Potential Representation - Global vs. Local Trial Functions
NASA Astrophysics Data System (ADS)
Michel, Volker
2014-05-01
Many systems of trial functions are available for representing potential fields on the sphere or parts of the sphere. We distinguish global trial functions (such as spherical harmonics) from localized trial functions (such as spline basis functions, scaling functions, wavelets, and Slepian functions). All these systems have their own pros and cons. We discuss the advantages and disadvantages of several selected systems of trial functions and propose criteria for their applicability. Moreover, we present an algorithm which is able to combine different types of trial functions. This yields a sparser solution which combines the features of the different basis systems which are used.
Dukart, Juergen; Bertolino, Alessandro
2014-01-01
Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.
ERIC Educational Resources Information Center
Chasseigne, Gerard; Giraudeau, Caroline; Lafon, Peggy; Mullet, Etienne
2011-01-01
The study examined the knowledge of the functional relations between potential difference, magnitude of current, and resistance among seventh graders, ninth graders, 11th graders (in technical schools), and college students. It also tested the efficiency of a learning device named "functional learning" derived from cognitive psychology on the…
Potential energy distribution function and its application to the problem of evaporation
NASA Astrophysics Data System (ADS)
Gerasimov, D. N.; Yurin, E. I.
2017-10-01
Distribution function on potential energy in a strong correlated system can be calculated analytically. In an equilibrium system (for instance, in the bulk of the liquid) this distribution function depends only on temperature and mean potential energy, which can be found through the specific heat of vaporization. At the surface of the liquid this distribution function differs significantly, but its shape still satisfies analytical correlation. Distribution function on potential energy nearby the evaporation surface can be used instead of the work function of the atom of the liquid.
Representation of the Geosynchronous Plasma Environment in Spacecraft Charging Calculations
NASA Technical Reports Server (NTRS)
Davis, V. A.; Mandell, M. J.; Thomsen, M. F.
2006-01-01
Historically, our ability to predict and postdict spacecraft surface charging has been limited by the characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. We use electron and ion flux spectra measured by the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These measured fluxes have been corrected for the difference between the measured and calculated potential. The potential computed using the measured fluxes and the best available material properties of graphite carbon, with a secondary electron escape fraction of 81%, is within a factor of three of the measured potential for 87% of the data. Potentials calculated using a Kappa function fit to the incident electron flux distribution function and a Maxwellian function fit to the incident ion flux distribution function agree with measured potentials nearly as well as do potentials calculated using the measured fluxes. Alternative spectral representations gave less accurate estimates of potential. The use of all the components of the net flux, along with spacecraft specific average material properties, gives a better estimate of the spacecraft potential than the high energy flux alone.
SODA Repuslive Function Shaping
2017-06-16
SODA, Swarm Orbital Dynamics Advisor, a tool that provides the orbital maneuvers required to achieve a desired type of relative swarm motion. The SODA algorithm uses a repulsive potential that is a function of the distances between each pair of satellites. Choosing the parameters of the function is a swarm design choice, as different values can yield very different maneuvers and thus impact fuel use and mission life. This is an animation illustrating how the peaks of the repulsive potential function vary when varying certain parameters.
Functional differentiability in time-dependent quantum mechanics.
Penz, Markus; Ruggenthaler, Michael
2015-03-28
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions
2016-01-01
Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought “universal model” capable of describing the behavior of water under different conditions and in different environments. PMID:27186804
On the "Optimal" Choice of Trial Functions for Modelling Potential Fields
NASA Astrophysics Data System (ADS)
Michel, Volker
2015-04-01
There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.
Haven, Emmanuel E
2015-01-01
In this paper we consider how two types of potential functions, the real and quantum potential can be shown to be of use in a social science context. The real potential function is a key ingredient in the Hamiltonian framework used in both classical and quantum mechanics. The quantum potential however emerges in a different way in quantum mechanics. In this paper we consider both potentials and we attempt to give them a social science interpretation within the setting of two applications.
Haven, Emmanuel E.
2015-01-01
In this paper we consider how two types of potential functions, the real and quantum potential can be shown to be of use in a social science context. The real potential function is a key ingredient in the Hamiltonian framework used in both classical and quantum mechanics. The quantum potential however emerges in a different way in quantum mechanics. In this paper we consider both potentials and we attempt to give them a social science interpretation within the setting of two applications. PMID:26539130
NASA Astrophysics Data System (ADS)
Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter
2009-07-01
The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.
Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D.; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi
2017-01-01
Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS. PMID:28680420
betaFIT: A computer program to fit pointwise potentials to selected analytic functions
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.; Pashov, Asen
2017-01-01
This paper describes program betaFIT, which performs least-squares fits of sets of one-dimensional (or radial) potential function values to four different types of sophisticated analytic potential energy functional forms. These families of potential energy functions are: the Expanded Morse Oscillator (EMO) potential [J Mol Spectrosc 1999;194:197], the Morse/Long-Range (MLR) potential [Mol Phys 2007;105:663], the Double Exponential/Long-Range (DELR) potential [J Chem Phys 2003;119:7398], and the "Generalized Potential Energy Function (GPEF)" form introduced by Šurkus et al. [Chem Phys Lett 1984;105:291], which includes a wide variety of polynomial potentials, such as the Dunham [Phys Rev 1932;41:713], Simons-Parr-Finlan [J Chem Phys 1973;59:3229], and Ogilvie-Tipping [Proc R Soc A 1991;378:287] polynomials, as special cases. This code will be useful for providing the realistic sets of potential function shape parameters that are required to initiate direct fits of selected analytic potential functions to experimental data, and for providing better analytical representations of sets of ab initio results.
Freyhult, Eva; Cui, Yuanyuan; Nilsson, Olle; Ardell, David H
2007-10-01
There are at least 21 subfunctional classes of tRNAs in most cells that, despite a very highly conserved and compact common structure, must interact specifically with different cliques of proteins or cause grave organismal consequences. Protein recognition of specific tRNA substrates is achieved in part through class-restricted tRNA features called tRNA identity determinants. In earlier work we used TFAM, a statistical classifier of tRNA function, to show evidence of unexpectedly large diversity among bacteria in tRNA identity determinants. We also created a data reduction technique called function logos to visualize identity determinants for a given taxon. Here we show evidence that determinants for lysylated isoleucine tRNAs are not the same in Proteobacteria as in other bacterial groups including the Cyanobacteria. Consistent with this, the lysylating biosynthetic enzyme TilS lacks a C-terminal domain in Cyanobacteria that is present in Proteobacteria. We present here, using function logos, a map estimating all potential identity determinants generally operational in Cyanobacteria and Proteobacteria. To further isolate the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria, we created two new data reduction visualizations to contrast sequence and function logos between two taxa. One, called Information Difference logos (ID logos), shows the evolutionary gain or retention of functional information associated to features in one lineage. The other, Kullback-Leibler divergence Difference logos (KLD logos), shows recruitments or shifts in the functional associations of features, especially those informative in both lineages. We used these new logos to specifically isolate and visualize the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria. Our graphical results point to numerous differences in potential tRNA identity determinants between these groups. Although more differences in general are explained by shifts in functional association rather than gains or losses, the apparent identity differences in lysylated isoleucine tRNAs appear to have evolved through both mechanisms.
ERIC Educational Resources Information Center
Lagrange, Jean-Baptiste; Psycharis, Giorgos
2014-01-01
The general goal of this paper is to explore the potential of computer environments for the teaching and learning of functions. To address this, different theoretical frameworks and corresponding research traditions are available. In this study, we aim to network different frameworks by following a "double analysis" method to analyse two…
Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao
2016-06-01
Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1978-01-01
Active serine accumulation in cell envelope vesicles from Halobacterium halobium proceeds by co-transport with Na(+) and can be induced by either transmembrane electrical potential or transmembrane Na(+) concentration difference. It was shown earlier that in the former case the initial transport rate is a fourth-power function of the magnitude of the electrochemical potential difference of sodium ions, and in the latter, a second-power function. A possible interpretation of this finding is cooperativity of sodium-transporting sites in the transport carrier. When both kinds of driving force are imposed simultaneously on the vesicles, fourth-power dependence on the total potential difference of sodium ions is obtained, suggesting that the transport carrier is regulated by the electrical potential. Heat treatment of the vesicles at 48 C partially inactivates transport and abolishes this effect of the electrical potential.
Alternative derivation of an exchange-only density-functional optimized effective potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, D. P.
2007-10-15
An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock-common energy denominator Green's function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Goerling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term canmore » be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r{sup 4} for large r.« less
Alternative derivation of an exchange-only density-functional optimized effective potential
NASA Astrophysics Data System (ADS)
Joubert, D. P.
2007-10-01
An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock common energy denominator Green’s function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Görling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term can be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r4 for large r .
26 CFR 1.482-5 - Comparable profits method.
Code of Federal Regulations, 2012 CFR
2012-04-01
... distinguish it from potential uncontrolled comparables. (ii) Adjustments for tested party. The tested party's... functional differences generally have a greater effect on the relationship between profit and costs or sales... functional differences than the rate of return on capital employed. Therefore, closer functional...
26 CFR 1.482-5 - Comparable profits method.
Code of Federal Regulations, 2014 CFR
2014-04-01
... distinguish it from potential uncontrolled comparables. (ii) Adjustments for tested party. The tested party's... functional differences generally have a greater effect on the relationship between profit and costs or sales... functional differences than the rate of return on capital employed. Therefore, closer functional...
26 CFR 1.482-5 - Comparable profits method.
Code of Federal Regulations, 2011 CFR
2011-04-01
... distinguish it from potential uncontrolled comparables. (ii) Adjustments for tested party. The tested party's... functional differences generally have a greater effect on the relationship between profit and costs or sales... functional differences than the rate of return on capital employed. Therefore, closer functional...
26 CFR 1.482-5 - Comparable profits method.
Code of Federal Regulations, 2013 CFR
2013-04-01
... distinguish it from potential uncontrolled comparables. (ii) Adjustments for tested party. The tested party's... functional differences generally have a greater effect on the relationship between profit and costs or sales... functional differences than the rate of return on capital employed. Therefore, closer functional...
Zhao, Tian; Villéger, Sébastien; Lek, Sovan; Cucherousset, Julien
2014-01-01
Investigations on the functional niche of organisms have primarily focused on differences among species and tended to neglect the potential effects of intraspecific variability despite the fact that its potential ecological and evolutionary importance is now widely recognized. In this study, we measured the distribution of functional traits in an entire population of largemouth bass (Micropterus salmoides) to quantify the magnitude of intraspecific variability in functional traits and niche (size, position, and overlap) between age classes. Stable isotope analyses (δ13C and δ15N) were also used to determine the association between individual trophic ecology and intraspecific functional trait variability. We observed that functional traits were highly variable within the population (mean coefficient variation: 15.62% ± 1.78% SE) and predominantly different between age classes. In addition, functional and trophic niche overlap between age classes was extremely low. Differences in functional niche between age classes were associated with strong changes in trophic niche occurring during ontogeny while, within age classes, differences among individuals were likely driven by trophic specialization. Each age class filled only a small portion of the total functional niche of the population and age classes occupied distinct portions in the functional space, indicating the existence of ontogenetic specialists with different functional roles within the population. The high amplitude of intraspecific variability in functional traits and differences in functional niche position among individuals reported here supports the recent claims for an individual-based approach in functional ecology. PMID:25558359
NASA Astrophysics Data System (ADS)
Wang, Hailong; Guan, Huade; Deng, Zijuan; Simmons, Craig T.
2014-07-01
Canopy conductance (gc) is a critical component in hydrological modeling for transpiration estimate. It is often formulated as functions of environmental variables. These functions are climate and vegetation specific. Thus, it is important to determine the appropriate functions in gc models and corresponding parameter values for a specific environment. In this study, sap flow, stem water potential, and microclimatic variables were measured for three Drooping Sheoak (Allocasuarina verticillata) trees in year 2011, 2012, and 2014. Canopy conductance was calculated from the inversed Penman-Monteith (PM) equation, which was then used to examine 36 gc models that comprise different response functions. Parameters were optimized using the DiffeRential Evolution Adaptive Metropolis (DREAM) model based on a training data set in 2012. Use of proper predawn stem water potential function, vapor pressure deficit function, and temperature function improves model performance significantly, while no pronounced difference is observed between models that differ in solar radiation functions. The best model gives a correlation coefficient of 0.97, and root-mean-square error of 0.0006 m/s in comparison to the PM-calculated gc. The optimized temperature function shows different characteristics from its counterparts in other similar studies. This is likely due to strong interdependence between air temperature and vapor pressure deficit in the study area or Sheoak tree physiology. Supported by the measurements and optimization results, we suggest that the effects of air temperature and vapor pressure deficit on canopy conductance should be represented together.
NASA Astrophysics Data System (ADS)
Ohkubo, Isao; Mori, Takao
2017-07-01
The influence of two different types of exchange-correlation functional/potential, namely, the generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) functional and the modified Becke-Johnson (mBJ) potential, on the thermoelectric transport properties of d0 perovskite oxides (SrTiO3 and KTaO3) was investigated. The reduction of band dispersion induced by the mBJ scheme allows the improved prediction of band gap values by thelocal density approximation (LDA) and GGA, which increases the resolution of the increases in the density of states (DOS), carrier concentration, and effective mass near the conduction band edge. A comparison of the experimental effective mass values of d0 perovskite oxides shows that the effective mass values provided by the mBJ potential are similar to those provided by the GGA-PBE functional. Comparative analysis of the data obtained from Boltzmann theory calculations using the electronic structures determined with the GGA-PBE functional and the mBJ potential shows a difference in the transport coefficients owing to the increases in the DOS, carrier concentration, and effective mass induced by the mBJ scheme.
Orbital nodal surfaces: Topological challenges for density functionals
NASA Astrophysics Data System (ADS)
Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan
2017-06-01
Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeve, Samuel Temple; Strachan, Alejandro, E-mail: strachan@purdue.edu
We use functional, Fréchet, derivatives to quantify how thermodynamic outputs of a molecular dynamics (MD) simulation depend on the potential used to compute atomic interactions. Our approach quantifies the sensitivity of the quantities of interest with respect to the input functions as opposed to its parameters as is done in typical uncertainty quantification methods. We show that the functional sensitivity of the average potential energy and pressure in isothermal, isochoric MD simulations using Lennard–Jones two-body interactions can be used to accurately predict those properties for other interatomic potentials (with different functional forms) without re-running the simulations. This is demonstrated undermore » three different thermodynamic conditions, namely a crystal at room temperature, a liquid at ambient pressure, and a high pressure liquid. The method provides accurate predictions as long as the change in potential can be reasonably described to first order and does not significantly affect the region in phase space explored by the simulation. The functional uncertainty quantification approach can be used to estimate the uncertainties associated with constitutive models used in the simulation and to correct predictions if a more accurate representation becomes available.« less
Surface effects on mean inner potentials studied using density functional theory.
Pennington, Robert S; Boothroyd, Chris B; Dunin-Borkowski, Rafal E
2015-12-01
Quantitative materials characterization using electron holography frequently requires knowledge of the mean inner potential, but reported experimental mean inner potential measurements can vary widely. Using density functional theory, we have simulated the mean inner potential for materials with a range of different surface conditions and geometries. We use both "thin-film" and "nanowire" specimen geometries. We consider clean bulk-terminated surfaces with different facets and surface reconstructions using atom positions from both structural optimization and experimental data and we also consider surfaces both with and without adsorbates. We find that the mean inner potential is surface-dependent, with the strongest dependency on surface adsorbates. We discuss the outlook and perspective for future mean inner potential measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Bragdon, Laura B; Gibb, Brandon E; Coles, Meredith E
2018-06-19
Investigations of neuropsychological functioning in obsessive-compulsive disorder (OCD) have produced mixed results for deficits in executive functioning (EF), attention, and memory. One potential explanation for varied findings may relate to the heterogeneity of symptom presentations, and different clinical or neurobiological characteristics may underlie these different symptoms. We investigated differences in neuropsychological functioning between two symptoms groups, obsessing/checking (O/C) and symmetry/ordering (S/O), based on data suggesting an association with different motivations: harm avoidance and incompleteness, respectively. Ten studies (with 628 patients) were included and each investigation assessed at least one of 14 neuropsychological domains. The S/O domain demonstrated small, negative correlations with overall neuropsychological functioning, performance in EF, memory, visuospatial ability, cognitive flexibility, and verbal working memory. O/C symptoms demonstrated small, negative correlations with memory and verbal memory performance. A comparison of functioning between symptom groups identified large effect sizes showing that the S/O dimension was more strongly related to poorer neuropsychological performance overall, and in the domains of attention, visuospatial ability, and the subdomain of verbal working memory. Findings support existing evidence suggesting that different OCD symptoms, and their associated core motivations, relate to unique patterns of neuropsychological functioning, and, potentially dysfunction in different neural circuits. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guerrero, José Luis Morales; Vidal, Manuel Cánovas; Nicolás, José Andrés Moreno; López, Francisco Alhama
2018-05-01
New additional conditions required for the uniqueness of the 2D elastostatic problems formulated in terms of potential functions for the derived Papkovich-Neuber representations, are studied. Two cases are considered, each of them formulated by the scalar potential function plus one of the rectangular non-zero components of the vector potential function. For these formulations, in addition to the original (physical) boundary conditions, two new additional conditions are required. In addition, for the complete Papkovich-Neuber formulation, expressed by the scalar potential plus two components of the vector potential, the additional conditions established previously for the three-dimensional case in z-convex domain can be applied. To show the usefulness of these new conditions in a numerical scheme two applications are numerically solved by the network method for the three cases of potential formulations.
Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro
2017-04-04
The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p -quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R ² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values ( R ² = 0.957), followed by M06-2x ( R ² = 0.947) and PBE0 ( R ² = 0.942).
A femtoscopic correlation analysis tool using the Schrödinger equation (CATS)
NASA Astrophysics Data System (ADS)
Mihaylov, D. L.; Mantovani Sarti, V.; Arnold, O. W.; Fabbietti, L.; Hohlweger, B.; Mathis, A. M.
2018-05-01
We present a new analysis framework called "Correlation Analysis Tool using the Schrödinger equation" (CATS) which computes the two-particle femtoscopy correlation function C( k), with k being the relative momentum for the particle pair. Any local interaction potential and emission source function can be used as an input and the wave function is evaluated exactly. In this paper we present a study on the sensitivity of C( k) to the interaction potential for different particle pairs: p-p, p-Λ, K^-p, K^+-p, p-Ξ ^- and Λ- Λ. For the p-p Argonne v_{18} and Reid Soft-Core potentials have been tested. For the other pair systems we present results based on strong potentials obtained from effective Lagrangians such as χ EFT for p-Λ, Jülich models for K(\\bar{K})-N and Nijmegen models for Λ-Λ. For the p-Ξ^- pairs we employ the latest lattice results from the HAL QCD collaboration. Our detailed study of different interacting particle pairs as a function of the source size and different potentials shows that femtoscopic measurements can be exploited in order to constrain the final state interactions among hadrons. In particular, small collision systems of the order of 1 fm, as produced in pp collisions at the LHC, seem to provide a suitable environment for quantitative studies of this kind.
Bora, Anindita; Mohan, Kiranjyoti; Doley, Simanta; Dolui, Swapan Kumar
2018-03-07
Flexible energy storage devices are in great demand since the advent of flexible electronics. Until now, flexible supercapacitors based on graphene analogues usually have had low operating potential windows. To this end, two dissimilar electrode materials with complementary potential ranges are employed to obtain an optimum cell voltage of 1.8 V. A low-temperature organic sol-gel method is used to prepare two different types of functionalized reduced graphene oxide aerogels (rGOA) where Ag nanorod functionalized rGOA acts as a negative electrode while polyaniline nanotube functionalized rGOA acts as a positive electrode. Both materials comprehensively exploit their unique properties to produce a device that has high energy and power densities. An assembled all-solid-state asymmetric supercapacitor gives a high energy density of 52.85 W h kg -1 and power density of 31.5 kW kg -1 with excellent cycling and temperature stability. The device also performs extraordinarily well under different bending conditions, suggesting its potential to meet the requirements for flexible electronics.
NASA Astrophysics Data System (ADS)
Lim, Teik-Cheng
2004-01-01
A parametric relationship between the Pearson Takai Halicioglu Tiller (PTHT) and the Kaxiras Pandey (KP) empirical potential energy functions is developed for the case of 2-body interaction. The need for such relationship arises when preferred parametric data and adopted software correspond to different potential functions. The analytical relationship was obtained by equating the potential functions' derivatives at zeroth, first and second order with respect to the interatomic distance at the equilibrium bond length, followed by comparison of coefficients in the repulsive and attractive terms. Plots of non-dimensional 2-body energy versus the nondimensional interatomic distance verified the analytical relationships developed herein. The discrepancy revealed in theoretical plots suggests that the 2-body PTHT and KP potentials are more suitable for curve-fitting "softer" and "harder" bonds respectively.
Silver nanoparticles with tunable work functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp; Tanaka, Daisuke; Ryuzaki, Sou
To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probemore » force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.« less
Child, Nicholas D; Benarroch, Eduardo E
2014-03-18
Neurons contain different functional somatodendritic and axonal domains, each with a characteristic distribution of voltage-gated ion channels, synaptic inputs, and function. The dendritic tree of a cortical pyramidal neuron has 2 distinct domains, the basal and the apical dendrites, both containing dendritic spines; the different domains of the axon are the axonal initial segment (AIS), axon proper (which in myelinated axons includes the node of Ranvier, paranodes, juxtaparanodes, and internodes), and the axon terminals. In the cerebral cortex, the dendritic spines of the pyramidal neurons receive most of the excitatory synapses; distinct populations of γ-aminobutyric acid (GABA)ergic interneurons target specific cellular domains and thus exert different influences on pyramidal neurons. The multiple synaptic inputs reaching the somatodendritic region and generating excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) sum and elicit changes in membrane potential at the AIS, the site of initiation of the action potential.
Functionalization of graphene using deep eutectic solvents
NASA Astrophysics Data System (ADS)
Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali
2015-08-01
Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.
Functionalization of graphene using deep eutectic solvents.
Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali
2015-12-01
Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollister, Emily B; Schadt, Christopher Warren; Palumbo, Anthony Vito
In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt tomore » characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.« less
Large deviation function for a driven underdamped particle in a periodic potential
NASA Astrophysics Data System (ADS)
Fischer, Lukas P.; Pietzonka, Patrick; Seifert, Udo
2018-02-01
Employing large deviation theory, we explore current fluctuations of underdamped Brownian motion for the paradigmatic example of a single particle in a one-dimensional periodic potential. Two different approaches to the large deviation function of the particle current are presented. First, we derive an explicit expression for the large deviation functional of the empirical phase space density, which replaces the level 2.5 functional used for overdamped dynamics. Using this approach, we obtain several bounds on the large deviation function of the particle current. We compare these to bounds for overdamped dynamics that have recently been derived, motivated by the thermodynamic uncertainty relation. Second, we provide a method to calculate the large deviation function via the cumulant generating function. We use this method to assess the tightness of the bounds in a numerical case study for a cosine potential.
Amygdala subnuclei resting-state functional connectivity sex and estrogen differences.
Engman, Jonas; Linnman, Clas; Van Dijk, Koene R A; Milad, Mohammed R
2016-01-01
The amygdala is a hub in emotional processing, including that of negative affect. Healthy men and women have distinct differences in amygdala responses, potentially setting the stage for the observed sex differences in the prevalence of fear, anxiety, and pain disorders. Here, we examined how amygdala subnuclei resting-state functional connectivity is affected by sex, as well as explored how the functional connectivity is related to estrogen levels. Resting-state functional connectivity was measured using functional magnetic resonance imaging (fMRI) with seeds placed in the left and right laterobasal (LB) and centromedial (CM) amygdala. Sex differences were studied in 48 healthy men and 48 healthy women, matched for age, while the association with estrogen was analyzed in a subsample of 24 women, for whom hormone levels had been assessed. For the hormone analyses, the subsample was further divided into a lower and higher estrogen levels group based on a median split. We found distinct sex differences in the LB and CM amygdala resting-state functional connectivity, as well as preliminary evidence for an association between estrogen levels and connectivity patterns. These results are potentially valuable in explaining why women are more afflicted by conditions of negative affect than are men, and could imply a mechanistic role for estrogen in modulating emotion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flexible Redistribution in Cognitive Networks.
Hartwigsen, Gesa
2018-06-15
Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart EG; Robinson, Christopher T
2013-01-01
Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning. PMID:23842653
Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T
2013-12-01
Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.
ERIC Educational Resources Information Center
Fujita, Takako; Kamio, Yoko; Yamasaki, Takao; Yasumoto, Sawa; Hirose, Shinichi; Tobimatsu, Shozo
2013-01-01
Individuals with autism spectrum disorders (ASDs) have different automatic responses to faces than typically developing (TD) individuals. We recorded visual evoked potentials (VEPs) in 10 individuals with high-functioning ASD (HFASD) and 10 TD individuals. Visual stimuli consisted of upright and inverted faces (fearful and neutral) and objects…
Losing function through wetland mitigation in central Pennsylvania, USA.
Hoeltje, S M; Cole, C A
2007-03-01
In the United States, the Clean Water Act requires mitigation for wetlands that are negatively impacted by dredging and filling activities. During the mitigation process, there generally is little effort to assess function for mitigation sites and function is usually inferred based on vegetative cover and acreage. In our study, hydrogeomorphic (HGM) functional assessment models were used to compare predicted and potential levels of functional capacity in created and natural reference wetlands. HGM models assess potential function by measurement of a suite of structural variables and these modeled functions can then be compared to those in natural, reference wetlands. The created wetlands were built in a floodplain setting of a valley in central Pennsylvania to replace natural ridge-side slope wetlands. Functional assessment models indicated that the created sites differed significantly from natural wetlands that represented the impacted sites for seven of the ten functions assessed. This was expected because the created wetlands were located in a different geomorphic setting than the impacted sites, which would affect the type and degree of functions that occur. However, functional differences were still observed when the created sites were compared with a second set of reference wetlands that were located in a similar geomorphic setting (floodplain). Most of the differences observed in both comparisons were related to unnatural hydrologic regimes and to the characteristics of the surrounding landscape. As a result, the created wetlands are not fulfilling the criteria for successful wetland mitigation.
Sasse, Alexander; de Vries, Sjoerd J; Schindler, Christina E M; de Beauchêne, Isaure Chauvot; Zacharias, Martin
2017-01-01
Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality of the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid Accelerated Directly SCoring OPTimizing), was designed to allow rapid development and optimization of different knowledge-based scoring potentials for specific objectives in protein-protein docking. Different atomistic and coarse-grained potentials can be created by a grid-accelerated directly scoring dependent Monte-Carlo annealing or by a linear regression optimization. We demonstrate that the scoring functions generated by our approach are similar to or even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional importance, we find that potentials specifically trained to identify the native bound complex perform rather poorly on identifying acceptable or medium quality (near-native) solutions. In contrast, atomistic long-range contact potentials can increase the average fraction of near-native poses by up to a factor 2.5 in the best scored 1% decoys (compared to existing scoring), emphasizing the need of specific docking potentials for different steps in the docking protocol.
Impingement of Droplets in 90 deg Elbows with Potential Flow
NASA Technical Reports Server (NTRS)
Hacker, Paul T.; Brun, Rinaldo J.; Boyd, Bemrose
1953-01-01
Trajectories were determined for droplets in air flowing through 90 deg elbows especially designed for two-dimensional potential motion with low pressure losses. The elbows were established by selecting as walls of each elbow two streamlines of the flow field produced by a complex potential function that establishes a two-dimensional flow around a 90 deg bend. An unlimited number of elbows with slightly different shapes can be established by selecting different pairs of streamlines as walls. The elbows produced by the complex potential function selected are suitable for use in aircraft air-intake ducts. The droplet impingement data derived from the trajectories are presented along with equations in such a manner that the collection efficiency, the area, the rate, and the distribution of droplet impingement can be determined for any elbow defined by any pair of streamlines within a portion of the flow field established by the complex potential function. Coordinates for some typical streamlines of the flow field and velocity components for several points along these streamlines are presented in tabular form.
The Role of Sex in Memory Function: Considerations and Recommendations in the Context of Exercise.
Loprinzi, Paul D; Frith, Emily
2018-05-31
There is evidence to suggest that biological sex plays a critical role in memory function, with sex differentially influencing memory type. In this review, we detail the current evidence evaluating sex-specific effects on various memory types. We also discuss potential mechanisms that explain these sex-specific effects, which include sex differences in neuroanatomy, neurochemical differences, biological differences, and cognitive and affect-related differences. Central to this review, we also highlight that, despite the established sex differences in memory, there is little work directly comparing whether males and females have a differential exercise-induced effect on memory function. As discussed herein, such a differential effect is plausible given the clear sex-specific effects on memory, exercise response, and molecular mediators of memory. We emphasize that future work should be carefully powered to detect sex differences. Future research should also examine these potential exercise-related sex-specific effects for various memory types and exercise intensities and modalities. This will help enhance our understanding of whether sex indeed moderates the effects of exercise and memory function, and as such, will improve our understanding of whether sex-specific, memory-enhancing interventions should be developed, implemented, and evaluated.
Nakajima, T; Takazawa, S; Hayashida, S; Nakagome, K; Sasaki, T; Kanno, O
2000-02-01
The effects of zolpidem and zopiclone, non-benzodiazepine ultra-short-acting hypnotics, on cognitive function and vigilance level were investigated in the morning following nocturnal administration using event-related potentials (ERP) and a sleep latency test (SLT). Zopiclone significantly shortened the sleep latency the following morning, whereas zolpidem did not, perhaps due to the difference in the elimination half-lives between the compounds. No significant effect was observed for either drug on the ERP indices, including the P3, mismatch negativity and negative difference components. At a clinically prescribed dosage these sleep inducers have no remarkable effect on cognitive or attentional functions but increase sleepiness of the subjects.
Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.
Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen
2018-01-01
While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.
Zhang, Xian; Liu, Xueduan; Liang, Yili; Xiao, Yunhua; Ma, Liyuan; Guo, Xue; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Yin, Huaqun
2017-01-01
The spatial-temporal distribution of populations in various econiches is thought to be potentially related to individual differences in the utilization of nutrients or other resources, but their functional roles in the microbial communities remain elusive. We compared differentiation in gene repertoire and metabolic profiles, with a focus on the potential functional traits of three commonly recognized members (Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans) in bioleaching heaps. Comparative genomics revealed that intra-species divergence might be driven by horizontal gene transfer. These co-occurring bacteria shared a few homologous genes, which significantly suggested the genomic differences between these organisms. Notably, relatively more genes assigned to the Clusters of Orthologous Groups category [G] (carbohydrate transport and metabolism) were identified in Sulfobacillus thermosulfidooxidans compared to the two other species, which probably indicated their mixotrophic capabilities that assimilate both organic and inorganic forms of carbon. Further inspection revealed distinctive metabolic capabilities involving carbon assimilation, nitrogen uptake, and iron-sulfur cycling, providing robust evidence for functional differences with respect to nutrient utilization. Therefore, we proposed that the mutual compensation of functionalities among these co-occurring organisms might provide a selective advantage for efficiently utilizing the limited resources in their habitats. Furthermore, it might be favorable to chemoautotrophs' lifestyles to form mutualistic interactions with these heterotrophic and/or mixotrophic acidophiles, whereby the latter could degrade organic compounds to effectively detoxify the environments. Collectively, the findings shed light on the genetic traits and potential metabolic activities of these organisms, and enable us to make some inferences about genomic and functional differences that might allow them to co-exist. PMID:28529505
Functional diversity and redundancy across fish gut, sediment and water bacterial communities.
Escalas, Arthur; Troussellier, Marc; Yuan, Tong; Bouvier, Thierry; Bouvier, Corinne; Mouchet, Maud A; Flores Hernandez, Domingo; Ramos Miranda, Julia; Zhou, Jizhong; Mouillot, David
2017-08-01
This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Exact solution of a ratchet with switching sawtooth potential
NASA Astrophysics Data System (ADS)
Saakian, David B.; Klümper, Andreas
2018-01-01
We consider the flashing potential ratchet model with general asymmetric potential. Using Bloch functions, we derive equations which allow for the calculation of both the ratchet's flux and higher moments of distribution for rather general potentials. We indicate how to derive the optimal transition rates for maximal velocity of the ratchet. We calculate explicitly the exact velocity of a ratchet with simple sawtooth potential from the solution of a system of 8 linear algebraic equations. Using Bloch functions, we derive the equations for the ratchet with potentials changing periodically with time. We also consider the case of the ratchet with evolution with two different potentials acting for some random periods of time.
sRNA antitoxins: more than one way to repress a toxin.
Wen, Jia; Fozo, Elizabeth M
2014-08-04
Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.
Robots in food systems: a review and assessment of potential uses.
Adams, E A; Messersmith, A M
1986-04-01
Management personnel in foodservice, food processing, and robot industries were surveyed to evaluate potential job functions for robots in the food industry. The survey instrument listed 64 different food-related job functions that participants were asked to assess as appropriate or not appropriate for robotic implementation. Demographic data were collected from each participant to determine any positive or negative influence on job function responses. The survey responses were statistically evaluated using frequencies and the chi-square test of significance. Sixteen of the 64 job functions were identified as appropriate for robot implementation in food industries by both robot manufacturing and food managers. The study indicated, first, that food managers lack knowledge about robots and robot manufacturing managers lack knowledge about food industries. Second, robots are not currently being used to any extent in the food industry. Third, analysis of the demographic data in relation to the 16 identified job functions showed no significant differences in responses.
Chaudhary, Ashun; Choudhary, Sonika; Sharma, Upendra; Vig, Adarsh Pal; Singh, Bikram; Arora, Saroj
2018-05-01
Natural foods are used in many folks and household treatments and have immense potential to treat a serious complication and health benefits, in addition to the basic nutritional values. These food products improve health, delay the aging process, increase life expectancy, and possibly prevent chronic diseases. Purple head Brassica oleracea L. var. italica Plenck is one of such foods and in current studies was explored for chemical compounds at different development stages by gas chromatography-mass spectrometry. Antioxidant potential was explored employing different assays like molybdate ion reduction, DPPH, superoxide anion radical scavenging and plasmid nicking assay. Inspired by antioxidant activity results, we further explored these extracts for antiproliferative potential by morphological changes, cell cycle analysis, measurement of intracellular peroxides and mitochondrial membrane potential changes. Current study provides the scientific basis for the use of broccoli as easily affordable potent functional food.
Age difference in numeral recognition and calculation: an event-related potential study.
Xuan, Dong; Wang, Suhong; Yang, Yilin; Meng, Ping; Xu, Feng; Yang, Wen; Sheng, Wei; Yang, Yuxia
2007-01-01
In this study, we investigated the age difference in numeral recognition and calculation in one group of school-aged children (n = 38) and one of undergraduate students (n = 26) using the event-related potential (ERP) methods. Consistent with previous reports, the age difference was significant in behavioral results. Both numeral recognition and calculation elicited a negativity peaking at about 170-280 ms (N2) and a positivity peaking at 200-470 ms (pSW) in raw ERPs, and a difference potential (dN3) between 360 and 450 ms. The difference between the two age groups indicated that more attention resources were devoted to arithmetical tasks in school-aged children, and that school-aged children and undergraduate students appear to use different strategies to solve arithmetical problems. The analysis of frontal negativity suggested that numeral recognition and mental calculation impose greater load on working memory and executive function in schoolchildren than in undergraduate students. The topography data determined that the parietal regions were responsible for arithmetical function in humans, and there was an age-related difference in the area of cerebral activation.
An automated system for evaluation of the potential functionome: MAPLE version 2.1.0
Takami, Hideto; Taniguchi, Takeaki; Arai, Wataru; Takemoto, Kazuhiro; Moriya, Yuki; Goto, Susumu
2016-01-01
Metabolic and physiological potential evaluator (MAPLE) is an automatic system that can perform a series of steps used in the evaluation of potential comprehensive functions (functionome) harboured in the genome and metagenome. MAPLE first assigns KEGG Orthology (KO) to the query gene, maps the KO-assigned genes to the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules, and then calculates the module completion ratio (MCR) of each functional module to characterize the potential functionome in the user’s own genomic and metagenomic data. In this study, we added two more useful functions to calculate module abundance and Q-value, which indicate the functional abundance and statistical significance of the MCR results, respectively, to the new version of MAPLE for more detailed comparative genomic and metagenomic analyses. Consequently, MAPLE version 2.1.0 reported significant differences in the potential functionome, functional abundance, and diversity of contributors to each function among four metagenomic datasets generated by the global ocean sampling expedition, one of the most popular environmental samples to use with this system. MAPLE version 2.1.0 is now available through the web interface (http://www.genome.jp/tools/maple/) 17 June 2016, date last accessed. PMID:27374611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Peijie, E-mail: cliffzhou@pku.edu.cn; Li, Tiejun, E-mail: tieli@pku.edu.cn
Motivated by the famous Waddington’s epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to construct the landscape for multi-stable complex systems. We aim to summarize and elucidate the relationships among these theories from a mathematical point of view. We systematically investigate and compare three different but closely related realizations in the recent literature: the Wang’s potential landscape theory from steady state distribution of stochastic differential equations (SDEs), the Freidlin-Wentzell quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral. We revisit that the quasi-potential is the zero noise limit ofmore » the potential landscape, and the potential function in the third proposal coincides with the quasi-potential. We compare the difference between local and global quasi-potential through the viewpoint of exchange of limit order for time and noise amplitude. We argue that local quasi-potentials are responsible for getting transition rates between neighboring stable states, while the global quasi-potential mainly characterizes the residence time of the states as the system reaches stationarity. The difference between these two is prominent when the transitivity property is broken. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is also discussed. As a consequence of the established connections among different proposals, we arrive at the novel result which guarantees the existence of SDE decomposition while denies its uniqueness in general cases. It is, therefore, clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than its primitive form as believed by previous researchers. Our results contribute to a deeper understanding of landscape theories for biological systems.« less
NASA Astrophysics Data System (ADS)
Zhou, Peijie; Li, Tiejun
2016-03-01
Motivated by the famous Waddington's epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to construct the landscape for multi-stable complex systems. We aim to summarize and elucidate the relationships among these theories from a mathematical point of view. We systematically investigate and compare three different but closely related realizations in the recent literature: the Wang's potential landscape theory from steady state distribution of stochastic differential equations (SDEs), the Freidlin-Wentzell quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral. We revisit that the quasi-potential is the zero noise limit of the potential landscape, and the potential function in the third proposal coincides with the quasi-potential. We compare the difference between local and global quasi-potential through the viewpoint of exchange of limit order for time and noise amplitude. We argue that local quasi-potentials are responsible for getting transition rates between neighboring stable states, while the global quasi-potential mainly characterizes the residence time of the states as the system reaches stationarity. The difference between these two is prominent when the transitivity property is broken. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is also discussed. As a consequence of the established connections among different proposals, we arrive at the novel result which guarantees the existence of SDE decomposition while denies its uniqueness in general cases. It is, therefore, clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than its primitive form as believed by previous researchers. Our results contribute to a deeper understanding of landscape theories for biological systems.
Functional neuroimaging in psychiatry.
Fu, C H; McGuire, P K
1999-01-01
Functional neuroimaging is one of the most powerful means available for investigating the pathophysiology of psychiatric disorders. In this review, we shall focus on the different ways that it can be employed to this end, describing the major findings in the field in the context of different methodological approaches. We will also discuss practical issues that are particular to studying psychiatric disorders and the potential contribution of functional neuroimaging to future psychiatric research. PMID:10466156
2014-01-01
Background Cis-regulatory modules (CRMs), or the DNA sequences required for regulating gene expression, play the central role in biological researches on transcriptional regulation in metazoan species. Nowadays, the systematic understanding of CRMs still mainly resorts to computational methods due to the time-consuming and small-scale nature of experimental methods. But the accuracy and reliability of different CRM prediction tools are still unclear. Without comparative cross-analysis of the results and combinatorial consideration with extra experimental information, there is no easy way to assess the confidence of the predicted CRMs. This limits the genome-wide understanding of CRMs. Description It is known that transcription factor binding and epigenetic profiles tend to determine functions of CRMs in gene transcriptional regulation. Thus integration of the genome-wide epigenetic profiles with systematically predicted CRMs can greatly help researchers evaluate and decipher the prediction confidence and possible transcriptional regulatory functions of these potential CRMs. However, these data are still fragmentary in the literatures. Here we performed the computational genome-wide screening for potential CRMs using different prediction tools and constructed the pioneer database, cisMEP (cis-regulatory module epigenetic profile database), to integrate these computationally identified CRMs with genomic epigenetic profile data. cisMEP collects the literature-curated TFBS location data and nine genres of epigenetic data for assessing the confidence of these potential CRMs and deciphering the possible CRM functionality. Conclusions cisMEP aims to provide a user-friendly interface for researchers to assess the confidence of different potential CRMs and to understand the functions of CRMs through experimentally-identified epigenetic profiles. The deposited potential CRMs and experimental epigenetic profiles for confidence assessment provide experimentally testable hypotheses for the molecular mechanisms of metazoan gene regulation. We believe that the information deposited in cisMEP will greatly facilitate the comparative usage of different CRM prediction tools and will help biologists to study the modular regulatory mechanisms between different TFs and their target genes. PMID:25521507
Sasaki, Ryo; Matsumine, Hajime; Watanabe, Yorikatsu; Takeuchi, Yuichi; Yamato, Masayuki; Okano, Teruo; Miyata, Mariko; Ando, Tomohiro
2014-11-01
Dental pulp tissue contains Schwann and neural progenitor cells. Tissue-engineered nerve conduits with dental pulp cells promote facial nerve regeneration in rats. However, no nerve functional or electrophysiologic evaluations were performed. This study investigated the compound muscle action potential recordings and facial functional analysis of dental pulp cell regenerated nerve in rats. A silicone tube containing rat dental pulp cells in type I collagen gel was transplanted into a 7-mm gap of the buccal branch of the facial nerve in Lewis rats; the same defect was created in the marginal mandibular branch, which was ligatured. Compound muscle action potential recordings of vibrissal muscles and facial functional analysis with facial palsy score of the nerve were performed. Tubulation with dental pulp cells showed significantly lower facial palsy scores than the autograft group between 3 and 10 weeks postoperatively. However, the dental pulp cell facial palsy scores showed no significant difference from those of autograft after 11 weeks. Amplitude and duration of compound muscle action potentials in the dental pulp cell group showed no significant difference from those of the intact and autograft groups, and there was no significant difference in the latency of compound muscle action potentials between the groups at 13 weeks postoperatively. However, the latency in the dental pulp cell group was prolonged more than that of the intact group. Tubulation with dental pulp cells could recover facial nerve defects functionally and electrophysiologically, and the recovery became comparable to that of nerve autografting in rats.
Gwynne, R M; Bornstein, J C
2007-03-01
Digestion and absorption of nutrients and the secretion and reabsorption of fluid in the gastrointestinal tract are regulated by neurons of the enteric nervous system (ENS), the extensive peripheral nerve network contained within the intestinal wall. The ENS is an important physiological model for the study of neural networks since it is both complex and accessible. At least 20 different neurochemically and functionally distinct classes of enteric neurons have been identified in the guinea pig ileum. These neurons express a wide range of ionotropic and metabotropic receptors. Synaptic potentials mediated by ionotropic receptors such as the nicotinic acetylcholine receptor, P2X purinoceptors and 5-HT(3) receptors are seen in many enteric neurons. However, prominent synaptic potentials mediated by metabotropic receptors, like the P2Y(1) receptor and the NK(1) receptor, are also seen in these neurons. Studies of synaptic transmission between the different neuron classes within the enteric neural pathways have shown that both ionotropic and metabotropic synaptic potentials play major roles at distinct synapses within simple reflex pathways. However, there are still functional synapses at which no known transmitter or receptor has been identified. This review describes the identified roles for both ionotropic and metabotropic neurotransmission at functionally defined synapses within the guinea pig ileum ENS. It is concluded that metabotropic synaptic potentials act as primary transmitters at some synapses. It is suggested identification of the interactions between different synaptic potentials in the production of complex behaviours will require the use of well validated computer models of the enteric neural circuitry.
Thostenson, James O; Ngaboyamahina, Edgard; Sellgren, Katelyn L; Hawkins, Brian T; Piascik, Jeffrey R; Klem, Ethan J D; Parker, Charles B; Deshusses, Marc A; Stoner, Brian R; Glass, Jeffrey T
2017-05-17
This work investigates the surface chemistry of H 2 O 2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H 2 O 2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H 2 O 2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H 2 O 2 . Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H 2 O 2 more efficiently compared to static potential methods.
Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics
Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D.; Cohly, Hari H. P.
2011-01-01
The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases. PMID:21747817
Gas discharge visualization: an imaging and modeling tool for medical biometrics.
Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D; Cohly, Hari H P
2011-01-01
The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases.
Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang
2015-08-20
Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.
Systematic approach to developing empirical interatomic potentials for III-N semiconductors
NASA Astrophysics Data System (ADS)
Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji
2016-05-01
A systematic approach to the derivation of empirical interatomic potentials is developed for III-N semiconductors with the aid of ab initio calculations. The parameter values of empirical potential based on bond order potential are determined by reproducing the cohesive energy differences among 3-fold coordinated hexagonal, 4-fold coordinated zinc blende, wurtzite, and 6-fold coordinated rocksalt structures in BN, AlN, GaN, and InN. The bond order p is successfully introduced as a function of the coordination number Z in the form of p = a exp(-bZn ) if Z ≤ 4 and p = (4/Z)α if Z ≥ 4 in empirical interatomic potential. Moreover, the energy difference between wurtzite and zinc blende structures can be successfully evaluated by considering interaction beyond the second-nearest neighbors as a function of ionicity. This approach is feasible for developing empirical interatomic potentials applicable to a system consisting of poorly coordinated atoms at surfaces and interfaces including nanostructures.
Single-particle strength from nucleon transfer in oxygen isotopes: Sensitivity to model parameters
NASA Astrophysics Data System (ADS)
Flavigny, F.; Keeley, N.; Gillibert, A.; Obertelli, A.
2018-03-01
In the analysis of transfer reaction data to extract nuclear structure information the choice of input parameters to the reaction model such as distorting potentials and overlap functions has a significant impact. In this paper we consider a set of data for the (d ,t ) and (d ,3He ) reactions on 14,16,18O as a well-delimited subject for a study of the sensitivity of such analyses to different choices of distorting potentials and overlap functions with particular reference to a previous investigation of the variation of valence nucleon correlations as a function of the difference in nucleon separation energy Δ S =| Sp-Sn| [Phys. Rev. Lett. 110, 122503 (2013), 10.1103/PhysRevLett.110.122503].
Exact analytic solution of position-dependent mass Schrödinger equation
NASA Astrophysics Data System (ADS)
Rajbongshi, Hangshadhar
2018-03-01
Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gledhill, Jonathan D.; Tozer, David J., E-mail: d.j.tozer@durham.ac.uk
Density scaling considerations are used to derive an exchange–correlation explicit density functional that is appropriate for the electron deficient side of the integer and which recovers the exact r → ∞ asymptotic behaviour of the exchange–correlation potential. The functional has an unconventional mathematical form with parameters that are system-dependent; the parameters for an N-electron system are determined in advance from generalised gradient approximation (GGA) calculations on the N- and (N − 1)-electron systems. Compared to GGA results, the functional yields similar exchange–correlation energies, but HOMO energies that are an order of magnitude closer to the negative of the vertical ionisationmore » potential; for anions, the HOMO energies are negative, as required. Rydberg excitation energies are also notably improved and the exchange–correlation potential is visibly lowered towards the near-exact potential. Further development is required to improve valence excitations, static isotropic polarisabilities, and the shape of the potential in non-asymptotic regions. The functional is fundamentally different to conventional approximations.« less
Wijesinghe, W A J P; Jeon, You-Jin
2012-03-01
Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.
Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach
Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.
2016-12-08
Nonaqueous redox flow batteries have attracted recent attention with their potential for high electrochemical storage capacity, with organic electrolytes serving as solvents with a wide electrochemical stability window. Organic molecules can also serve as electroactive species, where molecules with low reduction potentials or high oxidation potentials can provide substantial chemical energy. To identify promising electrolytes in a vast chemical space, high-throughput screening (HTS) of candidate molecules plays an important role, where HTS is used to calculate properties of thousands of molecules and identify a few organic molecules worthy of further attention in battery research. Here, in this work, we presentmore » reduction and oxidation potentials obtained from HTS of 4178 molecules. The molecules are composed of base groups of five- or six-membered rings with one or two functional groups attached, with the set of possible functional groups including both electron-withdrawing and electron-donating groups. In addition to observing the trends in potentials that result from differences in organic base groups and functional groups, we analyze the effects of molecular characteristics such as multiple bonds, Hammett parameters, and functional group position. In conclusion, this work provides useful guidance in determining how the identities of the base groups and functional groups are correlated with desirable reduction and oxidation potentials.« less
Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.
Nonaqueous redox flow batteries have attracted recent attention with their potential for high electrochemical storage capacity, with organic electrolytes serving as solvents with a wide electrochemical stability window. Organic molecules can also serve as electroactive species, where molecules with low reduction potentials or high oxidation potentials can provide substantial chemical energy. To identify promising electrolytes in a vast chemical space, high-throughput screening (HTS) of candidate molecules plays an important role, where HTS is used to calculate properties of thousands of molecules and identify a few organic molecules worthy of further attention in battery research. Here, in this work, we presentmore » reduction and oxidation potentials obtained from HTS of 4178 molecules. The molecules are composed of base groups of five- or six-membered rings with one or two functional groups attached, with the set of possible functional groups including both electron-withdrawing and electron-donating groups. In addition to observing the trends in potentials that result from differences in organic base groups and functional groups, we analyze the effects of molecular characteristics such as multiple bonds, Hammett parameters, and functional group position. In conclusion, this work provides useful guidance in determining how the identities of the base groups and functional groups are correlated with desirable reduction and oxidation potentials.« less
Morrison, Robert C
2015-01-07
Accurate densities were determined from configuration interaction wave functions for atoms and ions of Li, Be, and B with up to four electrons. Exchange-correlation potentials, Vxc(r), and functional derivatives of the noninteracting kinetic energy, δK[ρ]/δρ(r), obtained from these densities were used to examine their discontinuities as the number of electrons N increases across integer boundaries for N = 1, N = 2, and N = 3. These numerical results are consistent with conclusions that the discontinuities are characterized by a jump in the chemical potential while the shape of Vxc(r) varies continuously as an integer boundary is crossed. The discontinuity of the Vxc(r) is positive, depends on the ionization potential, electron affinity, and orbital energy differences, and the discontinuity in δK[ρ]/δρ(r) depends on the difference between the energies of the highest occupied and lowest unoccupied orbitals. The noninteracting kinetic energy and the exchange correlation energy have been computed for integer and noninteger values of N between 1 and 4.
Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A
2011-04-01
We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.
The effect of photoelectrons on boom-satellite potential differences during electron beam ejection
NASA Technical Reports Server (NTRS)
Lai, Shu T.; Cohen, Herbert A.; Aggson, Thomas L.; Mcneil, William J.
1987-01-01
Data taken on the SCATHA satellite at geosynchronous altitudes during periods of electron beam ejection in sunlight showed that the potential difference between an electrically isolated boom and the satellite main body was a function of beam current, energy, and boom-sun angle. The potential difference decreased as the boom area illuminated by the sun increased; the maximum and minimum potential differences were measured when minimum and maximum boom areas, respectively, were exposed to the sun. It is shown that photoelectrons, created on the boom, could be engulfed in the electrostatic field of the highly charged satellite main body. Theoretical calculations made using a simple current balance model showed that these electrons could provide a substantial discharging current to the main body and cause the observed variations in the potential difference between the main body and the booms.
NASA Astrophysics Data System (ADS)
Izmaylov, Artur F.; Staroverov, Viktor N.; Scuseria, Gustavo E.; Davidson, Ernest R.; Stoltz, Gabriel; Cancès, Eric
2007-02-01
We have recently formulated a new approach, named the effective local potential (ELP) method, for calculating local exchange-correlation potentials for orbital-dependent functionals based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart [V. N. Staroverov et al., J. Chem. Phys. 125, 081104 (2006)]. Here we show that under a mildly simplifying assumption of frozen molecular orbitals, the equation defining the ELP has a unique analytic solution which is identical with the expression arising in the localized Hartree-Fock (LHF) and common energy denominator approximations (CEDA) to the optimized effective potential. The ELP procedure differs from the CEDA and LHF in that it yields the target potential as an expansion in auxiliary basis functions. We report extensive calculations of atomic and molecular properties using the frozen-orbital ELP method and its iterative generalization to prove that ELP results agree with the corresponding LHF and CEDA values, as they should. Finally, we make the case for extending the iterative frozen-orbital ELP method to full orbital relaxation.
Potentiodynamic Corrosion Testing.
Munir, Selin; Pelletier, Matthew H; Walsh, William R
2016-09-04
Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.
An automated system for evaluation of the potential functionome: MAPLE version 2.1.0.
Takami, Hideto; Taniguchi, Takeaki; Arai, Wataru; Takemoto, Kazuhiro; Moriya, Yuki; Goto, Susumu
2016-07-03
Metabolic and physiological potential evaluator (MAPLE) is an automatic system that can perform a series of steps used in the evaluation of potential comprehensive functions (functionome) harboured in the genome and metagenome. MAPLE first assigns KEGG Orthology (KO) to the query gene, maps the KO-assigned genes to the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules, and then calculates the module completion ratio (MCR) of each functional module to characterize the potential functionome in the user's own genomic and metagenomic data. In this study, we added two more useful functions to calculate module abundance and Q-value, which indicate the functional abundance and statistical significance of the MCR results, respectively, to the new version of MAPLE for more detailed comparative genomic and metagenomic analyses. Consequently, MAPLE version 2.1.0 reported significant differences in the potential functionome, functional abundance, and diversity of contributors to each function among four metagenomic datasets generated by the global ocean sampling expedition, one of the most popular environmental samples to use with this system. MAPLE version 2.1.0 is now available through the web interface (http://www.genome.jp/tools/maple/) 17 June 2016, date last accessed. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Olmedilla-Alonso, Begoña; Jiménez-Colmenero, Francisco; Sánchez-Muniz, Francisco J
2013-12-01
This review deals with the two major aspects to be considered in the context of meat-based functional foods and human health. One involves the different strategies used to improve (increase or reduce) the presence of bioactive (healthy and unhealthy) compounds in meat and meat products in order to develop potential meat-based functional foods; these strategies are basically concerned with animal production practices, meat processing and storage, distribution and consumption conditions. Since the link between the consumption of those foods and their potentially beneficial effects (improving health and/or reducing the risk of several chronic diseases) needs to be demonstrated scientifically, the second aspect considered is related to intervention studies to examine the functional capacity of meat-based potentially functional foods in humans, discussing how the functionality of a food can be assessed in terms of its effects on health in relation to both target body functions and risk factors. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.
2018-01-01
The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.
Potential Leaders and Democratic Values
ERIC Educational Resources Information Center
Monsma, Stephen V.
1971-01-01
Indicates that potential contenders for public office are likely to be more knowledgeable, interested, and libertarian than the average citizen. Concludes that these differences exist before leaders are elected and that this discrimination is functional in a democracy. (MB)
Automated Optimization of Potential Parameters
Michele, Di Pierro; Ron, Elber
2013-01-01
An algorithm and software to refine parameters of empirical energy functions according to condensed phase experimental measurements are discussed. The algorithm is based on sensitivity analysis and local minimization of the differences between experiment and simulation as a function of potential parameters. It is illustrated for a toy problem of alanine dipeptide and is applied to folding of the peptide WAAAH. The helix fraction is highly sensitive to the potential parameters while the slope of the melting curve is not. The sensitivity variations make it difficult to satisfy both observations simultaneously. We conjecture that there is no set of parameters that reproduces experimental melting curves of short peptides that are modeled with the usual functional form of a force field. PMID:24015115
Shear Viscosity Coefficient of 5d Liquid Transition Metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.
2011-07-01
In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.
Pulmonary function outcomes for assessing cystic fibrosis care.
Wagener, Jeffrey S; Elkin, Eric P; Pasta, David J; Schechter, Michael S; Konstan, Michael W; Morgan, Wayne J
2015-05-01
Assessing cystic fibrosis (CF) patient quality of care requires the choice of an appropriate outcome measure. We looked systematically and in detail at pulmonary function outcomes that potentially reflect clinical practice patterns. Epidemiologic Study of Cystic Fibrosis data were used to evaluate six potential outcome variables (2002 best FVC, FEV(1), and FEF(25-75) and rate of decline for each from 2000 to 2002). We ranked CF care sites by outcome measure and then assessed any association with practice patterns and follow-up pulmonary function. Sites ranked in the top quartile had more frequent monitoring, treatment of exacerbations, and use of chronic therapies and oral corticosteroids. The follow-up rate of pulmonary function decline was not predicted by site ranking. Different pulmonary function outcomes associate slightly differently with practice patterns, although annual FEV(1) is at least as good as any other measure. Current site ranking only moderately predicts future ranking. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
2017-01-01
This work investigates the surface chemistry of H2O2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H2O2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H2O2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H2O2. Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H2O2 more efficiently compared to static potential methods. PMID:28471651
Facial recognition deficits as a potential endophenotype in bipolar disorder.
Vierck, Esther; Porter, Richard J; Joyce, Peter R
2015-11-30
Bipolar disorder (BD) is considered a highly heritable and genetically complex disorder. Several cognitive functions, such as executive functions and verbal memory have been suggested as promising candidates for endophenotypes. Although there is evidence for deficits in facial emotion recognition in individuals with BD, studies investigating these functions as endophenotypes are rare. The current study investigates emotion recognition as a potential endophenotype in BD by comparing 36 BD participants, 24 of their 1st degree relatives and 40 healthy control participants in a computerised facial emotion recognition task. Group differences were evaluated using repeated measurement analysis of co-variance with age as a covariate. Results revealed slowed emotion recognition for both BD and their relatives. Furthermore, BD participants were less accurate than healthy controls in their recognition of emotion expressions. We found no evidence of emotion specific differences between groups. Our results provide evidence for facial recognition as a potential endophenotype in BD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Vancoillie, Steven; Malmqvist, Per Åke; Veryazov, Valera
2016-04-12
The chromium dimer has long been a benchmark molecule to evaluate the performance of different computational methods ranging from density functional theory to wave function methods. Among the latter, multiconfigurational perturbation theory was shown to be able to reproduce the potential energy surface of the chromium dimer accurately. However, for modest active space sizes, it was later shown that different definitions of the zeroth-order Hamiltonian have a large impact on the results. In this work, we revisit the system for the third time with multiconfigurational perturbation theory, now in order to increase the active space of the reference wave function. This reduces the impact of the choice of zeroth-order Hamiltonian and improves the shape of the potential energy surface significantly. We conclude by comparing our results of the dissocation energy and vibrational spectrum to those obtained from several highly accurate multiconfigurational methods and experiment. For a meaningful comparison, we used the extrapolation to the complete basis set for all methods involved.
NASA Astrophysics Data System (ADS)
Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove
2018-02-01
We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.
Artunc, F; Yildiz, S; Rossi, C; Boss, A; Dittmann, H; Schlemmer, H P; Risler, T; Heyne, N
2010-06-01
Evaluation of potential kidney donors requires the assessment of both kidney anatomy and function. In this prospective study, we sought to expand the diagnostic yield of magnetic resonance (MR) by adding functional measurements of glomerular filtration rate (GFR) and split renal function. Between 2007 and 2009, all potential kidney donors presenting to our facility underwent a comprehensive single-stop MR study that included an assessment of anatomy, angiography and functional measurements. GFR was measured after a bolus injection of gadobutrol (4 ml, approximately 0.05 mmol/kg) and calculated from the washout of the signal intensity obtained over the liver. Split renal function was calculated from the increase of signal intensity over the renal cortex. Values were compared to renal scintigraphy with (99m)Tc-DTPA from the same day. The MR investigation was successfully performed in 21 participants. The GFR derived from MR (MR-GFR) correlated well (r = 0.84) with the GFR derived from scintigraphy (DTPA-GFR). The mean value of the paired differences was 4 +/- 13 [SD] ml/min/1.73 m(2) and was not significantly different from zero. The ratio between right and left kidney function was similar with both techniques (1.01 +/- 0.17 with MR and 1.06 +/- 0.12 with scintigraphy, P = 0.20). We demonstrate an MR-based approach to comprehensively evaluate both kidney anatomy and function in a single investigation, thereby facilitating the evaluation of potential kidney donors.
Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin
2017-01-01
Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266
ERIC Educational Resources Information Center
Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel
2009-01-01
The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed…
Ramseyer, Daniel D; Bettge, Arthur D; Morris, Craig F
2011-01-01
The purpose of this research was to study the functional differences between straight grade (75% extraction rate) and patent (60% extraction rate) flour blends from 28 genetically pure soft white and club wheat grain lots, as evidenced by variation in sugar snap cookie and Japanese sponge cake quality. Functional differences were examined relative to arabinoxylan content, protein content, and oxidative cross-linking potential of flour slurries. Oxidative cross-linking measurements were obtained on flour slurries with a low shear Bostwick consistometer and considered endogenous oxidative cross-linking potential (water alone) or enhanced oxidative cross-linking potential (with added hydrogen peroxide-peroxidase). A 2-way ANOVA indicated that flour blend was the greater source of variation compared to grain lot for all response variables except water-extractable arabinoxylan content. Patent flours produced larger sugar snap cookies and Japanese sponge cakes, and contained significantly less total and water-unextractable arabinoxylans, protein, and ash than did straight grade flours. Patent flours produced more viscous slurries for endogenous and enhanced cross-linking measurements compared to the straight grade flours. The functional differences between patent and straight grade flours appear to be related to the particular mill streams that were utilized in the formulation of the 2 flour blends and compositional differences among those streams. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Sex differences in vascular endothelial function and health in humans: impacts of exercise.
Green, Daniel J; Hopkins, Nicola D; Jones, Helen; Thijssen, Dick H J; Eijsvogels, Thijs M H; Yeap, Bu B
2016-02-01
What is the topic of this review? This brief review discusses potential sex differences in arterial function across the age span, with special emphasis on the effects of oestrogen and testosterone on the vascular endothelium. What advances does it highlight? We discuss the relationship between the impacts of sex hormones on arterial function and health in the context of epidemiological evidence pertaining to the menopause and ageing. Studies performed in humans are emphasized, alongside insights from animal studies. Findings suggest that the combination of exercise and hormone administration should be potentially synergistic or additive in humans. This brief review presents historical evidence for the purported impacts of male and female sex hormones on the vasculature in humans, including effects on macro- and microvascular function and health. Impacts of ageing on hormonal changes and arterial function are considered in the context of the menopause. Physiological data are presented alongside clinical outcomes from large trials, in an attempt to rationalize disparate findings along the bench-to-bedside continuum. Finally, the theoretical likelihood that exercise and hormone treatment may induce synergistic and/or additive vascular adaptations is developed in the context of recent laboratory studies that have compared male and female responses to training. Differences between men and women in terms of the impact of age and cardiorespiratory fitness on endothelial function are addressed. Ultimately, this review highlights the paucity of high-quality and compelling evidence regarding the fundamental impact, in humans, of sex differences on arterial function and the moderating impacts of exercise on arterial function, adaptation and health at different ages in either sex. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air
NASA Astrophysics Data System (ADS)
Abdellatif, M. H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco
2017-05-01
The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.
Quantum dynamics of a plane pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibscher, Monika; Schmidt, Burkhard
A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution ofmore » the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.« less
Bioinspiration: something for everyone
Whitesides, George M.
2015-01-01
‘Bioinspiration’—using phenomena in biology to stimulate research in non-biological science and technology—is a strategy that suggests new areas for research. Beyond its potential to nucleate new ideas, bioinspiration has two other interesting characteristics. It can suggest subjects in research that are relatively simple technically; it can also lead to areas in which results can lead to useful function more directly than some of the more familiar areas now fashionable in chemistry. Bioinspired research thus has the potential to be accessible to laboratories that have limited resources, to offer routes to new and useful function, and to bridge differences in technical and cultural interactions of different geographical regions. PMID:26464790
NASA Astrophysics Data System (ADS)
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-01
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-21
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping
2011-02-01
The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment is thus believed to have potentials to offer new insights into water management and advance the source apportionment framework as an operational basis for national and local governments. © 2010 Elsevier Ltd. All rights reserved.
Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials
NASA Astrophysics Data System (ADS)
Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.
2017-05-01
The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Sdran, N.; Najran University, Faculty of Sciences and Arts, Najran; Maiz, F., E-mail: fethimaiz@gmail.com
2016-06-15
The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax{sup 2α} + Bx{sup 2}, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) bymore » a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.« less
The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity
Longman, Randy S.; Littman, Dan R.
2016-01-01
Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030
NASA Astrophysics Data System (ADS)
Kim, Hongjip; Che Tai, Wei; Zhou, Shengxi; Zuo, Lei
2017-11-01
Stochastic resonance is referred to as a physical phenomenon that is manifest in nonlinear systems whereby a weak periodic signal can be significantly amplified with the aid of inherent noise or vice versa. In this paper, stochastic resonance is considered to harvest energy from two typical vibrations in rotating shafts: random whirl vibration and periodic stick-slip vibration. Stick-slip vibrations impose a constant offset in centrifugal force and distort the potential function of the harvester, leading to potential function asymmetry. A numerical analysis based on a finite element method was conducted to investigate stochastic resonance with potential function asymmetry. Simulation results revealed that a harvester with symmetric potential function generates seven times higher power than that with asymmetric potential function. Furthermore, a frequency-sweep analysis also showed that stochastic resonance has hysteretic behavior, resulting in frequency difference between up-sweep and down-sweep excitations. An electromagnetic energy harvesting system was constructed to experimentally verify the numerical analysis. In contrast to traditional stochastic resonance harvesters, the proposed harvester uses magnetic force to compensate the offset in the centrifugal force. System identification was performed to obtain the parameters needed in the numerical analysis. With the identified parameters, the numerical simulations showed good agreement with the experiment results with around 10% error, which verified the effect of potential function asymmetry and frequency sweep excitation condition on stochastic resonance. Finally, attributed to compensating the centrifugal force offset, the proposed harvester generated nearly three times more open-circuit output voltage than its traditional counterpart.
Ferrada, Evandro; Vergara, Ismael A; Melo, Francisco
2007-01-01
The correct discrimination between native and near-native protein conformations is essential for achieving accurate computer-based protein structure prediction. However, this has proven to be a difficult task, since currently available physical energy functions, empirical potentials and statistical scoring functions are still limited in achieving this goal consistently. In this work, we assess and compare the ability of different full atom knowledge-based potentials to discriminate between native protein structures and near-native protein conformations generated by comparative modeling. Using a benchmark of 152 near-native protein models and their corresponding native structures that encompass several different folds, we demonstrate that the incorporation of close non-bonded pairwise atom terms improves the discriminating power of the empirical potentials. Since the direct and unbiased derivation of close non-bonded terms from current experimental data is not possible, we obtained and used those terms from the corresponding pseudo-energy functions of a non-local knowledge-based potential. It is shown that this methodology significantly improves the discrimination between native and near-native protein conformations, suggesting that a proper description of close non-bonded terms is important to achieve a more complete and accurate description of native protein conformations. Some external knowledge-based energy functions that are widely used in model assessment performed poorly, indicating that the benchmark of models and the specific discrimination task tested in this work constitutes a difficult challenge.
Tuck, Sean L; O'Brien, Michael J; Philipson, Christopher D; Saner, Philippe; Tanadini, Matteo; Dzulkifli, Dzaeman; Godfray, H Charles J; Godoong, Elia; Nilus, Reuben; Ong, Robert C; Schmid, Bernhard; Sinun, Waidi; Snaddon, Jake L; Snoep, Martijn; Tangki, Hamzah; Tay, John; Ulok, Philip; Wai, Yap Sau; Weilenmann, Maja; Reynolds, Glen; Hector, Andy
2016-12-14
One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning. © 2016 The Authors.
O'Brien, Michael J.; Philipson, Christopher D.; Saner, Philippe; Tanadini, Matteo; Dzulkifli, Dzaeman; Godoong, Elia; Nilus, Reuben; Ong, Robert C.; Schmid, Bernhard; Sinun, Waidi; Snaddon, Jake L.; Snoep, Martijn; Tangki, Hamzah; Tay, John; Ulok, Philip; Wai, Yap Sau; Weilenmann, Maja; Reynolds, Glen
2016-01-01
One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the ‘insurance hypothesis’ predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning. PMID:27928046
Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium
Fischbarg, J.; Lim, J. J.
1974-01-01
1. A small electrical potential difference (541 ± 48 μV, aqueous side negative) across rabbit corneal endothelium has been recently found. Its dependence on ambient [Na+], [K+], [H+] and metabolic and specific inhibitors was examined. 2. Changes in concentration of the ions above either were known or were presently shown to affect the rate of fluid transport across this preparation (normal value: 5·2 ± 0·4 μl./hr.cm2). Ionic concentration changes were also found here to influence potential difference in the same way as fluid transport. In the cases tested, the effects on both fluid transport and potential difference were reversible. 3. Fluid transport and potential difference were both decreased or abolished in absence of Na+, K+ and HCO3-, and when [H+] was decreased. Fluid transport and potential difference were saturable functions of [HCO3-] and half-saturation occurred in both cases at about 13 mM-HCO3-. The potential difference was also a saturable function of [Na+] (half-saturation around 15 mM). There was a pH optimum for potential difference in the range 7·4-7·6. Lower pH values decreases the potential difference and the fluid transport, and a small (-100 μV) reversed potential was observed in the range of 5·3-5·5. 4. Total replacement of Cl- by HCO3- or SO42- produced no impairment on either fluid transport or potential difference. 5. Carbonic anhydrase inhibitors (ethoxyzolamide 10-5 or 10-4 M and benzolamide 10-3 M) produced a 40-60% decrease in the rate of fluid pumping. In contrast, ethoxyzolamide 10-4 M or acetazolamide 10-3 M did not produce any change in the potential difference. NaCN and Na iodoacetate (both 2 mM) eliminated the potential difference in 1-1·5 hr while in controls it lasted for 5-6 hr. 6. Ouabain (10-5 M) abolished the potential difference in less than 10 sec when added to the aqueous side, which suggests the existence of an electrogenic pump. This extremely fast time transient can be accounted for by the accessibility and simple geometry of the present monocellular layer. Ouabain abolished also the reversed potential difference observed at low pH. 7. The data are interpreted in terms of a scheme similar to that advanced for other epithelia and in which (a) H+ would be pumped into the intercellular spaces, while Na+ and CO2 would enter into the cells, and (b) Na+ would be subsequently pumped into the aqueous humour, producing as a result the fluid movement observed. The actual origin of the potential difference is further discussed in terms of two contrasting possibilities: (i) one or more electrogenic pumps, and (ii) a neutral pump which would create a diffusion potential across `leaky' intercellular junctions. PMID:4215880
Roca, Patricia; Mulas, Fernando; Gandia, Rubén; Ortiz-Sánchez, Pedro; Abad, Luis
2013-02-22
Evoked potentials P300 and the analysis of executive functions have shown their utility in the monitoring of patients with symptoms of attention deficit hyperactivity disorder (ADHD). Neuropsychological profiles and evoked potentials P300 have been analysed for two groups of children with an ADHD treatment with atomoxetine and methylphenidate respectively. Correlations between P300 and the selected neuropsychological parameters are studied, and the differences between basal values and 1 year follow-up are analysed. Two groups were performed: a group of 22 children ADHD in the atomoxetine condition, and a group of 24 children ADHD in the methylphenidate condition. The results show a global improvement of all the parameters, in terms of executive function and P300 values in both, the atomoxetine and the methylphenidate group. Executive functions and evoked potentials P300 reflect an underlying processing and they are very useful in the clinical practice. This exploratory study shows the importance of designing personalized objective variables-based treatments.
Clausell, Mathis; Fang, Zhihui; Chen, Wei
2014-07-01
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.
Morgado, Leonor; Bruix, Marta; Pessanha, Miguel; Londer, Yuri Y.; Salgueiro, Carlos A.
2010-01-01
Abstract A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e−/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e−/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens. PMID:20655858
Simulation studies for surfaces and materials strength
NASA Technical Reports Server (NTRS)
Halicioglu, Timur
1987-01-01
A realistic potential energy function comprising angle dependent terms was employed to describe the potential surface of the N+O2 system. The potential energy parameters were obtained from high level ab-initio results using a nonlinear fitting procedure. It was shown that the potential function is able to reproduce a large number of points on the potential surface with a small rms deviation. A literature survey was conducted to analyze exclusively the status of current small cluster research. This survey turned out to be quite useful in understanding and finding out the existing relationship between theoretical as well as experimental investigative techniques employed by different researchers. Additionally, the importance of the role played by computer simulation in small cluster research, was documented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan
2006-08-15
The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less
Mouchet, Maud A; Bouvier, Corinne; Bouvier, Thierry; Troussellier, Marc; Escalas, Arthur; Mouillot, David
2012-03-01
Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment. © European Union 2011.
Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente
2014-08-01
Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.
Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding how different environmental chemicals and drug-like molecules impact mitochondrial function rep...
Sibling Communication Functions across the Life-Span.
ERIC Educational Resources Information Center
Myers, Scott A.; Smith, Ronda L.; Sonnier, Michelle F.
An investigation examined whether perceived use of sibling functional communication skills differed across the life-span. Participants were recruited through university students enrolled in an introductory communication course at a southern university. All students received extra credit for recruiting two participants. Potential participants were…
Retrofitting solutions for two different occupancy levels of educational buildings in tropics
NASA Astrophysics Data System (ADS)
Yang, Junjing; Pantazaras, Alexandros; Lee, Siew Eang; Santamouris, Mattheos
2018-01-01
Within the multi-functionality of educational buildings, the energy conservation potential can be very different. In addition, among different retrofitting solutions investigated involving interventions on the building envelope, ventilation strategies, artificial lighting systems as well as equipment upgrading, different saving potential would come from different aspects. The opportunities for energy saving potential from the overall point of view and from the detailed aspect view of different retrofitting solutions would be very useful and important for building renovation decision making. This study presents a detailed retrofitting study of two different educational buildings. One represents a building with average occupancy variation and containing mainly offices and labs. The other one represents a building with high occupancy variation and containing mainly lecture rooms and studios. This comparison of the results gives an idea of the different energy saving potential for different types of educational buildings. Principal component analysis is also adopted to investigate the detailed performance of one of the buildings which is influenced stronger by these retrofitting solutions.
Adsorbate Diffusion on Transition Metal Nanoparticles
2015-01-01
different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the...structure theoretical methods, a quantitative study with accurate density functional theory (DFT) calculations is still missing. Here, we perform a...functional theory . The projector augmented wave (PAW) potentials29,30 were used for electron- ion interactions and the generalized gradient approximation
Gu, Yunfu; D. Van Nostrand, Joy; Wu, Liyou; He, Zhili; Qin, Yujia; Zhao, Fang-Jie; Zhou, Jizhong
2017-01-01
To understand how soil microbial communities and arsenic (As) functional genes respond to soil arsenic (As) contamination, five soils contaminated with As at different levels were collected from diverse geographic locations, incubated for 54 days under flooded conditions, and examined by both MiSeq sequencing of 16S rRNA gene amplicons and functional gene microarray (GeoChip 4.0). The results showed that both bacterial community structure and As functional gene structure differed among geographical locations. The diversity of As functional genes correlated positively with the diversity of 16S rRNA genes (P< 0.05). Higher diversities of As functional genes and 16S rRNA genes were observed in the soils with higher available As. Soil pH, phosphate-extractable As, and amorphous Fe content were the most important factors in shaping the bacterial community structure and As transformation functional genes. Geographic location was also important in controlling both the bacterial community and As transformation functional potential. These findings provide insights into the variation of As transformation functional genes in soils contaminated with different levels of As at different geographic locations, and the impact of environmental As contamination on the soil bacterial community. PMID:28475654
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Improved Analytical Potentials for the a ^3Σu+ and X ^1Σg+ States of {Cs_2}
NASA Astrophysics Data System (ADS)
Baldwin, Jesse; Le Roy, Robert J.
2012-06-01
Recent studies of the collisional properties of ultracold Cs atoms have led to a renewed interest in the singlet and triplet ground-state potential energy functions of Cs_2. Coxon and Hajigeorgiou recently determined an analytic potential function for the X ^1Σ_g^+ state that accurately reproduces a large body of spectroscopic data that spanned 99.45% of the potential well. However, their potential explicitly incorporates only the three leading inverse-power terms in the long-range potential, and does not distinguish between the three asymptotes associated with the different Cs atom spin states. Similarly, Xie et al. have reported two versions of an analytic potential energy function for the a ^3Σ_u^+ state that they determined from direct potential fits to emission data that spanned 93 % of its potential energy well. However, the tail of their potential function model was not constrained to have the inverse-power-sum form required by theory. Moreover, a physically correct description of cold atom collision phenomena requires the long-range inverse-power tails of these two potentials to be identical, and they are not. Thus, these functions cannot be expected to describe cold atom collision properties correctly. The present paper describes our efforts to determine improved analytic potential energy functions for these states that have identical long-range tails, and fully represent all of the spectroscopic data used in the earlier worka,b,c as well as photoassociation data that was not considered there and experimental values of the collisional scattering lengths for the two states. J. A. Coxon and P. Hajigeorgiou, J. Chem. Phys. 132, 09105 (2010). F. Xie et al. J. Chem. Phys. 130 051102 (2009). F. Xie et al. J. Chem. Phys. 135, 024303 (2011) J. G. Danzl et al., Science, 321, 1062 (2008). C. Chin, et al., Phys. Rev. Lett. 85, 2717 (2000) P. J. Leo, C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 85, 2721 (2000)
Hasegawa, Kohei; Stewart, Christopher J; Mansbach, Jonathan M; Linnemann, Rachel W; Ajami, Nadim J; Petrosino, Joseph F; Camargo, Carlos A
2017-07-26
Emerging evidence demonstrated that the structure of fecal microbiome is associated with the likelihood of bronchiolitis in infants. However, no study has examined functional profiles of fecal microbiome in infants with bronchiolitis. In this context, we conducted a case-control study. As a part of multicenter prospective study, we collected stool samples from 40 infants hospitalized with bronchiolitis (cases). We concurrently enrolled 115 age-matched healthy controls. First, by applying 16S rRNA gene sequencing to these 155 fecal samples, we identified the taxonomic profiles of fecal microbiome. Next, based on the taxonomy data, we inferred the functional capabilities of fecal microbiome and tested for differences in the functional capabilities between cases and controls. Overall, the median age was 3 months and 45% were female. Among 274 metabolic pathways surveyed, there were significant differences between bronchiolitis cases and healthy controls for 37 pathways, including lipid metabolic pathways (false discovery rate [FDR] <0.05). Particularly, the fecal microbiome of bronchiolitis cases had consistently higher abundances of gene function related to the sphingolipid metabolic pathways compared to that of controls (FDR <0.05). These pathways were more abundant in infants with Bacteroides-dominant microbiome profile compared to the others (FDR <0.001). On the basis of the predicted metagenome in this case-control study, we found significant differences in the functional potential of fecal microbiome between infants with bronchiolitis and healthy controls. Although causal inferences remain premature, our data suggest a potential link between the bacteria-derived metabolites, modulations of host immune response, and development of bronchiolitis.
Comparison Study of Three Different Image Reconstruction Algorithms for MAT-MI
Xia, Rongmin; Li, Xu
2010-01-01
We report a theoretical study on magnetoacoustic tomography with magnetic induction (MAT-MI). According to the description of signal generation mechanism using Green’s function, the acoustic dipole model was proposed to describe acoustic source excited by the Lorentz force. Using Green’s function, three kinds of reconstruction algorithms based on different models of acoustic source (potential energy, vectored acoustic pressure, and divergence of Lorenz force) are deduced and compared, and corresponding numerical simulations were conducted to compare these three kinds of reconstruction algorithms. The computer simulation results indicate that the potential energy method and vectored pressure method can directly reconstruct the Lorentz force distribution and give a more accurate reconstruction of electrical conductivity. PMID:19846363
On the best mean-square approximations to a planet's gravitational potential
NASA Astrophysics Data System (ADS)
Lobkova, N. I.
1985-02-01
The continuous problem of approximating the gravitational potential of a planet in the form of polynomials of solid spherical functions is considered. The best mean-square polynomials, referred to different parts of space, are compared with each other. The harmonic coefficients corresponding to the surface of a planet are shown to be unstable with respect to the degree of the polynomial and to differ from the Stokes constants.
Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue
2016-12-01
Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.
Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment
NASA Astrophysics Data System (ADS)
Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau
2017-10-01
Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.
Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment.
Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau
2017-10-01
Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.
Programming social, cognitive, and neuroendocrine development by early exposure to novelty.
Tang, Akaysha C; Akers, Katherine G; Reeb, Bethany C; Romeo, Russell D; McEwen, Bruce S
2006-10-17
Mildly stressful early life experiences can potentially impact a broad range of social, cognitive, and physiological functions in humans, nonhuman primates, and rodents. Recent rodent studies favor a maternal-mediation hypothesis that considers maternal-care differences induced by neonatal stimulation as the cause of individual differences in offspring development. Using neonatal novelty exposure, a neonatal stimulation paradigm that dissociates maternal individual differences from a direct stimulation effect on the offspring, we investigated the effect of early exposures to novelty on a diverse range of psychological functions using several assessment paradigms. Pups that received brief neonatal novelty exposures away from the home environment showed enhancement in spatial working memory, social competition, and corticosterone response to surprise during adulthood compared with their home-staying siblings. These functional enhancements in novelty-exposed rats occurred despite evidence that maternal care was directed preferentially toward home-staying instead of novelty-exposed pups, indicating that greater maternal care is neither necessary nor sufficient for these early stimulation-induced functional enhancements. We suggest a unifying maternal-modulation hypothesis, which distinguishes itself from the maternal-mediation hypothesis in that (i) neonatal stimulation can have direct effects on pups, cumulatively leading to long-term improvement in adult offspring; and (ii) maternal behavior can attenuate or potentiate these effects, thereby decreasing or increasing this long-term functional improvement.
Separating the FN400 and N400 potentials across recognition memory experiments
Stróżak, Paweł; Abedzadeh, Delora; Curran, Tim
2016-01-01
There is a growing debate as to whether frontally distributed FN400 potentials reflect familiarity-based recognition or are functionally identical to centro-parietal N400 reflecting semantic processing. We conducted two experiments in which event-related potentials (ERPs) associated with semantic priming and recognition were recorded, either when priming was embedded within a recognition test (Experiment 1), or when these two phases were separated (Experiment 2). In Experiment 1, we observed 300–500 ms differences between primed and unprimed old words as well as differences between old and new primed words, but these two effects did not differ topographically and both showed midline central maxima. In Experiment 2, the N400 for priming was recorded exclusively during encoding and again showed a midline central distribution. The ERP component of recognition was only found for unrelated words (not primed previously during encoding), and also showed a midline central maximum, but, in addition, was present in the left frontal area of the scalp. Conversely, the priming effect was absent in the left frontal cluster. This pattern of results indicate that FN400 and N400 potentials share similar neural generators; but when priming and recognition are not confounded, these potentials do not entirely overlap in terms of topographical distribution and presumably reflect functionally distinct processes. PMID:26776478
Effect of short-range correlations on the single proton 3s1/2 wave function in 206Pb
NASA Astrophysics Data System (ADS)
Shlomo, S.; Talmi, I.; Anders, M. R.; Bonasera, G.
2018-02-01
We consider the experimental data for difference, Δρc (r), between the charge density distributions of the isotones 206Pb - 205Tl, deduced by analysis of elastic electron scattering measurements and corresponds to the shell model 3s1/2 proton orbit. We investigate the effects of two-body short-range correlations. This is done by: (a) Determining the corresponding single particle potential (mean-field), employing a novel method, directly from the single particle proton density and its first and second derivatives. We also carried out least-square fits to parametrized single particle potentials; (b) Determining the short-range correlations effect by employing the Jastrow correlated many-body wave function to derive a correlation factor for the single particle density distribution. The 3s 1/2 wave functions of the determined potentials reproduce fairly well the experimental data within the quoted errors. The calculated charge density difference, Δρc (r), obtained with the inclusion of the short-range correlation effect does not reproduce the experimental data.
NASA Astrophysics Data System (ADS)
Li, Li; Chakrabarty, Souvik; Jiang, Jing; Zhang, Ben; Ober, Christopher; Giannelis, Emmanuel P.
2016-01-01
The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07334k
Clay, Olivio J; Thorpe, Roland J; Wilkinson, Larrell L; Plaisance, Eric P; Crowe, Michael; Sawyer, Patricia; Brown, Cynthia J
2015-08-07
Maintaining functional status and reducing/eliminating health disparities in late life are key priorities. Older African Americans have been found to have worse lower extremity functioning than Whites, but little is known about potential differences in correlates between African American and White men. The goal of this investigation was to examine measures that could explain this racial difference and to identify race-specific correlates of lower extremity function. Data were analyzed for a sample of community-dwelling men. Linear regression models examined demographics, medical conditions, health behaviors, and perceived discrimination and mental health as correlates of an objective measure of lower extremity function, the Short Physical Performance Battery (SPPB). Scores on the SPPB have a potential range of 0 to 12 with higher scores corresponding to better functioning. The mean age of all men was 74.9 years (SD=6.5), and the sample was 50% African American and 53% rural. African American men had scores on the SPPB that were significantly lower than White men after adjusting for age, rural residence, marital status, education, and income difficulty (P<.01). Racial differences in cognitive functioning accounted for approximately 41% of the race effect on physical function. Additional models stratified by race revealed a pattern of similar correlates of the SPPB among African American and White men. The results of this investigation can be helpful for researchers and clinicians to aid in identifying older men who are at-risk for poor lower extremity function and in planning targeted interventions to help reduce disparities.
El-Hout, S I; Suzuki, H; El-Sheikh, S M; Hassan, H M A; Harraz, F A; Ibrahim, I A; El-Sharkawy, E A; Tsujimura, S; Holzinger, M; Nishina, Y
2017-08-03
We propose herein initial results to develop optimum redox mediators by the combination of computational simulation and catalytic functionalization of the core structure of vitamin K 3 . We aim to correlate the calculated energy value of the LUMO of different vitamin K 3 derivatives with their actual redox potential. For this, we optimized the catalytic alkylation of 1,4-naphthoquinones with a designed Ag(i)/GO catalyst and synthesized a series of molecules.
Sharma, Shilpi; Woolfson, Lisa M; Hunter, Simon C
2014-04-01
Despite the well-documented success of cognitive restructuring techniques in the treatment of anxiety disorders, there is still little clarity on which cognitions underpin fear and anxiety in children with high-functioning autism spectrum disorder. This study examined whether certain cognitive appraisals, known to be associated with fear and anxiety in typically developing groups, may help explain these emotions in children with high-functioning autism spectrum disorder. It also investigated relations between these cognitive appraisals and theory of mind. Appraisals, fear and anxiety were assessed using a vignette approach in 22 children with high-functioning autism spectrum disorders and 22 typically developing children. The two groups differed significantly on all four appraisal types. Anxiety was negatively correlated with future expectancy and positively with problem-focused coping potential in the high-functioning autism spectrum disorder group but was not correlated with appraisals in the typically developing group. The two appraisals associated with fear were emotion-focused coping potential (in the high-functioning autism spectrum disorder group only) and self-accountability (in the typically developing group only). Linear regression analysis found that appraisals of emotion-focused coping potential, problem-focused coping potential and future expectancy were significant predictors of theory-of-mind ability in the high-functioning autism spectrum disorders group. These findings indicate that specific, problematic patterns of appraisal may characterise children with high-functioning autism spectrum disorders.
Panner Selvam, M K; Henkel, R; Sharma, R; Agarwal, A
2018-03-01
Oxidation-reduction potential describes the balance between the oxidants and antioxidants in fluids including semen. Various artificial culture media are used in andrology and IVF laboratories for sperm preparation and to support the development of fertilized oocytes under in vitro conditions. The composition and conditions of these media are vital for optimal functioning of the gametes. Currently, there are no data on the status of redox potential of sperm processing and assisted reproduction media. The purpose of this study was to compare the oxidation-reduction potential values of the different media and to calibrate the oxidation-reduction potential values of the sperm wash medium using oxidative stress inducer cumene hydroperoxide and antioxidant ascorbic acid. Redox potential was measured in 10 different media ranging from sperm wash media, freezing media and assisted reproductive technology one-step medium to sequential media. Oxidation-reduction potential values of the sequential culture medium and one-step culture medium were lower and significantly different (p < 0.05) from the sperm wash media. Calibration of the sperm wash media using the oxidant cumene hydroperoxide and antioxidant ascorbic acid demonstrated that oxidation-reduction potential and the concentration of oxidant or antioxidant are logarithmically dependent. This study highlights the importance of calibrating the oxidation-reduction potential levels of the sperm wash media in order to utilize it as a reference value to identify the physiological range of oxidation-reduction potential that does not have any adverse effect on normal physiological sperm function. © 2017 American Society of Andrology and European Academy of Andrology.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Size-dependent error of the density functional theory ionization potential in vacuum and solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Leifker, Feea R.; Patterson, Thomas L.; Bowie, Christopher R.; Mausbach, Brent T.; Harvey, Philip D.
2010-01-01
Performance-based measures of the ability to perform social and everyday living skills are being more widely used to assess functional capacity in people with serious mental illnesses such as schizophrenia and bipolar disorder. Since they are also being used as outcome measures in pharmacological and cognitive remediation studies aimed at cognitive impairments in schizophrenia, understanding their measurement properties and potential sensitivity to change is important. In this study, the test-retest reliability, practice effects, and reliable change indices of two different performance-based functional capacity measures, the UCSD Performance-based skills assessment (UPSA) and Social skills performance assessment (SSPA) were examined over several different retest intervals in two different samples of people with schizophrenia (n’s=238 and 116) and a healthy comparison sample (n=109). These psychometric properties were compared to those of a neuropsychological assessment battery. Test-retest reliabilities of the long form of the UPSA ranged from r=.63 to r=.80 over follow-up periods up to 36 months in people with schizophrenia, while brief UPSA reliabilities ranged from r=.66 to r=.81. Test-retest reliability of the NP performance scores ranged from r=.77 to r=.79. Test-retest reliabilities of the UPSA were lower in healthy controls, while NP performance was slightly more reliable. SSPA test-retest reliability was lower. Practice effect sizes ranged from .05 to .16 for the UPSA and .07 to .19 for the NP assessment in patients, with HC having more practice effects. Reliable change intervals were consistent across NP and both FC measures, indicating equal potential for detection of change. These performance-based measures of functional capacity appear to have similar potential to be sensitive to change compared to NP performance in people with schizophrenia. PMID:20399613
Stueckle, Todd A; Davidson, Donna C; Derk, Ray; Wang, Peng; Friend, Sherri; Schwegler-Berry, Diane; Zheng, Peng; Wu, Nianqiang; Castranova, Vince; Rojanasakul, Yon; Wang, Liying
2017-06-01
Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12 weeks at 0.06 μg/cm 2 to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NH x ). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NH x possessing less oxygen and greater lung surfactant binding affinity. Following 8 weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB- and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NH x -exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.
A density difference based analysis of orbital-dependent exchange-correlation functionals
NASA Astrophysics Data System (ADS)
Grabowski, Ireneusz; Teale, Andrew M.; Fabiano, Eduardo; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio
2014-03-01
We present a density difference based analysis for a range of orbital-dependent Kohn-Sham functionals. Results for atoms, some members of the neon isoelectronic series and small molecules are reported and compared with ab initio wave function calculations. Particular attention is paid to the quality of approximations to the exchange-only optimised effective potential (OEP) approach: we consider both the localised Hartree-Fock as well as the Krieger-Li-Iafrate methods. Analysis of density differences at the exchange-only level reveals the impact of the approximations on the resulting electronic densities. These differences are further quantified in terms of the ground state energies, frontier orbital energy differences and highest occupied orbital energies obtained. At the correlated level, an OEP approach based on a perturbative second-order correlation energy expression is shown to deliver results comparable with those from traditional wave function approaches, making it suitable for use as a benchmark against which to compare standard density functional approximations.
INNOVATIVE TOOLS AND METHODS FOR ASSESSING CHILDREN'S POTENTIAL CHEMICAL EXPOSURE
Children's exposures to environmental contaminants are different than adults, due in part to differences in physiologic functions. Research on children's exposure to environmental contaminants is currently being performed within EPA, academia, industry, and other research organi...
NASA Astrophysics Data System (ADS)
Xu, He N.; Li, Lin Z.
2016-02-01
It has been shown that a malignant tumor is akin to a complex organ comprising of various cell populations including tumor cells that are genetically, metabolically and functionally different. Our redox imaging data have demonstrated intra-tumor redox heterogeneity in all mouse xenografts derived from human melanomas, breast, prostate, and colon cancers. Based on the signals of NADH and oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and their ratio, i.e., the redox ratio, which is an indicator of mitochondrial metabolic status, we have discovered several distinct redox subpopulations in xenografts of breast tumors potentially recapitulating functional/metabolic heterogeneity within the tumor. Furthermore, xenografts of breast tumors with higher metastatic potential tend to have a redox subpopulation whose redox ratio is significantly different from that of tumors with lower metastatic potential and usually have a bi-modal distribution of the redox ratio. The redox subpopulations from human breast cancer samples can also be very complex with multiple subpopulations as determined by fitting the redox ratio histograms with multi- Gaussian functions. In this report, we present a new method for identifying the redox subpopulations within individual breast tumor xenografts and human breast tissues, which may be used to differentiate between breast cancer and normal tissue and among breast cancer with different risks of progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.
2000-05-08
The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less
White matter tracts of speech and language.
Smits, Marion; Jiskoot, Lize C; Papma, Janne M
2014-10-01
Diffusion tensor imaging (DTI) has been used to investigate the white matter (WM) tracts underlying the perisylvian cortical regions known to be associated with language function. The arcuate fasciculus is composed of 3 segments (1 long and 2 short) whose separate functions correlate with traditional models of conductive and transcortical motor or sensory aphasia, respectively. DTI mapping of language fibers is useful in presurgical planning for patients with dominant hemisphere tumors, particularly when combined with functional magnetic resonance imaging. DTI has found damage to language networks in stroke patients and has the potential to influence poststroke rehabilitation and treatment. Assessment of the WM tracts involved in the default mode network has been found to correlate with mild cognitive impairment, potentially explaining language deficits in patients with apparently mild small vessel ischemic disease. Different patterns of involvement of language-related WM structures appear to correlate with different clinical subtypes of primary progressive aphasias. Copyright © 2014 Elsevier Inc. All rights reserved.
Visualizing the orientational dependence of an intermolecular potential
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip
2016-02-01
Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.
Martin, Mario; Contreras-Hernández, Enrique; Béjar, Javier; Esposito, Gennaro; Chávez, Diógenes; Glusman, Silvio; Cortés, Ulises; Rudomin, Pablo
2015-01-01
Previous studies aimed to disclose the functional organization of the neuronal networks involved in the generation of the spontaneous cord dorsum potentials (CDPs) generated in the lumbosacral spinal segments used predetermined templates to select specific classes of spontaneous CDPs. Since this procedure was time consuming and required continuous supervision, it was limited to the analysis of two specific types of CDPs (negative CDPs and negative positive CDPs), thus excluding potentials that may reflect activation of other neuronal networks of presumed functional relevance. We now present a novel procedure based in machine learning that allows the efficient and unbiased selection of a variety of spontaneous CDPs with different shapes and amplitudes. The reliability and performance of the present method is evaluated by analyzing the effects on the probabilities of generation of different classes of spontaneous CDPs induced by the intradermic injection of small amounts of capsaicin in the anesthetized cat, a procedure known to induce a state of central sensitization leading to allodynia and hyperalgesia. The results obtained with the selection method presently described allowed detection of spontaneous CDPs with specific shapes and amplitudes that are assumed to represent the activation of functionally coupled sets of dorsal horn neurones that acquire different, structured configurations in response to nociceptive stimuli. These changes are considered as responses tending to adequate transmission of sensory information to specific functional requirements as part of homeostatic adjustments. PMID:26379540
NASA Astrophysics Data System (ADS)
Du, Qishi; Mezey, Paul G.
1998-09-01
In this research we test and compare three possible atom-basedscreening functions used in the heuristic molecular lipophilicity potential(HMLP). Screening function 1 is a power distance-dependent function, b_{{i}} /| {R_{{i}}- r} |^γ, screening function 2is an exponential distance-dependent function, biexp(-| {R_i- r} |/d_0 , and screening function 3 is aweighted distance-dependent function, {{sign}}( {b_i } ){{exp}}ξ ( {| {R_i- r} |/| {b_i } |} )For every screening function, the parameters (γ ,d0, and ξ are optimized using 41 common organic molecules of 4 types of compounds:aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, andaliphatic alkanes. The results of calculations show that screening function3 cannot give chemically reasonable results, however, both the powerscreening function and the exponential screening function give chemicallysatisfactory results. There are two notable differences between screeningfunctions 1 and 2. First, the exponential screening function has largervalues in the short distance than the power screening function, thereforemore influence from the nearest neighbors is involved using screeningfunction 2 than screening function 1. Second, the power screening functionhas larger values in the long distance than the exponential screeningfunction, therefore screening function 1 is effected by atoms at longdistance more than screening function 2. For screening function 1, thesuitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this researchprovides a potential tool for computer-aided three-dimensional drugdesign.
Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers
USDA-ARS?s Scientific Manuscript database
The rumen has a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen fluid metabolomic analysis by LC-MS and multivariate/univariate statistical analysis were used to identify differences in r...
TH-A-9A-04: Incorporating Liver Functionality in Radiation Therapy Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, V; Epelman, M; Feng, M
2014-06-15
Purpose: Liver SBRT patients have both variable pretreatment liver function (e.g., due to degree of cirrhosis and/or prior treatments) and sensitivity to radiation, leading to high variability in potential liver toxicity with similar doses. This work aims to explicitly incorporate liver perfusion into treatment planning to redistribute dose to preserve well-functioning areas without compromising target coverage. Methods: Voxel-based liver perfusion, a measure of functionality, was computed from dynamic contrast-enhanced MRI. Two optimization models with different cost functions subject to the same dose constraints (e.g., minimum target EUD and maximum critical structure EUDs) were compared. The cost functions minimized were EUDmore » (standard model) and functionality-weighted EUD (functional model) to the liver. The resulting treatment plans delivering the same target EUD were compared with respect to their DVHs, their dose wash difference, the average dose delivered to voxels of a particular perfusion level, and change in number of high-/low-functioning voxels receiving a particular dose. Two-dimensional synthetic and three-dimensional clinical examples were studied. Results: The DVHs of all structures of plans from each model were comparable. In contrast, in plans obtained with the functional model, the average dose delivered to high-/low-functioning voxels was lower/higher than in plans obtained with its standard counterpart. The number of high-/low-functioning voxels receiving high/low dose was lower in the plans that considered perfusion in the cost function than in the plans that did not. Redistribution of dose can be observed in the dose wash differences. Conclusion: Liver perfusion can be used during treatment planning potentially to minimize the risk of toxicity during liver SBRT, resulting in better global liver function. The functional model redistributes dose in the standard model from higher to lower functioning voxels, while achieving the same target EUD and satisfying dose limits to critical structures. This project is funded by MCubed and grant R01-CA132834.« less
Multifunctional Logic Gate Controlled by Supply Voltage
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo
2005-01-01
A complementary metal oxide/semiconductor (CMOS) electronic circuit functions as a NAND gate at a power-supply potential (V(sub dd)) of 3.3 V and as NOR gate for V(sub dd) = 1.8 V. In the intermediate V(sub dd) range of 1.8 to 3.3 V, this circuit performs a function intermediate between NAND and NOR with degraded noise margin. Like the circuit of the immediately preceding article, this circuit serves as a demonstration of the evolutionary approach to design of polymorphic electronics -- a technological discipline that emphasizes evolution of the design of a circuit to perform different analog and/or digital functions under different conditions. In this instance, the different conditions are different values of V(sub dd).
A vortex wake capturing method for potential flow calculations
NASA Technical Reports Server (NTRS)
Murman, E. M.; Stremel, P. M.
1982-01-01
A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.
Lohbeck, Madelon; Bongers, Frans; Martinez-Ramos, Miguel; Poorter, Lourens
2016-10-01
Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species' contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw
2016-11-01
Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. Copyright © 2016 Elsevier Inc. All rights reserved.
wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
NASA Astrophysics Data System (ADS)
Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.; Marquetand, P.
2018-06-01
We introduce weighted atom-centered symmetry functions (wACSFs) as descriptors of a chemical system's geometry for use in the prediction of chemical properties such as enthalpies or potential energies via machine learning. The wACSFs are based on conventional atom-centered symmetry functions (ACSFs) but overcome the undesirable scaling of the latter with an increasing number of different elements in a chemical system. The performance of these two descriptors is compared using them as inputs in high-dimensional neural network potentials (HDNNPs), employing the molecular structures and associated enthalpies of the 133 855 molecules containing up to five different elements reported in the QM9 database as reference data. A substantially smaller number of wACSFs than ACSFs is needed to obtain a comparable spatial resolution of the molecular structures. At the same time, this smaller set of wACSFs leads to a significantly better generalization performance in the machine learning potential than the large set of conventional ACSFs. Furthermore, we show that the intrinsic parameters of the descriptors can in principle be optimized with a genetic algorithm in a highly automated manner. For the wACSFs employed here, we find however that using a simple empirical parametrization scheme is sufficient in order to obtain HDNNPs with high accuracy.
Matterson, Kenan O.; Freeman, Christopher J.; Archer, Stephanie K.; Thacker, Robert W.
2015-01-01
Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson’s diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study highlights the importance of evaluating functional traits and phylogenetic diversity in addition to common diversity metrics when assessing potential environmental impacts on benthic communities. PMID:26587347
Mediating pathways and gender differences between shift work and subjective cognitive function.
Wong, Imelda S; Smith, Peter M; Ibrahim, Selahadin; Mustard, Cameron A; Gignac, Monique A M
2016-11-01
Increased injury risk among shift workers is often attributed to cognitive function deficits that come about as a result of sleep disruptions. However, little is known about the intermediate influences of other factors (eg, work stress, health) which may affect this relationship. In addition, gender differences in these the complex relationships have not been fully explored. The purpose of this study is to (1) identify the extent to which work and non-work factors mediate the relationship between shift work, sleep and subsequent subjective cognitive function; and (2) determine if the mediating pathways differ for men and women. Data from the 2010 National Population Health Survey was used to create a cross-sectional sample of 4255 employed Canadians. Using path modelling, we examined the direct and indirect relationships between shift work, sleep duration, sleep quality and subjective cognitive function. Multigroup analyses tested for significantly different pathways between men and women. Potential confounding effects of age and self-reported health and potential mediating effects of work stress were simultaneously examined. Work stress and sleep quality significantly mediated the effects of shift work on cognition. Age and health confounded the relationship between sleep quality and subjective cognition. No differences were found between men and women. Occupational health and safety programmes are needed to address stress and health factors, in addition to sleep hygiene, to effectively address cognitive function among shift workers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
ERIC Educational Resources Information Center
Weber-Fox, Christine; Hart, Laura J.; Spruill, John E., III
2006-01-01
This study examined how school-aged children process different grammatical categories. Event-related brain potentials elicited by words in visually presented sentences were analyzed according to seven grammatical categories with naturally varying characteristics of linguistic functions, semantic features, and quantitative attributes of length and…
Wilkins, Laura E; Phillips, Daniel J; Deller, Robert C; Davies, Gemma-Louise; Gibson, Matthew I
2015-03-20
Carbohydrate-protein interactions can assist with the targeting of polymer- and nano-delivery systems. However, some potential protein targets are not specific to a single cell type, resulting in reductions in their efficacy due to undesirable non-specific cellular interactions. The glucose transporter 1 (GLUT-1) is expressed to different extents on most cells in the vasculature, including human red blood cells and on cancerous tissue. Glycosylated nanomaterials bearing glucose (or related) carbohydrates, therefore, could potentially undergo unwanted interactions with these transporters, which may compromise the nanomaterial function or lead to cell agglutination, for example. Here, RAFT polymerisation is employed to obtain well-defined glucose-functional glycopolymers as well as glycosylated gold nanoparticles. Agglutination and binding assays did not reveal any significant binding to ovine red blood cells, nor any haemolysis. These data suggest that gluco-functional nanomaterials are compatible with blood, and their lack of undesirable interactions highlights their potential for delivery and imaging applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tappura, K
2001-08-15
An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.
Bettinardi, Ruggero G.; Tort-Colet, Núria; Ruiz-Mejias, Marcel; Sanchez-Vives, Maria V.; Deco, Gustavo
2015-01-01
Intrinsic brain activity is characterized by the presence of highly structured networks of correlated fluctuations between different regions of the brain. Such networks encompass different functions, whose properties are known to be modulated by the ongoing global brain state and are altered in several neurobiological disorders. In the present study, we induced a deep state of anesthesia in rats by means of a ketamine/medetomidine peritoneal injection, and analyzed the time course of the correlation between the brain activity in different areas while anesthesia spontaneously decreased over time. We compared results separately obtained from fMRI and local field potentials (LFPs) under the same anesthesia protocol, finding that while most profound phases of anesthesia can be described by overall sparse connectivity, stereotypical activity and poor functional integration, during lighter states different frequency-specific functional networks emerge, endowing the gradual restoration of structured large-scale activity seen during rest. Noteworthy, our in vivo results show that those areas belonging to the same functional network (the default-mode) exhibited sustained correlated oscillations around 10 Hz throughout the protocol, suggesting the presence of a specific functional backbone that is preserved even during deeper phases of anesthesia. Finally, the overall pattern of results obtained from both imaging and in vivo-recordings suggests that the progressive emergence from deep anesthesia is reflected by a corresponding gradual increase of organized correlated oscillations across the cortex. PMID:25804643
Enzweiler, Kevin A; Bosso, John A; White, Roger L
2003-07-01
Formulary decisions regarding a given drug class are often made in the absence of patient outcome and/or sophisticated pharmacoeconomic data. Analyses that consider factors beyond simple acquisition costs may be useful in such situations. For example, the cost implications of using manufacturers' recommendations for dosing in patients with renal dysfunction may be important, depending on the distribution of various levels of renal function within a patient population. Using four 1000-patient populations representing different renal function distributions and a fifth population of our medical center's distribution, we determined the costs of therapy for intravenous and oral levofloxacin, gatifloxacin, and moxifloxacin for a 10-day course of therapy for community-acquired pneumonia. Costs considered were average wholesale prices (AWPs), 50% of AWP, or same daily price, plus intravenous dose preparation and administration costs when applicable. Costs for each renal function distribution were examined for significant differences with an analysis-of-variance test. Also, costs of failing to adjust dosing regimens for decreased renal function were determined. Differences in fluoroquinolone costs (AWP, 50% AWP, or when matched as the same daily price) among the populations were found. When considering same daily prices, differences among populations ranged from about 35,000 dollars with intravenous gatifloxacin to more than 51,000 dollars for intravenous levofloxacin (all fluoroquinolones, p>0.05). Within a population, differences in costs among the intravenous fluoroquinolones ranged from 47,000-99,000 dollars. Rank orders of the drugs and population costs of therapy were affected by the pricing structure used and varied by the specific population and drug. Differences among the fluoroquinolones or populations were much smaller (<2100 dollars) when considering oral regimens. Costs potentially incurred by failing to adjust dosing for renal function were substantial. Formulary decisions can be facilitated by considering factors such as patient characteristics and related dosing in addition to simple acquisition costs. In our example, consideration of the distribution of renal function within a given patient population and related dosing for these fluoroquinolones revealed potentially important differences within the class.
Poncelet, L; Coppens, A; Deltenre, P
2000-01-01
This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.
Function-selective domain architecture plasticity potentials in eukaryotic genome evolution
Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai
2015-01-01
To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317
Cohort differences in the marriage-health relationship for midlife women
Newton, Nicky J.; Ryan, Lindsay H.; King, Rachel T; Smith, Jacqui
2015-01-01
The present study aimed to identify potential cohort differences in midlife women’s self-reported functional limitations and chronic diseases. Additionally, we examined the relationship between marital status and health, comparing the health of divorced, widowed, and never married women with married women, and how this relationship differs by cohort. Using data from the Health and Retirement Study (HRS), we examined potential differences in the level of functional limitations and six chronic diseases in two age-matched cohorts of midlife women in the United States: Pre-Baby Boomers, born 1933–1942, N = 4574; and Early Baby Boomers, born 1947–1956, N = 2098. Linear and logistic regressions tested the marital status/health relationship, as well as cohort differences in this relationship, controlling for age, education, race, number of marriages, length of time in marital status, physical activity, and smoking status. We found that Early Baby Boom women had fewer functional limitations but higher risk of chronic disease diagnosis compared to Pre-Baby Boom women. In both cohorts, marriage was associated with lower disease risk and fewer functional limitations; however, never-married Early Baby Boom women had more functional limitations, as well as greater likelihood of lung disease than their Pre-Baby Boom counterparts (OR = 0.28). Results are discussed in terms of the stress model of marriage, and the association between historical context and cohort health (e.g., the influence of economic hardship vs. economic prosperity). Additionally, we discuss cohort differences in selection into marital status, particularly as they pertain to never-married women, and the relative impact of marital dissolution on physical health for the two cohorts of women. PMID:24983699
The secret life of ion channels: Kv1.3 potassium channels and proliferation.
Pérez-García, M Teresa; Cidad, Pilar; López-López, José R
2018-01-01
Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.
NASA Astrophysics Data System (ADS)
Matthews, James; Bastatas, Lyndon
2012-03-01
There is a direct relation between the survival of a patient diagnosed with prostate or breast cancer and the metastatic potential of the patient's cancer. It is therefore extremely important to prognose metastatic potentials. In this study we investigated whether the behaviors of cancer cells responding to our state of the art nano-patterns differ by the metastatic potential of the cancer cells. We have used lowly (LNCaP) and highly (CL-1) metastatic human prostate cancer cells and lowly (MCF-7) and highly (MB231) metastatic breast cancer cells. A surface functionalization study was then performed first on uniform gold and glass surfaces, then on gold nano-patterned surfaces made by nano-sphere lithography using nano-spheres in diameter of 200nm to 800nm. The gold surfaces were functionalized with fibronectin (FN) and confirmed through XPS analysis. The CL-1, MCF-7, and MB231 cells show similar proliferation on all surfaces regardless of the presence of FN, whereas LNCaP show a clear preference for FN coated surfaces. The proliferation of the LNCaP was reduced when grown on finer nano-scaffolds, but the more aggressive CL-1, MB231, and MCF-7 cells show an abnormal proliferation regardless of pattern size. The difference in adhesion is intrinsic and was verified through dual fluorescent imaging. Clear co-localization of actin-vinculin were found on CL-1, MCF-7, and MB231. However LNCaP cells showed the co-localization only on the tips of the cells. These results provide vital clues to the bio-mechanical differences between the cancer cells with different metastatic potential.
On hemispheric differences in evoked potentials to speech stimuli
NASA Technical Reports Server (NTRS)
Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.
1975-01-01
Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.
Liver metabolomics analysis associated with feed efficiency on steers
USDA-ARS?s Scientific Manuscript database
The liver represents a metabolic crossroad regulating and modulating nutrients available from digestive tract absorption to the peripheral tissues. To identify potential differences in liver function that lead to differences in feed efficiency, liver metabolomic analysis was conducted using ultra-pe...
Effects of Parental Substance Abuse on Youth in Their Homes
ERIC Educational Resources Information Center
Schroeder, Valarie; Kelley, Michelle L.; Fals-Stewart, William
2006-01-01
This article discusses the potential differential effects of parental alcohol versus drug abuse on the family environment, dyadic adjustment, and parent functioning. How these differences may be associated with development and adjustment differences of youth in these homes is then examined.
Short time propagation of a singular wave function: Some surprising results
NASA Astrophysics Data System (ADS)
Marchewka, A.; Granot, E.; Schuss, Z.
2007-08-01
The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.
Linear and quadratic static response functions and structure functions in Yukawa liquids.
Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I
2014-08-01
We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.
[Effects of infrasound on visual electrophysiology in mice].
Shi, Li; Zhang, Zuo-ming; Chen, Jing-zao; Liu, Jing
2003-04-01
To investigate the possible effects of infrasound on visual functions. One hundred and fifty mature male Kunming-mice were divided into 5 groups, in which one was control and the other four were exposed to infrasound of 8 Hz, 90 dB; 8 Hz, 130 dB; 16 Hz, 90 dB and 16 Hz, 130 dB 2 h/d respectively. The exposure time for them were 0, 1, 4, 7, 14 and 21 d respectively, each group was divided into 6 sub-groups. Electroretinogram (ERG), oscillatory potentials (OPs), and visual evoked potential (VEP) were recorded after exposure. The visual electrophysiological indices after 8 Hz, 90 dB and 16 Hz, 90 dB exposures were similar except for a little difference at some temporal points (P<0.05). Most of the indices in 8 Hz, 130 dB group changed after 7 d exposure, and the longer the exposure, the more obvious changes were observed (P<0.01). The indices in 16 Hz, 130 dB group changed obviously after 1 d and reversed with increase of exposure time (P<0.01). The effect of infrasound on visual functions are related to its frequency and intensity. Infrasound of different frequencies causes different levels of retinal resonance, which leads to different degrees of cellular lesion and produces different electrical potentials.
Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture.
Li, Rui; Zhang, Xingjian; Lv, Xuefei; Geng, Lina; Li, Yongrui; Qin, Kuiwei; Deng, Yulin
2017-12-15
Pneumatic micro-valve controlled microfluidic chip provides precise fluidic control for cell manipulation. In this paper, a multi-functional microfluidic chip was designed for three separate experiments: 1. Different cell lines were dispensed and cultured; 2. Three transfected SH-SY5Y cells were introduced and treated with methyl-phenyl-pyridinium (MPP + ) as drug delivery mode; 3. Specific protection and interaction were observed among cell co-culture after nerve damage. The outcomes revealed the potential and practicability of our entire multi-functional pneumatic chip system on different cell biology applications. Copyright © 2017. Published by Elsevier Inc.
Effects of polysaccharides from different species of Dendrobium (Shihu) on macrophage function.
Meng, Lan-Zhen; Lv, Guang-Ping; Hu, De-Jun; Cheong, Kit-Leong; Xie, Jing; Zhao, Jing; Li, Shao-Ping
2013-05-17
Dendrobium spp. are precious medicinal plants, used in China for thousands of years as health foods and nutrients. Polysaccharides are the main effective ingredients in Dendrobium plants. In this study, the chemical characteristics and the effects of crude polysaccharides (CPs) from five species of Dendrobium on macrophage function were investigated and compared in vitro for the first time. Chemical characteristic studies showed that CPs from different species of Dendrobium were diverse, displaying widely varied Mw distributions and molar ratios of monosaccharides. Their effects on macrophage functions, such as promoting phagocytosis, release of NO and cytokines IL-1α, IL-6, IL-10 and TNF-α, were also different. Moreover, CPs from D. officinale, especially collected from Yunnan Province, exerted the strongest immunomodulatory activities and could be explored as a novel potential functional food. The diverse chemical characteristics of CPs from different species of Dendrobium might contribute to their varied effects on macrophage functions, which should be further investigated.
Thapa, Dharendra; Shepherd, Danielle L.
2014-01-01
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166
Marques, J M C; Pais, A A C C; Abreu, P E
2012-02-05
The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.
Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L.; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H. Charles J.
2011-01-01
Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results. PMID:22006970
Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H Charles J
2011-11-27
Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.
Next generation interatomic potentials for condensed systems
NASA Astrophysics Data System (ADS)
Handley, Christopher Michael; Behler, Jörg
2014-07-01
The computer simulation of condensed systems is a challenging task. While electronic structure methods like density-functional theory (DFT) usually provide a good compromise between accuracy and efficiency, they are computationally very demanding and thus applicable only to systems containing up to a few hundred atoms. Unfortunately, many interesting problems require simulations to be performed on much larger systems involving thousands of atoms or more. Consequently, more efficient methods are urgently needed, and a lot of effort has been spent on the development of a large variety of potentials enabling simulations with significantly extended time and length scales. Most commonly, these potentials are based on physically motivated functional forms and thus perform very well for the applications they have been designed for. On the other hand, they are often highly system-specific and thus cannot easily be transferred from one system to another. Moreover, their numerical accuracy is restricted by the intrinsic limitations of the imposed functional forms. In recent years, several novel types of potentials have emerged, which are not based on physical considerations. Instead, they aim to reproduce a set of reference electronic structure data as accurately as possible by using very general and flexible functional forms. In this review we will survey a number of these methods. While they differ in the choice of the employed mathematical functions, they all have in common that they provide high-quality potential-energy surfaces, while the efficiency is comparable to conventional empirical potentials. It has been demonstrated that in many cases these potentials now offer a very interesting new approach to study complex systems with hitherto unreached accuracy.
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1990-01-01
Transient eddy current calculations are presented for an EM wave-scattering and field-penetrating case in which a two-dimensional transverse magnetic field is incident on a good (i.e., not perfect) and infinitely long conductor. The problem thus posed is of initial boundary-value interface type, where the boundary of the conductor constitutes the interface. A potential function is used for time-domain modeling of the situation, and finite difference-time domain techniques are used to march the potential function explicitly in time. Attention is given to the case of LF radiation conditions.
The dimension split element-free Galerkin method for three-dimensional potential problems
NASA Astrophysics Data System (ADS)
Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.
2018-06-01
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.
Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M
2016-04-01
Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Kirton, Christopher M; Laukkanen, Marja-Leena; Nieminen, Antti; Merinen, Marika; Stolen, Craig M; Armour, Kathryn; Smith, David J; Salmi, Marko; Jalkanen, Sirpa; Clark, Michael R
2005-11-01
Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.
Analytical Method to Evaluate Failure Potential During High-Risk Component Development
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Stone, Robert B.; Clancy, Daniel (Technical Monitor)
2001-01-01
Communicating failure mode information during design and manufacturing is a crucial task for failure prevention. Most processes use Failure Modes and Effects types of analyses, as well as prior knowledge and experience, to determine the potential modes of failures a product might encounter during its lifetime. When new products are being considered and designed, this knowledge and information is expanded upon to help designers extrapolate based on their similarity with existing products and the potential design tradeoffs. This paper makes use of similarities and tradeoffs that exist between different failure modes based on the functionality of each component/product. In this light, a function-failure method is developed to help the design of new products with solutions for functions that eliminate or reduce the potential of a failure mode. The method is applied to a simplified rotating machinery example in this paper, and is proposed as a means to account for helicopter failure modes during design and production, addressing stringent safety and performance requirements for NASA applications.
High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk
Hafiane, Anouar; Genest, Jacques
2015-01-01
Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice. PMID:26674734
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures
NASA Astrophysics Data System (ADS)
Motevaselian, M. H.; Aluru, N. R.
2017-04-01
We present an empirical potential-based quasi-continuum theory (EQT) to predict the structure and thermodynamic properties of confined fluid mixtures. The central idea in the EQT is to construct potential energies that integrate important atomistic details into a continuum-based model such as the Nernst-Planck equation. The EQT potentials can be also used to construct the excess free energy functional, which is required for the grand potential in the classical density functional theory (cDFT). In this work, we use the EQT-based grand potential to predict various thermodynamic properties of a confined binary mixture of hydrogen and methane molecules inside graphene slit channels of different widths. We show that the EQT-cDFT predictions for the structure, surface tension, solvation force, and local pressure tensor profiles are in good agreement with the molecular dynamics simulations. Moreover, we study the effect of different bulk compositions and channel widths on the thermodynamic properties. Our results reveal that the composition of methane in the mixture can significantly affect the ordering of molecules and thermodynamic properties under confinement. In addition, we find that graphene is selective to methane molecules.
Theoretical study of the electric dipole moment function of the ClO molecule
NASA Technical Reports Server (NTRS)
Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.
1986-01-01
The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.
Perturbation corrections to Koopmans' theorem. V - A study with large basis sets
NASA Technical Reports Server (NTRS)
Chong, D. P.; Langhoff, S. R.
1982-01-01
The vertical ionization potentials of N2, F2 and H2O were calculated by perturbation corrections to Koopmans' theorem using six different basis sets. The largest set used includes several sets of polarization functions. Comparison is made with measured values and with results of computations using Green's functions.
IQ, Fetal Testosterone and Individual Variability in Children's Functional Lateralization
ERIC Educational Resources Information Center
Mercure, Evelyne; Ashwin, Emma; Dick, Frederic; Halit, Hanife; Auyeung, Bonnie; Baron-Cohen, Simon; Johnson, Mark H.
2009-01-01
Previous event-related potential (ERP) studies have revealed that faces and words show a robust difference in the lateralization of their N170. The present study investigated the development of this differential lateralization in school-age boys. We assessed the potential role of fetal testosterone (FT) level as a factor biasing the prenatal…
The Puppet's Communicative Potential as a Mediating Tool in Preschool Education
ERIC Educational Resources Information Center
Ahlcrona, Mirella Forsberg
2012-01-01
This article describes a puppet as a mediating tool in early childhood education and the puppet's communicative properties, potential and use in preschool. In the empirical section, the puppet consists and functions as a starting point for children's interaction, narratives and different ways of communication. The research interest is directed…
USDA-ARS?s Scientific Manuscript database
New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...
Magneto-exciton transitions in laterally coupled quantum dots
NASA Astrophysics Data System (ADS)
Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.
2008-03-01
We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).
Neural Systems Underlying Individual Differences in Intertemporal Decision-making.
Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A
2017-03-01
Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.
Barbat-Artigas, Seébastien; Dupontgand, Sophie; Fex, Annie; Karelis, Antony D; Aubertin-Leheudre, Mylène
2011-04-01
Muscle strength seems to be a better indicator of physical limitations than skeletal muscle mass is. The purpose of this study was to investigate, using a new developed clinical tool, the relationship between type I dynapenia and cardiorespiratory functions in postmenopausal women. Forty-six postmenopausal women were recruited and divided into two groups (dynapenic vs nondynapenic). Body composition (bioelectrical impedancemetry), muscle strength (dynamometer), cardiorespiratory functions (maximum oxygen consumption and forced expiratory volume in 1 second), resting energy expenditure (indirect calorimetry), and dietary intake (3-d dietary journal) were measured. Type I dynapenia was defined as less than 1.53 kg per skeletal muscle mass (kg) based on handgrip dynamometer. Significant differences were found between dynapenic (n=23) and nondynapenic (n=23) postmenopausal women for cardiorespiratory functions (maximum oxygen consumption, P=0.003; and forced expiratory volume in 1 second, P=0.046). We observed no differences between groups for age, age at menopause, use of hormone therapy, body mass index, waist circumference, fat mass, resting energy expenditure, and total energy intake, which are known to be potential confounders. No differences were observed for cardiorespiratory functions when our population was divided into sarcopenic and nonsarcopenic groups. Type I dynapenic women have significantly poorer cardiorespiratory functions that do nondynapenic women even if they presented the same skeletal muscle mass index. Thus, based on our results, dynapenia could potentially be used as a marker of cardiorespiratory functions. The clinical method developed to identify dynapenic women could be used by health professionals. © 2011 by The North American Menopause Society
Potential adverse effects of omega-3 Fatty acids in dogs and cats.
Lenox, C E; Bauer, J E
2013-01-01
Fish oil omega-3 fatty acids, mainly eicosapentaenoic acid and docosahexaenoic acid, are used in the management of several diseases in companion animal medicine, many of which are inflammatory in nature. This review describes metabolic differences among omega-3 fatty acids and outlines potential adverse effects that may occur with their supplementation in dogs and cats with a special focus on omega-3 fatty acids from fish oil. Important potential adverse effects of omega-3 fatty acid supplementation include altered platelet function, gastrointestinal adverse effects, detrimental effects on wound healing, lipid peroxidation, potential for nutrient excess and toxin exposure, weight gain, altered immune function, effects on glycemic control and insulin sensitivity, and nutrient-drug interactions. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
Neural network approach for the calculation of potential coefficients in quantum mechanics
NASA Astrophysics Data System (ADS)
Ossandón, Sebastián; Reyes, Camilo; Cumsille, Patricio; Reyes, Carlos M.
2017-05-01
A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the direct problem for different parametrizations of the chosen potential function. Then, using the attainable eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was obtained. This relationship was later inverted and refined by training an inverse radial basis neural network, allowing the calculation of the unknown parameters and therefore estimating the potential function. Three numerical examples are presented in order to prove the effectiveness of the method. The results show that the method proposed has the advantage to use less computational resources without a significant accuracy loss.
Molfese, Dennis L.; Ivanenko, Anna; Key, Alexandra Fonaryova; Roman, Adrienne; Molfese, Victoria J.; O'Brien, Louise M.; Gozal, David; Kota, Srinivas; Hudac, Caitlin M.
2014-01-01
The effect of mild sleep restriction on cognitive functioning in young children is unclear, yet sleep loss may impact children's abilities to attend to tasks with high processing demands. In a preliminary investigation, six children (6.6 - 8.3 years of age) with normal sleep patterns performed three tasks: attention (“Oddball”), speech perception (conconant-vowel syllables) and executive function (Directional Stroop). Event-related potentials (ERP) responses were recorded before (Control) and following one-week of 1-hour per day of sleep restriction. Brain activity across all tasks following Sleep Restriction differed from activity during Control Sleep, indicating that minor sleep restriction impacts children's neurocognitive functioning. PMID:23862635
Anomalous current from the covariant Wigner function
NASA Astrophysics Data System (ADS)
Prokhorov, George; Teryaev, Oleg
2018-04-01
We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.
A Review of Anesthetic Effects on Renal Function: Potential Organ Protection.
Motayagheni, Negar; Phan, Sheshanna; Eshraghi, Crystal; Nozari, Ala; Atala, Anthony
2017-01-01
Renal protection is a critical concept for anesthesiologists, nephrologists, and urologists, since anesthesia and renal function are highly interconnected and can potentially interfere with one another. Therefore, a comprehensive understanding of anesthetic drugs and their effects on renal function remains fundamental to the success of renal surgeries, especially transplant procedures. Some experimental studies have shown that some anesthetics provide protection against renal ischemia/reperfusion (IR) injury, but there is limited clinical evidence. The effects of anesthetic drugs on renal failure are particularly important in the context of kidney transplantation, since the conditions of preservation following removal profoundly influence the recovery of organ function. Currently, preservation procedures are typically based on the usage of a cold-storage solution. Some anesthetic drugs induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. A more thorough understanding of anesthetic effects on renal function can present a novel approach for developing organ-protective strategies. The aim of this review is to discuss the effects of different anesthetic drugs on renal function, with particular focus on IR injury. Many studies have demonstrated the organ-protective effects of some anesthetic drugs, specifically propofol, which indicate the potential of some anesthetics to introduce novel organ protective targets. This is not surprising, since lipid emulsions are major components of propofol, which accumulating data show provide organ protective effects against IR injury. Key Messages: Thorough understanding of the interaction between anesthetic drugs and renal function remains fundamental to the delivery of safe perioperative care and to optimizing outcomes after renal surgeries, particularly transplant procedures. Anesthetics can be repurposed for organ protection with more information about their effects, especially during transplant procedures. Here, we review the effects of different anesthetic drugs - specifically those that contain lipids in their structure, with special reference to IR injury. © 2017 S. Karger AG, Basel.
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-05-31
In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.
Density functional study of double ionization energies
NASA Astrophysics Data System (ADS)
Chong, D. P.
2008-02-01
In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential Vxc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals Exc. For the 24 atoms, the two best Exc functional providing DIEs with average absolute deviation (AAD) of only 0.25eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29molecules. The best Exc functional for the 29molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29molecules is just under 0.5eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.32eV. Many other hybrid functionals perform almost as well.
Teresi, Jeanne A; Ocepek-Welikson, Katja; Ramirez, Mildred; Kleinman, Marjorie; Ornstein, Katherine; Siu, Albert
2016-01-01
Background The Family Satisfaction with End-of-Life Care is an internationally used measure of satisfaction with cancer care. However, the Family Satisfaction with End-of-Life Care has not been studied for equivalence of item endorsement across different socio-demographic groups using differential item functioning. Aims The aims of this secondary data analysis were (1) to examine potential differential item functioning in the family satisfaction item set with respect to type of caregiver, race, and patient age, gender, and education and (2) to provide parameters and documentation of differential item functioning for an item bank. Design A mixed qualitative and quantitative analysis was conducted. A priori hypotheses regarding potential group differences in item response were established. Item response theory and Wald tests were used for the analyses of differential item functioning, accompanied by magnitude and impact measures. Results Very little significant differential item functioning was observed for patient's age and gender. For race, 13 items showed differential item functioning after multiple comparison adjustment, 10 with non-uniform differential item functioning. No items evidenced differential item functioning of high magnitude, and the impact was negligible. For education, 5 items evidenced uniform differential item functioning after adjustment, none of high magnitude. Differential item functioning impact was trivial. One item evidenced differential item functioning for the caregiver relationship variable. Conclusion Differential item functioning was observed primarily for race and education. No differential item functioning of high magnitude was observed for any item, and the overall impact of differential item functioning was negligible. One item, satisfaction with “the patient's pain relief,” might be singled out for further study, given that this item was both hypothesized and observed to show differential item functioning for race and education. PMID:25160692
A network model of behavioural performance in a rule learning task.
Hasselmo, Michael E; Stern, Chantal E
2018-04-19
Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
O'Toole, Eileen T; Giddings, Thomas H; Porter, Mary E; Ostrowski, Lawrence E
2012-08-01
In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD. Copyright © 2012 Wiley Periodicals, Inc.
2017-05-05
dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in previous studies...are characterized by many different geometries, which potentially can be optimized with respect to specific materials design criteria, i.e., molecular...SixOy molecular clusters using density functional theory (DFT). The size of the clusters considered, however, is relatively large compared to those
Summary Report for the CONSET Program at AEDC
1980-09-01
the Lennard - Jones 12-6 intermolecular potential function, reduced onset pressures (P;) and temperatures (T;) have been determined using (lo) 16 AEDC...different, and this illustrates the inadequacy of the two-parameter Lennard - Jones potential for describing the interaction of polar molecules. As is well...molecules well described by the 12-6 Lennard - Jones potential will have common onset loci depending upon the specific heat ratio. However, polar molecules
Structure-based coarse-graining for inhomogeneous liquid polymer systems.
Fukuda, Motoo; Zhang, Hedong; Ishiguro, Takahiro; Fukuzawa, Kenji; Itoh, Shintaro
2013-08-07
The iterative Boltzmann inversion (IBI) method is used to derive interaction potentials for coarse-grained (CG) systems by matching structural properties of a reference atomistic system. However, because it depends on such thermodynamic conditions as density and pressure of the reference system, the derived CG nonbonded potential is probably not applicable to inhomogeneous systems containing different density regimes. In this paper, we propose a structure-based coarse-graining scheme to devise CG nonbonded potentials that are applicable to different density bulk systems and inhomogeneous systems with interfaces. Similar to the IBI, the radial distribution function (RDF) of a reference atomistic bulk system is used for iteratively refining the CG nonbonded potential. In contrast to the IBI, however, our scheme employs an appropriately estimated initial guess and a small amount of refinement to suppress transfer of the many-body interaction effects included in the reference RDF into the CG nonbonded potential. To demonstrate the application of our approach to inhomogeneous systems, we perform coarse-graining for a liquid perfluoropolyether (PFPE) film coated on a carbon surface. The constructed CG PFPE model favorably reproduces structural and density distribution functions, not only for bulk systems, but also at the liquid-vacuum and liquid-solid interfaces, demonstrating that our CG scheme offers an easy and practical way to accurately determine nonbonded potentials for inhomogeneous systems.
The multiple functions of plant serine protease inhibitors
Giri, Ashok P; Kaur, Harleen; Baldwin, Ian T
2011-01-01
Plant protease inhibitors (PIs) are a diverse group of proteins which have been intensely investigated due to their potential function in protecting plants against herbivorous insects by inhibiting digestive proteases. Although this mechanism has been well documented for a number of single PIs and their target enzymes, whether this mechanism protects plants in nature remains unclear. Moreover, many plants express a number of different PIs and it was unknown if these proteins work synergistically as defenses or if they also have other functions. We recently identified four serine PIs (SPI) of Solanum nigrum and demonstrated that they differ substantially in substrate specificity, accumulation patterns, and their effect against different natural herbivorous insects in field- and glasshouse experiments. These differences suggest that SPIs have at least partially diversified to provide protection against different attackers. Although we could not detect effects on plant development or growth when silencing SPIs, gene- and tissue-specific expression patterns suggest multiple functions in generative tissues, including a possible involvement in development. PMID:22004998
Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel
2009-12-01
The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed and a coding task (the Digit Symbol Substitution Test, DSST). More precisely, we tested the hypothesis that executive functions would mediate the age-related differences observed in the free-recall task better than perceptual speed. We also tested the assumption that a coding task, assumed to involve both executive processes and perceptual speed, would be the best mediator of age-related differences in memory. Findings first confirmed that the DSST combines executive processes and perceptual speed. Secondly, they showed that executive functions are a significant mediator of age-related differences in memory, and that DSST performance is the best predictor.
Individual differences in regulatory focus predict neural response to reward.
Scult, Matthew A; Knodt, Annchen R; Hanson, Jamie L; Ryoo, Minyoung; Adcock, R Alison; Hariri, Ahmad R; Strauman, Timothy J
2017-08-01
Although goal pursuit is related to both functioning of the brain's reward circuits and psychological factors, the literatures surrounding these concepts have often been separate. Here, we use the psychological construct of regulatory focus to investigate individual differences in neural response to reward. Regulatory focus theory proposes two motivational orientations for personal goal pursuit: (1) promotion, associated with sensitivity to potential gain, and (2) prevention, associated with sensitivity to potential loss. The monetary incentive delay task was used to manipulate reward circuit function, along with instructional framing corresponding to promotion and prevention in a within-subject design. We observed that the more promotion oriented an individual was, the lower their ventral striatum response to gain cues. Follow-up analyses revealed that greater promotion orientation was associated with decreased ventral striatum response even to no-value cues, suggesting that promotion orientation may be associated with relatively hypoactive reward system function. The findings are also likely to represent an interaction between the cognitive and motivational characteristics of the promotion system with the task demands. Prevention orientation did not correlate with ventral striatum response to gain cues, supporting the discriminant validity of regulatory focus theory. The results highlight a dynamic association between individual differences in self-regulation and reward system function.
Giese, Timothy J; York, Darrin M
2010-12-28
We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G.
We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forcesmore » the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.« less
On the Definition of Surface Potentials for Finite-Difference Operators
NASA Technical Reports Server (NTRS)
Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.
NASA Astrophysics Data System (ADS)
Khodja, A.; Kadja, A.; Benamira, F.; Guechi, L.
2017-12-01
The problem of a Klein-Gordon particle moving in equal vector and scalar Rosen-Morse-type potentials is solved in the framework of Feynman's path integral approach. Explicit path integration leads to a closed form for the radial Green's function associated with different shapes of the potentials. For q≤-1, and 1/2α ln | q|
Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng
2017-03-01
A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.
Functional approach in estimation of cultural ecosystem services of recreational areas
NASA Astrophysics Data System (ADS)
Sautkin, I. S.; Rogova, T. V.
2018-01-01
The article is devoted to the identification and analysis of cultural ecosystem services of recreational areas from the different forest plant functional groups in the suburbs of Kazan. The study explored two cultural ecosystem services supplied by forest plants by linking these services to different plant functional traits. Information on the functional traits of 76 plants occurring in the forest ecosystems of the investigated area was collected from reference books on the biological characteristics of plant species. Analysis of these species and traits with the Ward clustering method yielded four functional groups with different potentials for delivering ecosystem services. The results show that the contribution of species diversity to services can be characterized through the functional traits of plants. This proves that there is a stable relationship between biodiversity and the quality and quantity of ecosystem services. The proposed method can be extended to other types of services (regulating and supporting). The analysis can be used in the socio-economic assessment of natural ecosystems for recreation and other uses.
Wang, Ke; Yu, Yang-Xin; Gao, Guang-Hua
2008-05-14
A density functional theory (DFT) in the framework of cell model is proposed to calculate the structural and thermodynamic properties of aqueous DNA-electrolyte solution with finite DNA concentrations. The hard-sphere contribution to the excess Helmholtz energy functional is derived from the modified fundamental measure theory, and the electrostatic interaction is evaluated through a quadratic functional Taylor expansion around a uniform fluid. The electroneutrality in the cell leads to a variational equation with a constraint. Since the reference fluid is selected to be a bulk phase, the Lagrange multiplier proves to be the potential drop across the cell boundary (Donnan potential). The ion profiles and electrostatic potential profiles in the cell are calculated from the present DFT-cell model. Our DFT-cell model gives better prediction of ion profiles than the Poisson-Boltzmann (PB)- or modified PB-cell models when compared to the molecular simulation data. The effects of polyelectrolyte concentration, ion size, and added-salt concentration on the electrostatic potential difference between the DNA surface and the cell boundary are investigated. The expression of osmotic coefficient is derived from the general formula of grand potential. The osmotic coefficients predicted by the DFT are lower than the PB results and are closer to the simulation results and experimental data.
Jeffries, Thomas C.; Rayu, Smriti; Nielsen, Uffe N.; Lai, Kaitao; Ijaz, Ali; Nazaries, Loic; Singh, Brajesh K.
2018-01-01
Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP) compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats. PMID:29515526
Park, Ji Eun; Park, Bumwoo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun
2017-01-01
To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal ( p < 0.001) and supramarginal gyrus ( p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.
Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers
USDA-ARS?s Scientific Manuscript database
The rumen plays a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen metabolomic analysis by ultra-performance liquid chromatography/ time-of-flight mass spectrometry (MS) and multivariate/u...
Sex-related shape dimorphism in the human radiocarpal and midcarpal joints.
Kivell, Tracy L; Guimont, Isabelle; Wall, Christine E
2013-01-01
Previous research has revealed significant size differences between human male and female carpal bones but it is unknown if there are significant shape differences as well. This study investigated sex-related shape variation and allometric patterns in five carpal bones that make up the radiocarpal and midcarpal joints in modern humans. We found that many aspects of carpal shape (76% of all variables quantified) were similar between males and females, despite variation in size. However, 10 of the shape ratios were significantly different between males and females, with at least one significant shape difference observed in each carpal bone. Within-sex standard major axis regressions (SMA) of the numerator (i.e., the linear variables) on the denominator (i.e., the geometric mean) for each significantly different shape ratio indicated that most linear variables scaled with positive allometry in both males and females, and that for eight of the shape ratios, sex-related shape variation is associated with statistically similar sex-specific scaling relationships. Only the length of the scaphoid body and the height of the lunate triquetrum facet showed a significantly higher SMA slope in females compared with males. These findings indicate that the significant differences in the majority of the shape ratios are a function of subtle (i.e., not statistically significant) scaling differences between males and females. There are a number of potential developmental, functional, and evolutionary factors that may cause sex-related shape differences in the human carpus. The results highlight the potential for subtle differences in scaling to result in functionally significant differences in shape. Copyright © 2012 Wiley Periodicals, Inc.
Effective equilibrium states in mixtures of active particles driven by colored noise
NASA Astrophysics Data System (ADS)
Wittmann, René; Brader, J. M.; Sharma, A.; Marconi, U. Marini Bettolo
2018-01-01
We consider the steady-state behavior of pairs of active particles having different persistence times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the particles are driven by colored noises with exponential correlation functions whose intensities and correlation times vary from species to species. By extending Fox's theory to many components, we derive by functional calculus an approximate Fokker-Planck equation for the configurational distribution function of the system. After illustrating the predicted distribution in the solvable case of two particles interacting via a harmonic potential, we consider systems of particles repelling through inverse power-law potentials. We compare the analytic predictions to computer simulations for such soft-repulsive interactions in one dimension and show that at linear order in the persistence times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body phenomena, such as demixing and depletion, by means of effective pair potentials.
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Short latency vestibular evoked potentials in the chicken embryo
NASA Technical Reports Server (NTRS)
Jones, S. M.; Jones, T. A.
1996-01-01
Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.
Philibert, Mathieu D; Pampalon, Robert; Hamel, Denis; Daniel, Mark
2013-10-01
Disability is conceived as a person-context interaction. Neighborhoods are among the contexts potentially influencing disability. It is thus expected that neighborhood characteristics will be associated with disability prevalence and that such associations will be moderated by individual-level functional status. Empirical research targeting the influences of features of urban environments is relatively rare. To evaluate the presence of contextual differences in disability prevalence and to assess the moderating role of individual functional status on the association between neighborhood characteristics and disability prevalence. Multi-level analyses of individual-level data obtained from the Canadian Community Health Survey and neighborhood-level data derived from the Canada census. A contextual component was observed in the variability of disability prevalence. Significant neighborhood-level differences in disability were found across levels of social deprivation. Evidence of person-place interaction was equivocal. The contextual component of the variability in disability prevalence offers potential for targeting interventions to neighborhoods. The pathway by which social structure is associated with disability prevalence requires further research. Analyses of particular functional limitations may enhance our understanding of the mechanisms by which socioenvironmental factors affect disability. Publicly available survey data on disability in the general Canadian population, while useful, has limitations with respect to estimating socioenvironmental correlates of disability and potential person-place interactions. Copyright © 2013 Elsevier Inc. All rights reserved.
Plant Size and Competitive Dynamics along Nutrient Gradients.
Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S
2017-08-01
Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.
Developing rapid methods for analyzing upland riparian functions and values.
Hruby, Thomas
2009-06-01
Regulators protecting riparian areas need to understand the integrity, health, beneficial uses, functions, and values of this resource. Up to now most methods providing information about riparian areas are based on analyzing condition or integrity. These methods, however, provide little information about functions and values. Different methods are needed that specifically address this aspect of riparian areas. In addition to information on functions and values, regulators have very specific needs that include: an analysis at the site scale, low cost, usability, and inclusion of policy interpretations. To meet these needs a rapid method has been developed that uses a multi-criteria decision matrix to categorize riparian areas in Washington State, USA. Indicators are used to identify the potential of the site to provide a function, the potential of the landscape to support the function, and the value the function provides to society. To meet legal needs fixed boundaries for assessment units are established based on geomorphology, the distance from "Ordinary High Water Mark" and different categories of land uses. Assessment units are first classified based on ecoregions, geomorphic characteristics, and land uses. This simplifies the data that need to be collected at a site, but it requires developing and calibrating a separate model for each "class." The approach to developing methods is adaptable to other locations as its basic structure is not dependent on local conditions.
Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk
2014-11-12
The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.
Invited review: gender issues related to spaceflight: a NASA perspective.
Harm, D L; Jennings, R T; Meck, J V; Powell, M R; Putcha, L; Sams, C P; Schneider, S M; Shackelford, L C; Smith, S M; Whitson, P A
2001-11-01
This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.
Invited review: gender issues related to spaceflight: a NASA perspective
NASA Technical Reports Server (NTRS)
Harm, D. L.; Jennings, R. T.; Meck, J. V.; Powell, M. R.; Putcha, L.; Sams, C. P.; Schneider, S. M.; Shackelford, L. C.; Smith, S. M.; Whitson, P. A.
2001-01-01
This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.
Suo, Chen; Hrydziuszko, Olga; Lee, Donghwan; Pramana, Setia; Saputra, Dhany; Joshi, Himanshu; Calza, Stefano; Pawitan, Yudi
2015-08-15
Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. yudi.pawitan@ki.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Betavoltaics using scandium tritide and contact potential difference
NASA Astrophysics Data System (ADS)
Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan; Antoniazzi, Armando B.
2008-02-01
Tritium-powered betavoltaic micropower sources using contact potential difference (CPD) are demonstrated. Thermally stable scandium tritide thin films with a surface activity of 15mCi/cm2 were used as the beta particle source. The electrical field created by the work function difference between the ScT film and a platinum or copper electrode was used to separate the beta-generated electrical charge carriers. Open circuit voltages of 0.5 and 0.16V and short circuit current densities of 2.7 and 5.3nA/cm2 were achieved for gaseous and solid dielectric media-based CPD cells, respectively.
NASA Astrophysics Data System (ADS)
Zapata-Herrera, Mario; Camacho, Ángela S.; Ramírez, Hanz Y.
2018-06-01
In this paper, different confinement potential approaches are considered in the simulation of size effects on the optical response of silver spheres with radii at the few nanometer scale. By numerically obtaining dielectric functions from different sets of eigenenergies and eigenstates, we simulate the absorption spectrum and the field enhancement factor for nanoparticles of various sizes, within a quantum framework for both infinite and finite potentials. The simulations show significant dependence on the sphere radius of the dipolar surface plasmon resonance, as a direct consequence of energy discretization associated to the strong confinement experienced by conduction electrons in small nanospheres. Considerable reliance of the calculated optical features on the chosen wave functions and transition energies is evidenced, so that discrepancies in the plasmon resonance frequencies obtained with the three studied models reach up to above 30%. Our results are in agreement with reported measurements and shade light on the puzzling shift of the plasmon resonance in metallic nanospheres.
Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo
2016-01-01
With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality.
Hautier, Yann; Isbell, Forest; Borer, Elizabeth T; Seabloom, Eric W; Harpole, W Stanley; Lind, Eric M; MacDougall, Andrew S; Stevens, Carly J; Adler, Peter B; Alberti, Juan; Bakker, Jonathan D; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Caldeira, Maria C; Chaneton, Enrique J; Chu, Chengjin; Daleo, Pedro; Dickman, Christopher R; Dwyer, John M; Eskelinen, Anu; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Hillebrand, Helmut; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Morgan, John W; Pärtel, Meelis; Pascual, Jesus; Price, Jodi N; Prober, Suzanne M; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Standish, Rachel J; Virtanen, Risto; Wardle, Glenda M; Yahdjian, Laura; Hector, Andy
2018-01-01
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
Theoretical studies of the work functions of Pd-based bimetallic surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao
2015-06-07
Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between themore » top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties.« less
MicroRNA profile of silk gland reveals different silk yields of three silkworm strains.
Qin, Sheng; Danso, Blessing; Zhang, Jing; Li, Juan; Liu, Na; Sun, Xia; Hou, Chengxiang; Luo, Heng; Chen, Keping; Zhang, Guozheng; Li, Muwang
2018-05-05
Silk proteins are synthesized and secreted by the silk gland. The differential gene expression in it leads to different silk yield among various silkworm strains. As crucial factors, microRNAs (miRNAs) regulate protein synthesis at post-transcriptional level in silk gland. MiRNAs expression level in the silk gland of three silkworm strains (Jingsong, Lan10 and Dazao) was analyzed and 33 differentially expressed miRNAs (DEMs) were discovered between JingSong (JS) and Lan10 (L10), 60 DEMs between JS and Dazao, 54 DEMs between L10 and Dazao respectively. The DEMs target genes were predicted combing with two different methods and their functions were annotated according to gene ontology. Our previous studies showed that a batch of genes related to silk yield were identified in JS and L10 strains by comparative transcriptome and quantitative trait loci (QTL) method. Thirteen DEMs whose target genes are related to protein biosynthesis processes were screened by combining with these researches. Twelve DEMs potentially regulate nineteen genes which exist in our QTL results. Six common DEMs potentially regulate the genes in both of previous results. Finally, five DEMs were selected to verify their expression levels between JS and L10 by qRT-PCR, which showed similar difference as the results of small RNA-sequencing. MiRNAs in the silk gland may directly affect silk protein biosynthesis in different silkworm strains. In current work, we identified a batch of DEMs which potentially regulate the genes related to silk yield. Further functionally study of these miRNAs will contribute to improve varieties and boost the silk yield. Our research provides a basis for studying these miRNAs and their functions in silk production. Copyright © 2018 Elsevier B.V. All rights reserved.
St Jacques, Peggy L; Conway, Martin A; Cabeza, Roberto
2011-10-01
Gender differences are frequently observed in autobiographical memory (AM). However, few studies have investigated the neural basis of potential gender differences in AM. In the present functional MRI (fMRI) study we investigated gender differences in AMs elicited using dynamic visual images vs verbal cues. We used a novel technology called a SenseCam, a wearable device that automatically takes thousands of photographs. SenseCam differs considerably from other prospective methods of generating retrieval cues because it does not disrupt the ongoing experience. This allowed us to control for potential gender differences in emotional processing and elaborative rehearsal, while manipulating how the AMs were elicited. We predicted that males would retrieve more richly experienced AMs elicited by the SenseCam images vs the verbal cues, whereas females would show equal sensitivity to both cues. The behavioural results indicated that there were no gender differences in subjective ratings of reliving, importance, vividness, emotion, and uniqueness, suggesting that gender differences in brain activity were not due to differences in these measures of phenomenological experience. Consistent with our predictions, the fMRI results revealed that males showed a greater difference in functional activity associated with the rich experience of SenseCam vs verbal cues, than did females.
Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong
2016-01-08
The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.
NASA Astrophysics Data System (ADS)
Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong
2016-01-01
The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.
Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong
2016-01-01
The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system. PMID:26743465
Functionalized coronenes: synthesis, solid structure, and properties.
Wu, Di; Zhang, Hua; Liang, Jinhua; Ge, Haojie; Chi, Chunyan; Wu, Jishan; Liu, Sheng Hua; Yin, Jun
2012-12-21
The construction of coronenes using simple building blocks is a challenging task. In this work, triphenylene was used as a building block to construct functionalized coronenes, and their solid structures and optoelectronic properties were investigated. The single crystal structures showed that coronenes have different packing motifs. Their good solubility and photostability make them potential solution-processable candidates for organic devices.
Preparing Doctoral Candidates for the Viva: Issues for Students and Supervisors
ERIC Educational Resources Information Center
Watts, Jacqueline H.
2012-01-01
The PhD viva has been described as mysterious (Burnham 1994; Morley et al. 2002), unpredictable (Rugg & Petre 2004) and potentially frightening for students (Delamont et al. 2004), with its form and duration a function of the predilections of individual examiners as well as a function of differences across disciplines. Despite its myriad…
Robert Zahner; Albert R. Stage
1966-01-01
A method is described for computing daily values of moisture stress on forest vegetation, or water deficits, based on the differences between Thornthwaite's potential evapotranspiration and computed soil-moisture depletion. More realistic functions are used for soil-moisture depletion on specific soil types than have been customary. These functions relate daily...
Matthew L. Brooks; Cynthia S. Brown; Jeanne C. Chambers; Carla M. D' Antonio; Jon E. Keeley; Jayne Belnap
2016-01-01
Exotic annual Bromus species are widely recognized for their potential to invade, dominate, and alter the structure and function of ecosystems. In this chapter, we summarize the invasion potential, ecosystem threats, and management strategies for different Bromus species within each of five ecoregions of the western United States. We characterize invasion...
Tyrakowski, Tomasz; Hołyńska, Iga; Lampka, Magdalena; Kaczorowski, Piotr
2006-01-01
An important electrophysiological variable--the transepithelial potential difference reflects the electrogenic transepithelial ion currents, which are produced and modified by ion transport processes in polarized cells of epithelium. These processes result from coordinated function of transporters in apical and basolateral cell membranes and have been observed in all epithelial tissues studied so far. The experiments were performed on isolated specimens of snail foot. In the experiments, the baseline transepithelial electrical potential difference--PD, changes of transepithelial difference during mechanical stimulation--dPD and the transepithelial resistance were measured with an Ussing apparatus. A total of 60 samples of foot ventral surface of 28 snails were studied. The transepithelial electrical potential difference of isolated foot ranged from -6.0 to 10.0 mV under different experimental conditions. Mechanical stimulation of foot ventral surface caused changes of electrogenic ion transport, observed as transient hyperpolarization (electrical potential difference became more positive). When the transepithelial electrical potential difference decreased during stimulation, the reaction was described as depolarization. When amiloride and bumetanide were added to the stimulating fluid so that the sodium and chloride ion transport pathways were inhibited, prolonged depolarization occurred. Under the influence of different stimuli: mechanical (gentle rinsing), chemical (changes of ion concentrations) and pharmacological (application of ion inhibitors), transient changes of potential difference (dPD) were evoked, ranging from about -0.7 to almost 2.0 mV. Changes in transepithelial potential difference of the pedal surface of the snail's foot related to these physiological stimuli are probably involved in the locomotion of the animal and are under control of the part of the nervous system in which tachykinin related peptides (TRP) act as transmitters.
Graphic comparison of reserve-growth models for conventional oil and accumulation
Klett, T.R.
2003-01-01
The U.S. Geological Survey (USGS) periodically assesses crude oil, natural gas, and natural gas liquids resources of the world. The assessment procedure requires estimated recover-able oil and natural gas volumes (field size, cumulative production plus remaining reserves) in discovered fields. Because initial reserves are typically conservative, subsequent estimates increase through time as these fields are developed and produced. The USGS assessment of petroleum resources makes estimates, or forecasts, of the potential additions to reserves in discovered oil and gas fields resulting from field development, and it also estimates the potential fully developed sizes of undiscovered fields. The term ?reserve growth? refers to the commonly observed upward adjustment of reserve estimates. Because such additions are related to increases in the total size of a field, the USGS uses field sizes to model reserve growth. Future reserve growth in existing fields is a major component of remaining U.S. oil and natural gas resources and has therefore become a necessary element of U.S. petroleum resource assessments. Past and currently proposed reserve-growth models compared herein aid in the selection of a suitable set of forecast functions to provide an estimate of potential additions to reserves from reserve growth in the ongoing National Oil and Gas Assessment Project (NOGA). Reserve growth is modeled by construction of a curve that represents annual fractional changes of recoverable oil and natural gas volumes (for fields and reservoirs), which provides growth factors. Growth factors are used to calculate forecast functions, which are sets of field- or reservoir-size multipliers. Comparisons of forecast functions were made based on datasets used to construct the models, field type, modeling method, and length of forecast span. Comparisons were also made between forecast functions based on field-level and reservoir- level growth, and between forecast functions based on older and newer data. The reserve-growth model used in the 1995 USGS National Assessment and the model currently used in the NOGA project provide forecast functions that yield similar estimates of potential additions to reserves. Both models are based on the Oil and Gas Integrated Field File from the Energy Information Administration (EIA), but different vintages of data (from 1977 through 1991 and 1977 through 1996, respectively). The model based on newer data can be used in place of the previous model, providing similar estimates of potential additions to reserves. Fore-cast functions for oil fields vary little from those for gas fields in these models; therefore, a single function may be used for both oil and gas fields, like that used in the USGS World Petroleum Assessment 2000. Forecast functions based on the field-level reserve growth model derived from the NRG Associates databases (from 1982 through 1998) differ from those derived from EIA databases (from 1977 through 1996). However, the difference may not be enough to preclude the use of the forecast functions derived from NRG data in place of the forecast functions derived from EIA data. Should the model derived from NRG data be used, separate forecast functions for oil fields and gas fields must be employed. The forecast function for oil fields from the model derived from NRG data varies significantly from that for gas fields, and a single function for both oil and gas fields may not be appropriate.
Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek
2016-08-01
Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.
Siri, Macarena; Grasselli, Mariano; Alonso, Silvia Del V
2016-07-15
The aim of this study was to preserve albumin nanoparticle structure/function during the lyophilisation process. Bovine serum albumin nanoparticles were obtained by γ-irradiation. Nanoparticles were lyophilised in buffer, miliQ water or in trehalose/miliQ solution. The size and charge of the nanoparticles were tested after lyophilisation by light scattering and Z potential. The most relevant results in size of BSA nanoparticle were those lyophilised in PBS between 20 and 350nm, assembled in different aggregates, and negative Z potential obtained was 37±8mV in all, and those nanoparticles lyophilised with trehalose had a size range of 70±2nm and a negative Z potential of 20±5mV. Structure determination of surface aminoacids SH groups in the BSA NP lyophilised in PBS showed an increase in the free SH groups. Different aggregates had different amount of SH groups exposure from 55 to 938 (from smaller to bigger aggregates), whereas BSA NP lyophilised with trehalose showed no significant difference if compared with BSA NP. The binding properties of the BSA nanoparticle with a theragnostic probe (merocyanine 540) were studied after lyophilisation. Results showed more affinity between the BSA NP lyophilised with trehalose than that observed with non lyophilised BSA NP. As a result, the lyophilisation condition in trehalose 100μM solution is the best one to preserve the BSA NP structure/function and the one with the enhance binding affinity of the BSA NP. Copyright © 2016 Elsevier B.V. All rights reserved.
Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.
2016-01-01
The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031
DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J
2018-07-01
Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as they establish residence in the lung. However, this transition does not edit CD4 T cell epitope specificity or the cytokine potential of the CD4 T cells. Thus, CD4 T cells that enter the infected lung can convey diverse functions and have a sufficiently broad viral antigen specificity to detect the complex array of infected cells within the infected tissue, offering the potential for more effective protective function. Copyright © 2018 American Society for Microbiology.
Jou, I M
2000-08-01
Acute spinal cord injury was induced by a clip compression model in rats to approximate spinal cord injury encountered in spinal surgery. Spinal somatosensory-evoked potential neuromonitoring was used to study the electrophysiologic change. To compare and correlate changes in evoked potential after acute compression at different core temperatures with postoperative neurologic function and histologic change, to evaluate current intraoperative neuromonitoring warning criteria for neural damage, and to confirm the protective effect of hypothermia in acute spinal cord compression injury by electrophysiologic, histologic, and clinical observation. With the increase in aggressive correction of spinal deformities, and the invasiveness of surgical instruments, the incidence of neurologic complication appears to have increased despite the availability of sensitive intraoperative neuromonitoring techniques designed to alert surgeons to impending neural damage. Many reasons have been given for the frequent failures of neuromonitoring, but the influence of temperature-a very important and frequently encountered factor-on evoked potential has not been well documented. Specifically, decrease in amplitude and elongation of latency seem not to have been sufficiently taken into account when intraoperative neuromonitoring levels were interpreted and when acceptable intraoperative warning criteria were determined. Experimental acute spinal cord injury was induced in rats by clip compression for two different intervals and at three different core temperatures. Spinal somatosensory-evoked potential, elicited by stimulating the median nerve and recorded from the cervical interspinous C2-C3, was monitored immediately before and after compression, and at 15-minute intervals for 1 hour. Spinal somatosensory-evoked potential change is almost parallel to temperature-based amplitude reduction and latency elongation. Significant neurologic damage induced by acute compression of the cervical spinal cord produced a degree of effect on the amplitude of spinal somatosensory-evoked potential in normothermic conditions that differed from the effect in moderately hypothermic conditions. Using the same electromonitoring criteria,moderately hypothermic groups showed a significantly higher false-negative rate statistically (35%) than normothermic groups (10%). Systemic cooling may protect against the detrimental effects of aggressive spinal surgical procedures. There is still not enough published information available to establish statistically and ethically acceptable intraoperative neuromonitoring warning and intervention criteria conclusively. Therefore, an urgent need exists for further investigation. Although a reduction of more than 50% in evoked potential still seems acceptable as an indicator of impending neural function loss, maintenance of more than 50% of baseline evoked potential is no guarantee of normal postoperative neural function, especially at lower than normal temperatures.
NASA Astrophysics Data System (ADS)
Andrews, Sarah Elizabeth
Part I of this dissertation describes two research projects I undertook to understand how structure influences function in freshwater wetlands. In the first study I tested the hypothesis that wetland structure (created versus natural) would influence function (methane cycling). Created wetlands had reduced rates of potential methane production and potential methane oxidation compared to natural wetlands; this was most likely explained by differences in edaphic factors that characterized each wetland, particularly soil moisture and soil organic matter. In the second study (Andrews et al. 2013), I tested the hypothesis that plant community structure (functional group composition, richness, presence/absence) would influence function (methane and iron cycling) in wetland mesocosms. Plant functional group richness was less important than the type of vegetation present: the presence of perennial vegetation (reeds or tussocks) led to increased rates of potential iron reduction compared to when only annual vegetation was present. Part II of this dissertation describes research I undertook to understand how structure influences function in an undergraduate soil science course. In the first study I tested the hypothesis that course structure (traditional versus studio) would influence function (student performance) in the course. Students in the studio course outperformed students in the traditional course; there was also a decrease in the fail rate. In the second study I looked at students' perspectives on their learning and experiences (function) in the studio course and asked whether students' epistemological development influenced this function. Interviews with students revealed that active learning, the integrated nature of the course, community, and variety of learning and assessment methods helped student learning. Students' epistemological development (interpreted from the Measure of Epistemological Reflection) permeated much of what they spoke about during the interviews. There was also evidence that the studio structure may help promote epistemological growth via "sneaky learning" and an expanded role of peers. The studies in Part I show that differences in structure affect function in freshwater wetland systems and the studies in Part II show that structure affects function in an undergraduate introductory soil science course. Thus, system structure matters whether you are in a wetland or a college classroom.
Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Michoud, Grégoire; Daffonchio, Daniele
2018-01-03
The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits. While the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found.
Foot Type Biomechanics Part 1: Structure and Function of the Asymptomatic Foot
Hillstrom, Howard J.; Song, Jinsup; Kraszewski, Andrew P.; Hafer, Jocelyn F.; Mootanah, Rajshree; Dufour, Alyssa B.; PT, Betty (Shingpui) Chow; Deland, Jonathan T.
2012-01-01
Background Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? Aim To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Methods Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMatII gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pairwise comparisons. Results Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Conclusions Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. PMID:23107625
Foot type biomechanics part 1: structure and function of the asymptomatic foot.
Hillstrom, Howard J; Song, Jinsup; Kraszewski, Andrew P; Hafer, Jocelyn F; Mootanah, Rajshree; Dufour, Alyssa B; Chow, Betty Shingpui; Deland, Jonathan T
2013-03-01
Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMat II gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pair wise comparisons. Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. Copyright © 2012 Elsevier B.V. All rights reserved.
Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems.
Fanin, Nicolas; Gundale, Michael J; Farrell, Mark; Ciobanu, Marcel; Baldock, Jeff A; Nilsson, Marie-Charlotte; Kardol, Paul; Wardle, David A
2018-02-01
Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.
Lung function in children in relation to ethnicity, physique and socio-economic factors
Lum, Sooky; Bountziouka, Vassiliki; Sonnappa, Samatha; Wade, Angie; Cole, Tim J; Harding, Seeromanie; Wells, Jonathan CK; Griffiths, Chris; Treleaven, Philip; Bonner, Rachel; Kirkby, Jane; Lee, Simon; Raywood, Emma; Legg, Sarah; Sears, Dave; Cottam, Philippa; Feyeraband, Colin; Stocks, Janet
2015-01-01
Question Can ethnic differences in spirometry be attributed to differences in physique and socio-economic factors? Methods Assessments were undertaken in 2171 London primary school-children on two occasions a year apart whenever possible, as part of the Size and Lung function In Children study. Measurements included spirometry, detailed anthropometry, 3-D photonic scanning for regional body shape, body composition, information on ethnic ancestry, birth and respiratory history, socio-economic circumstances and tobacco smoke exposure. Results Technically acceptable spirometry was obtained from 1901 children (mean age: 8.3yrs (range: 5.2-11.8yrs), 46% boys, 35% White; 29% Black-African origin; 24% South-Asian; 12% Other/mixed) on 2767 test occasions. After adjusting for sex, age and height, FEV1 was 1.32, 0.89 and 0.51 z-score units lower in Black, South-Asian and Other ethnicity children respectively, when compared with White children, with similar decrements for FVC (p<0.001 for all). Although further adjustment for sitting height and chest width reduced differences attributable to ethnicity by up to 16%, significant differences persisted after adjusting for all potential determinants including socio-economic circumstances. Answer Ethnic differences in spirometric lung function persist despite adjusting for a wide range of potential determinants, including body physique and socio-economic circumstances, emphasising the need to use ethnic-specific equations when interpreting results. PMID:26493801
Atkins, A.S.; Stroescu, I.; Spagnola, N.B.; Davis, V.G.; Patterson, T.D.; Narasimhan, M.; Harvey, P.D.; Keefe, R.S.E.
2015-01-01
Clinical trials for primary prevention and early intervention in preclinical AD require measures of functional capacity with improved sensitivity to deficits in healthier, non-demented individuals. To this end, the Virtual Reality Functional Capacity Assessment Tool (VRFCAT) was developed as a direct performance-based assessment of functional capacity that is sensitive to changes in function across multiple populations. Using a realistic virtual reality environment, the VRFCAT assesses a subject's ability to complete instrumental activities associated with a shopping trip. The present investigation represents an initial evaluation of the VRFCAT as a potential co-primary measure of functional capacity in healthy aging and preclinical MCI/AD by examining test-retest reliability and associations with cognitive performance in healthy young and older adults. The VRFCAT was compared and contrasted with the UPSA-2-VIM, a traditional performance-based assessment utilizing physical props. Results demonstrated strong age-related differences in performance on each VRFCAT outcome measure, including total completion time, total errors, and total forced progressions. VRFCAT performance showed strong correlations with cognitive performance across both age groups. VRFCAT Total Time demonstrated good test-retest reliability (ICC=.80 in young adults; ICC=.64 in older adults) and insignificant practice effects, indicating the measure is suitable for repeated testing in healthy populations. Taken together, these results provide preliminary support for the VRFCAT as a potential measure of functionally relevant change in primary prevention and preclinical AD/MCI trials. PMID:26618145
Theoretical Limitations on Functional Imaging Resolution in Auditory Cortex
Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.
2010-01-01
Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging historically both with functional imaging and with electrophysiology. A possible limitation affecting any methodology using pooled neuronal measures may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. One neuronal response type inherited from the cochlea, for example, exhibits a receptive field that increases in size (i.e., decreases in selectivity) at higher stimulus intensities. Even though these neurons appear to represent a minority of auditory cortex neurons, they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite selective neurons, resulting in a relatively sparse activation map, have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments. PMID:20079343
Hummel, J M Marjan; Snoek, Govert J; van Til, Janine A; van Rossum, Wouter; Ijzerman, Maarten J
2005-01-01
This study supported the evaluation by a rehabilitation team of the performance of two treatment options that improve the arm-hand function in subjects with sixth cervical vertebra (C6) level Motor Group 2 tetraplegia. The analytic hierarchy process, a technique for multicriteria decision analysis, was used by a rehabilitation team and potential recipients to quantitatively compare a new technology, Functional Elec trical Stimulation (FES), with conventional surgery. Perform-ance was measured by functional improvement, treatment load, risks, user-friendliness, and social outcomes. Functional improvement after FES was considered better than that after conventional surgery. However, the rehabilitation team's overall rating for conventional surgery was slightly higher than that for FES (57% vs 44%). Compared with the rehabilitation team, potential recipients gave greater weight to burden of treatment and less weight to functional improvement. This study shows that evaluation of new technology must be more comprehensive than the evaluation of functional improvement alone, and that patient preferences may differ from those of the rehabilitation team.
NASA Astrophysics Data System (ADS)
Cinal, M.
2010-01-01
It is found that for closed-l-shell atoms, the exact local exchange potential vx(r) calculated in the exchange-only Kohn-Sham (KS) scheme of the density functional theory (DFT) is very well represented within the region of every atomic shell by each of the suitably shifted potentials obtained with the nonlocal Fock exchange operator for the individual Hartree-Fock (HF) orbitals belonging to this shell. This newly revealed property is not related to the well-known steplike shell structure in the response part of vx(r), but it results from specific relations satisfied by the HF orbital exchange potentials. These relations explain the outstanding proximity of the occupied HF and exchange-only KS orbitals as well as the high quality of the Krieger-Li-Iafrate and localized HF (or, equivalently, common-energy-denominator) approximations to the DFT exchange potential vx(r). Another highly accurate representation of vx(r) is given by the continuous piecewise function built of shell-specific exchange potentials, each defined as the weighted average of the shifted orbital exchange potentials corresponding to a given shell. The constant shifts added to the HF orbital exchange potentials, to map them onto vx(r), are nearly equal to the differences between the energies of the corresponding KS and HF orbitals. It is discussed why these differences are positive and grow when the respective orbital energies become lower for inner orbitals.
NASA Astrophysics Data System (ADS)
Vuckovic, Stefan; Levy, Mel; Gori-Giorgi, Paola
2017-12-01
The augmented potential introduced by Levy and Zahariev [Phys. Rev. Lett. 113, 113002 (2014)] is shifted with respect to the standard exchange-correlation potential of the Kohn-Sham density functional theory by a density-dependent constant that makes the total energy become equal to the sum of the occupied orbital energies. In this work, we analyze several features of this approach, focusing on the limit of infinite coupling strength and studying the shift and the corresponding energy density at different correlation regimes. We present and discuss coordinate scaling properties of the augmented potential, study its connection to the response potential, and use the shift to analyze the classical jellium and uniform gas models. We also study other definitions of the energy densities in relation to the functional construction by local interpolations along the adiabatic connection. Our findings indicate that the energy density that is defined in terms of the electrostatic potential of the exchange-correlation hole is particularly well suited for this purpose.
NASA Astrophysics Data System (ADS)
Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide
2015-04-01
Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.
NASA Astrophysics Data System (ADS)
Frade, P. R.; Englebert, N.; Faria, J.; Visser, P. M.; Bak, R. P. M.
2008-12-01
The role of symbiont variation in the photobiology of reef corals was addressed by investigating the links among symbiont genetic diversity, function and ecological distribution in a single host species, Madracis pharensis. Symbiont distribution was studied for two depths (10 and 25 m), two different light habitats (exposed and shaded) and three host colour morphs (brown, purple and green). Two Symbiodinium genotypes were present, as defined by nuclear internal transcribed spacer 2 ribosomal DNA (ITS2-rDNA) variation. Symbiont distribution was depth- and colour morph-dependent. Type B15 occurred predominantly on the deeper reef and in green and purple colonies, while type B7 was present in shallow environments and brown colonies. Different light microhabitats at fixed depths had no effect on symbiont presence. This ecological distribution suggests that symbiont presence is potentially driven by light spectral niches. A reciprocal depth transplantation experiment indicated steady symbiont populations under environment change. Functional parameters such as pigment composition, chlorophyll a fluorescence and cell densities were measured for 25 m and included in multivariate analyses. Most functional variation was explained by two photobiological assemblages that relate to either symbiont identity or light microhabitat, suggesting adaptation and acclimation, respectively. Type B15 occurs with lower cell densities and larger sizes, higher cellular pigment concentrations and higher peridinin to chlorophyll a ratio than type B7. Type B7 relates to a larger xanthophyll-pool size. These unambiguous differences between symbionts can explain their distributional patterns, with type B15 being potentially more adapted to darker or deeper environments than B7. Symbiont cell size may play a central role in the adaptation of coral holobionts to the deeper reef. The existence of functional differences between B-types shows that the clade classification does not necessarily correspond to functional identity. This study supports the use of ITS2 as an ecological and functionally meaningful marker in Symbiodinium.
Eucommia ulmoides Oliver: A Potential Feedstock for Bioactive Products.
Zhu, Ming-Qiang; Sun, Run-Cang
2018-06-06
Eucommia ulmoides Oliver (EUO), a traditional Chinese herb, contains a variety of bioactive chemicals, including lignans, iridoids, phenolics, steroids, terpenoids, flavonoids, etc. These bioactive chemicals possess the effective function in nourishing the liver and kidneys and regulating blood pressure. The composition of bioactive chemicals extracted from EUO vary in the different functional parts (leaves, seeds, bark, and staminate flower) and planting models. The bioactive parts of EUO are widely used as raw materials for medicine and food, powdery extracts, herbal formulations, and tinctures. These capabilities hold potential for future development and commercial exploitation of the bioactive products from EUO.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Electrical resistivity of liquid lanthanides using charge hard sphere system
NASA Astrophysics Data System (ADS)
Sonvane, Y. A.; Thakor, P. B.; Jani, A. R.
2013-06-01
In the present paper, we have studied electrical resistivity (ρ) of liquid lanthanides. To describe the structural information, the structure factor S(q) due to the charged hard sphere (CHS) reference systems is used along with our newly constructed model potential. To see the influence of exchange and correlation effect on the electrical resistivity (ρ) have used different local field correction functions like Hartree (H), Sarkar et al (S) and Taylor (T). Lastly we conclude that the proper choice of the model potential along with local field correction function plays a vital role to the study of the electrical resistivity (ρ).
Negative Impacts of Human Land Use on Dung Beetle Functional Diversity
Barragán, Felipe; Moreno, Claudia E.; Escobar, Federico; Halffter, Gonzalo; Navarrete, Dario
2011-01-01
The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed. PMID:21448292
Negative impacts of human land use on dung beetle functional diversity.
Barragán, Felipe; Moreno, Claudia E; Escobar, Federico; Halffter, Gonzalo; Navarrete, Dario
2011-03-23
The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.
NASA Astrophysics Data System (ADS)
Yang, S. J.; Hu, L.; Wang, L.; Wei, B.
2018-06-01
The liquid structures of undercooled Zr90Nb10, Zr70Nb30 and Zr50Nb50 alloys were studied by molecular dynamics simulation combined with electrostatic levitation experiments. The densities of three alloys were measured by electrostatic levitation to modify the Zr-Nb potential functions by adjusting parameters in potential functions. In simulation, the atomic packing in Zr-Nb alloys was more ordered at lower temperatures. The Voronoi tessellation analyses indicated Nb-centered clusters were easier to form than Zr-centered clusters although the Nb content was less than 50%. The partial pair distribution functions showed that the interactions among Zr atoms are quite different to that among Nb atoms.
Einstein coefficients and oscillator strengths for low lying state of CO molecules
NASA Astrophysics Data System (ADS)
Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.
2018-04-01
Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.
NASA Astrophysics Data System (ADS)
Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.
2017-12-01
Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.
Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao
2016-05-04
It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Keenan, Katherine; Avolio, Julie; Rueckes-Nilges, Claudia; Tullis, Elizabeth; Gonska, Tanja; Naehrlich, Lutz
2015-05-01
The current practice of averaging the nasal potential difference (NPD) results of right and left nostril measurements reduce inter-individual variability but may underestimate individual CFTR function. Best NPD response to Cl(-)-free and isoproterenol perfusion (=largest ΔPD(0Cl/Iso)) from the right and left nostril was compared to the average result in 13 cystic fibrosis (CF), 78 query-CF patients and 22 healthy controls from 2 cohorts. Despite moderate to good correlation (p<0.001) between right and left measured ΔPD(0Cl/Iso), we observed large differences in some individuals. A comparison of average versus best ΔPD(0Cl/Iso) showed only moderate agreement (Giessen κ=0.538; Toronto κ=0.607). Averaging ΔPD(0Cl/Iso) showed a lower composite chloride response compared to best ΔPD(0Cl/Iso) and altered diagnostic NPD interpretation in 30 of 113 (27%) subjects. The current practice of averaging the NPD results of right and left nostril measurements leads to an underestimation of the individual CFTR function and should be reconsidered. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Exploring the functional significance of sterol glycosyltransferase enzymes.
Singh, Gaurav; Dhar, Yogeshwar Vikram; Asif, Mehar Hasan; Misra, Pratibha
2018-01-01
Steroidal alkaloids (SAs) are widely synthesized and distributed in plants manifesting as natural produce endowed with potential for medicinal, pesticidal and other high-value usages. Glycosylation of these SAs raises complex and diverse glycosides in plant cells that indeed govern numerous functional aspects. During the glycosylation process of these valuable metabolites, the addition of carbohydrate molecule(s) is catalyzed by enzymes known as sterol glycosyltransferases (SGTs), commonly referred to as UGTs, leading to the production of steryl glycosides (SGs). The ratio of SGs and nonglyco-conjugated SAs are different in different plant species, however, their biosynthesis in the cell is controlled by different environmental factors. The aim of this review is to evaluate the current SGT enzyme research and the functional consequences of glycomodification of SAs on the physiology and plant development, which together are associated with the plant's primary processes. Pharmaceutical, industrial, and other potential uses of saponins have also been discussed and their use in therapeutics has been unveiled by in silico analysis. The field of biotransformation or conversion of nonglycosylated to glycosylated phytosterols by the activity of SGTs, making them soluble, available and more useful for humankind is the new field of interest towards drug therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Work Function Variations in Twisted Graphene Layers
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...
2018-01-31
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Work Function Variations in Twisted Graphene Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Functional tradeoffs underpin salinity-driven divergence in microbial community composition.
Dupont, Chris L; Larsson, John; Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R; Andersson, Anders F; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A A; Brami, Daniel; Badger, Jonathan H; Allen, Andrew E; Rusch, Douglas B; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J Craig; Bergman, Birgitta
2014-01-01
Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.
Cecal microbiome divergence of broiler chickens by sex and body weight.
Lee, Kyu-Chan; Kil, Dong Yong; Sul, Woo Jun
2017-12-01
The divergence of gut bacterial community on broiler chickens has been reported as potentially possible keys to enhancing nutrient absorption, immune systems, and increasing poultry health and performance. Thus, we compared cecal bacterial communities and functional predictions by sex and body weight regarding the association between cecal microbiota and chicken growth performance. In this study, a total of 12 male and 12 female 1-day-old broiler chickens were raised for 35 days in 2 separate cages. Chickens were divided into 3 subgroups depending on body weight (low, medium, and high) by each sex. We compared chicken cecal microbiota compositions and its predictive functions by sex and body weight difference. We found that bacterial 16S rRNA genes were classified as 3 major phyla (Bacteroidetes, Firmicutes, and Proteobacteria), accounting for > 98% of the total bacterial community. The profiling of different bacterial taxa and predictive metagenome functions derived from 16S rRNA genes were performed over chicken sex and bodyweight. Male chickens were related to the enrichment of Bacteroides while female chickens were to the enrichment of Clostridium and Shigella. Male chickens with high body weight were associated with the enrichment of Faecalibacterium and Shuttleworthia. Carbohydrate and lipid metabolisms were suggested as candidate functions for weight gain in the males. This suggests that the variation of cecal bacterial communities and their functions by sex and body weight may be associated with the differences in the growth potentials of broiler chickens.
Review Of E-Beam Electrical Test Techniques
NASA Astrophysics Data System (ADS)
Hohn, Fritz J.
1987-09-01
Electron beams as a viable technique for contactless testing of electrical functions and electrical integrity of different active devices in VLSI-chips has been demonstrated over the past years. This method of testing electronic networks, most widely used in the laboratory environment, is based on an electron probe which is deflected from point to point in the network. A current of secondary electrons emitted in response to the impingement of the electron probe is converted to a signal indicating the presence of a voltage or varying potential at the different points. Voltage contrast, electron beam induced current, dual potential approach, stroboscopic techniques and other methods have been developed and are used to detect different functional failures in devices. Besides the VLSI application, the contactless testing of three dimensional conductor networks of a 10cm x 10cm x .8cm multilayer ceramic module poses a different and new application for the electron beam test technique. A dual potential electron beam test system allows to generate electron beam induced voltage contrast. The same system at a different potential is used to detect this voltage contrast over the large area without moving the substrate and thus test for the electrical integrity of the networks. Less attention in most of the applications has been paid to the electron optical environment, mostly SEM's were upgraded or converted to do the job of a "voltage contrast" machine. This by no means will satisfy all requirements and more thoughts have to be given to aspects such as: low voltage electron guns: thermal emitter, Schottky emitter, field emitter, low voltage electron optics, two lens systems, different means of detection, signal processing - storage and others. This paper will review available E-beam test techniques, specific applications and some critical components.
Life Outside the Golden Window: Statistical Angles on the Signal-to-Noise Problem
NASA Astrophysics Data System (ADS)
Wagman, Michael
2018-03-01
Lattice QCD simulations of multi-baryon correlation functions can predict the structure and reactions of nuclei without encountering the baryon chemical potential sign problem. However, they suffer from a signal-to-noise problem where Monte Carlo estimates of observables have quantum fluctuations that are exponentially larger than their average values. Recent lattice QCD results demonstrate that the complex phase of baryon correlations functions relates the baryon signal-to-noise problem to a sign problem and exhibits unexpected statistical behavior resembling a heavy-tailed random walk on the unit circle. Estimators based on differences of correlation function phases evaluated at different Euclidean times are discussed that avoid the usual signal-to-noise problem, instead facing a signal-to-noise problem as the time interval associated with the phase difference is increased, and allow hadronic observables to be determined from arbitrarily large-time correlation functions.
Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.
2017-12-01
Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.
Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.
2014-01-01
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574
Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus
Hamilton, Gillian; Killick, Richard; Lambert, Jean-Charles; Amouyel, Philippe; Carrasquillo, Minerva M.; Pankratz, V. Shane; Graff-Radford, Neill R.; Dickson, Dennis W.; Petersen, Ronald C.; Younkin, Steven G.; Powell, John F.; Wade-Martins, Richard
2013-01-01
Nicastrin (NCSTN) is a component of the γ-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn−/−) cells and clonal NCSTN-BAC+/Ncstn−/− cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued γ-secretase activity and amyloid beta (Aβ) production in NCSTN-BAC+/Ncstn−/− lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease. PMID:22405046
Crivillers, N; Liscio, A; Di Stasio, F; Van Dyck, C; Osella, S; Cornil, D; Mian, S; Lazzerini, G M; Fenwick, O; Orgiu, E; Reinders, F; Braun, S; Fahlman, M; Mayor, M; Cornil, J; Palermo, V; Cacialli, F; Samorì, P
2011-08-28
Responsive monolayers are key building blocks for future applications in organic and molecular electronics in particular because they hold potential for tuning the physico-chemical properties of interfaces, including their energetics. Here we study a photochromic SAM based on a conjugated azobenzene derivative and its influence on the gold work function (Φ(Au)) when chemisorbed on its surface. In particular we show that the Φ(Au) can be modulated with external stimuli by controlling the azobenzene trans/cis isomerization process. This phenomenon is characterized experimentally by four different techniques, kelvin probe, kelvin probe force microscopy, electroabsorption spectroscopy and ultraviolet photoelectron spectroscopy. The use of different techniques implies exposing the SAM to different measurement conditions and different preparation methods, which, remarkably, do not alter the observed work function change (Φ(trans)-Φ(cis)). Theoretical calculations provided a complementary insight crucial to attain a deeper knowledge on the origin of the work function photo-modulation.
A functional U-statistic method for association analysis of sequencing data.
Jadhav, Sneha; Tong, Xiaoran; Lu, Qing
2017-11-01
Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.
Ylitalo, Kelly R.; Herman, William H.; Harlow, Siobán D.
2013-01-01
Peripheral neuropathy is underappreciated as a potential cause of functional limitations. In the present article, we assessed the cross-sectional association between peripheral neuropathy and physical functioning and how the longitudinal association between age and functioning differed by neuropathy status. Physical functioning was measured in 1996–2008 using timed performances on stair-climb, walking, sit-to-stand, and balance tests at the Michigan site of the Study of Women's Health Across the Nation, a population-based cohort study of women at midlife (n = 396). Peripheral neuropathy was measured in 2008 and defined as having an abnormal monofilament test result or 4 or more symptoms. We used linear mixed models to determine whether trajectories of physical functioning differed by prevalent neuropathy status. Overall, 27.8% of the women had neuropathy. Stair-climb time differed by neuropathy status (P = 0.04), and for every 1-year increase in age, women with neuropathy had a 1.82% (95% confidence interval: 1.42, 2.21) increase compared with a 0.95% (95% confidence interval: 0.71, 1.20) increase for women without neuropathy. Sit-to-stand time differed by neuropathy status (P = 0.01), but the rate of change did not differ. No differences between neuropathy groups were observed for the walk test. For some performance-based tasks, poor functioning was maintained or exacerbated for women who had prevalent neuropathy. Peripheral neuropathy may play a role in physical functioning limitations and future disability. PMID:23524038
Leonard, Anissa; Lebecque, Patrick; Dingemanse, Jasper; Leal, Teresinha
2012-05-01
Preclinical data suggest that miglustat could restore the function of the cystic fibrosis transmembrane conductance regulator gene in cystic fibrosis cells. Single-center, randomized, double-blind, placebo-controlled, crossover Phase II study in 11 patients (mean±SD age, 26.3±7.7 years) homozygous for the F508del mutation received oral miglustat 200 mgt.i.d. or placebo for two 8-day cycles separated by a 14-day washout period. The primary endpoint was the change in total chloride secretion (TCS) assessed by nasal potential difference. No statistically significant changes in TCS, sweat chloride values or FEV(1) were detected. Pharmacokinetic and safety were similar to those observed in patients with other diseases exposed to miglustat. There was no evidence of a treatment effect on any nasal potential difference variable. Further studies with miglustat need to adequately address criteria for assessment of nasal potential difference. Copyright © 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Qin, Sharon Q; Kusuma, Gina D; Al-Sowayan, Batla; Pace, Rishika A; Isenmann, Sandra; Pertile, Mark D; Gronthos, Stan; Abumaree, Mohamed H; Brennecke, Shaun P; Kalionis, Bill
2016-03-01
Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Andrews, Casey T; Elcock, Adrian H
2014-11-11
We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions-which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)-quantitatively reproduced all of the "target" MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic ( PLoS Comput. Biol. 2014 , 5 , e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP's nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins.
The electrostatics of a dusty plasma
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Mendis, D. A.; Northrop, T. G.
1986-01-01
The potential distribution in a plasma containing dust grains were derived where the Debye length can be larger or smaller than the average intergrain spacing. Three models were treated for the grain-plasma system, with the assumption that the system of dust and plasma is charge-neutral: a permeable grain model, an impermeable grain model, and a capacitor model that does not require the nearest neighbor approximation of the other two models. A gauge-invariant form of Poisson's equation was used which is linearized about the average potential in the system. The charging currents to a grain are functions of the difference between the grain potential and this average potential. Expressions were obtained for the equilibrium potential of the grain and for the gauge-invariant capacitance between the grain and the plasma. The charge on a grain is determined by the product of this capacitance and the grain-plasma potential difference.
Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi
2016-01-01
NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405
Dynamics in entangled polyethylene melts using coarse-grained models
NASA Astrophysics Data System (ADS)
Peters, Brandon L.; Grest, Gary S.; Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora
Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion on multiple length scales. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using polyethylene (PE) as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion (iBi) with 2-6 methyl groups per CG bead from all fully atomistic melt simulations for short chains. While the iBi methods produces non-bonded potentials which give excellent agreement for the atomistic and CG pair correlation functions, the pressure P = 100-500MPa for the CG model. Correcting for potential so P 0 leads to non-bonded models with slightly smaller effective diameter and much deeper minimum. However, both the pressure and non-pressure corrected CG models give similar results for mean squared displacement (MSD) and the stress auto correlation function G(t) for PE melts above the melting point. The time rescaling factor between CG and atomistic models is found to be nearly the same for both CG models. Transferability of potential for different temperatures was tested by comparing the MSD and G(t) for potentials generated at different temperatures.
Rossmassler, Karen; Dietrich, Carsten; Thompson, Claire; Mikaelyan, Aram; Nonoh, James O; Scheffrahn, Rudolf H; Sillam-Dussès, David; Brune, Andreas
2015-11-26
Termites are important contributors to carbon and nitrogen cycling in tropical ecosystems. Higher termites digest lignocellulose in various stages of humification with the help of an entirely prokaryotic microbiota housed in their compartmented intestinal tract. Previous studies revealed fundamental differences in community structure between compartments, but the functional roles of individual lineages in symbiotic digestion are mostly unknown. Here, we conducted a highly resolved analysis of the gut microbiota in six species of higher termites that feed on plant material at different levels of humification. Combining amplicon sequencing and metagenomics, we assessed similarities in community structure and functional potential between the major hindgut compartments (P1, P3, and P4). Cluster analysis of the relative abundances of orthologous gene clusters (COGs) revealed high similarities among wood- and litter-feeding termites and strong differences to humivorous species. However, abundance estimates of bacterial phyla based on 16S rRNA genes greatly differed from those based on protein-coding genes. Community structure and functional potential of the microbiota in individual gut compartments are clearly driven by the digestive strategy of the host. The metagenomics libraries obtained in this study provide the basis for future studies that elucidate the fundamental differences in the symbiont-mediated breakdown of lignocellulose and humus by termites of different feeding groups. The high proportion of uncultured bacterial lineages in all samples calls for a reference-independent approach for the correct taxonomic assignment of protein-coding genes.
NASA Astrophysics Data System (ADS)
Lee, Jaewon; Kim, Kyung-Hyun; Chung, Chin-Wook
2017-02-01
The remote plasma has been generally used as the auxiliary plasma source for indirect plasma processes such as cleaning or ashing. When tandem plasma sources that contain main and remote plasma sources are discharged, the main plasma is affected by the remote plasma and vice versa. Charged particles can move between two chambers due to the potential difference between the two plasmas. For this reason, the electron energy possibility function of the main plasma can be controlled by adjusting the remote plasma state. In our study, low energy electrons in the main plasma are effectively heated with varying remote plasma powers, and high energy electrons which overcome potential differences between two plasmas—are exchanged with no remarkable change in the plasma density and the effective electron temperature.
Chemical Functionalization of Graphene Family Members
NASA Astrophysics Data System (ADS)
Vacchi, Isabella Anna; Ménard-Moyon, Cécilia; Bianco, Alberto
2017-01-01
Thanks to their outstanding physicochemical properties, graphene and its derivatives are interesting nanomaterials with a high potential in several fields. Graphene, graphene oxide, and reduced graphene oxide, however, differ partially in their characteristics due to their diverse surface composition. Those differences influence the chemical reactivity of these materials. In the following chapter the reactivity and main functionalization reactions performed on graphene, graphene oxide, and reduced graphene oxide are discussed. A part is also dedicated to the main analytical techniques used for characterization of these materials. Functionalization of graphene and its derivatives is highly important to modulate their characteristics and design graphene-based conjugates with novel properties. Functionalization can be covalent by forming strong and stable bonds with the graphene surface, or non-covalent via π-π, electrostatic, hydrophobic, and/or van der Waals interactions. Both types of functionalization are currently exploited.
Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth
Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir
2009-01-01
We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241
Freezing of simple systems using density functional theory
NASA Astrophysics Data System (ADS)
de Kuijper, A.; Vos, W. L.; Barrat, J.-L.; Hansen, J.-P.; Schouten, J. A.
1990-10-01
Density functional theory (DFT) has been applied to the study of the fluid-solid transition in systems with realistic potentials (soft cores and attractive forces): the purely repulsive WCA Lennard-Jones reference potential (LJT), the full Lennard-Jones potential (LJ) and the exponential-6 potential appropriate for helium and hydrogen. Three different DFT formalisms were used: the formulation of Haymet and Oxtoby (HO) and the new theories of Denton and Ashcroft (MWDA) and of Baus (MELA). The results for the melting pressure are compared with recent simulation and experimental data. The results of the HO version are always too high, the deviation increasing when going from the repulsive Lennard-Jones to the exponential-6 potential of H2. The MWDA gives too low results for the repulsive Lennard-Jones potential. At low temperatures, it fails for the full LJ potential while at high temperatures it is in good agreement. Including the attraction as a mean-field correction gives good results also for low temperatures. The MWDA results are too high for the exponential-6 potentials. The MELA fails completely for the LJT potential and the hydrogen exponential-6 potential, since it does not give a stable solid phase.
He, Yong; Gao, Yang; Zhang, Cuiping; Chen, Chuansheng; Bi, Suyu; Yang, Pin; Wang, Yiwen; Wang, Wenjing
2017-01-01
Chinese calligraphic handwriting (CCH) is a traditional art form that requires high levels of concentration and motor control. Previous research has linked short-term training in CCH to improvements in attention and memory. Little is known about the potential impacts of long-term CCH practice on a broader array of executive functions and their potential neural substrates. In this cross-sectional study, we recruited 36 practitioners with at least 5 years of CCH experience and 50 control subjects with no more than one month of CCH practice and investigated their differences in the three components of executive functions (i.e., shifting, updating, and inhibition). Valid resting-state fMRI data were collected from 31 CCH and 40 control participants. Compared with the controls, CCH individuals showed better updating (as measured by the Corsi Block Test) and inhibition (as measured by the Stroop Word-Color Test), but the two groups did not differ in shifting (as measured by a cue-target task). The CCH group showed stronger resting-state functional connectivity (RSFC) than the control group in brain areas involved in updating and inhibition. These results suggested that long-term CCH training may be associated with improvements in specific aspects of executive functions and strengthened neural networks in related brain regions. PMID:28129407
Newtonian cell interactions shape natural killer cell education.
Goodridge, Jodie P; Önfelt, Björn; Malmberg, Karl-Johan
2015-09-01
Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self-specific receptors appear not only to suppress self-reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non-cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.
Chen, Wen; He, Yong; Gao, Yang; Zhang, Cuiping; Chen, Chuansheng; Bi, Suyu; Yang, Pin; Wang, Yiwen; Wang, Wenjing
2017-01-01
Chinese calligraphic handwriting (CCH) is a traditional art form that requires high levels of concentration and motor control. Previous research has linked short-term training in CCH to improvements in attention and memory. Little is known about the potential impacts of long-term CCH practice on a broader array of executive functions and their potential neural substrates. In this cross-sectional study, we recruited 36 practitioners with at least 5 years of CCH experience and 50 control subjects with no more than one month of CCH practice and investigated their differences in the three components of executive functions (i.e., shifting, updating, and inhibition). Valid resting-state fMRI data were collected from 31 CCH and 40 control participants. Compared with the controls, CCH individuals showed better updating (as measured by the Corsi Block Test) and inhibition (as measured by the Stroop Word-Color Test), but the two groups did not differ in shifting (as measured by a cue-target task). The CCH group showed stronger resting-state functional connectivity (RSFC) than the control group in brain areas involved in updating and inhibition. These results suggested that long-term CCH training may be associated with improvements in specific aspects of executive functions and strengthened neural networks in related brain regions.
Morton, Heather; Gorzalka, Boris B
2013-11-01
The purpose of this study was to investigate the sexual beliefs of female undergraduates, as well as the thoughts they experience during sexual experiences. The study aimed to determine potential differences in these variables between East Asian-Canadians and Euro-Canadians, as well as the influence of acculturation on these variables. In addition, the relationships between sexual beliefs, automatic thoughts, and specific aspects of sexual functioning were examined. Euro-Canadian (n = 77) and East Asian-Canadian (n = 123) undergraduate women completed the Sexual Dysfunctional Beliefs Questionnaire, the Sexual Modes Questionnaire, the Female Sexual Function Index, and the Vancouver Index of Acculturation. East Asian women endorsed almost all sexual beliefs assessed in this study more than did Euro-Canadian women, and endorsement of these beliefs was associated with acculturation. In addition, East Asian-Canadian and Euro-Canadian women differed in the frequency of experiencing negative automatic thoughts. Results also revealed associations between difficulties in sexual functioning, and both sexual beliefs and automatic thoughts. Together, these results provide preliminary support for the hypothesis that differences in cognitive aspects of sexuality may underlie the differences in sexual functioning previously observed between these two groups.
Mitochondrial abnormalities in Alzheimer’s disease: Possible targets for therapeutic intervention
Silva, Diana F.; Selfridge, J. Eva; Lu, Jianghua; Lezi, E; Cardoso, Sandra M.; Swerdlow, Russell H.
2013-01-01
Mitochondria from persons with Alzheimer’s disease (AD) differ from those of age-matched, control subjects. Differences in mitochondrial morphology and function are well-documented, and are not brain-limited. Some of these differences are present during all stages of AD, and are even seen in individuals who are without AD symptoms and signs but who have an increased risk of developing AD. This chapter considers the status of mitochondria in AD subjects, the potential basis for AD subject mitochondrial perturbations, and the implications of these perturbations. Data from multiple lines of investigation, including epidemiologic, biochemical, molecular, and cytoplasmic hybrid studies are reviewed. The possibility that mitochondria could potentially constitute a reasonable AD therapeutic target is discussed, as are several potential mitochondrial medicine treatment strategies. PMID:22840745
Measurements of the fundamental thermodynamic parameters of Li/BCX and Li/SOCl2 cells
NASA Technical Reports Server (NTRS)
Kalu, E. E.; White, R. E.; Darcy, E. C.
1992-01-01
Two experimental techniques - equilibrium or reversible cell discharge and measurement of open circuit potential as a function of temperature - are used to determine the thermodynamic data needed to estimate the heat generation characteristics of Li/BCX and Li/SOCl2 cells. The results obtained showed that the reversible cell potential, the temperature dependence of the reversible cell potential, and the thermoneutral potential of the BCX cell were 3.74 V, -0.857 +/- 0.198 mV/K, and 3.994 +/- 0.0603 V, respectively. The respective values obtained for the Li/SOCl2 cell were 3.67 V, -0.776 +/- 0.255 mV/K, and 3.893 +/- 0.0776 V. The difference between the thermoneutral potential of Li/BCX and Li/SCl2 cells is attributable to the difference in their electroactive components.
Park, Ji Eun; Park, Bumwoo; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun
2017-01-01
Objective To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Materials and Methods Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Results Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Conclusion Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease. PMID:29089831
Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc
2013-02-15
The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. Copyright © 2012 Elsevier B.V. All rights reserved.
Integrating Planning and Control for Constrained Dynamical Systems
2007-12-01
38 4.2 Mapping from polygonal cell to disk . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Convergent potential ...some idealized potential function. The feedback control policies defined in this thesis are specifically designed to satisfy the low-level constraints...problem into different parts, only focusing on one part, and leaving the rest to others. Some techniques work only in ideal conditions; while others solve
Giustiniano, Mariateresa; Basso, Andrea; Mercalli, Valentina; Massarotti, Alberto; Novellino, Ettore; Tron, Gian Cesare; Zhu, Jieping
2017-03-06
The term functionalized isocyanides refers to all those isocyanides in which a neighbouring functional group can finely tune the reactivity of the isocyano group or can be exploited in post-functionalization processes. In this manuscript, we have reviewed all the isocyanides in which the pendant functional group causes either deviation from or reinforces the normal reactivity of the isocyano group and categorized them to highlight their common features and differences. An analysis of their synthetic potential and the possible unexplored directions for future research studies is also addressed.
Zhang, Manyun; Wang, Weijin; Wang, Dianjie; Heenan, Marijke; Xu, Zhihong
2018-06-17
As an anthropogenic disturbance, prescribed burning may alter the biogeochemistries of nutrients, including nitrogen (N) cycling, in forest ecosystems. This study aimed to examine the changes in N mineralization, nitrification and denitrification rates following prescribed burning in a suburban forest located in subtropical Australia and assess the interactive relationships among soil properties, functional gene abundances and N transformation rates. After a prescribed burning event, soil pH value increased, but soil labile carbon and mineral N contents decreased. Net N mineralization rates, potential nitrification rates and ammonium-oxidizing archaea and bacteria (AOA and AOB) amoA gene abundances in the soils all increased after 3 months of the prescribed burning. However, the abundances of different functional genes related to denitrification changed differently after the prescribed burning. The net N mineralization rates could be best described by soil abiotic properties, rather than functional gene abundances. In contrast, potential denitrification rates were positively related to soil nirK gene abundances. Potential nitrification rates could be influenced by both soil chemical and microbial properties. The results revealed that the prescribed burning might increase N mineralization and nitrification rates in the forest soil. Copyright © 2018 Elsevier B.V. All rights reserved.
Martinson, Guntars O; Pommerenke, Bianca; Brandt, Franziska B; Homeier, Jürgen; Burneo, Juan I; Conrad, Ralf
2018-02-01
Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that emits substantial amounts of CH 4 . Tank bromeliads growing in the forest canopy (functional type-II tank bromeliads) were found to emit more CH 4 than tank bromeliads growing on the forest floor (functional type-I tank bromeliads) but the reasons for this difference and the underlying microbial CH 4 -cycling processes have not been studied. Therefore, we characterized archaeal communities in bromeliad tanks of the two different functional types in a neotropical montane forest of southern Ecuador using terminal-restriction fragment length polymorphism (T-RFLP) and performed tank-slurry incubations to measure CH 4 production potential, stable carbon isotope fractionation and pathway of CH 4 formation. The archaeal community composition was dominated by methanogens and differed between bromeliad functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens and hydrogenotrophic methanogenesis was the dominant methanogenic pathway among all bromeliads. The relative abundance of aceticlastic Methanosaetaceae and the relative contribution of aceticlastic methanogenesis increased in type-I tank bromeliads probably due to more oxic conditions in type-I than in type-II bromeliads leading to the previously observed lower in situ CH 4 emissions from type-I tank bromeliads but to higher CH 4 production potentials in type-I tank bromeliad slurries. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun
2017-03-20
As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.
Liebergesell, Mario; Stahl, Ulrike; Freiberg, Martin; Welk, Erik; Kattge, Jens; Cornelissen, J. Hans C.; Peñuelas, Josep
2016-01-01
Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis) and the functional richness index (FRic). Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning. PMID:26848836
Ferratge, Ségolène; Ha, Guillaume; Carpentier, Gilles; Arouche, Nassim; Bascetin, Rümeyza; Muller, Laurent; Germain, Stéphane; Uzan, Georges
2017-05-01
Endothelial progenitor cells (EPCs) generate in vitro Endothelial Colony Forming Cells (ECFCs) combining features of endothelial and stem/progenitor cells. Their angiogenic properties confer them a therapeutic potential for treating ischemic lesions. They may be isolated from umbilical cord blood (CB-ECFCs) or peripheral adult blood (AB-ECFCs). It is generally accepted that CB-ECFCs are more clonogenic, proliferative and angiogenic than AB-ECFCs. Nevertheless, only a few studies have focused on the functional heterogeneity of CB-ECFCs from different individuals. Moreover, AB-ECFC loss of function is yet to be precisely described. We have focused on these two issues that are critical for clinical perspectives. The detailed clonogenic profile of CB-ECFCs and AB-ECFCs was obtained and revealed a high inter individual heterogeneity and the absence of correlation with age. Most CB-ECFCs yielded initial colonies and had functional properties similar to those of AB-ECFCs. Conversely, a high clonogenicity was associated with an enhanced proliferative and angiogenic potential and stemness gene overexpression, confirming that immaturity, lost by AB-ECFCs, was a prerequisite to functionality. We thus demonstrated the importance of selecting CB-ECFCs according to specific criteria, and we propose using the initial clonogenicity as a relevant marker of their potential efficacy on vascular repair. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
One gravitational potential or two? Forecasts and tests.
Bertschinger, Edmund
2011-12-28
The metric of a perturbed Robertson-Walker space-time is characterized by three functions: a scale-factor giving the expansion history and two potentials that generalize the single potential of Newtonian gravity. The Newtonian potential induces peculiar velocities and, from these, the growth of matter fluctuations. Massless particles respond equally to the Newtonian potential and to a curvature potential. The difference of the two potentials, called the gravitational slip, is predicted to be very small in general relativity, but can be substantial in modified gravity theories. The two potentials can be measured, and gravity tested on cosmological scales, by combining weak gravitational lensing or the integrated Sachs-Wolfe effect with galaxy peculiar velocities or clustering.
A multiple index integrating different levels of organization.
Cortes, Rui; Hughes, Samantha; Coimbra, Ana; Monteiro, Sandra; Pereira, Vítor; Lopes, Marisa; Pereira, Sandra; Pinto, Ana; Sampaio, Ana; Santos, Cátia; Carrola, João; de Jesus, Joaquim; Varandas, Simone
2016-10-01
Many methods in freshwater biomonitoring tend to be restricted to a few levels of biological organization, limiting the potential spectrum of measurable of cause-effect responses to different anthropogenic impacts. We combined distinct organisational levels, covering biological biomarkers (histopathological and biochemical reactions in liver and fish gills), community based bioindicators (fish guilds, invertebrate metrics/traits and chironomid pupal exuviae) and ecosystem functional indicators (decomposition rates) to assess ecological status at designated Water Framework Directive monitoring sites, covering a gradient of human impact across several rivers in northern Portugal. We used Random Forest to rank the variables that contributed more significantly to successfully predict the different classes of ecological status and also to provide specific cut levels to discriminate each WFD class based on reference condition. A total of 59 Biological Quality Elements and functional indicators were determined using this procedure and subsequently applied to develop the integrated Multiple Ecological Level Index (MELI Index), a potentially powerful bioassessment tool. Copyright © 2016 Elsevier Inc. All rights reserved.
Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio
2017-09-12
Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.
Welberry Smith, Matthew P; Zougman, Alexandre; Cairns, David A; Wilson, Michelle; Wind, Tobias; Wood, Steven L; Thompson, Douglas; Messenger, Michael P; Mooney, Andrew; Selby, Peter J; Lewington, Andrew J P; Banks, Rosamonde E
2013-01-01
Early identification and prognostic stratification of delayed graft function following renal transplantation has significant potential to improve outcome. Mass spectrometry analysis of serum samples, before and on day 2 post transplant from five patients with delayed graft function and five with an uncomplicated transplant, identified aminoacylase-1 (ACY-1) as a potential outcome biomarker. Following assay development, analysis of longitudinal samples from an initial validation cohort of 55 patients confirmed that the ACY-1 level on day 1 or 2 was a moderate predictor of delayed graft function, similar to serum creatinine, complementing the strongest predictor cystatin C. A further validation cohort of 194 patients confirmed this association with area under ROC curves (95% CI) for day 1 serum (138 patients) of 0.74 (0.67–0.85) for ACY-1, 0.9 (0.84–0.95) for cystatin C, and 0.93 (0.88–0.97) for both combined. Significant differences in serum ACY-1 levels were apparent between delayed, slow, and immediate graft function. Analysis of long-term follow-up for 54 patients with delayed graft function showed a highly significant association between day 1 or 3 serum ACY-1 and dialysis-free survival, mainly associated with the donor–brain–dead transplant type. Thus, proteomic analysis provides novel insights into the potential clinical utility of serum ACY-1 levels immediately post transplantation, enabling subdivision of patients with delayed graft function in terms of long-term outcome. Our study requires independent confirmation. PMID:23739232
NASA Astrophysics Data System (ADS)
Koning, Jesper; Koga, Kenichiro; Indekeu, Joseph. O.
2017-02-01
We calculate the efficiency at maximum power (EMP) of an isothermal chemical cycle in which particle uptake occurs at a fixed chemical potential but particle release takes place at varying chemical potential. We obtain the EMP as a function of Δμ/ kT, where Δμ is the difference between the highest and lowest reservoir chemical potentials and T is the absolute temperature. In the linear response limit, Δμ ≪ kT, the EMP tends to the expected universal value 1/2.
Uroz, Stéphane; Ioannidis, Panos; Lengelle, Juliette; Cébron, Aurélie; Morin, Emmanuelle; Buée, Marc; Martin, Francis
2013-01-01
In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France). The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource availability impact the functional diversity and to a lesser extent the taxonomic diversity of the bacterial communities. PMID:23418476
Changes in event-related potential functional networks predict traumatic brain injury in piglets.
Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S
2018-06-01
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Joshi, Ankur; Middleton, Jason W.; Anderson, Charles T.; Borges, Katharine; Suter, Benjamin A.; Shepherd, Gordon M. G.
2015-01-01
Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input–output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input–output functions. PMID:25698747
Sequential Release of Proteins from Structured Multishell Microcapsules.
Shimanovich, Ulyana; Michaels, Thomas C T; De Genst, Erwin; Matak-Vinkovic, Dijana; Dobson, Christopher M; Knowles, Tuomas P J
2017-10-09
In nature, a wide range of functional materials is based on proteins. Increasing attention is also turning to the use of proteins as artificial biomaterials in the form of films, gels, particles, and fibrils that offer great potential for applications in areas ranging from molecular medicine to materials science. To date, however, most such applications have been limited to single component materials despite the fact that their natural analogues are composed of multiple types of proteins with a variety of functionalities that are coassembled in a highly organized manner on the micrometer scale, a process that is currently challenging to achieve in the laboratory. Here, we demonstrate the fabrication of multicomponent protein microcapsules where the different components are positioned in a controlled manner. We use molecular self-assembly to generate multicomponent structures on the nanometer scale and droplet microfluidics to bring together the different components on the micrometer scale. Using this approach, we synthesize a wide range of multiprotein microcapsules containing three well-characterized proteins: glucagon, insulin, and lysozyme. The localization of each protein component in multishell microcapsules has been detected by labeling protein molecules with different fluorophores, and the final three-dimensional microcapsule structure has been resolved by using confocal microscopy together with image analysis techniques. In addition, we show that these structures can be used to tailor the release of such functional proteins in a sequential manner. Moreover, our observations demonstrate that the protein release mechanism from multishell capsules is driven by the kinetic control of mass transport of the cargo and by the dissolution of the shells. The ability to generate artificial materials that incorporate a variety of different proteins with distinct functionalities increases the breadth of the potential applications of artificial protein-based materials and provides opportunities to design more refined functional protein delivery systems.
NASA Astrophysics Data System (ADS)
Gadeken, K.; Dorgan, K. M.; Moore, J.; Berke, S. K.
2016-02-01
Evolutionary relationships may shed light on observed patterns of diversity and functional traits when viewed through the lens of phylogeny. The potential for phylogenetic information to be used to explain patterns in community structure, such as niche partitioning and responses to stress, is extensive. Differential distribution of related species with similar functional traits suggests niche partitioning, and local redundancy in functional traits may indicate the potential for interspecific competition. In this study, we investigated phylogenetic and functional diversity as a function of habitat for sites with varying levels of oil contamination in the Northern Gulf of Mexico. Our study was conducted in a shallow benthic community at the Chandeleur Islands, a group of uninhabited barrier islands. Infauna were sampled from seagrass (Halodule wrightii) and bare sediment at three sites along the island chain that experienced variable levels of oil impact from the Deepwater Horizon oil spill. Individuals were preserved and 18S and COI genes sequenced, and a phylogenetic tree was constructed of the local community using maximum likelihood. Phylogenetic diversity and evenness were quantified. Ecologically important functional traits were then compiled into respective distance matrices, evaluated through different functional diversity indices, and assessed for correlation with the phylogeny. This integration of functional and phylogenetic diversity has the potential to provide greater insight into factors driving community structure than either metric alone. Determining relevant metrics of diversity is critical to understanding the ecological effects of major disturbances such as oil spills.
Shi, Pujie; Wang, Qun; Yu, Cuiping; Fan, Fengjiao; Liu, Meng; Tu, Maolin; Lu, Weihong; Du, Ming
2017-07-01
Lactoferrin (LF) has been recently recognized as a promising new novel bone growth factor for the beneficial effects on bone cells and promotion of bone growth. Currently, it has been attracted wide attention in bone regeneration as functional food additives or a potential bioactive protein in bone tissue engineering. The present study investigated the possibility that hydroxyapatite (HAP) particles, a widely used bone substitute material for high biocompatibility and osteoconductivity, functionalized with lactoferrin as a composite material are applied to bone tissue engineering. Two kinds of hydroxyapatite samples with different sizes, including nanorods and microspheres particles, were functionalized with lactoferrin molecules, respectively. A detailed characterization of as-prepared HAP-LF complex is presented, combining thermal gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). Zeta potential and the analysis of electrostatic surface potential of lactoferrin were carried to reveal the mechanism of adsorption. The effects of HAP-LF complex on MC3T3-E1 osteoblast proliferation and morphology were systematically evaluated at different culture time. Interestingly, results showed that cell viability of HAP-LF group was significantly higher than HAP group indicating that the HAP-LF can improve the biocompatibility of HAP, which mainly originated from a combination of HAP-LF interaction. These results indicated that hydroxyapatite particles can work as a controlled releasing carrier of lactoferrin successfully, and lactoferrin showed better potentiality on using in the field of bone regeneration by coupling with hydroxyapatite. This study would provide a new biomaterial and might offer a new insight for enhancement of bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Microbiome Analysis of Stool Samples from African Americans with Colon Polyps
Brim, Hassan; Yooseph, Shibu; Zoetendal, Erwin G.; Lee, Edward; Torralbo, Manolito; Laiyemo, Adeyinka O.; Shokrani, Babak; Nelson, Karen; Ashktorab, Hassan
2013-01-01
Background Colonic polyps are common tumors occurring in ~50% of Western populations with ~10% risk of malignant progression. Dietary agents have been considered the primary environmental exposure to promote colorectal cancer (CRC) development. However, the colonic mucosa is permanently in contact with the microbiota and its metabolic products including toxins that also have the potential to trigger oncogenic transformation. Aim To analyze fecal DNA for microbiota composition and functional potential in African Americans with pre-neoplastic lesions. Materials & Methods We analyzed the bacterial composition of stool samples from 6 healthy individuals and 6 patients with colon polyps using 16S ribosomal RNA-based phylogenetic microarray; the Human intestinal Tract Chip (HITChip) and 16S rRNA gene barcoded 454 pyrosequencing. The functional potential was determined by sequence-based metagenomics using 454 pyrosequencing. Results Fecal microbiota profiling of samples from the healthy and polyp patients using both a phylogenetic microarraying (HITChip) and barcoded 454 pyrosequencing generated similar results. A distinction between both sets of samples was only obtained when the analysis was performed at the sub-genus level. Most of the species leading to the dissociation were from the Bacteroides group. The metagenomic analysis did not reveal major differences in bacterial gene prevalence/abundances between the two groups even when the analysis and comparisons were restricted to available Bacteroides genomes. Conclusion This study reveals that at the pre-neoplastic stages, there is a trend showing microbiota changes between healthy and colon polyp patients at the sub-genus level. These differences were not reflected at the genome/functions levels. Bacteria and associated functions within the Bacteroides group need to be further analyzed and dissected to pinpoint potential actors in the early colon oncogenic transformation in a large sample size. PMID:24376500
The Role of Aquaporins in Ocular Lens Homeostasis
Schey, Kevin L.; Petrova, Rosica S.; Gletten, Romell B.; Donaldson, Paul J.
2017-01-01
Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required. PMID:29231874
Todt, Ingo; Basta, Dietmar; Ernst, Arne
2008-01-01
To investigate the impact of different cochleostomy techniques on vestibular receptor integrity and vertigo after cochlear implantation. Retrospective cohort study. A total of 62 patients (17 to 84 years of age) underwent implantation via an anterior or round window insertion approach. Two groups of cochlear implant patients were compared with respect to their pre- and postoperative vestibular function and the occurrence of postoperative vertigo. The data were related to the different cochleostomy techniques. The patients were tested by a questionnaire (dizziness handicap inventory, DIH), caloric irrigation (vestibulo-ocular reflex, VOR) for the function of the lateral SCC and by vestibular evoked myogenic potential (VEMP) recordings for saccular function. Significant differences of postoperative VEMP responses (50% vs 13%) and electromystagmography (ENG) results (42.9% vs 9.4%) were found with respect to the 2 different insertion techniques. The number of patients with vertigo after the surgery as evidenced by DHI (23% vs 12.5%) was significantly different. The used round window approach for electrode insertion should be preferred to decrease the risk of loss of vestibular function and the occurrence of vertigo.
Increase in stability of cellulase immobilized on functionalized magnetic nanospheres
NASA Astrophysics Data System (ADS)
Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi
2015-02-01
Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.
Harmonic-phase path-integral approximation of thermal quantum correlation functions
NASA Astrophysics Data System (ADS)
Robertson, Christopher; Habershon, Scott
2018-03-01
We present an approximation to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that approximately recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this approximation method may be extended to many-dimensional systems.
Cellular Mechanisms of Somatic Stem Cell Aging
Jung, Yunjoon
2014-01-01
Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814
Klumpers, Floris; Heitland, Ivo; Oosting, Ronald S; Kenemans, J Leon; Baas, Johanna M P
2012-02-01
The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability in the basic reflex physiology of defense. Healthy subjects (N=82) were presented with clearly instructed cues of shock threat and safety to induce robust anxiety reactions. Subjects carrying at least one short allele for the 5-HTTLPR polymorphism showed stronger fear-potentiated startle compared to long allele homozygotes. However, short allele carriers showed no deficit in the downregulation of fear after the offset of threat. These results suggest that natural variation in SERT function affects the magnitude of defensive reactions while not affecting the capacity for fear regulation. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shchekin, Alexander K.; Lebedeva, Tatiana S.
2017-03-01
A numerical study of size-dependent effects in the thermodynamics of a small droplet formed around a solid nanoparticle has been performed within the square-gradient density functional theory. The Lennard-Jones fluid with the Carnahan-Starling model for the hard-sphere contribution to intermolecular interaction in liquid and vapor phases and interfaces has been used for description of the condensate. The intermolecular forces between the solid core and condensate molecules have been taken into account with the help of the Lennard-Jones part of the total molecular potential of the core. The influence of the electric charge of the particle has been considered under assumption of the central Coulomb potential in the medium with dielectric permittivity depending on local condensate density. The condensate density profiles and equimolecular radii for equilibrium droplets at different values of the condensate chemical potential have been computed in the cases of an uncharged solid core with the molecular potential, a charged core without molecular potential, and a core with joint action of the Coulomb and molecular potentials. The appearance of stable equilibrium droplets even in the absence of the electric charge has been commented. As a next step, the capillary, disjoining pressure, and electrostatic contributions to the condensate chemical potential have been considered and compared with the predictions of classical thermodynamics in a wide range of values of the droplet and the particle equimolecular radii. With the help of the found dependence of the condensate chemical potential in droplet on the droplet size, the activation barrier for nucleation on uncharged and charged particles has been computed as a function of the vapor supersaturation. Finally, the work of droplet formation and the work of wetting the particle have been found as functions of the droplet size.
Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong
2015-03-20
Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.
Naito, M; Fuchikami, N; Sasaki, N; Kambara, T
1991-01-01
The dynamic response of the lipid bilayer membrane is studied theoretically using a microscopic model of the membrane. The time courses of membrane potential variations due to monovalent salt stimulation are calculated explicitly under various conditions. A set of equations describing the time evolution of membrane surface potential and diffusion potential is derived and solved numerically. It is shown that a rather simple membrane such as lipid bilayer has functions capable of reproducing the following properties of dynamic response observed in gustatory receptor potential. Initial transient depolarization does not occur under Ringer adaptation but does under water. It appears only for comparatively rapid flows of stimuli, the peak height of transient response is expressed by a power function of the flow rate, and the membrane potential gradually decreases after reaching its peak under long and strong stimulation. The dynamic responses in the present model arise from the differences between the time dependences in the surface potential phi s and the diffusion potential phi d across a membrane. Under salt stimulation phi d cannot immediately follow the variation in phi s because of the delay due to the charging up of membrane capacitance. It is suggested that lipid bilayer in the apical membrane is the most probable agency producing the initial phasic response to the stimulation. PMID:1873461
Du, Q; Mezey, P G
1998-09-01
In this research we test and compare three possible atom-based screening functions used in the heuristic molecular lipophilicity potential (HMLP). Screening function 1 is a power distance-dependent function, bi/[formula: see text] Ri-r [formula: see text] gamma, screening function 2 is an exponential distance-dependent function, bi exp(-[formula: see text] Ri-r [formula: see text]/d0), and screening function 3 is a weighted distance-dependent function, sign(bi) exp[-xi [formula: see text] Ri-r [formula: see text]/magnitude of bi)]. For every screening function, the parameters (gamma, d0, and xi) are optimized using 41 common organic molecules of 4 types of compounds: aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, and aliphatic alkanes. The results of calculations show that screening function 3 cannot give chemically reasonable results, however, both the power screening function and the exponential screening function give chemically satisfactory results. There are two notable differences between screening functions 1 and 2. First, the exponential screening function has larger values in the short distance than the power screening function, therefore more influence from the nearest neighbors is involved using screening function 2 than screening function 1. Second, the power screening function has larger values in the long distance than the exponential screening function, therefore screening function 1 is effected by atoms at long distance more than screening function 2. For screening function 1, the suitable range of parameter gamma is 1.0 < gamma < 3.0, gamma = 2.3 is recommended, and gamma = 2.0 is the nearest integral value. For screening function 2, the suitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this research provides a potential tool for computer-aided three-dimensional drug design.
NASA Astrophysics Data System (ADS)
Coyle, K. O.; Konar, B.; Blanchard, A.; Highsmith, R. C.; Carroll, J.; Carroll, M.; Denisenko, S. G.; Sirenko, B. I.
2007-11-01
In the late 1950s, Soviet researchers collected benthic infaunal samples from the southeastern Bering Sea shelf. Approximately 17 years later, researchers at University of Alaska Fairbanks also sampled the region to assess infaunal biomass and abundance. Here, the two data sets were examined to document patterns and reveal any consistent differences in infaunal biomass among major feeding groups between the two time periods. No significant differences in the geometric mean biomass of all taxa pooled were indicated between the two study periods (1958-1959=49.1 g m -2; 1975-1976=60.8 g m -2; P=0.14); however, significant differences were observed for specific functional groups, namely carnivores, omnivores and surface detritivores. Of the 64 families identified from both data sets from all functional groups, 21 showed statistically significant ( P⩽0.05) differences in mean biomass. Of the 21 families showing significant differences, 19 (91%) of the families had higher mean biomass in the 1975-1976 data set. The above differences suggest a trend toward higher overall infaunal biomass for specific functional groups during mid 1970s compared with the late 1950s. Temperature measurements and literature data indicate that the mid-1970s was an unusually cold period relative to the period before and after, suggesting a mechanistic link between temperature changes and infaunal biomass. Food-web relationships and ecosystem dynamics in the southeastern Bering Sea indicate that during cold periods, infaunal biomass will be elevated relative to warm periods due to elevated carbon flux to the benthos and exclusion of benthic predators on infaunal invertebrates by the cold bottom water on the shelf. As long-term observations of temperature and sea-ice cover indicate a secular warming trend on the Bering Sea shelf, the potential changes in food-web relationships could markedly alter trophic structure and energy flow to apex consumers, potentially impacting the commercial, tourist and subsistence economies.
Ayuso, Miriam; Fernández, Almudena; Núñez, Yolanda; Benítez, Rita; Isabel, Beatriz; Barragán, Carmen; Fernández, Ana Isabel; Rey, Ana Isabel; Medrano, Juan F.; Cánovas, Ángela; González-Bulnes, Antonio; López-Bote, Clemente; Ovilo, Cristina
2015-01-01
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits. PMID:26695515
NASA Technical Reports Server (NTRS)
Jekeli, C.
1979-01-01
Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Collin, H. L.; Craven, J. D.; Burch, J. L.; Winningham, J. D.
1988-01-01
The auroral electrostatic potential differences were determined from the particle distribution functions obtained nearly simultaneously above and below the auroral acceleration region by DE-1 at altitudes 9000-15,000 km and DE-2 at 400-800 km. Three independent techniques were used: (1) the peak energies of precipitating electrons observed by DE-2, (2) the widening of loss cones for upward traveling electrons observed by DE-1, and (3) the energies of upgoing ions observed by DE-1. The assumed parallel electrostatic potential difference calculated by the three methods was nearly the same. The results confirmed the hypothesis that parallel electrostatic fields of 1-10 kV potential drop at 1-2 earth radii altitude are an important source for auroral particle acceleration.
Epigenetic regulation of hematopoietic stem cell aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu; Department of Pediatrics, Harvard Medical School, Boston, MA 02115; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116
2014-12-10
Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and playmore » a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.« less
A Comparison of Japan and U.K. SF-6D Health-State Valuations Using a Non-Parametric Bayesian Method.
Kharroubi, Samer A
2015-08-01
There is interest in the extent to which valuations of health may differ between different countries and cultures, but few studies have compared preference values of health states obtained in different countries. We sought to estimate and compare two directly elicited valuations for SF-6D health states between the Japan and U.K. general adult populations using Bayesian methods. We analysed data from two SF-6D valuation studies where, using similar standard gamble protocols, values for 241 and 249 states were elicited from representative samples of the Japan and U.K. general adult populations, respectively. We estimate a function applicable across both countries that explicitly accounts for the differences between them, and is estimated using data from both countries. The results suggest that differences in SF-6D health-state valuations between the Japan and U.K. general populations are potentially important. The magnitude of these country-specific differences in health-state valuation depended, however, in a complex way on the levels of individual dimensions. The new Bayesian non-parametric method is a powerful approach for analysing data from multiple nationalities or ethnic groups, to understand the differences between them and potentially to estimate the underlying utility functions more efficiently.
Functional Rarity: The Ecology of Outliers.
Violle, Cyrille; Thuiller, Wilfried; Mouquet, Nicolas; Munoz, François; Kraft, Nathan J B; Cadotte, Marc W; Livingstone, Stuart W; Mouillot, David
2017-05-01
Rarity has been a central topic for conservation and evolutionary biologists aiming to determine the species characteristics that cause extinction risk. More recently, beyond the rarity of species, the rarity of functions or functional traits, called functional rarity, has gained momentum in helping to understand the impact of biodiversity decline on ecosystem functioning. However, a conceptual framework for defining and quantifying functional rarity is still lacking. We introduce 12 different forms of functional rarity along gradients of species scarcity and trait distinctiveness. We then highlight the potential key role of functional rarity in the long-term and large-scale maintenance of ecosystem processes, as well as the necessary linkage between functional and evolutionary rarity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chris Amemiya
2003-04-01
The goals of this project were to isolate, characterize, and sequence the Dlx3/Dlx7 bigene cluster from twelve different species of mammals. The Dlx3 and Dlx7 genes are known to encode homeobox transcription factors involved in patterning of structures in the vertebrate jaw as well as vertebrate limbs. Genomic sequences from the respective taxa will subsequently be compared in order to identify conserved non-coding sequences that are potential cis-regulatory elements. Based on the comparisons they will fashion transgenic mouse experiments to functionally test the strength of the potential cis-regulatory elements. A goal of the project is to attempt to identify thosemore » elements that may function in coordinately regulating both Dlx3 and Dlx7 functions.« less
Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation.
Fournier-Gosselin, Marie-Pierre; Lipsman, Nir; Saint-Cyr, Jean A; Hamani, Clement; Lozano, Andres M
2013-09-01
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy. © 2013 International Parkinson and Movement Disorder Society.
First principles molecular dynamics of molten NaCl
NASA Astrophysics Data System (ADS)
Galamba, N.; Costa Cabral, B. J.
2007-03-01
First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.
[Functional meat products; development and evaluation of their health-promoting properties].
Olmedilla-Alonso, Begoña; Jiménez-Colmenero, Francisco
2014-06-01
For a number of reasons, meat products are an exceptionally adequate means for introducing different bioactive compounds into the diet without modifying eating habits. In recent years, there has been a notable development of meat products designed as potentially functional foods. Within the framework of the functional food, this article provides a general view of the reasons that motivate and justify their formulation, with special emphasis on: a) aspects to be considered in their design in order to be able to make nutrition claims and statements concerning their health-promoting properties; b) the strategies employed to optimize the presence of functional ingredients, favoring the presence of beneficial bioactive compounds and limiting others with negative consequences for our health, and c) the procedures for demonstrating a relationship between the consumption of potentially functional meat products with beneficial effects on health and the way in which these studies are reflected in the literature. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Charged particle layers in the Debye limit.
Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios
2002-09-01
We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
Wang, Qi; Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka
2015-01-01
The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106
Auditory Evoked Potentials as a Function of Sleep Deprivation and Recovery Sleep
1985-09-29
present research: They relate to the effects of: a) 48-hours of sleep deprivation on endogenous event related potentials (ERPs); b) circadian rhythms on...the study were: decreases in amplitude for N2, P3 and N2P3 across the reprivation period; a circadian rhythm was apparent for both ERP recordings and...of cortical evoked response potentials (ERPs)? 2) How do circadian rhythms affect ERPS under conditions of sleep deprivation? 3) How do different
Sil, Sanchita; Chaturvedi, Deepika; Krishnappa, Keerthi B; Kumar, Srividya; Asthana, S N; Umapathy, Siva
2014-04-24
Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and ζ potential measurements.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1984-05-01
Featuring the modified hypernetted-chain (MHNC) scheme as a variational fitting procedure, we demonstrate that the accuracy of the variational perturbation theory (VPT) and of the method based on additivity of equations of state is determined by the excess entropy dependence of the bridge-function parameters [i.e., η(s) when the Percus-Yevick hard-sphere bridge functions are employed]. It is found that η(s) is nearly universal for all soft (i.e., "physical") potentials while it is distinctly different for the hard spheres, providing a graphical display of the "jump" in pair-potential space (with respect to accuracy of VPT) from "hard" to "soft" behavior. The universality of η(s) provides a local criterion for the MHNC scheme that should be useful for inverting structure-factor data in order to obtain the potential. An alternative local MHNC criterion due to Lado is rederived and extended, and it is also analyzed in light of the plot of η(s).
NASA Astrophysics Data System (ADS)
Cervellati, R.; Degli Esposti, A.; Lister, D. G.; Lopez, J. C.; Alonso, J. L.
1986-10-01
The microwave spectrum of 2,3-dihydrofuran has been reinvestigated and measurements for the ground and first five excited states of the ring puckering vibration have been extended to higher frequencies and rotational quantum numbers in order to study the vibrational dependence of the rotational and centrifugal distortion constants. The ring puckering potential function derived by Green from the far infrared spectrum does not reproduce the vibrational dependence of the rotational constants well. A slightly different potential function is derived which gives a reasonable fit both to the far infrared spectrum and the rotational constants. This changes the barrier to ring inversion from 1.00 kJ mol -1 to 1.12 kJ mol -1. The vibrational dependence of the centrifugal distortion constants is accounted for satisfactorily by the theory developed by Creswell and Mills. An attempt to reproduce the vibrational dependence of the rotational and centrifugal distortion constants using the ring puckering potential function and a simple model for this vibration has very limited success.
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric
2016-01-01
A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5–43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3–37.2°C, maximum temperatures at which the species could germinate varied from 27.7–43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop management practices. PMID:27532825
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
Boyette, Lindy-Lou; van Dam, Daniëlla; Meijer, Carin; Velthorst, Eva; Cahn, Wiepke; de Haan, Lieuwe; Kahn, René; de Haan, Lieuwe; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; Meijer, Carin; Myin-Germeys, Inez
2014-11-01
Patients with psychotic disorders who experienced childhood trauma show more social dysfunction than patients without traumatic experiences. However, this may not hold for all patients with traumatic experiences. Little is known about the potential compensating role of Five-Factor Model personality traits within this group, despite their strong predictive value for social functioning and well-being in the general population. Our sample consisted of 195 patients with psychotic disorders (74% diagnosed with schizophrenia) and 132 controls. Cluster analyses were conducted to identify and validate distinct personality profiles. General linear model analyses were conducted to examine whether patients with different profiles differed in social functioning and quality of life (QoL), while controlling for possible confounders. Mediation models were tested to assess potential causal links. In general, patients with higher levels of self-reported traumatic experiences (PT+) showed lower QoL and more social withdrawal compared with patients with lower traumatic experiences (PT-). Two clusters reflecting personality profiles were identified. PT+ with the first profile (lower neuroticism and higher extraversion, openness, agreeableness, and conscientiousness) presented higher levels of QoL and better social functioning in several areas, including less withdrawal, compared with both PT+ and PT- with the second profile. PT+ and PT- with the first personality profile did not differ in QoL and social functioning. Mediation analyses suggested that personality traits mediate the relation between traumatic experiences and QoL and social withdrawal. Our findings indicate that personality may "buffer" the impact of childhood traumatic experiences on functional outcome in patients with psychotic disorders. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Conservation of tubulin-binding sequences in TRPV1 throughout evolution.
Sardar, Puspendu; Kumar, Abhishek; Bhandari, Anita; Goswami, Chandan
2012-01-01
Transient Receptor Potential Vanilloid sub type 1 (TRPV1), commonly known as capsaicin receptor can detect multiple stimuli ranging from noxious compounds, low pH, temperature as well as electromagnetic wave at different ranges. In addition, this receptor is involved in multiple physiological and sensory processes. Therefore, functions of TRPV1 have direct influences on adaptation and further evolution also. Availability of various eukaryotic genomic sequences in public domain facilitates us in studying the molecular evolution of TRPV1 protein and the respective conservation of certain domains, motifs and interacting regions that are functionally important. Using statistical and bioinformatics tools, our analysis reveals that TRPV1 has evolved about ∼420 million years ago (MYA). Our analysis reveals that specific regions, domains and motifs of TRPV1 has gone through different selection pressure and thus have different levels of conservation. We found that among all, TRP box is the most conserved and thus have functional significance. Our results also indicate that the tubulin binding sequences (TBS) have evolutionary significance as these stretch sequences are more conserved than many other essential regions of TRPV1. The overall distribution of positively charged residues within the TBS motifs is conserved throughout evolution. In silico analysis reveals that the TBS-1 and TBS-2 of TRPV1 can form helical structures and may play important role in TRPV1 function. Our analysis identifies the regions of TRPV1, which are important for structure-function relationship. This analysis indicates that tubulin binding sequence-1 (TBS-1) near the TRP-box forms a potential helix and the tubulin interactions with TRPV1 via TBS-1 have evolutionary significance. This interaction may be required for the proper channel function and regulation and may also have significance in the context of Taxol®-induced neuropathy.
Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction
Chartoff, Elena H.; Mavrikaki, Maria
2015-01-01
Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we identify several gaps in our understanding of “if” and “how” DYN and KORs modulate addictive behavior in a sex-dependent manner. Future work may address these gaps by building on the mechanistic studies outlined in this review. Ultimately this will enable the development of novel and effective addiction treatments tailored to either males or females. PMID:26733781
Shi, Ran; Guo, Ying
2016-12-01
Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).
Brase, Gary L; Adair, Lora; Monk, Kale
2014-02-04
To the extent that sex differences are mediated by mechanisms such as sex-roles and beliefs, individual differences in these more proximate traits should account for significant portions of relevant sex differences. Differences between women and men in reactions to sexual and emotional infidelity were assessed in a large sample of participants (n = 477), and these target reactions were evaluated as a function of many potential proximate mediators (infidelity implications beliefs, gender-role beliefs, interpersonal trust, attachment style, sociosexuality, and culture of honor beliefs) and as a function of participant sex. Results found a consistent sex difference that was not mediated by any other variables, although a handful of other variables were related to male, but not female, individual differences. These findings suggest particularly promising directions for future research on integrating evolutionarily based sex differences and proximate individual differences.
Montesinos, D; Villar-Salvador, P; García-Fayos, P; Verdú, M
2012-02-01
• Differences in reproductive investment can trigger asymmetric, context-dependent, functional strategies between genders in dioecious species. However, little is known about the gender responses of dioecious species to nutrient availability. • We experimentally fertirrigated a set of male and female Juniperus thurifera trees monthly for 2 yr. Water potential, photosynthesis rate and stomatal conductance were measured monthly for 2 yr, while shoot nitrogen (N) concentration, carbon isotopic composition (δ(13) C), branch growth, trunk radial growth and reproductive investment per branch were measured yearly. • Control males had lower gas exchange rates and radial growth but greater reproductive investment and higher water use efficiency (WUE; as inferred from more positive δ(13) C values) than females. Fertirrigation did not affect water potential or WUE but genders responded differently to increased nutrient availability. The two genders similarly increased shoot N concentration when fertilized. The increase in shoot N was associated with increased photosynthesis in males but not in females, which presented consistently high photosynthetic rates across treatments. • Our results suggest that genders invest N surplus in different functions, with females presenting a long-term strategy by increasing N storage to compensate for massive reproductive masting events, while males seem to be more reactive to current nutrient availability, promoting gas-exchange capacity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Sideridis, Georgios D.; Tsaousis, Ioannis; Al Harbi, Khaleel
2016-01-01
The purpose of the present study was to relate response strategy with person ability estimates. Two behavioral strategies were examined: (a) the strategy to skip items in order to save time on timed tests, and, (b) the strategy to select two responses on an item, with the hope that one of them may be considered correct. Participants were 4,422 individuals who were administered a standardized achievement measure related to math, biology, chemistry, and physics. In the present evaluation, only the physics subscale was employed. Two analyses were conducted: (a) a person-based one to identify differences between groups and potential correlates of those differences, and, (b) a measure-based analysis in order to identify the parts of the measure that were responsible for potential group differentiation. For (a) person abilities the 2-PL model was employed and later the 3-PL and 4-PL models in order to estimate upper and lower asymptotes of person abilities. For (b) differential item functioning, differential test functioning, and differential distractor functioning were investigated. Results indicated that there were significant differences between groups with completers having the highest ability compared to both non-attempters and dual responders. There were no significant differences between no-attempters and dual responders. The present findings have implications for response strategy efficacy and measure evaluation, revision, and construction. PMID:27790174
Sideridis, Georgios D; Tsaousis, Ioannis; Al Harbi, Khaleel
2016-01-01
The purpose of the present study was to relate response strategy with person ability estimates. Two behavioral strategies were examined: (a) the strategy to skip items in order to save time on timed tests, and, (b) the strategy to select two responses on an item, with the hope that one of them may be considered correct. Participants were 4,422 individuals who were administered a standardized achievement measure related to math, biology, chemistry, and physics. In the present evaluation, only the physics subscale was employed. Two analyses were conducted: (a) a person-based one to identify differences between groups and potential correlates of those differences, and, (b) a measure-based analysis in order to identify the parts of the measure that were responsible for potential group differentiation. For (a) person abilities the 2-PL model was employed and later the 3-PL and 4-PL models in order to estimate upper and lower asymptotes of person abilities. For (b) differential item functioning, differential test functioning, and differential distractor functioning were investigated. Results indicated that there were significant differences between groups with completers having the highest ability compared to both non-attempters and dual responders. There were no significant differences between no-attempters and dual responders. The present findings have implications for response strategy efficacy and measure evaluation, revision, and construction.
Nutrient cycling Microbial Ecosystems: Assembly, Function and Targeted Design
2017-05-05
different chemical transformations, converting potentially harmful chemicals via a series of intermediates, to harmless waste products. This shuttling of...Report: Nutrient-cycling Microbial Ecosystems: Assembly, Function and Targeted Design The views, opinions and/or findings contained in this report...are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other
Does Bicarbonate Correct Coagulation Function Impaired by Acidosis in Swine?
2006-07-01
requires sufficient fibrinogen available in the circulation . At any time, fibrinogen availabil- Fig. 4. Thrombin generation kinetics at baseline (T0... circulation can potentially impact physiologic function. As the precursor in the coagulation process, fibrinogen is primarily involved in maintaining...with different proteins. It is also possible that following acidosis insult, some of the albumin loss from the circulation was compensated for by
ERIC Educational Resources Information Center
Pivik, R. T.; Andres, Aline; Badger, Thomas M.
2011-01-01
Early post-natal nutrition influences later development, but there are no studies comparing brain function in healthy infants as a function of dietary intake even though the major infant diets differ significantly in nutrient composition. We studied brain responses (event-related potentials; ERPs) to speech sounds for infants who were fed either…
ERIC Educational Resources Information Center
Moses, Tim; Miao, Jing; Dorans, Neil
2010-01-01
This study compared the accuracies of four differential item functioning (DIF) estimation methods, where each method makes use of only one of the following: raw data, logistic regression, loglinear models, or kernel smoothing. The major focus was on the estimation strategies' potential for estimating score-level, conditional DIF. A secondary focus…
Beste, A; Harrison, R J; Yanai, T
2006-08-21
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.
ERIC Educational Resources Information Center
Kim, Sooyeon; Robin, Frederic
2017-01-01
In this study, we examined the potential impact of item misfit on the reported scores of an admission test from the subpopulation invariance perspective. The target population of the test consisted of 3 major subgroups with different geographic regions. We used the logistic regression function to estimate item parameters of the operational items…
ERIC Educational Resources Information Center
Yordanova, Juliana; Kolev, Vasil; Hohnsbein, Joachim; Falkenstein, Michael
2004-01-01
The objective of the present study was to identify the origin(s) of aging-related behavioral slowing in sensorimotor tasks. For this aim, event-related potentials (ERPs) were analyzed at 64 electrodes to evaluate the strength and timing of different stages of information processing in the brain. Electrophysiological induces of stimulus processing,…
Ramírez, Carolina; Romero, Jaime
2017-01-01
Seriola lalandi is an economically important species that is globally distributed in temperate and subtropical marine waters. Aquaculture production of this species has had problems associated with intensive fish farming, such as disease outbreaks or nutritional deficiencies causing high mortalities. Intestinal microbiota has been involved in many processes that benefit the host, such as disease control, stimulation of the immune response, and the promotion of nutrient metabolism, among others. However, little is known about the potential functionality of the microbiota and the differences in the composition between wild and aquacultured fish. Here, we assayed the V4-region of the 16S rRNA gene using high-throughput sequencing. Our results showed that there are significant differences between S. lalandi of wild and aquaculture origin (ANOSIM and PERMANOVA, P < 0.05). At the genus level, a total of 13 genera were differentially represented between the two groups, all of which have been described as beneficial microorganisms that have an antagonistic effect against pathogenic bacteria, improve immunological parameters and growth performance, and contribute to nutrition. Additionally, the changes in the presumptive functions of the intestinal microbiota of yellowtail were examined by predicting the metagenomes using PICRUSt. The most abundant functional categories were those corresponding to the metabolism of cofactors and vitamins, amino acid metabolism and carbohydrate metabolism, revealing differences in the contribution of the microbiota depending on the origin of the animals. To our knowledge, this is the first study to characterize and compare the intestinal microbiota of S. lalandi of wild and aquaculture origin using high-throughput sequencing.
Gene polymorphisms associated with functional dyspepsia.
Kourikou, Anastasia; Karamanolis, George P; Dimitriadis, George D; Triantafyllou, Konstantinos
2015-07-07
Functional dyspepsia (FD) is a constellation of functional upper abdominal complaints with poorly elucidated pathophysiology. However, there is increasing evidence that susceptibility to FD is influenced by hereditary factors. Genetic association studies in FD have examined genotypes related to gastrointestinal motility or sensation, as well as those related to inflammation or immune response. G-protein b3 subunit gene polymorphisms were first reported as being associated with FD. Thereafter, several gene polymorphisms including serotonin transporter promoter, interlukin-17F, migration inhibitory factor, cholecystocynine-1 intron 1, cyclooxygenase-1, catechol-o-methyltransferase, transient receptor potential vanilloid 1 receptor, regulated upon activation normal T cell expressed and secreted, p22PHOX, Toll like receptor 2, SCN10A, CD14 and adrenoreceptors have been investigated in relation to FD; however, the results are contradictory. Several limitations underscore the value of current studies. Among others, inconsistencies in the definitions of FD and controls, subject composition differences regarding FD subtypes, inadequate samples, geographical and ethnical differences, as well as unadjusted environmental factors. Further well-designed studies are necessary to determine how targeted genes polymorphisms, influence the clinical manifestations and potentially the therapeutic response in FD.
Comparison of main-shock and aftershock fragility curves developed for New Zealand and US buildings
Uma, S.R.; Ryu, H.; Luco, N.; Liel, A.B.; Raghunandan, M.
2011-01-01
Seismic risk assessment involves the development of fragility functions to express the relationship between ground motion intensity and damage potential. In evaluating the risk associated with the building inventory in a region, it is essential to capture 'actual' characteristics of the buildings and group them so that 'generic building types' can be generated for further analysis of their damage potential. Variations in building characteristics across regions/countries largely influence the resulting fragility functions, such that building models are unsuitable to be adopted for risk assessment in any other region where a different set of building is present. In this paper, for a given building type (represented in terms of height and structural system), typical New Zealand and US building models are considered to illustrate the differences in structural model parameters and their effects on resulting fragility functions for a set of main-shocks and aftershocks. From this study, the general conclusion is that the methodology and assumptions used to derive basic capacity curve parameters have a considerable influence on fragility curves.
Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A
2014-07-15
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
Hubig, Michael; Suchandt, Steffen; Adam, Nico
2004-10-01
Phase unwrapping (PU) represents an important step in synthetic aperture radar interferometry (InSAR) and other interferometric applications. Among the different PU methods, the so called branch-cut approaches play an important role. In 1996 M. Costantini [Proceedings of the Fringe '96 Workshop ERS SAR Interferometry (European Space Agency, Munich, 1996), pp. 261-272] proposed to transform the problem of correctly placing branch cuts into a minimum cost flow (MCF) problem. The crucial point of this new approach is to generate cost functions that represent the a priori knowledge necessary for PU. Since cost functions are derived from measured data, they are random variables. This leads to the question of MCF solution stability: How much can the cost functions be varied without changing the cheapest flow that represents the correct branch cuts? This question is partially answered: The existence of a whole linear subspace in the space of cost functions is shown; this subspace contains all cost differences by which a cost function can be changed without changing the cost difference between any two flows that are discharging any residue configuration. These cost differences are called strictly stable cost differences. For quadrangular nonclosed networks (the most important type of MCF networks for interferometric purposes) a complete classification of strictly stable cost differences is presented. Further, the role of the well-known class of node potentials in the framework of strictly stable cost differences is investigated, and information on the vector-space structure representing the MCF environment is provided.
Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition
Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P.; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J.; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R.; Andersson, Anders F.; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A. A.; Brami, Daniel; Badger, Jonathan H.; Allen, Andrew E.; Rusch, Douglas B.; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J. Craig; Bergman, Birgitta
2014-01-01
Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity. PMID:24586863
Simulation of electric double-layer capacitors: evaluation of constant potential method
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark
2014-03-01
Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.
Carp, Joshua; Fitzgerald, Kate Dimond; Taylor, Stephan F; Weissman, Daniel H
2012-01-02
In functional magnetic resonance imaging (fMRI) studies, researchers often attempt to ensure that group differences in brain activity are not confounded with group differences in mean reaction time (RT). However, even when groups are matched for performance, they may differ in terms of the RT-BOLD relationship: the degree to which brain activity varies with RT on a trial-by-trial basis. Group activation differences might therefore be influenced by group differences in the relationship between brain activity and time on task. Here, we investigated whether correcting for this potential confound alters group differences in brain activity. Specifically, we reanalyzed data from a functional MRI study of response conflict in children and adults, in which conventional analyses indicated that conflict-related activity did not differ between groups. We found that the RT-BOLD relationship was weaker in children than in adults. Consequently, after removing the effect of RT on brain activity, children exhibited greater conflict-related activity than adults in both the posterior medial prefrontal cortex and the right dorsolateral prefrontal cortex. These results identify the RT-BOLD relationship as an important potential confound in fMRI studies of group differences. They also suggest that the magnitude of the RT-BOLD relationship may be a useful biomarker of brain maturity. Copyright © 2011 Elsevier Inc. All rights reserved.
Regulation and Function of Adult Neurogenesis: From Genes to Cognition
Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.
2014-01-01
Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858
Metallo Protoporphyrin Functionalized Microelectrodes for Electrocatalytic Sensing of Nitric Oxide
Li, Chen-Zhong; Alwarappan, Subbiah; Zhang, Wenbo; Scafa, Nikki; Zhang, Xueji
2010-01-01
Nitric oxide (NO) has been considered as an important bio-regulatory molecule in the physiological process. All the existing methods often employed for NO measurement are mainly indirect and not suitable for in vivo conditions. In this paper, we report a systematic study of electrocatalytic NO reduction by comparing the redox properties of NO at carbon microelectrodes functionalized by Fe, Mn and Co protoporphyrins. The mechanisms of electrocatalytic reduction of NO by different metalloporphyrins have been proposed and compared. In addition, by varying the metallic cores of the metalloporphyrins, NO exhibits voltammograms in which the cathodic peak current occur at different potential. A comparative study on the electrochemical behavior of each of these metalloporphyrin (as a result of varying the metallic core) has been performed and a possible mechanism for the observed behavior is proposed. The results confirmed the potential applicability of using metalloporphyrins modified electrodes for voltammetric NO detection. PMID:20526418
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Lin, Min; Wan, Baikun; Zhou, Yu; Wang, Yizhong
2005-01-01
In this paper, a new method of body fat and its distribution testing is proposed based on CT image processing. As it is more sensitive to slight differences in attenuation than standard radiography, CT depicts the soft tissues with better clarity. And body fat has a distinct grayness range compared with its neighboring tissues in a CT image. An effective multi-thresholds image segmentation method based on potential function clustering is used to deal with multiple peaks in the grayness histogram of a CT image. The CT images of abdomens of 14 volunteers with different fatness are processed with the proposed method. Not only can the result of total fat area be got, but also the differentiation of subcutaneous fat from intra-abdominal fat has been identified. The results show the adaptability and stability of the proposed method, which will be a useful tool for diagnosing obesity.
Fission properties of superheavy nuclei for r -process calculations
NASA Astrophysics Data System (ADS)
Giuliani, Samuel A.; Martínez-Pinedo, Gabriel; Robledo, Luis M.
2018-03-01
We computed a new set of static fission properties suited for r -process calculations. The potential energy surfaces and collective inertias of 3640 nuclei in the superheavy region are obtained from self-consistent mean-field calculations using the Barcelona-Catania-Paris-Madrid energy density functional. The fission path is computed as a function of the quadrupole moment by minimizing the potential energy and exploring octupole and hexadecapole deformations. The spontaneous fission lifetimes are evaluated employing different schemes for the collective inertias and vibrational energy corrections. This allows us to explore the sensitivity of the lifetimes to those quantities together with the collective ground-state energy along the superheavy landscape. We computed neutron-induced stellar reaction rates relevant for r -process nucleosynthesis using the Hauser-Feshbach statistical approach and study the impact of collective inertias. The competition between different reaction channels including neutron-induced rates, spontaneous fission, and α decay is discussed for typical r -process conditions.
Cervical Vestibular-Evoked Myogenic Potentials: Norms and Protocols
Isaradisaikul, Suwicha; Navacharoen, Niramon; Hanprasertpong, Charuk; Kangsanarak, Jaran
2012-01-01
Vestibular-evoked myogenic potential (VEMP) testing is a vestibular function test used for evaluating saccular and inferior vestibular nerve function. Parameters of VEMP testing include VEMP threshold, latencies of p1 and n1, and p1-n1 interamplitude. Less commonly used parameters were p1-n1 interlatency, interaural difference of p1 and n1 latency, and interaural amplitude difference (IAD) ratio. This paper recommends using air-conducted 500 Hz tone burst auditory stimulation presented monoaurally via an inserted ear phone while the subject is turning his head to the contralateral side in the sitting position and recording the responses from the ipsilateral sternocleidomastoid muscle. Normative values of VEMP responses in 50 normal audiovestibular volunteers were presented. VEMP testing protocols and normative values in other literature were reviewed and compared. The study is beneficial to clinicians as a reference guide to set up VEMP testing and interpretation of the VEMP responses. PMID:22577386
Metagenomic analyses of drinking water receiving different disinfection treatments.
Gomez-Alvarez, Vicente; Revetta, Randy P; Santo Domingo, Jorge W
2012-09-01
A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities.
Metagenomic Analyses of Drinking Water Receiving Different Disinfection Treatments
Gomez-Alvarez, Vicente; Revetta, Randy P.
2012-01-01
A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities. PMID:22729545
Striated Muscle Function, Regeneration, and Repair
Shadrin, I.Y.; Khodabukus, A.; Bursac, N.
2016-01-01
As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751
Weber-Fox, Christine; Hart, Laura J; Spruill, John E
2006-07-01
This study examined how school-aged children process different grammatical categories. Event-related brain potentials elicited by words in visually presented sentences were analyzed according to seven grammatical categories with naturally varying characteristics of linguistic functions, semantic features, and quantitative attributes of length and frequency. The categories included nouns, adjectives, verbs, pronouns, conjunctions, prepositions, and articles. The findings indicate that by the age of 9-10 years, children exhibit robust neural indicators differentiating grammatical categories; however, it is also evident that development of language processing is not yet adult-like at this age. The current findings are consistent with the hypothesis that for beginning readers a variety of cues and characteristics interact to affect processing of different grammatical categories and indicate the need to take into account linguistic functions, prosodic salience, and grammatical complexity as they relate to the development of language abilities.
How surface functional groups influence fracturation in nanofluids droplets dry-outs
NASA Astrophysics Data System (ADS)
Brutin, David; Carle, Florian
2012-11-01
We report an experimental investigation of the drying of a deposited droplets of nanofluids with different surface functional groups. For identical nano-particles diameter, material and concentration, identical drying conditions, the substrate and the functional groups at the nano-particles surface are changed. Both flow motion, adhesion, gelation and fracturation occur during the evaporation of this complex matter leading to different final typical patterns. The differences in between the patterns are explained based on the surface chemical potential. Crack shapes and wavelengths are globally proportional to the electrical charges carried at the nano- particles surface which is a new parameter to implement in existing predicting models. Presently only the colloid concentration and softness and the deposit thickness are used (Allain and Limat, 1995). The authors gratefully acknowledge the help and the fruitful discussions raised with J.B. Lang.
Value of in vivo electrophysiological measurements to evaluate canine small bowel autotransplants.
Meijssen, M A; Heineman, E; de Bruin, R W; Veeze, H J; Bijman, J; de Jonge, H R; ten Kate, F J; Marquet, R L; Molenaar, J C
1991-01-01
This study aimed to develop a non-invasive method for in vivo measurement of the transepithelial potential difference in the canine small bowel and to evaluate this parameter in small bowel autotransplants. In group 0 (control group, n = 4), two intestinal loops were created without disturbing their vascular, neural, and lymphatic supplies. In group I (successful autotransplants, n = 11), two heterotopic small bowel loops were constructed. Long term functional sequelae of vascular, neural, and lymphatic division were studied. Group II (n = 6) consisted of dogs with unsuccessful autotransplants suffering thrombosis of the vascular anastomosis, which resulted in ischaemic small bowel autografts. In group I, values of spontaneous transepithelial potential difference, an index of base line active electrolyte transport, were significantly lower compared with group 0 (p less than 0.05), probably as a result of denervation of the autotransplants. Both theophylline and glucose stimulated potential difference responses, measuring cyclic adenosine monophosphate mediated chloride secretion and sodium coupled glucose absorption respectively, showed negative luminal values in group I at all time points after transplantation. These transepithelial potential difference responses diminished progressively with time. From day 21 onwards both theophylline and glucose stimulated potential difference responses were significantly less than the corresponding responses at day seven (p less than 0.05). Morphometric analysis showed that the reduction of transepithelial potential difference responses preceded degenerative mucosal changes in the heterotopic small bowel autografts. In group II, potential difference responses to theophylline and glucose showed positive luminal values (p<0.01 v group I), probably as a result of passive potassium effusion from necrotic enterocytes. Images Figure 3 PMID:1752464
[Characteristics of case management programs and their potential for patient empowerment].
Grün, Oskar; Maier, Manfred
2008-01-01
Different types of case management programs have been increasingly developed for health care systems. This study, therefore, aimed to identify similarities and differences of case management programs, to estimate their shaping with special emphasis on patient empowerment, and to develop an instrument for their differentiation. During an interdisciplinary seminar for students, eight different case management programs were selected and analyzed. Five characteristics of case management programs were identified: type of case, extent of functions, players involved, limits of availability and need for resources. The programs were categorized into information-, provider-, disease- or patient centred. With these characteristics the selected programs could be exactly described and their potential for patient empowerment could be assessed. This newly developed tool for describing case management programs allows for their sufficient differentiation. The potential for patient empowerment apparently is most prominent in patient centred programs.
ERIC Educational Resources Information Center
Li, Ying-Han; Tseng, Chao-Yuan; Tsai, Arthur Chih-Hsin; Huang, Andrew Chih-Wei; Lin, Wei-Lun
2016-01-01
Contemporary understanding of brain functions provides a way to probe into the mystery of creativity. However, the prior evidence regarding the relationship between creativity and brain wave patterns reveals inconsistent conclusions. One possible reason might be that the means of selecting creative individuals in the past has varied in each study.…
ERIC Educational Resources Information Center
Culler, Steven D.; Atherly, Adam; Walczak, Sandra; Davis, Anne; Hawley, Jonathan N.; Rask, Kimberly J.; Naylor, Vi; Thorpe, Kenneth E.
2006-01-01
Context: Information technology (IT) has been identified as a potential tool for improving the safety of health care delivery. Purpose: To determine if there are significant differences between urban and rural community hospitals in the availability of selected IT functional applications and technological devices. Methods: A mailed survey of…
Webster, Emma L; Hudson, Penny E; Channon, Sarah B
2014-09-01
The axial musculoskeletal system of quadrupedal mammals is not currently well understood despite its functional importance in terms of facilitating postural stability and locomotion. Here we examined the detailed architecture of the muscles of the vertebral column of two breeds of dog, the Staffordshire bull terrier (SBT) and the racing greyhound, which have been selectively bred for physical combat and high speed sprint performance, respectively. Dissections of the epaxial musculature of nine racing greyhounds and six SBTs were carried out; muscle mass, length, and fascicle lengths were measured and used to calculate muscle physiological cross-sectional area (PCSA), and to estimate maximum muscle potential for force, work and power production. The longissimus dorsi muscle was found to have a high propensity for force production in both breeds of dog; however, when considered in combination with the iliocostalis lumborum muscle it showed enhanced potential for production of power and facilitating spinal extension during galloping gaits. This was particularly the case in the greyhound, where the m. longissimus dorsi and the m. iliocostalis lumborum were estimated to have the potential to augment hindlimb muscle power by ca. 12%. Breed differences were found within various other muscles of the axial musculoskeletal system, particularly in the cranial cervical muscles and also the deep muscles of the thorax which insert on the ribs. These may also highlight key functional adaptations between the two breeds of dog, which have been selectively bred for particular purposes. Additionally, in both breeds of dog, we illustrate specialisation of muscle function by spinal region, with differences in both mass and PCSA found between muscles at varying levels of the axial musculoskeletal system, and between muscle functional groups. © 2014 Anatomical Society.
Webster, Emma L; Hudson, Penny E; Channon, Sarah B
2014-01-01
The axial musculoskeletal system of quadrupedal mammals is not currently well understood despite its functional importance in terms of facilitating postural stability and locomotion. Here we examined the detailed architecture of the muscles of the vertebral column of two breeds of dog, the Staffordshire bull terrier (SBT) and the racing greyhound, which have been selectively bred for physical combat and high speed sprint performance, respectively. Dissections of the epaxial musculature of nine racing greyhounds and six SBTs were carried out; muscle mass, length, and fascicle lengths were measured and used to calculate muscle physiological cross-sectional area (PCSA), and to estimate maximum muscle potential for force, work and power production. The longissimus dorsi muscle was found to have a high propensity for force production in both breeds of dog; however, when considered in combination with the iliocostalis lumborum muscle it showed enhanced potential for production of power and facilitating spinal extension during galloping gaits. This was particularly the case in the greyhound, where the m. longissimus dorsi and the m. iliocostalis lumborum were estimated to have the potential to augment hindlimb muscle power by ca. 12%. Breed differences were found within various other muscles of the axial musculoskeletal system, particularly in the cranial cervical muscles and also the deep muscles of the thorax which insert on the ribs. These may also highlight key functional adaptations between the two breeds of dog, which have been selectively bred for particular purposes. Additionally, in both breeds of dog, we illustrate specialisation of muscle function by spinal region, with differences in both mass and PCSA found between muscles at varying levels of the axial musculoskeletal system, and between muscle functional groups. PMID:24917310
2015-01-01
We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions—which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)—quantitatively reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic (PLoS Comput. Biol.2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins. PMID:25400526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo, E-mail: bovy@ias.edu
I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetricmore » potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.« less
Impingement of Droplets in 60 Deg Elbows with Potential Flow
NASA Technical Reports Server (NTRS)
Hacker, Paul T.; Saper, Paul G.; Kadow, Charles F.
1956-01-01
Trajectories were determined for water droplets or other aerosol particles in air flowing through 600 elbows especially designed for two-dimensional potential motion. The elbows were established by selecting as walls of each elbow two streamlines of a flow field produced by a complex potential function that establishes a two-dimensional flow around. a 600 bend. An unlimited number of elbows with slightly different shapes can be established by selecting different pairs of streamlines as walls. Some of these have a pocket on the outside wall. The elbows produced by the complex potential function are suitable for use in aircraft air-inlet ducts and have the following characteristics: (1) The resultant velocity at any point inside the elbow is always greater than zero but never exceeds the velocity at the entrance. (2) The air flow field at the entrance and exit is almost uniform and rectilinear. (3) The elbows are symmetrical with respect to the bisector of the angle of bend. These elbows should have lower pressure losses than bends of constant cross-sectional area. The droplet impingement data derived from the trajectories are presented along with equations so that collection efficiency, area, rate, and distribution of droplet impingement can be determined for any elbow defined by any pair of streamlines within a portion of the flow field established by the complex potential function. Coordinates for some typical streamlines of the flow field and velocity components for several points along these streamlines are presented in tabular form. A comparison of the 600 elbow with previous calculations for a comparable 90 elbow indicated that the impingement characteristics of the two elbows were very similar.
Hamilton, Joshua J; Reed, Jennifer L
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.
Hamilton, Joshua J.; Reed, Jennifer L.
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here. PMID:22666308
Video Head Impulse Testing (vHIT) and the Assessment of Horizontal Semicircular Canal Function.
Riska, Kristal M; Murnane, Owen; Akin, Faith W; Hall, Courtney
2015-05-01
Vestibular function (specifically, horizontal semicircular canal function) can be assessed across a broad frequency range using several different techniques. The head impulse test is a qualitative test of horizontal semicircular canal function that can be completed at bedside. Recently, a new instrument (video head impulse test [vHIT]) has been developed to provide an objective assessment to the clinical test. Questions persist regarding how this test may be used in the overall vestibular test battery. The purpose of this case report is to describe vestibular test results (vHIT, rotational testing, vestibular evoked myogenic potentials, and balance and gait performance) in an individual with a 100% unilateral caloric weakness who was asymptomatic for dizziness, vertigo or imbalance. Comprehensive assessment was completed to evaluate vestibular function. Caloric irrigations, rotary chair testing, vHIT, and vestibular evoked myogenic potentials were completed. A 100% left-sided unilateral caloric weakness was observed in an asymptomatic individual. vHIT produced normal gain with covert saccades. This case demonstrates the clinical usefulness of vHIT as a diagnostic tool and indicator of vestibular compensation and functional status. American Academy of Audiology.
Swarm formation control utilizing elliptical surfaces and limiting functions.
Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P
2009-12-01
In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).
Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages
Aguirre, Luis F.; Montaño-Centellas, Flavia A.; Gavilanez, M. Mercedes; Stevens, Richard D.
2016-01-01
Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems. PMID:27384441
Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages.
Aguirre, Luis F; Montaño-Centellas, Flavia A; Gavilanez, M Mercedes; Stevens, Richard D
2016-01-01
Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems.
Bilić, Ante; Reimers, Jeffrey R; Hush, Noel S
2005-03-01
The adsorption of phenylthiol on the Au(111) surface is modeled using Perdew and Wang density-functional calculations. Both direct molecular physisorption and dissociative chemisorption via S-H bond cleavage are considered as well as dimerization to form disulfides. For the major observed product, the chemisorbed thiol, an extensive potential-energy surface is produced as a function of both the azimuthal orientation of the adsorbate and the linear translation of the adsorbate through the key fcc, hcp, bridge, and top binding sites. Key structures are characterized, the lowest-energy one being a broad minimum of tilted orientation ranging from the bridge structure halfway towards the fcc one. The vertically oriented threefold binding sites, often assumed to dominate molecular electronics measurements, are identified as transition states at low coverage but become favored in dense monolayers. A similar surface is also produced for chemisorption of phenylthiol on Ag(111); this displays significant qualitative differences, consistent with the qualitatively different observed structures for thiol chemisorption on Ag and Au. Full contours of the minimum potential energy as a function of sulfur translation over the crystal face are described, from which the barrier to diffusion is deduced to be 5.8 kcal mol(-1), indicating that the potential-energy surface has low corrugation. The calculated bond lengths, adsorbate charge and spin density, and the density of electronic states all indicate that, at all sulfur locations, the adsorbate can be regarded as a thiyl species that forms a net single covalent bond to the surface of strength 31 kcal mol(-1). No detectable thiolate character is predicted, however, contrary to experimental results for alkyl thiols that indicate up to 20%-30% thiolate involvement. This effect is attributed to the asymptotic-potential error of all modern density functionals that becomes manifest through a 3-4 eV error in the lineup of the adsorbate and substrate bands. Significant implications are described for density-functional calculations of through-molecule electron transport in molecular electronics.
Rossmassler, Karen; Dietrich, Carsten; Thompson, Claire; ...
2015-11-26
Termites are important contributors to carbon and nitrogen cycling in tropical ecosystems. Higher termites digest lignocellulose in various stages of humification with the help of an entirely prokaryotic microbiota housed in their compartmented intestinal tract. Previous studies revealed fundamental differences in community structure between compartments, but the functional roles of individual lineages in symbiotic digestion are mostly unknown. Furthermore, we conducted a highly resolved analysis of the gut microbiota in six species of higher termites that feed on plant material at different levels of humification. Combining amplicon sequencing and metagenomics, we assessed similarities in community structure and functional potential betweenmore » the major hindgut compartments (P1, P3, and P4). Cluster analysis of the relative abundances of orthologous gene clusters (COGs) revealed high similarities among woodand litter-feeding termites and strong differences to humivorous species. However, abundance estimates of bacterial phyla based on 16S rRNA genes greatly differed from those based on protein-coding genes. In conclusion, the community structure and functional potential of the microbiota in individual gut compartments are clearly driven by the digestive strategy of the host. The metagenomics libraries obtained in this study provide the basis for future studies that elucidate the fundamental differences in the symbiont-mediated breakdown of lignocellulose and humus by termites of different feeding groups. The high proportion of uncultured bacterial lineages in all samples calls for a reference-independent approach for the correct taxonomic assignment of protein-coding genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossmassler, Karen; Dietrich, Carsten; Thompson, Claire
Termites are important contributors to carbon and nitrogen cycling in tropical ecosystems. Higher termites digest lignocellulose in various stages of humification with the help of an entirely prokaryotic microbiota housed in their compartmented intestinal tract. Previous studies revealed fundamental differences in community structure between compartments, but the functional roles of individual lineages in symbiotic digestion are mostly unknown. Furthermore, we conducted a highly resolved analysis of the gut microbiota in six species of higher termites that feed on plant material at different levels of humification. Combining amplicon sequencing and metagenomics, we assessed similarities in community structure and functional potential betweenmore » the major hindgut compartments (P1, P3, and P4). Cluster analysis of the relative abundances of orthologous gene clusters (COGs) revealed high similarities among woodand litter-feeding termites and strong differences to humivorous species. However, abundance estimates of bacterial phyla based on 16S rRNA genes greatly differed from those based on protein-coding genes. In conclusion, the community structure and functional potential of the microbiota in individual gut compartments are clearly driven by the digestive strategy of the host. The metagenomics libraries obtained in this study provide the basis for future studies that elucidate the fundamental differences in the symbiont-mediated breakdown of lignocellulose and humus by termites of different feeding groups. The high proportion of uncultured bacterial lineages in all samples calls for a reference-independent approach for the correct taxonomic assignment of protein-coding genes.« less
Puglielli, G; Cuevas Román, F J; Catoni, R; Moreno Rojas, J M; Gratani, L; Varone, L
2017-07-01
The potential resilience of shrub species to environmental change deserves attention in those areas threatened by climate change, such as the Mediterranean Basin. We asked if leaves produced under different climate conditions through the winter season to spring can highlight the leaf traits involved in determining potential resilience of three Cistus spp. to changing environmental conditions and to what extent intraspecific differences affect such a response. We analysed carbon assimilation, maximum quantum efficiency of PSII photochemistry (F v /F m ) and leaf morphological control of the photosynthetic process in leaves formed through the winter season into spring in C. creticus subsp. eriocephalus (CE), C. salvifolius (CS) and C. monspeliensis (CM) grown from seed of different provenances under common garden conditions. Intraspecific differences were found in F v /F m for CE and CS. Carbon assimilation-related parameters were not affected by provenance. Moreover, our analysis highlighted that the functional relationships investigated can follow seasonal changes and revealed patterns originating from species-specific differences in LMA arising during the favourable period. Cistus spp. have great ability to modify the structure and function of their leaves in the mid-term in order to cope with changing environmental conditions. The F v /F m response to chilling reveals that susceptibility to photoinhibition is a trait under selection in Cistus species. Concerning carbon assimilation, differing ability to control stomatal opening was highlighted between species. Moreover, seasonal changes of the functional relationships investigated can have predictable consequences on species leaf turnover strategies. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice.
Wang, Rui; Zhu, Menglin; Ye, Rongjian; Liu, Zuoxiong; Zhou, Fei; Chen, Hao; Lin, Yongjun
2015-12-11
As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.
NASA Astrophysics Data System (ADS)
Xiang, Xing; Wang, Ruicheng; Wang, Hongmei; Gong, Linfeng; Man, Baiying; Xu, Ying
2017-03-01
High abundance and widespread distribution of the archaeal phylum Bathyarchaeota in marine environment have been recognized recently, but knowledge about Bathyarchaeota in terrestrial settings and their correlation with environmental parameters is fairly limited. Here we reported the abundance of Bathyarchaeota members across different ecosystems and their correlation with environmental factors by constructing 16S rRNA clone libraries of peat from the Dajiuhu Peatland, coupling with bioinformatics analysis of 16S rRNA data available to date in NCBI database. In total, 1456 Bathyarchaeota sequences from 28 sites were subjected to UniFrac analysis based on phylogenetic distance and multivariate regression tree analysis of taxonomy. Both phylogenetic and taxon-based approaches showed that salinity, total organic carbon and temperature significantly influenced the distribution of Bathyarchaeota across different terrestrial habitats. By applying the ecological concept of ‘indicator species’, we identify 9 indicator groups among the 6 habitats with the most in the estuary sediments. Network analysis showed that members of Bathyarchaeota formed the “backbone” of archaeal community and often co-occurred with Methanomicrobia. These results suggest that Bathyarchaeota may play an important ecological role within archaeal communities via a potential symbiotic association with Methanomicrobia. Our results shed light on understanding of the biogeography, potential functions of Bathyarchaeota and environment conditions that influence Bathyarchaea distribution in terrestrial settings.
Reinders, Anke; Schulze, Waltraud; Kühn, Christina; Barker, Laurence; Schulz, Alexander; Ward, John M.; Frommer, Wolf B.
2002-01-01
Suc represents the major transport form for carbohydrates in plants. Suc is loaded actively against a concentration gradient into sieve elements, which constitute the conduit for assimilate export out of leaves. Three members of the Suc transporter family with different properties were identified: SUT1, a high-affinity Suc proton cotransporter; SUT4, a low-affinity transporter; and SUT2, which in yeast is only weakly active and shows features similar to those of the yeast sugar sensors RGT2 and SNF3. Immunolocalization demonstrated that all three SUT proteins are localized in the same enucleate sieve element. Thus, the potential of Suc transporters to form homooligomers was tested by the yeast-based split-ubiquitin system. The results show that both SUT1 and SUT2 have the potential to form homooligomers. Moreover, all three Suc transporters have the potential to interact with each other. As controls, a potassium channel and a monosaccharide transporter, expressed in the plasma membrane, did not interact with the SUTs. The in vivo interaction between the functionally different Suc transporters indicates that the membrane proteins are capable of forming oligomeric structures that, like mammalian Glc transporter complexes, might be of functional significance for the regulation of transport. PMID:12119375
NASA Astrophysics Data System (ADS)
Kjellander, Roland
2006-04-01
It is shown that the nature of the non-electrostatic part of the pair interaction potential in classical Coulomb fluids can have a profound influence on the screening behaviour. Two cases are compared: (i) when the non-electrostatic part equals an arbitrary finite-ranged interaction and (ii) when a dispersion r-6 interaction potential is included. A formal analysis is done in exact statistical mechanics, including an investigation of the bridge function. It is found that the Coulombic r-1 and the dispersion r-6 potentials are coupled in a very intricate manner as regards the screening behaviour. The classical one-component plasma (OCP) is a particularly clear example due to its simplicity and is investigated in detail. When the dispersion r-6 potential is turned on, the screened electrostatic potential from a particle goes from a monotonic exponential decay, exp(-κr)/r, to a power-law decay, r-8, for large r. The pair distribution function acquire, at the same time, an r-10 decay for large r instead of the exponential one. There still remains exponentially decaying contributions to both functions, but these contributions turn oscillatory when the r-6 interaction is switched on. When the Coulomb interaction is turned off but the dispersion r-6 pair potential is kept, the decay of the pair distribution function for large r goes over from the r-10 to an r-6 behaviour, which is the normal one for fluids of electroneutral particles with dispersion interactions. Differences and similarities compared to binary electrolytes are pointed out.
Dimitriou, Konstantinos; Kassomenos, Pavlos
2015-01-01
Three years of hourly O3 concentration measurements from a metropolitan and a medium scale urban area in Greece: Athens and Ioannina respectively, were analyzed in conjunction with hourly wind speed/direction data and air mass trajectories, aiming to reveal local and regional contributions respectively. Conditional Probability Function was used to indicate associations among distinct wind directions and extreme O3 episodes. Backward trajectory clusters were elaborated by Potential Source Contribution Function on a grid of a 0.5°×0.5° resolution, in order to localize potential exogenous sources of O3 and its precursors. In Athens, an increased likelihood of extreme O3 events at the Northern suburbs was associated with the influence of SSW-SW sea breeze from Saronikos Gulf, due to O3 transportation from the city center. In Ioannina, the impacts of O3 conveyance from the city center to the suburban monitoring site were weaker. Potential O3 transboundary sources for Athens were mainly localized over Balkan Peninsula, Greece and the Aegean Sea. Potential Source Contribution Function hotspots were isolated over the industrialized area of Ptolemaida basin and above the region of Thessaloniki. Potential regional O3 sources for Ioannina were indicated across northern Greece and Balkan Peninsula, whereas peak Potential Source Contribution Function values were particularly observed over the urban area of Sofia in Bulgaria. The implemented methods, revealed local and potential transboundary source areas of O3, influencing Athens and Ioannina. Differences among the two cities were highlighted and the role of topography was emerged. These findings can be used in order to reduce the emission of O3 precursors. Copyright © 2014 Elsevier B.V. All rights reserved.
SO(4) algebraic approach to the three-body bound state problem in two dimensions
NASA Astrophysics Data System (ADS)
Dmitrašinović, V.; Salom, Igor
2014-08-01
We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.
Axion excursions of the landscape during inflation
NASA Astrophysics Data System (ADS)
Palma, Gonzalo A.; Riquelme, Walter
2017-07-01
Because of their quantum fluctuations, axion fields had a chance to experience field excursions traversing many minima of their potentials during inflation. We study this situation by analyzing the dynamics of an axion field ψ , present during inflation, with a periodic potential given by v (ψ )=Λ4[1 -cos (ψ /f )]. By assuming that the vacuum expectation value of the field is stabilized at one of its minima, say, ψ =0 , we compute every n -point correlation function of ψ up to first order in Λ4 using the in-in formalism. This computation allows us to identify the distribution function describing the probability of measuring ψ at a particular amplitude during inflation. Because ψ is able to tunnel between the barriers of the potential, we find that the probability distribution function consists of a non-Gaussian multimodal distribution such that the probability of measuring ψ at a minimum of v (ψ ) different from ψ =0 increases with time. As a result, at the end of inflation, different patches of the Universe are characterized by different values of the axion field amplitude, leading to important cosmological phenomenology: (a) Isocurvature fluctuations induced by the axion at the end of inflation could be highly non-Gaussian. (b) If the axion defines the strength of standard model couplings, then one is led to a concrete realization of the multiverse. (c) If the axion corresponds to dark matter, one is led to the possibility that, within our observable Universe, dark matter started with a nontrivial initial condition, implying novel signatures for future surveys.
2013-01-01
This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232
Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...
2016-12-18
Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less
Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis.
Rodriguez-Mena, Diego; Almarcegui, Carmen; Dolz, Isabel; Herrero, Raquel; Bambo, Maria P; Fernandez, Javier; Pablo, Luis E; Garcia-Martin, Elena
2013-08-01
To evaluate the ability of visual evoked potentials and pattern electroretinograms (PERG) to detect subclinical axonal damage in patients during the early diagnostic stage of multiple sclerosis (MS). The authors also compared the ability of optical coherence tomography (OCT), PERG, and visual evoked potentials to detect axonal loss in MS patients and correlated the functional and structural properties of the retinal nerve fiber layer. Two hundred twenty-eight eyes of 114 subjects (57 MS patients and 57 age- and sex-matched healthy controls) were included. The visual pathway was evaluated based on functional and structural assessments. All patients underwent a complete ophthalmic examination that included assessment of visual acuity, ocular motility, intraocular pressure, visual field, papillary morphology, OCT, visual evoked potentials, and PERG. Visual evoked potentials (P100 latency and amplitude), PERG (N95 amplitude and N95/P50 ratio), and OCT parameters differed significantly between MS patients and healthy subjects. Moderate significant correlations were found between visual evoked potentials or PERG parameters and OCT measurements. Axonal damage in ganglion cells of the visual pathway can be detected based on structural measures provided by OCT in MS patients and by the N95 component and N95/P50 index of PERG, thus providing good correlation between function and structure.
Predicting protein complex geometries with a neural network.
Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter
2010-03-01
A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Soil microbial biomass and function are altered by 12 years of crop rotation
NASA Astrophysics Data System (ADS)
McDaniel, Marshall D.; Grandy, A. Stuart
2016-11-01
Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems, relatively small increases in crop diversity can have large impacts on microbial community size and function, with cover crops appearing to facilitate the largest increases.
Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O
2012-03-01
A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.
NASA Astrophysics Data System (ADS)
Solekhudin, Imam; Sumardi
2017-05-01
In this study, problems involving steady Infiltration from periodic semicircular channels with root-water uptake function are considered. These problems are governed by Richards equation. This equation can be studied more conveniently by transforming the equation into a modified Helmholtz equation. In these problems, two different types of root-water uptake are considered. A dual reciprocity boundary element method (DRBEM) with a predictor-corrector scheme is used to solve the modified Helmholtz equation numerically. Using the solution obtained, numerical values of suction potential and root-water uptake function can be computed. In addition, amount of water absorbed by the different plant roots distribution can also be computed and compared.
Coarse-grained modeling of polyethylene melts: Effect on dynamics
Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya; ...
2017-05-23
The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less
Coarse-grained modeling of polyethylene melts: Effect on dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya
The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less
Structure-based conformational preferences of amino acids
Koehl, Patrice; Levitt, Michael
1999-01-01
Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion. PMID:10535955
Sheng, Xuancai; Wu, Ming; Wu, Hao; Ning, Xiao
2017-01-01
Changes in the hydrological conditions of coastal wetlands may potentially affect the role of wetlands in the methane (CH4) cycle. In this study, the CH4 production potential and emissions from restored coastal reed wetlands at different water levels were examined in eastern China at a field scale in two phenological seasons. Results showed that the total CH4 flux from reeds at various water levels were positive, indicating that they were “sources” of CH4. During the peak growing season, CH4 flux from reeds was greater than that during the spring thaw. CH4 flux from reeds in inundated conditions was greater than that in non-inundated conditions. The CH4 production potential during the peak growing season was far greater than that during the spring thaw. However, the effect of water level on wetland CH4 production potential differed among seasons. The correlations among CH4 production potential, soil properties and CH4 flux change at different water level. These results demonstrate that water level was related to CH4 production and CH4 flux. The growing season also plays a role in CH4 fluxes. Controlling the hydrological environment in restored wetlands has important implications for the maintenance of their function as carbon sinks. PMID:28968419
Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Mishra, Pankaj
2017-05-01
We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.
Fortunel, Claire; Valencia, Renato; Wright, S Joseph; Garwood, Nancy C; Kraft, Nathan J B
2016-09-01
As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25-ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests. © 2016 John Wiley & Sons Ltd/CNRS.
Baxter, David
2010-06-01
Newborn infants, particularly those born prematurely are at increased risk of infections, including vaccine preventable ones, resulting in an increased morbidity and mortality risk. Defects associated with higher mortality may involve external barriers and the innate and adaptive systems. The available evidence suggests a complex situation that ranges from pathogen/immunogen non-responsiveness to fully mature adult-equivalent functionality depending on both host and vaccine characteristics. This review considers potential qualitative and quantitative differences with respect to immune defences between premature/term infants and adults and evaluates implications of such differences for immunization outcomes.
Motivations and usage patterns of Weibo.
Zhang, Lixuan; Pentina, Iryna
2012-06-01
Referred to as "Weibo," microblogging in China has witnessed an exponential growth. In addition to the Twitter-like functionality, Weibo allows rich media uploads into user feeds, provides threaded comments, and offers applications, games, and Weibo medals. This expanded functionality, as well as the observed differences in trending content, suggests potentially different user motivations to join Weibo and their usage patterns compared to Twitter. This pioneering study identifies dominant Weibo user motivations and their effects on usage patterns. We discuss the findings of an online survey of 234 Weibo users and suggest managerial implications and future research directions.
Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra
2012-01-01
A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687
Insight into Environmental Effects on Bonding and Redox Properties of [4Fe-4S] Clusters in Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Shuqiang; Ichiye, Toshiko
The large differences in redox potentials between the HiPIPs and ferredoxins are generally attributed to hydrogen bonds and electrostatic effects from the protein and solvent. Recent ligand K-edge X-ray absorption studies by Solomon and co-workers show that the Fe-S covalencies of [4Fe-4S] clusters in the two proteins differ considerably apparently because of hydrogen bonds from water, indicating electronic effects may be important. However, combined density function theory (DFT) and photoelectron spectroscopy studies by our group and Wang and co-workers indicate that hydrogen bonds tune the potential of [4Fe-4S] clusters by mainly electrostatics. The DFT studies here rationalize both results, namelymore » that the observed change in the Fe-S covalency is due to differences in ligand conformation between the two proteins rather than hydrogen bonds. Moreover, the ligand conformation affects the calculated potentials by 100 mV and, thus, is a heretofore unconsidered means of tuning the potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernheim, M.; Bussiere, A.; Frullani, S.
1977-06-27
In order to test the validity of the distorted wave impulse approximation to describe (e,e'p) reactions and/or the suitability of the available optical potential parameters to calculate the distortion, the spectral function was measured for /sub 12/C(e,e'p)/sub 11/B in different kinematical configurations. Experimental results are shown together with the distributions computed with several values of the optical potential parameters. Data seem to indicate the necessity of using different parameters for p hole states and s hole states.
Desai, Anu; Kisaalita, William S; Keith, Charles; Wu, Z-Z
2006-02-15
Cell-based three-dimensional systems are desirable in the field of high throughput screening assays due to their potential similarity to in vivo environment. We have used SH-SY5Y human neuroblastoma cells cultured in 3-D collagen hydrogel, confocal microscopy and immunofluorescence staining, to assess the merit of the system as a functional, cell-based biosensor. Our results show differences between 2-D and 3-D resting membrane potential development profile upon differentiation. There was no statistically significant difference in SH-SY5Y proliferation rate between 2-D monolayer and 3-D collagen culture formats. A large percentage of cells (2-D, 91.30% and 3-D, 84.93%) did not develop resting membrane potential value equal to or lower than -40 mV; instead cells exhibited a heterogeneous resting membrane potential distribution. In response to high K(+) (50 mM) depolarization, 3-D cells were less responsive in terms of increase in intracellular Ca(2+), in comparison to 2-D cells, supporting the hypothesis that 2-D cell calcium dynamics may be exaggerated. L-Type Ca(2+) expression levels based on staining results was inconsistent with Bay K 8644 channel activation results, strongly suggesting that either the majority of the channels were non-functional or could not be activated by Bay K 8644. In general, the results in this study confirm the depolarization-induced differences in intracellular calcium release when cultured using a 2-D versus a 3-D matrix.
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.
2017-11-01
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K
2017-11-21
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.
Nuclear parton density functions from dijet photoproduction at the EIC
NASA Astrophysics Data System (ADS)
Klasen, M.; Kovařík, K.
2018-06-01
We study the potential of dijet photoproduction measurements at a future electron-ion collider (EIC) to better constrain our present knowledge of the nuclear parton distribution functions. Based on theoretical calculations at next-to-leading order and approximate next-to-next-to-leading order of perturbative QCD, we establish the kinematic reaches for three different EIC designs, the size of the parton density function modifications for four different light and heavy nuclei from He-4 over C-12 and Fe-56 to Pb-208 with respect to the free proton, and the improvement of EIC measurements with respect to current determinations from deep-inelastic scattering and Drell-Yan data alone as well as when also considering data from existing hadron colliders.
Contribution of Insula in Parkinson’s Disease: A Quantitative Meta-Analysis Study
Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E.; Cho, Sang S.; Houle, Sylvain; Strafella, Antonio P.
2016-01-01
The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson’s disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. PMID:26800238
Contribution of insula in Parkinson's disease: A quantitative meta-analysis study.
Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E; Cho, Sang S; Houle, Sylvain; Strafella, Antonio P
2016-04-01
The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson's disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shi, Peiming; Yuan, Danzhen; Han, Dongying; Zhang, Ying; Fu, Rongrong
2018-06-01
Stochastic resonance (SR) phenomena in a time-delayed feedback tristable system driven by Gaussian white noise are investigated by simulating the potential function, mean first-passage time (MFPT), and signal-to-noise ratio (SNR) of the system. Through the use of a short delay time, the generalized potential function and stationary probability density function (PDF) are obtained. The delay feedback term has a significant effect on both equations, and that the parameters b, c, and d have different effects on the three wells of the potential function. The MFPT is calculated, which plays an extremely important role in research on particles escape rates. We find that the delay feedback term can affect the noise enhanced stability (NES). In addition, the SR characteristics are studied by the index of SNR. The simulation demonstrates that SNR is a non-monotonic distributed and that the peak SNR value can be attained by adjusting the appropriate parameters. Finally, the proposed theory is combined with a variable step method and applied to the detection of high frequencies in experiments. The result indicates that the fault frequency can be identified, and that the energy of the fault signal can be enhanced under suitable delay feedback parameters.
Perfluorinated compounds affect the function of sex hormone receptors.
Kjeldsen, Lisbeth Stigaard; Bonefeld-Jørgensen, Eva Cecilie
2013-11-01
Perfluorinated compounds (PFCs) are a large group of chemicals used in different industrial and commercial applications. Studies have suggested the potential of some PFCs to disrupt endocrine homeostasis, increasing the risk of adverse health effects. This study aimed to elucidate mechanisms behind PFC interference with steroid hormone receptor functions. Seven PFCs [perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA)] were analyzed in vitro for their potential to affect estrogen receptor (ER) and androgen receptor (AR) transactivity as well as aromatase enzyme activity. The PFCs were assessed as single compounds and in an equimolar mixture. PFHxS, PFOS and PFOA significantly induced the ER transactivity, whereas PFHxS, PFOS, PFOA, PFNA and PFDA significantly antagonized the AR activity in a concentration-dependent manner. Moreover, PFDA weakly decreased the aromatase activity at a high test concentration. A mixture effect more than additive was observed on AR function. We conclude that five of the seven PFCs possess the potential in vitro to interfere with the function of the ER and/or the AR. The observed mixture effect emphasizes the importance of considering the combined action of PFCs in future studies to assess related health risks.
Snider, Eric J; Vannatta, R Taylor; Schildmeyer, Lisa; Stamer, W Daniel; Ethier, C Ross
2018-03-01
Glaucoma, a leading cause of blindness, is characterized by an increase in intraocular pressure, which is largely determined by resistance to aqueous humour outflow through the trabecular meshwork (TM). In glaucoma, the cellularity of the TM is decreased, and, as a result, stem cell therapies for the TM represent a potential therapeutic option for restoring TM function and treating glaucoma patients. We here focus on adipose derived mesenchymal stem cells (MSCs) as a potential autologous cell source for TM regenerative medicine applications and describe characterization techniques at the messenger (reverse transcription-quantitative polymerase chain reaction), protein (western blotting, flow cytometry), and functional (contractility, phagocytosis) levels to distinguish MSCs from TM cells. We present a panel of 12 transcripts to allow: (a) suitable normalization of reverse transcription-quantitative polymerase chain reaction results across cell types and after exposure to potential differentiation stimuli; (b) distinguishing MSCs from TM cells; (c) distinguishing subtypes of TM cells; and (d) distinguishing TM cells from those in neighbouring tissue. At the protein level, dexamethasone induction of myocilin was a robust discriminating factor between MSCs and TM cells and was complemented by other protein markers. Finally, we show that contractility and phagocytosis differ between MSCs and TM cells. These methods are recommended for use in future differentiation studies to fully define if a functional TM-like phenotype is being achieved. Copyright © 2017 John Wiley & Sons, Ltd.
Multifunctional RNA Nanoparticles
2015-01-01
Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA–DNA hybrids aimed to conditionally activate multiple split functionalities inside cells. PMID:25267559
Quandt, Fanny; Hummel, Friedhelm C
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success.
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333
ERIC Educational Resources Information Center
Ninemire, B.; Mei, W. N.
2004-01-01
In applying the variational method, six different sets of trial wave functions are used to calculate the ground state and first excited state energies of the strongly bound potentials, i.e. V(x)=x[2m], where m = 4, 5 and 6. It is shown that accurate results can be obtained from thorough analysis of the asymptotic behaviour of the solutions.…
Zhu, Chengsheng; Miller, Maximilian
2018-01-01
Abstract Microbial functional diversification is driven by environmental factors, i.e. microorganisms inhabiting the same environmental niche tend to be more functionally similar than those from different environments. In some cases, even closely phylogenetically related microbes differ more across environments than across taxa. While microbial similarities are often reported in terms of taxonomic relationships, no existing databases directly link microbial functions to the environment. We previously developed a method for comparing microbial functional similarities on the basis of proteins translated from their sequenced genomes. Here, we describe fusionDB, a novel database that uses our functional data to represent 1374 taxonomically distinct bacteria annotated with available metadata: habitat/niche, preferred temperature, and oxygen use. Each microbe is encoded as a set of functions represented by its proteome and individual microbes are connected via common functions. Users can search fusionDB via combinations of organism names and metadata. Moreover, the web interface allows mapping new microbial genomes to the functional spectrum of reference bacteria, rendering interactive similarity networks that highlight shared functionality. fusionDB provides a fast means of comparing microbes, identifying potential horizontal gene transfer events, and highlighting key environment-specific functionality. PMID:29112720
Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A
2013-10-15
Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.
Liquid 4He at Zero Temperature and the STLS Scheme
NASA Astrophysics Data System (ADS)
Doroudi, A.
2007-07-01
Within the framework of the self-consistent scheme proposed by Singwi, Tosi, Land and Sjölander (STLS) for an interacting system we study the properties of superfluid liquid 4He. By employing the Aziz potential (HFD-B) as the interaction potential between helium atoms, we have calculated the static structure factor, the pair-correlation function, the elementary excitation spectrum and the effective two-body interaction as a function of wave-vector, for different densities. Our results show considerable improvement over the Ng-Singwi’s model potential of a hard core plus an attractive tail and are comparable with experimental data. We have compared our results with experimental data and with the results of some theoretical models. Agreement between our results and the experimental data for the static structure factor for the small k values is fairly good.
Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D.; Zhou, Jizhong
2015-01-01
Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0–5 cm and 5–15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems. PMID:25791904
Aguilar-Arredondo, Andrea; Arias, Clorinda; Zepeda, Angélica
2015-01-01
Hippocampal neurogenesis occurs in the adult brain in various species, including humans. A compelling question that arose when neurogenesis was accepted to occur in the adult dentate gyrus (DG) is whether new neurons become functionally relevant over time, which is key for interpreting their potential contributions to synaptic circuitry. The functional state of adult-born neurons has been evaluated using various methodological approaches, which have, in turn, yielded seemingly conflicting results regarding the timing of maturation and functional integration. Here, we review the contributions of different methodological approaches to addressing the maturation process of adult-born neurons and their functional state, discussing the contributions and limitations of each method. We aim to provide a framework for interpreting results based on the approaches currently used in neuroscience for evaluating functional integration. As shown by the experimental evidence, adult-born neurons are prone to respond from early stages, even when they are not yet fully integrated into circuits. The ongoing integration process for the newborn neurons is characterised by different features. However, they may contribute differently to the network depending on their maturation stage. When combined, the strategies used to date convey a comprehensive view of the functional development of newly born neurons while providing a framework for approaching the critical time at which new neurons become functionally integrated and influence brain function.
Bedford, Nicholas M; Hughes, Zak E; Tang, Zhenghua; Li, Yue; Briggs, Beverly D; Ren, Yang; Swihart, Mark T; Petkov, Valeri G; Naik, Rajesh R; Knecht, Marc R; Walsh, Tiffany R
2016-01-20
Peptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction data and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancement.
Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morse, David C.
2006-10-15
Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less
NASA Astrophysics Data System (ADS)
Balaji Mohan, Velram; Jakisch, Lothar; Jayaraman, Krishnan; Bhattacharyya, Debes
2018-03-01
In recent years, graphene and its derivatives have become prominent subject matter due to their fascinating combination of properties and potential applications in a number application. While several fundamental studies have been progressed, there is a particular need to understand how different graphene derivatives are influenced in terms of their electrical and thermal conductivities by different functional groups they end up with through their manufacturing and functionalisation methods. This article addresses of the role of different functional groups present of different of reduced graphene oxides (rGO) concerning their electrical and thermal properties, and the results were compared with elemental analyses of functionalised reduced graphene oxide (frGO) and graphene. The results showed that electrical and thermal conductivities of the rGO samples, highly dependent on the presence of residual functional groups from oxidation, reduction and functionalisation processes. The increase in reduction of oxygen, hydroxyl, carboxylic, epoxide moieties and heterocyclic compounds increase the specific surface area of the samples through which the mean electron path has increased. This improved both electrical and thermal conductivities together in all the samples which were highly dependent on the efficiency of different reductant used in this study.
Caudate responses to reward anticipation associated with delay discounting behavior in healthy youth
Benningfield, Margaret M.; Blackford, Jennifer U.; Ellsworth, Melissa E.; Samanez-Larkin, Gregory R.; Martin, Peter R.; Cowan, Ronald L.; Zald, David H.
2014-01-01
Background Choices requiring delay of gratification made during adolescence can have significant impact on life trajectory. Willingness to delay gratification can be measured using delay discounting tasks that require a choice between a smaller immediate reward and a larger delayed reward. Individual differences in the subjective value of delayed rewards are associated with risk for development of psychopathology including substance abuse. The neurobiological underpinnings related to these individual differences early in life are not fully understood. Using functional magnetic resonance imaging (fMRI), we tested the hypothesis that individual differences in delay discounting behavior in healthy youth are related to differences in responsiveness to potential reward. Method Nineteen 10 to 14 year-olds performed a monetary incentive delay task to assess neural sensitivity to potential reward and a questionnaire to measure discounting of future monetary rewards. Results Left ventromedial caudate activation during anticipation of potential reward was negatively correlated with delay discounting behavior. There were no regions where brain responses during notification of reward outcome were associated with discounting behavior. Conclusions Brain activation during anticipation of potential reward may serve as a marker for individual differences in ability or willingness to delay gratification in healthy youth. PMID:24309299
Functional food. Product development, marketing and consumer acceptance--a review.
Siró, István; Kápolna, Emese; Kápolna, Beáta; Lugasi, Andrea
2008-11-01
It was mainly the advances in understanding the relationship between nutrition and health that resulted in the development of the concept of functional foods, which means a practical and new approach to achieve optimal health status by promoting the state of well-being and possibly reducing the risk of disease. Functional foods are found virtually in all food categories, however products are not homogeneously scattered over all segments of the growing market. The development and commerce of these products is rather complex, expensive and risky, as special requirements should be answered. Besides potential technological obstacles, legislative aspects, as well as consumer demands need to be taken into consideration when developing functional food. In particular, consumer acceptance has been recognized as a key factor to successfully negotiate market opportunities. This paper offers a brief overview of the current functional food market situation in USA, Japan and some European countries completed with some comments on functional food future potential. It explores the main challenges of such product development focusing on the different factors determining the acceptance of functional food. Furthermore it discusses some prominent types of these food products currently on the market.
NK cell subsets in autoimmune diseases.
Zhang, Cai; Tian, Zhigang
2017-09-01
Natural killer (NK) cells are lymphocytes of the innate immune system. They not only exert cell-mediated cytotoxicity against tumor cells or infected cells, but also play regulatory role through promoting or suppressing functions of other immune cells by secretion of cytokines and chemokines. However, overactivation or dysfunction of NK cells may be associated with pathogenesis of some diseases. NK cells are found to act as a two edged weapon and play opposite roles with both regulatory and inducer activity in autoimmune diseases. Though the precise mechanisms for the opposite effects of NK cells has not been fully elucidated, the importance of NK cells in autoimmune diseases might be associated with different NK cell subsets, different tissue microenvironment and different stages of corresponding diseases. The local tissue microenvironment, unique cellular interactions and different stages of corresponding diseases shape the properties and function of NK cells. In this review, we focus on recent research on the features and function of different NK cell subsets, particularly tissue-resident NK cells in different tissues, and their potential role in autoimmune diseases. Copyright © 2017. Published by Elsevier Ltd.
The functional-cognitive framework for psychological research: Controversies and resolutions.
Hughes, Sean; De Houwer, Jan; Perugini, Marco
2016-02-01
The scientific goals, values and assumptions of functional and cognitive researchers have propelled them down two very different scientific pathways. Many have, and continue to argue, that these differences undermine any potential communication and collaboration between the two traditions. We explore a different view on this debate. Specifically, we focus on the Functional-Cognitive (FC) framework, and in particular, the idea that cognitive and functional researchers can and should interact to the benefit of both. Our article begins with a short introduction to the FC framework. We sweep aside misconceptions about the framework, present the original version as it was outlined by De Houwer (2011) and then offer our most recent thoughts on how it should be implemented. Thereafter, we reflect on its strengths and weaknesses, clarify the functional (effect-centric vs. analytic-abstractive) level and consider its many implications for cognitive research and theorising. In the final section, we briefly review the articles contained in this Special Issue. These contributions provide clear examples of the conceptual, empirical and methodological developments that can emerge when cognitive, clinical, personality and neuroscientists fully engage with the functional-cognitive perspective. © 2015 International Union of Psychological Science.
The profile of executive function in OCD hoarders and hoarding disorder☆
Morein-Zamir, Sharon; Papmeyer, Martina; Pertusa, Alberto; Chamberlain, Samuel R.; Fineberg, Naomi A.; Sahakian, Barbara J.; Mataix-Cols, David; Robbins, Trevor W.
2014-01-01
Hoarding disorder is a new mental disorder in DSM-5. It is classified alongside OCD and other presumably related disorders in the Obsessive-Compulsive and Related Disorders chapter. We examined cognitive performance in two distinct groups comprising individuals with both OCD and severe hoarding, and individuals with hoarding disorder without comorbid OCD. Participants completed executive function tasks assessing inhibitory control, cognitive flexibility, spatial planning, probabilistic learning and reversal and decision making. Compared to a matched healthy control group, OCD hoarders showed significantly worse performance on measures of response inhibition, set shifting, spatial planning, probabilistic learning and reversal, with intact decision making. Despite having a strikingly different clinical presentation, individuals with only hoarding disorder did not differ significantly from OCD hoarders on any cognitive measure suggesting the two hoarding groups have a similar pattern of cognitive difficulties. Tests of cognitive flexibility were least similar across the groups, but differences were small and potentially reflected subtle variation in underlying brain pathology together with psychometric limitations. These results highlight both commonalities and potential differences between OCD and hoarding disorder, and together with other lines of evidence, support the inclusion of the new disorder within the new Obsessive-Compulsive and Related Disorders chapter in DSM-5. PMID:24467873
Benković, Maja; Belščak-Cvitanović, Ana; Bauman, Ingrid; Komes, Draženka; Srečec, Siniša
2017-10-01
Due to abundance in carbohydrates, dietary fibres and bioactive compounds, as well as for its outspread and low prices, carob (Ceratonia siliqua L.) flour has a great potential of use as a functional ingredient. The aim of this study was to analyse this potential by physical and chemical properties assessment of different particle sizes of carob flour with and without seeds. The influence of seed presence on physical and chemical properties of flour was also investigated. Seed presence in carob flour led to higher cohesivity and cake strength. It also affected the extraction efficiency of polyphenols, which was confirmed by the ranking of samples according to their procyanidin and tannins contents. With regard to the carbohydrate content, significant differences (P<0.05) between the contents of fructose and glucose was established in samples differing by the presence of carob seeds. Spearman rank order correlations revealed a significant difference (P<0.05) between physical and chemical properties of carob flours. These findings confirm the importance of understanding physical and chemical properties of carob flours in order to use them efficiently as a functional food ingredient. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measuring learning potential in people with schizophrenia: A comparison of two tasks.
Rempfer, Melisa V; McDowd, Joan M; Brown, Catana E
2017-12-01
Learning potential measures utilize dynamic assessment methods to capture performance changes following training on a cognitive task. Learning potential has been explored in schizophrenia research as a predictor of functional outcome and there have been calls for psychometric development in this area. Because the majority of learning potential studies have utilized the Wisconsin Card Sorting Test (WCST), we extended this work using a novel measure, the Rey Osterrieth Complex Figure Test (ROCFT). This study had the following aims: 1) to examine relationships among different learning potential indices for two dynamic assessment tasks, 2) to examine the association between WCST and ROCFT learning potential measures, and 3) to address concurrent validity with a performance-based measure of functioning (Test of Grocery Shopping Skills; TOGSS). Eighty-one adults with schizophrenia or schizoaffective disorder completed WCST and ROCFT learning measures and the TOGSS. Results indicated the various learning potential computational indices are intercorrelated and, similar to other studies, we found support for regression residuals and post-test scores as optimal indices. Further, we found modest relationships between the two learning potential measures and the TOGSS. These findings suggest learning potential includes both general and task-specific constructs but future research is needed to further explore this question. Copyright © 2017 Elsevier B.V. All rights reserved.
DNA Nucleotides Detection via capacitance properties of Graphene
NASA Astrophysics Data System (ADS)
Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash
2016-05-01
In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.
Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient
Arévalo-Sandi, Alexander; Bobrowiec, Paulo Estefano D.; Rodriguez Chuma, Victor Juan Ulises
2018-01-01
There is increasing interest in the restoration/regeneration of degraded tropical habitats yet the potential role of natural regenerators remains unclear. We test the hypothesis that the richness and functional diversity of terrestrial mammals differs between forest regrowth stages. We quantified the richness and functional diversity of eight terrestrial mammal seed-disperser species across a forest regrowth gradient in the eastern Brazilian Amazon. We installed camera-traps in 15 sites within small-holder properties with forest regrowth stage classified into three groups, with five sites each of: late second-regrowth forest, early second-regrowth forest and abandoned pasture. Species richness and functional dispersion from the regrowth sites were compared with 15 paired forest control sites. Multi model selection showed that regrowth class was more important for explaining patterns in richness and functional diversity than other variables from three non-mutually exclusive hypotheses: hunting (distance to house, distance to river, distance to town, small holder residence), land cover (% forest cover within 50 meters, 1 kilometer and 5 kilometers) and land use (regrowth class, time since last use). Differences in functional diversity were most strongly explained by a loss of body mass. We found that diversity in regrowth sites could be similar to control sites even in some early-second regrowth areas. This finding suggests that when surrounded by large intact forest areas the richness and functional diversity close to human small-holdings can return to pre-degradation values. Yet we also found a significant reduction in richness and functional diversity in more intensely degraded pasture sites. This reduction in richness and functional diversity may limit the potential for regeneration and increase costs for ecological regeneration and restoration actions around more intense regrowth areas. PMID:29547648
Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient.
Arévalo-Sandi, Alexander; Bobrowiec, Paulo Estefano D; Rodriguez Chuma, Victor Juan Ulises; Norris, Darren
2018-01-01
There is increasing interest in the restoration/regeneration of degraded tropical habitats yet the potential role of natural regenerators remains unclear. We test the hypothesis that the richness and functional diversity of terrestrial mammals differs between forest regrowth stages. We quantified the richness and functional diversity of eight terrestrial mammal seed-disperser species across a forest regrowth gradient in the eastern Brazilian Amazon. We installed camera-traps in 15 sites within small-holder properties with forest regrowth stage classified into three groups, with five sites each of: late second-regrowth forest, early second-regrowth forest and abandoned pasture. Species richness and functional dispersion from the regrowth sites were compared with 15 paired forest control sites. Multi model selection showed that regrowth class was more important for explaining patterns in richness and functional diversity than other variables from three non-mutually exclusive hypotheses: hunting (distance to house, distance to river, distance to town, small holder residence), land cover (% forest cover within 50 meters, 1 kilometer and 5 kilometers) and land use (regrowth class, time since last use). Differences in functional diversity were most strongly explained by a loss of body mass. We found that diversity in regrowth sites could be similar to control sites even in some early-second regrowth areas. This finding suggests that when surrounded by large intact forest areas the richness and functional diversity close to human small-holdings can return to pre-degradation values. Yet we also found a significant reduction in richness and functional diversity in more intensely degraded pasture sites. This reduction in richness and functional diversity may limit the potential for regeneration and increase costs for ecological regeneration and restoration actions around more intense regrowth areas.
Two-Drug Antimicrobial Chemotherapy: A Mathematical Model and Experiments with Mycobacterium marinum
Ankomah, Peter; Levin, Bruce R.
2012-01-01
Multi-drug therapy is the standard-of-care treatment for tuberculosis. Despite this, virtually all studies of the pharmacodynamics (PD) of mycobacterial drugs employed for the design of treatment protocols are restricted to single agents. In this report, mathematical models and in vitro experiments with Mycobacterium marinum and five antimycobacterial drugs are used to quantitatively evaluate the pharmaco-, population and evolutionary dynamics of two-drug antimicrobial chemotherapy regimes. Time kill experiments with single and pairs of antibiotics are used to estimate the parameters and evaluate the fit of Hill-function-based PD models. While Hill functions provide excellent fits for the PD of each single antibiotic studied, rifampin, amikacin, clarithromycin, streptomycin and moxifloxacin, two-drug Hill functions with a unique interaction parameter cannot account for the PD of any of the 10 pairs of these drugs. If we assume two antibiotic-concentration dependent functions for the interaction parameter, one for sub-MIC and one for supra-MIC drug concentrations, the modified biphasic Hill function provides a reasonably good fit for the PD of all 10 pairs of antibiotics studied. Monte Carlo simulations of antibiotic treatment based on the experimentally-determined PD functions are used to evaluate the potential microbiological efficacy (rate of clearance) and evolutionary consequences (likelihood of generating multi-drug resistance) of these different drug combinations as well as their sensitivity to different forms of non-adherence to therapy. These two-drug treatment simulations predict varying outcomes for the different pairs of antibiotics with respect to the aforementioned measures of efficacy. In summary, Hill functions with biphasic drug-drug interaction terms provide accurate analogs for the PD of pairs of antibiotics and M. marinum. The models, experimental protocols and computer simulations used in this study can be applied to evaluate the potential microbiological and evolutionary efficacy of two-drug therapy for any bactericidal antibiotics and bacteria that can be cultured in vitro. PMID:22253599
Vagal Activity During Physiological Sexual Arousal in Women With and Without Sexual Dysfunction.
Stanton, Amelia M; Pulverman, Carey S; Meston, Cindy M
2017-01-02
Recently, heart rate variability (HRV) level has been found to be a risk factor for female sexual dysfunction. Low HRV was a significant predictor of female sexual arousal dysfunction and overall sexual dysfunction. Building upon this finding, the present study examined whether differences in vagal activity between sexually functional and sexually dysfunctional women may be driving the association between low HRV and female sexual dysfunction. Specifically, respiratory sinus arrhythmia (RSA) was assessed before, during, and after physiological sexual arousal in 84 women, aged 18 to 47, to examine potential differences in vagal activity between sexually functional and sexually dysfunctional women. Significant differences in vagal activity between these two groups were observed (p =.02). These findings provide additional specificity to the recently established relationship between HRV and female sexual function while also proposing a mechanism to target during treatments for sexual dysfunction.
Modeling of the gate-controlled Kondo effect at carbon point defects in graphene
NASA Astrophysics Data System (ADS)
May, Daniel; Lo, Po-Wei; Deltenre, Kira; Henke, Anika; Mao, Jinhai; Jiang, Yuhang; Li, Guohong; Andrei, Eva Y.; Guo, Guang-Yu; Anders, Frithjof B.
2018-04-01
We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound σ orbital and the vacancy-induced bound π state in an effective two-orbital single-impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hund's rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilson's numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.
NASA Astrophysics Data System (ADS)
Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu
2014-08-01
Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.
NASA Astrophysics Data System (ADS)
Kohno, Wataru; Kirikoshi, Akimitsu; Kita, Takafumi
2018-03-01
We construct a variational ground-state wave function of weakly interacting M-component Bose-Einstein condensates beyond the mean-field theory by incorporating the dynamical 3/2-body processes, where one of the two colliding particles drops into the condensate and vice versa. Our numerical results with various masses and particle numbers show that the 3/2-body processes between different particles make finite contributions to lowering the ground-state energy, implying that many-body correlation effects between different particles are essential even in the weak-coupling regime of the Bose-Einstein condensates. We also consider the stability condition for 2-component miscible states using the new ground-state wave function. Through this calculation, we obtain the relation UAB2/UAAUBB < 1 + α , where Uij is the effective contact potential between particles i and j and α is the correction, which originates from the 3/2- and 2-body processes.
Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul
2016-12-01
Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
NASA Technical Reports Server (NTRS)
Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)
2002-01-01
Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.
A multi-channel isolated power supply in non-equipotential circuit
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da
2018-04-01
A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.
Nonlocality and Short-Range Wetting Phenomena
NASA Astrophysics Data System (ADS)
Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.
2004-08-01
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Nonlocality and short-range wetting phenomena.
Parry, A O; Romero-Enrique, J M; Lazarides, A
2004-08-20
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Tiemuerbieke, Bahejiayinaer; Min, Xiao-Jun; Zang, Yong-Xin; Xing, Peng; Ma, Jian-Ying; Sun, Wei
2018-09-01
In water-limited ecosystems, spatial and temporal partitioning of water sources is an important mechanism that facilitates plant survival and lessens the competition intensity of co-existing plants. Insights into species-specific root functional plasticity and differences in the water sources of co-existing plants under changing water conditions can aid in accurate prediction of the response of desert ecosystems to future climate change. We used stable isotopes of soil water, groundwater and xylem water to determine the seasonal and inter- and intraspecific differences variations in the water sources of six C 3 and C 4 shrubs in the Gurbantonggut desert. We also measured the stem water potentials to determine the water stress levels of each species under varying water conditions. The studied shrubs exhibited similar seasonal water uptake patterns, i.e., all shrubs extracted shallow soil water recharged by snowmelt water during early spring and reverted to deeper water sources during dry summer periods, indicating that all of the studied shrubs have dimorphic root systems that enable them to obtain water sources that differ in space and time. Species in the C 4 shrub community exhibited differences in seasonal water absorption and water status due to differences in topography and rooting depth, demonstrating divergent adaptations to water availability and water stress. Haloxylon ammodendron and T. ramosissima in the C 3 /C 4 mixed community were similar in terms of seasonal water extraction but differed with respect to water potential, which indicated that plant water status is controlled by both root functioning and shoot eco-physiological traits. The two Tamarix species in the C 3 shrub community were similar in terms of water uptake and water status, which suggests functional convergence of the root system and physiological performance under same soil water conditions. In different communities, Haloxylon ammodendron differed in terms of summer water extraction, which suggests that this species exhibits plasticity with respect to rooting depth under different soil water conditions. Shrubs in the Gurbantonggut desert displayed varying adaptations across species and communities through divergent root functioning and shoot eco-physiological traits. Copyright © 2018 Elsevier B.V. All rights reserved.
Enhancing Functional Performance using Sensorimotor Adaptability Training Programs
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.
2009-01-01
During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.
Connection formulas for thermal density functional theory
Pribram-Jones, A.; Burke, K.
2016-05-23
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
Local classifiers for evoked potentials recorded from behaving rats.
Jakuczun, Wit; Kublik, Ewa; Wójcik, Daniel K; Wróbel, Andrzej
2005-01-01
Dynamic states of the brain determine the way information is processed in local neural networks. We have applied classical conditioning paradigm in order to study whether habituated and aroused states can be differentiated in single barrel column of rat's somatosensory cortex by means of analysis of field potentials evoked by stimulation of a single vibrissa. A new method using local classifiers is presented which allows for reliable and meaningful classification of single evoked potentials which might be consequently attributed to different functional states of the cortical column.
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
Classification of Alzheimer's Patients through Ubiquitous Computing.
Nieto-Reyes, Alicia; Duque, Rafael; Montaña, José Luis; Lage, Carmen
2017-07-21
Functional data analysis and artificial neural networks are the building blocks of the proposed methodology that distinguishes the movement patterns among c's patients on different stages of the disease and classifies new patients to their appropriate stage of the disease. The movement patterns are obtained by the accelerometer device of android smartphones that the patients carry while moving freely. The proposed methodology is relevant in that it is flexible on the type of data to which it is applied. To exemplify that, it is analyzed a novel real three-dimensional functional dataset where each datum is observed in a different time domain. Not only is it observed on a difference frequency but also the domain of each datum has different length. The obtained classification success rate of 83 % indicates the potential of the proposed methodology.
Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Jun; Long, Mengqiu, E-mail: mqlong@csu.edu.cn, E-mail: ygao@csu.edu.cn; Zhang, Dan
2016-03-15
Using the density functional theory and the nonequilibrium Green’s function method, we study the spin transport behaviors in zigzag boron-nitrogen-carbon nanoribbons (ZBNCNRs) by modulating the edge hydrogenation and the position of B-N nanoribbons (BNNRs) chain. The different edge hydrogenations of the ZBNCNRs and the different position relationships of the BNNRs have been considered systematically. Our results show that the metallic, semimetallic and semiconductive properties of the ZBNCNRs can be modulated by the different edge hydrogenations and different position relationships of BN chains. And our proposaled ZBNCNRs devices act as perfect spin-filters with nearly 100% spin polarization. These effects would havemore » potential applications for boron-nitrogen-carbon-based nanomaterials in spintronics nano-devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez
2015-01-19
Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor andmore » acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.« less
Sources and control of instrumental drift in the surface forces apparatus
NASA Astrophysics Data System (ADS)
Heuberger, M.; Zäch, M.; Spencer, N. D.
2000-12-01
Instrumental drift in the surface forces apparatus (SFA) has been carefully scrutinized. A diversity of different contributions with different characteristic time constants could be distinguished. The face seal of the functional attachment was identified as a potential weak point in the mechanical loop of the instrument. We compared drift in three different design variants and found that the drift rate may vary over four orders of magnitude. We believe that the presented results are applicable to a number of different SFA types.
Leone, Alessia; Ferrari, Pier Francesco; Palagi, Elisabetta
2014-01-01
Here, we tested hypotheses about the potential functions of yawning based on its intensity and social contexts. Due to their spectrum intensity of yawns (covered teeth/YW1; uncovered teeth/YW2; uncovered gums/YW3), geladas are a good model species for this purpose. We suggest that yawns of different intensity can bear different information according to the performer, the context and the behavioural pattern temporally associated to the yawn event. YW3, mainly performed by high ranking males during periods of high social tension, was frequently associated with an auditory component and often accompanied by scratching (a measure of anxiety). YW1 and YW2, preferentially performed by females, were frequently associated to lip smacking, an affiliative display. In conclusion, even though a clear-cut functional distinction of geladas' yawn intensity is difficult, YW1 and YW2 seem to be more linked to affiliative social interactions; whereas, YW3 seems to be more linked to agonistic and tension situations. PMID:24500137
Differential Effect of Active Smoking on Gene Expression in Male and Female Smokers
Paul, Sunirmal; Amundson, Sally A
2015-01-01
Smoking is the second leading cause of preventable death in the United States. Cohort epidemiological studies have demonstrated that women are more vulnerable to cigarette-smoking induced diseases than their male counterparts, however, the molecular basis of these differences has remained unknown. In this study, we explored if there were differences in the gene expression patterns between male and female smokers, and how these patterns might reflect different sex-specific responses to the stress of smoking. Using whole genome microarray gene expression profiling, we found that a substantial number of oxidant related genes were expressed in both male and female smokers, however, smoking-responsive genes did indeed differ greatly between male and female smokers. Gene set enrichment analysis (GSEA) against reference oncogenic signature gene sets identified a large number of oncogenic pathway gene-sets that were significantly altered in female smokers compared to male smokers. In addition, functional annotation with Ingenuity Pathway Analysis (IPA) identified smoking-correlated genes associated with biological functions in male and female smokers that are directly relevant to well-known smoking related pathologies. However, these relevant biological functions were strikingly overrepresented in female smokers compared to male smokers. IPA network analysis with the functional categories of immune and inflammatory response gene products suggested potential interactions between smoking response and female hormones. Our results demonstrate a striking dichotomy between male and female gene expression responses to smoking. This is the first genome-wide expression study to compare the sex-specific impacts of smoking at a molecular level and suggests a novel potential connection between sex hormone signaling and smoking-induced diseases in female smokers. PMID:25621181
Ames, Ryan M; Macpherson, Jamie I; Pinney, John W; Lovell, Simon C; Robertson, David L
2013-01-01
Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.
NASA Astrophysics Data System (ADS)
Jolivet, L.; Cohen, M.; Ruas, A.
2015-08-01
Landscape influences fauna movement at different levels, from habitat selection to choices of movements' direction. Our goal is to provide a development frame in order to test simulation functions for animal's movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influences are identified depending on landscape elements and on animal species. Knowledge were gathered from ecologists, literature and observation datasets. Second, we analysed the description of animal movement recorded with GPS at fine scale, corresponding to high temporal frequency and good location accuracy. Analysing this type of data provides information on the relation between landscape features and movements. We implemented an agent-based simulation approach to calculate potential trajectories constrained by the spatial environment and individual's behaviour. We tested two functions that consider space differently: one function takes into account the geometry and the types of landscape elements and one cost function sums up the spatial surroundings of an individual. Results highlight the fact that the cost function exaggerates the distances travelled by an individual and simplifies movement patterns. The geometry accurate function represents a good bottom-up approach for discovering interesting areas or obstacles for movements.
Saito, Shigeru; Nakatsuka, Kazumasa; Takahashi, Kenji; Fukuta, Naomi; Imagawa, Toshiaki; Ohta, Toshio; Tominaga, Makoto
2012-08-31
Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1.