating scale.
Ulberg, Randi; Ness, Elisabeth; Dahl, Hanne-Sofie Johnsen; Høglend, Per Andreas; Critchfield, Kenneth; Blayvas, Phelix; Amlo, Svein
2016-09-06
In psychodynamic psychotherapy, one of the therapists' techniques is to intervene on and encourage exploration of the patients' relationships with other people. The impact of these interventions and the response from the patient are probably dependent on certain characteristics of the context in which the interventions are given and the interventions themselves. To identify and analyze in-session effects of therapists' techniques, process scales are used. The aim of the present study was to develop a simple, not resource consuming rating tool for in-session process to be used when therapists' interventions focus on the patients' relationships outside therapy. The present study describes the development and use of a therapy process rating scale, the Relational Work Scale (RWS). The scale was constructed to identify, categorize and explore therapist interventions that focus on the patient's relationships to family, friends, and colleges Relational Interventions and explore the impact on the in-session process. RWS was developed with sub scales rating timing, content, and valence of the relational interventions, as well as response from the patient. For the inter-rater reliability analyzes, transcribed segments (10 min) from 20 different patients were scored with RWS by two independent raters. Two clinical vignettes of relational work are included in the paper as examples of how to rate transcripts from therapy sessions with RWS. The inter-rater agreement on the RWS items was good to excellent. Relational Work Scale might be a potentially useful tool to identify relational interventions as well as explore the interaction of timing, category, and valence of relational work in psychotherapies. The therapist's interventions on the patient's relationships with people outside therapy and the following patient-therapist interaction might be explored. First Experimental Study of Transference-interpretations (FEST307/95) REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT00423462 .
The effects of utilizing a near-patient e-learning tool on medical student learning.
Selzer, Rob; Tallentire, Victoria R; Foley, Fiona
2015-01-01
This study aimed to develop a near-patient, e-learning tool and explore student views on how utilization of such a tool influenced their learning. Third year medical students from Monash University in Melbourne, Australia were invited to trial a novel, near-patient, e-learning tool in two separate pilots within the ward environment. All participating students were invited to contribute to focus groups which were audio-recorded, transcribed verbatim and thematically analyzed. Four focus groups were conducted with a total of 17 participants. The emerging themes revealed influences on the students' learning both prior to and during a clinical encounter, as well as following completion of an e-learning module. The unifying concept which linked all six themes and formed the central feature of the experience was patient-centered learning. This occurred through the acquisition of contextualized knowledge and the facilitation of workplace integration. Utilization of a near-patient e-learning tool influences medical student learning in a number of complex, inter-related ways. Clinical e-learning tools are poised to become more commonplace and provide many potential benefits to student learning. However, incorporation of technology into clinical encounters requires specific skills which should form an integral part of primary medical training.
Hamilton, Scott; Hamilton, Trevor J
2015-01-01
A fundamental discussion in lower-level undergraduate neuroscience and psychology courses is Descartes's "radical" or "mind-body" dualism. According to Descartes, our thinking mind, the res cogitans, is separate from the body as physical matter or substance, the res extensa. Since the transmission of sensory stimuli from the body to the mind is a physical capacity shared with animals, it can be confused, misled, or uncertain (e.g., bodily senses imply that ice and water are different substances). True certainty thus arises from within the mind and its capacity to doubt physical stimuli. Since this doubting mind is a thinking thing that is distinct from bodily stimuli, truth and certainty are reached through the doubting mind as cogito ergo sum, or the certainty of itself as it thinks: hence Descartes's famous maxim, I think, therefore I am. However, in the last century of Western philosophy, with nervous system investigation, and with recent advances in neuroscience, the potential avenues to explore student's understanding of the epistemology and effects of Cartesian mind-body dualism has expanded. This article further explores this expansion, highlighting pedagogical practices and tools instructors can use to enhance a psychology student's understanding of Cartesian dualistic epistemology, in order to think more critically about its implicit assumptions and effects on learning. It does so in two ways: first, by offering instructors an alternative philosophical perspective to dualistic thinking: a mind-body holism that is antithetical to the assumed binaries of dualistic epistemology. Second, it supplements this philosophical argument with a practical component: simple mind-body illusions that instructors may use to demonstrate contrary epistemologies to students. Combining these short philosophical and neuroscience arguments thereby acts as a pedagogical tool to open new conceptual spaces within which learning may occur.
NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, B. H.; Law, E.
2017-12-01
NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.
Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth
2015-01-01
This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.
Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth
2016-01-01
This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972
Marchand, Jérémy; Martineau, Estelle; Guitton, Yann; Dervilly-Pinel, Gaud; Giraudeau, Patrick
2017-02-01
Multi-dimensional NMR is an appealing approach for dealing with the challenging complexity of biological samples in metabolomics. This article describes how spectroscopists have recently challenged their imagination in order to make 2D NMR a powerful tool for quantitative metabolomics, based on innovative pulse sequences combined with meticulous analytical chemistry approaches. Clever time-saving strategies have also been explored to make 2D NMR a high-throughput tool for metabolomics, relying on alternative data acquisition schemes such as ultrafast NMR. Currently, much work is aimed at drastically boosting the NMR sensitivity thanks to hyperpolarisation techniques, which have been used in combination with fast acquisition methods and could greatly expand the application potential of NMR metabolomics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
Zhang, Dandan; Li, Zhenxiang; Li, Jian-Feng
2016-05-20
The CRISPR/Cas technology is emerging as a revolutionary genome editing tool in diverse organisms including plants, and has quickly evolved into a suite of versatile tools for sequence-specific gene manipulations beyond genome editing. Here, we review the most recent applications of the CRISPR/Cas toolkit in plants and also discuss key factors for improving CRISPR/Cas performance and strategies for reducing the off-target effects. Novel technical breakthroughs in mammalian research regarding the CRISPR/Cas toolkit will also be incorporated into this review in hope to stimulate prospective users from the plant research community to fully explore the potential of these technologies. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Invited review article: the electrostatic plasma lens.
Goncharov, Alexey
2013-02-01
The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.
Social Media as an Engagement Tool for Schools and Colleges of Pharmacy.
Chen, Emily; DiVall, Margarita
2018-05-01
Objective. To describe the importance of and potential approaches to social media strategy development for schools and colleges of pharmacy. Findings. In recent years, pharmacy educators have begun exploring the benefits of social media. Effectively utilizing social media as a tool to fulfill marketing, recruitment, and student engagement initiatives is contingent on having a fully developed social media strategy that is well-positioned for success. Developing a sustainable social media strategy involves the following important components: establishing goals and objectives, identifying target audiences, performing competitive and channel analyses, developing content strategy, activities planning, identifying roles, budget and resources planning, and analyzing ongoing performance. Summary. This paper provides relevant information and guidance for colleges and schools of pharmacy that wish to enhance their social media presence.
Social Media as an Engagement Tool for Schools and Colleges of Pharmacy
Chen, Emily
2018-01-01
Objective. To describe the importance of and potential approaches to social media strategy development for schools and colleges of pharmacy. Findings. In recent years, pharmacy educators have begun exploring the benefits of social media. Effectively utilizing social media as a tool to fulfill marketing, recruitment, and student engagement initiatives is contingent on having a fully developed social media strategy that is well-positioned for success. Developing a sustainable social media strategy involves the following important components: establishing goals and objectives, identifying target audiences, performing competitive and channel analyses, developing content strategy, activities planning, identifying roles, budget and resources planning, and analyzing ongoing performance. Summary. This paper provides relevant information and guidance for colleges and schools of pharmacy that wish to enhance their social media presence. PMID:29867244
Program Model Checking: A Practitioner's Guide
NASA Technical Reports Server (NTRS)
Pressburger, Thomas T.; Mansouri-Samani, Masoud; Mehlitz, Peter C.; Pasareanu, Corina S.; Markosian, Lawrence Z.; Penix, John J.; Brat, Guillaume P.; Visser, Willem C.
2008-01-01
Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools.
Performance evaluation of Bragg coherent diffraction imaging
Ozturk, Hande; Huang, X.; Yan, H.; ...
2017-10-03
In this study, we present a numerical framework for modeling three-dimensional (3D) diffraction data in Bragg coherent diffraction imaging (Bragg CDI) experiments and evaluating the quality of obtained 3D complex-valued real-space images recovered by reconstruction algorithms under controlled conditions. The approach is used to systematically explore the performance and the detection limit of this phase-retrieval-based microscopy tool. The numerical investigation suggests that the superb performance of Bragg CDI is achieved with an oversampling ratio above 30 and a detection dynamic range above 6 orders. The observed performance degradation subject to the data binning processes is also studied. Furthermore, this numericalmore » tool can be used to optimize experimental parameters and has the potential to significantly improve the throughput of Bragg CDI method.« less
Strategic foresight: how planning for the unpredictable can improve environmental decision-making.
Cook, Carly N; Inayatullah, Sohail; Burgman, Mark A; Sutherland, William J; Wintle, Brendan A
2014-09-01
Advanced warning of potential new opportunities and threats related to biodiversity allows decision-makers to act strategically to maximize benefits or minimize costs. Strategic foresight explores possible futures, their consequences for decisions, and the actions that promote more desirable futures. Foresight tools, such as horizon scanning and scenario planning, are increasingly used by governments and business for long-term strategic planning and capacity building. These tools are now being applied in ecology, although generally not as part of a comprehensive foresight strategy. We highlight several ways foresight could play a more significant role in environmental decisions by: monitoring existing problems, highlighting emerging threats, identifying promising new opportunities, testing the resilience of policies, and defining a research agenda. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reusable science tools for analog exploration missions: xGDS Web Tools, VERVE, and Gigapan Voyage
NASA Astrophysics Data System (ADS)
Lee, Susan Y.; Lees, David; Cohen, Tamar; Allan, Mark; Deans, Matthew; Morse, Theodore; Park, Eric; Smith, Trey
2013-10-01
The Exploration Ground Data Systems (xGDS) project led by the Intelligent Robotics Group (IRG) at NASA Ames Research Center creates software tools to support multiple NASA-led planetary analog field experiments. The two primary tools that fall under the xGDS umbrella are the xGDS Web Tools (xGDS-WT) and Visual Environment for Remote Virtual Exploration (VERVE). IRG has also developed a hardware and software system that is closely integrated with our xGDS tools and is used in multiple field experiments called Gigapan Voyage. xGDS-WT, VERVE, and Gigapan Voyage are examples of IRG projects that improve the ratio of science return versus development effort by creating generic and reusable tools that leverage existing technologies in both hardware and software. xGDS Web Tools provides software for gathering and organizing mission data for science and engineering operations, including tools for planning traverses, monitoring autonomous or piloted vehicles, visualization, documentation, analysis, and search. VERVE provides high performance three dimensional (3D) user interfaces used by scientists, robot operators, and mission planners to visualize robot data in real time. Gigapan Voyage is a gigapixel image capturing and processing tool that improves situational awareness and scientific exploration in human and robotic analog missions. All of these technologies emphasize software reuse and leverage open source and/or commercial-off-the-shelf tools to greatly improve the utility and reduce the development and operational cost of future similar technologies. Over the past several years these technologies have been used in many NASA-led robotic field campaigns including the Desert Research and Technology Studies (DRATS), the Pavilion Lake Research Project (PLRP), the K10 Robotic Follow-Up tests, and most recently we have become involved in the NASA Extreme Environment Mission Operations (NEEMO) field experiments. A major objective of these joint robot and crew experiments is to improve NASAs understanding of how to most effectively execute and increase science return from exploration missions. This paper focuses on an integrated suite of xGDS software and compatible hardware tools: xGDS Web Tools, VERVE, and Gigapan Voyage, how they are used, and the design decisions that were made to allow them to be easily developed, integrated, tested, and reused by multiple NASA field experiments and robotic platforms.
Peiris, David; Usherwood, Tim; Weeramanthri, Tarun; Cass, Alan; Patel, Anushka
2011-11-01
This article explores Australian general practitioners' (GPs) views on a novel electronic decision support (EDS) tool being developed for cardiovascular disease management. We use Timmermans and Berg's technology-in-practice approach to examine how technologies influence and are influenced by the social networks in which they are placed. In all, 21 general practitioners who piloted the tool were interviewed. The tool occupied an ill-defined middle ground in a dialectical relationship between GPs' routine care and factors promoting best practice. Drawing on Lipsky's concept of 'street-level bureaucrats', the tool's ability to process workloads expeditiously was of greatest appeal to GPs. This feature of the tool gave it the potential to alter the structure, process and content of healthcare encounters. The credibility of EDS tools appears to be mediated by fluid notions of best practice, based on an expert scrutiny of the evidence, synthesis via authoritative guidelines and dissemination through trusted and often informal networks. Balanced against this is the importance of 'soft' forms of knowledge such as intuition and timing in everyday decision-making. This resonates with Aristotle's theory of phronesis (practical wisdom) and may render EDS tools inconsequential if they merely process biomedical data. While EDS tools show promise in improving health practitioner performance, the socio-technical dimensions of their implementation warrant careful consideration. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.
Batson, Sarah; Score, Robert; Sutton, Alex J
2017-06-01
The aim of the study was to develop the three-dimensional (3D) evidence network plot system-a novel web-based interactive 3D tool to facilitate the visualization and exploration of covariate distributions and imbalances across evidence networks for network meta-analysis (NMA). We developed the 3D evidence network plot system within an AngularJS environment using a third party JavaScript library (Three.js) to create the 3D element of the application. Data used to enable the creation of the 3D element for a particular topic are inputted via a Microsoft Excel template spreadsheet that has been specifically formatted to hold these data. We display and discuss the findings of applying the tool to two NMA examples considering multiple covariates. These two examples have been previously identified as having potentially important covariate effects and allow us to document the various features of the tool while illustrating how it can be used. The 3D evidence network plot system provides an immediate, intuitive, and accessible way to assess the similarity and differences between the values of covariates for individual studies within and between each treatment contrast in an evidence network. In this way, differences between the studies, which may invalidate the usual assumptions of an NMA, can be identified for further scrutiny. Hence, the tool facilitates NMA feasibility/validity assessments and aids in the interpretation of NMA results. The 3D evidence network plot system is the first tool designed specifically to visualize covariate distributions and imbalances across evidence networks in 3D. This will be of primary interest to systematic review and meta-analysis researchers and, more generally, those assessing the validity and robustness of an NMA to inform reimbursement decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of social media in schizophrenia: evaluating risks, benefits, and potential.
Torous, John; Keshavan, Matcheri
2016-05-01
Patients with schizophrenia suffer from numerous social problems often because of negative symptoms of the illness and impairments in social cognition. Social media and social networks now offer a novel tool to engage and help patients navigate and potentially improve social functioning. In this review, we aim to explore how impaired neural networks in schizophrenia impair social functioning, examine the evidence base for social networks and social media to help in the role, consider the evidence for current risks and benefits of use, and discuss the future of social media and social networks for schizophrenia. Patients with schizophrenia are increasingly connected to and engaged with social media. There is strong evidence that they own, use, and accept digital tools like smartphones and already use social media services like Facebook at high rates, especially among those who are younger. Less is known about the clinical risks and benefits of social media use in schizophrenia, although there are increasingly more social networking platforms being designed specifically for those with mental illness. Social media tools have the potential to offer a plethora of new services to patients with schizophrenia, although the clinical evidence base for such is still nascent. It is important to ensure that both clinicians and patients are aware of and educated about the risks of using social media. Going forward, it is likely that social media will have an expanding role in care, with social media offering new pathways to address negative symptoms and impairments in social cognition in schizophrenia.
Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.
Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio
2009-12-01
Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.
Exploring Rating Quality in Rater-Mediated Assessments Using Mokken Scale Analysis
Wind, Stefanie A.; Engelhard, George
2015-01-01
Mokken scale analysis is a probabilistic nonparametric approach that offers statistical and graphical tools for evaluating the quality of social science measurement without placing potentially inappropriate restrictions on the structure of a data set. In particular, Mokken scaling provides a useful method for evaluating important measurement properties, such as invariance, in contexts where response processes are not well understood. Because rater-mediated assessments involve complex interactions among many variables, including assessment contexts, student artifacts, rubrics, individual rater characteristics, and others, rater-assigned scores are suitable candidates for Mokken scale analysis. The purposes of this study are to describe a suite of indices that can be used to explore the psychometric quality of data from rater-mediated assessments and to illustrate the substantive interpretation of Mokken-based statistics and displays in this context. Techniques that are commonly used in polytomous applications of Mokken scaling are adapted for use with rater-mediated assessments, with a focus on the substantive interpretation related to individual raters. Overall, the findings suggest that indices of rater monotonicity, rater scalability, and invariant rater ordering based on Mokken scaling provide diagnostic information at the level of individual raters related to the requirements for invariant measurement. These Mokken-based indices serve as an additional suite of diagnostic tools for exploring the quality of data from rater-mediated assessments that can supplement rating quality indices based on parametric models. PMID:29795883
Marine EM: The Past, The Present, and The Future
NASA Astrophysics Data System (ADS)
Constable, S.
2016-12-01
The high cost of deepwater exploration motivated the development of commercial marine magnetotelluric (MT) exploration in 1995, but it wasn't until marine controlled-source electromagnetic (CSEM) methods burst upon the industry scene with the formation of three new contractors in 2002 that things got really exciting. Now the bubble has burst and the excitement has diminished, but marine EM remains an important tool for offshore exploration. Early mistakes were made as a result of poor instrumentation and a lack of good interpretation tools - unlike seismics, EM relies heavily on inversion to produce useful results - but both equipment and inversion codes have improved significantly. Still, there are mistakes that can be made. Rock anisotropy and seawater conductivity have to be handled appropriately. A strong galvanic response means that there is a resistivity/thickness ambiguity when imaging reservoirs, but the inductive nature of the data means that multi-frequency inversions are very much better than using single frequencies. Resolution will never be as good as for seismic methods, but is much better than for potential field methods and conductivity may often be a more diagnostic property than acoustic impedance. EM images resistivity, not hydrocarbon content, and false positives occasionally occur, but false negatives are rare. That is, without a CSEM signature there is little chance of discovering economical hydrocarbons. This should bode well for the future of the method.
Using Network Analysis to Characterize Biogeographic Data in a Community Archive
NASA Astrophysics Data System (ADS)
Wellman, T. P.; Bristol, S.
2017-12-01
Informative measures are needed to evaluate and compare data from multiple providers in a community-driven data archive. This study explores insights from network theory and other descriptive and inferential statistics to examine data content and application across an assemblage of publically available biogeographic data sets. The data are archived in ScienceBase, a collaborative catalog of scientific data supported by the U.S Geological Survey to enhance scientific inquiry and acuity. In gaining understanding through this investigation and other scientific venues our goal is to improve scientific insight and data use across a spectrum of scientific applications. Network analysis is a tool to reveal patterns of non-trivial topological features in the data that do not exhibit complete regularity or randomness. In this work, network analyses are used to explore shared events and dependencies between measures of data content and application derived from metadata and catalog information and measures relevant to biogeographic study. Descriptive statistical tools are used to explore relations between network analysis properties, while inferential statistics are used to evaluate the degree of confidence in these assessments. Network analyses have been used successfully in related fields to examine social awareness of scientific issues, taxonomic structures of biological organisms, and ecosystem resilience to environmental change. Use of network analysis also shows promising potential to identify relationships in biogeographic data that inform programmatic goals and scientific interests.
ePlant and the 3D data display initiative: integrative systems biology on the world wide web.
Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J
2011-01-10
Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).
Agrafiotis, Dimitris K; Wiener, John J M
2010-07-08
We introduce Scaffold Explorer, an interactive tool that allows medicinal chemists to define hierarchies of chemical scaffolds and use them to explore their project data. Scaffold Explorer allows the user to construct a tree, where each node corresponds to a specific scaffold. Each node can have multiple children, each of which represents a more refined substructure relative to its parent node. Once the tree is defined, it can be mapped onto any collection of compounds and be used as a navigational tool to explore structure-activity relationships (SAR) across different chemotypes. The rich visual analytics of Scaffold Explorer afford the user a "bird's-eye" view of the chemical space spanned by a particular data set, map any physicochemical property or biological activity of interest onto the individual scaffold nodes, serve as an aggregator for the properties of the compounds represented by these nodes, and quickly distinguish promising chemotypes from less interesting or problematic ones. Unlike previous approaches, which focused on automated extraction and classification of scaffolds, the utility of the new tool rests on its interactivity and ability to accommodate the medicinal chemists' intuition by allowing the use of arbitrary substructures containing variable atoms, bonds, and/or substituents such as those employed in substructure search.
Development of a self-assessment teamwork tool for use by medical and nursing students.
Gordon, Christopher J; Jorm, Christine; Shulruf, Boaz; Weller, Jennifer; Currie, Jane; Lim, Renee; Osomanski, Adam
2016-08-24
Teamwork training is an essential component of health professional student education. A valid and reliable teamwork self-assessment tool could assist students to identify desirable teamwork behaviours with the potential to promote learning about effective teamwork. The aim of this study was to develop and evaluate a self-assessment teamwork tool for health professional students for use in the context of emergency response to a mass casualty. The authors modified a previously published teamwork instrument designed for experienced critical care teams for use with medical and nursing students involved in mass casualty simulations. The 17-item questionnaire was administered to students immediately following the simulations. These scores were used to explore the psychometric properties of the tool, using Exploratory and Confirmatory Factor Analysis. 202 (128 medical and 74 nursing) students completed the self-assessment teamwork tool for students. Exploratory factor analysis revealed 2 factors (5 items - Teamwork coordination and communication; 4 items - Information sharing and support) and these were justified with confirmatory factor analysis. Internal consistency was 0.823 for Teamwork coordination and communication, and 0.812 for Information sharing and support. These data provide evidence to support the validity and reliability of the self-assessment teamwork tool for students This self-assessment tool could be of value to health professional students following team training activities to help them identify the attributes of effective teamwork.
NASA Astrophysics Data System (ADS)
Tao, Chunhui; Chen, Sheng; Baker, Edward T.; Li, Huaiming; Liang, Jin; Liao, Shili; Chen, Yongshun John; Deng, Xianming; Zhang, Guoyin; Gu, Chunhua; Wu, Jialin
2017-06-01
Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation-reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation-reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation-reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation-reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.
Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Fergus, John
2017-01-01
To address the Integrated Arrival, Departure, and Surface (IADS) challenge, NASA is developing and demonstrating trajectory-based departure automation under a collaborative effort with the FAA and industry known Airspace Technology Demonstration 2 (ATD-2). ATD-2 builds upon and integrates previous NASA research capabilities that include the Spot and Runway Departure Advisor (SARDA), the Precision Departure Release Capability (PDRC), and the Terminal Sequencing and Spacing (TSAS) capability. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users of the tools across a number of roles benefit from a real time system that enables common situational awareness. A real time dashboard was developed to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. In addition to shared situational awareness, the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial proposed set of metrics. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017: Charlotte-Douglas International Airport (CLT). The architecture of implementing such a tool as well as potential uses are presented for operations at CLT. Metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of system delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform users of the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.
NextGen Operations in a Simulated NY Area Airspace
NASA Technical Reports Server (NTRS)
Smith, Nancy M.; Parke, Bonny; Lee, Paul; Homola, Jeff; Brasil, Connie; Buckley, Nathan; Cabrall, Chris; Chevalley, Eric; Lin, Cindy; Morey, Susan;
2013-01-01
A human-in-the-loop simulation conducted in the Airspace Operations Laboratory (AOL) at NASA Ames Research Center explored the feasibility of a Next Generation Air Transportation System (NextGen) solution to address airspace and airport capacity limitations in and around the New York metropolitan area. A week-long study explored the feasibility of a new Optimal Profile Descent (OPD) arrival into the airspace as well as a novel application of a Terminal Area Precision Scheduling and Spacing (TAPSS) enhancement to the Traffic Management Advisor (TMA) arrival scheduling tool to coordinate high volume arrival traffic to intersecting runways. In the simulation, four en route sector controllers and four terminal radar approach control (TRACON) controllers managed traffic inbound to Newark International Airport's primary runway, 22L, and its intersecting overflow runway, 11. TAPSS was used to generate independent arrival schedules for each runway and a traffic management coordinator participant adjusted the arrival schedule for each runway 11 aircraft to follow one of the 22L aircraft. TAPSS also provided controller-managed spacing tools (slot markers with speed advisories and timelines) to assist the TRACON controllers in managing the arrivals that were descending on OPDs. Results showed that the tools significantly decreased the occurrence of runway violations (potential go-arounds) when compared with a Baseline condition with no tools. Further, the combined use of the tools with the new OPD produced a peak arrival rate of over 65 aircraft per hour using instrument flight rules (IFR), exceeding the current maximum arrival rate at Newark Liberty International Airport (EWR) of 52 per hour under visual flight rules (VFR). Although the participants rated the workload as relatively low and acceptable both with and without the tools, they rated the tools as reducing their workload further. Safety and coordination were rated by most participants as acceptable in both conditions, although the TRACON Runway Coordinator (TRC) rated neither as acceptable in the Baseline condition. Regarding the role of the TRC, the two TRACON controllers handling the 11 arrivals indicated that the TRC was very much needed in the Baseline condition without tools, but not needed in the condition with tools. This indicates that the tools were providing much of the sequencing and spacing information that the TRC had supplied in the Baseline condition.
TSVdb: a web-tool for TCGA splicing variants analysis.
Sun, Wenjie; Duan, Ting; Ye, Panmeng; Chen, Kelie; Zhang, Guanling; Lai, Maode; Zhang, Honghe
2018-05-29
Collaborative projects such as The Cancer Genome Atlas (TCGA) have generated various -omics and clinical data on cancer. Many computational tools have been developed to facilitate the study of the molecular characterization of tumors using data from the TCGA. Alternative splicing of a gene produces splicing variants, and accumulating evidence has revealed its essential role in cancer-related processes, implying the urgent need to discover tumor-specific isoforms and uncover their potential functions in tumorigenesis. We developed TSVdb, a web-based tool, to explore alternative splicing based on TCGA samples with 30 clinical variables from 33 tumors. TSVdb has an integrated and well-proportioned interface for visualization of the clinical data, gene expression, usage of exons/junctions and splicing patterns. Researchers can interpret the isoform expression variations between or across clinical subgroups and estimate the relationships between isoforms and patient prognosis. TSVdb is available at http://www.tsvdb.com , and the source code is available at https://github.com/wenjie1991/TSVdb . TSVdb will inspire oncologists and accelerate isoform-level advances in cancer research.
NASA Astrophysics Data System (ADS)
Suwal, Sunil; Singh, Vishal
2018-07-01
Building Information Modelling (BIM) tools and processes are increasingly adopted and implemented in the construction industry. Consequently, BIM education is considered increasingly important in Architecture, Engineering and Construction (AEC) education. While most of the research and literature on BIM education in engineering studies has focused on BIM implementation strategies, processes, benefits, and challenges, there is limited study on students' perception towards the implementation of BIM courses, or about online BIM learning platforms, or about the BIM tools themselves. Therefore, this paper takes the first steps towards addressing this gap. This study analyses students' (57 students) perception and sentiments towards the use of an online BIM learning platform and explores the potential implications of the findings for BIM education. The findings suggest that online BIM learning platforms are highly rated by students as a positive learning experience, indicating the need for greater integration of such tools and approaches in AEC courses.
Metabolic engineering tools in model cyanobacteria.
Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota
2018-03-26
Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Brewer, Margo
2016-09-01
Creating a vision (visioning) and sensemaking have been described as key leadership practices in the leadership literature. A vision provides clarity, motivation, and direction for staff, and is essential particularly in times of significant change. Closely related to visioning is sensemaking (the organisation of stimuli into a framework allowing people to understand, explain, attribute, extrapolate, and predict). The application of these strategies to leadership within the interprofessional field is yet to be scrutinised. This study examines an interprofessional capability framework as a visioning and sensemaking tool for use by leaders within a university health science curriculum. Interviews with 11 faculty members revealed that the framework had been embedded across multiple years and contexts within the curriculum. Furthermore, a range of responses to the framework were evoked in relation to its use to make sense of interprofessional practice and to provide a vision, guide, and focus for faculty. Overall the findings indicate that the framework can function as both a visioning and sensemaking tool.
The CSB Incident Screening Database: description, summary statistics and uses.
Gomez, Manuel R; Casper, Susan; Smith, E Allen
2008-11-15
This paper briefly describes the Chemical Incident Screening Database currently used by the CSB to identify and evaluate chemical incidents for possible investigations, and summarizes descriptive statistics from this database that can potentially help to estimate the number, character, and consequences of chemical incidents in the US. The report compares some of the information in the CSB database to roughly similar information available from databases operated by EPA and the Agency for Toxic Substances and Disease Registry (ATSDR), and explores the possible implications of these comparisons with regard to the dimension of the chemical incident problem. Finally, the report explores in a preliminary way whether a system modeled after the existing CSB screening database could be developed to serve as a national surveillance tool for chemical incidents.
Exploring brand-name drug mentions on Twitter for pharmacovigilance.
Carbonell, Pablo; Mayer, Miguel A; Bravo, Àlex
2015-01-01
Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.
A prospective health impact assessment of the international astronomy and space exploration centre.
Winters, L Y
2001-06-01
Assess the potential health impacts of the proposed International Astronomy and Space Exploration Centre on the population of New Wallasey. Contribute to the piloting of health impact assessment methods. Prospective health impact assessment involving brainstorming sessions and individual interviews with key informants and a literature review. New Wallasey Single Regeneration Budget 4 area. Key stakeholders including local residents' groups selected through purposeful snowball sampling. Recommendations are made that cover issues around: transport and traffic; civic design; security; public safety, employment and training. Health impact assessment is a useful pragmatic tool for facilitating wide consultation. In particular engaging the local population in the early planning stages of a proposed development, and assisting in highlighting changes to maximise the positive health influences on affected communities.
Design and Application of the Exploration Maintainability Analysis Tool
NASA Technical Reports Server (NTRS)
Stromgren, Chel; Terry, Michelle; Crillo, William; Goodliff, Kandyce; Maxwell, Andrew
2012-01-01
Conducting human exploration missions beyond Low Earth Orbit (LEO) will present unique challenges in the areas of supportability and maintainability. The durations of proposed missions can be relatively long and re-supply of logistics, including maintenance and repair items, will be limited or non-existent. In addition, mass and volume constraints in the transportation system will limit the total amount of logistics that can be flown along with the crew. These constraints will require that new strategies be developed with regards to how spacecraft systems are designed and maintained. NASA is currently developing Design Reference Missions (DRMs) as an initial step in defining future human missions. These DRMs establish destinations and concepts of operation for future missions, and begin to define technology and capability requirements. Because of the unique supportability challenges, historical supportability data and models are not directly applicable for establishing requirements for beyond LEO missions. However, supportability requirements could have a major impact on the development of the DRMs. The mass, volume, and crew resources required to support the mission could all be first order drivers in the design of missions, elements, and operations. Therefore, there is a need for enhanced analysis capabilities to more accurately establish mass, volume, and time requirements for supporting beyond LEO missions. Additionally, as new technologies and operations are proposed to reduce these requirements, it is necessary to have accurate tools to evaluate the efficacy of those approaches. In order to improve the analysis of supportability requirements for beyond LEO missions, the Space Missions Analysis Branch at the NASA Langley Research Center is developing the Exploration Maintainability Analysis Tool (EMAT). This tool is a probabilistic simulator that evaluates the need for repair and maintenance activities during space missions and the logistics and crew requirements to support those activities. Using a Monte Carlo approach, the tool simulates potential failures in defined systems, based on established component reliabilities, and then evaluates the capability of the crew to repair those failures given a defined store of spares and maintenance items. Statistical analysis of Monte Carlo runs provides probabilistic estimates of overall mission safety and reliability. This paper will describe the operation of the EMAT, including historical data sources used to populate the model, simulation processes, and outputs. Analysis results are provided for a candidate exploration system, including baseline estimates of required sparing mass and volume. Sensitivity analysis regarding the effectiveness of proposed strategies to reduce mass and volume requirements and improve mission reliability is included in these results.
Exploring College Student Health Literacy: Do Methods of Measurement Matter?
ERIC Educational Resources Information Center
Mackert, Michael; Champlin, Sara; Mabry-Flynn, Amanda
2017-01-01
The purpose of this study was twofold: Assess health literacy among college students using an accepted assessment tool (the Newest Vital Sign, NVS) and utilize different methods of administration to explore strategies for practically increasing usage of health literacy measurement tools--which currently emphasize in-person, oral administration.…
STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS
Hazardous Air Pollutants (HAPs) refers to a set of structurally diverse environmental chemicals, many with limited toxicity data, that have...
Evaluating the potential for secondary mass savings in vehicle lightweighting.
Alonso, Elisa; Lee, Theresa M; Bjelkengren, Catarina; Roth, Richard; Kirchain, Randolph E
2012-03-06
Secondary mass savings are mass reductions that may be achieved in supporting (load-bearing) vehicle parts when the gross vehicle mass (GVM) is reduced. Mass decompounding is the process by which it is possible to identify further reductions when secondary mass savings result in further reduction of GVM. Maximizing secondary mass savings (SMS) is a key tool for maximizing vehicle fuel economy. In today's industry, the most complex parts, which require significant design detail (and cost), are designed first and frozen while the rest of the development process progresses. This paper presents a tool for estimating SMS potential early in the design process and shows how use of the tool to set SMS targets early, before subsystems become locked in, maximizes mass savings. The potential for SMS in current passenger vehicles is estimated with an empirical model using engineering analysis of vehicle components to determine mass-dependency. Identified mass-dependent components are grouped into subsystems, and linear regression is performed on subsystem mass as a function of GVM. A Monte Carlo simulation is performed to determine the mean and 5th and 95th percentiles for the SMS potential per kilogram of primary mass saved. The model projects that the mean theoretical secondary mass savings potential is 0.95 kg for every 1 kg of primary mass saved, with the 5th percentile at 0.77 kg/kg when all components are available for redesign. The model was used to explore an alternative scenario where realistic manufacturing and design limitations were implemented. In this case study, four key subsystems (of 13 total) were locked-in and this reduced the SMS potential to a mean of 0.12 kg/kg with a 5th percentile of 0.1 kg/kg. Clearly, to maximize the impact of mass reduction, targets need to be established before subsystems become locked in.
Clinical Potential of Quantum Dots
Iga, Arthur M.; Robertson, John H. P.; Winslet, Marc C.; Seifalian, Alexander M.
2007-01-01
Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity. PMID:18317518
Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; ...
2016-11-29
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less
Chaos tool implementation for non-singer and singer voice comparison (preliminary study)
NASA Astrophysics Data System (ADS)
Dajer, Me; Pereira, Jc; Maciel, Cd
2007-11-01
Voice waveform is linked to the stretch, shorten, widen or constrict vocal tract. The articulation effects of the singer's vocal tract modify the voice acoustical characteristics and differ from the non-singer voices. In the last decades, Chaos Theory has shown the possibility to explore the dynamic nature of voice signals from a different point of view. The purpose of this paper is to apply the chaos technique of phase space reconstruction to analyze non- singers and singer voices in order to explore the signal nonlinear dynamic, and correlate them with traditional acoustic parameters. Eight voice samples of sustained vowel /i/ from non-singers and eight from singers were analyzed with "ANL" software. The samples were also acoustically analyzed with "Analise de Voz 5.0" in order to extract acoustic perturbation measures jitter and shimmer, and the coefficient of excess - (EX). The results showed different visual patterns for the two groups correlated with different jitter, shimmer, and coefficient of excess values. We conclude that these results clearly indicate the potential of phase space reconstruction technique for analysis and comparison of non-singers and singer voices. They also show a promising tool for training voices application.
McCarthy, Alexandra L; Cook, Peta S; Yates, Patsy
2014-03-01
Clinicians often report that currently available methods to assess older patients, including standard clinical consultations, do not elicit the information necessary to make an appropriate cancer treatment recommendation for older cancer patients. An increasingly popular way of assessing the potential of older patients to cope with chemotherapy is a Comprehensive Geriatric Assessment. What constitutes Comprehensive Geriatric Assessment, however, is open to interpretation and varies from one setting to another. Furthermore, Comprehensive Geriatric Assessment's usefulness as a predictor of fitness for chemotherapy and as a determinant of actual treatment is not well understood. In this article, we analyse how Comprehensive Geriatric Assessment was developed for use in a large cancer service in an Australian capital city. Drawing upon Actor-Network Theory, our findings reveal how, during its development, Comprehensive Geriatric Assessment was made both a tool and a science. Furthermore, we briefly explore the tensions that we experienced as scholars who analyse medico-scientific practices and as practitioner-designers charged with improving the very tools we critique. Our study contributes towards geriatric oncology by scrutinising the medicalisation of ageing, unravelling the practices of standardisation and illuminating the multiplicity of 'fitness for chemotherapy'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less
Genomics as the key to unlocking the polyploid potential of wheat.
Borrill, Philippa; Adamski, Nikolai; Uauy, Cristobal
2015-12-01
Polyploidy has played a central role in plant genome evolution and in the formation of new species such as tetraploid pasta wheat and hexaploid bread wheat. Until recently, the high sequence conservation between homoeologous genes, together with the large genome size of polyploid wheat, had hindered genomic analyses in this important crop species. In the past 5 yr, however, the advent of next-generation sequencing has radically changed the wheat genomics landscape. Here, we review a series of advances in genomic resources and tools for functional genomics that are shifting the paradigm of what is possible in wheat molecular genetics and breeding. We discuss how understanding the relationship between homoeologues can inform approaches to modulate the response of quantitative traits in polyploid wheat; we also argue that functional redundancy has 'locked up' a wide range of phenotypic variation in wheat. We explore how genomics provides key tools to inform targeted manipulation of multiple homoeologues, thereby allowing researchers and plant breeders to unlock the full polyploid potential of wheat. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Monitoring the Productivity of Coastal Systems Using PH ...
The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These studies, which often measure in situ concentrations of nutrients, chlorophyll, and dissolved oxygen, are often spatially and/or temporally intensive and expensive. We provide evidence from experimental mesocosms, coupled with data from the water column of a well-mixed estuary, that pH can be a quick, inexpensive, and integrative measure of net ecosystem metabolism. In some cases, this approach is a more sensitive tracer of production than direct measurements of chlorophyll and carbon-14. Taken together, our data suggest that pH is a sensitive, but often overlooked, tool for monitoring estuarine production. This presentation will explore the potential utility of pH as an indicator of ecosystem productivity. Our data suggest that pH is a sensitive and potentially integrator of net ecosystem production. It should not be overlooked, that measuring pH is quick, easy, and inexpensive, further increasing its value as an analytical tool.
ThinkerTools. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"ThinkerTools" is a computer-based program that aims to develop students' understanding of physics and scientific modeling. The program is composed of two curricula for middle school students, "ThinkerTools Inquiry" and "Model-Enhanced ThinkerTools". "ThinkerTools Inquiry" allows students to explore the…
Exploring the Potential of Predictive Analytics and Big Data in Emergency Care.
Janke, Alexander T; Overbeek, Daniel L; Kocher, Keith E; Levy, Phillip D
2016-02-01
Clinical research often focuses on resource-intensive causal inference, whereas the potential of predictive analytics with constantly increasing big data sources remains largely unexplored. Basic prediction, divorced from causal inference, is much easier with big data. Emergency care may benefit from this simpler application of big data. Historically, predictive analytics have played an important role in emergency care as simple heuristics for risk stratification. These tools generally follow a standard approach: parsimonious criteria, easy computability, and independent validation with distinct populations. Simplicity in a prediction tool is valuable, but technological advances make it no longer a necessity. Emergency care could benefit from clinical predictions built using data science tools with abundant potential input variables available in electronic medical records. Patients' risks could be stratified more precisely with large pools of data and lower resource requirements for comparing each clinical encounter to those that came before it, benefiting clinical decisionmaking and health systems operations. The largest value of predictive analytics comes early in the clinical encounter, in which diagnostic and prognostic uncertainty are high and resource-committing decisions need to be made. We propose an agenda for widening the application of predictive analytics in emergency care. Throughout, we express cautious optimism because there are myriad challenges related to database infrastructure, practitioner uptake, and patient acceptance. The quality of routinely compiled clinical data will remain an important limitation. Complementing big data sources with prospective data may be necessary if predictive analytics are to achieve their full potential to improve care quality in the emergency department. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
2014-01-01
Purpose Universal design (UD) is oriented to creating products, buildings, outdoor spaces and services for use by all people to the fullest extent possible according to principles of enabling equal citizenship. Nevertheless its theoretical basis has been under-explored, a critique that has also been leveled at rehabilitation. This commentary explores parallels between UD and dominant rehabilitation discourses that risk privileging or discrediting particular ways of being and doing. Methods Commentary. Results Drawing from examples that explore the intersection of bodies, places and technologies with disabled people, I examined how practices of normalization risk reproducing the universalized body and legitimated forms of mobility, and in so doing perpetuates the “othering” of difference. To address these limitations, I explored the postmodern notion of multiple creative “assemblages” that are continually made and broken over time and space. Assemblages resist normalization tendencies by acknowledging and fostering multiple productive dependencies between human and non-human elements that include diverse bodies, not just those labeled disabled. Conclusion In exploring the potential of enhancing creative assemblages and multiple dependencies, space opens up in UD and rehabilitation for acknowledging, developing, and promoting a multiplicity of bodily forms and modes of mobility. Implications for Rehabilitation Universal design and rehabilitation both risk perpetuating particular ideas about what disabled people should be, do, and value, that privilege a limited range of particular bodily forms. The notion of “assemblages” provides a conceptual tool for rethinking negative views of dependence and taken for granted independence goals. In exploring the potential of enhancing various dependencies, space opens up for reconsidering disability, mobility and multiple ways of “doing-in-the-world”. PMID:24564357
Lacasta Tintorer, David; Manresa Domínguez, Josep Maria; Pujol-Rivera, Enriqueta; Flayeh Beneyto, Souhel; Mundet Tuduri, Xavier; Saigí-Rubió, Francesc
2018-05-09
The current reality of primary care (PC) makes it essential to have telemedicine systems available to facilitate communication between care levels. Communities of practice have great potential in terms of care and education, and that is why the Online Communication Tool between Primary and Hospital Care was created. This tool enables PC and non-GP specialist care (SC) professionals to raise clinical cases for consultation and to share information. The objective of this article is to explore healthcare professionals' views on communities of clinical practice (CoCPs) and the changes that need to be made in an uncontrolled real-life setting after more than two years of use. A descriptive-interpretative qualitative study was conducted on a total of 29 healthcare professionals who were users and non-users of a CoCP using 2 focus groups, 3 triangular groups and 5 individual interviews. There were 18 women, 21 physicians and 8 nurses. Of the interviewees, 21 were PC professionals, 24 were users of a CoCP and 7 held managerial positions. For a system of communication between PC and SC to become a tool that is habitually used and very useful, the interviewees considered that it would have to be able to find quick, effective solutions to the queries raised, based on up-to-date information that is directly applicable to daily clinical practice. Contact should be virtual - and probably collaborative - via a platform integrated into their habitual workstations and led by PC professionals. Organisational changes should be implemented to enable users to have more time in their working day to spend on the tool, and professionals should have a proactive attitude in order to make the most if its potential. It is also important to make certain technological changes, basically aimed at improving the tool's accessibility, by integrating it into habitual clinical workstations. The collaborative tool that provides reliable, up-to-date information that is highly transferrable to clinical practice is valued for its effectiveness, efficiency and educational capacity. In order to make the most of its potential in terms of care and education, organisational changes and techniques are required to foster greater use.
MaGnET: Malaria Genome Exploration Tool
Sharman, Joanna L.; Gerloff, Dietlind L.
2013-01-01
Summary: The Malaria Genome Exploration Tool (MaGnET) is a software tool enabling intuitive ‘exploration-style’ visualization of functional genomics data relating to the malaria parasite, Plasmodium falciparum. MaGnET provides innovative integrated graphic displays for different datasets, including genomic location of genes, mRNA expression data, protein–protein interactions and more. Any selection of genes to explore made by the user is easily carried over between the different viewers for different datasets, and can be changed interactively at any point (without returning to a search). Availability and Implementation: Free online use (Java Web Start) or download (Java application archive and MySQL database; requires local MySQL installation) at http://malariagenomeexplorer.org Contact: joanna.sharman@ed.ac.uk or dgerloff@ffame.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23894142
Java PathExplorer: A Runtime Verification Tool
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)
2001-01-01
We describe recent work on designing an environment called Java PathExplorer for monitoring the execution of Java programs. This environment facilitates the testing of execution traces against high level specifications, including temporal logic formulae. In addition, it contains algorithms for detecting classical error patterns in concurrent programs, such as deadlocks and data races. An initial prototype of the tool has been applied to the executive module of the planetary Rover K9, developed at NASA Ames. In this paper we describe the background and motivation for the development of this tool, including comments on how it relates to formal methods tools as well as to traditional testing, and we then present the tool itself.
Endodontic Microbiology and Pathobiology: Current State of Knowledge.
Fouad, Ashraf F
2017-01-01
Newer research tools and basic science knowledge base have allowed the exploration of endodontic diseases in the pulp and periapical tissues in novel ways. The use of next generation sequencing, bioinformatics analyses, genome-wide association studies, to name just a few of these innovations, has allowed the identification of hundreds of microorganisms and of host response factors. This review addresses recent advances in endodontic microbiology and the host response and discusses the potential for future innovations in this area. Copyright © 2016 Elsevier Inc. All rights reserved.
Qualitative tools and experimental philosophy
Andow, James
2016-01-01
Abstract Experimental philosophy brings empirical methods to philosophy. These methods are used to probe how people think about philosophically interesting things such as knowledge, morality, and freedom. This paper explores the contribution that qualitative methods have to make in this enterprise. I argue that qualitative methods have the potential to make a much greater contribution than they have so far. Along the way, I acknowledge a few types of resistance that proponents of qualitative methods in experimental philosophy might encounter, and provide reasons to think they are ill-founded. PMID:28392629
Observing System Simulation Experiments for Fun and Profit
NASA Technical Reports Server (NTRS)
Prive, Nikki C.
2015-01-01
Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.
2012-04-25
Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.
Semantic e-Learning: Next Generation of e-Learning?
NASA Astrophysics Data System (ADS)
Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi
Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.
Recent advance in DNA-based traceability and authentication of livestock meat PDO and PGI products.
Nicoloso, Letizia; Crepaldi, Paola; Mazza, Raffaele; Ajmone-Marsan, Paolo; Negrini, Riccardo
2013-04-01
This review updates the available molecular techniques and technologies and discusses how they can be used for traceability, food control and enforcement activities. The review also provides examples on how molecular techniques succeeded to trace back unknowns to their breeds of origin, to fingerprint single individuals and to generate evidence in court cases. The examples demonstrate the potential of the DNA based traceability techniques and explore possibilities for translating the next generation genomics tools into a food and feed control and enforcement framework.
The Second NASA Formal Methods Workshop 1992
NASA Technical Reports Server (NTRS)
Johnson, Sally C. (Compiler); Holloway, C. Michael (Compiler); Butler, Ricky W. (Compiler)
1992-01-01
The primary goal of the workshop was to bring together formal methods researchers and aerospace industry engineers to investigate new opportunities for applying formal methods to aerospace problems. The first part of the workshop was tutorial in nature. The second part of the workshop explored the potential of formal methods to address current aerospace design and verification problems. The third part of the workshop involved on-line demonstrations of state-of-the-art formal verification tools. Also, a detailed survey was filled in by the attendees; the results of the survey are compiled.
Relation of ERTS-1 detected geologic structure to known economic ore deposits
NASA Technical Reports Server (NTRS)
Rich, E. I.
1973-01-01
A preliminary analysis of ERTS-1 imagery of the Northern Coast Ranges and Sacramento Valley, California, has disclosed a potentially important fracture system which may be one of the controlling factors in the location of known mercury deposits in the Coast Ranges and which appears to be associated with some of the oil and gas fields within the Sacramento Valley. Recognition of this fracture system may prove to be an extremely useful exploration tool, hence careful analysis of subsequent ERTS imagery might delineate areas for field evaluation.
Palese, Alvisa; Marini, Eva; Guarnier, Annamaria; Barelli, Paolo; Zambiasi, Paola; Allegrini, Elisabetta; Bazoli, Letizia; Casson, Paola; Marin, Meri; Padovan, Marisa; Picogna, Michele; Taddia, Patrizia; Chiari, Paolo; Salmaso, Daniele; Marognolli, Oliva; Canzan, Federica; Ambrosi, Elisa; Saiani, Luisa; Grassetti, Luca
2016-10-01
There is growing interest in validating tools aimed at supporting the clinical decision-making process and research. However, an increased bureaucratization of clinical practice and redundancies in the measures collected have been reported by clinicians. Redundancies in clinical assessments affect negatively both patients and nurses. To validate a meta-tool measuring the risks/problems currently estimated by multiple tools used in daily practice. A secondary analysis of a database was performed, using a cross-validation and a longitudinal study designs. In total, 1464 patients admitted to 12 medical units in 2012 were assessed at admission with the Brass, Barthel, Conley and Braden tools. Pertinent outcomes such as the occurrence of post-discharge need for resources and functional decline at discharge, as well as falls and pressure sores, were measured. Explorative factor analysis of each tool, inter-tool correlations and a conceptual evaluation of the redundant/similar items across tools were performed. Therefore, the validation of the meta-tool was performed through explorative factor analysis, confirmatory factor analysis and the structural equation model to establish the ability of the meta-tool to predict the outcomes estimated by the original tools. High correlations between the tools have emerged (from r 0.428 to 0.867) with a common variance from 18.3% to 75.1%. Through a conceptual evaluation and explorative factor analysis, the items were reduced from 42 to 20, and the three factors that emerged were confirmed by confirmatory factor analysis. According to the structural equation model results, two out of three emerged factors predicted the outcomes. From the initial 42 items, the meta-tool is composed of 20 items capable of predicting the outcomes as with the original tools. © 2016 John Wiley & Sons, Ltd.
NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA
NASA Technical Reports Server (NTRS)
Graff, Trevor
2016-01-01
The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.
Regulating the advertising and promotion of stem cell therapies.
von Tigerstrom, Barbara
2017-10-01
There are widespread concerns with the ways in which 'unproven' stem cell therapies are advertised to patients. This article explores the potential and limits of using laws that regulate advertising and promotion as a tool to address these concerns. It examines general consumer protection laws and laws and policies on advertising medical products and services, focusing on the USA, Canada and Australia. The content of existing laws and policies covers most of the marketing practices that cause concern, but several systemic factors are likely to limit enforcement efforts. Potential reforms in Australia that would prevent direct-to-consumer advertising of autologous cell therapies are justified in principle and should be considered by other jurisdictions, but again face important practical limits to their effectiveness.
Challenges of Health Games in the Social Network Environment.
Paredes, Hugo; Pinho, Anabela; Zagalo, Nelson
2012-04-01
Virtual communities and their benefits have been widely exploited to support patients, caregivers, families, and healthcare providers. The complexity of the social organization evolved the concept of virtual community to social networks, exploring the establishment of ties and relations between people. These technological platforms provide a way to keep up with one's connections network, through a set of communication and interaction tools. Games, as social interactive technologies, have great potential, ensuring a supportive community and thereby reducing social isolation. Serious social health games bring forward several research challenges. This article examines the potential benefits of the triad "health-serious games-social networks" and discusses some research challenges and opportunities of the liaison of serious health games and social networks.
Kidney disease models: tools to identify mechanisms and potential therapeutic targets
Bao, Yin-Wu; Yuan, Yuan; Chen, Jiang-Hua; Lin, Wei-Qiang
2018-01-01
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored. PMID:29515089
Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters
NASA Astrophysics Data System (ADS)
Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles
2018-01-01
Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.
Low Latency DESDynI Data Products for Disaster Response, Resource Management and Other Applications
NASA Technical Reports Server (NTRS)
Doubleday, Joshua R.; Chien, Steve A.; Lou, Yunling
2011-01-01
We are developing onboard processor technology targeted at the L-band SAR instrument onboard the planned DESDynI mission to enable formation of SAR images onboard opening possibilities for near-real-time data products to augment full data streams. Several image processing and/or interpretation techniques are being explored as possible direct-broadcast products for use by agencies in need of low-latency data, responsible for disaster mitigation and assessment, resource management, agricultural development, shipping, etc. Data collected through UAVSAR (L-band) serves as surrogate to the future DESDynI instrument. We have explored surface water extent as a tool for flooding response, and disturbance images on polarimetric backscatter of repeat pass imagery potentially useful for structural collapse (earthquake), mud/land/debris-slides etc. We have also explored building vegetation and snow/ice classifiers, via support vector machines utilizing quad-pol backscatter, cross-pol phase, and a number of derivatives (radar vegetation index, dielectric estimates, etc.). We share our qualitative and quantitative results thus far.
[Personal health records: the case of the Personal Health Folder of Catalonia (Spain)].
Saigí, Francesc; Cerdá Calafat, Ismael; Guanyabens Calvet, Joan; Carrau Vidal, Elisenda
2012-01-01
The aims of this study were to explore the possibilities of the Personal Health Folder and to identify the gap between the potential applications of this tool and what it offers through the Internet. The Personal Health Folder is presented, a project linked to the Shared Medical Record of Catalonia (Spain), which provides citizens with an access point to information about their health insurance, customized and supported by information and communication technologies. The project was carried out by the Ministry of Health of the Government of Catalonia (Generalitat de Catalunya) and data were gathered through an anonymous survey. The results were critical to obtain information on the suitability of the published data and on the expectations of a tool aimed at the general population. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.
The health visitor's role in the identification of domestic abuse.
Litherland, Rachel
2012-08-01
Internationally, domestic abuse is a significant public health issue in terms of imposing physical and psychological distress upon victims, having a detrimental impact upon parenting and causing psychological problems for victim's children. Figures identify that one in four UK women experience domestic abuse. However, it is acknowledged that reported rates are gross underestimates of true figures and that multiple barriers exist that inhibit domestic abuse identification. This paper reviews the literature to explore these barriers and ascertain evidence-based strategies that will help practitioners to identify domestic abuse more effectively. Particular attention is paid to domestic abuse screening tools, as research suggests their use increases disclosure rates. The paper concludes that routine and recurrent enquiry using a screening tool, information giving to all women, knowledgeable staff and supportive environments, are all potential facilitators to identification.
Clément, Fabrice; Gruber, Thibaud
2017-01-01
Children are skilful at acquiring tool-using skills by faithfully copying relevant and irrelevant actions performed by others, but poor at innovating tools to solve problems. Five- to twelve-year-old urban French and rural Serbian children (N = 208) were exposed to a Hook task; a jar containing a reward in a bucket and a pipe cleaner as potential recovering tool material. In both countries, few children under the age of 10 made a hook from the pipe cleaner to retrieve the reward on their own. However, from five onward, the majority of unsuccessful children succeeded after seeing an adult model manufacturing a hook without completing the task. Additionally, a third of the children who observed a similar demonstration including an irrelevant action performed with a second object, a string, replicated this meaningless action. Children's difficulty with innovation and early capacity for overimitation thus do not depend on socio-economic background. Strikingly, we document a sex difference in overimitation across cultures, with boys engaging more in overimitation than girls, a finding that may result from differences regarding explorative tool-related behaviour. This male-biased sex effect sheds new light on our understanding of overimitation, and more generally, on how human tool culture evolved. PMID:29308216
Frick, Aurélien; Clément, Fabrice; Gruber, Thibaud
2017-12-01
Children are skilful at acquiring tool-using skills by faithfully copying relevant and irrelevant actions performed by others, but poor at innovating tools to solve problems. Five- to twelve-year-old urban French and rural Serbian children ( N = 208) were exposed to a Hook task ; a jar containing a reward in a bucket and a pipe cleaner as potential recovering tool material. In both countries, few children under the age of 10 made a hook from the pipe cleaner to retrieve the reward on their own. However, from five onward, the majority of unsuccessful children succeeded after seeing an adult model manufacturing a hook without completing the task. Additionally, a third of the children who observed a similar demonstration including an irrelevant action performed with a second object, a string, replicated this meaningless action. Children's difficulty with innovation and early capacity for overimitation thus do not depend on socio-economic background. Strikingly, we document a sex difference in overimitation across cultures, with boys engaging more in overimitation than girls, a finding that may result from differences regarding explorative tool-related behaviour. This male-biased sex effect sheds new light on our understanding of overimitation, and more generally, on how human tool culture evolved.
ERIC Educational Resources Information Center
de Castro, Christopher H.
2011-01-01
This study explored the development of student's conceptual understandings of limit and derivative when utilizing specifically designed computational tools. Fourteen students from a secondary Advanced Placement Calculus AB course learned and explored the limit and derivative concepts from differential calculus using visualization tools in the…
ERIC Educational Resources Information Center
Zhang, Xiaorong
2011-01-01
We incorporated a bioinformatics component into the freshman biology course that allows students to explore cystic fibrosis (CF), a common genetic disorder, using bioinformatics tools and skills. Students learn about CF through searching genetic databases, analyzing genetic sequences, and observing the three-dimensional structures of proteins…
ERIC Educational Resources Information Center
Duhn, Iris; Fleer, Marilyn; Harrison, Linda
2016-01-01
This article focuses on the "Relational Agency Framework" (RAF), an analytical tool developed for an Australian review and evaluation study of an early years' policy initiative. We explore Anne Edward's concepts of "relational expertise", "building common knowledge" and "relational agency" to explore how…
The National Academy of Science (NAS) recently recommended exploration of predictive tools, such as interspecies correlation estimation (ICE), to estimate acute toxicity values for listed species and support development of species sensitivity distributions (SSDs). We explored the...
Magnetic responsive cell based strategies for diagnostic and therapeutics.
Gonçalves, Ana I; Miranda, Margarida S; Rodrigues, Márcia T; Reis, Rui Luis; Gomes, Manuela
2018-05-24
The potential of magnetically assisted strategies within the remit of cell-based therapies is increasing and creates new opportunities in biomedical platforms and in the field of tissue engineering and regenerative medicine (TERM). Among the magnetic elements approached to build magnetically responsive strategies, superparamagnetic iron oxide nanoparticles (SPIONs) represent tunable and precise tools whose properties can be modelled for detection, diagnosis, targeting and therapy purposes. The most investigated clinical role of SPIONs is as contrast imaging agents for tracking and monitoring cells and tissues. Nevertheless, magnetic detection also includes biomarker mapping, cell labelling and cell/drug targeting to monitor cell events and anticipate the disruption of homeostatic conditions and progression of disease. Additionally, isolation and screening techniques of cell subsets in heterogeneous populations or of proteins of interest have been explored in a magnetic sorting context. More recently, SPIONs-based technologies have been applied to stimulate cell differentiation and mechanotransduction processes and to transport genetic or drug cargo to study biological mechanisms and contribute for improved therapies. Magnetically based strategies significantly contribute for magnetic tissue engineering (magTE), in which magnetically responsive actuators built from magnetic labelled cells or magnetic functionalized systems can be remotely controlled and spatially manipulated upon the actuation of an external magnetic field for delivery or target of TE solutions. SPIONs functionalities combined with the magnetic responsiveness in multifactorial magnetically assisted platforms can revolutionize diagnosis and therapeutics providing new diagnosis and theranostic tools, encouraging regenerative medicine approaches and holding potential for more effective therapies. This review will address the contribution of SPIONs based technologies as multifunctional tools in boosting magnetically assisted cell based strategies to explore diagnostics and tracking solutions on the detection and analysis of pathologies and to generate improved treatments and therapies, envisioning precise and customized answers for the management of numerous diseases. . © 2018 IOP Publishing Ltd.
Seed: a user-friendly tool for exploring and visualizing microbial community data.
Beck, Daniel; Dennis, Christopher; Foster, James A
2015-02-15
In this article we present Simple Exploration of Ecological Data (Seed), a data exploration tool for microbial communities. Seed is written in R using the Shiny library. This provides access to powerful R-based functions and libraries through a simple user interface. Seed allows users to explore ecological datasets using principal coordinate analyses, scatter plots, bar plots, hierarchal clustering and heatmaps. Seed is open source and available at https://github.com/danlbek/Seed. danlbek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Ficheur, Grégoire; Ferreira Careira, Lionel; Beuscart, Régis; Chazard, Emmanuel
2015-01-01
Administrative data can be used for the surveillance of the outcomes of implantable medical devices (IMDs). The objective of this work is to build a web-based tool allowing for an exploratory analysis of time-dependent events that may occur after the implementation of an IMD. This tool should enable a pharmacoepidemiologist to explore on the fly the relationship between a given IMD and a potential outcome. This tool mine the French nationwide database of inpatient stays from 2008 to 2013. The data are preprocessed in order to optimize the queries. A web tool is developed in PHP, MySQL and Javascript. The user selects one or a group of IMD from a tree, and can filter the results using years and hospital names. Four result pages describe the selected inpatient stays: (1) temporal and demographic description, (2) a description of the geographical location of the hospital, (3) a description of the geographical place of residence of the patient and (4) a table showing the rehospitalization reasons by decreasing order of frequency. Then, the user can select one readmission reason and display dynamically the probability of readmission by mean of a Kaplan-Meier curve with confidence intervals. This tool enables to dynamically monitor the occurrence of time-dependent complications of IMD.
Data for Renewable Energy Planning, Policy, and Investment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L
Reliable, robust, and validated data are critical for informed planning, policy development, and investment in the clean energy sector. The Renewable Energy (RE) Explorer was developed to support data-driven renewable energy analysis that can inform key renewable energy decisions globally. This document presents the types of geospatial and other data at the core of renewable energy analysis and decision making. Individual data sets used to inform decisions vary in relation to spatial and temporal resolution, quality, and overall usefulness. From Data to Decisions, a complementary geospatial data and analysis decision guide, provides an in-depth view of these and other considerationsmore » to enable data-driven planning, policymaking, and investment. Data support a wide variety of renewable energy analyses and decisions, including technical and economic potential assessment, renewable energy zone analysis, grid integration, risk and resiliency identification, electrification, and distributed solar photovoltaic potential. This fact sheet provides information on the types of data that are important for renewable energy decision making using the RE Data Explorer or similar types of geospatial analysis tools.« less
[Measurement of nasal transepithelial potential difference: a diagnostic test for cystic fibrosis].
Charfi, M R; Matran, R; Regnard, J; Lockhart, A
1996-01-01
Measurement of nasal transepithelial potential difference allows the exploration of transepithelial ionic transports in vivo. Cystic fibrosis is an interesting indication of this test. Indeed, this disease is characterized by a chloride and water secretion deficit across respiratory epithelium. We have measured nasal potential in 8 healthy volunteers. Measurements were repeated 3 times a day, during 3 days for each subject. The reproducibility of the data was analysed with factorial variance model. The mean nasal potential in the healthy volunteers group and in 10 patients with cystic fibrosis was compared. In the cystic fibrosis group, the nasal potential was measured 3 times with a 2 mn-interval between the measurements. No significant variation of the nasal potential values was found from day to day or in the same day from one measurement to another. Mean value was -19 +/- 3.5 mv in normal subjects and -42.6 +/- 5.1 mv in cystic fibrosis patients. We conclude that nasal potential measurement is an easy and reproducible test that might be a complementary tool routinely used along with the classical tests in the diagnosis of cystic fibrosis.
Simulation in the Service of Design - Asking the Right Questions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donn, Michael; Selkowitz, Stephen; Bordass, Bill
2009-03-01
This paper proposes an approach to the creation of design tools that address the real information needs of designers in the early stages of design of nonresidential buildings. Traditional simplified design tools are typically too limited to be of much use, even in conceptual design. The proposal is to provide access to the power of detailed simulation tools, at a stage in design when little is known about the final building, but at a stage also when the freedom to explore options is greatest. The proposed approach to tool design has been derived from consultation with design analysis teams asmore » part of the COMFEN tool development. The paper explores how tools like COMFEN have been shaped by this consultation and how requests from these teams for real-world relevance might shape such tools in the future, drawing into the simulation process the lessons from Post Occupancy Evaluation (POE) of buildings.« less
Dadaev, Tokhir; Leongamornlert, Daniel A; Saunders, Edward J; Eeles, Rosalind; Kote-Jarai, Zsofia
2016-03-15
: In this article, we present LocusExplorer, a data visualization and exploration tool for genetic association data. LocusExplorer is written in R using the Shiny library, providing access to powerful R-based functions through a simple user interface. LocusExplorer allows users to simultaneously display genetic, statistical and biological data for humans in a single image and allows dynamic zooming and customization of the plot features. Publication quality plots may then be produced in a variety of file formats. LocusExplorer is open source and runs through R and a web browser. It is available at www.oncogenetics.icr.ac.uk/LocusExplorer/ or can be installed locally and the source code accessed from https://github.com/oncogenetics/LocusExplorer tokhir.dadaev@icr.ac.uk. © The Author 2015. Published by Oxford University Press.
Failure mode and effects analysis outputs: are they valid?
Shebl, Nada Atef; Franklin, Bryony Dean; Barber, Nick
2012-06-10
Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: Face validity: by comparing the FMEA participants' mapped processes with observational work. Content validity: by presenting the FMEA findings to other healthcare professionals. Criterion validity: by comparing the FMEA findings with data reported on the trust's incident report database. Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust's incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA's methodology for scoring failures, there were discrepancies between the teams' estimates and similar incidents reported on the trust's incident database. Furthermore, the concept of multiplying ordinal scales to prioritise failures is mathematically flawed. Until FMEA's validity is further explored, healthcare organisations should not solely depend on their FMEA results to prioritise patient safety issues.
EUnetHTA information management system: development and lessons learned.
Chalon, Patrice X; Kraemer, Peter
2014-11-01
The aim of this study was to describe the techniques used in achieving consensus on common standards to be implemented in the EUnetHTA Information Management System (IMS); and to describe how interoperability between tools was explored. Three face to face meetings were organized to identify and agree on common standards to the development of online tools. Two tools were created to demonstrate the added value of implementing interoperability standards at local levels. Developers of tools outside EUnetHTA were identified and contacted. Four common standards have been agreed on by consensus; and consequently all EUnetHTA tools have been modified or designed accordingly. RDF Site Summary (RSS) has demonstrated a good potential to support rapid dissemination of HTA information. Contacts outside EUnetHTA resulted in direct collaboration (HTA glossary, HTAi Vortal), evaluation of options for interoperability between tools (CRD HTA database) or a formal framework to prepare cooperation on concrete projects (INAHTA projects database). While being entitled a project on IT infrastructure, the work program was also about people. When having to agree on complex topics, fostering a cohesive group dynamic and hosting face to face meetings brings added value and enhances understanding between partners. The adoption of widespread standards enhanced the homogeneity of the EUnetHTA tools and should thus contribute to their wider use, therefore, to the general objective of EUnetHTA. The initiatives on interoperability of systems need to be developed further to support a general interoperable information system that could benefit the whole HTA community.
Hean, Sarah; Willumsen, Elisabeth; Ødegård, Atle
2018-06-11
Purpose Effective collaboration between mental health services (MHS) and criminal justice services (CJS) impacts on mental illness and reduces reoffending rates. This paper proposes the change laboratory model (CLM) of workplace transformation as a potential tool to support interagency collaborative practice that has potential to complement current integration tools used in this context. The purpose of this paper is to focus specifically on the theoretical dimension of the model: the cultural historical activity systems theory (CHAT) as a theoretical perspective that offers a framework with which interactions between the MHS and CJS can be better understood. Design/methodology/approach The structure and rationale behind future piloting of the change laboratory in this context is made. Then CHAT theory is briefly introduced and then its utility illustrated in the presentation of the findings of a qualitative study of leaders from MHS and CJS that explored their perspectives of the characteristics of collaborative working between MHS and prison/probation services in a Norwegian context and using CHAT as an analytical framework. Findings Leaders suggested that interactions between the two services, within the Norwegian system at least, are most salient when professionals engage in the reintegration and rehabilitation of the offender. Achieving effective communication within the boundary space between the two systems is a focus for professionals engaging in interagency working and this is mediated by a range of integration tools such as coordination plans and interagency meetings. Formalised interagency agreements and informal, unspoken norms of interaction governed this activity. Key challenges limiting the collaboration between the two systems included resource limitations, logistical issues and differences in professional judgments on referral and confidentiality. Originality/value Current tools with which MHS/CJS interactions are understood and managed, fail to make explicit the dimensions and nature of these complex interactions. The CLM, and CHAT as its theoretical underpinning, has been highly successful internationally and in other clinical contexts, as a means of exploring and developing interagency working. It is a new idea in prison development, none as yet being applied to the challenges facing the MHS and CJS. This paper addresses this by illustrating the use of CHAT as an analytical framework with which to articulate MHS/CJS collaborations and the potential of the CLM more widely to address current challenges in a context specific, bottom-up and fluid approach to interagency working in this environment.
NASA Astrophysics Data System (ADS)
Bao, X.; Cai, X.; Liu, Y.
2009-12-01
Understanding spatiotemporal dynamics of hydrological events such as storms and droughts is highly valuable for decision making on disaster mitigation and recovery. Virtual Globe-based technologies such as Google Earth and Open Geospatial Consortium KML standards show great promises for collaborative exploration of such events using visual analytical approaches. However, currently there are two barriers for wider usage of such approaches. First, there lacks an easy way to use open source tools to convert legacy or existing data formats such as shapefiles, geotiff, or web services-based data sources to KML and to produce time-aware KML files. Second, an integrated web portal-based time-aware animation tool is currently not available. Thus users usually share their files in the portal but have no means to visually explore them without leaving the portal environment which the users are familiar with. We develop a web portal-based time-aware KML animation tool for viewing extreme hydrologic events. The tool is based on Google Earth JavaScript API and Java Portlet standard 2.0 JSR-286, and it is currently deployable in one of the most popular open source portal frameworks, namely Liferay. We have also developed an open source toolkit kml-soc-ncsa (http://code.google.com/p/kml-soc-ncsa/) to facilitate the conversion of multiple formats into KML and the creation of time-aware KML files. We illustrate our tool using some example cases, in which drought and storm events with both time and space dimension can be explored in this web-based KML animation portlet. The tool provides an easy-to-use web browser-based portal environment for multiple users to collaboratively share and explore their time-aware KML files as well as improving the understanding of the spatiotemporal dynamics of the hydrological events.
Kitching, Fiona; Winbolt, Margaret; MacPhail, Aleece; Ibrahim, Joseph E
2015-12-01
Participatory web-based platforms, including social media, have been recognised as valuable learning tools in healthcare education for over a decade. Use of these platforms is now widespread in tertiary education. It is less widely accepted as a tool for continuing professional education and development at the industry level. This study explores perspectives of senior stakeholders in the nursing home sector to explore perceived benefits, barriers and risks for use in professional education. Qualitative data were collected through semi-structured interviews of 'high level' clinical and executive staff from a cross section of nursing home stakeholder organisations. Established printed educational material (PEM) was used as a case study for adaptation to web-based social applications. Questions were designed to gather information about the interviewee's views on the potential to apply PEM to programs such as blogs, Twitter and YouTube to deliver education and aid communication in the sector. Twelve participants from eleven stakeholder organisations took part in the study. Most participants were cautious about the use of social media programs in continuing professional education. Participants described the benefits (contemporary information, delivered rapidly, varying formats) and barriers (credibility of information, potential misinterpretation, sector demographics, time constraints) to uptake of these programs. The majority of participants preferred formal e-learning programs to web-based social media applications. Reservations expressed about the use of social media, such as accuracy, legal and privacy risks to the organisation reflected those previously expressed by the broader medical community. Copyright © 2015 Elsevier Ltd. All rights reserved.
Performing the Future. On the Use of Drama in Philosophy Courses for Science Students
NASA Astrophysics Data System (ADS)
Toonders, Winnie; Verhoeff, Roald P.; Zwart, Hub
2016-10-01
Drama is a relatively unexplored tool in academic science education. This paper addresses in what way the use of drama may allow science students to deepen their understanding of recent developments in the emerging and controversial field of neuro-enhancement, by means of a case study approach. First, we emphasise the congruency between drama and science, notably the dramatic dimension of experimental research. Subsequently, we draw on educational literature to elaborate the potential of using drama as a teaching modality, specifically focusing on the ethical and moral dimensions of future techno-scientific innovations. Our case study consisted of a drama experiment as a module in a philosophy course on human enhancement. Twenty-two students from various science disciplines performed multiple roles, as authors, actors, audience and reviewers. Qualitative data were collected on the educational process and student performance during the course, i.e. observations and video recordings of class discussions, group work and plays, interviews and questionnaires. Our drama experiment proved to be effective in enabling students to explore and relate to a future life world affected by enhancement technologies. It allowed them to deepen their awareness of social and ethical implications of neuro-technologies and of the different viewpoints people may have on this issue in academic, professional or everyday settings. Moreover, drama allowed them to develop a reflexive position of their own in the neuro-enhancement debate by enacting a moral dilemma in front of an audience. Our results confirm the potential of drama as a tool for exploring techno-scientific futures in science education.
Exploring the use of a Facebook page in anatomy education.
Jaffar, Akram Abood
2014-01-01
Facebook is the most popular social media site visited by university students on a daily basis. Consequently, Facebook is the logical place to start with for integrating social media technologies into education. This study explores how a faculty-administered Facebook Page can be used to supplement anatomy education beyond the traditional classroom. Observations were made on students' perceptions and effectiveness of using the Page, potential benefits and challenges of such use, and which Insights metrics best reflect user's engagement. The Human Anatomy Education Page was launched on Facebook and incorporated into anatomy resources for 157 medical students during two academic years. Students' use of Facebook and their perceptions of the Page were surveyed. Facebook's "Insights" tool was also used to evaluate Page performance during a period of 600 days. The majority of in-class students had a Facebook account which they adopted in education. Most students perceived Human Anatomy Education Page as effective in contributing to learning and favored "self-assessment" posts. The majority of students agreed that Facebook could be a suitable learning environment. The "Insights" tool revealed globally distributed fans with considerable Page interactions. The use of a faculty-administered Facebook Page provided a venue to enhance classroom teaching without intruding into students' social life. A wider educational use of Facebook should be adopted not only because students are embracing its use, but for its inherent potentials in boosting learning. The "Insights" metrics analyzed in this study might be helpful when establishing and evaluating the performance of education-oriented Facebook Pages. © 2013 American Association of Anatomists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, Adam; Chalise, Dol Raj; Hadjerioua, Boualem
The slow pace of Pumped Storage Hydropower development in the US over the past twenty years has led to widespread interest in the feasibility and viability of alternative PSH designs, development schemes, and technologies. Since 2011, Oak Ridge National Lab has been exploring the economic viability of modular Pumped Storage Hydropower (m-PSH) development through targeted case studies, revenue simulations, and analysis of innovative configurations and designs. This paper outlines the development and supporting analysis of a scalable, comprehensive cost modeling tool designed to simulate the initial capital costs for a variety of potential m-PSH projects and deployment scenarios. The toolmore » is used to explore and determine innovative research strategies that can improve the economic viability of m-PSH in US markets.« less
Examining Trust, Forgiveness and Regret as Computational Concepts
NASA Astrophysics Data System (ADS)
Marsh, Stephen; Briggs, Pamela
The study of trust has advanced tremendously in recent years, to the extent that the goal of a more unified formalisation of the concept is becoming feasible. To that end, we have begun to examine the closely related concepts of regret and forgiveness and their relationship to trust and its siblings. The resultant formalisation allows computational tractability in, for instance, artificial agents. Moreover, regret and forgiveness, when allied to trust, are very powerful tools in the Ambient Intelligence (AmI) security area, especially where Human Computer Interaction and concrete human understanding are key. This paper introduces the concepts of regret and forgiveness, exploring them from social psychological as well as a computational viewpoint, and presents an extension to Marsh's original trust formalisation that takes them into account. It discusses and explores work in the AmI environment, and further potential applications.
Exploring Multitarget Interactions to Reduce Opiate Withdrawal Syndrome and Psychiatric Comorbidity
2013-01-01
Opioid addiction is often characterized as a chronic relapsing condition due to the severe somatic and behavioral signs, associated with depressive disorders, triggered by opiate withdrawal. Since prolonged abstinence remains a major challenge, our interest has been addressed to such objective. Exploring multitarget interactions, the present investigation suggests that 3 or its (S)-enantiomer and 4, endowed with effective α2C-AR agonism/α2A-AR antagonism/5-HT1A-R agonism, or 7 and 9–11 producing efficacious α2C-AR agonism/α2A-AR antagonism/I2–IBS interaction might represent novel multifunctional tools potentially useful for reducing withdrawal syndrome and associated depression. Such agents, lacking in sedative side effects due to their α2A-AR antagonism, might afford an improvement over current therapies with clonidine-like drugs. PMID:24900763
Nanotechnology research: applications in nutritional sciences.
Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A
2010-01-01
The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.
Hvitfeldt-Forsberg, Helena; Mazzocato, Pamela; Glaser, Daniel; Keller, Christina; Unbeck, Maria
2017-01-01
Objective To explore healthcare staffs’ and managers’ perceptions of how and when discrete event simulation modelling can be used as a decision support in improvement efforts. Design Two focus group discussions were performed. Setting Two settings were included: a rheumatology department and an orthopaedic section both situated in Sweden. Participants Healthcare staff and managers (n=13) from the two settings. Interventions Two workshops were performed, one at each setting. Workshops were initiated by a short introduction to simulation modelling. Results from the respective simulation model were then presented and discussed in the following focus group discussion. Results Categories from the content analysis are presented according to the following research questions: how and when simulation modelling can assist healthcare improvement? Regarding how, the participants mentioned that simulation modelling could act as a tool for support and a way to visualise problems, potential solutions and their effects. Regarding when, simulation modelling could be used both locally and by management, as well as a pedagogical tool to develop and test innovative ideas and to involve everyone in the improvement work. Conclusions Its potential as an information and communication tool and as an instrument for pedagogic work within healthcare improvement render a broader application and value of simulation modelling than previously reported. PMID:28588107
Process monitoring and visualization solutions for hot-melt extrusion: a review.
Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2014-02-01
Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.
Spanakis, Emmanouil G; Spanakis, Marios; Karantanas, Apostolos; Marias, Kostas
2016-08-01
The most commonly used method for user authentication in ICT services or systems is the application of identification tools such as passwords or personal identification numbers (PINs). The rapid development in ICT technology regarding smart devices (laptops, tablets and smartphones) has allowed also the advance of hardware components that capture several biometric traits such as fingerprints and voice. These components are aiming among others to overcome weaknesses and flaws of password usage under the prism of improved user authentication with higher level of security, privacy and usability. To this respect, the potential application of biometrics for secure user authentication regarding access in systems with sensitive data (i.e. patient's data from electronic health records) shows great potentials. SpeechXRays aims to provide a user recognition platform based on biometrics of voice acoustics analysis and audio-visual identity verification. Among others, the platform aims to be applied as an authentication tool for medical personnel in order to gain specific access to patient's electronic health records. In this work a short description of SpeechXrays implementation tool regarding eHealth is provided and analyzed. This study explores security and privacy issues, and offers a comprehensive overview of biometrics technology applications in addressing the e-Health security challenges. We present and describe the necessary requirement for an eHealth platform concerning biometric security.
Nanotechnology Research: Applications in Nutritional Sciences12
Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.
2010-01-01
The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997
Exploring the Usage of a Video Application Tool: Experiences in Film Studies
ERIC Educational Resources Information Center
Ali, Nazlena Mohamad; Smeaton, Alan F.
2011-01-01
This paper explores our experiences in deploying a video application tool in film studies, and its evaluation in terms of realistic contextual end-users who have real tasks to perform in a real environment. We demonstrate our experiences and core lesson learnt in deploying our novel movie browser application with undergraduate and graduate…
Family Myths, Beliefs, and Customs as a Research/Educational Tool to Explore Identity Formation
ERIC Educational Resources Information Center
Herman, William E.
2008-01-01
This paper outlines a qualitative research tool designed to explore personal identity formation as described by Erik Erikson and offers self-reflective and anonymous evaluative comments made by college students after completing this task. Subjects compiled a list of 200 myths, customs, fables, rituals, and beliefs from their family of origin and…
"Thinking about Drinking": Exploring Children's Perceptions of Alcohol Using the Draw and Write Tool
ERIC Educational Resources Information Center
Farmer, Siobhan; Porcellato, Lorna
2016-01-01
Purpose: The purpose of this paper is to explore perceptions of alcohol held by schoolchildren using the "Draw and Write" tool, to inform the planning of alcohol education in the classroom setting. Design/methodology/approach: A specifically designed "Draw and Write" booklet was used with 169 children aged nine to ten years…
Networking as a Strategic Tool, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
This conference focuses on the technological advances, pitfalls, requirements, and trends involved in planning and implementing an effective computer network system. The basic theme of the conference is networking as a strategic tool. Tutorials and conference presentations explore the technology and methods involved in this rapidly changing field. Future directions are explored from a global, as well as local, perspective.
ERIC Educational Resources Information Center
Karisan, Dilek; Topcu, Mustafa S.
2016-01-01
The pedagogical methods and techniques used in teacher training programs are important tools to graduate qualified teachers. Argumentation, which is known as evidence based scientific discussions, is one of the most widely used tools in national and international literature. The aim of the present study is to explore the quality of Preservice…
Eating Disorders in Graduate Students: Exploring the SCOFF Questionnaire as a Simple Screening Tool
ERIC Educational Resources Information Center
Parker, Sarah C.; Lyons, John; Bonner, Julia
2005-01-01
The results of several studies have established the validity of the SCOFF questionnaire (a 5-question screening tool for eating disorders), but researchers need to explore further replicability using the US version in the graduate school population. In this study, the authors asked 335 graduate students attending the Northwestern student health…
ERIC Educational Resources Information Center
Whitver, Sara Maurice; Lo, Leo S.
2017-01-01
This study explores the tools and techniques used within the library instruction classroom to facilitate a conversation about teaching practices. Researchers focused on the questioning methods employed by librarians, specifically the number of questions asked by librarians and students. This study was comprised of classroom observations of a team…
Exploring Community Philosophy as a Tool for Parental Engagement in a Primary School
ERIC Educational Resources Information Center
Haines Lyon, Charlotte
2015-01-01
In this paper, I will reflect on the initial reconnaissance, action, and reflection cycle of my doctoral research, exploring Community Philosophy as a tool for critical parental engagement in a primary school (Elliot, 1991). I will examine how I reflexively engaged with my influence on participants, which then significantly influenced the framing…
QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.
O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong
2016-05-04
Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.
Potential Use of Ayahuasca in Grief Therapy.
González, Débora; Carvalho, María; Cantillo, Jordi; Aixalá, Marc; Farré, Magí
2017-01-01
The death of a loved one is ultimately a universal experience. However, conventional interventions employed for people suffering with uncomplicated grief have gathered little empirical support. The present study aimed to explore the potential effects of ayahuasca on grief. We compared 30 people who had taken ayahuasca with 30 people who had attended peer-support groups, measuring level of grief and experiential avoidance. We also examined themes in participant responses to an open-ended question regarding their experiences with ayahuasca. The ayahuasca group presented a lower level of grief in the Present Feelings Scale of Texas Revised Inventory of Grief, showing benefits in some psychological and interpersonal dimensions. Qualitative responses described experiences of emotional release, biographical memories, and experiences of contact with the deceased. Additionally, some benefits were identified regarding the ayahuasca experiences. These results provide preliminary data about the potential of ayahuasca as a therapeutic tool in treatments for grief.
Wi, Seung Gon; Kim, Hyun Joo; Mahadevan, Shobana Arumugam; Yang, Duck-Joo; Bae, Hyeun-Jong
2009-12-01
Sea weed (Ceylon moss) possesses comparable bioenergy production potential to that of land plants. Ceylon moss has high content of carbohydrates, typically galactose (23%) and glucose (20%). We have explored the possibility of sodium chlorite in Ceylon moss pretreatment that can ultimately increase the efficiency of enzymatic saccharification. In an acidic medium, chlorite generates ClO(2) molecules that transform lignin into soluble compounds without any significant loss of carbohydrate content and this procedure is widely used as an analytical method for holocellulose determination. Sodium chlorite-pretreated samples resulted in glucose yield up to 70% with contrast of only 5% was obtained from non-pretreated samples. The efficiency of enzymatic hydrolysis is significantly improved by sodium chlorite pretreatment, and thus sodium chlorite pretreatment is potentially a very useful tool in the utilisation of Ceylon moss biomass for ethanol production or bioenergy purposes.
NASA Astrophysics Data System (ADS)
Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry
2014-06-01
We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.
Potential Engineering of Fermi-Hubbard Systems using a Quantum Gas Microscope
NASA Astrophysics Data System (ADS)
Ji, Geoffrey; Mazurenko, Anton; Chiu, Christie; Parsons, Maxwell; Kanász-Nagy, Márton; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene; Greif, Daniel; Greiner, Markus
2017-04-01
Arbitrary control of optical potentials has emerged as an important tool in manipulating ultracold atomic systems, especially when combined with the single-site addressing afforded by quantum gas microscopy. Already, experiments have used digital micromirror devices (DMDs) to initialize and control ultracold atomic systems in the context of studying quantum walks, quantum thermalization, and many-body localization. Here, we report on progress in using a DMD located in the image plane of a quantum gas microscope to explore static and dynamic properties of a 2D Fermi-Hubbard system. By projecting a large, ring-shaped anti-confining potential, we demonstrate entropy redistribution and controlled doping of the system. Moreover, we use the DMD to prepare localized holes, which upon release interact with and disrupt the surrounding spin environment. These techniques pave the way for controlled investigations of dynamics in the low-temperature phases of the Hubbard model.
Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species.
Gupta, Mahiti; Saxena, Sanjai; Goyal, Dinesh
2015-02-01
Pancreatic lipase (PL) is considered as one of the safest target for diet-induced anti-obesity drug development. Orlistat is the only PL inhibitor approved for anti-obesity treatment till date. In the process of exploration of new PL inhibitors, we have screened culture filtrates of 70 endophytic fungi of medicinal plants using qualitative as well as quantitative in-vitro PL assays. The qualitative assays indicated potential PL inhibition in only three isolates, namely #57 TBBALM, #33 TBBALM and #1 CSSTOT. Only ethyl acetate extracts of the culture filtrates of these isolates exhibited the PL inhibition. #57 TBBLAM ethyl acetate extract of culture filtrate exhibited potential PL inhibition with an IC50 of 3.69 µg/ml which was comparable to the positive control, i.e. Orlistat exhibiting IC50 value of 2.73 µg/ml. Further molecular phylogenetic tools and morphological studies were used to identify the isolate #57 TBBALM as Penicillium species.
NASA Astrophysics Data System (ADS)
Gonçalves, Mario A.
2015-04-01
It has been 20 years since the pioneering work of Cheng et al (1994) first proposed a quantitative relationship for the areas enclosing concentration values of an element above given thresholds and their distribution in the field, known as concentration-area (CA) method, which is based in multifractal theory. The method allows the definition of geochemical anomalies in wide set of geological backgrounds but it took nearly 15 years before it became a widely used methodology for mineral exploration. The method was also extended to 1D and 3D data sets. It is worth noting the variety of methods that spanned from the theory of fractals. Building on previous models, including multiplicative cascades and size-grade relationships, increasing evidence points to the powerful tools of fractal theory to describe and model ore deposit distribution and formation. However, while much of these approaches become complex and not easy to use, the CA method is remarkable for its utter simplicity and disarming results obtained when confronted with the geological reality in the field. This is most valued by companies and professionals undertaking geochemical exploration surveys for the characterization or refining of potential ore targets or known mineralized areas. Several approaches have combined the CA method with geostatistic modeling and simulation and other established statistical techniques in order to enhance anomalous threshold identification. Examples are not restricted to geochemical exploration alone, other applications being studies on environmental change. Some of these examples will be addressed as they have been applied to different regions in the world, but particular emphasis will be put on geochemical exploration surveys in different geotectonic units of the Variscan basement in the Iberian Peninsula. These include quartz-vein gold mineralization in Northern Portugal and several surveys for base metals over two wide areas, which served to re-evaluate much of the scattered geochemical data sets that have been accumulating for decades of mining exploration in Southern Portugal. The studied zones include: the tectonic controlled quartz-vein Au-Sb mineralizations, the gabbroic and ultramafic complex of the southern border of the Ossa-Morena Zone, and the rocks belonging to the World-class massive sulfide province, the Iberian Pyrite Belt (IPB). The methodology used the CA method but also variogram analysis and modelling to outline and classify different sets of mineral deposits before confirmation in the field. This diversity of geologic contexts serves to show how effective and powerful the CA method can be, since it not only enhances already known mineralizations, it allowed the screening and identification of several new mineralized spots that have been previously overlooked. This has been of particularly economic importance because a major re-analysis of data and new exploration campaigns are currently under way for the next years in the IPB, with the potential for opening a new paradigm in the exploration for massive sulfide deposits in the region. Cheng et al, 1994, J. Geochem. Explor., 51, 109.
Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers
Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.
2013-01-01
Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.
NASA Astrophysics Data System (ADS)
Parish, E. S.; Omitaomu, O.; Sylvester, L.; Nugent, P.
2015-12-01
Many U.S. cities are exploring the potential of using green infrastructure (e.g., porous pavements, green roofs, street planters) to reduce urban storm water runoff, which can be both be a nuisance and costly to treat. While tools exist to measure local runoff changes resulting from individual green infrastructure (GI) projects, most municipalities currently have no method of analyzing the collective impact of GI projects on urban stormwater systems under future rainfall scenarios and impervious surface distribution patterns. Using the mid-sized city of Knoxville, Tennessee as a case study, we propose a set of indicators that can be used to monitor and analyze the collective effects of GI emplacement on urban storm water runoff volumes as well as to quantify potential co-benefits of GI projects (e.g., urban heat island reduction, reduced stream scouring) under different climate projection ensembles and population growth scenarios. These indicators are intended to help the city prioritize GI projects as opportunities arise, as well as to track the effectiveness of GI implementation over time. We explore the aggregation of these indicators across different spatial scales (e.g., plot, neighborhood, watershed, city) in order to assess potential changes in climate change resilience resulting from the collective implementation of GI projects across an urban landscape.
Neurogranin restores amyloid β-mediated synaptic transmission and long-term potentiation deficits.
Kaleka, Kanwardeep Singh; Gerges, Nashaat Z
2016-03-01
Amyloid β (Aβ) is widely considered one of the early causes of cognitive deficits observed in Alzheimer's disease. Many of the deficits caused by Aβ are attributed to its disruption of synaptic function represented by its blockade of long-term potentiation (LTP) and its induction of synaptic depression. Identifying pathways that reverse these synaptic deficits may open the door to new therapeutic targets. In this study, we explored the possibility that Neurogranin (Ng)-a postsynaptic calmodulin (CaM) targeting protein that enhances synaptic function-may rescue Aβ-mediated deficits in synaptic function. Our results show that Ng is able to reverse synaptic depression and LTP deficits induced by Aβ. Furthermore, Ng's restoration of synaptic transmission is through the insertion of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs). These restorative effects of Ng are dependent on the interaction of Ng and CaM and CaM-dependent activation of CaMKII. Overall, this study identifies a novel mechanism to rescue synaptic deficits induced by Aβ oligomers. It also suggests Ng and CaM signaling as potential therapeutic targets for Alzheimer's disease as well as important tools to further explore the pathophysiology underlying the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
ten Kate, Inge L; Canham, John S; Conrad, Pamela G; Errigo, Therese; Katz, Ira; Mahaffy, Paul R
2008-06-01
The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.
Tool Steel Heat Treatment Optimization Using Neural Network Modeling
NASA Astrophysics Data System (ADS)
Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz
2016-11-01
Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.
Becher, M A; Grimm, V; Knapp, J; Horn, J; Twiston-Davies, G; Osborne, J L
2016-11-24
Social bees are central place foragers collecting floral resources from the surrounding landscape, but little is known about the probability of a scouting bee finding a particular flower patch. We therefore developed a software tool, BEESCOUT, to theoretically examine how bees might explore a landscape and distribute their scouting activities over time and space. An image file can be imported, which is interpreted by the model as a "forage map" with certain colours representing certain crops or habitat types as specified by the user. BEESCOUT calculates the size and location of these potential food sources in that landscape relative to a bee colony. An individual-based model then determines the detection probabilities of the food patches by bees, based on parameter values gathered from the flight patterns of radar-tracked honeybees and bumblebees. Various "search modes" describe hypothetical search strategies for the long-range exploration of scouting bees. The resulting detection probabilities of forage patches can be used as input for the recently developed honeybee model BEEHAVE, to explore realistic scenarios of colony growth and death in response to different stressors. In example simulations, we find that detection probabilities for food sources close to the colony fit empirical data reasonably well. However, for food sources further away no empirical data are available to validate model output. The simulated detection probabilities depend largely on the bees' search mode, and whether they exchange information about food source locations. Nevertheless, we show that landscape structure and connectivity of food sources can have a strong impact on the results. We believe that BEESCOUT is a valuable tool to better understand how landscape configurations and searching behaviour of bees affect detection probabilities of food sources. It can also guide the collection of relevant data and the design of experiments to close knowledge gaps, and provides a useful extension to the BEEHAVE honeybee model, enabling future users to explore how landscape structure and food availability affect the foraging decisions and patch visitation rates of the bees and, in consequence, to predict colony development and survival.
Charting, navigating, and populating natural product chemical space for drug discovery.
Lachance, Hugo; Wetzel, Stefan; Kumar, Kamal; Waldmann, Herbert
2012-07-12
Natural products are a heterogeneous group of compounds with diverse, yet particular molecular properties compared to synthetic compounds and drugs. All relevant analyses show that natural products indeed occupy parts of chemical space not explored by available screening collections while at the same time largely adhering to the rule-of-five. This renders them a valuable, unique, and necessary component of screening libraries used in drug discovery. With ChemGPS-NP on the Web and Scaffold Hunter two tools are available to the scientific community to guide exploration of biologically relevant NP chemical space in a focused and targeted fashion with a view to guide novel synthesis approaches. Several of the examples given illustrate the possibility of bridging the gap between computational methods and compound library synthesis and the possibility of integrating cheminformatics and chemical space analyses with synthetic chemistry and biochemistry to successfully explore chemical space for the identification of novel small molecule modulators of protein function.The examples also illustrate the synergistic potential of the chemical space concept and modern chemical synthesis for biomedical research and drug discovery. Chemical space analysis can map under explored biologically relevant parts of chemical space and identify the structure types occupying these parts. Modern synthetic methodology can then be applied to efficiently fill this “virtual space” with real compounds.From a cheminformatics perspective, there is a clear demand for open-source and easy to use tools that can be readily applied by educated nonspecialist chemists and biologists in their daily research. This will include further development of Scaffold Hunter, ChemGPS-NP, and related approaches on the Web. Such a “cheminformatics toolbox” would enable chemists and biologists to mine their own data in an intuitive and highly interactive process and without the need for specialized computer science and cheminformatics expertise. We anticipate that it may be a viable, if not necessary, step for research initiatives based on large high-throughput screening campaigns,in particular in the pharmaceutical industry, to make the most out of the recent advances in computational tools in order to leverage and take full advantage of the large data sets generated and available in house. There are “holes” in these data sets that can and should be identified and explored by chemistry and biology.
Mask_explorer: A tool for exploring brain masks in fMRI group analysis.
Gajdoš, Martin; Mikl, Michal; Mareček, Radek
2016-10-01
Functional magnetic resonance imaging (fMRI) studies of the human brain are appearing in increasing numbers, providing interesting information about this complex system. Unique information about healthy and diseased brains is inferred using many types of experiments and analyses. In order to obtain reliable information, it is necessary to conduct consistent experiments with large samples of subjects and to involve statistical methods to confirm or reject any tested hypotheses. Group analysis is performed for all voxels within a group mask, i.e. a common space where all of the involved subjects contribute information. To our knowledge, a user-friendly interface with the ability to visualize subject-specific details in a common analysis space did not yet exist. The purpose of our work is to develop and present such interface. Several pitfalls have to be avoided while preparing fMRI data for group analysis. One such pitfall is spurious non-detection, caused by inferring conclusions in the volume of a group mask that has been corrupted due to a preprocessing failure. We describe a MATLAB toolbox, called the mask_explorer, designed for prevention of this pitfall. The mask_explorer uses a graphical user interface, enables a user-friendly exploration of subject masks and is freely available. It is able to compute subject masks from raw data and create lists of subjects with potentially problematic data. It runs under MATLAB with the widely used SPM toolbox. Moreover, we present several practical examples where the mask_explorer is usefully applied. The mask_explorer is designed to quickly control the quality of the group fMRI analysis volume and to identify specific failures related to preprocessing steps and acquisition. It helps researchers detect subjects with potentially problematic data and consequently enables inspection of the data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Employing Cognitive Tools within Interactive Multimedia Applications.
ERIC Educational Resources Information Center
Hedberg, John; And Others
This paper describes research into the use of cognitive tools in the classroom using "Exploring the Nardoo", an information landscape designed to support student investigation. Simulations and support tools which allow multimedia reporting are embedded in the package and are supported by several metacognitive tools for the writing…
CET exSim: mineral exploration experience via simulation
NASA Astrophysics Data System (ADS)
Wong, Jason C.; Holden, Eun-Jung; Kovesi, Peter; McCuaig, T. Campbell; Hronsky, Jon
2013-08-01
Undercover mineral exploration is a challenging task as it requires understanding of subsurface geology by relying heavily on remotely sensed (i.e. geophysical) data. Cost-effective exploration is essential in order to increase the chance of success using finite budgets. This requires effective decision-making in both the process of selecting the optimum data collection methods and in the process of achieving accuracy during subsequent interpretation. Traditionally, developing the skills, behaviour and practices of exploration decision-making requires many years of experience through working on exploration projects under various geological settings, commodities and levels of available resources. This implies long periods of sub-optimal exploration decision-making, before the necessary experience has been successfully obtained. To address this critical industry issue, our ongoing research focuses on the development of the unique and novel e-learning environment, exSim, which simulates exploration scenarios where users can test their strategies and learn the consequences of their choices. This simulator provides an engaging platform for self-learning and experimentation in exploration decision strategies, providing a means to build experience more effectively. The exSim environment also provides a unique platform on which numerous scenarios and situations (e.g. deposit styles) can be simulated, potentially allowing the user to become virtually familiarised with a broader scope of exploration practices. Harnessing the power of computer simulation, visualisation and an intuitive graphical user interface, the simulator provides a way to assess the user's exploration decisions and subsequent interpretations. In this paper, we present the prototype functionalities in exSim including: simulation of geophysical surveys, follow-up drill testing and interpretation assistive tools.
Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.
Park, Albert; Hartzler, Andrea L; Huh, Jina; McDonald, David W; Pratt, Wanda
2015-08-31
The prevalence and value of patient-generated health text are increasing, but processing such text remains problematic. Although existing biomedical natural language processing (NLP) tools are appealing, most were developed to process clinician- or researcher-generated text, such as clinical notes or journal articles. In addition to being constructed for different types of text, other challenges of using existing NLP include constantly changing technologies, source vocabularies, and characteristics of text. These continuously evolving challenges warrant the need for applying low-cost systematic assessment. However, the primarily accepted evaluation method in NLP, manual annotation, requires tremendous effort and time. The primary objective of this study is to explore an alternative approach-using low-cost, automated methods to detect failures (eg, incorrect boundaries, missed terms, mismapped concepts) when processing patient-generated text with existing biomedical NLP tools. We first characterize common failures that NLP tools can make in processing online community text. We then demonstrate the feasibility of our automated approach in detecting these common failures using one of the most popular biomedical NLP tools, MetaMap. Using 9657 posts from an online cancer community, we explored our automated failure detection approach in two steps: (1) to characterize the failure types, we first manually reviewed MetaMap's commonly occurring failures, grouped the inaccurate mappings into failure types, and then identified causes of the failures through iterative rounds of manual review using open coding, and (2) to automatically detect these failure types, we then explored combinations of existing NLP techniques and dictionary-based matching for each failure cause. Finally, we manually evaluated the automatically detected failures. From our manual review, we characterized three types of failure: (1) boundary failures, (2) missed term failures, and (3) word ambiguity failures. Within these three failure types, we discovered 12 causes of inaccurate mappings of concepts. We used automated methods to detect almost half of 383,572 MetaMap's mappings as problematic. Word sense ambiguity failure was the most widely occurring, comprising 82.22% of failures. Boundary failure was the second most frequent, amounting to 15.90% of failures, while missed term failures were the least common, making up 1.88% of failures. The automated failure detection achieved precision, recall, accuracy, and F1 score of 83.00%, 92.57%, 88.17%, and 87.52%, respectively. We illustrate the challenges of processing patient-generated online health community text and characterize failures of NLP tools on this patient-generated health text, demonstrating the feasibility of our low-cost approach to automatically detect those failures. Our approach shows the potential for scalable and effective solutions to automatically assess the constantly evolving NLP tools and source vocabularies to process patient-generated text.
ERIC Educational Resources Information Center
van Wyk, Micheal M.
2017-01-01
This paper explores Economics student teachers' views on ePortfolios as an empowering tool to enhance self-directed learning in an online teacher education course. An interpretive phenomenological research approach was employed for data collection and a purposive convenient sampling technique was selected to collect data. Only Postgraduate…
Using the "Mary Tyler Moore Show" as a Feminist Teaching Tool
ERIC Educational Resources Information Center
Jule, Allyson
2010-01-01
This paper explores the use of "The Mary Tyler Moore Show" as a teaching tool used with a group of final-year undergraduate students who gathered together last academic year (2007-8) to explore Women in Leadership, as part of a Communications course. The research focus was: How can the use of "The Mary Tyler Moore Show" (a…
ERIC Educational Resources Information Center
Kilpatrick, Sue; Field, John; Falk, Ian
The possibility of using the concept of social capital as an analytical tool for exploring lifelong learning and community development was examined. The following were among the topics considered: (1) differences between definitions of the concept of social capital that are based on collective benefit and those that define social capital as a…
ERIC Educational Resources Information Center
Liang, Hai-Ning; Sedig, Kamran
2010-01-01
Many students find it difficult to engage with mathematical concepts. As a relatively new class of learning tools, visualization tools may be able to promote higher levels of engagement with mathematical concepts. Often, development of new tools may outpace empirical evaluations of the effectiveness of these tools, especially in educational…
Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.
Kotta, Sabna; Khan, Abdul Wadood; Pramod, Kannissery; Ansari, Shahid H; Sharma, Rakesh Kumar; Ali, Javed
2012-05-01
More than 40% of new chemical entities discovered are poorly water soluble and suffer from low oral bioavailability. In recent years, nanoemulsions are receiving increasing attention as a tool of delivering these low-bioavailable moieties in an efficient manner. This review gives a brief description about how oral nanoemulsions act as a tool to improve the bioavailability of poorly water-soluble drugs. The recurrent confusion found in the literature regarding the theory behind the formation of nanoemulsions is clarified, along with the difference between nanoemulsion and lyotropic 'microemulsion' phase. This paper gives a clear-cut idea about all possible methods for the preparation of nanoemulsions and the advantages and disadvantages of each method are described. A description of the stability problems of nanoemulsions and their prevention methods is also provided, in addition to a comprehensive update on the patents and research works done in the arena of oral nanoemulsions. Low-energy emulsification techniques can also produce stable nanoemulsions. It is guaranteed that oral nanoemulsions can act as a potential tool for the delivery of poorly water-soluble therapeutic moieties in a very efficient manner.
AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis
Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H
2006-01-01
Background The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. Results We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. Conclusion By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development. PMID:16740163
AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis.
Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H
2006-06-01
The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.